WO2016174993A1 - Measurement device - Google Patents

Measurement device Download PDF

Info

Publication number
WO2016174993A1
WO2016174993A1 PCT/JP2016/060901 JP2016060901W WO2016174993A1 WO 2016174993 A1 WO2016174993 A1 WO 2016174993A1 JP 2016060901 W JP2016060901 W JP 2016060901W WO 2016174993 A1 WO2016174993 A1 WO 2016174993A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
rotation
magnet
rotating
magnetic field
Prior art date
Application number
PCT/JP2016/060901
Other languages
French (fr)
Japanese (ja)
Inventor
英雄 内海
淳 飯倉
英二 杉山
Original Assignee
国立大学法人九州大学
富士電機株式会社
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 富士電機株式会社, 日立金属株式会社 filed Critical 国立大学法人九州大学
Priority to DE112016000211.4T priority Critical patent/DE112016000211T5/en
Priority to JP2017515452A priority patent/JPWO2016174993A1/en
Publication of WO2016174993A1 publication Critical patent/WO2016174993A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/055Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/30Sample handling arrangements, e.g. sample cells, spinning mechanisms
    • G01R33/307Sample handling arrangements, e.g. sample cells, spinning mechanisms specially adapted for moving the sample relative to the MR system, e.g. spinning mechanisms, flow cells or means for positioning the sample inside a spectrometer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/10Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/12Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using double resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/445MR involving a non-standard magnetic field B0, e.g. of low magnitude as in the earth's magnetic field or in nanoTesla spectroscopy, comprising a polarizing magnetic field for pre-polarisation, B0 with a temporal variation of its magnitude or direction such as field cycling of B0 or rotation of the direction of B0, or spatially inhomogeneous B0 like in fringe-field MR or in stray-field imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/60Arrangements or instruments for measuring magnetic variables involving magnetic resonance using electron paramagnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/62Arrangements or instruments for measuring magnetic variables involving magnetic resonance using double resonance

Definitions

  • the present invention relates to a measuring apparatus and a measuring method using magnetic resonance.
  • a magnetic resonance imaging (MRI) apparatus that images nuclear magnetic resonance (NMR) in a living body, an electron spin resonance imaging (ESRI) apparatus that images electron spin resonance (ESR) of unpaired electrons of free radicals, etc. are known.
  • ESRI electron spin resonance imaging
  • DNP dynamic nuclear polarization
  • An MRI apparatus is known (for example, Patent Documents 1 to 3).
  • Patent Documents 4 to 6 a rotary MRI apparatus that rotates a magnet that forms a static magnetic field for MRI and a magnet that forms a static magnetic field for ESR with respect to a stationary subject to generate an MRI image of the subject.
  • Patent Documents 4 to 6 [Patent Document 1] JP 2006-204551 [Patent Document 2] JP 2011-527222 [Patent Document 3] JP 2007-316008 [Patent Document 4] International Publication No. 2014/196525 [Patent Document 3] Document 5] Japanese Patent Application Laid-Open No. 2010-227247 [Patent Document 6] International Publication No. 2014/007124
  • the time for which the subject is placed in the static magnetic field depends on the width of the magnet in the rotation direction.
  • the conventional rotary MRI apparatus in order to change the time for generating ESR and NMR and the transition time from ESR to NMR, it is necessary to change the width and arrangement of the magnets.
  • magnets used in a rotary MRI apparatus and the like are large and heavy, and it has been desired to operate the apparatus more safely while rotating the magnet.
  • the first magnet provided in the first range on the circumference around the rotation axis, and the first range on the circumference around the rotation axis A second magnet provided in a different second range, a drive unit that rotates the first magnet and the second magnet around the rotation axis, and the rotation of the first magnet and the second magnet
  • a control unit that changes the rotational speeds of the first magnet and the second magnet in accordance with the positions of the first magnet and the second magnet with respect to the installation position.
  • the measurement is provided in a space between the pair of rotation units provided at different positions in the axial direction with respect to the rotation axis and rotating about the rotation axis, and the pair of rotation units.
  • a non-rotating unit for installing a target wherein at least one of the pair of rotating units is housed in a first range on a circumference around the rotating shaft in the rotating unit, and the pair of rotating units A first magnet that generates a first magnetic field in a space between the rotation units; and a second range that is different from the first range on the circumference around the rotation axis in the rotation unit. And a second magnet for generating a second magnetic field in the space between the rotating units.
  • the schematic block diagram of the measuring device 10 in this embodiment is shown. It is the schematic of the measuring device 10 of FIG. 1 observed from the upper side. It is an example of the measuring apparatus 10 observed from diagonally upward.
  • 1 is a schematic view of a rotation module 100 of a measuring device 10.
  • FIG. An example of the rotation unit 110b including the jacket 101b is shown.
  • An example of the jacket 101b in this embodiment is shown.
  • An example of the processing flow of the measuring device 10 in this embodiment is shown.
  • 3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10.
  • FIG. 3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10.
  • FIG. 3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10.
  • FIG. 3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10.
  • FIG. 3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10.
  • FIG. 3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10.
  • FIG. An example of rotation speed control by the control unit 230 is shown.
  • the measurement apparatus 30 which concerns on the modification of this embodiment is shown. 2 shows an example of a hardware configuration of a computer 1900.
  • FIG. 1 shows a schematic configuration diagram of a measuring apparatus 10 in the present embodiment.
  • the measurement apparatus 10 includes ESR magnets and MRI magnets, and includes rotation units 110a and 110b that rotate about the rotation axis AX, and measures an ESR signal, NMR signal, or the like of the measurement target 20.
  • the measuring device 10 includes a rotating module 100, a rotating shaft member 140, a bearing portion 142a, a bearing portion 142b, a housing 146, a support 150, a base 152, a target protecting portion 156, a roller 158, power A transmission unit 160, a drive unit 170, a non-rotating unit 180, a measurement unit 200, an abnormality detection unit 210, an input unit 220, a control unit 230, and a display unit 240 are provided.
  • the rotation module 100 is a movable module in the measuring apparatus 10 and includes a pair of rotation units 110a and 110b (hereinafter, collectively referred to as “rotation unit 110” as appropriate).
  • the measuring apparatus 10 includes a rigid rotation shaft member (Shaft) 140 serving as a rotation axis (Axis) AX, and the pair of rotation units 110a and 110b differs in the axial direction with respect to the rotation shaft member 140. It is fixed at a position and rotates around the rotation axis AX.
  • the measuring device 10 may not be provided with the rigid rotating shaft member 140 but may rotate about the virtual rotating axis AX.
  • the rotating unit 110a and the rotating unit 110b are collectively referred to as a first magnet 112a and a first magnet 112b (hereinafter, appropriately referred to as “first magnet 112”) that generate a first magnetic field toward the space between the pair of rotating units 110. ), And a second magnet 114a and a second magnet 114b (hereinafter collectively referred to as “second magnet 114” where appropriate) that generate a second magnetic field.
  • first magnet 112 a and a first magnet 112b
  • second magnet 114b hereinafter collectively referred to as “second magnet 114” where appropriate
  • the upper (+ Z direction side) rotation unit 110a includes a first magnet 112a and a
  • the lower ( ⁇ Z direction side) rotation unit 110b includes a first magnet 112b and
  • the second magnet 114b is included.
  • at least one of the first magnet 112 and the second magnet 114 may be provided only in one of the rotation units 110a and 110b.
  • the rotation units 110a and 110b are provided at different positions on the rotation axis AX and rotate together around the rotation axis AX.
  • the rotation units 110a and 110b rotate so as to maintain the relative positions of the first magnets 112a and 112b and the second magnets 114a and 114b.
  • the rotation module 100 generates a substantially constant first magnetic field and second magnetic field while rotating.
  • the first magnets 112a to 112b and the second magnets 114a to 114b are arranged so that the directions of the magnetic poles are aligned in the same direction in an opposed state.
  • the first magnets 112a and 112b are disposed relative to each other so that the upper side is the north pole and the lower side is the south pole.
  • the second magnet 114a and the second magnet 114b are disposed so as to face each other so that the upper side is an N pole and the lower side is an S pole.
  • the first magnets 112a and 112b are ESR permanent magnets that provide a first magnetic field for inducing electron spin resonance of the measurement target 20, and the second magnets 114a and 114b perform nuclear magnetic resonance of the measurement target 20.
  • a permanent magnet for MRI that provides a second magnetic field to evoke.
  • the first magnets 112a to 112b have a lower magnetic force than the second magnets 114a to 114b.
  • the first magnetic field of the first magnets 112a to 112b may be 5 mT
  • the second magnets 114a to 114b The two magnetic fields may be 0.3T.
  • the second magnetic field may be, for example, in the range of 0.1T to 3T in the measuring apparatus 10 that measures the human body, and is, for example, up to 7T or more if the measuring object is other than the human body. There may be.
  • the first magnetic field may be within a range of 1 mT to 0.1 T, for example, and is determined according to the strength of the second magnetic field.
  • the rotating unit 110 has a jacket that houses and fixes the first magnet 112 and the second magnet 114. Details of the structure of the pair of rotating units 110 will be described later.
  • the rotation shaft member 140 is fixed to the rotation unit 110 so as to constitute the rotation axis AX of the rotation unit 110, and thereby becomes a physical central axis of rotation of the rotation unit 110.
  • the rotating shaft member 140 is provided in the vertical direction (that is, the vertical direction: the Z direction in the drawing) and rotates along the horizontal plane (XY plane).
  • the rotating shaft member 140 also functions as a back yoke that passes a magnetic path that passes through the second magnets 114a and 114b, and thus is formed using a magnetic material.
  • the rotating shaft member 140 may be made of a nonmagnetic material having excellent strength and corrosion resistance, such as a nonmagnetic stainless steel material and a brass material. You may use what used.
  • the bearing part 142a and the bearing part 142b (hereinafter collectively referred to as “bearing part 142” as appropriate) support the rotating shaft member 140 on both sides outside the pair of rotating units 110.
  • the bearing portion 142a supports the rotating shaft member 140 in a rotatable state above the rotating unit 110a
  • the bearing portion 142b supports the rotating shaft member 140 in a rotatable state below the rotating unit 110b.
  • the bearing portion 142 can hold
  • the bearing portion 142 may include a sliding mechanism using various bearings or fluids.
  • the housing 146 protects the measuring device 10 from the outside, accommodates at least a part of the measuring device 10, and supports the measuring device 10.
  • the housing 146 covers and houses the pair of rotating units 110, the bearing portion 142, and the non-rotating unit 180.
  • the housing 146 may include a frame and a plate.
  • the housing 146 may have a structure in which a skeleton is formed by the frame and the outside of the skeleton is covered by the plate.
  • the housing 146 may have a box shape, and supports the load of the rotating module 100 that is mainly rotated by the frame, and the plate conceals and protects the inside of the measuring device 10 from the outside.
  • the frame and the plate may be formed using a metal such as steel and aluminum, or a strong material such as a resin.
  • the housing 146 may have a multiple structure in which a frame for attaching an exterior plate is provided on the outside of the skeleton that supports the bearing 142, the non-rotating unit 180, and the like.
  • the support column 150 is disposed at the lower part of the casing 146 and supports the load of the rotating module 100 and the casing 146 together with the base 152.
  • the base 152 is disposed on the ground or floor, and serves as a base that supports the entire measuring apparatus 10 by fixing the support 150.
  • the strut 150 and the base 152 may be a part of the housing 146 or may be provided separately from the housing 146.
  • the target protection unit 156 extends from the frame of the housing 146 to a space between the pair of rotation units 110, and at least one of the upper rotation unit 110 a and the lower rotation unit 110 b should be detached from the rotation shaft member 140. Even in the case of being stuck, the measurement object 20 is protected by being sandwiched between the rotating unit 110a and the rotating unit 110b to ensure a gap between them. Thereby, for example, even when the upper rotary unit 110a has fallen off the rotary shaft member 140, the rotary unit 110a can be prevented from dropping.
  • the target protection unit 156 may be provided at two or more locations on the housing 146.
  • the target protection unit 156 may have substantially the same height as the interval between the first rotation unit 110a and the second rotation unit 110b (for example, a height of 70 to 95% of the interval), thereby further increasing the rotation unit 110a. In addition, a sufficient interval between the rotary units 110b is secured, and the impact is reduced even when the rotary unit 110a drops off the rotary shaft member 140 and falls. Further, the target protection unit 156 may be provided with a roller for smooth rotation of the rotation unit 110a and / or the rotation unit 110b on the upper surface and / or the lower surface.
  • target protection unit 156 is not essential, and may be omitted according to the manner in which the rotating unit 110a and the rotating unit 110b are fixed to the rotating shaft member 140, and according to the strength of the non-rotating unit 180 described later.
  • rollers 158 are attached to the housing 146 and support the pair of rotating units 110 in a rotatable state. Thereby, the roller 158 stabilizes the rotation of the pair of rotating units 110 and improves the safety of the measuring device 10.
  • the roller 158 may be provided with a rotation sensor and / or a vibration sensor, and the measurement device 10 may monitor the rotation state of the rotation unit 110.
  • the roller 158 contacts a jacket (described later) portion of the rotation units 110a and 110b.
  • the rollers 158 may be provided so as to be in contact with the top and bottom of the pair of rotation units 110.
  • a roller may be provided between the rotation unit 110a and the ceiling portion of the housing 146 and / or between the rotation unit 110b and the bottom surface of the housing 146, thereby stabilizing the rotation of the rotation unit 110.
  • the roller 158 may be omitted if the rotation stability of the rotation module 100 can be sufficiently secured.
  • the power transmission unit 160 transmits the power from the drive unit 170 to the rotating shaft member 140 to rotate the rotating shaft member 140.
  • the power transmission unit 160 may include a speed reducer or a transmission, and the rotation input from the drive unit 170 along the input shaft is decelerated and transmitted to the rotary shaft member 140 in the same or different direction as the input shaft. Good.
  • the drive unit 170 generates power by a motor or the like and applies power to the rotary shaft member 140 via the power transmission unit 160 to rotate the rotary shaft member 140, whereby the first magnet 112a-b and the second magnet 114a. ⁇ b is rotated about the rotation axis AX.
  • the drive unit 170 may include, for example, a servo motor whose rotation speed can be controlled by a servo mechanism or a motor connected to an inverter. Thereby, the drive part 170 can adjust the rotation speed of the rotating shaft member 140 by adjusting the rotation speed input into the power transmission part 160.
  • the driving unit 170 may change the rotation speed continuously or discontinuously. Further, the driving unit 170 may repeat the stop and rotation.
  • the driving unit 170 may include a rotation angle sensor that detects a rotation angle on the motor rotation shaft, and supply the rotation angle of the motor rotation shaft to the control unit 230.
  • the sensor that detects the rotation angle may include an encoder, a resolver, and the like.
  • the control unit 230 may calculate the rotation angle of the rotation shaft member 140 from the rotation angle of the motor rotation shaft and the reduction ratio of the power transmission unit 160.
  • a sensor that detects the rotation angle may be provided in the output shaft of the rotation shaft member 140 or the power transmission unit 160 and supply the rotation angle of the rotation shaft member 140 to the control unit 230.
  • the non-rotating unit 180 is a fixed module that is provided in a space between the pair of rotating units 110 and is fixed to the rotating unit 110, and the measurement target 20 is installed therein.
  • the non-rotating unit 180 includes a coil unit 184, a gradient magnetic field generation unit 188, and a static magnetic field adjustment unit 190.
  • the coil unit 184 includes an ESR coil unit (not shown) and an NMR transmit / receive coil unit (not shown).
  • the coil portion for ESR generates an electromagnetic wave for inducing electron spin resonance in the measurement target 20 in a state where the first magnetic field is applied to the measurement target 20.
  • the transmit / receive coil unit for NMR includes an RF coil, and in a state where a second magnetic field is applied to the measurement target 20, generates an electromagnetic wave having a predetermined frequency and transmits (irradiates) the measurement target 20 with a nucleus. Magnetic resonance is induced and an NMR signal generated by the measurement object 20 is received.
  • the gradient magnetic field generator 188 applies a gradient magnetic field to the measurement target 20.
  • the gradient magnetic field generator 188 has XYZ three-direction gradient magnetic field coils, and generates a gradient magnetic field in each of the three directions.
  • the gradient magnetic field generation unit 188 enables the coil unit 184 to receive the NMR signal at an arbitrary plane in the three-dimensional space, and allows the measurement apparatus 10 to generate MRI information in the three-dimensional space.
  • the static magnetic field adjustment unit 190 is provided at a position predetermined with respect to the installation position of the measurement target 20 (up and down of the measurement target 20 in the drawing), and includes the first magnets 112a to 112b and the second magnets 114 to b. Changes the strength of at least one of the first magnetic field and the second magnetic field applied to the measurement target 20.
  • the static magnetic field adjustment unit 190 according to the present embodiment has a static magnetic field adjustment coil for making the intensity of the first magnetic field variable according to the control of the control unit 230, and determines the strength of the static magnetic field by the first magnetic field. Moderate.
  • the static magnetic field adjusting coil generates different static magnetic fields depending on the measurement target 20 and the composition to be measured on the measurement target 20.
  • the static magnetic field adjustment unit 190 changes the intensity of the static magnetic field applied to the measurement target 20 and causes NMR to measure the dynamic nuclear polarization generated by inducing ESR. Measure radical species. Furthermore, the static magnetic field adjustment unit 190 adjusts the optimum static magnetic field according to each of a plurality of types of radicals included in the measurement target 20 to induce ESR and perform NMR measurement, so that the measurement apparatus 10 can perform a plurality of radicals. Enables seeds to be imaged.
  • the measuring unit 200 is provided with a non-rotating unit 180 to which each of the first magnetic field generated by the first magnet and the second magnetic field generated by the second magnet is provided in accordance with the rotation of the first magnet and the second magnet.
  • the NMR signal of the measurement object 20 placed at the position is measured at a predetermined timing.
  • the measurement unit 200 measures the NMR signal from the measurement target 20 received by the RF coil in response to the generation of electromagnetic waves having a predetermined frequency from the RF coil of the coil unit 184.
  • the measurement unit 200 measures the measurement object 20 in a state in which the nuclear magnetic resonance is induced in the measurement object 20 by the second magnetic field after the electron spin resonance is induced in the measurement object 20 by the first magnetic field. Thereby, the measurement part 200 can receive the NMR signal amplified by the dynamic nuclear polarization produced by inducing electron spin resonance. The measurement unit 200 supplies the received NMR signal to the control unit 230.
  • the abnormality detection unit 210 is attached to the measurement apparatus 10 and detects an abnormality of the measurement apparatus 10.
  • the abnormality detection unit 210 includes a vibration sensor unit, and is attached to the housing 146 to detect horizontal vibration and vertical vibration of the housing 146.
  • the abnormality detection unit 210 supplies the detected vibration information to the control unit 230.
  • the measurement device 10 may include various sensors for detecting an abnormality of the measurement device 10 as the abnormality detection unit 210 in addition to the vibration sensor.
  • the measurement device 10 may include a magnetic sensor, a temperature sensor, a sound sensor, a displacement sensor, and / or a humidity sensor.
  • the input unit 220 inputs an instruction or the like from the user to the measuring device 10.
  • the input unit 220 is connected to an input device such as a mouse, a keyboard, and / or a touch panel, and supplies a user instruction input from these input devices to the control unit 230.
  • the control unit 230 controls the entire operation of the measuring device 10.
  • the control unit 230 controls the measurement unit 200 to control the drive unit 170 and rotate the rotating shaft member 140 to induce ESR on the measurement target 20 and / or perform NMR measurement.
  • the control unit 230 controls the rotation speeds of the motors of the driving unit 170 connected to the rotation shaft member 140, thereby controlling the rotation speeds of the first magnets 112a and 112b and the second magnets 114a and 114b. Measurement is performed while rotating the rotating unit 110.
  • the control unit 230 causes the gradient magnetic field generation unit 188 to generate a predetermined gradient magnetic field at the timing when the measurement object 20 is irradiated with the first magnetic field while rotating the rotation unit 110, and the coil unit. ESR is generated by irradiating the measurement target 20 with an electromagnetic wave having a predetermined frequency from the coil portion for ESR in 184. Then, the control unit 230 causes the gradient magnetic field generation unit 188 to generate a predetermined gradient magnetic field at a timing at which the measurement object 20 is irradiated with the second magnetic field while the rotation of the rotation unit 110 is maintained.
  • the measurement object 20 is irradiated with an electromagnetic wave having a predetermined frequency from the RF coil to cause NMR, and the measurement unit 200 receives the NMR signal.
  • the control unit 230 may change the strength of the magnetic field generated by the static magnetic field adjustment coil in the coil unit 184 depending on whether the measurement target 20 is given the first magnetic field or the second magnetic field. .
  • the control unit 230 when the first magnetic field is applied to the measurement target 20, the control unit 230 generates a magnetic field having a strength corresponding to the composition to be measured from the static magnetic field adjustment coil.
  • the control unit 230 images the NMR signal received from the measurement unit 200. For example, the control unit 230 calculates an NMR signal and performs image processing to generate an MRI image.
  • the control unit 230 acquires three-dimensional information of the measurement target 20 (for example, a three-dimensional distribution of water molecules or free radicals of the measurement target 20) from the NMR signal obtained under a three-dimensional gradient magnetic field, and the three-dimensional information.
  • An MRI image based on the may be generated. Since the control unit 230 causes ESR in the measurement target 20, in addition to the normal MRI image, the control unit 230 can generate an MRI image (DNP-MRI image) using the measurement target ESR and DNP.
  • the control unit 230 may change the rotation speed of the rotating shaft member 140 according to the positions of the first magnet 112 and the second magnet 114 with respect to the installation position of the measurement target 20 during measurement of the measurement target 20. Thereby, the control part 230 can control the time when the 1st magnetic field by the 1st magnet 112 and the 2nd magnetic field by the 2nd magnet 114 are given to the measuring object 20, and can control ESR and NMR of the measuring object 20. .
  • a specific example of the rotation speed control by the control unit 230 will be described later.
  • control unit 230 detects that the abnormality detection unit 210 detects an abnormality of the measurement device 10 using various sensors, for example, an abnormal displacement that exceeds a reference of a component such as the rotating module 100, or a vibration that exceeds a reference value.
  • the rotation of the pair of rotation units 110 is stopped, or the rotation speed of the pair of rotation units 110 is decreased to ensure safety.
  • the display unit 240 displays information regarding the measuring apparatus 10 during and before and after the operation.
  • the display unit 240 may display an MRI image and / or an ESR spectrum generated by the control unit 230.
  • the display unit 240 may display the rotational position and / or rotational speed of the rotary unit 110.
  • the first magnet 112 for ESR and the second magnet 114 for NMR are covered and stored in the pair of rotation units, and this is centered on the rotation axis AX.
  • the rotating unit 180 is rotated. Therefore, according to the measurement apparatus 10 of the present embodiment, ESR induction and NMR measurement of the measurement target 20 can be performed more safely than the conventional method of rotating the magnet itself described in Patent Document 3 and the like.
  • the time during which ESR and NMR are generated in the measurement target 20 can be controlled by controlling the rotation speed of the rotating unit 110 during rotation.
  • the measurement device 10 may have a configuration that does not include any of the elements described.
  • the measurement apparatus 10 may not include the roller 158 and / or the abnormality detection unit 210.
  • FIG. 2 is a schematic view of the measuring apparatus 10 of FIG. 1 observed from above.
  • the housing 146 includes a plurality of upper frames 148 that form a lattice structure.
  • the bearing portion 142a is mounted and fixed on the lattice structure of the upper frame 148, and supports the rotating shaft member 140 from above.
  • maintains the rotation unit 110 from the upper side, and improves the stability of the measuring device 10 whole.
  • the target protection unit 156 is fixed to a frame portion that is a column on the side where the non-rotating unit 180 is not provided in the four corners of the housing 146, and is provided so as to extend from the column to the center.
  • the non-rotating unit 180 has a strength capable of protecting the measurement target 20, and therefore, the target protection unit is provided on the column on which the non-rotating unit 180 is provided. 156 is not provided separately.
  • an area surrounded by a dotted line in FIG. 2 shows an example of an area where the non-rotating unit 180 is located.
  • the non-rotating unit is provided on at least one side surface of the housing 146 and has a certain size so that the measurement target 20 can be arranged.
  • the non-rotating unit 180 is detachably attached to the guide fixed to the housing 146 and the measurement apparatus 10 main body, and is fitted to the guide to be attached to the measurement apparatus 10 main body.
  • Non-rotating unit 180 main body is
  • FIG. 3 is an example of the measuring apparatus 10 observed from obliquely above.
  • the housing 146 may be covered with an external cover 147.
  • An opening 183 for guiding the measurement target 20 to the non-rotating unit 180 is provided in a part of the outer cover 147 on the front side of the measuring device 10.
  • the measurement apparatus 10 may measure a part of the body by inserting a part of the body into the non-rotating unit 180 from the opening 183.
  • the measuring apparatus 10 may measure the entire body by allowing a human body or the like to enter the housing 146 through the opening 183 and lie down on the installation surface of the non-rotating unit 180.
  • the non-rotating unit 180 can slide with respect to the housing 146 and be detachable through the opening 183.
  • FIG. 4 is a schematic diagram of the rotation module 100 of the measuring apparatus 10.
  • Each of the pair of rotating units 110 has a rotating disc shape having opposing surfaces.
  • each of the pair of rotating units 110 has a substantially disk shape.
  • the area above the plane PL parallel to the XY plane corresponds to the rotation unit 110a
  • the area below the plane PL corresponds to the rotation unit 110b.
  • the rotation unit 110a includes a jacket 101a, a first back yoke 102a and a first magnet yoke portion 103a, a second back yoke 104a and a second magnet yoke portion 105a, a first pole piece 115a, a second pole piece 116a, a support plate 117a, Furthermore, the support 118a is further included.
  • the jacket 101a stores the first magnet 112a and the second magnet 114a of the rotating unit 110a in a fixed state.
  • the specific structure of the jacket 101a will be described later.
  • the first back yoke 102a and the first magnet yoke portion 103a are provided adjacent to the first magnet 112a and allow the magnetic flux of the first magnet 112a to pass through.
  • the first back yoke 102a and the first magnet yoke portion 103a according to the present embodiment are in contact with each other to form a magnetic path, and the first magnet yoke portion 103a reaches the first back yoke 102a from the upper side of the first magnet 112a.
  • the magnetic flux of the first magnet 112a is guided to the first back yoke 102a.
  • the first back yoke 102a is formed along the rotation axis AX, and guides the magnetic flux from the first magnet 112a to the first back yoke 102b on the rotation unit 110b side.
  • the second back yoke 104a and the second magnet yoke portion 105a are provided adjacent to the second magnet 114a and allow the magnetic flux of the second magnet 114a to pass therethrough.
  • the second back yoke 104a and the second magnet yoke portion 105a according to the present embodiment are integrally formed to form a magnetic path.
  • the second magnet yoke portion 105a is formed in a portion from the upper side of the jacket 101a to the rotating shaft member 140, and guides the magnetic flux of the second magnet 114a to the second back yoke 104a.
  • the second back yoke 104a overlapping the rotation axis AX guides the magnetic flux of the second magnet 114a to the second back yoke 104b on the rotation unit 110b side.
  • the second back yoke 104a includes a support column that overlaps the rotation axis AX of the rotation unit 110a, and the first back yoke 102a forms a part of the circumference along the outside of the support column. It is provided as follows.
  • the first pole piece 115a is provided at the edge of the exposed portion of the first magnet 112a exposed from the opening of the jacket 101a to the lower side of the jacket 101a, and the magnetic field of the first magnet 112a spreads outside the rotating unit 110a.
  • the second pole piece 116a is provided at the edge of the exposed portion of the second magnet 114a exposed from the opening of the jacket 101a to the lower side of the jacket 101a, and the magnetic field of the second magnet 114a is outside the rotating unit 110a. To prevent spreading.
  • the support plate 117a is fixed to the shaft member of the rotating shaft member 140, and fixes the jacket 101a to the rotating shaft member 140 via the support column 118a and the second magnet yoke portion 105a.
  • the support plate 117a may be formed of a nonmagnetic metal material having high rigidity such as stainless steel and aluminum, or a nonmagnetic material such as resin having sufficient strength, and has a rotating disk shape such as a disk or a polygon.
  • the one or more support columns 118a are provided to fix the jacket 101a to the support plate 117a, thereby increasing the rigidity of the entire rotation unit 110a including the jacket 101a.
  • the support column 118a may be formed of the same material as the support plate 117a or the like, and may be, for example, an H-shaped steel having a H-shaped cross section.
  • the jacket 101a When sufficient rigidity can be maintained by providing the jacket 101a with a sufficient thickness, it is not necessary to provide the support plate 117a and the support column 118a on the rotating unit 110a, and the jacket 101a is directly attached to the rotating shaft member 140. 101a may be fixed.
  • the rotation unit 110b includes a jacket 101b, a first back yoke 102b and a first magnet yoke portion 103b, a second back yoke 104b and a second magnet yoke portion 105b, a first pole piece 115b, a second pole piece 116b, a support plate 117b, In addition, the support 118b is further included.
  • the rotation unit 110b may have a shape obtained by inverting the rotation unit 110a with respect to the XY plane.
  • the jacket 101b stores the first magnet 112b and the second magnet 114b of the rotating unit 110b in a fixed state.
  • the jacket 101b may have the same form as the jacket 101a.
  • the first back yoke 102b and the first magnet yoke portion 103b are provided adjacent to the first magnet 112b and allow the magnetic flux of the first magnet 112b to pass therethrough.
  • the second back yoke 104b and the second magnet yoke portion 105b are provided adjacent to the second magnet 114b and allow the magnetic flux of the second magnet 114b to pass therethrough.
  • first back yoke 102b, the first magnet yoke portion 103b, the second back yoke 104b, and the second magnet yoke portion 105b include the first back yoke 102a, the first magnet yoke portion 103a, the second back yoke 104a, Since it has the same function and structure as the second magnet yoke portion 105a, the description thereof will be omitted unless necessary.
  • the first back yoke 102b may be connected and fixed to the first back yoke 102a of the rotating unit 110a, or may be integrated with the first back yoke 102a to constitute a single member.
  • the second back yoke 104b may be connected and fixed to the second back yoke 104a of the rotating unit 110a, or may be integrated with the second back yoke 104a to form a single member. Thereby, the rotation unit 110a and the rotation unit 110b can rotate integrally.
  • the first pole piece 115b is provided at the edge of the exposed portion of the first magnet 112b exposed from the opening of the jacket 101b to the upper side of the jacket 101b.
  • the second pole piece 116b is provided at the edge of the exposed portion of the second magnet 114b exposed from the opening of the jacket 101b to the upper side of the jacket 101b.
  • the first pole piece 115b and the second pole piece 116b of the rotation unit 110b, the support plate 117b, and the column 118b are the first pole piece 115a and the second pole piece 116a of the rotation unit 110a, the support plate 117a, and the column 118a. May be formed in the same manner.
  • FIG. 5 shows an example of the rotating unit 110b including the jacket 101b.
  • the support plate 117b supports one surface of the jacket 101b via the support column 118b and the second magnet yoke portion 105b.
  • the jacket 101b has a first range 111b for accommodating the first magnet 112b and a second range 113b for accommodating the second magnet 114b.
  • the first range 111b is fixed with respect to the rotation axis AX and is located in a region on the circumference around the rotation axis AX.
  • the second range 113b is fixed with respect to the rotation axis AX and is located in a different area from the first range 111b on the circumference around the rotation axis AX.
  • the rotating unit 110a also has a first range 111a (not shown) corresponding to the first magnet 112a, and a second range 113a (not shown) corresponding to the second magnet 114a. It is done.
  • the first range 111b and the second range 113b of the rotation unit 110b are provided at positions facing the first range 111a and the second range 113a of the rotation unit 110a. That is, the rotation unit 110b may be one in which the rotation unit 110a is turned upside down and is opposed to the rotation unit 110a so that the first magnet 112 and the second magnet 114 face each other.
  • FIG. 6 shows a view of an example of the jacket 101b according to the present embodiment as viewed obliquely from below in FIG. Since the jacket 101a has substantially the same structure as the jacket 101b, the description thereof will be omitted unless necessary.
  • the jacket 101b may be a disk provided with a first opening 107b, a second opening 108b, and a third opening 109b.
  • the jacket 101b may be formed of a nonmagnetic metal having high rigidity such as stainless steel or aluminum, or a nonmagnetic material such as resin having sufficient strength.
  • the jacket 101b has a thickness for housing the first magnet 112b and the second magnet 114b, and may have a thickness of 1 to 200 mm, for example. Further, when the support plate 117b and the support column 118b are not used, the jacket 101b may be made thicker.
  • the jacket 101b has a surface opposite to the surface facing the measurement target 20 (that is, in the jacket 101b, at least part of the first magnet 112b and the second magnet 114b from the lower side in FIG.
  • the first opening 107b has substantially the same size as the first magnet 112b or larger than the first magnet 112b
  • the second opening 108b has substantially the same size as the second magnet 114b.
  • the first opening 107b has substantially the same shape as the first magnet 112b and may correspond to the first range 111b.
  • the second magnet 114b has substantially the same shape and may correspond to the second range 113b.
  • the first magnet 112b and the second magnet 114b are locked in the first opening 107b and the second opening 108b, and the first magnet 112b and the second magnet 114b are moved to the measurement target 20 side. It has a locking portion 106 that prevents it from coming out.
  • the locking portion 106 is a protrusion or a step provided along the periphery of the first opening 107b and the second opening 108b on the bottom side facing the measurement target 20, and is integrated with the main body portion of the jacket 101b. Formed.
  • the jacket 101b can prevent the first magnet 112b and the second magnet 114b from falling off when being accommodated.
  • the jacket 101b may fix the first magnet 112b and the second magnet 114b with a known fixture such as a bolt or a fastener.
  • the jacket 101b safely accommodates and fixes the first magnet 112b through the first opening 107b, and prevents the first magnet 112b from dropping off when the rotation unit 110b rotates. Further, the jacket 101b safely accommodates and fixes the second magnet 114b in the second opening 108b, and prevents the second magnet 114b from dropping off when the rotation unit 110b rotates. That is, the jacket 101b safely fixes the first magnet 112b and the second magnet 114b by forming a disk including the first magnet 112b and the second magnet 114b.
  • the third opening 109b has a size and a shape that allow the first back yoke 102b and the second back yoke 104b to pass therethrough, and allows the magnetic fluxes of the first magnet 112b and the second magnet 114b to pass therethrough.
  • the first magnet 112b is fixed with respect to the rotation axis AX and is accommodated in a first range 111b on the circumference around the rotation axis AX.
  • the first range 111b is an arc shape (for example, a C shape) formed by a circle (radius r 2 : r 2 ⁇ r 1 ) that moves on the circumference of the radius r 1 centered on the rotation axis AX.
  • the first magnet 112b may be a magnet provided in the whole or at least a part of the inside of the outer edge of the first range 111b.
  • the first magnet 112b can apply a static magnetic field to the measurement target 20 for a relatively long time during which the arc portion corresponding to the first range 111 overlaps the measurement target 20 during the rotation of the rotation unit 110b.
  • a spacer member for adjusting the weight and / or balance of the entire jacket 101b may be disposed on the jacket 101b.
  • the second magnet 114b is fixed with respect to the rotation axis AX and is accommodated in a second range 113b different from the first range 111b on the circumference around the rotation axis AX.
  • the first range 111b may have a wider range on the circumference than the second range 113b.
  • the second range 113b may be circular with a radius r 3 (r 3 ⁇ r 1 ), and the second magnet 114b may be a frame-shaped magnet along the outer edge of the second range 113b. Accordingly, the second magnet 114b can apply a static magnetic field to the measurement target 20 for a relatively short time when the circle overlaps the measurement target 20 while the rotation unit 110b is rotating.
  • a spacer member for adjusting the weight and / or balance of the entire jacket 101b may be disposed on the jacket 101b.
  • first magnet 112b and the second magnet 114b may have different shapes from those in FIG.
  • first magnet 112b may be circular and the second magnet 114b may be arc-shaped, both circular, or both arc-shaped.
  • the rotation unit 110b can adopt a configuration in which one or a plurality of correction magnetic bodies or magnets are attached to appropriate positions on the measurement target 20 side of the first magnet 112b and the second magnet 114b. Thereby, the rotation unit 110b can provide a more uniform static magnetic field to the measurement target 20.
  • the rotating units 110a and 110b employ a configuration in which the surface of the jackets 101a and 101b facing the measurement target 20 is covered with a nonmagnetic material such as an acrylic plate and preferably a nonconductive cover. Also good.
  • At least one of the rotation units 110a to 110b is positioned on the position detection sensor or measuring device 10 main body side at the end of the first range 111 in the rotation direction and the end of the second range 113 in the rotation direction.
  • the control unit 230 outputs the trigger signal at the timing when the head / end of the first range and the head / end of the second range in the rotating unit 110 reach the reference position (for example, a predetermined position on the non-rotating unit 180).
  • the rotation speed can be changed using the trigger signal.
  • FIG. 7 shows an example of the processing flow of the measuring apparatus 10 in the present embodiment.
  • the measurement apparatus 10 measures the measurement target 20 by executing the processes of S700 to S770.
  • the measurement apparatus 10 has two types of operation modes: a DNP-MRI mode that generates a DNP-MRI image and an MRI mode that generates an MRI image that does not cause the occurrence of electron spin resonance.
  • the control unit 230 changes the rotation speed of the rotary shaft member 140 according to the positions of the first magnet 112 and the second magnet 114 with respect to the installation position of the measurement target 20 during measurement of the measurement target 20.
  • the rotation module 100 is stopped and a second magnetic field is applied to the measurement target 20 to measure nuclear magnetic resonance (S765 to S770).
  • the measuring apparatus 10 performs an initialization process. For example, the measuring apparatus 10 performs power-on processing, start-up processing of the control unit 230, reading of specified parameters necessary for measurement, check that no abnormality has occurred, detection of the initial position of the rotation module 100, or return to the initial position. And the calibration of the rotation speed and the magnetic field of various coils.
  • the control unit 230 of the measurement apparatus 10 includes, as a part of the specified parameter, the first angle range from the start angle to the end angle in the first range where the first magnet 112 is provided in the rotation module 100, the first angle range, The second angle range from the start angle to the end angle in the second range in which the two magnets 114 are provided, the first transition angle range in the first transition period from the end angle of the first range to the start angle of the second range, The second transition angle range of the second transition period from the end angle of the two ranges to the start angle of the first range is read as a specified parameter.
  • step S ⁇ b> 705 the control unit 230 performs operation setting by inputting measurement parameters used for the current measurement from the user or operator of the measurement apparatus 10 via the input unit 220.
  • the measurement apparatus 10 may receive measurement parameters stored in advance in an external computer or the like via a network and perform operation settings.
  • the control unit 230 acquires a mode setting for measuring in either the DNP-MRI mode or the MRI mode as an example of a measurement parameter.
  • the control unit 230 sets an ESR period for determining the rotation speed of the rotation module 100 in a period during which the first magnetic field is applied to the measurement target 20 (hereinafter referred to as “ESR period”);
  • An NMR period setting for determining the rotation speed of the rotation module 100 during a period in which the second magnetic field is applied to the measurement object 20 hereinafter referred to as “NMR period”
  • NMR period an NMR period setting for determining the rotation speed of the rotation module 100 during a period in which the second magnetic field is applied to the measurement object 20
  • the transition period setting for determining the rotation speed of the is acquired.
  • the control unit 230 may receive measurement parameters for determining the ESR period, the NMR period, and the transition period in various formats. For example, the controller 230 may control the first rotation speed (for example, angular speed) during the ESR period, the second rotation speed during the first transition period during which the ESR period transitions to the NMR period, the third rotation speed during the NMR period, and the ESR from the NMR period. The fourth rotational speed of the second transition period that transitions to the period can be directly received.
  • first rotation speed for example, angular speed
  • the fourth rotational speed of the second transition period that transitions to the period can be directly received.
  • control unit 230 can receive the type of composition to be measured as a measurement parameter.
  • the control unit 230 stores in advance a correspondence relationship between the type of composition to be measured and the ESR period, NMR period, first transition period, and second transition period required for the composition as a table.
  • the length of the ESR period, the NMR period, and the transition period can be determined by referring to the table according to the type of the designated composition. Then, the controller 230 calculates a rotation speed for rotating the first angle range during the ESR period to obtain a first rotation speed for the ESR period, and rotates the first transition angle range during the first transition period.
  • the rotation speed to be calculated is set as the second rotation speed in the first transition period
  • the rotation speed for rotating the second angular range is calculated during the NMR period
  • the second transition period Rotational speed for rotating the second transition angle range during this period is calculated as the fourth rotational speed in the second transition period.
  • the second transition period from the end of the NMR period to the start of the ESR period is less necessary to be determined according to the type of composition, and may be constant regardless of the type of composition.
  • control unit 230 receives a measurement parameter indicating the magnitude of the magnetic field to be generated from the static magnetic field adjustment coil in the static magnetic field adjustment unit 190 during the ESR period according to the type of composition to be measured.
  • control unit 230 can also store the magnitude of the magnetic field to be generated from the static magnetic field adjustment coil in advance in the above table according to the type of the composition to be measured, and can acquire the magnitude from this table.
  • control unit 230 when there are a plurality of types of compositions to be measured, the control unit 230 generates ESR period settings, NMR period settings, transition period settings, and static magnetic field adjustment coils corresponding to each of the plurality of types of compositions. Get the magnitude of the magnetic field to be used.
  • the measurement target 20 is installed in the non-rotating unit 180.
  • a labeled sample may be introduced into the measurement target 20 in advance.
  • a radical to be used for detection is introduced into the measurement target 20.
  • the measuring device 10 can measure the redox metabolism in the living body in real time and perform image analysis when the living body or the like is the measurement target 20.
  • the control unit 230 determines which one of the DNP-MRI mode and the MRI mode is designated.
  • the control unit 230 rotates the rotating shaft member 140 and arranges the rotating unit 110 at the initial position (measurement start position) for the DNP-MRI mode.
  • the measuring device 10 is disposed at a position where the first range in which the first ESR magnet 112a is disposed is immediately before the non-rotating unit 180 in the rotation direction.
  • FIG. 8 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 before the start of the operation in the DNP-MRI mode in S710.
  • the rotating unit 110a (and the rotating unit 110b) rotates clockwise as an example, and the non-rotating unit 180 in which the measurement target 20 is installed is arranged on the upper side of the rotating unit 110 in the drawing.
  • the control unit 230 controls the position of the rotation unit 110 so that the right end portion of the first range 111a is arranged on the left side of the measurement target 20.
  • the control unit 230 may temporarily stop the rotation unit 110 after detecting that the position of the rotation unit is correctly set by the rotation angle sensor of the drive unit 170.
  • the process (the process of S715) may be performed.
  • control unit 230 advances the process to S765.
  • the control unit 230 determines the rotation speeds of the rotation shaft member 140 and the rotation unit 110 as the first rotation speed while the first magnetic field generated by the first magnet 112 is applied to the measurement target 20. Change to Thereby, the control part 230 rotates the rotation unit 110 at the 1st rotation speed set for ESR.
  • the control unit 230 may rotate the rotation unit 110 at a constant rotation speed at the first rotation speed while the measurement target 20 overlaps the first range 111.
  • FIG. 9 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S715.
  • the control unit 230 controls the rotation speed of the drive unit 170 in a state where the measurement target 20 overlaps the first range 111 to rotate the rotation unit 110 clockwise at the first rotation speed.
  • the first rotation speed will be described later.
  • the control unit 230 controls the static magnetic field adjustment unit 190 to generate the magnetic field determined in S705 from the static magnetic field adjustment coil. 1 Change the strength of the magnetic field. Thereby, the control unit 230 changes the strength of the static magnetic field according to the composition to be measured (for example, radical species), sets the resonance point according to the radical species, and is included in the measurement target 20 as a result.
  • the radical species to be identified can be specified.
  • the control unit 230 changes the strength of the magnetic field generated from the static magnetic field adjustment coil according to the composition to be measured in the current NMR measurement (S745). Accordingly, the control unit 230 can apply the first magnetic field to the measurement target 20 a plurality of times while changing the intensity of the magnetic field generated from the static magnetic field adjustment coil as the processes from S715 to S755 are repeated.
  • the measurement apparatus 10 causes electron spin resonance (ESR) of the measurement target 20.
  • ESR electron spin resonance
  • the control unit 230 irradiates the measurement target 20 with a predetermined electromagnetic wave from the coil portion for ESR of the coil unit 184, and the measurement target 20 is subjected to dynamic nucleus.
  • DNP causes polarization
  • the control unit 230 emits an electromagnetic wave of 130 to 150 MHz from the ESR coil unit depending on the type of the composition.
  • the control unit 230 may stop the oscillation of the coil unit 184 during a part of the period during which the measurement target 20 passes through the first magnetic field, and adjust the ESR induction time in S25.
  • the control unit 230 advances the process to S730 when the measurement target 20 does not overlap the first range 111 in the first transition period.
  • the control unit 230 may advance the process to S730 after detecting that the measurement target 20 does not overlap the first range 111 by the rotation angle sensor of the drive unit 170.
  • the measurement apparatus 10 determines the rotation speed of the rotation unit 110 during the first transition period (that is, until the second magnet 114 faces the measurement target 20 after the first magnet 112 does not face the measurement target 20 (that is, The magnetic field applied to the measurement target 20 is changed to the second rotation speed determined with respect to the first magnetic field to the second magnetic field.
  • the control unit 230 rotates the rotation unit 110 at the second rotation speed set for the first transition period. The second rotation speed will be described later.
  • FIG. 10 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S730.
  • the control unit 230 controls the drive unit 170 and the like at the second rotation speed until the measurement target 20 is removed from the state where it overlaps the first range 111a and until it overlaps the second range 113a.
  • the control unit 230 may rotate the rotation unit 110 at the second rotation speed until the rotation angle sensor of the drive unit 170 detects that the measurement target 20 starts to overlap the second range 113a.
  • control unit 230 stops the static magnetic field change by stopping the generation of the magnetic field from the static magnetic field adjusting coil of the gradient magnetic field generating unit 188.
  • the measurement apparatus 10 changes the rotation speed of the rotation unit 110 to the third rotation speed in the NMR period in which the second magnetic field generated by the second magnet 114 is applied to the measurement target 20.
  • the control part 230 rotates the rotation unit 110 at the 3rd rotation speed set for NMR.
  • the control unit 230 may rotate the rotation unit 110 at a third rotation speed at a constant speed while the measurement target 20 overlaps the second range 113.
  • the third rotation speed will be described later.
  • FIG. 11 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S740.
  • the control unit 230 controls the drive unit 170 and the like to rotate the rotation unit 110 clockwise at the third rotation speed.
  • the control unit 230 may start the process of S740 after detecting that the measurement target 20 starts to overlap the second range 113a by the rotation angle sensor of the driving unit 170.
  • the measurement apparatus 10 causes nuclear magnetic resonance of the measurement target 20.
  • the control unit 230 generates a predetermined gradient magnetic field from the gradient magnetic field generation unit 188 while the measurement target 20 overlaps the second range 113, and generates a predetermined electromagnetic wave from the RF coil of the coil unit 184 to the measurement target 20.
  • the control unit 230 may irradiate an electromagnetic wave of about 13 MHz from the RF coil.
  • the measurement unit 200 receives the NMR signal from the measurement target 20 by the RF coil of the coil unit 184 and supplies it to the control unit 230.
  • the control unit 230 generates an MRI image of the measurement target 20 based on the NMR signal.
  • the control part 230 can measure the measuring object 20 by giving a 2nd magnetic field to the measuring object 20 every time after giving a 1st magnetic field in connection with giving a 1st magnetic field to the measuring object 20 in multiple times.
  • dynamic nuclear polarization is induced in the nuclear spin of the measurement target 20 by the induction of ESR in S725.
  • the control unit 230 can generate an MRI image (DNP-MRI image) including a resonance signal from a nuclear spin in which dynamic nuclear polarization has been induced.
  • the DNP-MRI image includes distribution information of electron spins of unpaired electrons. Therefore, the control unit 230 can indicate the distribution of free radicals including unpaired electrons of the measurement target 20 in the DNP-MRI image.
  • the control unit 230 generates an MRI image that does not involve the energy transition from the ESR and does not involve the DNP indicating the water molecule distribution of the measurement target 20 by omitting the electromagnetic wave irradiation from the ESR coil unit in S725. You can also Further, the control unit 230 generates an image in which the distribution of free radicals including unpaired electrons in the measurement target 20 is further emphasized by generating an image obtained by taking the difference between the MRI image not accompanied by DNP from the DNP-MRI image. May be.
  • MRI images of a plurality of slices may be generated.
  • the control unit 230 switches a plurality (for example, 2 to 2) of the measurement unit 200 while switching the gradient magnetic field of the electromagnetic wave applied to the measurement target 20 while the second magnet 114 is once opposed to the measurement target 20 in the second range 113. 10 times) and a plurality of MRI images may be generated based on the measurement result.
  • the controller 230 can efficiently generate an MRI image of the measurement target 20 by generating an MRI image of a plurality of slices.
  • the measurement apparatus 10 determines the rotation speed of the rotation unit 110 during the second transition period from when the second magnet 114 is no longer opposed to the measurement target 20 to when the first magnet 112 is opposite the measurement target 20. That is, it is set to the fourth rotation speed with respect to (while the magnetic field applied to the measurement target 20 is switched from the second magnetic field to the first magnetic field). Thereby, the control unit 230 rotates the rotation unit 110 at the fourth rotation speed set for the second transition period. The fourth rotation speed will be described later.
  • FIG. 12 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S750.
  • the control unit 230 controls the drive unit 170 and the like at the fourth rotation speed until the measurement target 20 is out of the state where it overlaps the second range 113a and until it overlaps the first range 111a. Rotate clockwise.
  • the control unit 230 may rotate the rotation unit 110 at the fourth rotation speed until the rotation angle sensor of the drive unit 170 detects that the measurement target 20 overlaps the first range 111a.
  • control unit 230 determines whether or not the measurement of the measurement target 20 is to be terminated. For example, the control unit 230 generates a predetermined number of MRI images for each type of composition to be measured, or starts measuring whether a predetermined region of the measurement target 20 has been measured. It is determined whether a predetermined end condition such as whether a predetermined time has elapsed or not is satisfied.
  • control unit 230 determines that the measurement is not finished, the control unit 230 returns the process to S715 and repeats the processes of S715 to S750.
  • the control unit 230 starts the process of S715 from the state in which the measurement target 20 overlaps the first range 111 again.
  • the control unit 230 uses the first to fourth rotational speeds and the static magnetic field strengths associated with the compositions to measure the next composition.
  • the processing of S715 to S750 is performed.
  • the control unit 230 performs the processes of S715 to S750 by changing the gradient magnetic field applied to the measurement target 20 in S745 in order to generate an MRI image of a plurality of slices of the measurement target 20.
  • the control unit 230 quickly stops the rotation of the rotation unit 110.
  • the control unit 230 may control the driving unit 170 to move the second magnet 114 to a preset position.
  • the control unit 230 may stop the rotation in a state where the first magnet 112 and the second magnet 114 of the rotation unit 110 are located away from the measurement target 20 side.
  • the safety of the measurement target 20 or the like can be ensured by stopping the rotation by separating the second magnet 114 having the strong magnetic force most away from the measurement target 20 or the operator.
  • control unit 230 causes the display unit 240 to display the MRI image generated as a result of the measurement in S760.
  • the control unit 230 receives the operation of the user or operator via the input unit 220, and performs various display processes such as enlargement / reduction of the MRI image, frame advance, change of the slice direction, and image filter processing according to the operation. Do.
  • control unit 230 stores the generated MRI image in a storage device internally or via a network.
  • the control unit 230 advances the process to S765.
  • the control unit 230 rotates the rotation module 100 so that the second magnets 114a and 114b are opposed to the measurement target 20.
  • the control part 230 stops rotation of the rotation module 100 in the state which provided the 2nd magnetic field to the measuring object 20.
  • the control unit 230 may stop the rotation of the rotation module 100 in a state where the rotation angle sensor of the drive unit 170 detects that the measurement target 20 overlaps the second range 113a.
  • the control unit 230 collects NMR signals for a plurality of slices of the measurement target 20 while changing the gradient magnetic field, and generates an MRI image. That is, the control unit 230 generates a gradient magnetic field corresponding to the measurement location, and irradiates the measurement target 20 with a predetermined electromagnetic wave from the coil unit 184 to cause NMR in the measurement target 20. Next, the control unit 230 receives the NMR signal from the RF coil of the coil unit 184 via the measurement unit 200 and generates an MRI image of the measurement target 20 based on the NMR signal. The control unit 230 stops the rotation of the rotation module 100 and repeats this process in a state where the measurement target 20 is in the second magnetic field, thereby generating an MRI image. When the generation of the MRI image is completed, the control unit 230 advances the process to S760.
  • control unit 230 controls at least one of the first to fourth rotational speeds to be different from the others. Accordingly, the control unit 230 changes the rotation speed (that is, the angular speed) according to the positional relationship between the measurement target 20 and the rotation unit 110 while the rotation unit 110 makes one rotation around the rotation shaft member 140.
  • the measurement of the measurement target 20 can be realized in accordance with the type of composition to be measured and the restrictions on the measurement time.
  • control unit 230 may make the third rotation speed during the MRI process lower than the first rotation speed during the ESR process. Thereby, the control unit 230 can stably measure a larger number of slices by reducing the noise due to the magnetic field fluctuation during the MRI process and extending the time during which the measurement target 20 is in the second magnetic field. it can.
  • control unit 230 increases the rotation speed of the rotating shaft in at least a part of the transition period as compared with the period in which the first magnet 112 is opposed to the measurement target 20 or the period in which the second magnet 114 is opposed. Good.
  • the controller 230 may increase the second rotation speed and / or the fourth rotation speed with respect to the first rotation speed and / or the third rotation speed in at least a part of the transition period.
  • the controller 230 may control the second rotation speed and the fourth rotation speed so that the transition period is 0.3 seconds or less.
  • control unit 230 quickly advances the rotation of the rotation module 100 from the first range 111 for ESR to the second range 113 for NMR, and / or the rotation of the rotation module 100 from the second range 113 for MRI. It is possible to quickly advance to the first range 111 for ESR. For this reason, the measuring apparatus 10 can start NMR measurement before the relaxation time elapses after the electron spin excitation of the measurement target 20 by ESR, for example.
  • control unit 230 is predetermined from a state in which the first magnet 112 (or the second magnet 114) is not opposed to the measurement target 20 until the second magnet 114 (or the first magnet 112) is opposed to the measurement target 20.
  • the second rotation speed and the fourth rotation speed which are the rotation speeds of the rotary shaft member 140 within the range of the predetermined period, may be limited to a predetermined upper limit value or less regardless of the first rotation speed and the third rotation speed. .
  • the first to fourth rotation speeds are set to 0.5 to 0.12 RPS or the like in accordance with the target time from ESR initiation to NMR measurement, the NMR relaxation time, and the like.
  • the control unit 230 may set the first rotation speed for ESR and / or the third rotation speed for MRI according to the type of composition to be measured. That is, the nature of the electron spin distribution of unpaired electrons varies depending on the type of free radical species in the composition included in the measurement target 20. Therefore, the control unit 230 can generate an appropriate time ESR and / or NMR by controlling the first rotation speed and / or the third rotation speed according to the type of the composition of the measurement target 20.
  • control unit 230 may set the first rotation speed and / or the third rotation speed according to the type of the measurement target 20.
  • the control unit 230 sets the first rotation speed and / or the third rotation speed according to the size of the measurement target 20, the material, the type of living organism, and / or the type of organ.
  • control unit 230 may appropriately stop the rotation of the rotation unit 110 during the process.
  • the control unit 230 may temporarily stop the rotation during the NMR measurement in S210.
  • the third rotation speed is zero.
  • control unit 230 may appropriately rotate and stop the rotation of the rotation unit 110 as appropriate during the process.
  • the control unit 230 controls the drive unit 170, thereby controlling the rotation speed of the rotation unit 110.
  • the time for generating ESR and NMR in the measurement object 20 the transition time from ESR initiation to NMR measurement, and the time for transition from NMR measurement to ESR initiation again.
  • NMR measurement can be performed while suppressing the loss of NMR induced by DNP, and a desired number of slices can be measured in the NMR measurement. Therefore, according to the measurement device 10, the measurement accuracy and measurement efficiency of the measurement device 10 can be improved.
  • FIG. 13 shows an example of rotation speed control by the control unit 230 when the processing flow of FIG. 7 is executed.
  • the control unit 230 first rotates the rotation unit 110 from the stationary state (rotation speed 0) at the first rotation speed in the first rotation, and executes ESR in S725.
  • the control unit 230 increases the rotation speed to a second rotation speed higher than the first rotation speed so that the measurement target 20 is positioned from the first range 111 for ESR to the second range 113 for NMR. (S730).
  • the control unit 230 decelerates to a third rotation speed that is lower than the first rotation speed, and executes NMR measurement in S745.
  • the control unit 230 increases the rotation speed to a fourth rotation speed higher than the first rotation speed and the third rotation speed, and the measurement target 20 changes from the second range 113 for MRI to the first range 111 for ESR. (S750).
  • FIG. 13 shows an example in which the control unit 230 rotates the rotating unit 110 at a constant speed and a constant angular acceleration within a predetermined range. That is, in this example, the rotation unit 110 discretely changes the angular acceleration to achieve the first to fourth rotation speeds, but the control unit 230 gives the rotation unit 110 continuous angular acceleration, The first to fourth rotation speeds may be changed within each period. Thereby, the measuring apparatus 10 can give a smoother change in the rotation speed to the rotation unit 110, and can reduce the distortion of the magnetic field due to a sudden change in the rotation speed.
  • the second and fourth rotation speeds in the transition period are set to the first, third and third rotation speeds in the ESR period and the NMR period as shown in FIG.
  • the rotational speed may be changed linearly or smoothly between the first rotational speed and the third rotational speed instead of being higher than the rotational speed.
  • the measurement device 10 causes the control unit 230 to respond to the characteristics of the magnet mounted on the rotation unit 110 and the type of the measurement target 20 (for example, the type and / or composition of the radical included in the measurement target 20).
  • the rotation speed can be appropriately adjusted according to the relaxation time.
  • FIG. 14 shows a measuring apparatus 30 according to a modification of the present embodiment.
  • the rotating shaft member 340 may be provided in a substantially horizontal direction.
  • the rotation module 300 includes a pair of rotation units 310a and a rotation unit 310b (hereinafter, collectively referred to as “rotation unit 310” as appropriate) that rotate together with the rotation shaft member 340 constituting the rotation axis AX. Similar to the rotation unit 110, the rotation unit 310 has a first range 312 in which the first magnet for ESR is arranged, and a second range 314 in which the second magnet for NMR is arranged.
  • the non-rotating unit 380 may be provided above the rotation axis AX.
  • the non-rotating unit 380 may be arranged above the rotation axis AX so that the main surface is parallel to the rotation axis AX, and the measurement object 20 may be arranged thereon.
  • the non-rotating unit 380 may be provided on the side of the rotation axis AX.
  • the non-rotating unit 380 may be placed on the front side of the rotation axis AX so that the main surface is parallel to the rotation axis AX.
  • the installation surface of the measurement target 20 in the non-rotating unit 380 may be provided so as to be integrated with, for example, the floor of a building / room where measurement is performed.
  • the measuring device 30 can store the drive part including the rotating shaft member 340 under the floor, and can set the measurement object 20 on the floor or on the inspection table on the floor to measure.
  • the measuring device 30 may include a roller 350 that is rotatably connected to the pair of rotating units 310 below the installation surface of the non-rotating unit 380.
  • the roller 350 can apply a rotational force to the rotation unit 310 instead of / in addition to the rotation of the rotation shaft member 140.
  • the measuring device 30 may provide two or more rollers for each of the rotation units 310.
  • the measurement device 10 of the present embodiment and the measurement device 30 of the modification may further include a heater.
  • the control unit 230 controls the temperature of each magnet inside the rotation unit 110 and the rotation unit 310 (hereinafter collectively referred to as “the rotation unit 110 etc.”) by controlling the heater.
  • the measuring apparatus 10 etc. can finely adjust the strength of the static magnetic field by each magnet.
  • the measuring device 10 or the like may have a plurality of non-rotating units 180.
  • the measurement apparatus 10 or the like may include a plurality of sets of coil units 184, a gradient magnetic field generation unit 188, and the like, which may be arranged at different positions with respect to the rotation axis AX and the like. Thereby, the measuring device 10 or the like can simultaneously measure a plurality of measurement objects 20 and can improve the measurement efficiency.
  • the measuring device 10 or the like may include a plurality of magnets of each type in the rotating unit 110 or the like.
  • the rotation unit 110 or the like may include a plurality of sets of a pair of ESR magnets and MRI magnets, or may include one of a plurality of ESR magnets and MRI magnets.
  • the measuring apparatus 10 etc. can implement
  • the rotation unit 110 or the like can adopt a structure in which a plurality of first magnets 112 and a plurality of second magnets 114 are alternately provided on a circumference centered on the rotation axis AX or the like.
  • the control unit 230 can perform ESR induction and NMR measurement a plurality of times during one rotation.
  • the control unit 230 causes the static magnetic field while at least two of the plurality of first magnets 112 are opposed to the measurement target 20 while the rotation unit 110 or the like rotates once.
  • Magnetic fields having different strengths are generated from the adjustment coil, and the measurement target 20 is measured while at least two second magnets 114 following the at least two first magnets 112 are opposed to the measurement target 20. Thereby, the measuring device 10 can measure each of two or more compositions during one rotation of the rotating unit 110.
  • the static magnetic field adjustment part 190 is used in order to change the intensity
  • the control unit 230 stores a correction amount for each rotation angle of the rotation unit 110 and the like measured by a calibration operation or the like by manual measurement, and controls the static magnetic field adjustment unit 190 according to the correction amount.
  • the measurement apparatus 10 may use the first magnet 112 not only for ESR induction but also for relaxation degree imaging using a difference in relaxation time due to a difference in magnetic field strength between a plurality of magnets.
  • the measurement apparatus 10 first performs the MRI measurement in a state where the first magnetic field by the first magnet 112 having different magnetic field strengths is applied to the measurement target 20 and then the second magnetic field by the second magnet 114 is applied to the measurement target 20. Utilizing the fact that the relaxation time difference varies depending on the type of tissue in the living body, an image in which abnormalities such as cancer in the living body can be distinguished from other normal tissues is generated.
  • the embodiment has been described in which the measuring device 10 and the like include the rotation shaft member 140 and the like that overlap the rotation axis AX, and the rotation unit 110 is collectively driven via the rotation shaft member 140.
  • the measuring device 10 or the like when the measuring device 10 or the like does not include the rotating shaft member 140 or the like that overlaps the rotating shaft AX, the measuring device 10 or the like rotates the pair of rotating units 110a and 110b by using the roller 158 or the like instead of the rotating shaft member 140 or the like. May be driven individually to synchronize.
  • the measurement device 10 and the like can secure a wider measurement space between the pair of rotation units 110a and 110b.
  • FIG. 15 shows an example of a hardware configuration of a computer 1900 that functions as at least a part (mainly the control unit 230) of the measuring apparatus 10 or the like.
  • a computer 1900 is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084.
  • Input / output unit having communication interface 2030, hard disk drive 2040, and CD-ROM drive 2060, and legacy input / output unit having ROM 2010, flexible disk drive 2050, and input / output chip 2070 connected to input / output controller 2084 Is provided.
  • the host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate.
  • the CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit.
  • the graphic controller 2075 acquires image data generated on a frame buffer provided in the RAM 2020 by the CPU 2000 or the like, and displays the image data on the display device 2080 via the display unit 240.
  • the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
  • the input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the hard disk drive 2040, and the CD-ROM drive 2060, which are relatively high-speed input / output devices.
  • the communication interface 2030 communicates with other devices via a network by wire or wireless.
  • the communication interface functions as hardware for performing communication in the measuring device 10 or the like.
  • the hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900.
  • the CD-ROM drive 2060 reads a program or data from the CD-ROM 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the ROM 2010, the flexible disk drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084.
  • the ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900.
  • the flexible disk drive 2050 reads a program or data from the flexible disk 2090 and provides it to the hard disk drive 2040 via the RAM 2020.
  • the input / output chip 2070 connects the flexible disk drive 2050 to the input / output controller 2084 and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like. Connect to controller 2084.
  • the program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as the flexible disk 2090, the CD-ROM 2095, or an IC card and provided by the user.
  • the program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
  • the program for the measurement device 10 and the like includes a measurement module, an input module, a control module, and a display module.
  • These programs or modules may work on the CPU 2000 or the like to cause the computer 1900 to function as at least part of the measurement unit 200, the input unit 220, the control unit 230, and the display unit 240, respectively.
  • the information processing described in these programs is read into the computer 1900, whereby the measurement unit 200, the input unit 220, and the control unit, which are specific means in which the software and the various hardware resources described above cooperate. It functions as at least part of the unit 230 and the display unit 240.
  • the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program.
  • a communication process is instructed to 2030.
  • the communication interface 2030 reads transmission data stored in a transmission buffer area or the like provided on a storage device such as the RAM 2020, the hard disk drive 2040, the flexible disk 2090, or the CD-ROM 2095, and sends it to the network.
  • the reception data transmitted or received from the network is written into a reception buffer area or the like provided on the storage device.
  • the communication interface 2030 may transfer transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as the transfer source.
  • the transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
  • the CPU 2000 is all or necessary from among files or databases stored in an external storage device such as a hard disk drive 2040, a CD-ROM drive 2060 (CD-ROM 2095), and a flexible disk drive 2050 (flexible disk 2090). This portion is read into the RAM 2020 by DMA transfer or the like, and various processes are performed on the data on the RAM 2020.
  • an external storage device such as a hard disk drive 2040, a CD-ROM drive 2060 (CD-ROM 2095), and a flexible disk drive 2050 (flexible disk 2090).
  • This portion is read into the RAM 2020 by DMA transfer or the like, and various processes are performed on the data on the RAM 2020.
  • the CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like.
  • the RAM 2020 can be regarded as temporarily holding the contents of the external storage device, in the present embodiment, the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, or a storage device.
  • the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
  • the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020.
  • the CPU 2000 determines whether or not the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. If the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
  • the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
  • the programs or modules shown above may be stored in an external recording medium.
  • an optical recording medium such as DVD or CD
  • a magneto-optical recording medium such as MO
  • a tape medium such as an IC card, and the like
  • a storage device such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.
  • 10 measurement device 10 measurement object, 30 measurement device, 100 rotation module, 101a-b jacket, 102a-b first back yoke, 103a-b first magnet yoke part, 104a-b second back yoke, 105a-b second 2-magnet yoke part, 106 locking part, 107b first opening, 108b second opening, 109b third opening, 110a-b rotating unit, 111a-b first range, 112a-b first magnet, 113a-b second Range, 114a-b 2nd magnet, 115a-b 1st pole piece, 116a-b 2nd pole piece, 117a-b support plate, 118a-b support column, 140 rotating shaft member, 142a-b bearing part, 146 housing 147 outer cover, 148 upper frame, 150 struts, 152 base, 56 target protection unit, 158 roller, 160 power transmission unit, 170 drive unit, 180 non-rotation unit, 183 opening, 184 coil unit, 188 gradient magnetic field generation unit, 190

Abstract

The amount of time that a subject is under the static magnetic field of a rotating-type MRI device is dependent on the rotational-direction width of a magnet. Conventional rotating-type MRI devices require that the width of the magnet be altered in order to alter the amount of time that the subject is under the static magnetic field. Provided is a measurement device that is provided with: a pair of rotating units that are provided in different positions in the axial direction with respect to a rotating shaft and that rotate around the rotating shaft; and a non-rotating unit that is provided in a space between the pair of rotating units and that is for installing a measurement target. At least one of the pair of rotating units has: a first magnet that generates a first magnetic field in the space between the pair of rotating units and that is housed in a first range of the rotating unit, the first range being on a circle that is centered on the rotating shaft; and a second magnet that generates a second magnetic field in the space between the pair of rotating units and that is housed in a second range of the rotating unit, the second range being on a circle that is centered on the rotating shaft and being different from the first range.

Description

計測装置Measuring device
 本発明は、磁気共鳴を利用した計測装置及び計測方法に関する。 The present invention relates to a measuring apparatus and a measuring method using magnetic resonance.
 生体中の核磁気共鳴(NMR)を画像化する磁気共鳴イメージング(MRI)装置、および、フリーラジカルの不対電子の電子スピン共鳴(ESR)を画像化する電子スピン共鳴イメージング(ESRI)装置等が知られている。また、フリーラジカルの電子スピンを静磁場下で励起し、電子スピンから核スピンへとエネルギーを遷移させることによって核スピンの偏極を増強してMRI画像を生成するDNP(動的核偏極)-MRI装置が知られている(例えば、特許文献1~3)。 A magnetic resonance imaging (MRI) apparatus that images nuclear magnetic resonance (NMR) in a living body, an electron spin resonance imaging (ESRI) apparatus that images electron spin resonance (ESR) of unpaired electrons of free radicals, etc. Are known. In addition, DNP (dynamic nuclear polarization) generates MRI images by enhancing the spin of free radicals by exciting the free-radical electron spin in a static magnetic field and transitioning the energy from the electron spin to the nuclear spin. An MRI apparatus is known (for example, Patent Documents 1 to 3).
 また、静止した被検体に対して、MRI用の静磁場を形成する磁石およびESR用の静磁場を形成する磁石を回転させ、被検体のMRI画像を生成する回転型MRI装置が知られている(例えば、特許文献4~6)。
 [特許文献1]特開2006-204551号公報
 [特許文献2]特表2011-527222号公報
 [特許文献3]特開2007-316008号公報
 [特許文献4]国際公開第2014/196525号
 [特許文献5]特開2010-227247号公報
 [特許文献6]国際公開第2014/007124号
Also, a rotary MRI apparatus is known that rotates a magnet that forms a static magnetic field for MRI and a magnet that forms a static magnetic field for ESR with respect to a stationary subject to generate an MRI image of the subject. (For example, Patent Documents 4 to 6).
[Patent Document 1] JP 2006-204551 [Patent Document 2] JP 2011-527222 [Patent Document 3] JP 2007-316008 [Patent Document 4] International Publication No. 2014/196525 [Patent Document 3] Document 5] Japanese Patent Application Laid-Open No. 2010-227247 [Patent Document 6] International Publication No. 2014/007124
 回転型MRI装置において、被検体が静磁場に置かれる時間は磁石の回転方向の幅に依存する。従来の回転型MRI装置によると、ESRおよびNMRを生じさせる時間およびESRからNMRへの遷移時間を変更するには、磁石の幅および配置等を変更する必要があった。また、回転型MRI装置等に使用される磁石は大型で重量があり、磁石を回転させながらより安全に装置を作動させることが望まれていた。 In the rotary MRI apparatus, the time for which the subject is placed in the static magnetic field depends on the width of the magnet in the rotation direction. According to the conventional rotary MRI apparatus, in order to change the time for generating ESR and NMR and the transition time from ESR to NMR, it is necessary to change the width and arrangement of the magnets. Further, magnets used in a rotary MRI apparatus and the like are large and heavy, and it has been desired to operate the apparatus more safely while rotating the magnet.
 本発明の第1の態様においては、回転軸を中心とする円周上の第1範囲に設けられた第1磁石と、前記回転軸を中心とする前記円周上の前記第1範囲とは異なる第2範囲に設けられた第2磁石と、前記第1磁石および前記第2磁石を前記回転軸を中心として回転させる駆動部と、前記第1磁石および前記第2磁石の回転に伴って前記第1磁石により発生された第1磁場および前記第2磁石により発生された第2磁場のそれぞれが与えられる設置位置に置かれた計測対象を計測するための計測部と、前記計測対象の計測中において、前記設置位置に対する前記第1磁石および前記第2磁石の位置に応じて前記第1磁石および前記第2磁石の回転速度を変化させる制御部と、を備える計測装置を提供する。 In the first aspect of the present invention, the first magnet provided in the first range on the circumference around the rotation axis, and the first range on the circumference around the rotation axis A second magnet provided in a different second range, a drive unit that rotates the first magnet and the second magnet around the rotation axis, and the rotation of the first magnet and the second magnet A measuring unit for measuring a measurement object placed at an installation position to which each of the first magnetic field generated by the first magnet and the second magnetic field generated by the second magnet is applied; and during measurement of the measurement object And a control unit that changes the rotational speeds of the first magnet and the second magnet in accordance with the positions of the first magnet and the second magnet with respect to the installation position.
 本発明の第2の態様においては、回転軸に対して軸方向の異なる位置に設けられ、回転軸中心に回転する一対の回転ユニットと、前記一対の回転ユニットの間の空間に設けられ、計測対象を設置するための非回転ユニットと、を備え、前記一対の回転ユニットの少なくとも一方は、当該回転ユニットにおける、前記回転軸を中心とする円周上の第1範囲に収容され、前記一対の回転ユニットの間の空間に第1磁場を発生させる第1磁石と、当該回転ユニットにおける、前記回転軸を中心とする円周上の前記第1範囲とは異なる第2範囲に収容され、前記一対の回転ユニットの間の空間に第2磁場を発生させる第2磁石と、を有する計測装置を提供する。 In the second aspect of the present invention, the measurement is provided in a space between the pair of rotation units provided at different positions in the axial direction with respect to the rotation axis and rotating about the rotation axis, and the pair of rotation units. A non-rotating unit for installing a target, wherein at least one of the pair of rotating units is housed in a first range on a circumference around the rotating shaft in the rotating unit, and the pair of rotating units A first magnet that generates a first magnetic field in a space between the rotation units; and a second range that is different from the first range on the circumference around the rotation axis in the rotation unit. And a second magnet for generating a second magnetic field in the space between the rotating units.
 なお、上記の発明の概要は、本発明の特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 Note that the above summary of the invention does not enumerate all the features of the present invention. In addition, a sub-combination of these feature groups can also be an invention.
本実施形態における計測装置10の概略構成図を示す。The schematic block diagram of the measuring device 10 in this embodiment is shown. 上側から観察した図1の計測装置10の概略図である。It is the schematic of the measuring device 10 of FIG. 1 observed from the upper side. 斜め上方から観察した計測装置10の一例である。It is an example of the measuring apparatus 10 observed from diagonally upward. 計測装置10の回転モジュール100の概略図である。1 is a schematic view of a rotation module 100 of a measuring device 10. FIG. ジャケット101bを含む回転ユニット110bの一例を示す。An example of the rotation unit 110b including the jacket 101b is shown. 本実施形態におけるジャケット101bの一例を示す。An example of the jacket 101b in this embodiment is shown. 本実施形態における計測装置10の処理フローの一例を示す。An example of the processing flow of the measuring device 10 in this embodiment is shown. 計測装置10の回転ユニット110aの位置を示す概略図である。3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10. FIG. 計測装置10の回転ユニット110aの位置を示す概略図である。3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10. FIG. 計測装置10の回転ユニット110aの位置を示す概略図である。3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10. FIG. 計測装置10の回転ユニット110aの位置を示す概略図である。3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10. FIG. 計測装置10の回転ユニット110aの位置を示す概略図である。3 is a schematic diagram showing the position of a rotating unit 110a of the measuring apparatus 10. FIG. 制御部230による回転速度の制御の一例を示す。An example of rotation speed control by the control unit 230 is shown. 本実施形態の変形例に係る計測装置30を示す。The measurement apparatus 30 which concerns on the modification of this embodiment is shown. コンピュータ1900のハードウェア構成の一例を示す。2 shows an example of a hardware configuration of a computer 1900.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention. However, the following embodiments do not limit the invention according to the claims. In addition, not all the combinations of features described in the embodiments are essential for the solving means of the invention.
 図1は、本実施形態における計測装置10の概略構成図を示す。計測装置10は、ESR用の磁石およびMRI用の磁石を搭載し、回転軸AXを軸として回転する回転ユニット110a~bを備え、計測対象20のESR信号またはNMR信号等を計測する。計測装置10は、回転モジュール100と、回転軸部材140と、軸受部142aと、軸受部142bと、筐体146と、支柱150と、基台152と、対象保護部156と、ローラ158、動力伝達部160と、駆動部170と、非回転ユニット180と、計測部200と、異常検出部210と、入力部220と、制御部230と、表示部240とを備える。 FIG. 1 shows a schematic configuration diagram of a measuring apparatus 10 in the present embodiment. The measurement apparatus 10 includes ESR magnets and MRI magnets, and includes rotation units 110a and 110b that rotate about the rotation axis AX, and measures an ESR signal, NMR signal, or the like of the measurement target 20. The measuring device 10 includes a rotating module 100, a rotating shaft member 140, a bearing portion 142a, a bearing portion 142b, a housing 146, a support 150, a base 152, a target protecting portion 156, a roller 158, power A transmission unit 160, a drive unit 170, a non-rotating unit 180, a measurement unit 200, an abnormality detection unit 210, an input unit 220, a control unit 230, and a display unit 240 are provided.
 回転モジュール100は、計測装置10における可動モジュールであり、一対の回転ユニット110a~b(以下、適宜「回転ユニット110」と総称する。)を有する。本実施形態においては、計測装置10は回転軸(Axis)AXとなる剛体の回転軸部材(Shaft)140を備え、一対の回転ユニット110a~bは、回転軸部材140に対して軸方向の異なる位置に固定して設けられ、回転軸AXを中心に回転する。これに代えて、計測装置10は、剛体の回転軸部材140を備えず、仮想的な回転軸AXを中心に回転してもよい。 The rotation module 100 is a movable module in the measuring apparatus 10 and includes a pair of rotation units 110a and 110b (hereinafter, collectively referred to as “rotation unit 110” as appropriate). In the present embodiment, the measuring apparatus 10 includes a rigid rotation shaft member (Shaft) 140 serving as a rotation axis (Axis) AX, and the pair of rotation units 110a and 110b differs in the axial direction with respect to the rotation shaft member 140. It is fixed at a position and rotates around the rotation axis AX. Instead of this, the measuring device 10 may not be provided with the rigid rotating shaft member 140 but may rotate about the virtual rotating axis AX.
 回転ユニット110aおよび回転ユニット110bは、一対の回転ユニット110の間の空間に向かって、第1磁場を発生させる第1磁石112aおよび第1磁石112b(以下、適宜「第1磁石112」と総称する。)、並びに、第2磁場を発生させる第2磁石114aおよび第2磁石114b(以下、適宜「第2磁石114」と総称する。)を含む。例えば、図1に示すように、上側(+Z方向側)の回転ユニット110aが第1磁石112aおよび第2磁石114aを含み、下側(-Z方向側)の回転ユニット110bが第1磁石112bおよび第2磁石114bを含む。ここで、十分な第1磁場および第2磁場が得られる場合には、第1磁石112および第2磁石114の少なくとも一方を、回転ユニット110a~bの一方のみに設けてもよい。 The rotating unit 110a and the rotating unit 110b are collectively referred to as a first magnet 112a and a first magnet 112b (hereinafter, appropriately referred to as “first magnet 112”) that generate a first magnetic field toward the space between the pair of rotating units 110. ), And a second magnet 114a and a second magnet 114b (hereinafter collectively referred to as “second magnet 114” where appropriate) that generate a second magnetic field. For example, as shown in FIG. 1, the upper (+ Z direction side) rotation unit 110a includes a first magnet 112a and a second magnet 114a, and the lower (−Z direction side) rotation unit 110b includes a first magnet 112b and The second magnet 114b is included. Here, when sufficient first magnetic field and second magnetic field are obtained, at least one of the first magnet 112 and the second magnet 114 may be provided only in one of the rotation units 110a and 110b.
 回転ユニット110a~bは、互いに回転軸AX上の異なる位置に設けられて回転軸AXを中心として共に回転する。回転ユニット110a~bは、第1磁石112a~bと第2磁石114a~bとの相対的な位置を維持するように回転する。これにより、回転モジュール100は回転しつつ、略一定の第1磁場および第2磁場をそれぞれ発生じさせる。第1磁石112a~b、および第2磁石114a~bのそれぞれは、相対した状態で磁極の向きが同一方向に揃うように配置される。例えば、第1磁石112a~bは、共に上側がN極で下側がS極となるように相対して配置される。また例えば、第2磁石114aおよび第2磁石114bは、共に上側がN極で下側がS極となるように相対して配置される。 The rotation units 110a and 110b are provided at different positions on the rotation axis AX and rotate together around the rotation axis AX. The rotation units 110a and 110b rotate so as to maintain the relative positions of the first magnets 112a and 112b and the second magnets 114a and 114b. Thereby, the rotation module 100 generates a substantially constant first magnetic field and second magnetic field while rotating. The first magnets 112a to 112b and the second magnets 114a to 114b are arranged so that the directions of the magnetic poles are aligned in the same direction in an opposed state. For example, the first magnets 112a and 112b are disposed relative to each other so that the upper side is the north pole and the lower side is the south pole. In addition, for example, the second magnet 114a and the second magnet 114b are disposed so as to face each other so that the upper side is an N pole and the lower side is an S pole.
 例えば、第1磁石112a~bは、計測対象20の電子スピン共鳴を惹起するための第1磁場を提供するESR用永久磁石であり、第2磁石114a~bは計測対象20の核磁気共鳴を惹起するための第2磁場を提供するMRI用永久磁石である。この場合、第1磁石112a~bは、第2磁石114a~bよりも磁力が弱く、例えば、第1磁石112a~bによる第1磁場は5mTであってよく、第2磁石114a~bの第2磁場は0.3Tであってよい。ここで、第2磁場は、人体を測定対象とする計測装置10においては例えば0.1T~3Tの範囲内であってよく、人体以外を測定対象とするのであれば例えば~7Tまたはそれ以上であってもよい。第1磁場は、例えば1mT~0.1Tの範囲内であってよく、第2磁場の強度に応じて決定される。 For example, the first magnets 112a and 112b are ESR permanent magnets that provide a first magnetic field for inducing electron spin resonance of the measurement target 20, and the second magnets 114a and 114b perform nuclear magnetic resonance of the measurement target 20. A permanent magnet for MRI that provides a second magnetic field to evoke. In this case, the first magnets 112a to 112b have a lower magnetic force than the second magnets 114a to 114b. For example, the first magnetic field of the first magnets 112a to 112b may be 5 mT, and the second magnets 114a to 114b The two magnetic fields may be 0.3T. Here, the second magnetic field may be, for example, in the range of 0.1T to 3T in the measuring apparatus 10 that measures the human body, and is, for example, up to 7T or more if the measuring object is other than the human body. There may be. The first magnetic field may be within a range of 1 mT to 0.1 T, for example, and is determined according to the strength of the second magnetic field.
 回転ユニット110は、第1磁石112および第2磁石114を収容して固定するジャケットを有する。一対の回転ユニット110の構造の詳細は後述する。 The rotating unit 110 has a jacket that houses and fixes the first magnet 112 and the second magnet 114. Details of the structure of the pair of rotating units 110 will be described later.
 回転軸部材140は、回転ユニット110の回転軸AXを構成するように回転ユニット110に固定され、これにより回転ユニット110の回転の物理的な中心軸となる。本実施形態において回転軸部材140は、縦方向(すなわち、鉛直方向:図中のZ方向)に設けられ、水平面(XY平面)に沿って回転する。本実施形態に係る計測装置10においては、回転軸部材140は、第2磁石114a~bを通過する磁路を通過させるバックヨークとしても機能するので、磁性体の材料を用いて形成される。これに代えて、バックヨークを別途設ける場合においては、回転軸部材140には、強度および耐腐食性に優れた非磁性材質を用いてよく、例えば非磁性のステンレス系材料、および、真鍮系材料等を用いたものを使用してよい。 The rotation shaft member 140 is fixed to the rotation unit 110 so as to constitute the rotation axis AX of the rotation unit 110, and thereby becomes a physical central axis of rotation of the rotation unit 110. In the present embodiment, the rotating shaft member 140 is provided in the vertical direction (that is, the vertical direction: the Z direction in the drawing) and rotates along the horizontal plane (XY plane). In the measuring apparatus 10 according to the present embodiment, the rotating shaft member 140 also functions as a back yoke that passes a magnetic path that passes through the second magnets 114a and 114b, and thus is formed using a magnetic material. Instead, when a back yoke is provided separately, the rotating shaft member 140 may be made of a nonmagnetic material having excellent strength and corrosion resistance, such as a nonmagnetic stainless steel material and a brass material. You may use what used.
 軸受部142aおよび軸受部142b(以下、適宜「軸受部142」と総称する。)は、回転軸部材140を、一対の回転ユニット110の外側の両側で支える。軸受部142aは、回転ユニット110aの上側で回転軸部材140を回転可能な状態で支持し、軸受部142bは、回転ユニット110bの下側で回転軸部材140を回転可能な状態で支持する。これにより、軸受部142は、回転ユニット110を安全に計測装置10内に保持することができる。軸受部142は、各種のベアリングまたは流体等を用いた摺動機構を含んでもよい。 The bearing part 142a and the bearing part 142b (hereinafter collectively referred to as “bearing part 142” as appropriate) support the rotating shaft member 140 on both sides outside the pair of rotating units 110. The bearing portion 142a supports the rotating shaft member 140 in a rotatable state above the rotating unit 110a, and the bearing portion 142b supports the rotating shaft member 140 in a rotatable state below the rotating unit 110b. Thereby, the bearing part 142 can hold | maintain the rotation unit 110 in the measuring apparatus 10 safely. The bearing portion 142 may include a sliding mechanism using various bearings or fluids.
 筐体146は、計測装置10を外部から保護し、計測装置10の少なくとも一部を収容し、計測装置10を支持する。例えば、筐体146は、一対の回転ユニット110と、軸受部142と、非回転ユニット180とを覆って収納する。 The housing 146 protects the measuring device 10 from the outside, accommodates at least a part of the measuring device 10, and supports the measuring device 10. For example, the housing 146 covers and houses the pair of rotating units 110, the bearing portion 142, and the non-rotating unit 180.
 筐体146は、フレームおよびプレートを有してよく、例えば、フレームで骨格を形成し、骨格の外側をプレートで覆った構造を有してよい。一例として、筐体146は、箱形状であってよく、主にフレームによって回転する回転モジュール100の荷重を支え、プレートが計測装置10の内部を外部から隠ぺいし保護する。フレームおよびプレートは、鋼およびアルミニウム等の金属、または、樹脂等の強度がある材質を用いて形成されてよい。なお、筐体146は、軸受部142、および非回転ユニット180等を支持する骨格の外側に外装用のプレートを取り付けるためのフレームを設けた多重構造を採ってもよい。 The housing 146 may include a frame and a plate. For example, the housing 146 may have a structure in which a skeleton is formed by the frame and the outside of the skeleton is covered by the plate. As an example, the housing 146 may have a box shape, and supports the load of the rotating module 100 that is mainly rotated by the frame, and the plate conceals and protects the inside of the measuring device 10 from the outside. The frame and the plate may be formed using a metal such as steel and aluminum, or a strong material such as a resin. Note that the housing 146 may have a multiple structure in which a frame for attaching an exterior plate is provided on the outside of the skeleton that supports the bearing 142, the non-rotating unit 180, and the like.
 支柱150は、筐体146の下部に配置され、基台152と共に回転モジュール100および筐体146等の荷重を支持する。基台152は、地面または床上に配置され、支柱150を固定して計測装置10全体を支持する基盤となる。支柱150および基台152は、筐体146の一部であってよく、または、筐体146とは別個に設けられてもよい。 The support column 150 is disposed at the lower part of the casing 146 and supports the load of the rotating module 100 and the casing 146 together with the base 152. The base 152 is disposed on the ground or floor, and serves as a base that supports the entire measuring apparatus 10 by fixing the support 150. The strut 150 and the base 152 may be a part of the housing 146 or may be provided separately from the housing 146.
 対象保護部156は、筐体146のフレームから一対の回転ユニット110の間の空間へと延伸し、上側の回転ユニット110aまたは下側の回転ユニット110bの少なくとも一方が万が一回転軸部材140から外れてしまった場合においても、回転ユニット110aおよび回転ユニット110bの間に挟まってこれらの間のすき間を確保することにより計測対象20を保護する。これにより、例えば、上側の回転ユニット110aが回転軸部材140から脱落してしまった場合においても、回転ユニット110aの落下を防止することができる。例えば、対象保護部156は、筐体146の2箇所以上に設けられてもよい。対象保護部156は、第1回転ユニット110aおよび第2回転ユニット110bの間隔と略同じ高さ(例えば、間隔の70~95%の高さ)を有してよく、これにより、更に回転ユニット110aおよび回転ユニット110bの間隔を十分に確保すると共に、回転ユニット110aが回転軸部材140から脱落して落下した場合においてもその衝撃を低減する。また、対象保護部156には、上面および/または下面に回転ユニット110aおよび/または回転ユニット110bの回転を円滑化するためのローラが設けられてもよい。 The target protection unit 156 extends from the frame of the housing 146 to a space between the pair of rotation units 110, and at least one of the upper rotation unit 110 a and the lower rotation unit 110 b should be detached from the rotation shaft member 140. Even in the case of being stuck, the measurement object 20 is protected by being sandwiched between the rotating unit 110a and the rotating unit 110b to ensure a gap between them. Thereby, for example, even when the upper rotary unit 110a has fallen off the rotary shaft member 140, the rotary unit 110a can be prevented from dropping. For example, the target protection unit 156 may be provided at two or more locations on the housing 146. The target protection unit 156 may have substantially the same height as the interval between the first rotation unit 110a and the second rotation unit 110b (for example, a height of 70 to 95% of the interval), thereby further increasing the rotation unit 110a. In addition, a sufficient interval between the rotary units 110b is secured, and the impact is reduced even when the rotary unit 110a drops off the rotary shaft member 140 and falls. Further, the target protection unit 156 may be provided with a roller for smooth rotation of the rotation unit 110a and / or the rotation unit 110b on the upper surface and / or the lower surface.
 なお、対象保護部156は必須ではなく、回転ユニット110aおよび回転ユニット110bと回転軸部材140との固定の態様に応じて、また後述する非回転ユニット180の強度に応じて省略することもできる。 Note that the target protection unit 156 is not essential, and may be omitted according to the manner in which the rotating unit 110a and the rotating unit 110b are fixed to the rotating shaft member 140, and according to the strength of the non-rotating unit 180 described later.
 ローラ158は、筐体146に1または複数個取り付けられて、一対の回転ユニット110を回転可能な状態で支持する。これにより、ローラ158は、一対の回転ユニット110の回転を安定化し、計測装置10の安全性を向上させる。ローラ158には回転センサおよび/または振動センサ等が設けられてよく、これにより計測装置10は回転ユニット110の回転状態を監視してよい。本実施形態においては、ローラ158は、回転ユニット110a~bのジャケット(後述)部分に接する。これに代えて、またはこれと共に、ローラ158は、一対の回転ユニット110の上下に接するように設けられてもよい。例えば、回転ユニット110aと筐体146の天井部分の間、および/または、回転ユニット110bおよび筐体146の底面の間にローラを設けて、これにより回転ユニット110の回転を安定化させてもよい。なお、回転モジュール100の回転の安定性が十分に確保できるのであれば、ローラ158を省くこともできる。 One or more rollers 158 are attached to the housing 146 and support the pair of rotating units 110 in a rotatable state. Thereby, the roller 158 stabilizes the rotation of the pair of rotating units 110 and improves the safety of the measuring device 10. The roller 158 may be provided with a rotation sensor and / or a vibration sensor, and the measurement device 10 may monitor the rotation state of the rotation unit 110. In the present embodiment, the roller 158 contacts a jacket (described later) portion of the rotation units 110a and 110b. Instead of or together with this, the rollers 158 may be provided so as to be in contact with the top and bottom of the pair of rotation units 110. For example, a roller may be provided between the rotation unit 110a and the ceiling portion of the housing 146 and / or between the rotation unit 110b and the bottom surface of the housing 146, thereby stabilizing the rotation of the rotation unit 110. . Note that the roller 158 may be omitted if the rotation stability of the rotation module 100 can be sufficiently secured.
 動力伝達部160は、回転軸部材140に駆動部170からの動力を伝えて回転軸部材140を回転させる。例えば、動力伝達部160は、減速機または変速機を含んでよく、駆動部170から入力軸に沿って入力された回転を減速して入力軸と同一または異なる方向の回転軸部材140に伝えてよい。 The power transmission unit 160 transmits the power from the drive unit 170 to the rotating shaft member 140 to rotate the rotating shaft member 140. For example, the power transmission unit 160 may include a speed reducer or a transmission, and the rotation input from the drive unit 170 along the input shaft is decelerated and transmitted to the rotary shaft member 140 in the same or different direction as the input shaft. Good.
 駆動部170は、モータ等により動力を発生し、動力伝達部160を介して回転軸部材140に動力を与えて回転軸部材140を回転させ、これにより第1磁石112a~bおよび第2磁石114a~bを回転軸AXを中心として回転させる。駆動部170は、例えば、サーボ機構により回転数が制御可能なサーボモータまたはインバータに接続されたモータを含んでよい。これにより、駆動部170は、動力伝達部160へ入力する回転数を調整することで、回転軸部材140の回転数を調節することができる。また、駆動部170は、回転数を連続的または非連続的に可変してもよい。さらに、駆動部170は、停止と回転を繰り返す動作としてもよい。駆動部170は、モータ回転軸に回転角度を検出する回転角度センサを備え、モータ回転軸の回転角度を制御部230に供給してよい。例えば、回転角度を検出するセンサは、エンコーダやレゾルバ等を含んでよい。制御部230は、モータ回転軸の回転角度と動力伝達部160の減速比から回転軸部材140の回転角度を算出してよい。また、回転角度を検出するセンサは、回転軸部材140または動力伝達部160の出力軸に備え、回転軸部材140の回転角度を制御部230に供給してよい。 The drive unit 170 generates power by a motor or the like and applies power to the rotary shaft member 140 via the power transmission unit 160 to rotate the rotary shaft member 140, whereby the first magnet 112a-b and the second magnet 114a. ˜b is rotated about the rotation axis AX. The drive unit 170 may include, for example, a servo motor whose rotation speed can be controlled by a servo mechanism or a motor connected to an inverter. Thereby, the drive part 170 can adjust the rotation speed of the rotating shaft member 140 by adjusting the rotation speed input into the power transmission part 160. FIG. Further, the driving unit 170 may change the rotation speed continuously or discontinuously. Further, the driving unit 170 may repeat the stop and rotation. The driving unit 170 may include a rotation angle sensor that detects a rotation angle on the motor rotation shaft, and supply the rotation angle of the motor rotation shaft to the control unit 230. For example, the sensor that detects the rotation angle may include an encoder, a resolver, and the like. The control unit 230 may calculate the rotation angle of the rotation shaft member 140 from the rotation angle of the motor rotation shaft and the reduction ratio of the power transmission unit 160. In addition, a sensor that detects the rotation angle may be provided in the output shaft of the rotation shaft member 140 or the power transmission unit 160 and supply the rotation angle of the rotation shaft member 140 to the control unit 230.
 非回転ユニット180は、一対の回転ユニット110の間の空間に設けられ、回転ユニット110に対して固定される固定モジュールであり、計測対象20が設置される。非回転ユニット180は、コイル部184、傾斜磁場発生部188、および、静磁場調整部190を有する。 The non-rotating unit 180 is a fixed module that is provided in a space between the pair of rotating units 110 and is fixed to the rotating unit 110, and the measurement target 20 is installed therein. The non-rotating unit 180 includes a coil unit 184, a gradient magnetic field generation unit 188, and a static magnetic field adjustment unit 190.
 コイル部184は、ESR用コイル部(不図示)と、NMR用送受信コイル部(不図示)とを含む。ESR用コイル部は、計測対象20に対して第1磁場を与えている状態において、計測対象20に電子スピン共鳴を惹起させるための電磁波を発生する。NMR用送受信コイル部は、RFコイルを含み、計測対象20に対して第2磁場を与えている状態において、所定の周波数の電磁波を生成して計測対象20に対して送信(照射)して核磁気共鳴を惹起させ、計測対象20が生成するNMR信号を受信する。 The coil unit 184 includes an ESR coil unit (not shown) and an NMR transmit / receive coil unit (not shown). The coil portion for ESR generates an electromagnetic wave for inducing electron spin resonance in the measurement target 20 in a state where the first magnetic field is applied to the measurement target 20. The transmit / receive coil unit for NMR includes an RF coil, and in a state where a second magnetic field is applied to the measurement target 20, generates an electromagnetic wave having a predetermined frequency and transmits (irradiates) the measurement target 20 with a nucleus. Magnetic resonance is induced and an NMR signal generated by the measurement object 20 is received.
 傾斜磁場発生部188は、計測対象20に対して傾斜磁場を与える。例えば、傾斜磁場発生部188は、XYZの3方向の傾斜磁場コイルを有し、当該3方向のそれぞれにおいて傾斜磁場を生成する。これにより、傾斜磁場発生部188は、コイル部184が3次元空間の任意の平面でNMR信号を受信し、計測装置10が3次元空間上のMRI情報を生成することを可能にする。 The gradient magnetic field generator 188 applies a gradient magnetic field to the measurement target 20. For example, the gradient magnetic field generator 188 has XYZ three-direction gradient magnetic field coils, and generates a gradient magnetic field in each of the three directions. Thereby, the gradient magnetic field generation unit 188 enables the coil unit 184 to receive the NMR signal at an arbitrary plane in the three-dimensional space, and allows the measurement apparatus 10 to generate MRI information in the three-dimensional space.
 静磁場調整部190は、計測対象20の設置位置に対して予め定められた位置(本図においては計測対象20の上下)に設けられ、第1磁石112a~b、および第2磁石114~bが計測対象20に対して与える第1磁場および第2磁場の少なくとも一方の静磁場の強度を変える。本実施形態に係る静磁場調整部190は、制御部230の制御に応じて第1磁場の強度を可変とするための静磁場調整用コイルを有し、第1磁場による静磁場の強さを加減する。静磁場調整用コイルは、計測対象20および計測対象20において計測する組成物により異なる静磁場を生成する。例えば、静磁場調整部190は、計測対象20に与える静磁場の強度を変えてESRを惹起することにより生じた動的核偏極をNMR測定をすることで、計測対象20に含まれる特定のラジカル種を計測する。更に静磁場調整部190は、計測対象20に含まれる複数種類のラジカル種のそれぞれに応じて最適な静磁場に調整してESRを惹起しNMR測定をすることで、計測装置10が複数のラジカル種を画像化することを可能にする。 The static magnetic field adjustment unit 190 is provided at a position predetermined with respect to the installation position of the measurement target 20 (up and down of the measurement target 20 in the drawing), and includes the first magnets 112a to 112b and the second magnets 114 to b. Changes the strength of at least one of the first magnetic field and the second magnetic field applied to the measurement target 20. The static magnetic field adjustment unit 190 according to the present embodiment has a static magnetic field adjustment coil for making the intensity of the first magnetic field variable according to the control of the control unit 230, and determines the strength of the static magnetic field by the first magnetic field. Moderate. The static magnetic field adjusting coil generates different static magnetic fields depending on the measurement target 20 and the composition to be measured on the measurement target 20. For example, the static magnetic field adjustment unit 190 changes the intensity of the static magnetic field applied to the measurement target 20 and causes NMR to measure the dynamic nuclear polarization generated by inducing ESR. Measure radical species. Furthermore, the static magnetic field adjustment unit 190 adjusts the optimum static magnetic field according to each of a plurality of types of radicals included in the measurement target 20 to induce ESR and perform NMR measurement, so that the measurement apparatus 10 can perform a plurality of radicals. Enables seeds to be imaged.
 計測部200は、第1磁石および第2磁石の回転に伴って第1磁石により発生された第1磁場および第2磁石により発生された第2磁場のそれぞれが与えられる、非回転ユニット180の設置位置に置かれた計測対象20のNMR信号を所定のタイミングで計測する。例えば、計測部200は、コイル部184のRFコイルから所定の周波数の電磁波を生じさせたことに応じて、RFコイルが受信した計測対象20からのNMR信号を計測する。 The measuring unit 200 is provided with a non-rotating unit 180 to which each of the first magnetic field generated by the first magnet and the second magnetic field generated by the second magnet is provided in accordance with the rotation of the first magnet and the second magnet. The NMR signal of the measurement object 20 placed at the position is measured at a predetermined timing. For example, the measurement unit 200 measures the NMR signal from the measurement target 20 received by the RF coil in response to the generation of electromagnetic waves having a predetermined frequency from the RF coil of the coil unit 184.
 一例として、計測部200は、第1磁場により計測対象20に電子スピン共鳴が惹起された後、第2磁場により計測対象20に核磁気共鳴が惹起された状態で計測対象20を計測する。これにより、計測部200は、電子スピン共鳴を惹起することにより生じた動的核偏極で増幅されたNMR信号を受信することができる。計測部200は、受信したNMR信号を制御部230に供給する。 As an example, the measurement unit 200 measures the measurement object 20 in a state in which the nuclear magnetic resonance is induced in the measurement object 20 by the second magnetic field after the electron spin resonance is induced in the measurement object 20 by the first magnetic field. Thereby, the measurement part 200 can receive the NMR signal amplified by the dynamic nuclear polarization produced by inducing electron spin resonance. The measurement unit 200 supplies the received NMR signal to the control unit 230.
 異常検出部210は、計測装置10に取り付けられ、当該計測装置10の異常を検出する。例えば、異常検出部210は、振動センサ部を有し、筐体146に取り付けられて、筐体146の水平方向の振動、および、垂直方向の振動を検出する。異常検出部210は、検出した振動情報を制御部230に供給する。なお、計測装置10は、異常検出部210として、振動センサ以外にも計測装置10の異常を検出するための種々のセンサを備えてよい。例えば、計測装置10は、磁気センサ、温度センサ、音センサ、変位センサ、および/または、湿度センサ等を備えてよい。 The abnormality detection unit 210 is attached to the measurement apparatus 10 and detects an abnormality of the measurement apparatus 10. For example, the abnormality detection unit 210 includes a vibration sensor unit, and is attached to the housing 146 to detect horizontal vibration and vertical vibration of the housing 146. The abnormality detection unit 210 supplies the detected vibration information to the control unit 230. The measurement device 10 may include various sensors for detecting an abnormality of the measurement device 10 as the abnormality detection unit 210 in addition to the vibration sensor. For example, the measurement device 10 may include a magnetic sensor, a temperature sensor, a sound sensor, a displacement sensor, and / or a humidity sensor.
 入力部220は、ユーザからの計測装置10への指示等を入力する。例えば、入力部220は、マウス、キーボード、および/または、タッチパネル等の入力機器に接続され、これらの入力機器から入力されるユーザの指示を制御部230に供給する。 The input unit 220 inputs an instruction or the like from the user to the measuring device 10. For example, the input unit 220 is connected to an input device such as a mouse, a keyboard, and / or a touch panel, and supplies a user instruction input from these input devices to the control unit 230.
 制御部230は、計測装置10の動作全体を制御する。例えば、制御部230は、駆動部170を制御して回転軸部材140を回転させながら、計測部200を制御して計測対象20へのESR惹起および/またはNMRの計測を行う。一例として、制御部230は、回転軸部材140に接続された駆動部170のモータの回転数を制御することで、第1磁石112a~bおよび第2磁石114a~bの回転速度を制御し、回転ユニット110を回転させながら計測を行う。 The control unit 230 controls the entire operation of the measuring device 10. For example, the control unit 230 controls the measurement unit 200 to control the drive unit 170 and rotate the rotating shaft member 140 to induce ESR on the measurement target 20 and / or perform NMR measurement. As an example, the control unit 230 controls the rotation speeds of the motors of the driving unit 170 connected to the rotation shaft member 140, thereby controlling the rotation speeds of the first magnets 112a and 112b and the second magnets 114a and 114b. Measurement is performed while rotating the rotating unit 110.
 制御部230は、例えば、回転ユニット110を回転させつつ、計測対象20に第1磁石112による第1磁場が照射されるタイミングで、傾斜磁場発生部188に所定の傾斜磁場を発生させ、コイル部184内のESR用コイル部から計測対象20に対して所定の周波数の電磁波を照射してESRを生じさせる。そして、制御部230は、回転ユニット110の回転を維持させたまま、計測対象20に第2磁石114による第2磁場が照射されるタイミングで、傾斜磁場発生部188に所定の傾斜磁場を発生させ、計測対象20にRFコイルから所定の周波数の電磁波を照射してNMRを生じさせ、計測部200にNMR信号を受信させる。ここで、制御部230は、計測対象20に第1磁場および第2磁場のいずれが与えられているかに応じてコイル部184内の静磁場調整用コイルが発生する磁場の強度を変更してよい。一例として、制御部230は、計測対象20に第1磁場が与えられている場合に、計測すべき組成物に応じた強度の磁場を静磁場調整用コイルから発生させる。 The control unit 230, for example, causes the gradient magnetic field generation unit 188 to generate a predetermined gradient magnetic field at the timing when the measurement object 20 is irradiated with the first magnetic field while rotating the rotation unit 110, and the coil unit. ESR is generated by irradiating the measurement target 20 with an electromagnetic wave having a predetermined frequency from the coil portion for ESR in 184. Then, the control unit 230 causes the gradient magnetic field generation unit 188 to generate a predetermined gradient magnetic field at a timing at which the measurement object 20 is irradiated with the second magnetic field while the rotation of the rotation unit 110 is maintained. The measurement object 20 is irradiated with an electromagnetic wave having a predetermined frequency from the RF coil to cause NMR, and the measurement unit 200 receives the NMR signal. Here, the control unit 230 may change the strength of the magnetic field generated by the static magnetic field adjustment coil in the coil unit 184 depending on whether the measurement target 20 is given the first magnetic field or the second magnetic field. . As an example, when the first magnetic field is applied to the measurement target 20, the control unit 230 generates a magnetic field having a strength corresponding to the composition to be measured from the static magnetic field adjustment coil.
 制御部230は、計測部200から受け取ったNMR信号を画像化する。例えば、制御部230は、NMR信号を演算し、画像処理することにより、MRI画像を生成する。制御部230は、3次元の傾斜磁場下で得られたNMR信号から計測対象20の3次元情報(例えば、計測対象20の水分子またはフリーラジカルの3次元分布等)を取得し、3次元情報に基づくMRI画像を生成してよい。制御部230は、計測対象20にESRを生じさせるので、通常のMRI画像に加えて、計測対象のESRおよびDNPを利用したMRI画像(DNP-MRI画像)を生成することができる。 The control unit 230 images the NMR signal received from the measurement unit 200. For example, the control unit 230 calculates an NMR signal and performs image processing to generate an MRI image. The control unit 230 acquires three-dimensional information of the measurement target 20 (for example, a three-dimensional distribution of water molecules or free radicals of the measurement target 20) from the NMR signal obtained under a three-dimensional gradient magnetic field, and the three-dimensional information. An MRI image based on the may be generated. Since the control unit 230 causes ESR in the measurement target 20, in addition to the normal MRI image, the control unit 230 can generate an MRI image (DNP-MRI image) using the measurement target ESR and DNP.
 制御部230は、計測対象20の計測中において、計測対象20の設置位置に対する第1磁石112および第2磁石114の位置に応じて回転軸部材140の回転速度を変化させてよい。これにより、制御部230は、第1磁石112による第1磁場と第2磁石114による第2磁場が計測対象20に与えられる時間を制御し、計測対象20のESRおよびNMRを制御することができる。制御部230による具体的な回転速度の制御の例は後述する。 The control unit 230 may change the rotation speed of the rotating shaft member 140 according to the positions of the first magnet 112 and the second magnet 114 with respect to the installation position of the measurement target 20 during measurement of the measurement target 20. Thereby, the control part 230 can control the time when the 1st magnetic field by the 1st magnet 112 and the 2nd magnetic field by the 2nd magnet 114 are given to the measuring object 20, and can control ESR and NMR of the measuring object 20. . A specific example of the rotation speed control by the control unit 230 will be described later.
 また、制御部230は、異常検出部210が各種センサにより計測装置10の異常、例えば回転モジュール100等の部品の基準以上の異常変位、または基準値以上の振動等を検出したことに応じて、一対の回転ユニット110の回転を停止し、または、一対の回転ユニット110の回転速度を低下させて安全性を確保する。 In addition, the control unit 230 detects that the abnormality detection unit 210 detects an abnormality of the measurement device 10 using various sensors, for example, an abnormal displacement that exceeds a reference of a component such as the rotating module 100, or a vibration that exceeds a reference value. The rotation of the pair of rotation units 110 is stopped, or the rotation speed of the pair of rotation units 110 is decreased to ensure safety.
 表示部240は、動作中および動作前後の計測装置10に関する情報を表示する。例えば、表示部240は、制御部230が生成したMRI画像および/またはESRスペクトル等を表示してよい。また、表示部240は、回転ユニット110の回転位置および/または回転速度等を表示してよい。 The display unit 240 displays information regarding the measuring apparatus 10 during and before and after the operation. For example, the display unit 240 may display an MRI image and / or an ESR spectrum generated by the control unit 230. The display unit 240 may display the rotational position and / or rotational speed of the rotary unit 110.
 このように、本実施形態の計測装置10によると、ESR用の第1磁石112およびNMR用の第2磁石114を覆って一対の回転ユニットに格納し、これを回転軸AXを中心にして非回転ユニット180に対して回転させる。従って、本実施形態の計測装置10によると、特許文献3等に示される磁石自体を回転させる従来の方法に比べて計測対象20のESR惹起およびNMR計測をより安全に実行することができる。また、計測装置10によると、回転ユニット110の回転速度を回転中に制御することにより、計測対象20にESRおよびNMRを生じさせる時間を制御することができる。なお、計測装置10は、説明した要素のいずれかを含まない構成を採りうる。例えば、計測装置10は、ローラ158および/または異常検出部210を含まなくてもよい。 As described above, according to the measurement apparatus 10 of the present embodiment, the first magnet 112 for ESR and the second magnet 114 for NMR are covered and stored in the pair of rotation units, and this is centered on the rotation axis AX. The rotating unit 180 is rotated. Therefore, according to the measurement apparatus 10 of the present embodiment, ESR induction and NMR measurement of the measurement target 20 can be performed more safely than the conventional method of rotating the magnet itself described in Patent Document 3 and the like. Moreover, according to the measuring apparatus 10, the time during which ESR and NMR are generated in the measurement target 20 can be controlled by controlling the rotation speed of the rotating unit 110 during rotation. Note that the measurement device 10 may have a configuration that does not include any of the elements described. For example, the measurement apparatus 10 may not include the roller 158 and / or the abnormality detection unit 210.
 図2は、上側から観察した図1の計測装置10の概略図である。図示するように筐体146は、格子状構造を形成する複数の上部フレーム148を有する。軸受部142aは、上部フレーム148の格子状構造に搭載されて固定され、回転軸部材140を上側から支持する。これにより、筐体146は、上側から回転ユニット110を保持し、計測装置10全体の安定性を向上させる。対象保護部156は、筐体146の四隅のうち非回転ユニット180が設けられていない側の支柱となるフレーム部分に固定され、当該支柱から中央部に延びるように設けられる。本実施形態に係る計測装置10においては、非回転ユニット180は計測対象20を保護することができる強度を有しているので、非回転ユニット180が設けられている側の支柱には対象保護部156を別途設けていない。 FIG. 2 is a schematic view of the measuring apparatus 10 of FIG. 1 observed from above. As illustrated, the housing 146 includes a plurality of upper frames 148 that form a lattice structure. The bearing portion 142a is mounted and fixed on the lattice structure of the upper frame 148, and supports the rotating shaft member 140 from above. Thereby, the housing | casing 146 hold | maintains the rotation unit 110 from the upper side, and improves the stability of the measuring device 10 whole. The target protection unit 156 is fixed to a frame portion that is a column on the side where the non-rotating unit 180 is not provided in the four corners of the housing 146, and is provided so as to extend from the column to the center. In the measurement apparatus 10 according to the present embodiment, the non-rotating unit 180 has a strength capable of protecting the measurement target 20, and therefore, the target protection unit is provided on the column on which the non-rotating unit 180 is provided. 156 is not provided separately.
 また、図2の点線で囲った領域は非回転ユニット180が位置する領域の一例を示す。非回転ユニットは、筐体146の少なくとも一つの側面側に設けられ、計測対象20が配置できるように一定の大きさを有する。一例として、非回転ユニット180は、筐体146に固定されたガイドと、計測装置10本体に対して着脱可能であって当該ガイドに嵌合してスライドされることによって計測装置10本体に取り付けられる非回転ユニット180本体とを含む。 Further, an area surrounded by a dotted line in FIG. 2 shows an example of an area where the non-rotating unit 180 is located. The non-rotating unit is provided on at least one side surface of the housing 146 and has a certain size so that the measurement target 20 can be arranged. As an example, the non-rotating unit 180 is detachably attached to the guide fixed to the housing 146 and the measurement apparatus 10 main body, and is fitted to the guide to be attached to the measurement apparatus 10 main body. Non-rotating unit 180 main body.
 図3は、斜め上方から観察した計測装置10の一例である。図示するように、筐体146は、外部カバー147に覆われてもよい。計測装置10の正面側における外部カバー147の一部には、計測対象20を非回転ユニット180へと導くための開口183が設けられる。例えば、計測対象20が人体の場合、計測装置10は、開口183から体の一部を非回転ユニット180に対して挿入させて当該体の一部を計測してよい。または、計測装置10は、人体等を開口183から筐体146に侵入させ非回転ユニット180の設置面に横臥させることで体全体を計測してよい。また、非回転ユニット180は、筐体146に対してスライドし、開口183を通して着脱可能とすることができる。 FIG. 3 is an example of the measuring apparatus 10 observed from obliquely above. As illustrated, the housing 146 may be covered with an external cover 147. An opening 183 for guiding the measurement target 20 to the non-rotating unit 180 is provided in a part of the outer cover 147 on the front side of the measuring device 10. For example, when the measurement target 20 is a human body, the measurement apparatus 10 may measure a part of the body by inserting a part of the body into the non-rotating unit 180 from the opening 183. Alternatively, the measuring apparatus 10 may measure the entire body by allowing a human body or the like to enter the housing 146 through the opening 183 and lie down on the installation surface of the non-rotating unit 180. In addition, the non-rotating unit 180 can slide with respect to the housing 146 and be detachable through the opening 183.
 図4は、計測装置10の回転モジュール100の概略図である。一対の回転ユニット110のそれぞれは、相対する面を有する回転盤状である。例えば、図示するように一対の回転ユニット110のそれぞれは、略円盤状である。図4において、XY平面と平行な平面PLより上の領域が回転ユニット110aに対応し、平面PLより下の領域が回転ユニット110bに対応する。 FIG. 4 is a schematic diagram of the rotation module 100 of the measuring apparatus 10. Each of the pair of rotating units 110 has a rotating disc shape having opposing surfaces. For example, as shown in the drawing, each of the pair of rotating units 110 has a substantially disk shape. In FIG. 4, the area above the plane PL parallel to the XY plane corresponds to the rotation unit 110a, and the area below the plane PL corresponds to the rotation unit 110b.
 回転ユニット110aは、ジャケット101a、第1バックヨーク102aおよび第1磁石ヨーク部103a、第2バックヨーク104aおよび第2磁石ヨーク部105a、第1ポールピース115a、第2ポールピース116a、支持プレート117a、並びに、支柱118aを更に含む。 The rotation unit 110a includes a jacket 101a, a first back yoke 102a and a first magnet yoke portion 103a, a second back yoke 104a and a second magnet yoke portion 105a, a first pole piece 115a, a second pole piece 116a, a support plate 117a, Furthermore, the support 118a is further included.
 ジャケット101aは、回転ユニット110aの第1磁石112aおよび第2磁石114aを固定した状態で収納する。ジャケット101aの具体的な構造は後述する。 The jacket 101a stores the first magnet 112a and the second magnet 114a of the rotating unit 110a in a fixed state. The specific structure of the jacket 101a will be described later.
 第1バックヨーク102aおよび第1磁石ヨーク部103aは、第1磁石112aに隣接して設けられ、第1磁石112aの磁束を通過させる。本実施形態に係る第1バックヨーク102aおよび第1磁石ヨーク部103aは、磁路を形成すべく接しており、第1磁石ヨーク部103aが第1磁石112aの上側から第1バックヨーク102aに至るまでの間に位置して第1磁石112aの磁束を第1バックヨーク102aへと導く。そして、第1バックヨーク102aが回転軸AXに沿って形成されて、第1磁石112aからの磁束を回転ユニット110b側の第1バックヨーク102bへと導く。 The first back yoke 102a and the first magnet yoke portion 103a are provided adjacent to the first magnet 112a and allow the magnetic flux of the first magnet 112a to pass through. The first back yoke 102a and the first magnet yoke portion 103a according to the present embodiment are in contact with each other to form a magnetic path, and the first magnet yoke portion 103a reaches the first back yoke 102a from the upper side of the first magnet 112a. The magnetic flux of the first magnet 112a is guided to the first back yoke 102a. The first back yoke 102a is formed along the rotation axis AX, and guides the magnetic flux from the first magnet 112a to the first back yoke 102b on the rotation unit 110b side.
 第2バックヨーク104aおよび第2磁石ヨーク部105aは、第2磁石114aに隣接して設けられ、第2磁石114aの磁束を通過させる。本実施形態に係る第2バックヨーク104aおよび第2磁石ヨーク部105aは磁路を形成すべく一体に形成される。第2磁石ヨーク部105aは、ジャケット101aの上側から回転軸部材140に至る部分に形成されて第2磁石114aの磁束を第2バックヨーク104aへと導く。回転軸AXと重なる第2バックヨーク104aは、第2磁石114aの磁束を回転ユニット110b側の第2バックヨーク104bへと導く。このように、本実施形態においては、第2バックヨーク104aは、回転ユニット110aの回転軸AXと重なる支柱を含み、第1バックヨーク102aは当該支柱の外側に沿って円周の一部をなすように設けられる。 The second back yoke 104a and the second magnet yoke portion 105a are provided adjacent to the second magnet 114a and allow the magnetic flux of the second magnet 114a to pass therethrough. The second back yoke 104a and the second magnet yoke portion 105a according to the present embodiment are integrally formed to form a magnetic path. The second magnet yoke portion 105a is formed in a portion from the upper side of the jacket 101a to the rotating shaft member 140, and guides the magnetic flux of the second magnet 114a to the second back yoke 104a. The second back yoke 104a overlapping the rotation axis AX guides the magnetic flux of the second magnet 114a to the second back yoke 104b on the rotation unit 110b side. Thus, in the present embodiment, the second back yoke 104a includes a support column that overlaps the rotation axis AX of the rotation unit 110a, and the first back yoke 102a forms a part of the circumference along the outside of the support column. It is provided as follows.
 第1ポールピース115aは、ジャケット101aの開口からジャケット101aの下側へと露出する第1磁石112aにおける露出部分の縁部に設けられ、第1磁石112aの磁界が回転ユニット110aの外側へと広がるのを防ぐ。同様に、第2ポールピース116aは、ジャケット101aの開口からジャケット101aの下側へと露出する第2磁石114aにおける露出部分の縁部に設けられ、第2磁石114aの磁界が回転ユニット110aの外側へと広がるのを防ぐ。 The first pole piece 115a is provided at the edge of the exposed portion of the first magnet 112a exposed from the opening of the jacket 101a to the lower side of the jacket 101a, and the magnetic field of the first magnet 112a spreads outside the rotating unit 110a. To prevent. Similarly, the second pole piece 116a is provided at the edge of the exposed portion of the second magnet 114a exposed from the opening of the jacket 101a to the lower side of the jacket 101a, and the magnetic field of the second magnet 114a is outside the rotating unit 110a. To prevent spreading.
 支持プレート117aは、回転軸部材140の軸部材に対して固定され、支柱118a並びに第2磁石ヨーク部105aを介してジャケット101aを回転軸部材140に対して固定する。例えば、支持プレート117aは、ステンレスおよびアルミニウム等の剛性が高い非磁性金属材料、または十分な強度がある樹脂等の非磁性材料で形成されてよく、円盤又は多角形等の回転盤状形状を有する。1または複数の支柱118aは、ジャケット101aを支持プレート117aに対して固定するために設けられ、これによりジャケット101aを含む回転ユニット110a全体の剛性を高める。支柱118aは、支持プレート117a等と同様の材質で形成されてよく、例えば、断面がH字となるH形鋼であってよい。 The support plate 117a is fixed to the shaft member of the rotating shaft member 140, and fixes the jacket 101a to the rotating shaft member 140 via the support column 118a and the second magnet yoke portion 105a. For example, the support plate 117a may be formed of a nonmagnetic metal material having high rigidity such as stainless steel and aluminum, or a nonmagnetic material such as resin having sufficient strength, and has a rotating disk shape such as a disk or a polygon. . The one or more support columns 118a are provided to fix the jacket 101a to the support plate 117a, thereby increasing the rigidity of the entire rotation unit 110a including the jacket 101a. The support column 118a may be formed of the same material as the support plate 117a or the like, and may be, for example, an H-shaped steel having a H-shaped cross section.
 なお、ジャケット101aに十分な厚みを持たせることによって剛性を十分に保つことができる場合には、回転ユニット110aに支持プレート117aおよび支柱118aを設ける必要はなく、回転軸部材140に対して直接ジャケット101aを固定してもよい。 When sufficient rigidity can be maintained by providing the jacket 101a with a sufficient thickness, it is not necessary to provide the support plate 117a and the support column 118a on the rotating unit 110a, and the jacket 101a is directly attached to the rotating shaft member 140. 101a may be fixed.
 回転ユニット110bは、ジャケット101b、第1バックヨーク102bおよび第1磁石ヨーク部103b、第2バックヨーク104bおよび第2磁石ヨーク部105b、第1ポールピース115b、第2ポールピース116b、支持プレート117b、並びに、支柱118bを更に含む。回転ユニット110bは、回転ユニット110aをXY平面に対して反転した形状であってよい。 The rotation unit 110b includes a jacket 101b, a first back yoke 102b and a first magnet yoke portion 103b, a second back yoke 104b and a second magnet yoke portion 105b, a first pole piece 115b, a second pole piece 116b, a support plate 117b, In addition, the support 118b is further included. The rotation unit 110b may have a shape obtained by inverting the rotation unit 110a with respect to the XY plane.
 ジャケット101bは、回転ユニット110bの第1磁石112bおよび第2磁石114bを固定した状態で収納する。ジャケット101bはジャケット101aと同様の形態を有してよい。 The jacket 101b stores the first magnet 112b and the second magnet 114b of the rotating unit 110b in a fixed state. The jacket 101b may have the same form as the jacket 101a.
 第1バックヨーク102bおよび第1磁石ヨーク部103bは、第1磁石112bに隣接して設けられ、第1磁石112bの磁束を通過させる。第2バックヨーク104bおよび第2磁石ヨーク部105bは、第2磁石114bに隣接して設けられ、第2磁石114bの磁束を通過させる。ここで、第1バックヨーク102b、第1磁石ヨーク部103b、第2バックヨーク104b、および第2磁石ヨーク部105bは、第1バックヨーク102a、第1磁石ヨーク部103a、第2バックヨーク104a、および第2磁石ヨーク部105aと同様の機能および構造を有するので、以下必要な場合を除いて説明を省略する。 The first back yoke 102b and the first magnet yoke portion 103b are provided adjacent to the first magnet 112b and allow the magnetic flux of the first magnet 112b to pass therethrough. The second back yoke 104b and the second magnet yoke portion 105b are provided adjacent to the second magnet 114b and allow the magnetic flux of the second magnet 114b to pass therethrough. Here, the first back yoke 102b, the first magnet yoke portion 103b, the second back yoke 104b, and the second magnet yoke portion 105b include the first back yoke 102a, the first magnet yoke portion 103a, the second back yoke 104a, Since it has the same function and structure as the second magnet yoke portion 105a, the description thereof will be omitted unless necessary.
 第1バックヨーク102bは、回転ユニット110aの第1バックヨーク102aと接続されて固定されてよく、または、第1バックヨーク102aと一体化されて単一の部材を構成してよい。第2バックヨーク104bは、回転ユニット110aの第2バックヨーク104aと接続されて固定されてよく、または、第2バックヨーク104aと一体化されて単一の部材を構成してよい。これにより、回転ユニット110aおよび回転ユニット110bは、一体として回転することができる。 The first back yoke 102b may be connected and fixed to the first back yoke 102a of the rotating unit 110a, or may be integrated with the first back yoke 102a to constitute a single member. The second back yoke 104b may be connected and fixed to the second back yoke 104a of the rotating unit 110a, or may be integrated with the second back yoke 104a to form a single member. Thereby, the rotation unit 110a and the rotation unit 110b can rotate integrally.
 第1ポールピース115bは、ジャケット101bの開口からジャケット101bの上側へと露出する第1磁石112bにおける露出部分の縁部に設けられる。第2ポールピース116bは、ジャケット101bの開口からジャケット101bの上側へと露出する第2磁石114bにおける露出部分の縁部に設けられる。回転ユニット110bの第1ポールピース115bおよび第2ポールピース116b、支持プレート117b、並びに、支柱118bは、回転ユニット110aの第1ポールピース115aおよび第2ポールピース116a、支持プレート117a、並びに、支柱118aと同様に形成されてよい。 The first pole piece 115b is provided at the edge of the exposed portion of the first magnet 112b exposed from the opening of the jacket 101b to the upper side of the jacket 101b. The second pole piece 116b is provided at the edge of the exposed portion of the second magnet 114b exposed from the opening of the jacket 101b to the upper side of the jacket 101b. The first pole piece 115b and the second pole piece 116b of the rotation unit 110b, the support plate 117b, and the column 118b are the first pole piece 115a and the second pole piece 116a of the rotation unit 110a, the support plate 117a, and the column 118a. May be formed in the same manner.
 図5は、ジャケット101bを含む回転ユニット110bの一例を示す。図示するように、支持プレート117bは、支柱118b、および、第2磁石ヨーク部105bを介して、ジャケット101bの片面を支える。ジャケット101bは、第1磁石112bを収容する第1範囲111bおよび第2磁石114bを収容する第2範囲113bを有する。第1範囲111bは、回転軸AXに対して固定され、回転軸AXを中心とする円周上の領域に位置する。第2範囲113bは、回転軸AXに対して固定され、回転軸AXを中心とする円周上の第1範囲111bとは異なる領域に位置する。 FIG. 5 shows an example of the rotating unit 110b including the jacket 101b. As shown in the figure, the support plate 117b supports one surface of the jacket 101b via the support column 118b and the second magnet yoke portion 105b. The jacket 101b has a first range 111b for accommodating the first magnet 112b and a second range 113b for accommodating the second magnet 114b. The first range 111b is fixed with respect to the rotation axis AX and is located in a region on the circumference around the rotation axis AX. The second range 113b is fixed with respect to the rotation axis AX and is located in a different area from the first range 111b on the circumference around the rotation axis AX.
 回転ユニット110aにおいても、回転ユニット110bと同様に第1磁石112aに対応して第1範囲111a(不図示)が設けられ、第2磁石114aに対応して第2範囲113a(不図示)が設けられる。回転ユニット110bの第1範囲111bおよび第2範囲113bは、回転ユニット110aの第1範囲111aおよび第2範囲113aと相対する位置に設けられる。すなわち、回転ユニット110bは、回転ユニット110aを上下反転し、回転ユニット110aに対して第1磁石112および第2磁石114が向かい合うように相対させたものであってよい。 Similarly to the rotating unit 110b, the rotating unit 110a also has a first range 111a (not shown) corresponding to the first magnet 112a, and a second range 113a (not shown) corresponding to the second magnet 114a. It is done. The first range 111b and the second range 113b of the rotation unit 110b are provided at positions facing the first range 111a and the second range 113a of the rotation unit 110a. That is, the rotation unit 110b may be one in which the rotation unit 110a is turned upside down and is opposed to the rotation unit 110a so that the first magnet 112 and the second magnet 114 face each other.
 図6は、本実施形態におけるジャケット101bの一例を、図4における下方斜めから見た図を示す。ジャケット101aは、ジャケット101bと略同様の構造を採るため、必要な場合を除き以下説明を省略する。図示するようにジャケット101bは、第1開口107b、第2開口108b、および、第3開口109bが設けられた円盤であってよい。例えば、ジャケット101bは、ステンレス、アルミニウム等の剛性が高い非磁性金属、または、十分な強度のある樹脂等の非磁性材料により形成されてよい。また、ジャケット101bは、第1磁石112bおよび第2磁石114bを収納する厚みを有しており、例えば、1~200mmの厚みであってよい。また、支持プレート117bおよび支柱118bを用いない場合には、ジャケット101bをさらに厚くしてもよい。 FIG. 6 shows a view of an example of the jacket 101b according to the present embodiment as viewed obliquely from below in FIG. Since the jacket 101a has substantially the same structure as the jacket 101b, the description thereof will be omitted unless necessary. As illustrated, the jacket 101b may be a disk provided with a first opening 107b, a second opening 108b, and a third opening 109b. For example, the jacket 101b may be formed of a nonmagnetic metal having high rigidity such as stainless steel or aluminum, or a nonmagnetic material such as resin having sufficient strength. The jacket 101b has a thickness for housing the first magnet 112b and the second magnet 114b, and may have a thickness of 1 to 200 mm, for example. Further, when the support plate 117b and the support column 118b are not used, the jacket 101b may be made thicker.
 ジャケット101bは、計測対象20に相対する面とは反対側の面(すなわちジャケット101bにおいては図4における下側から第1磁石112bおよび第2磁石114bの少なくとも一部を第1開口107bおよび第2開口108b内へと収容する。第1開口107bは、第1磁石112bと略同寸法または第1磁石112bよりも大きい寸法を有し、第2開口108bは、第2磁石114bと略同寸法または第2磁石114bよりも大きい寸法を有する。例えば、第1開口107bは、第1磁石112bと略同形状であり、第1範囲111bに対応してよい。また、例えば、第2開口108bは、第2磁石114bと略同形状であり、第2範囲113bに対応してよい。 The jacket 101b has a surface opposite to the surface facing the measurement target 20 (that is, in the jacket 101b, at least part of the first magnet 112b and the second magnet 114b from the lower side in FIG. The first opening 107b has substantially the same size as the first magnet 112b or larger than the first magnet 112b, and the second opening 108b has substantially the same size as the second magnet 114b. For example, the first opening 107b has substantially the same shape as the first magnet 112b and may correspond to the first range 111b. The second magnet 114b has substantially the same shape and may correspond to the second range 113b.
 本実施形態に係るジャケット101bは、第1開口107bおよび第2開口108b内に、第1磁石112bおよび第2磁石114bを係止して第1磁石112bおよび第2磁石114bが計測対象20側へと抜け出るのを防止する係止部106を有する。一例として、この係止部106は、計測対象20に相対する底部側に第1開口107bおよび第2開口108bの周縁に沿って設けられた突起または段差等であり、ジャケット101bの本体部分と一体に形成される。これにより、ジャケット101bは、第1磁石112bおよび第2磁石114bの収容時の脱落を防止することができる。これに代えて、ジャケット101bは、ボルトまたは締め具等の公知の固定具により第1磁石112bおよび第2磁石114bを固定してもよい。 In the jacket 101b according to the present embodiment, the first magnet 112b and the second magnet 114b are locked in the first opening 107b and the second opening 108b, and the first magnet 112b and the second magnet 114b are moved to the measurement target 20 side. It has a locking portion 106 that prevents it from coming out. As an example, the locking portion 106 is a protrusion or a step provided along the periphery of the first opening 107b and the second opening 108b on the bottom side facing the measurement target 20, and is integrated with the main body portion of the jacket 101b. Formed. As a result, the jacket 101b can prevent the first magnet 112b and the second magnet 114b from falling off when being accommodated. Instead, the jacket 101b may fix the first magnet 112b and the second magnet 114b with a known fixture such as a bolt or a fastener.
 このように、ジャケット101bは、第1開口107bで第1磁石112bを安全に収容して固定し、回転ユニット110bの回転時に第1磁石112bが脱落等することを防ぐ。また、ジャケット101bは、第2開口108bで第2磁石114bを安全に収容して固定し、回転ユニット110bの回転時に第2磁石114bが脱落等することを防ぐ。すなわち、ジャケット101bは、第1磁石112bおよび第2磁石114bを内部に含む円盤を形成することにより、第1磁石112bおよび第2磁石114bを安全に固定する。第3開口109bは、第1バックヨーク102bおよび第2バックヨーク104bを通すことができる大きさおよび形状を有し、第1磁石112bおよび第2磁石114bの磁束を通す。 As described above, the jacket 101b safely accommodates and fixes the first magnet 112b through the first opening 107b, and prevents the first magnet 112b from dropping off when the rotation unit 110b rotates. Further, the jacket 101b safely accommodates and fixes the second magnet 114b in the second opening 108b, and prevents the second magnet 114b from dropping off when the rotation unit 110b rotates. That is, the jacket 101b safely fixes the first magnet 112b and the second magnet 114b by forming a disk including the first magnet 112b and the second magnet 114b. The third opening 109b has a size and a shape that allow the first back yoke 102b and the second back yoke 104b to pass therethrough, and allows the magnetic fluxes of the first magnet 112b and the second magnet 114b to pass therethrough.
 第1磁石112bは、回転軸AXに対して固定され、回転軸AXを中心とする円周上の第1範囲111bに収容される。例えば、第1範囲111bは、回転軸AXを中心とする半径rの円周上を移動した円(半径r:r<r)により形成される円弧形状(例えば、Cの字形状)であってよく、第1磁石112bは第1範囲111bの外縁の内側の全体または少なくとも一部の範囲に設けられた磁石であってよい。これにより、第1磁石112bは、回転ユニット110bの回転中、第1範囲111に対応する円弧部分が計測対象20に重なる比較的長い時間の間、静磁場を計測対象20に与えることができる。また、ジャケット101b上には、ジャケット101b全体の重さおよび/またはバランスを調節するためのスペーサ部材が配置されてもよい。 The first magnet 112b is fixed with respect to the rotation axis AX and is accommodated in a first range 111b on the circumference around the rotation axis AX. For example, the first range 111b is an arc shape (for example, a C shape) formed by a circle (radius r 2 : r 2 <r 1 ) that moves on the circumference of the radius r 1 centered on the rotation axis AX. The first magnet 112b may be a magnet provided in the whole or at least a part of the inside of the outer edge of the first range 111b. As a result, the first magnet 112b can apply a static magnetic field to the measurement target 20 for a relatively long time during which the arc portion corresponding to the first range 111 overlaps the measurement target 20 during the rotation of the rotation unit 110b. A spacer member for adjusting the weight and / or balance of the entire jacket 101b may be disposed on the jacket 101b.
 第2磁石114bは、回転軸AXに対して固定され、回転軸AXを中心とする円周上の第1範囲111bとは異なる第2範囲113bに収容される。第1範囲111bは第2範囲113bと比較して円周上の範囲が広くてよい。例えば、第2範囲113bは、半径r(r<r)の円形状であってよく、第2磁石114bは第2範囲113bの外縁に沿った枠形状の磁石であってよい。これにより、第2磁石114bは、回転ユニット110bの回転中、円が計測対象20に重なる比較的短い時間の間、静磁場を計測対象20に与えることができる。また、ジャケット101b上には、ジャケット101b全体の重さおよび/またはバランスを調節するためのスペーサ部材が配置されてもよい。 The second magnet 114b is fixed with respect to the rotation axis AX and is accommodated in a second range 113b different from the first range 111b on the circumference around the rotation axis AX. The first range 111b may have a wider range on the circumference than the second range 113b. For example, the second range 113b may be circular with a radius r 3 (r 3 <r 1 ), and the second magnet 114b may be a frame-shaped magnet along the outer edge of the second range 113b. Accordingly, the second magnet 114b can apply a static magnetic field to the measurement target 20 for a relatively short time when the circle overlaps the measurement target 20 while the rotation unit 110b is rotating. A spacer member for adjusting the weight and / or balance of the entire jacket 101b may be disposed on the jacket 101b.
 なお、第1磁石112bおよび第2磁石114bは図6とは異なる形状であってよい。例えば、第1磁石112bが円形状で第2磁石114bが円弧形状、両方とも円形状、または、両方とも円弧形状であってもよい。 It should be noted that the first magnet 112b and the second magnet 114b may have different shapes from those in FIG. For example, the first magnet 112b may be circular and the second magnet 114b may be arc-shaped, both circular, or both arc-shaped.
 また、回転ユニット110bは、第1磁石112bおよび第2磁石114bにおける計測対象20側に、補正用の1または複数個の磁性体または磁石を適切な位置に張り付けた構成を採りうる。これにより、回転ユニット110bは、計測対象20に対してより均一な静磁場を提供することができる。 Further, the rotation unit 110b can adopt a configuration in which one or a plurality of correction magnetic bodies or magnets are attached to appropriate positions on the measurement target 20 side of the first magnet 112b and the second magnet 114b. Thereby, the rotation unit 110b can provide a more uniform static magnetic field to the measurement target 20.
 なお、回転ユニット110a~bは、ジャケット101a~bにおける計測対象20側に相対する面側を、例えばアクリル板等の非磁性材料であって好ましくは非導電性のカバーにより覆う構成を採用してもよい。 The rotating units 110a and 110b employ a configuration in which the surface of the jackets 101a and 101b facing the measurement target 20 is covered with a nonmagnetic material such as an acrylic plate and preferably a nonconductive cover. Also good.
 ここで、回転ユニット110a~bの少なくとも一方は、第1範囲111の回転方向における先頭おける末尾および第2範囲113の回転方向における先頭および末尾において、位置検出用のセンサまたは計測装置10本体側に設けられたセンサによって検出されるべき被検出ユニットを有してもよい。これにより、制御部230は、回転ユニット110における第1範囲の先頭/末尾および第2範囲の先頭/末尾が基準位置(例えば、非回転ユニット180上の所定位置)に達したタイミングでトリガ信号を受け取って、当該トリガ信号を用いて回転速度を変更することができる。 Here, at least one of the rotation units 110a to 110b is positioned on the position detection sensor or measuring device 10 main body side at the end of the first range 111 in the rotation direction and the end of the second range 113 in the rotation direction. You may have the to-be-detected unit which should be detected by the provided sensor. Thereby, the control unit 230 outputs the trigger signal at the timing when the head / end of the first range and the head / end of the second range in the rotating unit 110 reach the reference position (for example, a predetermined position on the non-rotating unit 180). Upon receipt, the rotation speed can be changed using the trigger signal.
 図7は、本実施形態における計測装置10の処理フローの一例を示す。計測装置10は、S700~S770の処理を実行することにより、計測対象20を計測する。本実施形態において、計測装置10は、DNP-MRI画像を生成するDNP-MRIモードおよび電子スピン共鳴の惹起を伴わないMRI画像を生成するMRIモードの2種類の動作モードを有する。 FIG. 7 shows an example of the processing flow of the measuring apparatus 10 in the present embodiment. The measurement apparatus 10 measures the measurement target 20 by executing the processes of S700 to S770. In the present embodiment, the measurement apparatus 10 has two types of operation modes: a DNP-MRI mode that generates a DNP-MRI image and an MRI mode that generates an MRI image that does not cause the occurrence of electron spin resonance.
 DNP-MRIモードにおいては、回転モジュール100を回転させながら計測対象20に第1磁場を与えて電子スピン共鳴の惹起した後に第2磁場を与えて核磁気共鳴を計測する動作を繰り返す(S715~S755)。DNP-MRIモードにおいては、制御部230は、計測対象20の計測中において、計測対象20の設置位置に対する第1磁石112および第2磁石114の位置に応じて回転軸部材140の回転速度を変化させる。 In the DNP-MRI mode, while rotating the rotation module 100, the first magnetic field is applied to the measurement target 20 to induce electron spin resonance, and then the second magnetic field is applied to measure nuclear magnetic resonance (S715 to S755). ). In the DNP-MRI mode, the control unit 230 changes the rotation speed of the rotary shaft member 140 according to the positions of the first magnet 112 and the second magnet 114 with respect to the installation position of the measurement target 20 during measurement of the measurement target 20. Let
 MRIモードにおいては、回転モジュール100を停止させて計測対象20に第2磁場を与えて核磁気共鳴を計測する(S765~S770)。 In the MRI mode, the rotation module 100 is stopped and a second magnetic field is applied to the measurement target 20 to measure nuclear magnetic resonance (S765 to S770).
 まず、S700において、計測装置10は、初期化処理を行う。例えば、計測装置10は、電源投入処理、制御部230の起動処理、計測に必要となる規定パラメータの読み込み、異常が発生していないことのチェック、回転モジュール100の初期位置の検出または初期位置への移動、並びに、回転速度および各種コイルの磁場のキャリブレーション等を行う。本実施形態に係る計測装置10の制御部230は、規定パラメータの一部として、回転モジュール100において第1磁石112が設けられた第1範囲における開始角度から終了角度までの第1角度範囲、第2磁石114が設けられた第2範囲における開始角度から終了角度までの第2角度範囲、第1範囲の終了角度から第2範囲の開始角度までの第1遷移期間の第1遷移角度範囲、第2範囲の終了角度から第1範囲の開始角度までの第2遷移期間の第2遷移角度範囲を規定パラメータとして読み込む。 First, in S700, the measuring apparatus 10 performs an initialization process. For example, the measuring apparatus 10 performs power-on processing, start-up processing of the control unit 230, reading of specified parameters necessary for measurement, check that no abnormality has occurred, detection of the initial position of the rotation module 100, or return to the initial position. And the calibration of the rotation speed and the magnetic field of various coils. The control unit 230 of the measurement apparatus 10 according to the present embodiment includes, as a part of the specified parameter, the first angle range from the start angle to the end angle in the first range where the first magnet 112 is provided in the rotation module 100, the first angle range, The second angle range from the start angle to the end angle in the second range in which the two magnets 114 are provided, the first transition angle range in the first transition period from the end angle of the first range to the start angle of the second range, The second transition angle range of the second transition period from the end angle of the two ranges to the start angle of the first range is read as a specified parameter.
 S705において、制御部230は、入力部220を介して計測装置10のユーザまたはオペレータから、今回の計測に用いる計測パラメータを入力して動作設定を行う。これに代えて、計測装置10は、外部のコンピュータ等に予め格納された計測パラメータをネットワークを介して受け取って動作設定を行ってもよい。 In step S <b> 705, the control unit 230 performs operation setting by inputting measurement parameters used for the current measurement from the user or operator of the measurement apparatus 10 via the input unit 220. Instead, the measurement apparatus 10 may receive measurement parameters stored in advance in an external computer or the like via a network and perform operation settings.
 本実施形態に係る制御部230は、計測パラメータの一例として、DNP-MRIモードおよびMRIモードのいずれで計測をするかのモード設定を取得する。また、DNP-MRIモードにおいては、制御部230は、計測対象20に第1磁場を与える期間(以下「ESR期間」と示す。)における回転モジュール100の回転速度を定めるためのESR期間設定と、計測対象20に第2磁場を与える期間(以下「NMR期間」と示す。)における回転モジュール100の回転速度を定めるためのNMR期間設定と、ESR期間およびNMR期間の間の遷移期間における回転モジュール100の回転速度を定めるための遷移期間設定とを取得する。 The control unit 230 according to the present embodiment acquires a mode setting for measuring in either the DNP-MRI mode or the MRI mode as an example of a measurement parameter. In the DNP-MRI mode, the control unit 230 sets an ESR period for determining the rotation speed of the rotation module 100 in a period during which the first magnetic field is applied to the measurement target 20 (hereinafter referred to as “ESR period”); An NMR period setting for determining the rotation speed of the rotation module 100 during a period in which the second magnetic field is applied to the measurement object 20 (hereinafter referred to as “NMR period”), and a rotation module 100 in a transition period between the ESR period and the NMR period. The transition period setting for determining the rotation speed of the is acquired.
 制御部230は、ESR期間、NMR期間、および遷移期間を決定するための計測パラメータを様々な形式で受け取ってよい。例えば、制御部230は、ESR期間の第1回転速度(例えば角速度)、ESR期間からNMR期間へと遷移する第1遷移期間の第2回転速度、NMR期間の第3回転速度、NMR期間からESR期間へと遷移する第2遷移期間の第4回転速度を直接受け取ることができる。 The control unit 230 may receive measurement parameters for determining the ESR period, the NMR period, and the transition period in various formats. For example, the controller 230 may control the first rotation speed (for example, angular speed) during the ESR period, the second rotation speed during the first transition period during which the ESR period transitions to the NMR period, the third rotation speed during the NMR period, and the ESR from the NMR period. The fourth rotational speed of the second transition period that transitions to the period can be directly received.
 これに代えて、制御部230は、計測すべき組成物の種類を計測パラメータとして受け取ることもできる。例えば、制御部230は、計測すべき組成物の種類と、その組成物の場合に必要となるESR期間、NMR期間、第1遷移期間、および第2遷移期間との対応関係を予めテーブルとして格納しておき、指定された組成物の種類に応じて当該テーブルを参照してESR期間、NMR期間、および遷移期間の長さを定めることができる。そして、制御部230は、ESR期間の間に第1角度範囲分を回転させる回転速度を算出してESR期間の第1回転速度とし、第1遷移期間の間に第1遷移角度範囲分を回転させる回転速度を算出して第1遷移期間の第2回転速度とし、NMR期間の間に第2角度範囲分を回転させる回転速度を算出してNMR期間の第3回転速度とし、第2遷移期間の間に第2遷移角度範囲分を回転させる回転速度を算出して第2遷移期間の第4回転速度とする。なお、NMR期間の終了後ESR期間を開始するまでの第2遷移期間については、組成物の種類に応じて決定する必要性は低いので、組成物の種類によらず一定としてもよい。 Alternatively, the control unit 230 can receive the type of composition to be measured as a measurement parameter. For example, the control unit 230 stores in advance a correspondence relationship between the type of composition to be measured and the ESR period, NMR period, first transition period, and second transition period required for the composition as a table. In addition, the length of the ESR period, the NMR period, and the transition period can be determined by referring to the table according to the type of the designated composition. Then, the controller 230 calculates a rotation speed for rotating the first angle range during the ESR period to obtain a first rotation speed for the ESR period, and rotates the first transition angle range during the first transition period. The rotation speed to be calculated is set as the second rotation speed in the first transition period, the rotation speed for rotating the second angular range is calculated during the NMR period, and is set as the third rotation speed in the NMR period, and the second transition period Rotational speed for rotating the second transition angle range during this period is calculated as the fourth rotational speed in the second transition period. Note that the second transition period from the end of the NMR period to the start of the ESR period is less necessary to be determined according to the type of composition, and may be constant regardless of the type of composition.
 更に、制御部230は、計測すべき組成物の種類に応じてESR期間中に静磁場調整部190内の静磁場調整用コイルから発生すべき磁界の大きさを示す計測パラメータを受け取る。ここで制御部230は、計測すべき組成物の種類に応じて静磁場調整用コイルから発生すべき磁界の大きさも、上記のテーブルに予め保持しておき、このテーブルから取得することもできる。 Furthermore, the control unit 230 receives a measurement parameter indicating the magnitude of the magnetic field to be generated from the static magnetic field adjustment coil in the static magnetic field adjustment unit 190 during the ESR period according to the type of composition to be measured. Here, the control unit 230 can also store the magnitude of the magnetic field to be generated from the static magnetic field adjustment coil in advance in the above table according to the type of the composition to be measured, and can acquire the magnitude from this table.
 なお、計測すべき組成物の種類が複数である場合、制御部230は、複数種類の組成物のそれぞれに応じたESR期間設定、NMR期間設定、遷移期間設定、および静磁場調整用コイルが発生すべき磁界の大きさを取得する。 In addition, when there are a plurality of types of compositions to be measured, the control unit 230 generates ESR period settings, NMR period settings, transition period settings, and static magnetic field adjustment coils corresponding to each of the plurality of types of compositions. Get the magnitude of the magnetic field to be used.
 またS705において、計測対象20が非回転ユニット180に設置される。計測装置10が計測対象20のDNP-MRI画像を生成する場合、計測対象20に予め標識試料を導入してもよい。例えば、計測対象20に対し、検出に用いるためのラジカルを導入する。これにより、計測装置10は、生体等を計測対象20とした場合に生体内の酸化還元代謝をリアルタイムで計測し、画像解析をすることができる。 In S705, the measurement target 20 is installed in the non-rotating unit 180. When the measurement apparatus 10 generates a DNP-MRI image of the measurement target 20, a labeled sample may be introduced into the measurement target 20 in advance. For example, a radical to be used for detection is introduced into the measurement target 20. Thereby, the measuring device 10 can measure the redox metabolism in the living body in real time and perform image analysis when the living body or the like is the measurement target 20.
 S710において、制御部230は、DNP-MRIモードおよびMRIモードのいずれが指定されたかを判断する。DNP-MRIモードが指定されていた場合、制御部230は、回転軸部材140を回転させて、回転ユニット110をDNP-MRIモード用の初期位置(計測スタート位置)に配置する。例えば、計測装置10は、ESR用の第1磁石112aが配置される第1範囲が、回転方向において非回転ユニット180の直前となる位置に配置する。 In S710, the control unit 230 determines which one of the DNP-MRI mode and the MRI mode is designated. When the DNP-MRI mode is designated, the control unit 230 rotates the rotating shaft member 140 and arranges the rotating unit 110 at the initial position (measurement start position) for the DNP-MRI mode. For example, the measuring device 10 is disposed at a position where the first range in which the first ESR magnet 112a is disposed is immediately before the non-rotating unit 180 in the rotation direction.
 図8は、S710においてDNP-MRIモードの動作開始前における計測装置10の回転ユニット110aの位置を示す概略図である。本図においては、回転ユニット110a(および回転ユニット110b)が一例として時計回りに回転し、計測対象20を設置した非回転ユニット180が回転ユニット110の図面上側に配置される。この場合、制御部230は、計測対象20の左側に第1範囲111aの右端部が配されるように回転ユニット110の位置を制御する。制御部230は、駆動部170の回転角度センサにより回転ユニットの位置が正しくセットされたことを検出した後、回転ユニット110を一旦停止してよく、これに代えて回転を続けて連続的に次の処理(S715の処理)を行ってもよい。 FIG. 8 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 before the start of the operation in the DNP-MRI mode in S710. In this figure, the rotating unit 110a (and the rotating unit 110b) rotates clockwise as an example, and the non-rotating unit 180 in which the measurement target 20 is installed is arranged on the upper side of the rotating unit 110 in the drawing. In this case, the control unit 230 controls the position of the rotation unit 110 so that the right end portion of the first range 111a is arranged on the left side of the measurement target 20. The control unit 230 may temporarily stop the rotation unit 110 after detecting that the position of the rotation unit is correctly set by the rotation angle sensor of the drive unit 170. The process (the process of S715) may be performed.
 これに対し、MRIモードの場合、制御部230は、処理をS765へと進める。 On the other hand, in the case of the MRI mode, the control unit 230 advances the process to S765.
 次に、S715において、制御部230は、回転軸部材140および回転ユニット110の回転速度を、第1磁石112により発生された第1磁場が計測対象20に与えられている間の第1回転速度に変更する。これにより、制御部230は、ESR用に設定された第1回転速度で回転ユニット110を回転させる。制御部230は、計測対象20が第1範囲111に重なる間、回転ユニット110を第1回転速度で等速回転させてよい。 Next, in S <b> 715, the control unit 230 determines the rotation speeds of the rotation shaft member 140 and the rotation unit 110 as the first rotation speed while the first magnetic field generated by the first magnet 112 is applied to the measurement target 20. Change to Thereby, the control part 230 rotates the rotation unit 110 at the 1st rotation speed set for ESR. The control unit 230 may rotate the rotation unit 110 at a constant rotation speed at the first rotation speed while the measurement target 20 overlaps the first range 111.
 図9は、S715における計測装置10の回転ユニット110aの位置を示す概略図である。例えば、制御部230は、計測対象20が第1範囲111に重なる状態において駆動部170の回転速度を制御して回転ユニット110を第1回転速度で時計回りに回転させる。第1回転速度については後述する。 FIG. 9 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S715. For example, the control unit 230 controls the rotation speed of the drive unit 170 in a state where the measurement target 20 overlaps the first range 111 to rotate the rotation unit 110 clockwise at the first rotation speed. The first rotation speed will be described later.
 S715と同時またはS715と前後して、S720において、制御部230は、静磁場調整部190を制御して、静磁場調整用コイルからS705において定められた磁界を発生させることにより、ESR期間における第1磁場の強度を変更する。これにより、制御部230は、計測すべき組成物(例えばラジカル種)に応じて静磁場の強度を変化させて、そのラジカル種に応じた共鳴点を設定し、その結果として計測対象20に含まれるラジカル種を特定可能とすることができる。 At the same time as S715 or before and after S715, in S720, the control unit 230 controls the static magnetic field adjustment unit 190 to generate the magnetic field determined in S705 from the static magnetic field adjustment coil. 1 Change the strength of the magnetic field. Thereby, the control unit 230 changes the strength of the static magnetic field according to the composition to be measured (for example, radical species), sets the resonance point according to the radical species, and is included in the measurement target 20 as a result. The radical species to be identified can be specified.
 複数種類の組成物を計測する場合において、制御部230は、今回のNMR計測(S745)において計測すべき組成物に応じて静磁場調整用コイルから発生させる磁場の強度を変える。これにより、制御部230は、S715~S755までの繰り返しに伴って、静磁場調整用コイルから発生させる磁場の強度を変えながら、第1磁場を複数回計測対象20に与えることができる。 In the case of measuring a plurality of types of compositions, the control unit 230 changes the strength of the magnetic field generated from the static magnetic field adjustment coil according to the composition to be measured in the current NMR measurement (S745). Accordingly, the control unit 230 can apply the first magnetic field to the measurement target 20 a plurality of times while changing the intensity of the magnetic field generated from the static magnetic field adjustment coil as the processes from S715 to S755 are repeated.
 S715およびS720に伴って、S725において、計測装置10は、計測対象20の電子スピン共鳴(ESR)を生じさせる。例えば、制御部230は、計測対象20が第1範囲111に重なっているESR期間において、コイル部184のESR用コイル部から計測対象20に所定の電磁波を照射し、計測対象20に動的核偏極(DNP)を惹起させる。一例として、第1磁石112等の第1磁場が0.005Tである場合、制御部230は、ESR用コイル部から組成物の種類に応じて130~150MHzの電磁波を照射する。ここで、制御部230は、計測対象20が第1磁場を通過する間の期間の一部でコイル部184の発振を中止して、S25におけるESR惹起の時間を調整してもよい。 Along with S715 and S720, in S725, the measurement apparatus 10 causes electron spin resonance (ESR) of the measurement target 20. For example, in the ESR period in which the measurement target 20 overlaps the first range 111, the control unit 230 irradiates the measurement target 20 with a predetermined electromagnetic wave from the coil portion for ESR of the coil unit 184, and the measurement target 20 is subjected to dynamic nucleus. Causes polarization (DNP). As an example, when the first magnetic field of the first magnet 112 or the like is 0.005 T, the control unit 230 emits an electromagnetic wave of 130 to 150 MHz from the ESR coil unit depending on the type of the composition. Here, the control unit 230 may stop the oscillation of the coil unit 184 during a part of the period during which the measurement target 20 passes through the first magnetic field, and adjust the ESR induction time in S25.
 制御部230は、第1遷移期間となり計測対象20が第1範囲111と重ならなくなると処理をS730に進める。例えば、制御部230は、駆動部170の回転角度センサにより計測対象20が第1範囲111と重ならなくなったことを検出した後、処理をS730に進めてよい。 The control unit 230 advances the process to S730 when the measurement target 20 does not overlap the first range 111 in the first transition period. For example, the control unit 230 may advance the process to S730 after detecting that the measurement target 20 does not overlap the first range 111 by the rotation angle sensor of the drive unit 170.
 S730において、計測装置10は、回転ユニット110の回転速度を、第1磁石112が計測対象20と相対しなくなってから第2磁石114が計測対象20と相対するまでの第1遷移期間(すなわち、計測対象20に与える磁場が第1磁場から第2磁場に切り替わる間)に対して決定された第2回転速度に変更する。これにより、制御部230は、第1遷移期間用に設定された第2回転速度で回転ユニット110を回転させる。第2回転速度については後述する。 In S730, the measurement apparatus 10 determines the rotation speed of the rotation unit 110 during the first transition period (that is, until the second magnet 114 faces the measurement target 20 after the first magnet 112 does not face the measurement target 20 (that is, The magnetic field applied to the measurement target 20 is changed to the second rotation speed determined with respect to the first magnetic field to the second magnetic field. Thereby, the control unit 230 rotates the rotation unit 110 at the second rotation speed set for the first transition period. The second rotation speed will be described later.
 図10は、S730における計測装置10の回転ユニット110aの位置を示す概略図である。例えば、制御部230は、計測対象20が第1範囲111aに重なる状態から抜けた後、第2範囲113aに重なるまでの間、駆動部170等を制御して回転ユニット110を第2回転速度で時計回りに回転させる。例えば、制御部230は、駆動部170の回転角度センサにより計測対象20が第2範囲113aと重なり始めたことを検出するまでの間、回転ユニット110を第2回転速度で回転させてよい。 FIG. 10 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S730. For example, the control unit 230 controls the drive unit 170 and the like at the second rotation speed until the measurement target 20 is removed from the state where it overlaps the first range 111a and until it overlaps the second range 113a. Rotate clockwise. For example, the control unit 230 may rotate the rotation unit 110 at the second rotation speed until the rotation angle sensor of the drive unit 170 detects that the measurement target 20 starts to overlap the second range 113a.
 S730と同時または前後して、S735において、制御部230は、傾斜磁場発生部188の静磁場調整用コイルからの磁場の発生を停止することによって、静磁場変更を停止する。 At or before or after S730, in S735, the control unit 230 stops the static magnetic field change by stopping the generation of the magnetic field from the static magnetic field adjusting coil of the gradient magnetic field generating unit 188.
 次に、S740において、計測装置10は、回転ユニット110の回転速度を、第2磁石114により発生された第2磁場が計測対象20に与えられているNMR期間の第3回転速度に変更する。これにより、制御部230は、NMR用に設定された第3回転速度で回転ユニット110を回転させる。制御部230は、計測対象20が第2範囲113に重なる間、回転ユニット110を第3回転速度で等速回転させてよい。第3回転速度については後述する。 Next, in S740, the measurement apparatus 10 changes the rotation speed of the rotation unit 110 to the third rotation speed in the NMR period in which the second magnetic field generated by the second magnet 114 is applied to the measurement target 20. Thereby, the control part 230 rotates the rotation unit 110 at the 3rd rotation speed set for NMR. The control unit 230 may rotate the rotation unit 110 at a third rotation speed at a constant speed while the measurement target 20 overlaps the second range 113. The third rotation speed will be described later.
 図11は、S740における計測装置10の回転ユニット110aの位置を示す概略図である。例えば、制御部230は、計測対象20が第2範囲113aに重なり始めるとき、駆動部170等を制御して回転ユニット110を第3回転速度で時計回りに回転させる。一例として、制御部230は、駆動部170の回転角度センサにより計測対象20が第2範囲113aと重なり始めたことを検出した後、S740の処理を開始してよい。 FIG. 11 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S740. For example, when the measurement target 20 starts to overlap the second range 113a, the control unit 230 controls the drive unit 170 and the like to rotate the rotation unit 110 clockwise at the third rotation speed. As an example, the control unit 230 may start the process of S740 after detecting that the measurement target 20 starts to overlap the second range 113a by the rotation angle sensor of the driving unit 170.
 S740に伴って、S745において、計測装置10は、計測対象20の核磁気共鳴を生じさせる。例えば、制御部230は、計測対象20が第2範囲113に重なっている間に、傾斜磁場発生部188から所定の傾斜磁場を生成し、コイル部184のRFコイルから計測対象20に所定の電磁波を照射し、計測対象20にNMRを生じさせる。一例として、第2磁石114等の第2磁場が0.3Tである場合、制御部230は、RFコイルから約13MHzの電磁波を照射してよい。 Along with S740, in S745, the measurement apparatus 10 causes nuclear magnetic resonance of the measurement target 20. For example, the control unit 230 generates a predetermined gradient magnetic field from the gradient magnetic field generation unit 188 while the measurement target 20 overlaps the second range 113, and generates a predetermined electromagnetic wave from the RF coil of the coil unit 184 to the measurement target 20. To cause the measurement object 20 to generate NMR. As an example, when the second magnetic field of the second magnet 114 or the like is 0.3 T, the control unit 230 may irradiate an electromagnetic wave of about 13 MHz from the RF coil.
 計測部200は計測対象20からのNMR信号をコイル部184のRFコイルにより受信し、制御部230に供給する。制御部230は、NMR信号に基づいて計測対象20のMRI画像を生成していく。これにより、制御部230は、計測対象20に複数回第1磁場を与えるのに伴い、第1磁場を与えた後に毎回第2磁場を計測対象20に与えて計測対象20を計測することができる。ここで、計測対象20の原子核スピンにはS725におけるESRの惹起により動的核偏極が惹起されている。この結果、制御部230は、動的核偏極が惹起された原子核スピンからの共鳴信号を含むMRI画像(DNP-MRI画像)を生成していくことができる。 The measurement unit 200 receives the NMR signal from the measurement target 20 by the RF coil of the coil unit 184 and supplies it to the control unit 230. The control unit 230 generates an MRI image of the measurement target 20 based on the NMR signal. Thereby, the control part 230 can measure the measuring object 20 by giving a 2nd magnetic field to the measuring object 20 every time after giving a 1st magnetic field in connection with giving a 1st magnetic field to the measuring object 20 in multiple times. . Here, dynamic nuclear polarization is induced in the nuclear spin of the measurement target 20 by the induction of ESR in S725. As a result, the control unit 230 can generate an MRI image (DNP-MRI image) including a resonance signal from a nuclear spin in which dynamic nuclear polarization has been induced.
 DNP-MRI画像には、不対電子の電子スピンの分布情報が含まれる。従って、制御部230は、DNP-MRI画像において、計測対象20の不対電子を含むフリーラジカルの分布を示すことができる。なお、制御部230は、S725におけるESR用コイル部からの電磁波照射を省略することにより、ESRからのエネルギー遷移を伴わない、計測対象20の水分子分布等を示すDNPを伴わないMRI画像を生成することもできる。また、制御部230は、DNP-MRI画像からDNPを伴わないMRI画像の差分をとった画像を生成することで計測対象20の不対電子を含むフリーラジカルの分布をより強調した画像を生成してもよい。 The DNP-MRI image includes distribution information of electron spins of unpaired electrons. Therefore, the control unit 230 can indicate the distribution of free radicals including unpaired electrons of the measurement target 20 in the DNP-MRI image. The control unit 230 generates an MRI image that does not involve the energy transition from the ESR and does not involve the DNP indicating the water molecule distribution of the measurement target 20 by omitting the electromagnetic wave irradiation from the ESR coil unit in S725. You can also Further, the control unit 230 generates an image in which the distribution of free radicals including unpaired electrons in the measurement target 20 is further emphasized by generating an image obtained by taking the difference between the MRI image not accompanied by DNP from the DNP-MRI image. May be.
 計測対象20が第2範囲113と重なる間、複数のスライスのMRI画像を生成してよい。例えば、制御部230は、第2範囲113において第2磁石114が計測対象20と1回相対する間に、計測対象20に与える電磁波の傾斜磁場を切り換えながら計測部200に複数(例えば、2~10回)の計測を行わせ、計測結果に基づいて複数のMRI画像を生成してよい。制御部230は、複数のスライスのMRI画像を生成することにより、効率よく計測対象20のMRI画像を生成していくことができる。 While the measurement target 20 overlaps the second range 113, MRI images of a plurality of slices may be generated. For example, the control unit 230 switches a plurality (for example, 2 to 2) of the measurement unit 200 while switching the gradient magnetic field of the electromagnetic wave applied to the measurement target 20 while the second magnet 114 is once opposed to the measurement target 20 in the second range 113. 10 times) and a plurality of MRI images may be generated based on the measurement result. The controller 230 can efficiently generate an MRI image of the measurement target 20 by generating an MRI image of a plurality of slices.
 次に、S750において、計測装置10は、回転ユニット110の回転速度を、第2磁石114が計測対象20と相対しなくなってから第1磁石112が計測対象20と相対するまでの第2遷移期間(すなわち、計測対象20に与える磁場が第2磁場から第1磁場に切り替わる間)に対する第4回転速度に設定する。これにより、制御部230は、第2遷移期間用に設定された第4回転速度で回転ユニット110を回転させる。第4回転速度については後述する。 Next, in S <b> 750, the measurement apparatus 10 determines the rotation speed of the rotation unit 110 during the second transition period from when the second magnet 114 is no longer opposed to the measurement target 20 to when the first magnet 112 is opposite the measurement target 20. That is, it is set to the fourth rotation speed with respect to (while the magnetic field applied to the measurement target 20 is switched from the second magnetic field to the first magnetic field). Thereby, the control unit 230 rotates the rotation unit 110 at the fourth rotation speed set for the second transition period. The fourth rotation speed will be described later.
 図12は、S750における計測装置10の回転ユニット110aの位置を示す概略図である。例えば、制御部230は、計測対象20が第2範囲113aに重なる状態から外れた後、第1範囲111aに重なるまでの間、駆動部170等を制御して回転ユニット110を第4回転速度で時計回りに回転させる。一例として、制御部230は、駆動部170の回転角度センサにより計測対象20が第1範囲111aと重なることを検出するまでの間、回転ユニット110を第4回転速度で回転させてよい。 FIG. 12 is a schematic diagram showing the position of the rotating unit 110a of the measuring apparatus 10 in S750. For example, the control unit 230 controls the drive unit 170 and the like at the fourth rotation speed until the measurement target 20 is out of the state where it overlaps the second range 113a and until it overlaps the first range 111a. Rotate clockwise. As an example, the control unit 230 may rotate the rotation unit 110 at the fourth rotation speed until the rotation angle sensor of the drive unit 170 detects that the measurement target 20 overlaps the first range 111a.
 次に、S755において、制御部230は、計測対象20の計測を終了するか判断する。例えば、制御部230は、計測すべき組成物の各種類について予め定められた枚数のMRI画像を生成したか、計測対象20の予め定められた領域の計測が終了したか、計測を開始してから予め定められた時間が経過したか、等の予め設定された終了条件が成立したかどうかを判断する。 Next, in S755, the control unit 230 determines whether or not the measurement of the measurement target 20 is to be terminated. For example, the control unit 230 generates a predetermined number of MRI images for each type of composition to be measured, or starts measuring whether a predetermined region of the measurement target 20 has been measured. It is determined whether a predetermined end condition such as whether a predetermined time has elapsed or not is satisfied.
 制御部230は、計測を終了しないと判断する場合は、処理をS715へと戻してS715~S750の処理を繰り返す。制御部230は、計測対象20が第1範囲111に再び重なる状態からS715の処理を開始する。ここで、計測すべき組成物が複数種類ある場合には、制御部230は、次の組成物を計測すべく当該組成物に対応づけられた第1~4回転速度および静磁場の強度を用いてS715~S750の処理を行う。また、制御部230は、計測対象20の複数スライスのMRI画像を生成するために、S745で計測対象20に与える傾斜磁場を変えてS715~S750の処理を行う。 When the control unit 230 determines that the measurement is not finished, the control unit 230 returns the process to S715 and repeats the processes of S715 to S750. The control unit 230 starts the process of S715 from the state in which the measurement target 20 overlaps the first range 111 again. Here, when there are a plurality of types of compositions to be measured, the control unit 230 uses the first to fourth rotational speeds and the static magnetic field strengths associated with the compositions to measure the next composition. Then, the processing of S715 to S750 is performed. In addition, the control unit 230 performs the processes of S715 to S750 by changing the gradient magnetic field applied to the measurement target 20 in S745 in order to generate an MRI image of a plurality of slices of the measurement target 20.
 計測を終了する場合、制御部230は、回転ユニット110の回転を速やかに停止させる。ここで制御部230は、駆動部170を制御して、第2磁石114を予め設定された位置へと移動させてよい。例えば、制御部230は、回転ユニット110の第1磁石112および第2磁石114が、計測対象20側から離れた位置となる状態で回転を停止してよい。特に計測対象20または作業者から磁力の強い第2磁石114を最も離して回転を停止させることで、計測対象20等の安全を確保することができる。 When the measurement is finished, the control unit 230 quickly stops the rotation of the rotation unit 110. Here, the control unit 230 may control the driving unit 170 to move the second magnet 114 to a preset position. For example, the control unit 230 may stop the rotation in a state where the first magnet 112 and the second magnet 114 of the rotation unit 110 are located away from the measurement target 20 side. In particular, the safety of the measurement target 20 or the like can be ensured by stopping the rotation by separating the second magnet 114 having the strong magnetic force most away from the measurement target 20 or the operator.
 S755において計測を終了させると、制御部230は、S760において、計測の結果生成されたMRI画像を表示部240へと表示させる。制御部230は、入力部220を介してユーザまたはオペレータの操作を受け取り、操作に応じてMRI画像の拡大・縮小、コマ送り、スライス方向の変更、および、画像フィルタ処理等の各種の表示処理を行う。また、制御部230は、生成されたMRI画像を内部またはネットワークを介した記憶装置に格納する。 When the measurement ends in S755, the control unit 230 causes the display unit 240 to display the MRI image generated as a result of the measurement in S760. The control unit 230 receives the operation of the user or operator via the input unit 220, and performs various display processes such as enlargement / reduction of the MRI image, frame advance, change of the slice direction, and image filter processing according to the operation. Do. In addition, the control unit 230 stores the generated MRI image in a storage device internally or via a network.
 S710においてMRIモードが指定されていたと判断した場合、制御部230は、処理をS765に進める。S765において、制御部230は、第2磁石114a~bが計測対象20に相対するように回転モジュール100を回転させる。そして、制御部230は、計測対象20に第2磁場を与えた状態で、回転モジュール100の回転を停止させる。例えば、制御部230は、駆動部170の回転角度センサにより計測対象20が第2範囲113aに重なることを検出した状態で、回転モジュール100の回転を停止してよい。 If it is determined in S710 that the MRI mode has been designated, the control unit 230 advances the process to S765. In S765, the control unit 230 rotates the rotation module 100 so that the second magnets 114a and 114b are opposed to the measurement target 20. And the control part 230 stops rotation of the rotation module 100 in the state which provided the 2nd magnetic field to the measuring object 20. FIG. For example, the control unit 230 may stop the rotation of the rotation module 100 in a state where the rotation angle sensor of the drive unit 170 detects that the measurement target 20 overlaps the second range 113a.
 S770において、制御部230は、傾斜磁場を変えながら、計測対象20の複数スライスについてのNMR信号を収集し、MRI画像を生成していく。すなわち、制御部230は、計測箇所に応じた傾斜磁場を生成し、コイル部184から計測対象20に所定の電磁波を照射して計測対象20にNMRを生じさせる。次に、制御部230は、コイル部184のRFコイルからのNMR信号を計測部200を介して受け取り、NMR信号に基づいて計測対象20のMRI画像を生成していく。制御部230は、回転モジュール100の回転を停止させて計測対象20が第2磁場内にある状態でこの処理を繰り返して、MRI画像を生成する。MRI画像を生成し終えると、制御部230は、処理をS760へと進める。 In S770, the control unit 230 collects NMR signals for a plurality of slices of the measurement target 20 while changing the gradient magnetic field, and generates an MRI image. That is, the control unit 230 generates a gradient magnetic field corresponding to the measurement location, and irradiates the measurement target 20 with a predetermined electromagnetic wave from the coil unit 184 to cause NMR in the measurement target 20. Next, the control unit 230 receives the NMR signal from the RF coil of the coil unit 184 via the measurement unit 200 and generates an MRI image of the measurement target 20 based on the NMR signal. The control unit 230 stops the rotation of the rotation module 100 and repeats this process in a state where the measurement target 20 is in the second magnetic field, thereby generating an MRI image. When the generation of the MRI image is completed, the control unit 230 advances the process to S760.
 ここで、以上に示した処理フロー中における、制御部230による回転軸部材140の回転速度の制御について説明を加える。以上に示したように、制御部230は、第1~4回転速度の少なくとも1つを他と異なるように制御する。これにより、制御部230は、回転ユニット110が回転軸部材140を中心に1回転する間に、計測対象20と回転ユニット110の位置関係に応じて回転速度(すなわち、角速度)を変化させることにより、計測すべき組成物の種類や測定時間の制約に合わせて、計測対象20の最適な計測を実現することができる。 Here, the control of the rotational speed of the rotating shaft member 140 by the control unit 230 in the processing flow described above will be described. As described above, the control unit 230 controls at least one of the first to fourth rotational speeds to be different from the others. Accordingly, the control unit 230 changes the rotation speed (that is, the angular speed) according to the positional relationship between the measurement target 20 and the rotation unit 110 while the rotation unit 110 makes one rotation around the rotation shaft member 140. The measurement of the measurement target 20 can be realized in accordance with the type of composition to be measured and the restrictions on the measurement time.
 例えば、制御部230は、MRI処理時の第3回転速度を、ESR処理時の第1回転速度よりも低くしてよい。これにより、制御部230は、MRI処理時の磁場変動によるノイズを低減し、かつ、計測対象20が第2磁場にある時間を延長することでより多数のスライスの計測を安定的に行うことができる。 For example, the control unit 230 may make the third rotation speed during the MRI process lower than the first rotation speed during the ESR process. Thereby, the control unit 230 can stably measure a larger number of slices by reducing the noise due to the magnetic field fluctuation during the MRI process and extending the time during which the measurement target 20 is in the second magnetic field. it can.
 また、例えば、制御部230は、遷移期間の少なくとも一部において、計測対象20に第1磁石112が相対する期間または第2磁石114が相対する期間と比較して回転軸の回転速度を高めてよい。一例として、制御部230は、遷移期間の少なくとも一部において、第2回転速度および/または第4回転速度を第1回転速度および/または第3回転速度に対して高めてよい。制御部230は、遷移期間が0.3秒以下となるように第2回転速度および第4回転速度を制御してよい。 Further, for example, the control unit 230 increases the rotation speed of the rotating shaft in at least a part of the transition period as compared with the period in which the first magnet 112 is opposed to the measurement target 20 or the period in which the second magnet 114 is opposed. Good. As an example, the controller 230 may increase the second rotation speed and / or the fourth rotation speed with respect to the first rotation speed and / or the third rotation speed in at least a part of the transition period. The controller 230 may control the second rotation speed and the fourth rotation speed so that the transition period is 0.3 seconds or less.
 これにより制御部230は、回転モジュール100の回転をESR用の第1範囲111からNMR用の第2範囲113に素早く進め、および/または、回転モジュール100の回転をMRI用の第2範囲113からESR用の第1範囲111に素早く進めることができる。このため、計測装置10は、例えば、ESRにより計測対象20の電子スピン励起後、緩和時間が経過する前にNMRの計測を開始することができる。 Accordingly, the control unit 230 quickly advances the rotation of the rotation module 100 from the first range 111 for ESR to the second range 113 for NMR, and / or the rotation of the rotation module 100 from the second range 113 for MRI. It is possible to quickly advance to the first range 111 for ESR. For this reason, the measuring apparatus 10 can start NMR measurement before the relaxation time elapses after the electron spin excitation of the measurement target 20 by ESR, for example.
 また、制御部230は、第1磁石112(または第2磁石114)が計測対象20と相対しない状態から第2磁石114(または第1磁石112)が計測対象20と相対するまでの予め定められた期間の範囲内における回転軸部材140の回転速度である第2回転速度および第4回転速度を、第1回転速度および第3回転速度によらず予め定められた上限値以下に制限してよい。 In addition, the control unit 230 is predetermined from a state in which the first magnet 112 (or the second magnet 114) is not opposed to the measurement target 20 until the second magnet 114 (or the first magnet 112) is opposed to the measurement target 20. The second rotation speed and the fourth rotation speed, which are the rotation speeds of the rotary shaft member 140 within the range of the predetermined period, may be limited to a predetermined upper limit value or less regardless of the first rotation speed and the third rotation speed. .
 一例として、制御部230は、第3回転速度<第1回転速度<第2回転速度,第4回転速度、第1回転速度<第3回転速度<第2回転速度,第4回転速度、または、第1回転速度=第3回転速度<第2回転速度,第4回転速度となるように各回転速度を設定してよい。一例として、第1~4回転速度は、ESR惹起からNMR計測までの目標時間、およびNMRの緩和時間等に合わせて0.5~0.12RPS等に設定される。 As an example, the controller 230 may be configured such that the third rotational speed <the first rotational speed <the second rotational speed, the fourth rotational speed, the first rotational speed <the third rotational speed <the second rotational speed, the fourth rotational speed, or Each rotation speed may be set so that the first rotation speed = the third rotation speed <the second rotation speed and the fourth rotation speed. As an example, the first to fourth rotation speeds are set to 0.5 to 0.12 RPS or the like in accordance with the target time from ESR initiation to NMR measurement, the NMR relaxation time, and the like.
 制御部230は、計測すべき組成物の種類に応じて、ESR用の第1回転速度および/またはMRI用の第3回転速度を設定してよい。すなわち、計測対象20に含まれる組成物中のフリーラジカル種の種類により不対電子の電子スピン分布の性質が異なる。従って、制御部230は、計測対象20の組成物の種類に応じて第1回転速度および/または第3回転速度を制御することで、適切な時間ESRおよび/またはNMRを生じさせることができる。 The control unit 230 may set the first rotation speed for ESR and / or the third rotation speed for MRI according to the type of composition to be measured. That is, the nature of the electron spin distribution of unpaired electrons varies depending on the type of free radical species in the composition included in the measurement target 20. Therefore, the control unit 230 can generate an appropriate time ESR and / or NMR by controlling the first rotation speed and / or the third rotation speed according to the type of the composition of the measurement target 20.
 また、制御部230は、計測対象20の種類に応じて第1回転速度および/または第3回転速度を設定してよい。例えば、制御部230は、計測対象20の大きさ、素材、生物の種別、および/または、臓器の種別等に応じて第1回転速度および/または第3回転速度を設定する。 Further, the control unit 230 may set the first rotation speed and / or the third rotation speed according to the type of the measurement target 20. For example, the control unit 230 sets the first rotation speed and / or the third rotation speed according to the size of the measurement target 20, the material, the type of living organism, and / or the type of organ.
 また、制御部230は、処理の途中で回転ユニット110の回転を適宜停止させてよい。例えば、制御部230は、S210のNMR計測中に回転を一時的に中止してもよい。この場合、第3回転速度は0となる。これに加えて/代えて、制御部230は、処理の途中で回転ユニット110の回転を適宜回転と停止を適宜繰り返してもよい。例えば、制御部230は、S210のNMR計測中に回転の停止(第3a回転速度=0)と回転の再開(第3b回転速度>0)を繰り返すことにより、少しずつ回転位置を変えながら複数のスライスのNMR計測を行ってよい。 Further, the control unit 230 may appropriately stop the rotation of the rotation unit 110 during the process. For example, the control unit 230 may temporarily stop the rotation during the NMR measurement in S210. In this case, the third rotation speed is zero. In addition / instead of this, the control unit 230 may appropriately rotate and stop the rotation of the rotation unit 110 as appropriate during the process. For example, the control unit 230 repeats the rotation stop (3a rotation speed = 0) and the rotation restart (3b rotation speed> 0) during the NMR measurement in S210, thereby changing the rotation position little by little. NMR measurements of slices may be performed.
 このように計測装置10によると、制御部230が駆動部170を制御することにより、回転ユニット110の回転速度を制御する。これにより、計測装置10によると、計測対象20にESRおよびNMRをそれぞれ生じさせる時間、ESR惹起からNMR計測への遷移時間、および、NMR計測から再びESR惹起に遷移する時間を制御することができる。これにより、例えば、計測装置10によるとDNPによるNMR惹起の減殺を抑えてNMR計測をすることができ、NMR計測において所望の数のスライスの計測をすることができる。従って、計測装置10によると、計測装置10の計測精度及計測効率を向上させることができる。 As described above, according to the measuring apparatus 10, the control unit 230 controls the drive unit 170, thereby controlling the rotation speed of the rotation unit 110. Thereby, according to the measuring apparatus 10, it is possible to control the time for generating ESR and NMR in the measurement object 20, the transition time from ESR initiation to NMR measurement, and the time for transition from NMR measurement to ESR initiation again. . Thereby, for example, according to the measurement apparatus 10, NMR measurement can be performed while suppressing the loss of NMR induced by DNP, and a desired number of slices can be measured in the NMR measurement. Therefore, according to the measurement device 10, the measurement accuracy and measurement efficiency of the measurement device 10 can be improved.
 図13は、図7の処理フロー実行時の制御部230による回転速度の制御の一例を示す。例えば、制御部230は、まず1回転目で回転ユニット110を静止状態(回転速度0)から第1回転速度で回転させ、S725でESRを実行する。次に、制御部230は、回転速度を第1回転速度よりも高速な第2回転速度に上げ、計測対象20がESR用の第1範囲111からNMR用の第2範囲113へと位置するように遷移させる(S730)。次に、制御部230は、第1回転速度よりも低速な第3回転速度に減速させ、S745でNMR計測を実行する。次に、制御部230は、回転速度を第1回転速度および第3回転速度よりも高速な第4回転速度に上げ、計測対象20がMRI用の第2範囲113からESR用の第1範囲111へと位置するように遷移させる(S750)。 FIG. 13 shows an example of rotation speed control by the control unit 230 when the processing flow of FIG. 7 is executed. For example, the control unit 230 first rotates the rotation unit 110 from the stationary state (rotation speed 0) at the first rotation speed in the first rotation, and executes ESR in S725. Next, the control unit 230 increases the rotation speed to a second rotation speed higher than the first rotation speed so that the measurement target 20 is positioned from the first range 111 for ESR to the second range 113 for NMR. (S730). Next, the control unit 230 decelerates to a third rotation speed that is lower than the first rotation speed, and executes NMR measurement in S745. Next, the control unit 230 increases the rotation speed to a fourth rotation speed higher than the first rotation speed and the third rotation speed, and the measurement target 20 changes from the second range 113 for MRI to the first range 111 for ESR. (S750).
 また、図13では、制御部230が回転ユニット110を予め定められた範囲において等速回転および等角加速度回転させる例を示した。すなわち、本例では、回転ユニット110は、離散的に角加速度を変化させて第1~第4回転速度を実現したが、制御部230は回転ユニット110に連続的な角加速度を与えて、第1~第4回転速度を各期間内で変化させてよい。これにより、計測装置10は、より滑らかな回転速度の変化を回転ユニット110に与え、急な回転速度変化による磁場の歪みを低減することができる。また、回転モジュール100における第1遷移角度範囲および第2遷移角度範囲が小さい場合には、本図のように遷移期間中の第2、4回転速度をESR期間およびNMR期間中の第1、3回転速度よりも高くするのではなく、第1回転速度および第3回転速度の間で線形的またはなめらかに回転速度を変化させてもよい。 FIG. 13 shows an example in which the control unit 230 rotates the rotating unit 110 at a constant speed and a constant angular acceleration within a predetermined range. That is, in this example, the rotation unit 110 discretely changes the angular acceleration to achieve the first to fourth rotation speeds, but the control unit 230 gives the rotation unit 110 continuous angular acceleration, The first to fourth rotation speeds may be changed within each period. Thereby, the measuring apparatus 10 can give a smoother change in the rotation speed to the rotation unit 110, and can reduce the distortion of the magnetic field due to a sudden change in the rotation speed. When the first transition angle range and the second transition angle range in the rotation module 100 are small, the second and fourth rotation speeds in the transition period are set to the first, third and third rotation speeds in the ESR period and the NMR period as shown in FIG. The rotational speed may be changed linearly or smoothly between the first rotational speed and the third rotational speed instead of being higher than the rotational speed.
 このように、計測装置10は、制御部230により、回転ユニット110が搭載する磁石の特性、および、計測対象20の種類(例えば、計測対象20に含まれるラジカルの種類および/または組成物に応じた緩和時間等)に応じて、回転速度を適宜調整することができる。 As described above, the measurement device 10 causes the control unit 230 to respond to the characteristics of the magnet mounted on the rotation unit 110 and the type of the measurement target 20 (for example, the type and / or composition of the radical included in the measurement target 20). The rotation speed can be appropriately adjusted according to the relaxation time.
 図14は、本実施形態の変形例に係る計測装置30を示す。本変形例において回転軸部材340は、略水平方向に設けられてよい。回転モジュール300は、回転軸AXを構成する回転軸部材340と共に回転する一対の回転ユニット310aおよび回転ユニット310b(以下、適宜「回転ユニット310」と総称する。)を有する。回転ユニット310は、回転ユニット110と同様にESR用の第1磁石が内部に配置される第1範囲312、および、NMR用の第2磁石が内部に配置される第2範囲314を有する。 FIG. 14 shows a measuring apparatus 30 according to a modification of the present embodiment. In this modification, the rotating shaft member 340 may be provided in a substantially horizontal direction. The rotation module 300 includes a pair of rotation units 310a and a rotation unit 310b (hereinafter, collectively referred to as “rotation unit 310” as appropriate) that rotate together with the rotation shaft member 340 constituting the rotation axis AX. Similar to the rotation unit 110, the rotation unit 310 has a first range 312 in which the first magnet for ESR is arranged, and a second range 314 in which the second magnet for NMR is arranged.
 本変形例において、非回転ユニット380は、回転軸AXよりも上側に設けられてよい。例えば、図示するように非回転ユニット380を、回転軸AXの上側に、主面が回転軸AXと平行になるように配置し、この上に計測対象20を配置してよい。これに代えて、非回転ユニット380は、回転軸AXの横側に設けられてもよい。例えば、非回転ユニット380は、回転軸AXの手前側に、主面が回転軸AXと平行になるように置かれてよい。 In this modification, the non-rotating unit 380 may be provided above the rotation axis AX. For example, as shown in the drawing, the non-rotating unit 380 may be arranged above the rotation axis AX so that the main surface is parallel to the rotation axis AX, and the measurement object 20 may be arranged thereon. Instead, the non-rotating unit 380 may be provided on the side of the rotation axis AX. For example, the non-rotating unit 380 may be placed on the front side of the rotation axis AX so that the main surface is parallel to the rotation axis AX.
 非回転ユニット380における計測対象20の設置面は、例えば、測定が行われる建物/部屋の床と一体となるように設けられてよい。これにより、計測装置30は、回転軸部材340を含む駆動部分を床下に収納し、計測対象20を床の上または床の上の検査台等に設置して測定することができる。 The installation surface of the measurement target 20 in the non-rotating unit 380 may be provided so as to be integrated with, for example, the floor of a building / room where measurement is performed. Thereby, the measuring device 30 can store the drive part including the rotating shaft member 340 under the floor, and can set the measurement object 20 on the floor or on the inspection table on the floor to measure.
 本変形例に係る計測装置30は、非回転ユニット380の設置面下に一対の回転ユニット310に回転可能に接続されたローラ350を備えてよい。ローラ350は、回転軸部材140の回転に代えて/加えて回転ユニット310に回転力を付与することができる。計測装置30は、回転ユニット310のそれぞれに対して、2以上のローラを設けてもよい。 The measuring device 30 according to the present modification may include a roller 350 that is rotatably connected to the pair of rotating units 310 below the installation surface of the non-rotating unit 380. The roller 350 can apply a rotational force to the rotation unit 310 instead of / in addition to the rotation of the rotation shaft member 140. The measuring device 30 may provide two or more rollers for each of the rotation units 310.
 本変形例によると、計測対象20の上部に回転する回転ユニット110aが配置されることがないので、計測対象20の計測時の圧迫感を軽減し、計測装置30の安全性を更に向上させることができる。 According to this modification, since the rotating unit 110a that rotates above the measurement target 20 is not disposed, the feeling of pressure during measurement of the measurement target 20 is reduced, and the safety of the measurement device 30 is further improved. Can do.
 本実施形態の計測装置10および変形例の計測装置30(以下、「計測装置10等」と総称する。)は、更にヒーターを備えてよい。例えば、制御部230はヒーターを制御して回転ユニット110および回転ユニット310(以下、「回転ユニット110等」と総称する。)の内部の各磁石の温度を制御する。これにより、計測装置10等は、各磁石による静磁場の強さを微調整することができる。 The measurement device 10 of the present embodiment and the measurement device 30 of the modification (hereinafter collectively referred to as “measurement device 10 etc.”) may further include a heater. For example, the control unit 230 controls the temperature of each magnet inside the rotation unit 110 and the rotation unit 310 (hereinafter collectively referred to as “the rotation unit 110 etc.”) by controlling the heater. Thereby, the measuring apparatus 10 etc. can finely adjust the strength of the static magnetic field by each magnet.
 また、計測装置10等は、複数の非回転ユニット180を有してもよい。例えば、計測装置10等は、複数セットのコイル部184、および、傾斜磁場発生部188等を有し、これらを回転軸AX等に対して異なる位置に配置してよい。これにより、計測装置10等は、複数の計測対象20を同時に計測することができ、計測の効率を向上させることができる。 Further, the measuring device 10 or the like may have a plurality of non-rotating units 180. For example, the measurement apparatus 10 or the like may include a plurality of sets of coil units 184, a gradient magnetic field generation unit 188, and the like, which may be arranged at different positions with respect to the rotation axis AX and the like. Thereby, the measuring device 10 or the like can simultaneously measure a plurality of measurement objects 20 and can improve the measurement efficiency.
 また、これに加えて/これに代えて、計測装置10等は、回転ユニット110等において各種類の磁石を複数有してもよい。例えば、回転ユニット110等は、1対のESR用の磁石およびMRI用の磁石のセットを複数有し、または、ESR用の磁石およびMRI用の磁石の一方を複数有してもよい。これにより、計測装置10等は、回転速度を低減してよりノイズの少ない計測を実現することができる。 In addition to this / instead of this, the measuring device 10 or the like may include a plurality of magnets of each type in the rotating unit 110 or the like. For example, the rotation unit 110 or the like may include a plurality of sets of a pair of ESR magnets and MRI magnets, or may include one of a plurality of ESR magnets and MRI magnets. Thereby, the measuring apparatus 10 etc. can implement | achieve measurement with less noise by reducing a rotational speed.
 より具体的には、回転ユニット110等は、回転軸AX等を中心とする円周上に複数の第1磁石112および複数の第2磁石114が交互に設けられた構造を採ることができる。この場合、制御部230は、1回転中に複数回のESR惹起およびNMR計測を行うことができる。また、複数種類の組成物を計測する場合においては、制御部230は、回転ユニット110等が1回転する間に、複数の第1磁石112の少なくとも2つが計測対象20に相対する間に静磁場調整用コイルから互いに異なる強度の磁場を発生させ、少なくとも2つの第1磁石112に後続する少なくとも2つの第2磁石114が計測対象20に相対する間に計測対象20を計測する。これにより、計測装置10は、回転ユニット110の1回転中に2以上の組成物のそれぞれについて計測を行うことができる。 More specifically, the rotation unit 110 or the like can adopt a structure in which a plurality of first magnets 112 and a plurality of second magnets 114 are alternately provided on a circumference centered on the rotation axis AX or the like. In this case, the control unit 230 can perform ESR induction and NMR measurement a plurality of times during one rotation. In the case of measuring a plurality of types of compositions, the control unit 230 causes the static magnetic field while at least two of the plurality of first magnets 112 are opposed to the measurement target 20 while the rotation unit 110 or the like rotates once. Magnetic fields having different strengths are generated from the adjustment coil, and the measurement target 20 is measured while at least two second magnets 114 following the at least two first magnets 112 are opposed to the measurement target 20. Thereby, the measuring device 10 can measure each of two or more compositions during one rotation of the rotating unit 110.
 また、以上に示した実施形態においては、静磁場調整部190は、計測対象20に第1磁場を与える際に静磁場の強度を変更するために用いられ、計測対象20に第2磁場を与える際には磁場の発生を停止している。これに代えて、静磁場調整部190は、回転ユニット110等の回転に伴って第1磁場および第2磁場の少なくとも一方が変動してしまう場合に、この変動を抑えるべく、制御部230の制御を受けて、回転ユニット110等の回転角に応じた補正磁場を発生するためにも用いることも可能である。制御部230は、キャリブレーション動作等または人手による測定等により計測した回転ユニット110等の回転角毎の補正量を記憶しておき、この補正量に応じて静磁場調整部190を制御する。 Moreover, in embodiment shown above, the static magnetic field adjustment part 190 is used in order to change the intensity | strength of a static magnetic field, when giving a 1st magnetic field to the measuring object 20, and gives a 2nd magnetic field to the measuring object 20. In some cases, the generation of the magnetic field is stopped. Instead, when at least one of the first magnetic field and the second magnetic field fluctuates with rotation of the rotation unit 110 and the like, the static magnetic field adjustment unit 190 controls the control unit 230 to suppress this fluctuation. In response to this, it can also be used to generate a correction magnetic field corresponding to the rotation angle of the rotation unit 110 or the like. The control unit 230 stores a correction amount for each rotation angle of the rotation unit 110 and the like measured by a calibration operation or the like by manual measurement, and controls the static magnetic field adjustment unit 190 according to the correction amount.
 また、計測装置10は、第1磁石112をESR惹起用に限らず、複数の磁石の磁場強度差による緩和時間の差を利用した緩和度イメージングに用いてよい。例えば、計測装置10は、まず磁場強度が異なる第1磁石112による第1磁場を計測対象20に与え、次に第2磁石114による第2磁場を計測対象20に与えた状態でMRI計測を行い、生体内の組織の種類により緩和時間差が異なることを利用して、生体内の癌等の異常が他の正常な組織から区別可能な画像を生成する。 In addition, the measurement apparatus 10 may use the first magnet 112 not only for ESR induction but also for relaxation degree imaging using a difference in relaxation time due to a difference in magnetic field strength between a plurality of magnets. For example, the measurement apparatus 10 first performs the MRI measurement in a state where the first magnetic field by the first magnet 112 having different magnetic field strengths is applied to the measurement target 20 and then the second magnetic field by the second magnet 114 is applied to the measurement target 20. Utilizing the fact that the relaxation time difference varies depending on the type of tissue in the living body, an image in which abnormalities such as cancer in the living body can be distinguished from other normal tissues is generated.
 本実施形態及び変形例では、計測装置10等が回転軸AXと重なる回転軸部材140等を備え、回転軸部材140を介して回転ユニット110を一括して駆動する実施形態について説明した。ここで、計測装置10等が回転軸AXと重なる回転軸部材140等を備えない場合、計測装置10等は、回転軸部材140等の代わりにローラ158等により一対の回転ユニット110a~bを回転が同期するように個別に駆動してもよい。これにより、計測装置10等は、一対の回転ユニット110a~bの間により広い計測空間を確保することができる。 In the present embodiment and the modification, the embodiment has been described in which the measuring device 10 and the like include the rotation shaft member 140 and the like that overlap the rotation axis AX, and the rotation unit 110 is collectively driven via the rotation shaft member 140. Here, when the measuring device 10 or the like does not include the rotating shaft member 140 or the like that overlaps the rotating shaft AX, the measuring device 10 or the like rotates the pair of rotating units 110a and 110b by using the roller 158 or the like instead of the rotating shaft member 140 or the like. May be driven individually to synchronize. As a result, the measurement device 10 and the like can secure a wider measurement space between the pair of rotation units 110a and 110b.
 図15は、計測装置10等の少なくとも一部(主に制御部230)として機能するコンピュータ1900のハードウェア構成の一例を示す。本実施形態に係るコンピュータ1900は、ホスト・コントローラ2082により相互に接続されるCPU2000、RAM2020、グラフィック・コントローラ2075、および表示装置2080を有するCPU周辺部と、入出力コントローラ2084によりホスト・コントローラ2082に接続される通信インターフェイス2030、ハードディスクドライブ2040、およびCD-ROMドライブ2060を有する入出力部と、入出力コントローラ2084に接続されるROM2010、フレキシブルディスク・ドライブ2050、および入出力チップ2070を有するレガシー入出力部を備える。 FIG. 15 shows an example of a hardware configuration of a computer 1900 that functions as at least a part (mainly the control unit 230) of the measuring apparatus 10 or the like. A computer 1900 according to this embodiment is connected to a CPU peripheral unit having a CPU 2000, a RAM 2020, a graphic controller 2075, and a display device 2080 that are connected to each other by a host controller 2082, and to the host controller 2082 by an input / output controller 2084. Input / output unit having communication interface 2030, hard disk drive 2040, and CD-ROM drive 2060, and legacy input / output unit having ROM 2010, flexible disk drive 2050, and input / output chip 2070 connected to input / output controller 2084 Is provided.
 ホスト・コントローラ2082は、RAM2020と、高い転送レートでRAM2020をアクセスするCPU2000およびグラフィック・コントローラ2075とを接続する。CPU2000は、ROM2010およびRAM2020に格納されたプログラムに基づいて動作し、各部の制御を行う。 The host controller 2082 connects the RAM 2020 to the CPU 2000 and the graphic controller 2075 that access the RAM 2020 at a high transfer rate. The CPU 2000 operates based on programs stored in the ROM 2010 and the RAM 2020 and controls each unit.
 グラフィック・コントローラ2075は、CPU2000等がRAM2020内に設けたフレーム・バッファ上に生成する画像データを取得し、表示部240を介して表示装置2080上に表示させる。これに代えて、グラフィック・コントローラ2075は、CPU2000等が生成する画像データを格納するフレーム・バッファを、内部に含んでもよい。 The graphic controller 2075 acquires image data generated on a frame buffer provided in the RAM 2020 by the CPU 2000 or the like, and displays the image data on the display device 2080 via the display unit 240. Instead of this, the graphic controller 2075 may include a frame buffer for storing image data generated by the CPU 2000 or the like.
 入出力コントローラ2084は、ホスト・コントローラ2082と、比較的高速な入出力装置である通信インターフェイス2030、ハードディスクドライブ2040、CD-ROMドライブ2060を接続する。通信インターフェイス2030は、有線または無線によりネットワークを介して他の装置と通信する。 The input / output controller 2084 connects the host controller 2082 to the communication interface 2030, the hard disk drive 2040, and the CD-ROM drive 2060, which are relatively high-speed input / output devices. The communication interface 2030 communicates with other devices via a network by wire or wireless.
 また、通信インターフェイスは、計測装置10等における通信を行うハードウェアとして機能する。ハードディスクドライブ2040は、コンピュータ1900内のCPU2000が使用するプログラムおよびデータを格納する。CD-ROMドライブ2060は、CD-ROM2095からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。 In addition, the communication interface functions as hardware for performing communication in the measuring device 10 or the like. The hard disk drive 2040 stores programs and data used by the CPU 2000 in the computer 1900. The CD-ROM drive 2060 reads a program or data from the CD-ROM 2095 and provides it to the hard disk drive 2040 via the RAM 2020.
 また、入出力コントローラ2084には、ROM2010と、フレキシブルディスク・ドライブ2050、および入出力チップ2070の比較的低速な入出力装置とが接続される。ROM2010は、コンピュータ1900が起動時に実行するブート・プログラム、および/または、コンピュータ1900のハードウェアに依存するプログラム等を格納する。 Also, the ROM 2010, the flexible disk drive 2050, and the relatively low-speed input / output device of the input / output chip 2070 are connected to the input / output controller 2084. The ROM 2010 stores a boot program that the computer 1900 executes at startup and / or a program that depends on the hardware of the computer 1900.
 フレキシブルディスク・ドライブ2050は、フレキシブルディスク2090からプログラムまたはデータを読み取り、RAM2020を介してハードディスクドライブ2040に提供する。入出力チップ2070は、フレキシブルディスク・ドライブ2050を入出力コントローラ2084へと接続するとともに、例えばパラレル・ポート、シリアル・ポート、キーボード・ポート、マウス・ポート等を介して各種の入出力装置を入出力コントローラ2084へと接続する。 The flexible disk drive 2050 reads a program or data from the flexible disk 2090 and provides it to the hard disk drive 2040 via the RAM 2020. The input / output chip 2070 connects the flexible disk drive 2050 to the input / output controller 2084 and inputs / outputs various input / output devices via, for example, a parallel port, a serial port, a keyboard port, a mouse port, and the like. Connect to controller 2084.
 RAM2020を介してハードディスクドライブ2040に提供されるプログラムは、フレキシブルディスク2090、CD-ROM2095、またはICカード等の記録媒体に格納されて利用者によって提供される。プログラムは、記録媒体から読み出され、RAM2020を介してコンピュータ1900内のハードディスクドライブ2040にインストールされ、CPU2000において実行される。 The program provided to the hard disk drive 2040 via the RAM 2020 is stored in a recording medium such as the flexible disk 2090, the CD-ROM 2095, or an IC card and provided by the user. The program is read from the recording medium, installed in the hard disk drive 2040 in the computer 1900 via the RAM 2020, and executed by the CPU 2000.
 計測装置10等用のプログラムは、計測モジュールと、入力モジュールと、制御モジュールと、表示モジュールとを備える。 The program for the measurement device 10 and the like includes a measurement module, an input module, a control module, and a display module.
 これらのプログラムまたはモジュールは、CPU2000等に働きかけて、コンピュータ1900を、計測部200と、入力部220と、制御部230と、表示部240の少なくとも一部としてそれぞれ機能させてよい。 These programs or modules may work on the CPU 2000 or the like to cause the computer 1900 to function as at least part of the measurement unit 200, the input unit 220, the control unit 230, and the display unit 240, respectively.
 これらのプログラムに記述された情報処理は、コンピュータ1900に読込まれることにより、ソフトウェアと上述した各種のハードウェア資源とが協働した具体的手段である計測部200と、入力部220と、制御部230と、表示部240の少なくとも一部として機能する。 The information processing described in these programs is read into the computer 1900, whereby the measurement unit 200, the input unit 220, and the control unit, which are specific means in which the software and the various hardware resources described above cooperate. It functions as at least part of the unit 230 and the display unit 240.
 そして、これらの具体的手段によって、本実施形態におけるコンピュータ1900の使用目的に応じた情報の演算または加工を実現することにより、使用目的に応じた特有の計測装置10等が構築される。 And by these specific means, the calculation or processing of information according to the purpose of use of the computer 1900 in the present embodiment is realized, whereby a specific measuring device 10 according to the purpose of use is constructed.
 一例として、コンピュータ1900と外部の装置等との間で通信を行う場合には、CPU2000は、RAM2020上にロードされた通信プログラムを実行し、通信プログラムに記述された処理内容に基づいて、通信インターフェイス2030に対して通信処理を指示する。 As an example, when communication is performed between the computer 1900 and an external device or the like, the CPU 2000 executes a communication program loaded on the RAM 2020 and executes a communication interface based on the processing content described in the communication program. A communication process is instructed to 2030.
 通信インターフェイス2030は、CPU2000の制御を受けて、RAM2020、ハードディスクドライブ2040、フレキシブルディスク2090、またはCD-ROM2095等の記憶装置上に設けた送信バッファ領域等に記憶された送信データを読み出してネットワークへと送信し、もしくは、ネットワークから受信した受信データを記憶装置上に設けた受信バッファ領域等へと書き込む。 Under the control of the CPU 2000, the communication interface 2030 reads transmission data stored in a transmission buffer area or the like provided on a storage device such as the RAM 2020, the hard disk drive 2040, the flexible disk 2090, or the CD-ROM 2095, and sends it to the network. The reception data transmitted or received from the network is written into a reception buffer area or the like provided on the storage device.
 このように、通信インターフェイス2030は、DMA(ダイレクト・メモリ・アクセス)方式により記憶装置との間で送受信データを転送してもよく、これに代えて、CPU2000が転送元の記憶装置または通信インターフェイス2030からデータを読み出し、転送先の通信インターフェイス2030または記憶装置へとデータを書き込むことにより送受信データを転送してもよい。 As described above, the communication interface 2030 may transfer transmission / reception data to / from the storage device by the DMA (Direct Memory Access) method. Instead, the CPU 2000 transfers the storage device or the communication interface 2030 as the transfer source. The transmission / reception data may be transferred by reading the data from the data and writing the data to the communication interface 2030 or the storage device of the transfer destination.
 また、CPU2000は、ハードディスクドライブ2040、CD-ROMドライブ2060(CD-ROM2095)、フレキシブルディスク・ドライブ2050(フレキシブルディスク2090)等の外部記憶装置に格納されたファイルまたはデータベース等の中から、全部または必要な部分をDMA転送等によりRAM2020へと読み込ませ、RAM2020上のデータに対して各種の処理を行う。 The CPU 2000 is all or necessary from among files or databases stored in an external storage device such as a hard disk drive 2040, a CD-ROM drive 2060 (CD-ROM 2095), and a flexible disk drive 2050 (flexible disk 2090). This portion is read into the RAM 2020 by DMA transfer or the like, and various processes are performed on the data on the RAM 2020.
 そして、CPU2000は、処理を終えたデータを、DMA転送等により外部記憶装置へと書き戻す。このような処理において、RAM2020は、外部記憶装置の内容を一時的に保持するものとみなせるから、本実施形態においてはRAM2020および外部記憶装置等をメモリ、記憶部、または記憶装置等と総称する。 Then, the CPU 2000 writes the processed data back to the external storage device by DMA transfer or the like. In such processing, since the RAM 2020 can be regarded as temporarily holding the contents of the external storage device, in the present embodiment, the RAM 2020 and the external storage device are collectively referred to as a memory, a storage unit, or a storage device.
 本実施形態における各種のプログラム、データ、テーブル、データベース等の各種の情報は、このような記憶装置上に格納されて、情報処理の対象となる。なお、CPU2000は、RAM2020の一部をキャッシュメモリに保持し、キャッシュメモリ上で読み書きを行うこともできる。このような形態においても、キャッシュメモリはRAM2020の機能の一部を担うから、本実施形態においては、区別して示す場合を除き、キャッシュメモリもRAM2020、メモリ、および/または記憶装置に含まれるものとする。 Various information such as various programs, data, tables, and databases in the present embodiment are stored on such a storage device and are subjected to information processing. Note that the CPU 2000 can also store a part of the RAM 2020 in the cache memory and perform reading and writing on the cache memory. Even in such a form, the cache memory bears a part of the function of the RAM 2020. Therefore, in the present embodiment, the cache memory is also included in the RAM 2020, the memory, and / or the storage device unless otherwise indicated. To do.
 また、CPU2000は、RAM2020から読み出したデータに対して、プログラムの命令列により指定された、本実施形態中に記載した各種の演算、情報の加工、条件判断、情報の検索・置換等を含む各種の処理を行い、RAM2020へと書き戻す。 In addition, the CPU 2000 performs various operations, such as various operations, information processing, condition determination, information search / replacement, etc., described in the present embodiment, specified for the data read from the RAM 2020 by the instruction sequence of the program. Is written back to the RAM 2020.
 例えば、CPU2000は、条件判断を行う場合においては、本実施形態において示した各種の変数が、他の変数または定数と比較して、大きい、小さい、以上、以下、等しい等の条件を満たすか否かを判断し、条件が成立した場合(または不成立であった場合)に、異なる命令列へと分岐し、またはサブルーチンを呼び出す。 For example, when performing the condition determination, the CPU 2000 determines whether or not the various variables shown in the present embodiment satisfy the conditions such as large, small, above, below, equal, etc., compared to other variables or constants. If the condition is satisfied (or not satisfied), the program branches to a different instruction sequence or calls a subroutine.
 また、CPU2000は、記憶装置内のファイルまたはデータベース等に格納された情報を検索することができる。例えば、第1属性の属性値に対し第2属性の属性値がそれぞれ対応付けられた複数のエントリが記憶装置に格納されている場合において、CPU2000は、記憶装置に格納されている複数のエントリの中から第1属性の属性値が指定された条件と一致するエントリを検索し、そのエントリに格納されている第2属性の属性値を読み出すことにより、所定の条件を満たす第1属性に対応付けられた第2属性の属性値を得ることができる。 Further, the CPU 2000 can search for information stored in a file or database in the storage device. For example, in the case where a plurality of entries in which the attribute value of the second attribute is associated with the attribute value of the first attribute are stored in the storage device, the CPU 2000 displays the plurality of entries stored in the storage device. The entry that matches the condition in which the attribute value of the first attribute is specified is retrieved, and the attribute value of the second attribute that is stored in the entry is read, thereby associating with the first attribute that satisfies the predetermined condition The attribute value of the specified second attribute can be obtained.
 以上に示したプログラムまたはモジュールは、外部の記録媒体に格納されてもよい。記録媒体としては、フレキシブルディスク2090、CD-ROM2095の他に、DVDまたはCD等の光学記録媒体、MO等の光磁気記録媒体、テープ媒体、ICカード等の半導体メモリ等を用いることができる。また、専用通信ネットワークまたはインターネットに接続されたサーバシステムに設けたハードディスクまたはRAM等の記憶装置を記録媒体として使用し、ネットワークを介してプログラムをコンピュータ1900に提供してもよい。 The programs or modules shown above may be stored in an external recording medium. As the recording medium, in addition to the flexible disk 2090 and the CD-ROM 2095, an optical recording medium such as DVD or CD, a magneto-optical recording medium such as MO, a tape medium, a semiconductor memory such as an IC card, and the like can be used. Further, a storage device such as a hard disk or a RAM provided in a server system connected to a dedicated communication network or the Internet may be used as a recording medium, and the program may be provided to the computer 1900 via the network.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、請求の範囲の記載から明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above-described embodiment. It is apparent from the scope of the claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 請求の範囲、明細書、および図面中において示した装置、システム、プログラム、および方法における動作、手順、ステップ、および段階等の各処理の実行順序は、特段「より前に」、「先立って」等と明示しておらず、また、前の処理の出力を後の処理で用いるのでない限り、任意の順序で実現しうることに留意すべきである。請求の範囲、明細書、および図面中の動作フローに関して、便宜上「まず、」、「次に、」等を用いて説明したとしても、この順で実施することが必須であることを意味するものではない。 The execution order of each process such as operations, procedures, steps, and stages in the apparatus, system, program, and method shown in the claims, the description, and the drawings is particularly “before” or “prior”. It should be noted that they can be implemented in any order unless the output of the previous process is used in the subsequent process. Regarding the operation flow in the claims, the description, and the drawings, even if it is described using “first”, “next”, etc. for the sake of convenience, it means that it is essential to carry out in this order. is not.
 10 計測装置、20 計測対象、30 計測装置、100 回転モジュール、101a~b ジャケット、102a~b 第1バックヨーク、103a~b 第1磁石ヨーク部、104a~b 第2バックヨーク、105a~b 第2磁石ヨーク部、106 係止部、107b 第1開口、108b 第2開口、109b 第3開口、110a~b 回転ユニット、111a~b 第1範囲、112a~b 第1磁石、113a~b 第2範囲、114a~b 第2磁石、115a~b 第1ポールピース、116a~b 第2ポールピース、117a~b 支持プレート、118a~b 支柱、140 回転軸部材、142a~b 軸受部、146 筐体、147 外部カバー、148 上部フレーム、150 支柱、152 基台、156 対象保護部、158 ローラ、160 動力伝達部、170 駆動部、180 非回転ユニット、183 開口、184 コイル部、188 傾斜磁場発生部、190 静磁場調整部、200 計測部、210 異常検出部、220 入力部、230 制御部、240 表示部、300 回転モジュール、310a~b 回転ユニット、312 第1範囲、314 第2範囲、340 回転軸部材、350 ローラ、380 非回転ユニット、1900 コンピュータ、2000 CPU、2010 ROM、2020 RAM、2030 通信インターフェイス、2040 ハードディスクドライブ、2050 フレキシブルディスク・ドライブ、2060 CD-ROMドライブ、2070 入出力チップ、2075 グラフィック・コントローラ、2080 表示装置、2082 ホスト・コントローラ、2084 入出力コントローラ、2090 フレキシブルディスク、2095 CD-ROM 10 measurement device, 20 measurement object, 30 measurement device, 100 rotation module, 101a-b jacket, 102a-b first back yoke, 103a-b first magnet yoke part, 104a-b second back yoke, 105a-b second 2-magnet yoke part, 106 locking part, 107b first opening, 108b second opening, 109b third opening, 110a-b rotating unit, 111a-b first range, 112a-b first magnet, 113a-b second Range, 114a-b 2nd magnet, 115a-b 1st pole piece, 116a-b 2nd pole piece, 117a-b support plate, 118a-b support column, 140 rotating shaft member, 142a-b bearing part, 146 housing 147 outer cover, 148 upper frame, 150 struts, 152 base, 56 target protection unit, 158 roller, 160 power transmission unit, 170 drive unit, 180 non-rotation unit, 183 opening, 184 coil unit, 188 gradient magnetic field generation unit, 190 static magnetic field adjustment unit, 200 measurement unit, 210 abnormality detection unit, 220 input unit, 230 control unit, 240 display unit, 300 rotating module, 310a-b rotating unit, 312 first range, 314 second range, 340 rotating shaft member, 350 roller, 380 non-rotating unit, 1900 computer, 2000 CPU , 2010 ROM, 2020 RAM, 2030 communication interface, 2040 hard disk drive, 2050 flexible disk drive, 2060 CD-ROM drive, 2070 input / output chip, 2075 graphics Click controller, 2080 a display device, 2082 host controller 2084 output controller, 2090 a flexible disk, 2095 CD-ROM

Claims (15)

  1.  回転軸に対して軸方向の異なる位置に設けられ、回転軸中心に回転する一対の回転ユニットと、
     前記一対の回転ユニットの間の空間に設けられ、計測対象を設置するための非回転ユニットと、
     を備え、
     前記一対の回転ユニットの少なくとも一方は、
     当該回転ユニットにおける、前記回転軸を中心とする円周上の第1範囲に収容され、前記一対の回転ユニットの間の空間に第1磁場を発生させる第1磁石と、
     当該回転ユニットにおける、前記回転軸を中心とする円周上の前記第1範囲とは異なる第2範囲に収容され、前記一対の回転ユニットの間の空間に第2磁場を発生させる第2磁石と、
     を有する計測装置。
    A pair of rotating units provided at different positions in the axial direction with respect to the rotating shaft, and rotating about the rotating shaft;
    A non-rotating unit that is provided in a space between the pair of rotating units and for installing a measurement object;
    With
    At least one of the pair of rotation units is
    A first magnet that is accommodated in a first range on a circumference around the rotation axis in the rotation unit and that generates a first magnetic field in a space between the pair of rotation units;
    A second magnet accommodated in a second range different from the first range on the circumference around the rotation axis in the rotation unit, and generating a second magnetic field in a space between the pair of rotation units; ,
    Measuring device.
  2.  前記一対の回転ユニットのそれぞれは、前記第1磁石および前記第2磁石を収容して固定するジャケットを有する、
     請求項1に記載の計測装置。
    Each of the pair of rotating units has a jacket for receiving and fixing the first magnet and the second magnet.
    The measuring device according to claim 1.
  3.  前記ジャケットは、前記第1磁石を収容する第1開口および前記第2磁石を収容する第2開口を有する請求項2に記載の計測装置。 3. The measuring device according to claim 2, wherein the jacket has a first opening for accommodating the first magnet and a second opening for accommodating the second magnet.
  4.  前記ジャケットは、
     前記第1開口および前記第2開口内に、前記第1磁石および前記第2磁石を係止して前記第1磁石および前記第2磁石が前記計測対象側へと抜け出るのを防止する係止部を含む、
     請求項3に記載の計測装置。
    The jacket is
    A locking portion that locks the first magnet and the second magnet in the first opening and the second opening to prevent the first magnet and the second magnet from coming out to the measurement target side. including,
    The measuring device according to claim 3.
  5.  前記係止部は、前記ジャケットと一体に形成される請求項4に記載の計測装置。 The measuring device according to claim 4, wherein the locking portion is formed integrally with the jacket.
  6.  前記一対の回転ユニットのそれぞれは、円盤状である請求項5に記載の計測装置。 The measuring device according to claim 5, wherein each of the pair of rotating units has a disk shape.
  7.  前記一対の回転ユニットは、前記回転軸を構成する回転軸部材に固定され、
     前記回転軸部材を、前記一対の回転ユニットの外側の両側で支える軸受部を更に備える請求項1から6のいずれか一項に記載の計測装置。
    The pair of rotation units are fixed to a rotation shaft member constituting the rotation shaft,
    The measuring device according to any one of claims 1 to 6, further comprising bearing portions that support the rotating shaft member on both sides outside the pair of rotating units.
  8.  当該計測装置を収容する筐体のフレームから前記一対の回転ユニットの間の空間へと延伸し、前記一対の回転ユニットが前記回転軸部材から外れた場合においても前記計測対象を保護する対象保護部を更に備える請求項7に記載の計測装置。 An object protection unit that extends from a frame of a housing that houses the measurement device to a space between the pair of rotation units, and protects the measurement object even when the pair of rotation units is detached from the rotation shaft member. The measuring device according to claim 7, further comprising:
  9.  当該計測装置の異常を検出する異常検出部と、
     前記異常検出部が異常を検出したことに応じて、前記一対の回転ユニットの回転を停止し、または前記一対の回転ユニットの回転速度を低下させる制御部と、
     を更に備える請求項1から8のいずれか1項に記載の計測装置。
    An anomaly detector that detects an anomaly of the measurement device;
    A controller that stops the rotation of the pair of rotating units or reduces the rotational speed of the pair of rotating units in response to the abnormality detecting unit detecting an abnormality;
    The measuring device according to claim 1, further comprising:
  10.  前記回転軸は、略水平方向に設けられる請求項1から9のいずれか一項に記載の計測装置。 The measuring device according to any one of claims 1 to 9, wherein the rotation shaft is provided in a substantially horizontal direction.
  11.  前記非回転ユニットは、前記回転軸よりも上側または前記回転軸の横側に設けられる請求項10に記載の計測装置。 The measuring device according to claim 10, wherein the non-rotating unit is provided above the rotating shaft or on a lateral side of the rotating shaft.
  12.  前記一対の回転ユニットおよび前記非回転ユニットを覆う、前記計測対象を前記非回転ユニットへと導くための開口が設けられた筐体を備える請求項1から11のいずれか一項に記載の計測装置。 12. The measuring apparatus according to claim 1, further comprising a housing that covers the pair of rotating units and the non-rotating unit and is provided with an opening for guiding the measurement target to the non-rotating unit. .
  13.  前記非回転ユニットは、前記計測対象に対して傾斜磁場を与える傾斜磁場発生部を更に有する請求項1から12のいずれか一項に記載の計測装置。 The measurement device according to any one of claims 1 to 12, wherein the non-rotating unit further includes a gradient magnetic field generation unit that applies a gradient magnetic field to the measurement target.
  14.  前記非回転ユニットは、前記第1磁石および前記第2磁石が前記計測対象に対して与える前記第1磁場および前記第2磁場の少なくとも一方の静磁場の強度を変えるための静磁場調整用コイルを更に有する請求項1から13のいずれか一項に記載の計測装置。 The non-rotating unit includes a static magnetic field adjusting coil for changing the strength of at least one of the first magnetic field and the second magnetic field that the first magnet and the second magnet give to the measurement target. The measuring device according to any one of claims 1 to 13, further comprising:
  15.  前記一対の回転ユニットを前記回転軸を中心に回転させる駆動部と、
     前記駆動部を制御する制御部と、
     を更に備え、
     前記制御部は、当該計測装置を停止させる場合に、前記駆動部を制御して、前記第2磁石を予め設定された位置へと移動させる
     請求項1から14のいずれか一項に記載の計測装置。
    A drive unit that rotates the pair of rotation units around the rotation axis;
    A control unit for controlling the driving unit;
    Further comprising
    The measurement according to any one of claims 1 to 14, wherein when the measurement device is stopped, the control unit controls the drive unit to move the second magnet to a preset position. apparatus.
PCT/JP2016/060901 2015-04-28 2016-04-01 Measurement device WO2016174993A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112016000211.4T DE112016000211T5 (en) 2015-04-28 2016-04-01 measurement device
JP2017515452A JPWO2016174993A1 (en) 2015-04-28 2016-04-01 Measuring device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-091643 2015-04-28
JP2015091643 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016174993A1 true WO2016174993A1 (en) 2016-11-03

Family

ID=57198356

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060901 WO2016174993A1 (en) 2015-04-28 2016-04-01 Measurement device

Country Status (3)

Country Link
JP (1) JPWO2016174993A1 (en)
DE (1) DE112016000211T5 (en)
WO (1) WO2016174993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117185A1 (en) * 2016-12-21 2018-06-28 英雄 内海 Magnetic field imparting device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327958A (en) * 1994-06-09 1995-12-19 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2000116640A (en) * 1998-10-16 2000-04-25 Toshiba Corp X-ray ct instrument
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device
JP2007519451A (en) * 2004-02-02 2007-07-19 エサオテ エス.ピー.エイ. Magnetic resonance imaging system
JP2008259876A (en) * 2008-07-07 2008-10-30 Hitachi Metals Ltd Magnetic field generator for mri

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07327958A (en) * 1994-06-09 1995-12-19 Hitachi Medical Corp Magnetic resonance imaging apparatus
JP2000116640A (en) * 1998-10-16 2000-04-25 Toshiba Corp X-ray ct instrument
WO2004069052A1 (en) * 2003-02-10 2004-08-19 Neomax Co., Ltd. Magnetic field-producing device
JP2007519451A (en) * 2004-02-02 2007-07-19 エサオテ エス.ピー.エイ. Magnetic resonance imaging system
JP2008259876A (en) * 2008-07-07 2008-10-30 Hitachi Metals Ltd Magnetic field generator for mri

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018117185A1 (en) * 2016-12-21 2018-06-28 英雄 内海 Magnetic field imparting device

Also Published As

Publication number Publication date
JPWO2016174993A1 (en) 2018-02-22
DE112016000211T5 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
US10078119B2 (en) Rotating magnetic field hall measurement system
Kimman et al. A miniature milling spindle with active magnetic bearings
JP5574386B2 (en) Measuring device and measuring method
CN103767725B (en) A kind of method and apparatus for balancing CT frame
US9678040B2 (en) Rotating magnetic field hall measurement system
WO2016203672A1 (en) Residual-stress measurement device and residual-stress measurement method
JP2005211654A (en) Method of compensating unbalance
JP2004297978A (en) Single shaft driver and surface shape measuring apparatus using it
JP2005211660A (en) Image forming tomography apparatus
JP2011075472A (en) Method and device for accurately adjusting magic angle in nmr
WO2016174993A1 (en) Measurement device
WO2016174996A1 (en) Measurement device and measurement method
CN109900475A (en) Bearing check device
KR20120085109A (en) Dynamic characteristics measuring apparatus of bearing, dynamic characteristics analysing system and dynamic characteristics analysing method of bearing
US20170170703A1 (en) Rotor alignment for reducing vibrations and noise
CN102809464A (en) Dynamic balance measurement method and device and CT (computed tomography) apparatus with dynamic balance measurement device
RU2014151783A (en) X-RAY BALANCE
JP2008272900A (en) Oscillation state measuring method at machining stage of work and/or tool
Friedman et al. Synchrotron radiation Mössbauer spectra of a rotating absorber with implications for testing velocity and acceleration time dilation
CN107219133B (en) A kind of horizontal type test device and test method measuring material twisting property under Electronic Speculum
CN209131898U (en) X-ray tube test device
JP3126259U (en) measuring device
JPH08136698A (en) Arc slider driving type goniometer and solid angle diffraction meter
JP2005189200A (en) Magnetic vector measuring instrument
Friedman et al. The validity of an experiment testing the influence of acceleration on time dilation using a rotating Mössbauer absorber and a Synchrotron Mössbauer Source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16786270

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017515452

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016000211

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16786270

Country of ref document: EP

Kind code of ref document: A1