WO2016173493A1 - Sulfonylaminocarbonyl derivative, pharmaceutical composition and uses thereof - Google Patents

Sulfonylaminocarbonyl derivative, pharmaceutical composition and uses thereof Download PDF

Info

Publication number
WO2016173493A1
WO2016173493A1 PCT/CN2016/080331 CN2016080331W WO2016173493A1 WO 2016173493 A1 WO2016173493 A1 WO 2016173493A1 CN 2016080331 W CN2016080331 W CN 2016080331W WO 2016173493 A1 WO2016173493 A1 WO 2016173493A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
alkyl
compound
unsubstituted
pharmaceutically acceptable
Prior art date
Application number
PCT/CN2016/080331
Other languages
French (fr)
Inventor
Qun Li
Daxin Gao
Original Assignee
Shanghai De Novo Pharmatech Co. Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai De Novo Pharmatech Co. Ltd. filed Critical Shanghai De Novo Pharmatech Co. Ltd.
Publication of WO2016173493A1 publication Critical patent/WO2016173493A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J43/00Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton
    • C07J43/003Normal steroids having a nitrogen-containing hetero ring spiro-condensed or not condensed with the cyclopenta(a)hydrophenanthrene skeleton not condensed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0055Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0055Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives
    • C07J41/0061Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by an uninterrupted chain of at least three carbon atoms which may or may not be branched, e.g. cholane or cholestane derivatives, optionally cyclised, e.g. 17-beta-phenyl or 17-beta-furyl derivatives one of the carbon atoms being part of an amide group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0066Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 the 17-beta position being substituted by a carbon atom forming part of an amide group
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J31/00Normal steroids containing one or more sulfur atoms not belonging to a hetero ring
    • C07J31/006Normal steroids containing one or more sulfur atoms not belonging to a hetero ring not covered by C07J31/003
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0088Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing unsubstituted amino radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J41/00Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring
    • C07J41/0033Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005
    • C07J41/0094Normal steroids containing one or more nitrogen atoms not belonging to a hetero ring not covered by C07J41/0005 containing nitrile radicals, including thiocyanide radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J51/00Normal steroids with unmodified cyclopenta(a)hydrophenanthrene skeleton not provided for in groups C07J1/00 - C07J43/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07JSTEROIDS
    • C07J9/00Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane
    • C07J9/005Normal steroids containing carbon, hydrogen, halogen or oxygen substituted in position 17 beta by a chain of more than two carbon atoms, e.g. cholane, cholestane, coprostane containing a carboxylic function directly attached or attached by a chain containing only carbon atoms to the cyclopenta[a]hydrophenanthrene skeleton

Definitions

  • the present invention relates to new sulfonylaminocarbonyl derivatives, isomers, prodrugs, pharmaceutical accept salts, stable isotope derivatives, pharmaceutical compositions containing the same, preparation method and uses thereof.
  • Farnesoid X Receptor belongs to a member of nuclear hormone receptor super family, which is one of the ligand-activated transcription factors. This super family includes steroid receptors, retinoid receptors and thyroid hormone receptors. FXR is widely present in the liver, intestine, kidney, adrenal gland and other bile acids presenting tissues. Bile acids, or their glycine and taurine conjugates, are known endogenous ligands for FXR. Bile acids, including chenodeoxycholic acid (CDCA) , deoxycholic acid (DCA) , and lithocholic acid (LCA) , bind to and activate FXR receptor at physiological concentrations. FXR plays an important role in regulating bile acid homeostasis, carbohydrate metabolism, and lipid metabolism.
  • Bile acids are metabolites of cholesterol, which are synthesized in the liver and secreted into the duodenum of the intestine. They play important roles in increasing solubility and absorption of dietary lipids and vitamins. Most of the bile acids in the ileum then returned to the liver by enterohepatic circulation. In the liver, conversion of cholesterol to bile acids is regulated by a feedback mechanism. Bile acids down-regulate cytochrome P450 CYP7A transcription, which encodes an enzyme that catalyzes the biosynthesis of bile acids in the rate-limiting step. In the ileum, bile acids increase the production of bile acid binding protein (IBABP) .
  • IBABP bile acid binding protein
  • cytoplasmic protein IBABP plays a role in bile acids cellular uptake and transport.
  • FXR is involved in stimulating IBABP while suppressing CYP7A expression.
  • FXR is involved in many physiological processes playing a major role in controlling hepatic lipid, cholesterol and carbohydrates metabolism (Inflamm Res. 2015, 64, 9-20) , including liver cholestasis, cholelithiasis, glucose metabolism, intestinal epithelial protection, liver cell regeneration, intestinal and liver tumor formation, kidney disease caused by diabetes, improve erectile dysfunction, vascular reactivity regulation, inhibition of pulmonary inflammation and infection and so on. Because of these different physiological functions, FXR is a valuable potential drug target. Many synthetic FXR agonists have been synthesized (Current Topics in Medicinal Chemistry, 2014, 14, 2188-2205) .
  • FXR agonists seem to have a specific liver protection effect, and can prevent fat accumulation in the liver and reduce liver fibrosis and inflammation.
  • FXR agonists currently in clinical development are mainly for the treatment of severe liver disease, including primary biliary cirrhosis (PBC, one kind of cholestasis caused by chronic inflammation of the liver) , nonalcoholic fatty liver disease (NAFLD) , non-alcoholic hepatitis (NASH) , liver cell regeneration, and inflammatory bowel disease (IBD) , and so on.
  • PBC primary biliary cirrhosis
  • NAFLD nonalcoholic fatty liver disease
  • NASH non-alcoholic hepatitis
  • IBD inflammatory bowel disease
  • FXR farnesoid X receptor
  • a key cytokine FGF-15/19 in the intestine (ileum) (Cell Metab. 2005, 2, 217) .
  • FGF-15/19 has the functions of sensitizing insulin, reducing weight and lowering lipid, thereby further extends the use of FXR agonists to all other FGF15 /19 responding tissues.
  • TGR5 G protein-coupled receptor TGR5
  • GPBAR1 or M-BAR G protein-coupled receptor TGR5
  • TGR5 is organ specific. TGR5 is highly expressed in endocrine glands, on the plasma membrane of liver, adipose tissue, skeletal muscle cells, immune organs, spinal cord, intestines and nervous system.
  • TGR5 promotes the secretion of glucagon-like peptide (GLP-1) and the production of cAMP , thereby achieving its role in a series of cellular and physiological activities by regulating metabolism of lipid and glucose, and energy homeostasis and so on (Br J Pharmacol, 2012, 165: . 414-423) .
  • Activation of TGR5 can control blood sugar; regulate lipid homeostasis, increase energy expenditure, and play a role of anti-cancer and anti-inflammatory effects, and so on.
  • TGR5 is expected to become a drug target for the treatment of a range of metabolic diseases, autoimmune diseases, inflammatory diseases and cancer.
  • TGR5 knockout mice Role of TGR5 in bile acid metabolism has been confirmed on TGR5 knockout mice. Compared to wild-type mice, Bile acid level in TGR5 knockout mice was significantly reduced by 21%to 25%, indicating TGR5 promote bile acid homeostasis. Activation of TGR5 also increases expression of endothelial nitric oxide enzyme (Trends Pharmacol Sci, 2009, 30, 139-159) , which may limit liver toxicity caused by bile acids and peroxidation of lipid. In addition, TGR5 is involved in sugar and energy metabolism. TGR5 agonists are expected to be used for the potential treatment of type-2 diabetes and obesity (Animal Cells and Systems, 2014, 18, 359-364) . TGR5 also found to regulate inflammatory cytokines monocytes, suggesting that TGR5 is closely involved in the regulation of immune and inflammatory response of human diseases.
  • FXR and TGR5 play an important role in regulating glucose and lipid metabolism, energy and bile homeostasis. Therefore, FXR and TGR5 are emerging as attractive targets for the treatment of the metabolic syndrome, diabetes, abnormal blood lipid disorders, atherosclerosis, cholestasis and other liver diseases. Although further studies of these two targets are being investigated, there is no marketed drug that targets these two targets; therefore there is still an unmet medical need to develop such drugs.
  • the present disclosure relates to new sulfonylaminocarbonyl derivatives, solvates, isomers, prodrugs, pharmaceutical accept salts, stable isotope derivatives, pharmaceutical compositions containing the same, preparation methods and uses thereof, particular for their pharmaceutical use for modulating the activity of farnesoid X receptor (FXR) and/or G protein-coupled bile acid receptor 1 (TGR5) .
  • FXR farnesoid X receptor
  • TGR5 G protein-coupled bile acid receptor 1
  • a 2 is -C (O) N (R 12 ) S (O) 2 -, or -S (O) 2 N (R 12 ) C (O) -;
  • a 1 is a bond, or - (CH 2 ) n -; n is 1, 2, 3, or 4;
  • L is a bond, or -CHR 9 -;
  • R is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, or -NR 10 R 10a , provided that when A 2 is -S (O) 2 N (R 12 ) C (O) -, R is not selected form -NR 10 R 10a ;
  • R 1 is independently hydrogen, hydroxyl, substituted or unsubstituted alkyl, or halogen
  • R 2 is independently hydrogen, substituted or unsubstituted alkyl, or hydroxyl
  • R 3 is independently hydrogen, substituted or unsubstituted alkyl, 2-propenyl or halogen
  • R 4 and R 5 are independently hydrogen, hydroxyl, -OC (O) CH 3 , -OS (O) 3 H, -OP (O) 3 H, -P (O) 3 H 2 , or -OC 6 H 8 O 6 H; or R 4 and R 5 are taken together to form a carbonyl;
  • R 6 and R 6’ a re independently hydrogen, or hydroxyl
  • R 7 is independently hydrogen, hydroxyl, alkoxy, or halogen
  • R 8 is independently hydrogen, or substituted or unsubstituted alkyl
  • R 9 is independently hydrogen, substituted or unsubstituted alkyl, aryl, or heteroaryl; or R 8 and R 9 together with the carbon atom to which they are attached, form a 3-to 6-membered cycloalkyl ring.
  • R is substituted or unsubstituted C 1-6 alkyl, substituted or unsubstituted C 3-10 cycloalkyl, substituted or unsubstituted 3-to 10-membered heterocycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted 5-to 10-membered heteroaryl, substituted or unsubstituted C 3-10 cycloalkyl C 1-3 alkyl, substituted or unsubstituted 3-to 10-membered heterocycloalkylC 1-3 alkyl, substituted or unsubstituted phenylC 1-3 alkyl; substituted or unsubstituted 5-to 10-membered heteroarylC 1-3 alkyl.
  • R When R is substituted, it is, for example, substituted by 1 to 3 R 11 at any position.
  • R 11 is independently halogen, hydroxyl, amino, carboxyl, -NO 2 , -CN, alkyl, haloalkyl, alkoxy, haloalkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, heteroarylalkyl, heterocycloalkylalkoxy, cycloalkylalkoxy, arylalkoxy, heteroarylalkoxy, C 2-4 alkenyl, C 2-4 alkynyl, aminoalkyl, hydroxyalkyl, sulfonyl, -C (O) OR 13 , -S (O) 0-2 R 13 , -S (O) 0-2 NR 13 R 13a ,
  • R 11 is independently halogen, hydroxyl, amino, carboxyl, -NO 2 , -CN, C 1-6 alkyl, halo-C 1-6 alkyl, C 1-6 alkoxy, halo-C 1-6 alkoxy, substituted or unsubstituted C 3-8 cycloalkyl, substituted or unsubstituted 3-to 8-membered heterocycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted 5-to 6-membered heteroaryl, C 3-8 cycloalkyl C 1-3 alkyl, 3-to 8-membered heterocycloalkylC 1-3 alkyl, phenylC 1-3 alkyl, 5-to 6-membered heteroarylC 1-3 alkyl, 3-to 8-membered heterocycloalkylC 1-3 alkoxy, C 3-8 cycloalkylC 1-3 alkoxy, phenylC 1-3 alkoxy, 5-
  • R 13 and R 13a are independently hydrogen, alkyl, haloalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl; or R 13 and R 13a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
  • R 13 and R 13a are independently hydrogen, C 1-3 alkyl, haloC 1-3 alkyl, C 3-8 cycloalkyl, 3-to 8-membered heterocycloalkyl, phenyl, or 5-to 6-membered heteroaryl; or R 13 and R 13a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
  • R is –NR 10 R 10a ;
  • R 10 or R 10a in R is independently hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkylalkyl, or heteroalkylalkyl; or R 10 and R 10a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
  • R 10 or R 10a in R is independently hydrogen, C 1-6 alkyl, C 3-10 cycloalkyl, 3-to 8-membered heterocycloalkyl, phenyl, 5-to 6-membered heteroaryl, C 3-8 cycloalkylC 1-3 alkyl, or 3-to 8-membered heteroalkylC 1-3 alkyl; or R 10 and R 10a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
  • R 12 in A 2 is hydrogen or alkyl.
  • R 12 in A 2 is hydrogen or C 1-6 alkyl.
  • a 1 is a bond, -CH 2 -or -CH 2 CH 2 -;
  • L is a bond, -CH (CH 3 ) -,
  • R 1 is hydrogen, hydroxyl, substituted or unsubstituted C 1-3 alkyl, or halogen.
  • R 2 is hydrogen, substituted or unsubstituted C 1-3 alkyl, or hydroxyl.
  • R 3 is hydrogen, substituted or unsubstituted C 1-3 alkyl, 2-propenyl, or halogen.
  • R 7 is hydrogen, hydroxyl, C 1-3 alkoxy, or halogen.
  • R 8 is hydrogen, or substituted or unsubstituted C 1-3 alkyl.
  • R 9 is hydrogen, substituted or unsubstituted C 1-3 alkyl, phenyl, or 5-to 6-membered heteroaryl; or R 8 and R 9 together with the carbon atom to which they are attached, form a 3-to 6-membered cycloalkyl ring.
  • R 1 , R 2 , R 3 , R 8 , or R 9 is the substituted alkyl, it is substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, alkyl and cycloalkyl.
  • R 1 , R 2 , R 3 , R 8 , or R 9 when R 1 , R 2 , R 3 , R 8 , or R 9 is the substituted C 1-3 alkyl, it is substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, C 1-3 alkyl and C 3-8 cycloalkyl.
  • the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is a compound of formula (I-1) and/or a pharmaceutically acceptable salt thereof,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 7 , R 8 , R 9 , R, A 1 and A 2 are the same as described for formula (I) , including each of the embodiments thereof.
  • the compound of formula (I-1) wherein when R 6 is hydroxyl, it can be ⁇ -OH or ⁇ -OH. In some embodiments, R 6 is hydrogen or ⁇ -OH.
  • the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA) and/or a pharmaceutically acceptable salt thereof, or 2) a compound of formula (IB) and/or a pharmaceutically acceptable salt thereof,
  • R 1 , R 2 , R 3 , R 4 , R 5 , R 6 , R 6’ , R 7 , R 8 , R 12 , R, L and A 1 are the same as described for formula (I) , including each of the embodiments thereof.
  • the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA-1) and/or a pharmaceutically acceptable salt thereof, or 2) a compound of formula (IB-1) and/or a pharmaceutically acceptable salt thereof,
  • R 3 , R 6 , R 6’ , R 7 , R 8 , R 12 , R, L and A 1 are the same as described for formula (I) , including each of the embodiments thereof.
  • the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA-2) and/or a pharmaceutically acceptable salt thereof, 2) a compound of formula (IA-3) and/or a pharmaceutically acceptable salt thereof, or 3) a compound of formula (IA-4) and/or a pharmaceutically acceptable salt thereof,
  • R 3 , R 7 , R 8 , R 12 , R, L and A 1 are the same as described for formula (I) , including each of the embodiments thereof.
  • the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IB-2) and/or a pharmaceutically acceptable salt thereof, 2) a compound of formula (IB-3) and/or a pharmaceutically acceptable salt thereof, or 3) a compound of formula (IB-4) and/or a pharmaceutically acceptable salt thereof,
  • R 3 , R 7 , R 8 , R 12 , R, L and A 1 are the same as described for formula (I) , including each of the embodiments thereof.
  • the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA-5) and/or a pharmaceutically acceptable salt thereof, or 2) a compound of formula (IB-5) and/or a pharmaceutically acceptable salt thereof,
  • R 12 , R, L and A 1 are the same as described for formula (I) , including each of the embodiments thereof.
  • the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is selected from the following compounds:
  • composition comprising 1) a compound of formula I, I-1, IA, IB, IA-1 ⁇ IA-5, IB-1 ⁇ IB-5, and/or stable isotope derivatives thereof, and/or a pharmaceutically acceptable salt thereof, and/or prodrugs thereof, and 2) a pharmaceutically acceptable excipient.
  • the compound of formula I and/or a pharmaceutically acceptable salt can be any embodiment thereof disclosed herein.
  • a pharmaceutically acceptable excipient refers to an excipient that is useful in preparing a pharmaceutical composition that is compatible with active ingredients of the composition and not deleterious to the subject to be treated.
  • excipients include, for example, binders, surfactants, diluents, buffering agents, antiadherents, glidants, hydrophilic or hydrophobic polymers, retardants, stabilizing agents or stabilizers, disintegrants or superdisintegrants, antioxidants, antifoaming agents, fillers, flavors, colors, lubricants, sorbents, preservatives, plasticizers, and sweeteners.
  • Acceptable excipients are non-toxic, aid administration, and do not adversely affect the therapeutic benefit of the compound disclosed herein.
  • excipient may be any solid, liquid, semi-solid or, in the case of an aerosol composition, gaseous excipient that is generally available to one of skill in the art.
  • compositions can be prepared in various pharmaceutical formulations and dosage forms depending upon the therapeutic aims, for example, tablets, pills, powders, liquids, suspensions, emulsions, particles, capsules, suppositories and injections (solutions and suspensions) , etc.
  • compositions such as tablets can be prepared in a manner well known in the pharmaceutical art by using excipients to make the compositions to form into shapes.
  • excipients include, for example, lactose, sugar, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, and silicic acid, etc.; binders, for example, water, ethanol, propanol, common syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, shellac, methylcellulose, potassium carbonate, and polyvinyl pyrrolidone, etc.; disintegrating agents, for example, dry starch, sodium alginate, agar powder, kelp powder, calcium bicarbonate, calcium carbonate, polyoxyethylene sorbitan monooleate, lauryl sodium sulfate, glycerin monostearate, starch, and lactose, etc.; agents which inhibit disintegrating, for example, sugar, tristearin, coconut oil, and hardened vegetable oil, etc
  • compositions such as pills can be prepared in a manner well known in the pharmaceutical art by using excipients to make the compositions to form into shapes.
  • excipients can be carriers, for example, lactose, starch, coconut oil, hardened vegetable oil, kaolin, and talcum powder, etc.; binders, for example, gum arabic powder, gum tragacanth powder, gelatin and ethanol, etc.; disintegrating agents, for example, agar powder, and kelp powder, etc.
  • compositions such as suppositories can be prepared in a manner well known in the pharmaceutical art by using excipients to make the compositions to form into shapes, such as, polyethylene glycol, coconut oil, higher alcohols, higher esters, gelatin, and semi synthesis glyceride, etc.
  • compositions such as injections the solution or suspension is disinfected (it would be good to add suitable amount of sodium chloride, glucose, or glycerol) , and then formulated as osmotic injections.
  • the injections can be prepared in a manner well known in the pharmaceutical art by using excipients, such as, water, ethanol, propane diol, ethoxy stearic alcohol and polyvinylsorbitol ester and polyoxyethylene sorbitan monooleate, etc.
  • the injections can contain commonly used solubilizers, buffering agents, and analgesic agents, etc.
  • the sulfonylaminocarbonyl derivatives of the formula I and/or a pharmaceutically acceptable salt thereof of any embodiment disclosed herein in the pharmaceutical composition can be effective over a wide range without a specific limitation, usually the amount of the active ingredient can be in a range of 10-90%w/w of the total mass of the composition, such as in a range of 30-80%w/w.
  • compositions can be administered in a unit dosage form without specific limitation.
  • the chosen dosage of administration is dependent upon the age, weight and sex of the individual patients, and other circumstances and the severity of the patient’s symptoms.
  • the dose forms can be tablets, pills, solutions, suspensions, emulsions, particles, or capsules; injections can be administered alone, or incorporated with injectable solutions (such as glucose or amino acid solutions) for intravenous injections; suppositories are administered into the rectum.
  • a pharmaceutical composition comprising 1) a compound of formula I, I-1, IA, IB, IA-1 ⁇ IA-5, IB-1 ⁇ IB-5, and/or stable isotope derivatives thereof, and/or a pharmaceutically acceptable salt thereof, and/or prodrugs thereof, and 2) a pharmaceutically acceptable excipient, further comprising one or more additional pharmaceutical agents for treating cholestasis, intrahepatic cholestasis, estrogen-induced intrahepatic cholestasis, drug-induced cholestasis, intrahepatic cholestasis of pregnancy (ICP) , parenteral nutrition associated cholestasis (PNAC) , primary biliary cirrhosis (PBC) , primary sclerosing cholangitis (PSC) , progressive familial intrahepatic cholestasis (PFIC) , non-alcoholic fatty liver disease (NAFLD) , non-alcoholic steatohepatitis (NASH) , chemotherapy
  • a sulfonylaminocarbonyl derivative of the formula I and/or a pharmaceutically acceptable salt thereof any embodiment disclosed herein or use of the pharmaceutical composition disclosed herein is not especially limited, provided is an use of a sulfonylaminocarbonyl derivative of the formula I and/or a pharmaceutically acceptable salt thereof of any embodiment disclosed herein or an use of the pharmaceutical composition disclosed herein in treating FXR and/or TGR5-associated diseases.
  • the vitro assay showed that the aryl sulfonamido derivatives of the formula I and/or a pharmaceutically acceptable salt thereof of any embodiment disclosed herein with valuable pharmacological properties thus can be used as a drug.
  • a compound of formula I, and/or a pharmaceutical acceptable salt thereof for using as a farnesoid X receptor (FXR) and/or G protein-coupled bile acid receptor 1 (TGR5) modulator which can modulate the activities of FXR and/or TGR5, and can be used in the treatment of FXR and/or TGR5 mediated diseases, wherein the described FXR and/or TGR5 modulator including but are not limited to FXR and/or TGR5 agonist and FXR and/or TGR5 partial agonist, wherein the described diseases are metabolic disorder associated disease caused by carbohydrate metabolism, lipid metabolism, energy metabolism, or bile acid metabolism disorder or immune disease, inflammatory respond or cancer, etc., wherein said diseases include but are not
  • the metabolism disorder associated diseases include but are not limited to: cholestasis, intrahepatic cholestasis, estrogen-induced intrahepatic cholestasis, drug-induced cholestasis, intrahepatic cholestasis of pregnancy (ICP) , parenteral nutrition associated cholestasis (PNAC) , primary biliary cirrhosis (PBC) , primary sclerosing cholangitis (PSC) , progressive familial intrahepatic cholestasis (PFIC) , non-alcoholic fatty liver disease (NAFLD) , non-alcoholic steatohepatitis (NASH) , chemotherapy related steatohepatitis (CASH) , drug induced bile duck injury, liver cirrhosis, alcohol induced liver cirrhosis, cystic fibrosis, bile duct obstruction, cholelithiasis, hepatic fibrosis, dyslipidemia,
  • immune disease and/or inflammatory respond include but are not limited to: allergies, arthritis, appendicitis, bronchial asthma, acute pancreatitis, allergic dermatitis, psoriasis, etc; inflammation bowel disease (Crohn's disease, ulcerative colitis) , short bowel syndrome (radiation colitis) , micro colitis, irritable bowel syndrome, bacteria overgrowth of digestive tract diseases; and rheumatoid arthritis, multiple sclerosis, type I diabetes, fibrosis, etc.
  • cancer include but are not limited to: colorectal cancer, liver cancer, liver cancer, bile duct cancer, renal carcinoma, gastric cancer, pancreatic cancer, prostate cancer, brain cancer, etc.
  • a compound of formula I is a FXR agonist. In some embodiments a compound of formula I is a TGR5 agonist. In some embodiments a compound of formula I is a FXR and TGR5 co-agonist. In some embodiments a compound of formula I is a FXR partial agonist or partial modulator.
  • Method 1 the synthetic methods for compounds IA include: compounds 1A are reacted with their corresponding sulfonamides under the condition of existence of base and condensation reagent in a proper solvent to give IA.
  • reaction conditions and procedures are commonly used condensation reaction conditions and procedures well known in the art
  • solvents used in the described condensation reactions are preferred dichloromethane
  • condensation reagents are preferred EDCI
  • the bases are preferred DIPEA and TEA
  • the reaction temperature can be ranged from 0 to 30°C
  • the reaction time can be ranged from 0 to 24h
  • DMAP can be used in the described condensation reactions to catalyzed reaction.
  • compounds IA can be obtained though other procedures via compounds 1A are reacted with oxalyl chloride or thionyl chloride to afford acyl chlorides, which are further reacted with sulfonamides under the condition of existence of base (such as, DIPEA or TEA) in protic solvent (such as dichloromethane) to afford IA.
  • base such as, DIPEA or TEA
  • protic solvent such as dichloromethane
  • Method 2 the synthetic methods for compounds IB include: 1) compounds 1A are reacted with their corresponding sulfonamides under the condition of existence of base and condensation reagent in a proper solvent to give IB; 2) compounds 1B are reacted with their corresponding acyl chlorides under the condition of existence of base in a proper solvent to give IB.
  • reaction conditions and procedures are commonly used reaction conditions and procedures well known in the art.
  • the deprotection reaction can be done in the following commonly used conditions, for example, p-tuluenesulfonic acid/methanol, TFA/CH 2 Cl 2 , saturated HCl/ether, or trimethylsilyl trifluoromethanesulfonate /2, 6-lutidine /CH 2 Cl 2 ; Any appropriate hydroxyl protecting group, such as benzyl, can be used in the above reactions. If benzyl is used as protecting group, the deprotection reaction can be done in the following commonly used conditions, for example, palladium-carbon catalyst and hydrogen system.
  • carboxylic acid protecting group such as forming carboxylic acid methyl ester or carboxylic acid ethyl ester
  • the deprotection reaction can be done in the following commonly used conditions, for example, a mixture of NaOH, KOH, or LiOH in a single or mixed solvent of methanol, ethanol, THF, or water.
  • alkyl refers to a saturated aliphatic hydrocarbon group including 1 to 20 carbon atoms straight chain and branched chain groups.
  • an alkyl group is a moderate size alkyl having 1 to 10 carbon atoms, more preferably having 1 to 8 carbon atoms.
  • alkyl include, but are not limited to: methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, and n-decyl , 4, 4-dimethylpentyl, 2, 2, 4-trimethylpentyl, undecanyl, docecanyl, and their isomers.
  • an “alkyl” group is a linking group between two moieties, such as - (CH 2 ) m -, then it may also be a straight or branched chain; examples include, but are not limited to -CH 2 - ⁇ -CH 2 CH 2 - ⁇ -CH 2 CH (CH 3 ) -.
  • cycloalkyl refers to a saturated or partially unsaturated monocyclic or polycyclic cycloalkyl ring group containing 3 to 20 carbon atoms, and the C atoms can be oxidized in the cyclic ring system.
  • “mono-cycloalkyl” are cyclic hydrocarbon groups containing 3 to 20 carbon atoms, more preferably having 3 to 10 carbon atoms, examples of monocyclic cycloalkyl include, but are not limited to: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecanyl, cyclodocecanyl, and cyclohexenyl.
  • polycyclic cycloalkyl is preferred to “bi-cycloalkyl” , which includes “bridged bicycloalkyl” , “fused bicycloalkyl” and “spiro cycloalkyls” .
  • bridged cycloalkyl contains a monocyclic cycloalkyl ring where two non-adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of one to three additional carbon atoms (i.e. a bridging group of the form - (CH 2 ) q -, where q is 1, 2, or 3) .
  • bridged cycloalkyl include, but are not limited to, bicyclo [2.2.1] heptyl, bicyclo [3.1.1] heptyl, bicyclo [2.2.1] heptyl, bicyclo [2.2.2] octyl, bicyclo [3.2.2] nonyl, bicyclo [3.3.1] nonyl, bicycle [4.2.1] nonyl, etc.
  • “fused cycloalkyl” contains a monocyclic cycloalkyl ring fused to either a phenyl, a cycloalkyl, or a heteroaryl.
  • Representative fused bicycloalkyl include, but are not limited to, bicyclo [4.2.0] octa-1, 3, 5-triene, 2, 3-dihydro-1H-indene, 6, 7-dihydro-5H-cyclopenta [b] pyridine, 5, 6-dihydro-4H-cyclopenta [b] thiophene, and decahydronaphthalene, etc.
  • “Spiro cycloalkyl” contains two monocyclic ring systems which share a carbon atom forming a biclyclic ring system.
  • Representative spiro cycloalkyls include, but are not limited to, etc.
  • polycyclic cycloalkyl are more preferably having 7 to 12 carbon atoms, mono-cycloalkyl or polycyclic cycloalkyl is attached to the parent molecular moiety through any carbon atom contained within the cycloalkyl ring.
  • 3-to 10-membered cycloalkyl refers to a 3-to 10-membered mono-cycloalkyl, bridged cycloalkyl, fused cycloalkyl or spiro cycloalkyl.
  • heterocycloalkyl refers to mono-heterocycloalkyl or a polycyclic heterocycloalkyl, which is a saturated or partially unsaturated (containing 1 or 2 double bonds) non-aromatic ring system consisting of carbon atoms and at least one heteroatom independently selected from O, N, and S.
  • the heterocyclyl preferably contains 1, 2, 3, or 4 heteroatoms, and the N, C or S can independently be oxidized in the cyclic ring system.
  • the N atom can further be substituted to form tertiary amine or ammonium salts.
  • heterocycloalkyl is preferred to be 3-to 12-membered heterocycloalkyl, is more preferred to be 3-to 10-membered heterocycloalkyl. “mono-heterocycloalkyl” is preferred to be 3-to 10-membered monocyclic heterocycloalkyl, is more preferred to be 3-to 8-membered monocyclic heterocycloalkyl.
  • Representative examples include: aziridinyl, tetrahydrofuran-2-yl, morpholin-4-yl, thiomorpholin-4-yl, thiomorpholin-4-yl-S-oxide, piperidin-1-yl, N-alkyl-piperidin-4-yl, pyrrolidin-1-yl, N-alkyl-pyrrolidin-2-yl, pyrazin-1-yl, and 4-alkyl-pyrazin-1-yl, etc.
  • polycyclic heterocycloalkyl is preferred “bi-heterocycloalkyl”
  • polycyclic heterocycloalkyl includes “bridged heterocycloalkyl” , “fused heterocycloalkyl” , and “spiro heterocycloalkyl”
  • bridged heterocycloalkyl refers to a monocyclic heterocycloalkyl ring where two non-adjacent ring atoms are linked by a bridge linker, said bridge linker is selected from one to three additional carbon atoms or heteroatoms
  • the described linkers include, but are not limited to: -CH 2 -, -O-, -NH-, -S-, -CH 2 CH 2 -, -CH 2 O-, -CH 2 S-, -CH 2 NH-, -CH 2 CH 2 CH 2 -, -CH 2 OCH 2 -, -CH 2 CH 2 O-, -CH 2 CH 2 NH-
  • said bridged heterocycloalkyl includes, but is not limited to: 2-oxabicyclo [2.2.1] heptyl, 2-azabicyclo [2.2.1] heptyl, 3-azabicyclo [3.2.1] octyl, 6-azabicyclo [3.2.1] octyl, 8-azabicyclo [3.2.1] octyl, 1-azabicyclo [2.2.2] octyl, 2-azabicyclo [2.2.2] octyl, 3-azabicyclo [3.3.1] heptyl, 3-oxabicyclo [3.2.1] heptyl, 8-azabicyclo [3.2.1] nonyl, etc.
  • fused heterocycloalkyl contains a mono-heterocycloalkyl ring which is fused to a phenyl, a mono-cycloalkyl, a mono-heterocycloalkyl, or a mono-heteroaryl.
  • fused bi-heterocycloalkyl include, but are not limited to, 2, 3-dihydrobenzofuranyl, 1, 3-dihydroisobenzofuranyl, indolinyl, 2, 3-dihydrobenzo [b] thiophenyl, 4H-chromenyl, 1, 2, 3, 4-tetrahydroquinolinyl, benzo [d] [1, 3] dioxolyl, etc.
  • “Spiro heterocycloalkyl” contains two mono-heterocycloalkyl or one mono-cycloalkyl and one mono-heterocycloalkyl which share a carbon atom to form a biclyclic ring system.
  • Representative spiro heterocycloalkyl includes, but is not limited to, etc. wherein, the polycyclic heterocycloalkyl prefers 7 to 12 membered polycyclic heterocycloalkyl.
  • Mono-heterocycloalkyl or polycyclic heterocycloalkyl is appended to the parent molecular moiety through any ring atom contained within the ring system.
  • ring atoms are specifically referred to the carbon and/or nitrogen atoms which form the cyclic ring skeleton.
  • “3-to 10-membered heterocycloalkyl” refers to a 3-to 10-membered mono-heterocycloalkyl, bridged heterocycloalkyl, fused heterocycloalkyl or spiro heterocycloalkyl.
  • cycloalkylalkyl refers to a cycloalkyl, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
  • cycloalkylalkyl include the definitions of the above alkyl and cycloalkyl.
  • heterocycloalkylalkyl refers to a heterocyloalkyl, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein.
  • heterocycloalkylalkyl include the definitions of the above alkyl and heterocycloalkyl.
  • alkoxy refers to an alkyl, cycloaklyl or heterocycloalkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom.
  • Alkoxy groups include alkyloxy, cycloalkyloxy, and heterocycloalkyloxy. Wherein, “alkoxy” includes the definitions of the above alkyl, heterocycloalkyl, and cycloalkyl.
  • cycloalkylalkoxy refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by a cycloalkyl.
  • cycloalkylalkoxy includes the definitions of the above cycloalkyl and alkoxy.
  • heterocycloalkylalkoxy refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by a heterocycloalkyl.
  • heterocycloalkylalkoxy includes the definitions of the above heterocycloalkyl and alkoxy.
  • alkenyl refers to a straight, branched chain or cyclic non-aromatic hydrocarbon ring containing from 1 to 3 carbon-carbon double bonds, preferable one carbon-carbon double bond.
  • Representative examples of alkenyl include, but are not limited to, vinyl, 2-propenyl, 2-butenyl, 2-methylbutenyl and cyclohexenyl.
  • C 2-4 alkenyl means alkenyl containing 2 to 4 carbon atoms.
  • alkynyl refers to a straight, branched chain or cyclic non-aromatic hydrocarbon ring containing from 1 to 3 carbon-carbon triple bonds, preferable one carbon-carbon triple bond.
  • Representative examples of alkynyl include, but are not limited to, ethynyl, 2-propynyl, 2-butynyl, and 3-methylbutynyl.
  • C 2-4 alkynyl means alkynyl containing 2-4 carbon atoms.
  • aryl refers to any stable 6 to 10 membered mono or bicyclic aromatic group, for example, phenyl, naphthyl, tetrahydronaphthyl, 2, 3-dihydro-1H-indenyl, or biphenyl, etc.
  • C 6 aryl refers to phenyl.
  • heteroaryl refers to a 5-to 7-membered monocyclic heteroaryl or a 7-to 12-membered bicyclic ring group containing at least one heteroatom independently selected from O, N, and S.
  • the monocyclic heteroaryl prefers a 5-to 6-membered ring.
  • the bicyclic heteroaryl prefers a 7-to 12-membered heteroaryl.
  • the number of heteroatoms prefers to be 1, 2 or 3.
  • heteroaryls include, but are not limited to, pyrrolyl, imidazolyl, 1, 2, 4-triazolyl, 1, 2, 3-triazolyl, tetrazolyl, pyridyl, pyrimidyl, indazolyl, isoindazolyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, benzo [d] [1, 3] dioxolyl, benzothiazolyl, quinolinyl, isoquinolinyl, and quinazolinyl, etc.
  • arylalkyl refers to an aryl group, as defined herein, appended to the parent molecular moiety through an alkyl. Wherein, “arylalkyl” includes the definitions of the above alkyl and aryl.
  • heteroarylalkyl refers to a heteroaryl group, as defined herein, appended to the parent molecular moiety through an alkyl.
  • heteroarylalkyl includes the definitions of the above alkyl and heteroaryl.
  • arylalkoxy refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by an aryl. Wherein, “arylalkoxy” includes the definitions of the above aryl and alkoxy.
  • heteroarylalkoxy refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by a heteroaryl. Wherein, “heteroarylalkoxy” includes the definitions of the above heteroaryl and alkoxy.
  • halo or halogen refers to Cl, Br, I or F.
  • haloalkyl refers to an alkyl group as defined herein, is substituted by at least one halogen, as defined herein. Wherein, “haloalkyl” includes the definitions of the above halogen and alkyl.
  • haloalkoxy means an alkoxy group as defined herein, is substituted by at least one halogen, as defined herein. Wherein, “haloalkoxy” includes the definitions of the above halogen and alkoxy.
  • amino refers to -NH 2 .
  • aminoalkyl refers to an alkyl group wherein any one of hydrogen atom is substituted with an amino group. Wherein, “aminoalkyl” includes the definitions of the above alkyl and amino.
  • hydroxyl refers to -OH.
  • hydroxyalkyl refers to an alkyl group wherein any one of hydrogen atom is substituted with a hydroxyl group. Wherein, “hydroxyalkyl” includes the definitions of the above alkyl and hydroxyl.
  • sulfonyl refers to -S (O) 2 -, wherein said sulfonyl comprises alkyl sulfonyl, cycloalkyl sulfonyl, heterocycloalkyl, aryl sulfonyl, and heteroaryl sulfonyl, which refers to a alkyl, cycolalkyl, heterocycloalkyl, aryl or heteroaryl attached to the parent molecular moiety through -S (O) 2 -, wherein said “alkyl sulfonyl, cycloalkyl sulfonyl, heterocycloalkyl, aryl sulfonyl, and heteroaryl sulfonyl” include the definitions of the above alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl and sulfonyl.
  • sulfonylaminocarbonyl refers to wherein R and R 12 are as described before. “sulfonylaminocarbonyl” can be appended to the parent molecular moiety through the carbon atom of the carbonyl group or through the sulfur atom of the sulfonyl group.
  • -OC 6 H 8 O 6 H refers to a hexuronic acid which is appended to the parent molecular moiety through an O-glycosidic bond, such as,
  • room temperature refers to 15-30 °C.
  • the compound of formula (I) as well as any embodiment thereof includes isotope-labelled derivatives thereof.
  • the described isotope-labeled derivatives include: the hydrogen atom (1 to 5) of a compound of formula (I) is substituted by 1 to 5 deuterium atoms, respectively; the carbon atom (1 to 3) of a compound of formula (I) is substituted is substituted by 1 to 3 C 14 atoms; or the oxygen atom of a compound of formula (I) is substituted by 1 to 3 O 18 atoms.
  • prodrug refers to compound which can be transformed to the original active compound after in vivo metabolism.
  • prodrug is not an active material, or is less active than the parent compound, but can provide convenient manipulation, administration, or improving metabolic properties.
  • compound as used herein is intended to include prodrug thereof to the extent they can be made by one of ordinary skill in the art by routine experimentation.
  • pharmaceutically acceptable salts as used herein, has been discussed in Berge, et al., “Pharmaceutically acceptable salts” , J. Pharm. Sci., 66, 1-19 (1977) , and is apparent to all the medicinal chemists.
  • the defined pharmaceutically acceptable salts are generally not toxic, and can provide needed pharmacokinetic properties, orally bioavailable, and ADME properties.
  • the pharmaceutically acceptable salts as used herein is synthesized by conventional chemical methods.
  • the salt described above can be prepared by reacting the free acid or base forms of these compounds with stoichiometric amount of the base or acid in an appropriate solvent or a solvent mixture.
  • solvates refers to a corresponding solvate of the present disclosure compound or salts thereof, formed from the combination of stoichiometric amount or non-stoichiometric amount of solvent molecules with the present disclosure compound or a salt thereof (or ions of the solute) .
  • the solvent is water
  • the solvate may be simply referred to as a hydrate
  • the solvent is ethanol
  • the solvate may be referred to as an ethanol solvate
  • hydrate refers to one or more water molecules combined with the compound of the present disclosure, for example, a mono-hydrate, a di-hydrate, a tri-hydrate, etc.
  • the compounds of the present disclosure may have asymmetric centers, creating “isomers. ”
  • stereoisomers for example, they contain one or more chiral carbons
  • individual stereoisomers enantiomers and diastereoisomers
  • mixtures enantiomeric and diastereomeric mixtures
  • the present disclosure includes individual stereoisomers, and mixtures of these stereoisomers of compounds of formula (I) and there salts of any embodiment disclosed herein, in which the configurations of one or more chiral carbons are inverted.
  • the disclosure includes all of the possibilities of the enantiomeric and diastereomeric mixtures, herein, the diastereomers include cis/trans isomers.
  • present disclosure includes all of the combinations of the stereoisomers of all of the above defined specific groups.
  • the analytical low-resolution mass spectra (MS) were recorded on Agilent 1200HPLC/6120 using a XBridge C18, 4.6 ⁇ 50 mm, 3.5 um using a gradient elution method.
  • the gradient elution method 1 is: 80-5% (v/v%) solvent A 1 and 20-95% (v/v%) solvent B 1 (1.8min) , then 95% (v/v%) solvent B 1 and 5% (v/v%) solvent A 1 (more than 3 mins) .
  • “v/v%” as used herein, means volume percentage.
  • Solvent A 1 0.01%TFA aqueous solution, B1: acetonitrile;
  • the gradient elution method 2 is: 80-5% (v/v%) solvent A 2 and 20-95% (v/v%) solvent B 2 (1.5min) , then 95% (v/v%) solvent B 2 and 5% (v/v%) solvent A 2 (more than 2min) .
  • “v/v%” as used herein, means volume percentage.
  • Solvent A 2 10 mM ammonium bicarbonate aqueous solution; Solvent B 2 : acetonitrile.
  • Flash chromatography was performed on Agela Technologies MP200 (flash system/Cheetah TM ) , the corresponding column was Flash columm (Silica-CS80g) , Cat No. CS140080-0.
  • CDCA chenodeoxycholic acid
  • TMSCN trimethylsilane cyanide
  • DIPEA N, N-diisopropylethylamine
  • Step 3 synthesis of compound 1.3
  • Compound 6.1 was prepared according to Example 2 compound 2.3, by using compound 3.2 as a starting material.
  • Example 7 synthesis of compounds 7.1 and 7.2
  • Step 1 synthesis of 2, 6-dimethylpyridine-3-sulfonyl chloride
  • pyridine-3-sulfonamide (8.2) , thiophene-3-sulfonamide (8.3) , methyl 5-sulfamoyl picolinate (8.4) , 6- (trifluoromethyl) pyridine-3-sulfonamide (8.5) , 6-methoxypyridine-3-sulfonamide (8.6) , 6-phenylpyridine-3-sulfonamide (8.7) , 2-isopropylbenzenesulfonamide (8.8) , 2- (tert-butyl) benzenesulfonamide (8.9) , 2, 4-bis (trifluoromethyl) benzenesulfonamide (8.10) , 2-fluoro-6- (trifluoromethyl) benzenesulfonamide (8.11) , 2-methyl-6- (trifluoromethyl) benzenesulfonamide (8.12) , and methyl 4-sulfamoylbenzoate (8.13) were prepared according to compound 8.1, by using
  • Compound 2-2 was prepared according to Example 12 compound 2-1, by using compound 1-50 as a starting material.
  • Compound 3-1 was prepared according to Example 10 compound 1-1, by using compound 1.7 and corresponding sulfonamide as starting materials.
  • Compound 6-1 was prepared according to Example 10 compound 1-1, by using compound 4.3 and corresponding sulfonamide as starting materials.
  • Compound 7-3 was prepared according to Example 19 compound 7-2, by using compound 5.3 and corresponding acyl chloride as starting materials.
  • Compound 8-3 was prepared according to Example 18 compound 7-1, by using compound 7.1 and corresponding acyl chloride as starting materials.
  • FXR agonist screening used TR-FRET (Time-resolved fluorescence resonance energy transfer) method bioassay.
  • TR-FRET Time-resolved fluorescence resonance energy transfer
  • the method measures ability of compounds to regulate the interaction between FXR ligand binding domain protein (LBD) and its biotin-labeled coenzyme polypeptide (SRC-1) .
  • Binding of a ligand to the FXR ligand binding domain changes the conformational in this area, resulting in binding to its coenzyme SRC-1 in high affinity.
  • the photon energy excited from one fluorophore can transferred to another fluorophore, which induces the latter to generate fluorescence that can be detected.
  • Compounds with higher affinity for FXR the stronger the signal induced fluorescence.
  • the compounds were tested in GAL4 luciferase reporter gene assay in HepG2 liver cells.
  • the HepG2 liver cells were inoculated at 60,000 per well in 96-well plates, and pBIND-FXR_LBD (50 ng) and pGL5Luc (50 ng) were co-transfected into HepG2 cells by transfection reagent FuGENE (Promega) .
  • FuGENE Promega
  • HEK293 cells overexpressing human TGR5 were resuspended in Stimulation Buffer (HBSS 1X (Invitrogen) containing 5mM HEPES (Invitrogen) , 0.1%BSA (PerkinElmer) and 0.5mM IBMX (Sigma) ) at a concentration of 10, 000 cells /6 ⁇ L /well.
  • Stimulation Buffer HBSS 1X (Invitrogen) containing 5mM HEPES (Invitrogen) , 0.1%BSA (PerkinElmer) and 0.5mM IBMX (Sigma)
  • HBSS 1X Invitrogen
  • BSA PerkinElmer
  • IBMX IBMX

Abstract

This disclosure is related to a sulfonylaminocarbonyl derivative of formula (I) and/or a pharmaceutically acceptable salt thereof, a pharmaceutical composition comprising the sulfonylaminocarbonyl derivatives of formula (I) and/or a pharmaceutically acceptable salt thereof, preparation methods thereof, and use thereof in treating FXR and/or TGR5 mediated diseases, including primary biliary cirrhosis, nonalcoholic fatty liver, portal hypertension, bile acid diarrhea and cholestasis, type II diabetes and obesity, etc.

Description

Sulfonylaminocarbonyl Derivative, Pharmaceutical Composition and Uses Thereof FIELD OF THE INVENTION
The present invention relates to new sulfonylaminocarbonyl derivatives, isomers, prodrugs, pharmaceutical accept salts, stable isotope derivatives, pharmaceutical compositions containing the same, preparation method and uses thereof.
BACKGROUND OF THE INVENTION
Farnesoid X Receptor (FXR) belongs to a member of nuclear hormone receptor super family, which is one of the ligand-activated transcription factors. This super family includes steroid receptors, retinoid receptors and thyroid hormone receptors. FXR is widely present in the liver, intestine, kidney, adrenal gland and other bile acids presenting tissues. Bile acids, or their glycine and taurine conjugates, are known endogenous ligands for FXR. Bile acids, including chenodeoxycholic acid (CDCA) , deoxycholic acid (DCA) , and lithocholic acid (LCA) , bind to and activate FXR receptor at physiological concentrations. FXR plays an important role in regulating bile acid homeostasis, carbohydrate metabolism, and lipid metabolism.
Bile acids are metabolites of cholesterol, which are synthesized in the liver and secreted into the duodenum of the intestine. They play important roles in increasing solubility and absorption of dietary lipids and vitamins. Most of the bile acids in the ileum then returned to the liver by enterohepatic circulation. In the liver, conversion of cholesterol to bile acids is regulated by a feedback mechanism. Bile acids down-regulate cytochrome P450 CYP7A transcription, which encodes an enzyme that catalyzes the biosynthesis of bile acids in the rate-limiting step. In the ileum, bile acids increase the production of bile acid binding protein (IBABP) . Through binding to bile acids with high affinity, cytoplasmic protein IBABP plays a role in bile acids cellular uptake and transport. In short, in bile acid and cholesterol homeostasis, FXR is involved in stimulating IBABP while suppressing CYP7A expression.
FXR is involved in many physiological processes playing a major role in controlling hepatic lipid, cholesterol and carbohydrates metabolism (Inflamm Res. 2015, 64, 9-20) , including liver cholestasis, cholelithiasis, glucose metabolism, intestinal epithelial protection, liver cell regeneration, intestinal and liver tumor formation, kidney disease caused by diabetes, improve erectile dysfunction, vascular reactivity regulation, inhibition of pulmonary inflammation and infection and so on. Because of these different physiological functions, FXR is a valuable potential drug target. Many synthetic FXR agonists have been synthesized (Current Topics in Medicinal Chemistry, 2014, 14, 2188-2205) . FXR agonists seem to have a specific liver protection effect, and can prevent fat accumulation in the liver and reduce liver fibrosis and inflammation. FXR agonists currently in clinical development are mainly for the treatment of severe liver disease, including primary biliary cirrhosis (PBC, one kind of  cholestasis caused by chronic inflammation of the liver) , nonalcoholic fatty liver disease (NAFLD) , non-alcoholic hepatitis (NASH) , liver cell regeneration, and inflammatory bowel disease (IBD) , and so on.
In addition to regulating the enterohepatic circulation, triglycerides, cholesterol and other liver-specific functions, bile acids also regulate energy and glucose homeostasis. FXR was found to control the expression of a key cytokine FGF-15/19 in the intestine (ileum) (Cell Metab. 2005, 2, 217) . FGF-15/19 has the functions of sensitizing insulin, reducing weight and lowering lipid, thereby further extends the use of FXR agonists to all other FGF15 /19 responding tissues.
Besides activating FXR, bile acids and secondary bile acids (such as LCA) can also activate the four other nuclear hormone receptors (PXR, CAR, VDR, and FXRS) and an important G protein-coupled receptor TGR5 (also known as GPBAR1 or M-BAR) . Expression of TGR5 is organ specific. TGR5 is highly expressed in endocrine glands, on the plasma membrane of liver, adipose tissue, skeletal muscle cells, immune organs, spinal cord, intestines and nervous system. TGR5 promotes the secretion of glucagon-like peptide (GLP-1) and the production of cAMP , thereby achieving its role in a series of cellular and physiological activities by regulating metabolism of lipid and glucose, and energy homeostasis and so on (Br J Pharmacol, 2012, 165: . 414-423) . Activation of TGR5 can control blood sugar; regulate lipid homeostasis, increase energy expenditure, and play a role of anti-cancer and anti-inflammatory effects, and so on. Thus TGR5 is expected to become a drug target for the treatment of a range of metabolic diseases, autoimmune diseases, inflammatory diseases and cancer.
Role of TGR5 in bile acid metabolism has been confirmed on TGR5 knockout mice. Compared to wild-type mice, Bile acid level in TGR5 knockout mice was significantly reduced by 21%to 25%, indicating TGR5 promote bile acid homeostasis. Activation of TGR5 also increases expression of endothelial nitric oxide enzyme (Trends Pharmacol Sci, 2009, 30, 139-159) , which may limit liver toxicity caused by bile acids and peroxidation of lipid. In addition, TGR5 is involved in sugar and energy metabolism. TGR5 agonists are expected to be used for the potential treatment of type-2 diabetes and obesity (Animal Cells and Systems, 2014, 18, 359-364) . TGR5 also found to regulate inflammatory cytokines monocytes, suggesting that TGR5 is closely involved in the regulation of immune and inflammatory response of human diseases.
Recent studies show that FXR and TGR5 play an important role in regulating glucose and lipid metabolism, energy and bile homeostasis. Therefore, FXR and TGR5 are emerging as attractive targets for the treatment of the metabolic syndrome, diabetes, abnormal blood lipid disorders, atherosclerosis, cholestasis and other liver diseases. Although further studies of these two targets are being investigated, there is no marketed drug that targets these two targets; therefore there is still an unmet medical need to develop such drugs.
SUMMARY OF THE INVENTION
The present disclosure relates to new sulfonylaminocarbonyl derivatives, solvates, isomers, prodrugs, pharmaceutical accept salts, stable isotope derivatives, pharmaceutical compositions containing the same, preparation methods and uses thereof, particular for their pharmaceutical use for modulating the activity of farnesoid X receptor (FXR) and/or G protein-coupled bile acid receptor 1 (TGR5) .
Provided is a compound of formula (I) and/or isomers, prodrugs, solvates, stable isotope derivatives thereof, and/or a pharmaceutically acceptable salt thereof;
Figure PCTCN2016080331-appb-000001
Wherein, A2 is -C (O) N (R12) S (O) 2-, or -S (O) 2N (R12) C (O) -;
A1 is a bond, or - (CH2n-; n is 1, 2, 3, or 4;
L is a bond, or -CHR9-;
R is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl, or -NR10R10a, provided that when A2 is -S (O) 2N (R12) C (O) -, R is not selected form -NR10R10a
R1 is independently hydrogen, hydroxyl, substituted or unsubstituted alkyl, or halogen;
R2 is independently hydrogen, substituted or unsubstituted alkyl, or hydroxyl;
R3 is independently hydrogen, substituted or unsubstituted alkyl, 2-propenyl or halogen;
R4 and R5 are independently hydrogen, hydroxyl, -OC (O) CH3, -OS (O) 3H, -OP (O) 3H, -P (O) 3H2, or -OC6H8O6H; or R4 and R5 are taken together to form a carbonyl;
R6 and R6’a re independently hydrogen, or hydroxyl;
R7 is independently hydrogen, hydroxyl, alkoxy, or halogen;
R8 is independently hydrogen, or substituted or unsubstituted alkyl;
R9 is independently hydrogen, substituted or unsubstituted alkyl, aryl, or heteroaryl; or R8 and R9 together with the carbon atom to which they are attached, form a 3-to 6-membered cycloalkyl ring.
In some embodiments, R is substituted or unsubstituted C1-6alkyl, substituted or unsubstituted C3-10cycloalkyl, substituted or unsubstituted 3-to 10-membered heterocycloalkyl,  substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted 5-to 10-membered heteroaryl, substituted or unsubstituted C3-10cycloalkyl C1-3alkyl, substituted or unsubstituted 3-to 10-membered heterocycloalkylC1-3alkyl, substituted or unsubstituted phenylC1-3alkyl; substituted or unsubstituted 5-to 10-membered heteroarylC1-3alkyl.
When R is substituted, it is, for example, substituted by 1 to 3 R11 at any position.
Wherein, R11 is independently halogen, hydroxyl, amino, carboxyl, -NO2, -CN, alkyl, haloalkyl, alkoxy, haloalkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, heteroarylalkyl, heterocycloalkylalkoxy, cycloalkylalkoxy, arylalkoxy, heteroarylalkoxy, C2-4alkenyl, C2-4 alkynyl, aminoalkyl, hydroxyalkyl, sulfonyl, -C (O) OR13 , -S (O) 0-2R13, -S (O) 0-2NR13R13a, -OC (O) R13, -OC (O) NR13R13a, -NR13R13a, -NHC (O) R13, -NHC (O) NR13R13a, -NHS (O) 2R13, -NHS (O) 2NR13R13a, -C (O) R13, -C (O) NR13R13a, or - (CH2nNR13R13a; and wherein the substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, or substituted heteroaryl as R11 refer to cycloalkyl, heterocycloalkyl, aryl, or heteroaryl substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, amino, C1-3 alkyl, C1-3alkoxy, halo-C1-3alkyl, and halo-C1-3alkoxy.
In some embodiments, R11 is independently halogen, hydroxyl, amino, carboxyl, -NO2, -CN, C1-6alkyl, halo-C1-6alkyl, C1-6alkoxy, halo-C1-6alkoxy, substituted or unsubstituted C3-8cycloalkyl, substituted or unsubstituted 3-to 8-membered heterocycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted 5-to 6-membered heteroaryl, C3-8cycloalkyl C1-3alkyl, 3-to 8-membered heterocycloalkylC1-3alkyl, phenylC1-3alkyl, 5-to 6-membered heteroarylC1-3alkyl, 3-to 8-membered heterocycloalkylC1-3alkoxy, C3-8cycloalkylC1-3alkoxy, phenylC1-3alkoxy, 5-to 6-membered heteroarylC1-3alkoxy, C2-4alkenyl, C2-4 alkynyl, amino-C1-6alkyl, hydroxy-C1-6alkyl, sulfonyl, -C (O) OR13 , -S (O) 0-2R13, -S (O) 0-2NR13R13a, -OC (O) R13, -OC (O) NR13R13a, -NR13R13a, -NHC (O) R13, -NHC (O) NR13R13a, -NHS (O) 2R13, -NHS (O) 2NR13R13a, -C (O) R13, -C (O) NR13R13a, or - (CH2nNR13R13a; and wherein the substituted C3-8cycloalkyl, substituted 3-to 8-membered heterocycloalkyl, substituted phenyl, or substituted 5-to 6-membered heteroaryl as R11 refer to C3-8cycloalkyl, 3-to 8-membered heterocycloalkyl, phenyl, or 5-to 6-membered heteroaryl substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, amino, C1-3 alkyl, C1-3alkoxy, halo-C1-3alkyl, and halo-C1-3alkoxy.
R13 and R13a are independently hydrogen, alkyl, haloalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl; or R13 and R13a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
In some embodiments, R13 and R13a are independently hydrogen, C1-3alkyl, haloC1-3alkyl, C3-8cycloalkyl, 3-to 8-membered heterocycloalkyl, phenyl, or 5-to 6-membered heteroaryl; or R13 and R13a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
In some embodiments, when A2 is -C (O) N (R12) S (O) 2-, R is –NR10R10a
In some embodiments, R10 or R10a in R is independently hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl, cycloalkylalkyl, or heteroalkylalkyl; or R10 and R10a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
In some embodiments, R10 or R10a in R is independently hydrogen, C1-6alkyl, C3-10cycloalkyl, 3-to 8-membered heterocycloalkyl, phenyl, 5-to 6-membered heteroaryl, C3-8cycloalkylC1-3alkyl, or 3-to 8-membered heteroalkylC1-3alkyl; or R10 and R10a together with the nitrogen atom to which they are attached, form a 4-to 8-membered mono-heterocycloalkyl ring.
In some embodiments, R12 in A2 is hydrogen or alkyl.
In some embodiments, R12 in A2 is hydrogen or C1-6alkyl.
In some embodiments, A1 is a bond, -CH2-or -CH2CH2-;
In some embodiments, L is a bond, -CH (CH3) -, 
Figure PCTCN2016080331-appb-000002
In some embodiments, R1 is hydrogen, hydroxyl, substituted or unsubstituted C1-3alkyl, or halogen.
In some embodiments, R2 is hydrogen, substituted or unsubstituted C1-3alkyl, or hydroxyl.
In some embodiments, R3 is hydrogen, substituted or unsubstituted C1-3alkyl, 2-propenyl, or halogen.
In some embodiments, R7 is hydrogen, hydroxyl, C1-3alkoxy, or halogen.
In some embodiments, R8 is hydrogen, or substituted or unsubstituted C1-3alkyl.
In some embodiments, R9 is hydrogen, substituted or unsubstituted C1-3alkyl, phenyl, or 5-to 6-membered heteroaryl; or R8 and R9 together with the carbon atom to which they are attached, form a 3-to 6-membered cycloalkyl ring.
In each embodiment, when R1, R2, R3, R8, or R9 is the substituted alkyl, it is substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, alkyl and cycloalkyl.
In some embodiments, when R1, R2, R3, R8, or R9 is the substituted C1-3alkyl, it is substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, C1-3alkyl and C3-8 cycloalkyl.
In some embodiments, the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is a compound of formula (I-1) and/or a pharmaceutically acceptable salt thereof,
Figure PCTCN2016080331-appb-000003
wherein, R1, R2, R3, R4, R5, R6, R7, R8, R9, R, A1 and A2 are the same as described for formula (I) , including each of the embodiments thereof.
In the present disclosure, the compound of formula (I-1) , wherein when R6 is hydroxyl, it can be α-OH or β-OH. In some embodiments, R6 is hydrogen or α-OH.
When R6 is hydroxyl, the stereo-configurations of R6 are as bellow:
Figure PCTCN2016080331-appb-000004
In some embodiments, the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA) and/or a pharmaceutically acceptable salt thereof, or 2) a compound of formula (IB) and/or a pharmaceutically acceptable salt thereof,
Figure PCTCN2016080331-appb-000005
wherein, R1, R2, R3, R4, R5, R6, R6’, R7, R8, R12, R, L and A1 are the same as described for formula (I) , including each of the embodiments thereof.
In some embodiments, the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA-1) and/or a pharmaceutically acceptable salt thereof, or 2) a compound of formula (IB-1) and/or a pharmaceutically acceptable salt thereof,
Figure PCTCN2016080331-appb-000006
wherein, R3, R6, R6’, R7, R8, R12, R, L and A1 are the same as described for formula (I) , including each of the embodiments thereof.
In some embodiments, the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA-2) and/or a pharmaceutically acceptable salt thereof, 2) a compound of formula (IA-3) and/or a pharmaceutically acceptable salt thereof, or 3) a compound of formula (IA-4) and/or a pharmaceutically acceptable salt thereof,
Figure PCTCN2016080331-appb-000007
wherein, R3, R7, R8, R12, R, L and A1 are the same as described for formula (I) , including each of the embodiments thereof.
In some embodiments, the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IB-2) and/or a pharmaceutically acceptable salt thereof, 2) a compound of formula (IB-3) and/or a pharmaceutically acceptable salt thereof, or 3) a compound of formula (IB-4) and/or a pharmaceutically acceptable salt thereof,
Figure PCTCN2016080331-appb-000008
wherein, R3, R7, R8, R12, R, L and A1 are the same as described for formula (I) , including each of the embodiments thereof.
In some embodiments, the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is 1) a compound of formula (IA-5) and/or a pharmaceutically acceptable salt thereof, or 2) a compound of formula (IB-5) and/or a pharmaceutically acceptable salt thereof,
Figure PCTCN2016080331-appb-000009
wherein, R12, R, L and A1 are the same as described for formula (I) , including each of the embodiments thereof.
In some embodiments, the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is selected from the following compounds:
Figure PCTCN2016080331-appb-000010
Figure PCTCN2016080331-appb-000011
Figure PCTCN2016080331-appb-000012
Figure PCTCN2016080331-appb-000013
Also provided a pharmaceutical composition comprising 1) a compound of formula I, I-1, IA, IB, IA-1~IA-5, IB-1~IB-5, and/or stable isotope derivatives thereof, and/or a pharmaceutically acceptable salt thereof, and/or prodrugs thereof, and 2) a pharmaceutically acceptable excipient. The compound of formula I and/or a pharmaceutically acceptable salt can be any embodiment thereof disclosed herein.
A pharmaceutically acceptable excipient refers to an excipient that is useful in preparing a pharmaceutical composition that is compatible with active ingredients of the composition and  not deleterious to the subject to be treated. These excipients include, for example, binders, surfactants, diluents, buffering agents, antiadherents, glidants, hydrophilic or hydrophobic polymers, retardants, stabilizing agents or stabilizers, disintegrants or superdisintegrants, antioxidants, antifoaming agents, fillers, flavors, colors, lubricants, sorbents, preservatives, plasticizers, and sweeteners. Acceptable excipients are non-toxic, aid administration, and do not adversely affect the therapeutic benefit of the compound disclosed herein. Such excipient may be any solid, liquid, semi-solid or, in the case of an aerosol composition, gaseous excipient that is generally available to one of skill in the art.
These pharmaceutical compositions can be prepared in various pharmaceutical formulations and dosage forms depending upon the therapeutic aims, for example, tablets, pills, powders, liquids, suspensions, emulsions, particles, capsules, suppositories and injections (solutions and suspensions) , etc.
The compositions such as tablets can be prepared in a manner well known in the pharmaceutical art by using excipients to make the compositions to form into shapes. Said excipients include, for example, lactose, sugar, sodium chloride, glucose, urea, starch, calcium carbonate, kaolin, crystalline cellulose, and silicic acid, etc.; binders, for example, water, ethanol, propanol, common syrup, glucose solution, starch solution, gelatin solution, carboxymethylcellulose, shellac, methylcellulose, potassium carbonate, and polyvinyl pyrrolidone, etc.; disintegrating agents, for example, dry starch, sodium alginate, agar powder, kelp powder, calcium bicarbonate, calcium carbonate, polyoxyethylene sorbitan monooleate, lauryl sodium sulfate, glycerin monostearate, starch, and lactose, etc.; agents which inhibit disintegrating, for example, sugar, tristearin, coconut oil, and hardened vegetable oil, etc.; absorbent enhancers, for example, quaternary ammonium base, and lauryl sodium sulfate, etc.; wetting agents, for example, glycerin and starch, etc.; absorbent, for example, starch, lactose, bolus alba, bentonite, and silicious colloid, etc.; lubricants, for example, pure talcum, stearate, boric acid powder, and polyethylene glycol, etc. sugar coated tablets, gelatin film coated tablets, enteric coated tablets, film coated tablets, bilayer tablets, and multi-layer tablets can be made according to need by using common coating materials.
The compositions such as pills can be prepared in a manner well known in the pharmaceutical art by using excipients to make the compositions to form into shapes. Said excipients can be carriers, for example, lactose, starch, coconut oil, hardened vegetable oil, kaolin, and talcum powder, etc.; binders, for example, gum arabic powder, gum tragacanth powder, gelatin and ethanol, etc.; disintegrating agents, for example, agar powder, and kelp powder, etc.
The compositions such as suppositories can be prepared in a manner well known in the pharmaceutical art by using excipients to make the compositions to form into shapes, such as, polyethylene glycol, coconut oil, higher alcohols, higher esters, gelatin, and semi synthesis  glyceride, etc.
To prepare compositions such as injections, the solution or suspension is disinfected (it would be good to add suitable amount of sodium chloride, glucose, or glycerol) , and then formulated as osmotic injections. The injections can be prepared in a manner well known in the pharmaceutical art by using excipients, such as, water, ethanol, propane diol, ethoxy stearic alcohol and polyvinylsorbitol ester and polyoxyethylene sorbitan monooleate, etc. In addition, the injections can contain commonly used solubilizers, buffering agents, and analgesic agents, etc.
The sulfonylaminocarbonyl derivatives of the formula I and/or a pharmaceutically acceptable salt thereof of any embodiment disclosed herein in the pharmaceutical composition can be effective over a wide range without a specific limitation, usually the amount of the active ingredient can be in a range of 10-90%w/w of the total mass of the composition, such as in a range of 30-80%w/w.
The compositions can be administered in a unit dosage form without specific limitation. The chosen dosage of administration is dependent upon the age, weight and sex of the individual patients, and other circumstances and the severity of the patient’s symptoms. The dose forms can be tablets, pills, solutions, suspensions, emulsions, particles, or capsules; injections can be administered alone, or incorporated with injectable solutions (such as glucose or amino acid solutions) for intravenous injections; suppositories are administered into the rectum.
Also provided a pharmaceutical composition comprising 1) a compound of formula I, I-1, IA, IB, IA-1~IA-5, IB-1~IB-5, and/or stable isotope derivatives thereof, and/or a pharmaceutically acceptable salt thereof, and/or prodrugs thereof, and 2) a pharmaceutically acceptable excipient, further comprising one or more additional pharmaceutical agents for treating cholestasis, intrahepatic cholestasis, estrogen-induced intrahepatic cholestasis, drug-induced cholestasis, intrahepatic cholestasis of pregnancy (ICP) , parenteral nutrition associated cholestasis (PNAC) , primary biliary cirrhosis (PBC) , primary sclerosing cholangitis (PSC) , progressive familial intrahepatic cholestasis (PFIC) , non-alcoholic fatty liver disease (NAFLD) , non-alcoholic steatohepatitis (NASH) , chemotherapy related steatohepatitis (CASH) , drug induced bile duck injury, liver cirrhosis, alcohol induced liver cirrhosis, cystic fibrosis, bile duct obstruction, cholelithiasis, hepatic fibrosis, dyslipidemia, atherosclerosis, obesity, diabetes, diabetic nephropathy, colitis, neonatal jaundice, the prevention of nuclear jaundice, venous obstruction, high blood pressure, portal hypertension, metabolic syndrome, high cholesterol blood disease, and inflammatory bowel disease. The additional pharmaceutical agents can be combined with the present compositions in a single dosage form, or can be administered simultaneously or sequentially as separate dosage forms.
Also provided use of a sulfonylaminocarbonyl derivative of the formula I and/or a  pharmaceutically acceptable salt thereof any embodiment disclosed herein or use of the pharmaceutical composition disclosed herein is not especially limited, provided is an use of a sulfonylaminocarbonyl derivative of the formula I and/or a pharmaceutically acceptable salt thereof of any embodiment disclosed herein or an use of the pharmaceutical composition disclosed herein in treating FXR and/or TGR5-associated diseases.
In some embodiments, the vitro assay showed that the aryl sulfonamido derivatives of the formula I and/or a pharmaceutically acceptable salt thereof of any embodiment disclosed herein with valuable pharmacological properties thus can be used as a drug. More specifically, a compound of formula I, and/or a pharmaceutical acceptable salt thereof for using as a farnesoid X receptor (FXR) and/or G protein-coupled bile acid receptor 1 (TGR5) modulator, which can modulate the activities of FXR and/or TGR5, and can be used in the treatment of FXR and/or TGR5 mediated diseases, wherein the described FXR and/or TGR5 modulator including but are not limited to FXR and/or TGR5 agonist and FXR and/or TGR5 partial agonist, wherein the described diseases are metabolic disorder associated disease caused by carbohydrate metabolism, lipid metabolism, energy metabolism, or bile acid metabolism disorder or immune disease, inflammatory respond or cancer, etc., wherein said diseases include but are not limited to:
In some embodiments, the metabolism disorder associated diseases include but are not limited to: cholestasis, intrahepatic cholestasis, estrogen-induced intrahepatic cholestasis, drug-induced cholestasis, intrahepatic cholestasis of pregnancy (ICP) , parenteral nutrition associated cholestasis (PNAC) , primary biliary cirrhosis (PBC) , primary sclerosing cholangitis (PSC) , progressive familial intrahepatic cholestasis (PFIC) , non-alcoholic fatty liver disease (NAFLD) , non-alcoholic steatohepatitis (NASH) , chemotherapy related steatohepatitis (CASH) , drug induced bile duck injury, liver cirrhosis, alcohol induced liver cirrhosis, cystic fibrosis, bile duct obstruction, cholelithiasis, hepatic fibrosis, dyslipidemia, atherosclerosis, obesity, diabetes, diabetic nephropathy, colitis, neonatal jaundice, the prevention of nuclear jaundice, venous obstruction, high blood pressure, portal hypertension, metabolic syndrome, high cholesterol blood disease, and inflammatory bowel disease.
In some embodiments, immune disease and/or inflammatory respond include but are not limited to: allergies, arthritis, appendicitis, bronchial asthma, acute pancreatitis, allergic dermatitis, psoriasis, etc; inflammation bowel disease (Crohn's disease, ulcerative colitis) , short bowel syndrome (radiation colitis) , micro colitis, irritable bowel syndrome, bacteria overgrowth of digestive tract diseases; and rheumatoid arthritis, multiple sclerosis, type I diabetes, fibrosis, etc.
In some embodiments, cancer include but are not limited to: colorectal cancer, liver cancer, liver cancer, bile duct cancer, renal carcinoma, gastric cancer, pancreatic cancer, prostate cancer, brain cancer, etc.
All the diseases described above are modulated by FXR and/or TGR5. In some embodiments a compound of formula I is a FXR agonist. In some embodiments a compound of formula I is a TGR5 agonist. In some embodiments a compound of formula I is a FXR and TGR5 co-agonist. In some embodiments a compound of formula I is a FXR partial agonist or partial modulator.
Further provided methods for synthesizing the sulfonylaminocarbonyl derivatives of formula (I) , which can be any of the following:
Method 1: the synthetic methods for compounds IA include: compounds 1A are reacted with their corresponding sulfonamides under the condition of existence of base and condensation reagent in a proper solvent to give IA.
Figure PCTCN2016080331-appb-000014
Herein, the reaction conditions and procedures are commonly used condensation reaction conditions and procedures well known in the art, solvents used in the described condensation reactions are preferred dichloromethane, condensation reagents are preferred EDCI, the bases are preferred DIPEA and TEA, the reaction temperature can be ranged from 0 to 30℃, the reaction time can be ranged from 0 to 24h, DMAP can be used in the described condensation reactions to catalyzed reaction. In method 1, compounds IA can be obtained though other procedures via compounds 1A are reacted with oxalyl chloride or thionyl chloride to afford acyl chlorides, which are further reacted with sulfonamides under the condition of existence of base (such as, DIPEA or TEA) in protic solvent (such as dichloromethane) to afford IA.
Method 2: the synthetic methods for compounds IB include: 1) compounds 1A are reacted with their corresponding sulfonamides under the condition of existence of base and condensation reagent in a proper solvent to give IB; 2) compounds 1B are reacted with their corresponding acyl chlorides under the condition of existence of base in a proper solvent to give IB.
Figure PCTCN2016080331-appb-000015
Herein, the reaction conditions and procedures are commonly used reaction conditions and procedures well known in the art.
Wherein, in methods 1~2, if compounds 1A, 1B or R groups contain more amino,  hydroxyl or carboxylic acid groups, then the amino, hydroxyl or carboxylic acid groups should be protected to avoid any side reactions. If amino, hydroxyl or carboxylic acid protecting groups are present, they need to be deprotected to obtain the final compound (IA or IB) . Any appropriate amino protecting group, such as t-butyloxycarbonyl group (Boc) , can be used in the above reactions. If Boc is used as protecting group, the deprotection reaction can be done in the following commonly used conditions, for example, p-tuluenesulfonic acid/methanol, TFA/CH2Cl2, saturated HCl/ether, or trimethylsilyl trifluoromethanesulfonate /2, 6-lutidine /CH2Cl2; Any appropriate hydroxyl protecting group, such as benzyl, can be used in the above reactions. If benzyl is used as protecting group, the deprotection reaction can be done in the following commonly used conditions, for example, palladium-carbon catalyst and hydrogen system. Any appropriate carboxylic acid protecting group, such as forming carboxylic acid methyl ester or carboxylic acid ethyl ester, can be used in the above reactions. The deprotection reaction can be done in the following commonly used conditions, for example, a mixture of NaOH, KOH, or LiOH in a single or mixed solvent of methanol, ethanol, THF, or water.
Unless otherwise stated, the following terms in the description and claims have the following definitions:
The term “alkyl” as used herein, refers to a saturated aliphatic hydrocarbon group including 1 to 20 carbon atoms straight chain and branched chain groups. Preferably an alkyl group is a moderate size alkyl having 1 to 10 carbon atoms, more preferably having 1 to 8 carbon atoms. Representative examples of alkyl include, but are not limited to: methyl, ethyl, n-propyl, iso-propyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, n-pentyl, n-hexyl, n-heptyl, n-octyl, n-nonyl, and n-decyl , 4, 4-dimethylpentyl, 2, 2, 4-trimethylpentyl, undecanyl, docecanyl, and their isomers. When an “alkyl” group is a linking group between two moieties, such as - (CH2m-, then it may also be a straight or branched chain; examples include, but are not limited to -CH2-、-CH2CH2-、-CH2CH (CH3) -.
The term “cycloalkyl” as used herein, refers to a saturated or partially unsaturated monocyclic or polycyclic cycloalkyl ring group containing 3 to 20 carbon atoms, and the C atoms can be oxidized in the cyclic ring system. “mono-cycloalkyl” are cyclic hydrocarbon groups containing 3 to 20 carbon atoms, more preferably having 3 to 10 carbon atoms, examples of monocyclic cycloalkyl include, but are not limited to: cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclodecanyl, cyclodocecanyl, and cyclohexenyl. “polycyclic cycloalkyl” is preferred to “bi-cycloalkyl” , which includes “bridged bicycloalkyl” , “fused bicycloalkyl” and “spiro cycloalkyls” . “bridged cycloalkyl” contains a monocyclic cycloalkyl ring where two non-adjacent carbon atoms of the monocyclic ring are linked by an alkylene bridge of one to three additional carbon atoms (i.e. a bridging group of the form - (CH2q-, where q is 1, 2, or 3) . Representative examples of bridged cycloalkyl include, but are not limited to, bicyclo [2.2.1] heptyl, bicyclo [3.1.1] heptyl, bicyclo [2.2.1] heptyl,  bicyclo [2.2.2] octyl, bicyclo [3.2.2] nonyl, bicyclo [3.3.1] nonyl, bicycle [4.2.1] nonyl, etc. “fused cycloalkyl” contains a monocyclic cycloalkyl ring fused to either a phenyl, a cycloalkyl, or a heteroaryl. Representative fused bicycloalkyl include, but are not limited to, bicyclo [4.2.0] octa-1, 3, 5-triene, 2, 3-dihydro-1H-indene, 6, 7-dihydro-5H-cyclopenta [b] pyridine, 5, 6-dihydro-4H-cyclopenta [b] thiophene, and decahydronaphthalene, etc. “Spiro cycloalkyl” contains two monocyclic ring systems which share a carbon atom forming a biclyclic ring system. Representative spiro cycloalkyls include, but are not limited to, 
Figure PCTCN2016080331-appb-000016
etc. “polycyclic cycloalkyl” are more preferably having 7 to 12 carbon atoms, mono-cycloalkyl or polycyclic cycloalkyl is attached to the parent molecular moiety through any carbon atom contained within the cycloalkyl ring. “3-to 10-membered cycloalkyl” refers to a 3-to 10-membered mono-cycloalkyl, bridged cycloalkyl, fused cycloalkyl or spiro cycloalkyl.
The term “heterocycloalkyl” refers to mono-heterocycloalkyl or a polycyclic heterocycloalkyl, which is a saturated or partially unsaturated (containing 1 or 2 double bonds) non-aromatic ring system consisting of carbon atoms and at least one heteroatom independently selected from O, N, and S. In the present disclosure, the heterocyclyl preferably contains 1, 2, 3, or 4 heteroatoms, and the N, C or S can independently be oxidized in the cyclic ring system. The N atom can further be substituted to form tertiary amine or ammonium salts. “heterocycloalkyl” is preferred to be 3-to 12-membered heterocycloalkyl, is more preferred to be 3-to 10-membered heterocycloalkyl. “mono-heterocycloalkyl” is preferred to be 3-to 10-membered monocyclic heterocycloalkyl, is more preferred to be 3-to 8-membered monocyclic heterocycloalkyl. Representative examples include: aziridinyl, tetrahydrofuran-2-yl, morpholin-4-yl, thiomorpholin-4-yl, thiomorpholin-4-yl-S-oxide, piperidin-1-yl, N-alkyl-piperidin-4-yl, pyrrolidin-1-yl, N-alkyl-pyrrolidin-2-yl, pyrazin-1-yl, and 4-alkyl-pyrazin-1-yl, etc. “polycyclic heterocycloalkyl” is preferred “bi-heterocycloalkyl” , “polycyclic heterocycloalkyl” includes “bridged heterocycloalkyl” , “fused heterocycloalkyl” , and “spiro heterocycloalkyl” ; Wherein the “bridged heterocycloalkyl” refers to a monocyclic heterocycloalkyl ring where two non-adjacent ring atoms are linked by a bridge linker, said bridge linker is selected from one to three additional carbon atoms or heteroatoms (the described linkers include, but are not limited to: -CH2-, -O-, -NH-, -S-, -CH2CH2-, -CH2O-, -CH2S-, -CH2NH-, -CH2CH2CH2-, -CH2OCH2-, -CH2CH2O-, -CH2CH2NH-, -CH2NHCH2-) . said bridged heterocycloalkyl includes, but is not limited to: 2-oxabicyclo [2.2.1] heptyl, 2-azabicyclo [2.2.1] heptyl, 3-azabicyclo [3.2.1] octyl, 6-azabicyclo [3.2.1] octyl, 8-azabicyclo [3.2.1] octyl, 1-azabicyclo [2.2.2] octyl, 2-azabicyclo [2.2.2] octyl, 3-azabicyclo [3.3.1] heptyl, 3-oxabicyclo [3.2.1] heptyl, 8-azabicyclo [3.2.1] nonyl, etc. Wherein “fused heterocycloalkyl” contains a mono-heterocycloalkyl ring which is fused to a phenyl, a mono-cycloalkyl, a  mono-heterocycloalkyl, or a mono-heteroaryl. Representative examples of fused bi-heterocycloalkyl include, but are not limited to, 2, 3-dihydrobenzofuranyl, 1, 3-dihydroisobenzofuranyl, indolinyl, 2, 3-dihydrobenzo [b] thiophenyl, 4H-chromenyl, 1, 2, 3, 4-tetrahydroquinolinyl, benzo [d] [1, 3] dioxolyl, 
Figure PCTCN2016080331-appb-000017
etc. “Spiro heterocycloalkyl” contains two mono-heterocycloalkyl or one mono-cycloalkyl and one mono-heterocycloalkyl which share a carbon atom to form a biclyclic ring system. Representative spiro heterocycloalkyl includes, but is not limited to, 
Figure PCTCN2016080331-appb-000018
Figure PCTCN2016080331-appb-000019
etc. wherein, the polycyclic heterocycloalkyl prefers 7 to 12 membered polycyclic heterocycloalkyl. Mono-heterocycloalkyl or polycyclic heterocycloalkyl is appended to the parent molecular moiety through any ring atom contained within the ring system. Herein, the ring atoms are specifically referred to the carbon and/or nitrogen atoms which form the cyclic ring skeleton. “3-to 10-membered heterocycloalkyl” refers to a 3-to 10-membered mono-heterocycloalkyl, bridged heterocycloalkyl, fused heterocycloalkyl or spiro heterocycloalkyl.
The term “cycloalkylalkyl” refers to a cycloalkyl, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Wherein, “cycloalkylalkyl” include the definitions of the above alkyl and cycloalkyl.
The term “heterocycloalkylalkyl” refers to a heterocyloalkyl, as defined herein, appended to the parent molecular moiety through an alkyl group, as defined herein. Wherein, “heterocycloalkylalkyl” include the definitions of the above alkyl and heterocycloalkyl.
The term “alkoxy” refers to an alkyl, cycloaklyl or heterocycloalkyl group, as defined herein, appended to the parent molecular moiety through an oxygen atom. Alkoxy groups include alkyloxy, cycloalkyloxy, and heterocycloalkyloxy. Wherein, “alkoxy” includes the definitions of the above alkyl, heterocycloalkyl, and cycloalkyl.
The term “cycloalkylalkoxy” as used herein, refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by a cycloalkyl. Wherein, “cycloalkylalkoxy” includes the definitions of the above cycloalkyl and alkoxy.
The term “heterocycloalkylalkoxy” as used herein, refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by a heterocycloalkyl. Wherein, “heterocycloalkylalkoxy” includes the definitions of the above heterocycloalkyl and alkoxy.
The term “alkenyl” as used herein, refers to a straight, branched chain or cyclic non-aromatic hydrocarbon ring containing from 1 to 3 carbon-carbon double bonds, preferable one carbon-carbon double bond. Representative examples of alkenyl include, but are not  limited to, vinyl, 2-propenyl, 2-butenyl, 2-methylbutenyl and cyclohexenyl. The term “C2-4alkenyl” means alkenyl containing 2 to 4 carbon atoms.
The term “alkynyl” as used herein, refers to a straight, branched chain or cyclic non-aromatic hydrocarbon ring containing from 1 to 3 carbon-carbon triple bonds, preferable one carbon-carbon triple bond. Representative examples of alkynyl include, but are not limited to, ethynyl, 2-propynyl, 2-butynyl, and 3-methylbutynyl. The term “C2-4 alkynyl” means alkynyl containing 2-4 carbon atoms.
The term “aryl” refers to any stable 6 to 10 membered mono or bicyclic aromatic group, for example, phenyl, naphthyl, tetrahydronaphthyl, 2, 3-dihydro-1H-indenyl, or biphenyl, etc. The term “C6 aryl” refers to phenyl.
The term “heteroaryl” refers to a 5-to 7-membered monocyclic heteroaryl or a 7-to 12-membered bicyclic ring group containing at least one heteroatom independently selected from O, N, and S. The monocyclic heteroaryl prefers a 5-to 6-membered ring. The bicyclic heteroaryl prefers a 7-to 12-membered heteroaryl. In the present disclosure, the number of heteroatoms prefers to be 1, 2 or 3. Representative heteroaryls include, but are not limited to, pyrrolyl, imidazolyl, 1, 2, 4-triazolyl, 1, 2, 3-triazolyl, tetrazolyl, pyridyl, pyrimidyl, indazolyl, isoindazolyl, indolyl, isoindolyl, benzofuranyl, benzothienyl, benzo [d] [1, 3] dioxolyl, benzothiazolyl, quinolinyl, isoquinolinyl, and quinazolinyl, etc.
The term “arylalkyl” , as used herein, refers to an aryl group, as defined herein, appended to the parent molecular moiety through an alkyl. Wherein, “arylalkyl” includes the definitions of the above alkyl and aryl.
The term “heteroarylalkyl” , as used hererin, refers to a heteroaryl group, as defined herein, appended to the parent molecular moiety through an alkyl. Wherein, “heteroarylalkyl” includes the definitions of the above alkyl and heteroaryl.
The term “arylalkoxy” refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by an aryl. Wherein, “arylalkoxy” includes the definitions of the above aryl and alkoxy.
The term “heteroarylalkoxy” refers to an alkyl hydrogen atom of the alkoxy group, as defined herein, is substituted by a heteroaryl. Wherein, “heteroarylalkoxy” includes the definitions of the above heteroaryl and alkoxy.
The term “halo” or “halogen” refers to Cl, Br, I or F.
The term “haloalkyl” refers to an alkyl group as defined herein, is substituted by at least one halogen, as defined herein. Wherein, “haloalkyl” includes the definitions of the above halogen and alkyl.
The term “haloalkoxy” means an alkoxy group as defined herein, is substituted by at least one halogen, as defined herein. Wherein, “haloalkoxy” includes the definitions of the above halogen and alkoxy.
The term “amino” refers to -NH2.
The term “aminoalkyl” refers to an alkyl group wherein any one of hydrogen atom is substituted with an amino group. Wherein, “aminoalkyl” includes the definitions of the above alkyl and amino.
The term “hydroxyl” refers to -OH.
The term “hydroxyalkyl” refers to an alkyl group wherein any one of hydrogen atom is substituted with a hydroxyl group. Wherein, “hydroxyalkyl” includes the definitions of the above alkyl and hydroxyl.
The term “sulfonyl” refers to -S (O) 2-, wherein said sulfonyl comprises alkyl sulfonyl, cycloalkyl sulfonyl, heterocycloalkyl, aryl sulfonyl, and heteroaryl sulfonyl, which refers to a alkyl, cycolalkyl, heterocycloalkyl, aryl or heteroaryl attached to the parent molecular moiety through -S (O) 2-, wherein said “alkyl sulfonyl, cycloalkyl sulfonyl, heterocycloalkyl, aryl sulfonyl, and heteroaryl sulfonyl” include the definitions of the above alkyl, cycloalkyl, heterocycloalkyl, aryl, heteroaryl and sulfonyl.
The term “sulfonylaminocarbonyl” refers to
Figure PCTCN2016080331-appb-000020
wherein R and R12 are as described before. “sulfonylaminocarbonyl” can be appended to the parent molecular moiety through the carbon atom of the carbonyl group or through the sulfur atom of the sulfonyl group.
The term “-OC6H8O6H” refers to a hexuronic acid which is appended to the parent molecular moiety through an O-glycosidic bond, such as, 
Figure PCTCN2016080331-appb-000021
The term “=” as used herein, refers to a double bond.
The term “room temperature” as used herein, refers to 15-30 ℃.
The compound of formula (I) as well as any embodiment thereof includes isotope-labelled derivatives thereof. The described isotope-labeled derivatives include: the hydrogen atom (1 to 5) of a compound of formula (I) is substituted by 1 to 5 deuterium atoms, respectively; the carbon atom (1 to 3) of a compound of formula (I) is substituted is substituted by 1 to 3 C14 atoms; or the oxygen atom of a compound of formula (I) is substituted by 1 to 3 O18 atoms.
The term “prodrug” as used herein, refers to compound which can be transformed to the original active compound after in vivo metabolism. In general, prodrug is not an active material, or is less active than the parent compound, but can provide convenient manipulation, administration, or improving metabolic properties. The term “compound” as used herein is intended to include prodrug thereof to the extent they can be made by one of ordinary skill in the art by routine experimentation.
The term “pharmaceutically acceptable salts” as used herein, has been discussed in Berge, et al., “Pharmaceutically acceptable salts” , J. Pharm. Sci., 66, 1-19 (1977) , and is apparent to all the medicinal chemists. The defined pharmaceutically acceptable salts are generally not toxic, and can provide needed pharmacokinetic properties, orally bioavailable, and ADME properties.
The pharmaceutically acceptable salts as used herein, is synthesized by conventional chemical methods.
Generally, the salt described above can be prepared by reacting the free acid or base forms of these compounds with stoichiometric amount of the base or acid in an appropriate solvent or a solvent mixture.
The term “solvates” refers to a corresponding solvate of the present disclosure compound or salts thereof, formed from the combination of stoichiometric amount or non-stoichiometric amount of solvent molecules with the present disclosure compound or a salt thereof (or ions of the solute) . If the solvent is water, the solvate may be simply referred to as a hydrate, if the solvent is ethanol, the solvate may be referred to as an ethanol solvate, “hydrate” refers to one or more water molecules combined with the compound of the present disclosure, for example, a mono-hydrate, a di-hydrate, a tri-hydrate, etc.
The compounds of the present disclosure may have asymmetric centers, creating “isomers. ” The term “isomers” as used herein, refers to the stereoisomers, which include, enantiomers and diastereomers, wherein cis/trans isomers belong to diastereomers. Therefore, in the present disclosure, the compounds of formula (I) can be enantiomers, diastereomers, and their mixtures, all of these stereoisomers are included in this disclosure. In the present disclosure, when compounds of formula (I) and their salts are stereoisomers (for example, they contain one or more chiral carbons) , individual stereoisomers (enantiomers and diastereoisomers) and their mixtures (enantiomeric and diastereomeric mixtures) are included in the range of this disclosure. The present disclosure includes individual stereoisomers, and mixtures of these stereoisomers of compounds of formula (I) and there salts of any embodiment disclosed herein, in which the configurations of one or more chiral carbons are inverted. The disclosure includes all of the possibilities of the enantiomeric and diastereomeric mixtures, herein, the diastereomers include cis/trans isomers. The present disclosure includes all of the combinations of the stereoisomers of all of the above defined specific groups.
EXAMPLES
The following examples serve to illustrate the compounds in this disclosure and the preparation process, but the examples should not be considered as limiting the scope of the disclosure.
All the structures of the compounds in the present disclosure were confirmed by 1H NMR and MS.
1H NMR chemical shifts (δ) were recorded in ppm (10-6) . NMR Spectra: Bruker AVANCE-400 spectrometer in proper solvent: DMSO-d6, CDCl3, MeOD-d4, δ in ppm rel. to Me4Si as internal standard.
The analytical low-resolution mass spectra (MS) were recorded on Agilent 1200HPLC/6120 using a XBridge C18, 4.6×50 mm, 3.5 um using a gradient elution method. The gradient elution method 1 is: 80-5% (v/v%) solvent A1 and 20-95% (v/v%) solvent B1 (1.8min) , then 95% (v/v%) solvent B1 and 5% (v/v%) solvent A1 (more than 3 mins) . “v/v%” as used herein, means volume percentage. Solvent A1: 0.01%TFA aqueous solution, B1: acetonitrile; The gradient elution method 2 is: 80-5% (v/v%) solvent A2 and 20-95% (v/v%) solvent B2 (1.5min) , then 95% (v/v%) solvent B2 and 5% (v/v%) solvent A2 (more than 2min) . “v/v%” as used herein, means volume percentage. Solvent A2: 10 mM ammonium bicarbonate aqueous solution; Solvent B2: acetonitrile.
All the compounds or intermediates in the present disclosure were purified by flash column chromatography, or column chromatography, the reaction process can be detected by thin layer chromatography (TLC) . The commonly used elution systems were ethyl acetate/petroleum ether and DCM/methanol.
Flash chromatography was performed on Agela Technologies MP200 (flash system/CheetahTM) , the corresponding column was Flash columm (Silica-CS80g) , Cat No. CS140080-0.
Column chromatography generally used Yantai Huanghai 200-300 mesh silica gel as carrier.
The following abbreviations have been used:
DMSO-d6: deuterated-dimethyl sulfoxide
CDCl3: deuterated-chloroform
CD3OD: deuterated-methanol
CDCA: chenodeoxycholic acid
TBAB: tetrabutyl ammonium bromide
TBAF: tetrabutyl ammonium fluoride
TMSCN: trimethylsilane cyanide
DMAP: 4-dimethylaminopyridine
TFA: trifluoroacetic acid
TFAA: trifluoroacetic anhydride
DIPEA: N, N-diisopropylethylamine
LDA: lithium diisopropylamide
EDCI: N- (3-dimethylaminopropyl) -N’-ethylcarbodiimide hydrochloride
TEA: trimethylamine
p-TsOH: p-toluenesulfonic acid
DCM: dichloromethane
DMF: N, N-dimethylformamide
THF: tetrahydrofuran
MeOH: methanol
Example 1: synthesis of compound 1.7
Figure PCTCN2016080331-appb-000022
Step 1: synthesis of compound 1.1
A mixture of CDCA (190 g, 0.474 mol) , NaBr (2.5 g, 24 mmol) , TBAB (0.5 g, 1.55 mmol) , methanol (616 mL) , acetic acid (200 mL) , H2O (49 mL) and THF (1330 mL) in round-bottom flask (5.0 L) was stirred at room temperature for 15min until the solution was clear, and then the solution was cooled down to 0℃, NaClO2 (~5%, 756 g, 531 mmol) was added to above clear solution and kept inner temperature at 1~2 ℃ (exothermic) . The resulted mixture was stirred at 0℃ for 30min, then warmed to 5 ℃ slowly and stirred for 3h, until the starting material was disappeared under the monitor of TLC. The reaction was quenched by addition of a saturated solution of aqueous NaHSO3 (3.3 %, 83 g, 13.5 mmol) until the detection of peroxide is free with KI-starch test paper, water (2 L) was then added, the mixture was stirred for 10min, and then cooled down to 10 ℃, allowed to separate to layers. The organic layer was separated and filtered, the filter cake was washed with cold water (200 mL) and dried under vacuum to afford compound 1.1 (149 g, yield: 79%) as a white powder.
m/z: [M-H] 389
Step 2: synthesis of compound 1.2
To a solution of compound 1.1 (20 g, 51.2 mmol) in methanol (100 mL) was added concentrated H2SO4 (1 g) . The resulted mixture was stirred at reflux for overnight until the starting material was disappeared under the monitor of TLC. The solvent was evaporated under vacuum, the residue was partitioned between water (100 mL) and ethyl acetate (100 mL) , and  the organic layer was separated and washed with a saturated solution of aqueous NaHCO3 and brine, dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (DCM/MeOH = 95: 5) to afford compound 1.2 (16 g, yield: 77%) as a light yellow oil.
m/z: [M+H] +405
Step 3: synthesis of compound 1.3
To a dry ice-acetone bath cooling three-necked, round-bottomed flask (100 mL) was added dry THF (10 mL) and diisopropylamine (1.5 g, 14.9 mmol) under nitrogen, then n-BuLi (6.0 mL, 15 mmol, 2.5 M solution in n-hexane) was added slowly, the mixture was stirred at -78℃ for 0.5h, and then chlorotrimethylsilane (2.15 g, 19.9 mmol) was added, and the mixture was stirred for 10min. A solution of compound 1.2 (1 g, 2.5 mmol) was added, and the resulted mixture was stirred at -78℃ for 0.5h, and then TEA (3.75 g, 37 mmol) was added, and the resulted mixture was stirred at -78℃ for 1h. The inner temperature was warmed up to -28℃, the reaction was quenched by addition of a saturated solution of aqueous NaHCO3 (10 mL) . The mixture was warmed up to room temperature and allowed to separate to layers. The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3×20 mL) , the combined organic layer was successively washed with saturated a solution of aqueous NaHCO3, water and brine, dried over anhydrous Na2SO4, filtered and concentrated to afford crude compound 1.3, which can be used directly for next step by stored in a refrigerator.
1H NMR (400 MHz, CDCl3) : δ 4.75 (dd, J = 1.8, 6.0 Hz, 1 H) , 3.69 (s, 3 H) , 3.53 (m, 1 H) , 2.33 -2.41 (m, 1 H) , 2.15 -2.28 (m, 1 H) , 1.02 -2.02 (m, 22 H) , 0.94 (d, J = 6.4 Hz, 3 H) , 0.84 (s, 3 H) , 0.70 (s, 3 H) , 0.13 -0.18 (m, 18 H) .
Step 4: synthesis of compound 1.4
A solution of compound 1.3 (5.5 g, 10 mmol) , dry DCM (30 mL) , and acetaldehyde (1.1 mL, 25 mmol) in a three-necked, round-bottomed flask (250 mL) under nitrogen was cooled by a dry-ice acetone bath to -60℃, and then a solution of boron trifluoride etherate (5.22 g, 37 mmol) in DCM (15 mL) was slowly added under nitrogen. The resulted mixture was stirred at -60℃ for 2h, and then the mixture was warmed up to room temperature, the reaction was quenched by addition of a saturated solution of aqueous NaHCO3 (40 mL) . The mixture was extracted with DCM (3×40 mL) , the combined organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 7: 3) to afford compound 1.4 (3.0 g, yield: 69%) as an off-white solid.
1H NMR (400 MHz, CDCl3) : δ 6.14 -6.18 (m, 1 H) , 3.56 -3.69 (m, 4 H) , 2.55 -2.58 (m, 1 H) , 2.20 -2.44 (m, 4 H) , 1.62 -2.06 (m, 9 H) , 1.68 (d, J = 7.2 Hz, 3 H) , 1.07 -1.51 (m, 10 H) , 1.00 (s, 3 H) , 0.92 (d, J = 6.2 Hz, 3 H) , 0.63 (s, 3 H) .
m/z: [M+H] +431
Step 5: synthesis of compound 1.5
To a solution of compound 1.4 (1.3 g, 3.02 mmol) in methanol (50 mL) was added Pd/C (130 mg, 10%) . The resulted mixture was stirred under hydrogen (1 atm) at room temperature for 48h until the starting materials was disappeared. Then the mixture was filtered through a celite pad, and the filtrate was concentrated to afford compound 1.5 (1.1 g, yield: 95%) as an off-white solid.
1H NMR (400 MHz, CDCl3) : δ 3.67 (s, 3 H) , 3.57 (m, 1 H) , 2.57 (t, J = 11.6 Hz, 1 H) , 2.37 (m, 1 H) , 2.24 (dd, J = 6.6, 9.6 Hz, 1 H) , 2.20 (m, 1 H) , 1.22 (s, 3 H) , 1.01 -1.98 (m, 23 H) , 0.93 (d, J = 6.2 Hz, 3 H) , 0.85 (t, J = 7.4 Hz, 3 H) , 0.67 (s, 3 H) .
m/z: [M+H] +433
Step 6: synthesis of compound 1.6
To a solution of compound 1.5 (1.23 g, 2.84 mmol) in a mixed solvent of methanol (10 mL) and water (1 mL) was added sodium hydroxide (284 mg, 7.1 mmol) , and the resulted mixture was stirred at reflux for overnight. Then the solvent was evaporated under vacuum, the residue was diluted with water and acidified with hydrochloric acid (6.0 M) , and the mixture was extracted with ethyl acetate (3×50 mL) . The combined organic layer was dried over anhydrous Na2SO4, filtered and concentrated to afford compound 1.6 (1.1 g, yield: 92%) as an off-white solid.
1HNMR (400 MHz, CDCl3) : δ 3.46 (m, 1 H) , 2.83 (dd, J = 13.0, 5.5 Hz, 1 H) , 2.50 (t, J =11.2 Hz, 1 H) , 2.34 (m, 1 H) , 2.20 (m, 1 H) , 1.22 (s, 3 H) , 0.99 -1.88 (m, 23 H) , 0.96 (d, J =6.6 Hz, 3 H) , 0.81 (t, J = 7.3 Hz, 3 H) , 0.71 (s, 3 H) .
m/z: [M-H] 417
Step 7: synthesis of compound 1.7
To an ice-cooling solution of compound 1.6 (1.1 g, 2.63 mmol) in a mixed solvent of THF (10 mL) and water (2 mL) was added NaBH4 (495 mg, 13.1 mmol) . The resulted mixture was stirred at room temperature for 1h, and then the reaction was quenched by addition of methanol (10 mL) . The solvent was evaporated under vacuum. The residue was dissolved in water, acidified with hydrochloric acid (1.0 M) , and the mixture was extracted with ethyl acetate. The organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (DCM/MeOH = 9: 1) to afford compound 1.7 (600 mg, yield: 54%) as a white powder.
1H NMR (400 MHz, CD3OD) : δ 3.60 (br, s, 1 H) , 3.32 (m, 1 H) , 2.33 (m, 1 H) , 2.20 (m, 1 H), 1.01 -2.04 (m, 25 H) , 0.97 (d, J = 6.2 Hz, 3 H) , 0.91 (s, 3 H) , 0.90 (t, J = 7.0 Hz, 3 H) , 0.69 (s, 3 H) .
m/z: [M-H] 419
Example 2: synthesis of compound 2.5
Figure PCTCN2016080331-appb-000023
Step 1: synthesis of compound 2.1
A solution of compound 1.7 (10 g, 24 mmol) , DMAP (300 mg, 2.4 mmol) in a mixed solvent of acetic anhydride (50 mL) and toluene (100 mL) was stirred at 110℃ for 2d, and then the resulted mixture was cooled down to room temperature and the solvent was evaporated under vacuum, the residue was dissolved in ethyl acetate (200 mL) , the organic layer was washed with cooled water (3×50 mL) and brine (100 mL) , dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~50%) to afford compound 2.1 (10.4 g, yield: 86%) as a white solid.
m/z: [M-H] 503
Step 2: synthesis of compound 2.2
To an ice-cooling solution of compound 2.1 (1.0 g, 2.0 mmol) in dry THF (30 mL) was added borane-THF complex (5.0 mL, 1.0 M in THF) dropwise. The resulted mixture was stirred at 10℃ for 4h, and then the reaction was quenched by addition of cold hydrochloric acid (1.0 M, 5.0 mL) . The mixture was stirred for 30min and extracted with ethyl acetate, the organic layer was washed with brine (25 mL) , dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~40%) to afford compound 2.2 (780 mg, yield: 80%) as a white powder.
Step 3: synthesis of compound 2.3
A solution of compound 2.2 (1.3 g, 2.65 mmol) , iodine (1.35 g, 5.30 mmol) , imidazole (270 mg, 3.98 mmol) and triphenylphosphine (1.04 g, 3.98 mmol) in DCM (60 mL) was stirred at room temperature for 5h, and then the reaction was quenched by addition of a saturated solution of aqueous Na2S2O3 (50 mL) . The mixture was extracted with ethyl acetate (2×50 mL) , the combined organic layer was washed with brine (25 mL) , dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~10%) to afford compound 2.3 (1.3 g, yield: 82%) as a white powder.
1H NMR (400 MHz, CDCl3) : δ 5.12 (s, 1 H) , 4.54 -4.63 (m, 1 H) , 3.11 -3.25 (m, 2 H) , 2.10 (s, 3 H) , 2.06 (s, 3 H) , 1.05 -2.02 (m, 27 H) , 0.88 -0.96 (m, 9 H) , 0.66 (s, 3 H) .
Step 4: synthesis of compound 2.4
A solution of compound 2.3 (1.0 g, 1.66 mmol) , TMSCN (1.65 g, 16.7 mmol) , TBAF  (2.63 g, 8.33 mmol) in acetonitrile (60 mL) was stirred at room temperature for overnight, and then the solvent was evaporated under vacuum. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~10%) to afford compound 2.4 (800 mg, yield: 96%) as a white powder.
1H NMR (400MHz, CDCl3-d) : δ 5.12 (s, 1 H) , 4.56 -4.59 (m, 1 H) , 2.31 -2.34 (m, 2 H) , 2.10 (s, 3 H) , 2.06 (s, 3 H) , 1.12 -2.10 (m, 27 H) , 0.82 -0.96 (m, 9 H) , 0.64 (s, 3 H) .
Step 5: synthesis of compound 2.5
A solution of compound 2.4 (300 mg, 0.60 mmol) in sodium hydroxide methanol solution (15 mL, 10%, w/w) was stirred at 70℃ for overnight, and then the mixture was cooled down to room temperature and adjusted pH to 5~6 with hydrochloric acid (2.0 M) . The mixture was stirred for 30min, and then extracted with DCM (3×30 mL) . The combined organic layer was washed with brine and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~80%) to afford compound 2.5 (260 mg, yield: 98%) as a white powder.
1H NMR (400MHz, CDCl3) : δ 3.73 (s, 1 H) , 3.42 -3.44 (m, 1 H) , 2.31 -2.35 (m, 2 H) , 0.98 -1.98 (m, 27 H) , 0.90 -0.95 (m, 9 H) , 0.68 (s, 3 H) .
m/z: [M-H] 433
Example 3: synthesis of compound 3.2
Figure PCTCN2016080331-appb-000024
Step 1: synthesis of compound 3.1
An ice-cooling mixture of compound 2.1 (3.65 g, 7.24 mmol) , TFA (6.6 mL) and TFAA (11.4 g, 54.3 mmol) was stirred until the solution became clear, and then NaNO2 (1.5 g, 21.7 mmol) was added in small portions. The resulted mixture was stirred at 0℃ for 1h, and then the mixture was warmed up to 40℃ and stirred for 2h. After cooling down to room temperature, the mixture was neutralized with a saturated solution of aqueous NaHCO3, and then extracted with ethyl acetate (3×50 mL) . The combined organic layer was washed with brine and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~20%) to afford compound 3.1 (2.4 g, yield: 70%) as a light yellow oil.
1H NMR (400 MHz, CDCl3) : δ 5.11 (s, 1 H) , 4.54 -4.62 (m, 1 H) , 2.22 -2.38 (m, 2 H) , 2.10 (s, 3 H) , 2.05 (s, 3 H) , 1.16 -1.98 (m, 26 H) , 0.95 (s, 3 H) , 0.89 (t, J = 7.2 Hz, 3 H) , 0.68 (s, 3 H) .
Step 2: synthesis of compound 3.2
A solution of compound 3.1 (317 mg, 0.67 mmol) in sodium hydroxide methanol solution (15 mL, 10%, w/w) was stirred at 100℃ for overnight, and then the mixture was cooled down to room temperature and adjusted pH to 6~7 with hydrochloric acid (3.0 M) . The mixture was stirred for 30min, and then extracted with ethyl acetate (3×20 mL) . The combined organic layer was washed with brine (20 mL) and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (MeOH/DCM = 0~3%) to afford compound 3.2 (175 mg, yield: 64%) as a white solid.
m/z: [M-H] 405
Example 4: synthesis of compound 4.3
Figure PCTCN2016080331-appb-000025
Step 1: synthesis of compound 4.1
To a solution of compound 2.1 (1.0 g, 1.90 mmol) and p-TsOH (20 mg, 0.12 mmol) in methanol was added ethyl carbonochloridate (7.2 mL, 6.32 mmol) . The resulted mixture was stirred at room temperature for 2h, and then a solution of aqueous NaBH4 (96 mL, 0.1 g/mL) was added dropwise, the resulted mixture was stirred at room temperature for 3h. The reaction was quenched by addition of water (300 mL) , and adjusted pH to neutral with hydrochloric acid (1.0 M) . The mixture was extracted with ethyl acetate (3×100 mL) . The combined organic layer was washed with brine and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate =5: 1) to afford compound 4.1 (700 mg, yield: 68%) as an off-white solid.
Step 2: synthesis of compound 4.2
A dry ice-acetone bath cooling solution of compound 4.1 (500 mg, 0.96 mmol) in dry THF (20 mL) was kept for 15min. After this, a solution of LDA in THF (1.44 mL, 1.0 M) was added dropwise. The resulted mixture was stirred at -78℃ for 1h, and then iodomethane (203 mg, 1.44 mmol) was added, the mixture was stirred at -78℃ for 2h, and then the reaction was quenched by addition of a saturated solution of aqueous NH4Cl (10 mL) . The organic layer was separated and the aqueous layer was extracted with ethyl acetate (3×50 mL) , the combined organic layer was washed with brine, dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~10%) to afford compound 4.2 (350 mg, yield: 68%) as a white solid.
m/z: [M-H] 531
Step 3: synthesis of compound 4.3
To an ice-cooling solution of compound 4.2 (320 mg, 0.60 mmol) in methanol (10 mL) was added sodium hydroxide methanol solution (15 mL, 10%, w/w) , and then the resulted  mixture was stirred at reflux for overnight. After this, the mixture was cooled down to room temperature and adjusted pH to 5~6 with hydrochloric acid (2.0 M) . The mixture was stirred for 30min, and then extracted with DCM (3×20 mL) . The combined organic layer was washed with brine and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (MeOH/DCM = 1~ 10%) to afford compound 4.3 (200 mg, yield: 76%) as an off-white solid.
m/z: [M-H] 433
Example 5: synthesis of compound 5.3
Figure PCTCN2016080331-appb-000026
Step 1: synthesis of compound 5.1
To a solution of compound 2.3 (1.0 g, 1.66 mmol) in ethanol (10 mL) was added a solution of aqueous Na2SO3 (150 mL, 5%, w/w) . The resulted mixture was stirred at 100℃ for 24h, and then cooled down to room temperature. The mixture was concentrated under vacuum to remove most of ethanol. The resulting solution was applied to a column MCI-Gel HP-20 (polymer of styrene and divnylbenezene) . After washing with water (400 mL) to remove inorganic ions, the column was eluted with a solution of aqueous methanol (70%, w/w) . The elution was evaporated to afford compound 5.1 (1.0 g, yield: 100%) as an off-white solid.
m/z: [M-Na] 553
Step 2: synthesis of compound 5.2
A solution of compound 5.1 (1.0 g, 1.73 mmol) in thionyl chloride (5 mL) and toluene (20 mL) was stirred at reflux for 5h, and then the resulted mixture was cooled down to room temperature, the solvent was evaporated under vacuum. The residue was dissolved in THF (5 mL) , a solution of aqueous NH4OH was added. The resulted mixture was stirred at room temperature for overnight, and then the solvent was evaporated under vacuum. The residue was purified by Flash chromatography (MeOH/DCM = 0~5%) to afford compound 5.2 (550 mg, yield: 39%) as a white solid.
m/z: [M-H] 552
Step 3: synthesis of compound 5.3
A solution of compound 5.2 (400 mg, 0.72 mmol) in sodium hydroxide methanol solution (15 mL, 10%, w/w) was stirred at 70℃ for overnight, and then the mixture was cooled down to room temperature, the solvent was evaporated under vacuum, the residue was dissolved in cooled water (20 mL) and adjusted pH to 5~6 with hydrochloric acid (3.0 M) . The mixture was stirred for 30min, and then extracted with ethyl acetate (3×30 mL) . The combined organic layer was washed with brine (25 mL) and dried over anhydrous Na2SO4, filtered and concentrated.  The residue was purified by Flash chromatography (methanol: DCM = 0~5%) to afford compound 5.3 (260 mg, yield: 77%) as a white solid.
m/z: [M-H] 468
Example 6: synthesis of compound 6.1
Compound 6.1 was prepared according to Example 2 compound 2.3, by using compound 3.2 as a starting material.
Figure PCTCN2016080331-appb-000027
m/z: [M-H] 585
Example 7: synthesis of compounds 7.1 and 7.2
Compounds 7.1 and 7.2 were prepared according to Example 5 compounds 5.2 and 5.3, by using compound 6.1 as a starting material.
Figure PCTCN2016080331-appb-000028
Compound 7.2: m/z: [M-H] 454
Example 8: synthesis of compounds 8.1~8.13
Figure PCTCN2016080331-appb-000029
Step 1: synthesis of 2, 6-dimethylpyridine-3-sulfonyl chloride
Thionyl chloride (2 mL) was added to water (5 mL) dropwise. The resulted mixture was stirred at room temperature for overnight, and then CuCl (1.1 g, 8.2 mmol) was added to above mixture under ice-bath to form a CuCl solution. To an ice-cooling solution of 2, 6-dimethylpyridin-3-amine (1.0 g, 8.2 mmol) in a mixed solvent of hydrochloric acid (1 mL, 37%, v/v) and water (10 mL) was added a solution of aqueous NaNO2 (5 mL, 0.82 mol) , the resulted mixture was stirred for 0.5h, and then the CuCl solution prepared before was added. The resulted mixture was stirred for 1h, and extracted with DCM (3×20 mL) . The combined organic layer was washed with brine (25 mL) and dried over anhydrous Na2SO4, filtered and concentrated to afford 2, 6-dimethylpyridine-3-sulfonyl chloride (500 mg, yield: 30%) as a yellow oil.
m/z: [M+H] + 187
Step 2: synthesis of compound 8.1
To a solution of 2, 6-dimethylpyridine-3-sulfonyl chloride (500 mg, 2.4 mmol) in 1, 4-dioxane (5 mL) was added ammonia water (2 mL) , the resulted mixture was stirred at room temperature for overnight, and then the solvent was evaporated under vacuum, the residue was purified by column chromatography on silica gel (DCM/methanol = 30: 1) to afford 2, 6-dimethylpyridine-3-sulfonamide (8.1) (100 mg, yield: 26%) as a white solid.
m/z: [M+H] + 187
pyridine-3-sulfonamide (8.2) , thiophene-3-sulfonamide (8.3) , methyl 5-sulfamoyl picolinate (8.4) , 6- (trifluoromethyl) pyridine-3-sulfonamide (8.5) , 6-methoxypyridine-3-sulfonamide (8.6) , 6-phenylpyridine-3-sulfonamide (8.7) , 2-isopropylbenzenesulfonamide (8.8) , 2- (tert-butyl) benzenesulfonamide (8.9) , 2, 4-bis (trifluoromethyl) benzenesulfonamide (8.10) , 2-fluoro-6- (trifluoromethyl) benzenesulfonamide (8.11) , 2-methyl-6- (trifluoromethyl) benzenesulfonamide (8.12) , and methyl 4-sulfamoylbenzoate (8.13) were prepared according to compound 8.1, by using corresponding amino or sulfonyl chloride as starting materials.
Example 9: synthesis of compound 9.4
Figure PCTCN2016080331-appb-000030
Step 1: synthesis of compound 9.1
To an ice-cooling solution of N- (m-tolyl) acetamide (3.0 g, 20.1 mmol) in DMF (30 mL) was added NaH (0.97 g, 24.1 mmol, 60%) in small portions under nitrogen. The resulted mixture was stirred at 0℃ for 20min, and then iodoethane (3.45 g, 22.1 mmol) was added. The mixture was warmed up to room temperature and stirred for 1h, the reaction was quenched by addition of cold water (100 mL) . The mixture was extracted with ethyl acetate (3×50 mL) . The combined organic layer was washed with brine (50 mL) and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (ethyl acetate/petroleum ether = 0~100%) to afford compound 9.1 (2.86 g, yield: 80%) as a light yellow oil.
m/z: [M+H] +178
Step 2: synthesis of compound 9.2
A solution of compound 9.1 (2.86 g, 16.1 mmol) in chlorosulfonic acid (10 mL) was stirred at 60℃ for 2h, and then the mixture was poured into cold water (200 mL) and extracted with ethyl acetate (3×50 mL) . The combined organic layer was washed with brine (50 mL) and dried over anhydrous Na2SO4, filtered and concentrated to afford compound 9.2 (3.77 g, yield: 85%) as a yellow oil.
Step 3: synthesis of compound 9.3
A solution of compound 9.2 (3.77 g, 13.7 mmol) in ammonia water (40 mL) was stirred at 20℃ for overnight, and then the mixture was filtered, the filter cake was washed with tert-Butyl methyl ether (3×10 mL) and dried under vacuum to afford compound 9.3 (2.46 g, yield: 70%) as a light yellow solid.
m/z: [M-H] 255
Step 4: synthesis of compound 9.4
To a suspension of compound 9.3 (1.0 g, 3.90 mmol) in ethanol (10 mL) was added hydrochloric acid (6.0 M, 10 mL) . The resulted mixture was stirred at reflux for 3h, and then cooled down to room temperature. The mixture was concentrated under vacuum to remove most of ethanol. The resulting solution was filtered, the filter cake was successively washed with tert-Butyl methyl ether (10 mL) and a mixed solution of petroleum ether/ethyl acetate (10/1, 2×20 mL) , the filter cake was dried under vacuum to afford compound 9.4 (307 mg, yield: 37%) as a white solid.
m/z: [M+H] +215
Example 10: synthesis of compound 1-1
Figure PCTCN2016080331-appb-000031
To an ice-cooling round-bottom flask was added compound 1.7 (117 mg, 0.28 mol) , DCM (10 mL) and benzenesulfonamide (65 mg, 0.42 mmol) , and then DMAP (4 mg) , DIPEA (144 mg) and EDCI (134 mg) were successively added. The resulted mixture was stirred at room temperature for overnight and then washed with hydrochloric acid (1.0 M) and brine, the organic layer was separated and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1: 3) to afford compound 1-1 (62 mg, yield: 40%) as a white solid.
1H NMR (400 MHz, DMSO-d6) : δ 12.06 (s, 1H) , 7.91 (d, J = 7.2 Hz, 2 H) , 7.70 -7.74 (m, 1 H) , 7.63 (d, J = 7.8 Hz, 2 H) , 4.31 (d, J = 4.4 Hz, 1 H) , 4.05 (d, J = 4.8 Hz, 1 H) , 3.49 (s, 1 H) , 3.10 -3.17 (m, 1 H) , 2.19 -2.26 (m, 1 H) , 2.09 -2.17 (m, 1 H) , 1.65 -1.87 (m, 6 H) , 0.89 -1.50 (m, 19 H) , 0.79 -0.85 (m, 9 H) , 0.52 (s, 3 H) .
m/z: [M-H] 558
Example 11: synthesis of compounds 1-2~1-53
Compounds 1-2~1-53 were prepared according to Example 10 compound 1-1, by replacing benzenesulfonamide to corresponding sulfonamide as a starting material.
Figure PCTCN2016080331-appb-000032
Figure PCTCN2016080331-appb-000033
Figure PCTCN2016080331-appb-000034
Figure PCTCN2016080331-appb-000035
Figure PCTCN2016080331-appb-000036
Figure PCTCN2016080331-appb-000037
Figure PCTCN2016080331-appb-000038
Figure PCTCN2016080331-appb-000039
Figure PCTCN2016080331-appb-000040
Figure PCTCN2016080331-appb-000041
Figure PCTCN2016080331-appb-000042
Figure PCTCN2016080331-appb-000043
Figure PCTCN2016080331-appb-000044
Figure PCTCN2016080331-appb-000045
Figure PCTCN2016080331-appb-000046
Figure PCTCN2016080331-appb-000047
Example 12: synthesis of compound 2-1
Figure PCTCN2016080331-appb-000048
A mixture of compound 1-12 (80 mg, 0.13 mmol) in a solution of aqueous NaOH (2.0 M, 10 mL) and methanol (5 mL) was stirred at room temperature for overnight. The resulted mixture was adjusted pH=3 with hydrochloric acid (1.0 M) . The mixture was extracted with ethyl acetate (60 mL) . The organic layer was washed with brine and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by column chromatography on silica gel (petroleum ether/ethyl acetate = 1: 2) to afford compound 2-1 (65 mg, yield: 83%) as  a white solid.
1HNMR (400 MHz, DMSO-d6) : δ 12.86 (s, 2 H) , 8.10 (d, J = 8.4 Hz, 1 H) , 7.97 (d, J =8.8 Hz, 2 H) , 4.31 (s, 1 H) , 4.05 (d, J = 4.8 Hz, 1 H) , 3.48 (s, 1 H) , 3.09 -3.17 (m, 1 H) , 2.04 -2.22 (m, 2 H) , 1.68 -1.86 (m, 6 H) , 0.92 -1.58 (m, 19 H) , 0.78 -0.82 (m, 9 H) , 0.50 (s, 3 H) .
m/z: [M-H] -602
Example 13: synthesis of compound 2-2
Figure PCTCN2016080331-appb-000049
Compound 2-2 was prepared according to Example 12 compound 2-1, by using compound 1-50 as a starting material.
1H NMR (400 MHz, CDCl3) : δ 9.15 -9.18 (m, 1 H) , 8.23 -8.51 (m, 1 H) , 8.23 -8.24 (m, 1 H) , 3.71 (br, s, 1 H) , 3.32 -3.48 (m, 1 H) , 2.06 -2.28 (m, 2 H) , 0.99 -1.96 (m, 25 H) , 0.89 -0.94 (m, 9 H) , 0.64 (s, 3 H) .
m/z: [M-H] 603
Example 14: synthesis of compound 3-1
Figure PCTCN2016080331-appb-000050
Compound 3-1 was prepared according to Example 10 compound 1-1, by using compound 1.7 and corresponding sulfonamide as starting materials.
1H NMR (400 MHz, DMSO-d6) : δ 12.05 (s, 1 H) , 7.91 (d, J = 7.6 Hz, 2 H) , 7.69 -7.73 (m, 1 H) , 7.60 -7.64 (m, 2 H) , 4.34 (d, J = 4.4 Hz, 1 H) , 4.12 (d, J = 3.6 Hz, 1 H) , 3.61 (s, 1 H) , 3.15 -3.22 (m, 1 H) , 2.09 -2.26 (m, 3 H) , 1.55 -1.87 (m, 7 H) , 1.32 -1.48 (m, 6 H) , 0.90 -1.26 (m, 10 H) , 0.78 -0.83 (m, 6 H) , 0.52 (s, 3 H) .
m/z: [M-H] -530
Example 15: synthesis of compounds 4-1 and 4-2
Compounds 4-1 and 4-2 were prepared according to Example 10 compound 1-1, by using compound 2.5 and corresponding sulfonamide as starting materials.
Figure PCTCN2016080331-appb-000051
1H NMR (400 MHz, CDCl3) : δ 8.55 (s, 1 H) , 8.23 (d, J = 8.4 Hz, 2 H) , 7.84 (d, J = 8.4 Hz, 2 H) , 3.72 (s, 1 H) , 3.44 -3.46 (m, 1 H) , 2.22 -2.24 (m, 2 H) , 0.96 -1.83 (m, 27 H) , 0.89 -0.94 (m, 9 H) , 0.64 (s, 3 H) .
m/z: [M-H] -640
Figure PCTCN2016080331-appb-000052
1H NMR (400 MHz, CDCl3) : δ 9.27 (d, J = 1.6 Hz, 1H) , 8.67 -9.09 (m, 1 H) , 8.50 (dd, J = 2.4, 8.8 Hz, 1 H) , 8.08 -8.11 (m, 2 H) , 7.93 (d, J = 8.8 Hz, 1 H) , 7.53 -7.57 (m, 3 H) , 3.66 (s, 1 H) , 3.42 -3.50 (m, 1 H) , 2.21 -2.30 (m, 2 H) , 0.98 -1.94 (m, 27 H) , 0.87 -0.94 (m, 9 H) , 0.61 (s, 3 H) .
m/z: [M-H] 649
Example 16: synthesis of compounds 5-1~ 5-3
Compounds 5-1~ 5-3 were prepared according to Example 10 compound 1-1, by using compound 3.2 and corresponding sulfonamide as starting materials.
Figure PCTCN2016080331-appb-000053
1H NMR (400 MHz, CDCl3) : δ 9.17 (s, 1 H) , 8.23 (d, J = 8.4 Hz, 2 H) , 7.83 (d, J = 8.8 Hz, 2 H) , 3.71 (s, 1 H) , 3.48 (s, 1 H) , 2.37 -2.40 (m, 1 H) , 0.99 -1.96 (m, 24 H) , 0.92 -0.99 (m, 9 H) , 0.66 (s, 3 H) .
m/z: [M-H] 612
Figure PCTCN2016080331-appb-000054
1H NMR (400 MHz, CDCl3) : δ 9.27 (s, 1 H) , 9.08 (s, 1 H) , 8.49 (dd, J = 2.4, 8.4 Hz, 1 H) , 8.08 -8.10 (m, 2 H) , 7.92 (d, J = 8.4 Hz, 1 H) , 7.53 -7.56 (m, 3 H) , 3.68 (s, 1 H) , 3.45 (s, 1 H) , 2.35 -2.47 (m, 1 H) , 0.96 -1.98 (m, 24 H) , 0.87 -0.94 (m, 9 H) , 0.65 (s, 3 H) .
m/z: [M-H] 621
Figure PCTCN2016080331-appb-000055
1H NMR (400 MHz, CDCl3) : δ 9.15 (s, 1 H) , 8.27 (t, J = 7.6 Hz, 1 H) , 7.64 (d, J = 8.4 Hz, 1 H) , 7.51 (d, J = 10.0 Hz, 1 H) , 3.72 (s, 1 H) , 3.47 -3.52 (m, 1 H) , 2.44 (d, J = 11.6 Hz, 1 H) , 1.00 -1.97 (m, 24 H) , 0.91 -0.95 (m, 9 H) , 0.66 (s, 3 H) .
m/z: [M-H] 630
Example 17: synthesis of compounds 6-1~ 6-3
Figure PCTCN2016080331-appb-000056
Compound 6-1 was prepared according to Example 10 compound 1-1, by using compound 4.3 and corresponding sulfonamide as starting materials.
Compound 6-1 was separated by Flash chromatography to afford two stereoisomers, the less polar isomer 6-2 was first collected, and then the more polar isomer 6-3 was collected.
6-2: 1H NMR (400 MHz, CDCl3) : δ 8.93 (br, s, 1 H) , 8.31 (d, J = 8.4 Hz, 2 H) , 8.14 (d, J = 8.4 Hz, 2 H) , 3.71 (br, s, 1 H) , 3.43 -3.53 (m, 1 H) , 3.12 (s, 3 H) , 2.43 -2.49 (m, 1 H) , 1.26 -1.92 (m, 22 H) , 1.12 (d, J = 7.2, 3 H) , 0.99 -1.07 (m, 3 H) , 0.85 -0.95 (m, 9 H) , 0.51 (s, 3 H) .
6-3: 1H NMR (400 MHz, CDCl3) : δ 9.55 (br, s, 1 H) , 8.34 (d, J = 8.4 Hz, 2 H) , 8.16 (d, J = 8.4 Hz, 2 H) , 3.71 (br, s, 1H) , 3.44 -3.52 (m, 1 H) , 3.14 (s, 3 H) , 2.37 -2.45 (m, 1 H) , 1.27 -1.95 (m, 22 H) , 1.07 (d, J = 6.8 Hz, 3 H) , 1.02 -1.18 (m, 3 H) , 0.86 -0.94 (m, 9 H) , 0.64 (s, 3 H) .
m/z: [M-H] 650
Example 18: synthesis of compounds 7-1
Figure PCTCN2016080331-appb-000057
Step 1: synthesis of compound 18.1
To an ice-cooling solution of compound 5.2 (100 mg, 0.18 mmol) , DIPEA (94 mg, 0.72 mmol) and DMAP (2.2 mg, 0.02 mmol) in DCM (5 mL) was added benzoyl chloride (26 mg, 0.18 mmol) . The resulted mixture was stirred at room temperature for 3h, and then the solvent  was evaporated under vacuum. The residue was purified by column chromatography on silica gel (MeOH/DCM = 0~5%) to afford compound 18.1 (80 mg, yield: 67%) as a white solid.
m/z: [M-H] 656
Step 2: synthesis of compound 7-1
A solution of compound 18.1 (80 mg, 0.12 mmol) in sodium hydroxide methanol solution (5 mL, 10%, w/w) was stirred at 70℃ for overnight, and then the mixture was cooled down to room temperature, the solvent was evaporated under vacuum, the residue was dissolved in cooled water (20 mL) and adjusted pH to 5~6 with hydrochloric acid (3.0 M) . The mixture was stirred for 30min, and then extracted with ethyl acetate (3×15 mL) . The combined organic layer was washed with brine (25 mL) and dried over anhydrous Na2SO4, filtered and concentrated. The residue was purified by Flash chromatography (MeOH/DCM = 0~5%) to afford compound 7-1 (20 mg, yield: 29%) as a white solid.
1H NMR (400 MHz, CDCl3) : δ 8.74 -8.84 (m, 1 H) , 7.89 (d, J = 7.6 Hz, 2 H) , 7.64 -7.68 (m, 1 H) , 7.52 -7.56 (m, 2 H) , 3.71 (s, 1 H) , 3.59 -3.66 (m, 1 H) , 3.49 -3.57 (m, 1 H) , 3.39 -3.47 (m, 1 H) , 1.13 -1.98 (m, 27 H) , 0.89 -0.96 (m, 9 H) , 0.66 (s, 3 H) .
m/z: [M-H] 572
Example 19: synthesis of compounds 7-2
Figure PCTCN2016080331-appb-000058
To an ice-cooling solution of compound 5.3 (50 mg, 0.11 mmol) , TEA (32 mg, 0.32 mmol) in DCM (5 mL) was added 4- (trifluoromethyl) benzoyl chloride (21 mg, 0.10 mmol) dropwise. The resulted mixture was stirred at room temperature for 3h, and then the solvent was evaporated, the residue was purified by Flash chromatography (methanol/DCM = 0~5%) to afford compound 7-2 (15 mg, yield: 22%) as a white solid.
1H NMR (400 MHz, CDCl3 + CD3OD) : δ 8.10 -8.17 (m, 2 H) , 7.66 -7.70 (m, 2 H) , 3.68 (s, 1 H) , 3.22 -3.41 (m, 3 H) , 1.10 -1.96 (m, 27 H) , 0.88 -0.99 (m, 9 H) , 0.64 (s, 3 H) .
m/z: [M-H] 640
Example 20: synthesis of compound 7-3
Figure PCTCN2016080331-appb-000059
Compound 7-3 was prepared according to Example 19 compound 7-2, by using compound 5.3 and corresponding acyl chloride as starting materials.
1H NMR (400 MHz, CDCl3) : δ 8.01 (d, J = 8.8 Hz, 2 H) , 7.30 (d, J = 10.4 Hz, 2 H) , 3.69 (s, 1 H) , 3.52 -3.63 (m, 1 H) , 3.40 -3.47 (m, 2 H) , 1.12 -1.96 (m, 27 H) , 0.86 -1.02 (m, 9 H) , 0.64 (s, 3 H) .
m/z: [M-H] 656
Example 21: synthesis of compounds 8-1~8-2
Compounds 8-1~8-2 were prepared according to Example 19 compound 7-2, by using compound 7.2 and corresponding acyl chloride as starting materials.
Figure PCTCN2016080331-appb-000060
1H NMR (400 MHz, CDCl3) : δ 9.03 (s, 1 H) , 8.02 (d, J = 8.0 Hz, 2 H) , 7.81 (d, J = 8.4 Hz, 2 H) , 3.65 -3.71 (m, 2 H) , 3.41 -3.56 (m, 2 H) , 1.05 -2.04 (m, 25 H) , 0.90 -1.03 (m, 9 H) , 0.67 (s, 3 H) .
m/z: [M-H] 626
Figure PCTCN2016080331-appb-000061
1H NMR (400 MHz, CD3OD) : δ 8.15 (d, J = 9.2 Hz, 2 H) , 7.32 (d, J = 8.4 Hz, 2 H) , 3.66 (s, 1 H) , 3.14 -3.40 (m, 3 H) , 1.08 -2.23 (m, 25 H) , 0.92 -1.02 (m, 9 H) , 0.68 (s, 3 H) .
m/z: [M-H] 642
Example 22: synthesis of compound 8-3
Figure PCTCN2016080331-appb-000062
Compound 8-3 was prepared according to Example 18 compound 7-1, by using compound 7.1 and corresponding acyl chloride as starting materials.
1H NMR (400 MHz, CDCl3) : δ 8.36 (d, J = 14.8 Hz, 1 H) , 3.72 (s, 1 H) , 3.33 -3.56 (m, 3 H) , 2.36 -2.42 (m, 2 H) , 1.18 -1.98 (m, 28 H) , 0.90 -1.07 (m, 9 H) , 0.68 (s, 3 H) .
m/z: [M-H] -510
BIOLOGY ASSAYS
Exampel 1: FXR TR-FRET Assay
FXR agonist screening used TR-FRET (Time-resolved fluorescence resonance energy transfer) method bioassay. The method measures ability of compounds to regulate the interaction between FXR ligand binding domain protein (LBD) and its biotin-labeled coenzyme polypeptide (SRC-1) . Binding of a ligand to the FXR ligand binding domain changes the conformational in this area, resulting in binding to its coenzyme SRC-1 in high affinity. When the two are in very close proximity, the photon energy excited from one fluorophore can transferred to another fluorophore, which induces the latter to generate fluorescence that can be detected. Compounds with higher affinity for FXR, the stronger the signal induced fluorescence.
Testing was performed in 384-well plates, Mix the N-terminus GST-tagged FXR protein binding domains FXR-LBD (3nM, Life Technology) and europium labeled anti-GST antibody (50nl, Cisbio) in the Tris-HCl buffer at pH 7.5; the biotinylated peptide SRC-1 (500nM, GL) and APC-labeled streptavidin (50nl, Cisbio) were mixed in the buffer. After mixing the above two buffer solutions in the ratio of 1: 1, 20ul solution was added to each well of the 384-well plate, followed by adding 100%DMSO solution of the compounds so that the concentration was 1%in the final 20 uL mixture. The plate was incubated at room temperature for 3 hours. Signal detection in relative fluorescence units (RFU) was measured by EnVision Muti-Label Reader (Perkin Elmer Corporation) at wavelength of 615nm and 665nm. Signal RFU665nm /RFU615nm were calculated. The activity of a compound is expressed as %activation =(compound signal –base signal) / [maximum signal –base signal base] × 100%. If the compound can promote the binding of FXR and its ligand binding domain protein to form a complex, it will induce fluorescence signal in a concentration dependent manner. Dose response data points were curve fitted using the standard logistic regression model and the EC50 values were calculated using GraphPad Prism 5.
Example 2: FXR Reporter Assay
The compounds were tested in GAL4 luciferase reporter gene assay in HepG2 liver cells. The HepG2 liver cells were inoculated at 60,000 per well in 96-well plates, and pBIND-FXR_LBD (50 ng) and pGL5Luc (50 ng) were co-transfected into HepG2 cells by transfection reagent FuGENE (Promega) . After the plates were incubated at 37℃ under 5%CO2 in an incubator for 24 hours, the compounds in DMSO solution were added to the cells so that final concentration of DMSO was 0.6%. The plates were incubated at 37 ℃ under 5%CO2 in an incubator for another 18 hours. The luciferase activity was measured using a dual luciferase reporter gene assay kit (Promega) according to the vendor's protocol of the assay kit. Relative Light Units (RLU) were measured by the EnVision Muti-Label reader (Perkin Elmer Corporation) . The activity of a compound is expressed as %activation = (RLU-base RLU) /(maximum RLU-base RLU) × 100%. If the compound is able to activate FXR activity, it will induce luminescence signal in a concentration dependent manner. Dose response data points  were curve fitted using the standard logistic regression model and the EC50 values were calculated using GraphPad Prism 5.
Example 3: TGR5-cAMP Reporter Assay
HEK293 cells overexpressing human TGR5 were resuspended in Stimulation Buffer (HBSS 1X (Invitrogen) containing 5mM HEPES (Invitrogen) , 0.1%BSA (PerkinElmer) and 0.5mM IBMX (Sigma) ) at a concentration of 10, 000 cells /6 μL /well. Add the Alexa Fluor 647-labeled cAMP Antibody from the LANCE cAMP 384 Kit (PerkinElmer) to the cell suspension by 1/100. Dilute the compounds serially in DMSO for 10-pts, 3-fold using Bravo (Agilent) . Then transfer 120nl of compounds to the 384-well OptiPlate (PerkinElmer) using POD (Labcyte) . Add 6μL of Stimulation buffer to the OptiPlate using Multi-drop (Thermo) . Then add 6 μL of the cell suspension (containing the Alexa-labeled antibodies) using Multi-drop (Thermo) . After 1h incubation at RT, add 12μL of Detection Mix from the LANCE cAMP 384 Kit (PerkinElmer) . Plate was then incubated 1 h at RT and emissions at 620 nM and 665 nM were read on the Envision (PerkinElmer) . Data were expressed as a ratio of emission at 665/620 and the percent efficacy was determined based on the High control (DMSO alone) and Low control (Lithocholic acid) (%Activity = 100 x (HC -Sample) / (HC -LC) ) . Dose response data points were curve fitted using the standard logistic regression model and the EC50 values were calculated using GraphPad Prism 5.
The assay results of the test compounds in this disclosure are given in the table bellow, the EC50 range is as follow: + represents 1-100 μM, ++ represents 0.5-1 μM, +++ represents 0.1-0.5 μM, ++++ represents 0.05-0.1 μM, +++++ represents ≤0.05 μM.
Figure PCTCN2016080331-appb-000063
Figure PCTCN2016080331-appb-000064

Claims (17)

  1. A compound of formula (I) and/or isomers, prodrugs, solvates, stable isotope derivatives thereof, and/or a pharmaceutically acceptable salt thereof;
    Figure PCTCN2016080331-appb-100001
    wherein,
    A2 is -C (O) N (R12) S (O) 2-, or -S (O) 2N (R12) C (O) -;
    A1 is a bond, or - (CH2n-;
    L is a bond, or -CHR9-;
    R is independently substituted or unsubstituted alkyl, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, substituted or unsubstituted cycloalkylalkyl, substituted or unsubstituted heterocycloalkylalkyl, substituted or unsubstituted arylalkyl, substituted or unsubstituted heteroarylalkyl or -NR10R10a, provided that when A2 is -S (O) 2N (R12) C (O) -, R is not selected form -NR10R10a; wherein the substituted alkyl, substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, substituted heteroaryl, substituted cycloalkylalkyl, substituted heterocycloalkylalkyl, substituted arylalkyl, or substituted heteroarylalkyl is substituted by 1 to 3 R11 at any position;
    R1 is independently hydrogen, hydroxyl, substituted or unsubstituted alkyl, or halogen;
    R2 is independently hydrogen, substituted or unsubstituted alkyl, or hydroxyl;
    R3 is independently hydrogen, substituted or unsubstituted alkyl, 2-propenyl or halogen;
    R4 and R5 are independently hydrogen, hydroxyl, -OC (O) CH3, -OS (O) 3H, -OP (O) 3H, -P (O) 3H2, or -OC6H8O6H; or R4 and R5 are taken together to form a carbonyl;
    R6 and R6’a re independently hydrogen, or hydroxyl;
    R7 is independently hydrogen, hydroxyl, alkoxy, or halogen;
    R8 is independently hydrogen, or substituted or unsubstituted alkyl;
    R9 is independently hydrogen, substituted or unsubstituted alkyl, aryl, or heteroaryl; or R8 and R9 together with the carbon atom to which they are attached, form a 3- to 6-membered cycloalkyl ring;
    when R1, R2, R3, R8, or R9 is the substituted alkyl, it is substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, alkyl and cycloalkyl;
    R10 and R10a are independently hydrogen, alkyl, cycloalkyl, heterocycloalkyl, aryl,  heteroaryl, cycloalkylalkyl, or heteroalkylalkyl; or R10 and R10a together with the nitrogen atom to which they are attached, form a 4- to 8-membered mono-heterocycloalkyl ring;
    R11 is independently halogen, hydroxyl, amino, carboxyl, -NO2, -CN, alkyl, haloalkyl, alkoxy, haloalkoxy, substituted or unsubstituted cycloalkyl, substituted or unsubstituted heterocycloalkyl, substituted or unsubstituted aryl, substituted or unsubstituted heteroaryl, cycloalkylalkyl, heterocycloalkylalkyl, arylalkyl, heteroarylalkyl, heterocycloalkylalkoxy, cycloalkylalkoxy, arylalkoxy, heteroarylalkoxy, C2-4alkenyl, C2-4 alkynyl, aminoalkyl, hydroxyalkyl, sulfonyl, -C (O) OR13 , -S (O) 0-2R13, -S (O) 0-2NR13R13a, -OC (O) R13, -OC (O) NR13R13a, -NR13R13a, -NHC (O) R13, -NHC (O) NR13R13a, -NHS (O) 2R13, -NHS (O) 2NR13R13a, -C (O) R13, -C (O) NR13R13a, or - (CH2nNR13R13a; and wherein the substituted cycloalkyl, substituted heterocycloalkyl, substituted aryl, or substituted heteroaryl as R11 refer to cycloalkyl, heterocycloalkyl, aryl, or heteroaryl substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, amino, C1-3alkyl, C1-3alkoxy, halo-C1-3alkyl, and halo-C1-3alkoxy;
    R12 is hydrogen or alkyl;
    R13 and R13a are independently hydrogen, alkyl, haloalkyl, cycloalkyl, heterocycloalkyl, cycloalkylalkyl, heterocycloalkylalkyl, aryl, heteroaryl, arylalkyl, or heteroarylalkyl; or R13 and R13a together with the nitrogen atom to which they are attached, form a 4- to 8-membered mono-heterocycloalkyl ring;
    n is 1, 2, 3, or 4.
  2. The compound of claim 1 and/or a pharmaceutically acceptable salt thereof, wherein R is substituted or unsubstituted C1-6alkyl, substituted or unsubstituted C3-10cycloalkyl, substituted or unsubstituted 3- to 10-membered heterocycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted naphthyl, substituted or unsubstituted 5- to 10-membered heteroaryl, substituted or unsubstituted C3-10cycloalkylC1-3alkyl, substituted or unsubstituted 3- to 10-membered heterocycloalkylC1-3alkyl, substituted or unsubstituted phenylC1-3alkyl, or substituted or unsubstituted 5- to 10-membered heteroarylC1-3alkyl; wherein the substituted C1-6alkyl, substituted C3-10cycloalkyl, substituted 3- to 10-membered heterocycloalkyl, substituted phenyl, substituted naphthyl, substituted 5- to 10-membered heteroaryl, substituted C3-10cycloalkylC1-3alkyl, substituted 3- to 10-membered heterocycloalkylC1-3alkyl, substituted phenylC1-3alkyl, or substituted 5- to 10-membered heteroarylC1-3alkyl is substituted by 1 to 3 R11 at any position.
  3. The compound of claim 2 and/or a pharmaceutically acceptable salt thereof, wherein R11 is independently halogen, hydroxyl, amino, carboxyl, -NO2, -CN, C1-6alkyl, halo- C1-6alkyl, C1-6alkoxy, halo- C1-6alkoxy, substituted or unsubstituted C3-8cycloalkyl, substituted or unsubstituted 3- to 8-membered heterocycloalkyl, substituted or unsubstituted phenyl, substituted or unsubstituted 5- to 6-membered heteroaryl, C3-8cycloalkylC1-3alkyl, 3- to  8-membered heterocycloalkylC1-3alkyl, phenylC1-3alkyl, 5- to 6-membered heteroarylC1-3alkyl, 3- to 8-membered heterocycloalkylC1-3alkoxy, C3-8cycloalkylC1-3alkoxy, phenylC1-3alkoxy, 5- to 6-membered heteroarylC1-3alkoxy, C2-4alkenyl, C2-4alkynyl, aminoC1-6alkyl, hydroxyC1-6alkyl, -C (O) OR13 , -S (O) 0-2R13, -S (O) 0-2NR13R13a, -OC (O) R13, -OC (O) NR13R13a, -NR13R13a, -NHC (O) R13, -NHC (O) NR13R13a, -NHS (O) 2R13, -NHS (O) 2NR13R13a, -C (O) R13, -C (O) NR13R13a, or - (CH2nNR13R13a; and wherein the substituted C3-8cycloalkyl, substituted 3- to 8-membered heterocycloalkyl, substituted phenyl, or substituted 5- to 6-membered heteroaryl as R11 refer to C3-8cycloalkyl, 3- to 8-membered heterocycloalkyl, phenyl, or 5- to 6-membered heteroaryl substituted by 1 to 3 substituent (s) at any position independently selected from halogen, hydroxyl, amino, C1-3alkyl, C1-3alkoxy, halo-C1-3alkyl, and halo-C1-3alkoxy;
    and n is 1, 2, 3, or 4.
  4. The compound of claim 3 and/or a pharmaceutically acceptable salt thereof, wherein R13 and R13a are independently hydrogen, C1-3alkyl, halo-C1-3alkyl, C3-8cycloalkyl, 3- to 8-membered heterocycloalkyl, phenyl, or 5- to 6-membered heteroaryl; or R13 and R13a together with the nitrogen atom to which they are attached, form a 4- to 8-membered mono-heterocycloalkyl ring.
  5. The compound of claim 1 and/or a pharmaceutically acceptable salt thereof, wherein A2 is -C (O) N (R12) S (O) 2-; R is -NR10R10a; R10 and R10a are independently hydrogen, C1-6alkyl, C3-10cycloalkyl, 3- to 8-membered heterocycloalkyl, phenyl, 5- to 6-membered heteroaryl, C3-8cycloalkylC1-3alkyl, or 3- to 8-membered heteroalkylC1-3alkyl; or R10 and R10a together with the nitrogen atom to which they are attached, form a 4- to 8-membered mono-heterocycloalkyl ring; and R12 is the same as described in claim 1.
  6. The compound of claim 1 and/or a pharmaceutically acceptable salt thereof, wherein R12 is hydrogen or C1-6alkyl;
    and/or, A1 is a bond, -CH2-, or -CH2CH2-;
    and/or, L is a bond, -CH (CH3) -,
    Figure PCTCN2016080331-appb-100002
    and/or, R1 is hydrogen, hydroxyl, substituted or unsubstituted C1-3alkyl, or halogen;
    and/or, R2 is hydrogen, substituted or unsubstituted C1-3alkyl, or hydroxyl;
    and/or, R3 is hydrogen, substituted or unsubstituted C1-3alkyl, 2-propenyl, or halogen;
    and/or, R7 is hydrogen, hydroxyl, C1-3alkoxy, or halogen;
    and/or, R8 is hydrogen, or substituted or unsubstituted C1-3alkyl;
    and/or, R9 is hydrogen, substituted or unsubstituted C1-3alkyl, phenyl, or 5- to 6-membered heteroaryl; or R8 and R9 together with the carbon atom to which they are attached, form a 3- to 6-membered cycloalkyl ring;
    when R1, R2, R3, R8, or R9 is substituted C1-3alkyl, it is substituted by 1 to 3 substituent (s)  at any position independently selected from halogen, hydroxyl, C1-3alkyl and C3-8 cycloalkyl.
  7. The compound of any one of claims 1 to 6 and/or a pharmaceutically acceptable salt thereof, wherein the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is a compound of formula (I-1) and/or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2016080331-appb-100003
    Wherein,
    R1, R2, R3, R4, R5, R6, R7, R8, R9, R, A1 and A2 are the same as described in any one of claims 1 to 6.
  8. The compound of any one of claims 1 to 6 and/or a pharmaceutically acceptable salt thereof, wherein the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is
    1) a compound of formula (IA) and/or a pharmaceutically acceptable salt thereof, or
    2) a compound of formula (IB) and/or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2016080331-appb-100004
    wherein,
    R1, R2, R3, R4, R5, R6, R6’ , R7, R8, R12, R, L and A1 are the same as described in any one of claims 1 to 6.
  9. The compound of any one of claims 1 to 6 and/or a pharmaceutically acceptable salt thereof, wherein the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is
    1) a compound of formula (IA-1) and/or a pharmaceutically acceptable salt thereof, or
    2) a compound of formula (IB-1) and/or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2016080331-appb-100005
    Wherein,
    R3, R6, R6’ , R7, R8, R12, R, L, and A1 are the same as described in any one of claims 1 to 6.
  10. The compound of any one of claims 1 to 6 and/or a pharmaceutically acceptable salt thereof, wherein the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is
    1) a compound of formula (IA-2) and/or a pharmaceutically acceptable salt thereof,
    2) a compound of formula (IA-3) and/or a pharmaceutically acceptable salt thereof,
    3) a compound of formula (IA-4) and/or a pharmaceutically acceptable salt thereof,
    4) a compound of formula (IB-2) and/or a pharmaceutically acceptable salt thereof,
    5) a compound of formula (IB-3) and/or a pharmaceutically acceptable salt thereof, or
    6) a compound of formula (IB-4) and/or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2016080331-appb-100006
    Wherein,
    R3, R7, R8, R12, R, L, and A1 are the same as described in any one of claims 1 to 6.
  11. The compound of claim 10 and/or a pharmaceutically acceptable salt thereof, wherein the compound of formula (I) and/or a pharmaceutically acceptable salt thereof is
    1) a compound of formula (IA-5) and/or a pharmaceutically acceptable salt thereof, or
    2) a compound of formula (IB-5) and/or a pharmaceutically acceptable salt thereof,
    Figure PCTCN2016080331-appb-100007
    Wherein,
    R, R12, L, and A1 are the same as described in claim 10.
  12.  The compound of claim 1 and/or a pharmaceutically acceptable salt thereof, wherein the compound is
    Figure PCTCN2016080331-appb-100008
    Figure PCTCN2016080331-appb-100009
    Figure PCTCN2016080331-appb-100010
    Figure PCTCN2016080331-appb-100011
  13. A pharmaceutical composition comprising 1) a compound of any one of claims 1 to 12 and/or a pharmaceutically acceptable salt thereof, and 2) a pharmaceutically acceptable excipient.
  14. A pharmaceutical composition of claim 13, wherein the composition further comprising one or more additional pharmaceutical agents for treating cholestasis, intrahepatic cholestasis, estrogen-induced intrahepatic cholestasis, drug-induced cholestasis, intrahepatic cholestasis of pregnancy (ICP) , parenteral nutrition associated cholestasis (PNAC) , primary  biliary cirrhosis (PBC) , primary sclerosing cholangitis (PSC) , progressive familial intrahepatic cholestasis (PFIC) , non-alcoholic fatty liver disease (NAFLD) , non-alcoholic steatohepatitis (NASH) , chemotherapy related steatohepatitis (CASH) , drug induced bile duck injury, liver cirrhosis, alcohol induced liver cirrhosis, cystic fibrosis, bile duct obstruction, cholelithiasis, hepatic fibrosis, dyslipidemia, atherosclerosis, obesity, diabetes, diabetic nephropathy, colitis, neonatal jaundice, the prevention of nuclear jaundice, venous obstruction, high blood pressure, portal hypertension, metabolic syndrome, high cholesterol blood disease, and inflammatory bowel disease.
  15. Use of a compound of formula (I) or a pharmaceutically acceptable salt thereof as defined in any one of the claims 1 to 12 or a pharmaceutical composition thereof as defined in claims 13 to 14 for preparation of a medicament as FXR and /or TGR5 modulator.
  16. Use of a compound of formula (I) or a pharmaceutically acceptable salt thereof as defined in any one of the claims 1 to 12 or a pharmaceutical composition thereof as defined in claims 13 to 14 for preparation of a medicament for treating FXR and /or TGR5-mediated diseases.
  17. The use of claim 16 for preparation of a medicament for treating FXR and /or TGR5-mediated diseases, wherein the disease is selected from: cholestasis, intrahepatic cholestasis, estrogen-induced intrahepatic cholestasis, drug-induced cholestasis, intrahepatic cholestasis of pregnancy (ICP) , parenteral nutrition associated cholestasis (PNAC) , primary biliary cirrhosis (PBC) , primary sclerosing cholangitis (PSC) , progressive familial intrahepatic cholestasis (PFIC) , non-alcoholic fatty liver disease (NAFLD) , non-alcoholic steatohepatitis (NASH) , chemotherapy related steatohepatitis (CASH) , drug induced bile duck injury, liver cirrhosis, alcohol induced liver cirrhosis, cystic fibrosis, bile duct obstruction, cholelithiasis, hepatic fibrosis, dyslipidemia, atherosclerosis, obesity, diabetes, diabetic nephropathy, colitis, neonatal jaundice, the prevention of nuclear jaundice, venous obstruction, high blood pressure, portal hypertension, metabolic syndrome, high cholesterol blood disease, and/or inflammatory bowel disease.
PCT/CN2016/080331 2015-04-28 2016-04-27 Sulfonylaminocarbonyl derivative, pharmaceutical composition and uses thereof WO2016173493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510212017 2015-04-28
CN201510212017.8 2015-04-28

Publications (1)

Publication Number Publication Date
WO2016173493A1 true WO2016173493A1 (en) 2016-11-03

Family

ID=57198953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080331 WO2016173493A1 (en) 2015-04-28 2016-04-27 Sulfonylaminocarbonyl derivative, pharmaceutical composition and uses thereof

Country Status (2)

Country Link
CN (1) CN106083978A (en)
WO (1) WO2016173493A1 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533923A (en) * 2014-11-06 2017-11-16 エナンタ ファーマシューティカルズ インコーポレイテッド Bile acid analogs as FXR / TGR5 agonists and methods of use thereof
WO2018010651A1 (en) * 2016-07-13 2018-01-18 江苏恒瑞医药股份有限公司 Method for manufacturing obeticholic acid and intermediate thereof
WO2018152171A1 (en) * 2017-02-14 2018-08-23 Enanta Pharmaceuticals, Inc. Bile acid derivatives as fxr agonists and methods of use thereof
WO2018156916A3 (en) * 2017-02-23 2018-10-11 Intercept Pharmaceuticals, Inc Pharmaceutical compositions of a bile acid derivative and microbiome and uses thereof
JP2019503392A (en) * 2016-01-28 2019-02-07 チア タイ ティエンチン ファーマシューティカル グループ カンパニー リミテッドChia Tai Tianqing Pharmaceutical Group Co., Ltd. Steroid derivative FXR agonist
US10208081B2 (en) 2014-11-26 2019-02-19 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
US10246483B2 (en) 2015-02-11 2019-04-02 Enanta Pharmaceuticals, Inc. Bile acid analogs as FXR/TGR5 agonists and methods of use thereof
US10323060B2 (en) 2016-02-23 2019-06-18 Enanta Pharmaceuticals, Inc. Benzoic acid derivatives of bile acid as FXR/TGR5 agonists and methods of use thereof
US10323061B2 (en) 2016-02-23 2019-06-18 Enanta Pharmaceuticals, Inc. Heteroaryl containing bile acid analogs as FXR/TGR5 agonists and methods of use thereof
WO2019191637A1 (en) * 2018-03-29 2019-10-03 Metselex, Inc. Compositions for the prevention and treatment of parkinson's disease
US10457703B2 (en) 2015-03-31 2019-10-29 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
US10519191B2 (en) 2014-11-26 2019-12-31 Enanta Pharmaceuticals, Inc. Bile acid analogs as FXR/TGR5 agonists and methods of use thereof
WO2020025942A1 (en) 2018-07-30 2020-02-06 NZP UK Limited Fluorinated bile acid derivatives
US10584145B2 (en) 2016-11-29 2020-03-10 Enanta Pharmaceuticals, Inc. Process for preparation of sulfonylurea bile acid derivatives
US10676500B2 (en) 2017-04-07 2020-06-09 Enanta Pharmaceuticals, Inc. Process for preparation of sulfonyl carbamate bile acid derivatives
WO2021009332A1 (en) 2019-07-18 2021-01-21 Enyo Pharma Method for decreasing adverse-effects of interferon
WO2021144330A1 (en) 2020-01-15 2021-07-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of fxr agonists for treating an infection by hepatitis d virus
WO2022152770A1 (en) 2021-01-14 2022-07-21 Enyo Pharma Synergistic effect of a fxr agonist and ifn for the treatment of hbv infection
WO2022229302A1 (en) 2021-04-28 2022-11-03 Enyo Pharma Strong potentiation of tlr3 agonists effects using fxr agonists as a combined treatment
US11578097B2 (en) 2014-11-26 2023-02-14 Enanta Pharmaceuticals, Inc. Tetrazole derivatives of bile acids as FXR/TGR5 agonists and methods of use thereof
US11958879B2 (en) 2021-05-19 2024-04-16 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA038580B9 (en) * 2016-05-18 2021-10-05 Чиа Тай Тяньцин Фармасьютикал Груп Ко., Лтд. Steroid derivative fxr agonist
EP3660030A4 (en) * 2017-07-26 2021-04-21 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Method for preparing steroid derivative fxr agonist
CN107955056A (en) * 2017-12-06 2018-04-24 南京法恩化学有限公司 A kind of synthetic method of Austria's shellfish cholic acid and intermediate
CN113527536B (en) * 2020-04-21 2024-03-22 杭州德柯医疗科技有限公司 Fluorine-containing polysaccharide high molecular compound and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095174A2 (en) * 2006-02-14 2007-08-23 Intercept Pharmaceuticals, Inc. Bile acid derivatives as fxr ligands for the prevention or treatment of fxr-mediated diseases or conditions
WO2008002573A2 (en) * 2006-06-27 2008-01-03 Intercept Pharmaceuticals, Inc. Bile acid derivatives as fxr ligands for the prevention or treatment of fxr-mediated deseases or conditions
WO2008091540A2 (en) * 2007-01-19 2008-07-31 Intercept Pharmaceuticals, Inc. 23-substituted bile acids as tgr5 modulators and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007095174A2 (en) * 2006-02-14 2007-08-23 Intercept Pharmaceuticals, Inc. Bile acid derivatives as fxr ligands for the prevention or treatment of fxr-mediated diseases or conditions
WO2008002573A2 (en) * 2006-06-27 2008-01-03 Intercept Pharmaceuticals, Inc. Bile acid derivatives as fxr ligands for the prevention or treatment of fxr-mediated deseases or conditions
WO2008091540A2 (en) * 2007-01-19 2008-07-31 Intercept Pharmaceuticals, Inc. 23-substituted bile acids as tgr5 modulators and methods of use thereof

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017533923A (en) * 2014-11-06 2017-11-16 エナンタ ファーマシューティカルズ インコーポレイテッド Bile acid analogs as FXR / TGR5 agonists and methods of use thereof
EP3215179A4 (en) * 2014-11-06 2018-07-25 Enanta Pharmaceuticals, Inc. Bile acid analogs an fxr/tgr5 agonists and methods of use thereof
US10266560B2 (en) 2014-11-06 2019-04-23 Enanta Pharmaceuticals, Inc. Bile acid analogs as FXR/TGR5 agonists and methods of use thereof
US11718641B2 (en) 2014-11-26 2023-08-08 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
US10519191B2 (en) 2014-11-26 2019-12-31 Enanta Pharmaceuticals, Inc. Bile acid analogs as FXR/TGR5 agonists and methods of use thereof
US10696713B2 (en) 2014-11-26 2020-06-30 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
US10208081B2 (en) 2014-11-26 2019-02-19 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
US10968249B2 (en) 2014-11-26 2021-04-06 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
US11578097B2 (en) 2014-11-26 2023-02-14 Enanta Pharmaceuticals, Inc. Tetrazole derivatives of bile acids as FXR/TGR5 agonists and methods of use thereof
US10246483B2 (en) 2015-02-11 2019-04-02 Enanta Pharmaceuticals, Inc. Bile acid analogs as FXR/TGR5 agonists and methods of use thereof
US10457703B2 (en) 2015-03-31 2019-10-29 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
US11040998B2 (en) 2015-03-31 2021-06-22 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof
JP2019503392A (en) * 2016-01-28 2019-02-07 チア タイ ティエンチン ファーマシューティカル グループ カンパニー リミテッドChia Tai Tianqing Pharmaceutical Group Co., Ltd. Steroid derivative FXR agonist
EP3409684A4 (en) * 2016-01-28 2019-10-09 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Steroid derivative fxr agonist
US11667667B2 (en) 2016-01-28 2023-06-06 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Steroid derivative FXR agonist
AU2017213032B2 (en) * 2016-01-28 2021-01-07 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Steroid derivative FXR agonist
US10875888B2 (en) 2016-01-28 2020-12-29 Chia Tai Tianqing Pharmaceutical Group Co., Ltd. Steroid derivative FXR agonist
US10323061B2 (en) 2016-02-23 2019-06-18 Enanta Pharmaceuticals, Inc. Heteroaryl containing bile acid analogs as FXR/TGR5 agonists and methods of use thereof
US10323060B2 (en) 2016-02-23 2019-06-18 Enanta Pharmaceuticals, Inc. Benzoic acid derivatives of bile acid as FXR/TGR5 agonists and methods of use thereof
WO2018010651A1 (en) * 2016-07-13 2018-01-18 江苏恒瑞医药股份有限公司 Method for manufacturing obeticholic acid and intermediate thereof
US10584145B2 (en) 2016-11-29 2020-03-10 Enanta Pharmaceuticals, Inc. Process for preparation of sulfonylurea bile acid derivatives
US10947264B2 (en) 2016-11-29 2021-03-16 Enanta Pharmaceuticals, Inc. Process for preparation of sulfonylurea bile acid derivatives
US10472386B2 (en) 2017-02-14 2019-11-12 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR agonists and methods of use thereof
WO2018152171A1 (en) * 2017-02-14 2018-08-23 Enanta Pharmaceuticals, Inc. Bile acid derivatives as fxr agonists and methods of use thereof
WO2018156916A3 (en) * 2017-02-23 2018-10-11 Intercept Pharmaceuticals, Inc Pharmaceutical compositions of a bile acid derivative and microbiome and uses thereof
CN110461337A (en) * 2017-02-23 2019-11-15 英特塞普特医药品公司 Medical composition and its use with bile acid derivative and microorganism group
US10961272B2 (en) 2017-04-07 2021-03-30 Enanta Pharmaceuticals, Inc. Process for preparation of sulfonyl carbamate bile acid derivatives
US10676500B2 (en) 2017-04-07 2020-06-09 Enanta Pharmaceuticals, Inc. Process for preparation of sulfonyl carbamate bile acid derivatives
WO2019191637A1 (en) * 2018-03-29 2019-10-03 Metselex, Inc. Compositions for the prevention and treatment of parkinson's disease
US11517577B2 (en) 2018-07-30 2022-12-06 NZP UK Limited Fluorinated bile acid derivatives
CN112771063A (en) * 2018-07-30 2021-05-07 Nzp英国有限公司 Fluorinated bile acid derivatives
WO2020025942A1 (en) 2018-07-30 2020-02-06 NZP UK Limited Fluorinated bile acid derivatives
CN112771063B (en) * 2018-07-30 2023-10-27 Nzp英国有限公司 Fluorinated bile acid derivatives
WO2021009332A1 (en) 2019-07-18 2021-01-21 Enyo Pharma Method for decreasing adverse-effects of interferon
WO2021144330A1 (en) 2020-01-15 2021-07-22 INSERM (Institut National de la Santé et de la Recherche Médicale) Use of fxr agonists for treating an infection by hepatitis d virus
WO2022152770A1 (en) 2021-01-14 2022-07-21 Enyo Pharma Synergistic effect of a fxr agonist and ifn for the treatment of hbv infection
WO2022229302A1 (en) 2021-04-28 2022-11-03 Enyo Pharma Strong potentiation of tlr3 agonists effects using fxr agonists as a combined treatment
US11958879B2 (en) 2021-05-19 2024-04-16 Enanta Pharmaceuticals, Inc. Bile acid derivatives as FXR/TGR5 agonists and methods of use thereof

Also Published As

Publication number Publication date
CN106083978A (en) 2016-11-09

Similar Documents

Publication Publication Date Title
WO2016173493A1 (en) Sulfonylaminocarbonyl derivative, pharmaceutical composition and uses thereof
JP6330011B2 (en) Kynurenin-3-monooxygenase inhibitor, pharmaceutical composition thereof, and method of use thereof
US20210269475A1 (en) Farnesoid x receptor modulators
CN109071593A (en) Steroid derivatives FXR agonist
KR101982912B1 (en) Fused heterocyclic compound, preparation method therefor, pharmaceutical composition, and uses thereof
WO2019007418A1 (en) Fxr receptor agonist
CN106518946A (en) Sulfonylurea derivative and pharmaceutical composition and application thereof
WO2014036897A1 (en) Imidazoline derivatives, preparation methods thereof, and their applications in medicine
TW202023561A (en) Antibacterial compounds
JP2021512114A (en) Nitrogen-containing tricyclic compounds and their use in pharmaceuticals
TWI665197B (en) Benzocyclic derivative with β2 receptor agonism and M3 receptor antagonistic activity and its use in medicine
JP2016145212A (en) Polymorphs of cddo ethyl ester and uses thereof
TW202210488A (en) Pyrazine derivative and applications in SHP2 inhibition thereof capable of preventing and/or treating non-receptor protein tyrosine phosphatase-mediated or dependent diseases or conditions.
JP2014534208A5 (en)
WO2019179515A1 (en) Receptor inhibitor, pharmaceutical composition comprising same, and use thereof
AU2019385438A1 (en) Spiro compound and medical uses thereof
WO2019096106A1 (en) Heterocyclic compound and application thereof in medicine
WO2012063896A1 (en) Novel pyrazole amide derivative
CN117460721A (en) LPA1 small molecule antagonist
TW202134248A (en) Sstr5 antagonists
JP3471778B2 (en) Tricyclic fused heterocyclic compound, production method and use thereof
WO2021078150A1 (en) Pentacyclic triterpene tgr5 receptor agonist and preparation method therefor and uses thereof
WO2019184919A1 (en) Adamantane-containing compound and use thereof in treating cancer
WO2020148325A1 (en) Neutral lxr modulators
CN116768773A (en) Cholesterol derivative and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16785924

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16785924

Country of ref document: EP

Kind code of ref document: A1