WO2016171483A1 - Hydrogen water production device - Google Patents

Hydrogen water production device Download PDF

Info

Publication number
WO2016171483A1
WO2016171483A1 PCT/KR2016/004145 KR2016004145W WO2016171483A1 WO 2016171483 A1 WO2016171483 A1 WO 2016171483A1 KR 2016004145 W KR2016004145 W KR 2016004145W WO 2016171483 A1 WO2016171483 A1 WO 2016171483A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogen
carbon
generating electrode
water
hydrogen water
Prior art date
Application number
PCT/KR2016/004145
Other languages
French (fr)
Korean (ko)
Inventor
서형탁
이상민
Original Assignee
아주대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 아주대학교산학협력단 filed Critical 아주대학교산학협력단
Publication of WO2016171483A1 publication Critical patent/WO2016171483A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Definitions

  • the present invention relates to a hydrogen water production apparatus, and more particularly to a hydrogen water production apparatus for producing hydrogen water that is electrolytic reduced water by electrolysis.
  • Hydrogen water was produced in May 1997 by Professor Sarahata Sanetaga of Kyushu University in a paper on the efficacy of active hydrogen published in the American Journal of Biological Biochemical and Biophysical Research Communications (BBRC). It is called "active hydrogen water” after claiming to be the most ideal substance to remove the active oxygen in the inside.
  • Vitamin C's antioxidant activity acts on not only free radicals that are bad for the body, but also free radicals, while free radicals in hydrogen water can selectively remove free radicals that are harmful to the body.
  • the apparatus for producing hydrogen water can be classified into four types: a stick type using magnesium, an electrolysis type using electrolysis of water, a capsule type powdered calcium salt, and a method of injecting hydrogen gas into raw water.
  • platinum and titanium-plated platinum alloys are used as electrodes, and these precious metals are widely used because of their excellent efficiency and excellent stability.
  • precious metals such as platinum constituting the electrode are very expensive, which lowers the price competitiveness of the hydrogen water production apparatus.
  • One object of the present invention is to provide a hydrogen water production apparatus that can be configured at a low cost while having a high hydrogen generation efficiency.
  • Hydrogen water production apparatus for an object of the present invention is a container containing water, an oxygen generating electrode disposed in the container, formed of a carbon-based material, and disposed in the container, formed of a carbon-based material, the surface is hydrophilic Treated hydrogen generating electrode.
  • the carbon-based material is a carbon felt, carbon paper, reduced-graphene oxide (RGO) laminate, porous carbon material, graphene structure, carbon nanotubes ( a carbon nano tube) structure and / or a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded to each other.
  • RGO reduced-graphene oxide
  • the surface of the carbon-based material of the oxygen generating electrode may be hydrophilic.
  • the hydrogen generated by the electrolysis of water in the hydrogen generating electrode and the oxygen generating electrode may be dissolved in water to form hydrogen water.
  • the minimum voltage for the electrolysis of water in the hydrogen water production apparatus may be 4V.
  • the carbonaceous material includes a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded, and the minimum voltage for electrolysis of water may be 1V.
  • p-RGO p-type RGO
  • n-Si n-type silicon
  • the hydrogen generating electrode may have a high hydrogen generation efficiency at a level similar to the case of using a noble metal electrode by using a surface-treated hydrophilic carbon electrode. Therefore, the productivity of hydrogen water can be improved by using the carbon electrode which is remarkably cheaper than a noble metal electrode as a hydrogen generating electrode.
  • the carbon electrode in the present invention can minimize the voltage required for water decomposition can reduce the power consumption, it is possible to improve the productivity of the hydrogen water.
  • FIG. 1 is a view for explaining a hydrogen water production apparatus according to an embodiment of the present invention.
  • FIG. 2 is a view for explaining another hydrogen water production apparatus according to another embodiment of the present invention.
  • FIG. 1 is a view for explaining a hydrogen water production apparatus according to an embodiment of the present invention.
  • the hydrogen water producing apparatus 100 includes a vessel 110, a hydrogen generating electrode CE and an oxygen generating electrode AE disposed therein.
  • Water 120 may be received in the vessel 110, and the hydrogen generating electrode CE and the oxygen generating electrode AE may be disposed to be submerged in the water 120.
  • the hydrogen generating electrode CE is a cathode that receives electrons and generates hydrogen gas HY.
  • the hydrogen generating electrode CE is a carbon electrode made of a carbon-based material, and includes a carbon electrode whose surface is hydrophilic.
  • the carbon-based material itself has hydrophobic surface properties, but the hydrophilic treatment of the surface increases the amount of adsorption of water molecules on the hydrogen generating electrode CE.
  • the number of water molecules adsorbed on the hydrogen generating electrode CE increases, the amount of hydrogen gas generated by the hydrogen generating electrode CE increases because more water molecules are electrolyzed. That is, in the hydrogen generating electrode CE, a reaction occurs as in Scheme 1 below, where the number of x may be increased (x is a natural number).
  • Hydrophilic treatment of the hydrogen generating electrode CE may be performed by introducing an oxygen functional group into the carbon-based material.
  • the hydrophilic treatment may be performed by chemical treatment using an acidic solution, by surface treatment with oxygen radicals and hydroxyl functional groups generated by ultraviolet rays, or by using an oxygen plasma.
  • the hydrophilic treatment method is not limited thereto, and may be performed in various ways.
  • Examples of the carbon-based material of the hydrogen generating electrode CE include carbon felt, carbon paper, reduced-graphene oxide (RGO) laminate, porous carbon material, graphene structure, Carbon nano tube structure can be used. These can be used individually or in combination of 2 or more, respectively.
  • RGO reduced-graphene oxide
  • the hydrogen generating electrode CE a laminated structure of nano structured carbon nanotubes and carbon nanosheets may be used.
  • a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded may be used as the carbon-based material.
  • the oxygen generating electrode AE is an anode that loses electrons and generates oxygen gas OX. Since the oxygen generating electrode AE is formed of a carbon-based material, and the carbon-based material forming the oxygen generating electrode AE is substantially the same as that described in the hydrogen generating electrode CE, detailed descriptions thereof will be omitted. At this time, the oxygen generating electrode (AE) is formed of a carbon-based material without a separate hydrophilic treatment.
  • the oxygen generating electrode AE and the hydrogen generating electrode CE may be formed of the same carbon-based material or may be formed of different carbon-based materials.
  • Reaction like the following Reaction Formula 2 takes place in the oxygen generating electrode AE (y is a natural number).
  • the hydrogen water production apparatus 100 may produce hydrogen water in a state in which hydrogen gas HY generated at the hydrogen generating electrode CE is dissolved in water.
  • the minimum voltage for electrolysis of water may be 4V. That is, the hydrogen water production apparatus 100 using the electrode containing the carbon-based material can electrolyze water even at a low voltage, compared to the minimum voltage of about 6 V when using the platinum electrode, the power consumption required Can be reduced.
  • the carbon-based material forming the hydrogen generating electrode CE and the oxygen generating electrode AE includes a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded to each other
  • the minimum voltage for electrolysis may be 1 V.
  • the hydrogen generating electrode CE may maximize the adsorption amount of water molecules on the hydrogen generating electrode CE by using a surface-treated hydrophilic carbon electrode. Accordingly, the generation efficiency of the hydrogen gas HY may be high at a level similar to the case of using a noble metal electrode formed of a noble metal such as platinum.
  • the productivity of hydrogen water can be improved by using the carbon electrode which is remarkably cheaper than a noble metal electrode as hydrogen generation electrode CE.
  • Surface hydrophilic treatment of the carbon electrode can also be carried out at low cost as a simple process.
  • the voltage required for water decomposition of the hydrogen water generator 100 is low, power consumption may be reduced, and thus productivity of the hydrogen water may be improved.
  • FIG. 2 is a view for explaining another hydrogen water production apparatus according to another embodiment of the present invention.
  • the hydrogen water producing apparatus 101 includes a vessel 110, a hydrogen generating electrode CE, and an oxygen generating electrode MAE disposed therein.
  • Water 120 is contained within the vessel 110 and the other components, except for the oxygen generating electrode MAE of FIG. 2, are substantially the same as those of the hydrogen water production apparatus 100 described in FIG. Detailed description thereof will be omitted.
  • Oxygen generating electrode (MAE) is a carbon electrode formed of a carbon-based material, the surface is hydrophilic treatment.
  • the carbonaceous material and the hydrophilic treatment are substantially the same as described for the hydrogen generating electrode CE of FIG. 1. That is, the hydrogen water producing apparatus 101 of FIG. 2 uses a carbon electrode in which not only the hydrogen generating electrode CE but also the oxygen generating electrode MAE is hydrophilically treated.
  • the oxygen generating electrode MAE uses a hydrophilic carbon electrode, the amount of adsorption of water molecules on the oxygen generating electrode MAE can be increased, thereby increasing the amount of electrolyzed water and increasing the hydrogen generating electrode CE. The amount of electrons that can be delivered increases. As a result, the total amount of hydrogen gas generated by the hydrogen water production device 101 can be maximized.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Hydrology & Water Resources (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

A hydrogen water production device of the present invention comprises: a container in which water is received; an oxygen generation electrode which is arranged within the container and is formed of a carbon-based material; and a hydrogen generation electrode which is arranged within the container, is formed of a carbon-based material, and has a surface subjected to hydrophilic treatment.

Description

수소수 생산 장치Hydrogen water production equipment
본 발명은 수소수 생산 장치에 관한 것으로, 보다 구체적으로는 전기분해 방식으로 전해환원수인 수소수를 제조하는 수소수 생산 장치에 관한 것이다.The present invention relates to a hydrogen water production apparatus, and more particularly to a hydrogen water production apparatus for producing hydrogen water that is electrolytic reduced water by electrolysis.
수소수(hydrogen water)는 1997년 5월, 규슈대학의 사라하타 사네타가 교수가 미국 생물학지인 BBRC(biochemical and biophysical Research Communications)에서 발표한 활성수소의 효능과 관련한 논문을 통해서, 활성수소가 인체 내의 활성산소를 제거하는데 가장 이상적인 물질이라는 주장을 한 이후 "활성수소수"로 불리고 있다.Hydrogen water was produced in May 1997 by Professor Sarahata Sanetaga of Kyushu University in a paper on the efficacy of active hydrogen published in the American Journal of Biological Biochemical and Biophysical Research Communications (BBRC). It is called "active hydrogen water" after claiming to be the most ideal substance to remove the active oxygen in the inside.
비타민 C의 항산화작용은 몸에 나쁜 활성산소뿐만 아니라 좋은 활성산소에도 작용하는 반면, 수소수 내의 활성수소는 몸에 해로운 활성산소를 선택적으로 제거할 수 있다.Vitamin C's antioxidant activity acts on not only free radicals that are bad for the body, but also free radicals, while free radicals in hydrogen water can selectively remove free radicals that are harmful to the body.
일본에서는 현재 수소수 시장이 전체 음용수 시장의 10% 이상을 차지하고 있으며, 국내에서도 건강에 대한 관심과 함께 국내에서도 연 500 억원 규모의 시장을 형성하고 있다. 수소수를 생산하는 장치는, 크게 마그네슘을 이용한 스틱식, 물을 전기분해해서 이용하는 전기분해식, 칼슘염을 분말화한 캡슐식 및 원수에 수소가스를 주입하는 방식의 4 가지로 구분할 수 있다.In Japan, the hydrogen water market currently accounts for more than 10% of the total drinking water market. In addition to the health concerns in Korea, the market is generating 50 billion won annually in Korea. The apparatus for producing hydrogen water can be classified into four types: a stick type using magnesium, an electrolysis type using electrolysis of water, a capsule type powdered calcium salt, and a method of injecting hydrogen gas into raw water.
전기분해식의 경우, 백금 및 티탄에 백금을 도금한 합금을 전극으로 이용하고 있고 이러한 귀금속은 효율이 우수하고 안정성이 뛰어나다는 장점이 있어 널리 이용되고 있다. 그러나 전극을 구성하는 백금 등의 귀금속은 매우 비싸 수소수 생산 장치의 가격 경쟁력을 저하시킨다.In the case of electrolysis, platinum and titanium-plated platinum alloys are used as electrodes, and these precious metals are widely used because of their excellent efficiency and excellent stability. However, precious metals such as platinum constituting the electrode are very expensive, which lowers the price competitiveness of the hydrogen water production apparatus.
본 발명의 일 목적은 높은 수소 발생 효율을 가지면서도 저비용으로 구성할 수 있는 수소수 생산 장치를 제공하는 것이다.One object of the present invention is to provide a hydrogen water production apparatus that can be configured at a low cost while having a high hydrogen generation efficiency.
본 발명의 일 목적을 위한 수소수 생산 장치는 물이 수용되는 용기, 상기 용기 내에 배치되고, 탄소계 물질로 형성된 산소 발생 전극, 및 상기 용기 내에 배치되고, 탄소계 물질로 형성되되 그 표면이 친수성 처리된 수소 발생 전극을 포함한다.Hydrogen water production apparatus for an object of the present invention is a container containing water, an oxygen generating electrode disposed in the container, formed of a carbon-based material, and disposed in the container, formed of a carbon-based material, the surface is hydrophilic Treated hydrogen generating electrode.
일 실시예에서, 탄소계 물질은 탄소 펠트(carbon felt), 카본지(carbon paper), 환원-산화그래핀(reduced-graphene oxide, RGO) 적층체, 다공성 탄소 물질, 그래핀 구조체, 탄소나노튜브(carbon nano tube) 구조체 및/또는 p형 RGO(p-RGO)와 n형 실리콘(n-Si)이 접합한 다이오드 구조체를 포함할 수 있다.In one embodiment, the carbon-based material is a carbon felt, carbon paper, reduced-graphene oxide (RGO) laminate, porous carbon material, graphene structure, carbon nanotubes ( a carbon nano tube) structure and / or a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded to each other.
일 실시예에서, 상기 산소 발생 전극의 탄소계 물질의 표면은 친수성 처리될 수 있다.In one embodiment, the surface of the carbon-based material of the oxygen generating electrode may be hydrophilic.
일 실시예에서, 상기 수소 발생 전극 및 상기 산소 발생 전극에서 물의 전기 분해로 인해 발생한 수소가 물에 용해되어 수소수를 형성할 수 있다.In one embodiment, the hydrogen generated by the electrolysis of water in the hydrogen generating electrode and the oxygen generating electrode may be dissolved in water to form hydrogen water.
일 실시예에서, 수소수 생산 장치에서 물의 전기 분해를 위한 최소 전압이 4 V일 수 있다.In one embodiment, the minimum voltage for the electrolysis of water in the hydrogen water production apparatus may be 4V.
일 실시예에서, 탄소계 물질은 p형 RGO(p-RGO)와 n형 실리콘(n-Si)이 접합한 다이오드 구조체를 포함하고, 물의 전기 분해를 위한 최소 전압이 1 V일 수 있다.In one embodiment, the carbonaceous material includes a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded, and the minimum voltage for electrolysis of water may be 1V.
본 발명의 수소수 생산 장치에 따르면, 수소 발생 전극을 표면이 친수 처리된 탄소 전극을 이용함으로써 귀금속 전극을 이용하는 경우와 유사한 수준으로 높은 수소 발생 효율을 가질 수 있다. 따라서 수소 발생 전극으로서 귀금속 전극보다 현저하게 가격이 낮은 탄소 전극을 이용함으로서 수소수의 생산성을 향상시킬 수 있다. 특히, 본 발명에서의 탄소 전극에 의해 물 분해에 필요한 전압을 최소화시킬 수 있어 전력 소모를 감소시킬 수 있으므로, 수소수의 생산성을 향상시킬 수 있다.According to the apparatus for producing hydrogen water of the present invention, the hydrogen generating electrode may have a high hydrogen generation efficiency at a level similar to the case of using a noble metal electrode by using a surface-treated hydrophilic carbon electrode. Therefore, the productivity of hydrogen water can be improved by using the carbon electrode which is remarkably cheaper than a noble metal electrode as a hydrogen generating electrode. In particular, the carbon electrode in the present invention can minimize the voltage required for water decomposition can reduce the power consumption, it is possible to improve the productivity of the hydrogen water.
도 1은 본 발명의 일 실시예에 따른 수소수 생산 장치를 설명하기 위한 도면이다.1 is a view for explaining a hydrogen water production apparatus according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 다른 수소수 생산 장치를 설명하기 위한 도면이다.2 is a view for explaining another hydrogen water production apparatus according to another embodiment of the present invention.
이하, 첨부한 도면을 참조하여 본 발명의 실시예에 대해 상세히 설명한다. 본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 각 도면을 설명하면서 유사한 참조부호를 유사한 구성요소에 대해 사용하였다. Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention. As the inventive concept allows for various changes and numerous embodiments, particular embodiments will be illustrated in the drawings and described in detail in the text. However, this is not intended to limit the present invention to a specific disclosed form, it should be understood to include all modifications, equivalents, and substitutes included in the spirit and scope of the present invention. In describing the drawings, similar reference numerals are used for similar elements.
본 출원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로서 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서 상에 기재된 특징, 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 단계, 동작, 구성요소, 부분품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprises" or "having" are intended to indicate that there is a feature, step, operation, component, part, or combination thereof described on the specification, and one or more other features or steps. It is to be understood that the present invention does not exclude, in advance, the possibility of the presence or the addition of an operation, a component, a part, or a combination thereof.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.Unless defined otherwise, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 1은 본 발명의 일 실시예에 따른 수소수 생산 장치를 설명하기 위한 도면이다.1 is a view for explaining a hydrogen water production apparatus according to an embodiment of the present invention.
도 1을 참조하면, 수소수 생산 장치(100)는 용기(110), 그 내부에 배치된 수소 발생 전극(CE) 및 산소 발생 전극(AE)을 포함한다. 용기(110) 내에 물(120)이 수용되고, 수소 발생 전극(CE) 및 산소 발생 전극(AE)은 물(120)에 잠기도록 배치될 수 있다.Referring to FIG. 1, the hydrogen water producing apparatus 100 includes a vessel 110, a hydrogen generating electrode CE and an oxygen generating electrode AE disposed therein. Water 120 may be received in the vessel 110, and the hydrogen generating electrode CE and the oxygen generating electrode AE may be disposed to be submerged in the water 120.
수소 발생 전극(CE)은 전자를 제공받아 수소 기체(HY)를 생성하는 캐소드(cathode)이다. 수소 발생 전극(CE)은 탄소계 물질로 이루어진 탄소 전극이되, 표면이 친수성 처리된 탄소 전극을 포함한다. 탄소계 물질 그 자체는 소수성의 표면 특성을 갖지만, 표면이 친수성 처리됨으로써 수소 발생 전극(CE)에의 물 분자(water molecule)의 흡착량이 증가한다. 수소 발생 전극(CE)에 흡착된 물 분자가 증가함에 따라 전기분해 되는 물 분자가 많아짐으로서 수소 발생 전극(CE)에서 생성되는 수소 기체량이 증가한다. 즉, 수소 발생 전극(CE)에서는 하기 반응식 1과 같은 반응이 일어나는데, 이때 x의 숫자를 증가시킬 수 있다(x는 자연수).The hydrogen generating electrode CE is a cathode that receives electrons and generates hydrogen gas HY. The hydrogen generating electrode CE is a carbon electrode made of a carbon-based material, and includes a carbon electrode whose surface is hydrophilic. The carbon-based material itself has hydrophobic surface properties, but the hydrophilic treatment of the surface increases the amount of adsorption of water molecules on the hydrogen generating electrode CE. As the number of water molecules adsorbed on the hydrogen generating electrode CE increases, the amount of hydrogen gas generated by the hydrogen generating electrode CE increases because more water molecules are electrolyzed. That is, in the hydrogen generating electrode CE, a reaction occurs as in Scheme 1 below, where the number of x may be increased (x is a natural number).
[반응식 1]Scheme 1
Figure PCTKR2016004145-appb-I000001
Figure PCTKR2016004145-appb-I000001
수소 발생 전극(CE)의 친수성 처리는 탄소계 물질에 산소 작용기가 도입됨으로써 수행될 수 있다. 예를 들어, 친수성 처리는 산성 용액을 이용하여 화학 처리를 하거나, 자외선에 의해 생성된 산소 라디컬 및 수산화 작용기에 의한 표면 처리를 이용하거나, 산소 플라즈마를 이용하여 수행할 수도 있다. 친수성 처리 방법은 이에 한정되지 않고, 다양한 방법으로 수행될 수 있다.Hydrophilic treatment of the hydrogen generating electrode CE may be performed by introducing an oxygen functional group into the carbon-based material. For example, the hydrophilic treatment may be performed by chemical treatment using an acidic solution, by surface treatment with oxygen radicals and hydroxyl functional groups generated by ultraviolet rays, or by using an oxygen plasma. The hydrophilic treatment method is not limited thereto, and may be performed in various ways.
수소 발생 전극(CE)의 탄소계 물질의 예로서는, 탄소 펠트(carbon felt), 카본지(carbon paper), 환원-산화그래핀(reduced-graphene oxide, RGO) 적층체, 다공성 탄소 물질, 그래핀 구조체, 탄소나노튜브(carbon nano tube) 구조체 등을 이용할 수 있다. 이들은 각각 단독으로 또는 2 이상을 조합하여 이용할 수 있다. 예를 들어, 수소 발생 전극(CE)으로서, 나노 구조화된 탄소나노튜브와 탄소나노시트의 적층 구조를 이용할 수 있다. 이와 달리, 탄소계 물질로서, p형 RGO(p-RGO)와 n형 실리콘(n-Si)이 접합한 다이오드 구조체를 이용할 수도 있다.Examples of the carbon-based material of the hydrogen generating electrode CE include carbon felt, carbon paper, reduced-graphene oxide (RGO) laminate, porous carbon material, graphene structure, Carbon nano tube structure can be used. These can be used individually or in combination of 2 or more, respectively. For example, as the hydrogen generating electrode CE, a laminated structure of nano structured carbon nanotubes and carbon nanosheets may be used. Alternatively, a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded may be used as the carbon-based material.
산소 발생 전극(AE)은 전자를 잃어 산소 가스(OX)를 생성하는 애노드(anode)이다. 산소 발생 전극(AE)은 탄소계 물질로 형성되고, 산소 발생 전극(AE)을 형성하는 탄소계 물질은 수소 발생 전극(CE)에서 설명한 것과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다. 이때, 산소 발생 전극(AE)은 별도의 친수성 처리 없이 탄소계 물질로 형성된다.The oxygen generating electrode AE is an anode that loses electrons and generates oxygen gas OX. Since the oxygen generating electrode AE is formed of a carbon-based material, and the carbon-based material forming the oxygen generating electrode AE is substantially the same as that described in the hydrogen generating electrode CE, detailed descriptions thereof will be omitted. At this time, the oxygen generating electrode (AE) is formed of a carbon-based material without a separate hydrophilic treatment.
산소 발생 전극(AE)과 수소 발생 전극(CE)은 서로 동일한 탄소계 물질로 형성될 수도 있고, 서로 다른 탄소계 물질로 형성될 수도 있다.The oxygen generating electrode AE and the hydrogen generating electrode CE may be formed of the same carbon-based material or may be formed of different carbon-based materials.
산소 발생 전극(AE)에서는 하기 반응식 2와 같은 반응이 일어난다(y는 자연수).Reaction like the following Reaction Formula 2 takes place in the oxygen generating electrode AE (y is a natural number).
[반응식 2]Scheme 2
Figure PCTKR2016004145-appb-I000002
Figure PCTKR2016004145-appb-I000002
이에 따라, 수소수 생산 장치(100)에서는 전체 반응로서 하기 반응식 3과 같이 물의 전기분해가 일어나는데(z는 자연수), 반응식 1의 x의 증가로 인해 반응식 3의 z도 증가가 될 수 있다. 즉, 전체 반응에서 본 발명에 따른 수소수 생산 장치(100)의 수소 발생 전극(CE)에서 생성되는 수소량을 최대화시킬 수 있다.Accordingly, in the hydrogen water production apparatus 100, electrolysis of water occurs as a whole reaction as in Scheme 3 (z is a natural number), and z in Scheme 3 may also increase due to an increase in x in Scheme 1. That is, it is possible to maximize the amount of hydrogen generated in the hydrogen generating electrode (CE) of the hydrogen water production apparatus 100 according to the present invention in the entire reaction.
[반응식 3]Scheme 3
Figure PCTKR2016004145-appb-I000003
Figure PCTKR2016004145-appb-I000003
수소수 생산 장치(100)은, 수소 발생 전극(CE)에서 생성되는 수소 기체(HY)가 물에 용해된 상태의 수소수를 제조할 수 있다.The hydrogen water production apparatus 100 may produce hydrogen water in a state in which hydrogen gas HY generated at the hydrogen generating electrode CE is dissolved in water.
본 발명의 수소수 생산 장치(100)와 같이 수소 발생 전극(CE)과 산소 발생 전극(AE)을 구비하는 경우, 물의 전기 분해를 위한 최소 전압이 4 V일 수 있다. 즉, 백금 전극을 이용하는 경우의 최소 전압이 6 V 정도인 것과 비교하여, 탄소계 물질을 포함하는 전극을 이용하는 수소수 생산 장치(100)는 낮은 전압으로도 물을 전기분해 시킬 수 있으므로 필요한 전력 소비를 감소시킬 수 있다.When the hydrogen generating electrode CE and the oxygen generating electrode AE are provided like the hydrogen water producing apparatus 100 of the present invention, the minimum voltage for electrolysis of water may be 4V. That is, the hydrogen water production apparatus 100 using the electrode containing the carbon-based material can electrolyze water even at a low voltage, compared to the minimum voltage of about 6 V when using the platinum electrode, the power consumption required Can be reduced.
특히, 수소 발생 전극(CE)과 산소 발생 전극(AE)을 형성하는 탄소계 물질이 p형 RGO(p-RGO)와 n형 실리콘(n-Si)이 접합한 다이오드 구조체를 포함하는 경우, 물의 전기 분해를 위한 최소 전압이 1 V일 수 있다.In particular, when the carbon-based material forming the hydrogen generating electrode CE and the oxygen generating electrode AE includes a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded to each other, The minimum voltage for electrolysis may be 1 V.
상기에서 설명한 바에 따르면, 수소 발생 전극(CE)을 표면이 친수 처리된 탄소 전극을 이용함으로써 수소 발생 전극(CE)에의 물 분자의 흡착량을 최대화시킬 수 있다. 이에 따라, 백금과 같은 귀금속으로 형성된 귀금속 전극을 이용하는 경우와 유사한 수준으로 높은 수소 기체(HY)의 발생 효율을 가질 수 있다. 수소 발생 전극(CE)으로서 귀금속 전극보다 현저하게 가격이 낮은 탄소 전극을 이용함으로서 수소수의 생산성을 향상시킬 수 있다. 탄소 전극의 표면 친수성 처리 또한 단순한 공정으로서 저비용으로 수행할 수 있다. 뿐만 아니라, 수소수 발생 장치(100)가 물 분해에 필요한 전압이 낮으므로, 전력 소모를 감소시킬 수 있어 수소수의 생산성을 향상시킬 수 있다.As described above, the hydrogen generating electrode CE may maximize the adsorption amount of water molecules on the hydrogen generating electrode CE by using a surface-treated hydrophilic carbon electrode. Accordingly, the generation efficiency of the hydrogen gas HY may be high at a level similar to the case of using a noble metal electrode formed of a noble metal such as platinum. The productivity of hydrogen water can be improved by using the carbon electrode which is remarkably cheaper than a noble metal electrode as hydrogen generation electrode CE. Surface hydrophilic treatment of the carbon electrode can also be carried out at low cost as a simple process. In addition, since the voltage required for water decomposition of the hydrogen water generator 100 is low, power consumption may be reduced, and thus productivity of the hydrogen water may be improved.
도 2는 본 발명의 다른 실시예에 다른 수소수 생산 장치를 설명하기 위한 도면이다.2 is a view for explaining another hydrogen water production apparatus according to another embodiment of the present invention.
도 2를 참조하면, 수소수 생산 장치(101)는 용기(110), 그 내부에 배치된 수소 발생 전극(CE) 및 산소 발생 전극(MAE)을 포함한다. 용기(110) 내에 물(120)이 수용되고, 도 2의 산소 발생 전극(MAE)을 제외하고 다른 구성 요소들은 도 1에서 설명한 수소수 생산 장치(100)의 구성 요소들과 실질적으로 동일하므로 중복되는 상세한 설명은 생략한다.Referring to FIG. 2, the hydrogen water producing apparatus 101 includes a vessel 110, a hydrogen generating electrode CE, and an oxygen generating electrode MAE disposed therein. Water 120 is contained within the vessel 110 and the other components, except for the oxygen generating electrode MAE of FIG. 2, are substantially the same as those of the hydrogen water production apparatus 100 described in FIG. Detailed description thereof will be omitted.
산소 발생 전극(MAE)은 탄소계 물질로 형성된 탄소 전극이되, 그 표면이 친수성 처리된다. 탄소계 물질 및 친수성 처리는 도 1의 수소 발생 전극(CE)에서 설명한 것과 실질적으로 동일하다. 즉, 도 2의 수소수 생산 장치(101)는 수소 발생 전극(CE) 뿐만 아니라 산소 발생 전극(MAE)도 친수성 처리된 탄소 전극을 이용한다. 산소 발생 전극(MAE)이 친수성 처리된 탄소 전극을 이용함에 따라, 산소 발생 전극(MAE)에서의 물 분자의 흡착량을 증가시킬 수 있어 전기분해 시키는 물의 양이 증가하고, 수소 발생 전극(CE)으로 전달할 수 있는 전자량이 증가한다. 이에 따라, 전체적으로 수소수 생산 장치(101)가 생성하는 수소 기체량을 최대화시킬 수 있다.Oxygen generating electrode (MAE) is a carbon electrode formed of a carbon-based material, the surface is hydrophilic treatment. The carbonaceous material and the hydrophilic treatment are substantially the same as described for the hydrogen generating electrode CE of FIG. 1. That is, the hydrogen water producing apparatus 101 of FIG. 2 uses a carbon electrode in which not only the hydrogen generating electrode CE but also the oxygen generating electrode MAE is hydrophilically treated. As the oxygen generating electrode MAE uses a hydrophilic carbon electrode, the amount of adsorption of water molecules on the oxygen generating electrode MAE can be increased, thereby increasing the amount of electrolyzed water and increasing the hydrogen generating electrode CE. The amount of electrons that can be delivered increases. As a result, the total amount of hydrogen gas generated by the hydrogen water production device 101 can be maximized.
상기에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.While the foregoing has been described with reference to preferred embodiments of the present invention, those skilled in the art will be able to variously modify and change the present invention without departing from the spirit and scope of the invention as set forth in the claims below. It will be appreciated.
[부호의 설명][Description of the code]
100, 101: 수소수 생산 장치 CE: 수소 발생 전극100, 101: hydrogen water production apparatus CE: hydrogen generating electrode
AE, MAE: 산소 발생 전극 110: 용기AE, MAE: oxygen generating electrode 110: container
120: 물120: water

Claims (6)

  1. 물이 수용되는 용기;A container containing water;
    상기 용기 내에 배치되고, 탄소계 물질로 형성된 산소 발생 전극; 및An oxygen generating electrode disposed in the container and formed of a carbon-based material; And
    상기 용기 내에 배치되고, 탄소계 물질로 형성되되 그 표면이 친수성 처리된 수소 발생 전극을 포함하는,A hydrogen generating electrode disposed in the vessel and formed of a carbon-based material, the surface of which comprises a hydrophilic treatment;
    수소수 생산 장치.Hydrogen water production device.
  2. 제1항에 있어서,The method of claim 1,
    탄소계 물질은Carbon-based materials
    탄소 펠트(carbon felt), 카본지(carbon paper), 환원-산화그래핀(reduced-graphene oxide, RGO) 적층체, 다공성 탄소 물질, 그래핀 구조체, 탄소나노튜브(carbon nano tube) 구조체 및 p형 RGO(p-RGO)와 n형 실리콘(n-Si)이 접합한 다이오드 구조체 중에서 선택된 어느 하나를 포함하는 것을 특징으로 하는,Carbon felt, carbon paper, reduced-graphene oxide (RGO) laminates, porous carbon materials, graphene structures, carbon nanotube structures, and p-type RGO (p-RGO) and n-type silicon (n-Si) is characterized in that it comprises any one selected from the diode structure bonded,
    수소수 생산 장치.Hydrogen water production device.
  3. 제1항에 있어서,The method of claim 1,
    상기 산소 발생 전극의 탄소계 물질의 표면은 친수성 처리된 것을 특징으로 하는,The surface of the carbon-based material of the oxygen generating electrode, characterized in that the hydrophilic treatment,
    수소수 생산 장치.Hydrogen water production device.
  4. 제1항에 있어서,The method of claim 1,
    상기 수소 발생 전극 및 상기 산소 발생 전극에서 물의 전기 분해로 인해 발생한 수소가 물에 용해되어 수소수를 형성하는,Hydrogen generated due to electrolysis of water in the hydrogen generating electrode and the oxygen generating electrode is dissolved in water to form hydrogen water,
    수소수 생산 장치.Hydrogen water production device.
  5. 제1항에 있어서,The method of claim 1,
    물의 전기 분해를 위한 최소 전압이 4 V인 것을 특징으로 하는,Characterized in that the minimum voltage for the electrolysis of water is 4 V,
    수소수 생산 장치.Hydrogen water production device.
  6. 제1항에 있어서,The method of claim 1,
    탄소계 물질은 p형 RGO(p-RGO)와 n형 실리콘(n-Si)이 접합한 다이오드 구조체를 포함하고,The carbonaceous material includes a diode structure in which p-type RGO (p-RGO) and n-type silicon (n-Si) are bonded to each other,
    물의 전기 분해를 위한 최소 전압이 1 V인 것을 특징으로 하는,Characterized in that the minimum voltage for the electrolysis of water is 1 V,
    수소수 생산 장치.Hydrogen water production device.
PCT/KR2016/004145 2015-04-21 2016-04-21 Hydrogen water production device WO2016171483A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150055852A KR101788917B1 (en) 2015-04-21 2015-04-21 Device for producing hydrogen water
KR10-2015-0055852 2015-04-21

Publications (1)

Publication Number Publication Date
WO2016171483A1 true WO2016171483A1 (en) 2016-10-27

Family

ID=57143207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/004145 WO2016171483A1 (en) 2015-04-21 2016-04-21 Hydrogen water production device

Country Status (2)

Country Link
KR (1) KR101788917B1 (en)
WO (1) WO2016171483A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107687002A (en) * 2017-08-17 2018-02-13 沈阳中科惠友科技发展有限责任公司 A kind of activated cathode of doped graphene and preparation method thereof
CN108950595A (en) * 2018-07-30 2018-12-07 江南大学 Preparation method of multistage composite material of a kind of electro-catalysis hydrolysis and products thereof, application
CN111483977A (en) * 2020-05-06 2020-08-04 深圳市霍沃科技有限公司 Compound capable of instantly generating high-concentration hydrogen by dissolving in water and preparation method thereof
WO2021000662A1 (en) * 2019-07-03 2021-01-07 浙江大学 Ultrasound-electrode-nano-porous membrane coupled hydrogen preparation sterilization system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102000974B1 (en) * 2017-12-14 2019-07-17 세종대학교산학협력단 Hydrogen evolution reaction catalyst electrode comprising vertical graphene nano hills and preparing method of the same
KR102268656B1 (en) * 2019-11-26 2021-06-24 울산대학교 산학협력단 Portable oxygen breathing kit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041182A (en) * 2003-10-30 2005-05-04 한국원자력연구소 Electrolysis for producing hydrogen from water
KR20140036435A (en) * 2012-09-14 2014-03-26 윤지현 Automatic oxygen generator by water electrolysis and hydrogen fuel cell

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050041182A (en) * 2003-10-30 2005-05-04 한국원자력연구소 Electrolysis for producing hydrogen from water
KR20140036435A (en) * 2012-09-14 2014-03-26 윤지현 Automatic oxygen generator by water electrolysis and hydrogen fuel cell

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DIOGO, M. F. S. ET AL.: "Hydrogen Production by Alkaline Water Electrolysis", QUIM. NOVA, vol. 36, no. 8, 17 July 2013 (2013-07-17), pages 1176 - 1193, XP055324700 *
SEO, H. T. ET AL.: "Multi-resistive Reduced Graphene Oxide Diode with Reversible Surface Electrochemical Reaction Induced Carrier Control", SCIENTIFIC REPORT, vol. 4, no. 5642, 10 July 2014 (2014-07-10), pages 1 - 7, XP055324707 *
YUVARAJ, A. L. ET AL.: "A Systematic Study on Electrolytic Production of Hydrogen Gas by Using Graphite as Electrode", MATERIALS RESEARCH, vol. 17, no. 1, 28 February 2014 (2014-02-28), pages 83 - 87, XP055324692 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107687002A (en) * 2017-08-17 2018-02-13 沈阳中科惠友科技发展有限责任公司 A kind of activated cathode of doped graphene and preparation method thereof
CN107687002B (en) * 2017-08-17 2019-07-05 沈阳中科惠友科技发展有限责任公司 A kind of activated cathode of doped graphene and preparation method thereof
CN108950595A (en) * 2018-07-30 2018-12-07 江南大学 Preparation method of multistage composite material of a kind of electro-catalysis hydrolysis and products thereof, application
WO2021000662A1 (en) * 2019-07-03 2021-01-07 浙江大学 Ultrasound-electrode-nano-porous membrane coupled hydrogen preparation sterilization system
US11985993B2 (en) 2019-07-03 2024-05-21 Zhejiang University Ultrasound-electrode-nano-porous membrane coupling hydrogen production and sterilization system
CN111483977A (en) * 2020-05-06 2020-08-04 深圳市霍沃科技有限公司 Compound capable of instantly generating high-concentration hydrogen by dissolving in water and preparation method thereof

Also Published As

Publication number Publication date
KR101788917B1 (en) 2017-10-20
KR20160125104A (en) 2016-10-31

Similar Documents

Publication Publication Date Title
WO2016171483A1 (en) Hydrogen water production device
Li et al. Efficient decolorization of azo dye wastewater with polyaniline/graphene modified anode in microbial electrochemical systems
Feng et al. Hybridization of photoanode and bioanode to enhance the current production of bioelectrochemical systems
EP2567942A2 (en) Portable hydrogen-rich water generator
JP5835599B2 (en) Acid water electrolyzer and method of using the acid water
Hu et al. Magnetite nanoparticles accelerate the autotrophic sulfate reduction in biocathode microbial electrolysis cells
WO2016141768A1 (en) Electrode mainly prepared from ceramic material and applicable to water electrolysis device
JP2015217357A (en) Electrolytic water production apparatus, and production method of electrolytic water using the same
WO2019050079A1 (en) Water treatment apparatus for simultaneously generating hydrogen peroxide and hypochlorite ion
KR102616663B1 (en) Reduced water production device and reduced water production method
Zhang et al. Effect of humins from different sediments on microbial degradation of 2, 2′, 4, 4′, 5, 5′-hexachlorobiphenyl (PCB 153), and their polyphasic characterization
Ying et al. The impact of electron donors and anode potentials on the anode-respiring bacteria community
KR20160134421A (en) A pretreatment apparatus comprising osmosis-MFC system, and a desalination apparatus comprising the same
KR20010051771A (en) Condensate of SAR abolisher, producing method thereof, and SAR abolisher powder
Xu et al. In situ fabrication of gold nanoparticles into biocathodes enhance chloramphenicol removal
CN101090870B (en) Improved COD abatement process for electrochemical oxidation
Patel et al. Electrogenic degradation of Reactive Red 152 dye by Niallia circulans DC10 and its genome sequence analysis reveals genes mediating dye degradation and anodic electron transfer
Kiseleva et al. Magnet-facilitated selection of electrogenic bacteria from marine sediment
Bird et al. Microbial survival and growth on non‐corrodible conductive materials
Chen et al. Bioelectrochemical system accelerates reductive dechlorination through extracellular electron transfer networks
CN104355463A (en) Deep treatment method for landfill leachate
WO2016052985A1 (en) Method and device for electrochemical reduction of carbon dioxide
Yu et al. Biofilm metagenomic characteristics behind high coulombic efficiency for propanethiol deodorization in two-phase partitioning microbial fuel cell
You et al. Efficient biodechlorination at the Fe3O4-based silicone powder modified chlorobenzene-affinity anode
Vedenyapina et al. Kinetics and mechanism of the deep electrochemical oxidation of sodium diclofenac on a boron-doped diamond electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783416

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783416

Country of ref document: EP

Kind code of ref document: A1