WO2016171430A1 - 유기 메모리 소자 및 그 제조 방법 - Google Patents

유기 메모리 소자 및 그 제조 방법 Download PDF

Info

Publication number
WO2016171430A1
WO2016171430A1 PCT/KR2016/003925 KR2016003925W WO2016171430A1 WO 2016171430 A1 WO2016171430 A1 WO 2016171430A1 KR 2016003925 W KR2016003925 W KR 2016003925W WO 2016171430 A1 WO2016171430 A1 WO 2016171430A1
Authority
WO
WIPO (PCT)
Prior art keywords
memory device
polyvinyl alcohol
gate electrode
insulating layer
pva
Prior art date
Application number
PCT/KR2016/003925
Other languages
English (en)
French (fr)
Inventor
서주역
김화정
김영규
Original Assignee
경북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교산학협력단 filed Critical 경북대학교산학협력단
Publication of WO2016171430A1 publication Critical patent/WO2016171430A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details

Definitions

  • the present invention relates to an organic memory device and a method of manufacturing the organic memory device, and more particularly, to transistors based on hysteresis characteristics of a mixed insulating layer of a polyvinyl alcohol (PVA) insulating material and a heme protein.
  • An organic memory device having a structure and capable of functioning as a nonvolatile memory and a method of manufacturing the same.
  • nonvolatile memory devices are mainly made of flash memory based on silicon materials.
  • conventional flash memories have a limited number of write / erase times, have a slow writing speed, are highly integrated, and are difficult to miniaturize.
  • researches on various types of next generation nonvolatile memory devices have been conducted.
  • an organic memory device As such an organic memory device, a technology of an organic memory device having an insulating layer made of polyvinyl alcohol (PVA) having a memory function and having a proper dielectric constant in Korean Patent Nos. 1190570 and Korean Patent No. 1234225 is disclosed. have.
  • PVA polyvinyl alcohol
  • the organic memory device includes a polymethyl methacrylate (PMMA), a polyvinyl phenol (PVP), and a polyvinyl alcohol (PVA) between the gate electrode layer and the source and drain electrode layers. It has a structure including a tunneling organic insulating layer consisting of at least one selected from the group consisting of.
  • PMMA polymethyl methacrylate
  • PVP polyvinyl phenol
  • PVA polyvinyl alcohol
  • the organic memory device having an insulating layer made of polyvinyl alcohol (PVA) has an advantage of increasing charge mobility due to high dielectric constant, but has a disadvantage in that a lot of leakage current is generated. Due to the transition temperature, high temperature driving is difficult and driving is possible only at low temperature.
  • PVA polyvinyl alcohol
  • An object of the present invention for solving the disadvantages of the background art is to form a polymer memory insulating layer made of a mixed material of polyvinyl alcohol (PVA) and a polymer material between a gate electrode and a charge transport layer, thereby providing hysteresis.
  • the present invention provides a method for manufacturing an organic memory device having a memory function while having a transistor structure by enabling the electrical polarization to indicate that the drain current has hysteresis characteristics.
  • the organic memory device of the present invention for solving the problem is a transistor comprising a gate electrode and a source and drain electrode formed on a substrate, the polyvinyl alcohol (PVA: Polyvinyl Alcohol) and iron between the gate electrode and the source and drain electrode And an electrically polarizable polymer memory insulating layer composed of a mixture of containing proteins to exhibit hysteresis.
  • PVA Polyvinyl Alcohol
  • the organic memory device of the present invention is formed on the gate electrode and the gate electrode formed on the substrate, and consists of a mixed material of polyvinyl alcohol (PVA: Polyvinyl Alcohol) and iron-containing protein (Heme protein) to electrically represent hysteresis
  • PVA Polyvinyl Alcohol
  • Heme protein iron-containing protein
  • the organic memory device according to the present invention may be made of heme protein (Heme protein) obtained from horses as iron-containing protein.
  • the manufacturing method of the organic memory device of the present invention for solving the problem the step of forming a gate electrode on the substrate, and a mixed material of polyvinyl alcohol (PVA: Polyvinyl Alcohol) and iron-containing protein on the gate electrode Forming a polymer memory insulating layer, forming a charge transport layer on the polymer memory insulating layer, and forming a drain electrode and a source electrode spaced apart from each other on the hole transport layer by a predetermined distance.
  • PVA Polyvinyl Alcohol
  • the step of forming the polymer memory insulating layer may include mixing a heme protein with a polyvinyl alcohol (PVA) solution, stir the mixed solution, and stir the mixed solution as a gate electrode.
  • PVA polyvinyl alcohol
  • the coating may be performed on a substrate to form a polymer memory insulating layer.
  • the mixed solution may be mixed with 20 to 40% by weight of heme protein (wt%) with respect to polyvinyl alcohol (PVA: Polyvinyl Alcohol), the sterling process is 18 to 26 hours at room temperature Can be carried out.
  • PVA Polyvinyl Alcohol
  • the mixed solution may be heat-treated for 10 to 14 hours at a temperature of 80 ° C to 120 ° C after coating by spin coating.
  • the charge transport layer can be formed as a hole transport layer.
  • the present invention uses the function of the memory when using an electrically polarizable material exhibiting hysteresis, heme (HEME) protein having excellent electrical properties by containing iron in polyvinyl alcohol (PVA) By adding, it is possible to obtain excellent drain current characteristics even at a thinner thickness and lower voltage than conventional ones.
  • HEME hysteresis, heme
  • PVA polyvinyl alcohol
  • the present invention by using an insulating layer mixed with heme (HEVA) protein having a high glass transition temperature of polyvinyl alcohol (PVA) having a low glass transition temperature of 85 °C or less organic A memory device can be obtained.
  • HEVA heme
  • PVA polyvinyl alcohol
  • FIG. 1 is a cross-sectional view of an organic memory device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating an operating principle of an organic memory device according to an exemplary embodiment of the present invention.
  • FIG. 3 is a graph comparing drain current characteristics of an organic memory device according to an exemplary embodiment of the present invention.
  • FIG. 4 is a graph comparing hysteresis characteristics of an organic memory device according to an exemplary embodiment of the present invention.
  • FIG. 5 is a graph comparing the thermal stability of the organic memory device according to an embodiment of the present invention.
  • 6A through 6D are cross-sectional views sequentially illustrating a method of manufacturing an organic memory device according to an embodiment of the present invention.
  • FIG. 1 is a cross-sectional view of an organic memory device according to an exemplary embodiment of the present invention
  • FIG. 2 is a cross-sectional view illustrating an operating principle of an organic memory device according to an exemplary embodiment of the present invention.
  • 110 a polymer memory insulating layer 120 formed on the gate electrode 110, a charge transport layer 130, a source electrode 140, and a drain electrode 150.
  • the present invention utilizes the fact that the insulating layer 130 located between the gate electrode 110 and the charge transport layer 130 can function as a memory when the insulating layer 130 is made of an electrically polarizable material that exhibits hysteresis.
  • the memory device using the hysteresis characteristic stores each quadrant of the hysteresis curve by using a hysteresis curve having a different current change curve when the voltage is increased and a current change curve when the voltage is decreased (00,01,10,11). It is a technique to use.
  • the substrate 100 may be a silicon substrate, a glass substrate, a plastic substrate, or the like.
  • the gate electrode 110 may be formed of a conductive material such as gold (Au), silver (Ag), copper (Cu), nickel (Ni) / aluminum, or a polymer.
  • the polymer memory insulating layer 120 is made of a mixed material of polyvinyl alcohol (PVA) and heme protein, a polymer material, and has a dielectric constant of 6 ⁇ . And, heme protein (Heme protein) is characterized in that obtained from horse cells.
  • PVA polyvinyl alcohol
  • Heme protein heme protein
  • the charge transport layer 130 is formed on the polymer memory insulating layer.
  • the charge transport layer 130 may be formed of a hole transport layer in order to increase charge transport efficiency.
  • the charge transport layer 130 may be formed of poly (3-hexylthiophene) (P3HT).
  • the source electrode 140 and the drain electrode 150 are formed to be spaced apart from each other on the charge transport layer 130 by a predetermined distance, and include gold (Au), silver (Ag), copper (Cu), nickel (Ni) / aluminum, and polymers. It may be formed of a conductive material such as.
  • a polyvinyl alcohol (PVA) used as a polymer memory insulating layer has an appropriate dielectric constant and a memory function, and when used as an insulator single layer using a transistor structure, a low voltage memory can be driven and water is used. Due to its ability to dissolve well, it can produce electrical properties when reacted with biomaterials such as proteins.
  • the polymer memory insulation layer made of polyvinyl alcohol (PVA) and heme protein has its own hysteresis characteristics. .
  • the polymer memory insulating layer 120 is electrically polarized to generate a hysteresis phenomenon.
  • the hole hysteresis phenomenon also occurs in the charge transport layer 130. Induced.
  • the hysteresis characteristic is generated in the hole movement of the charge transport layer 130 as described above, the charge mobility from the source electrode 140 to the drain electrode 150 becomes high, and the drain current has the hysteresis characteristic, so that the transistor structure has a non-transistor structure. It will be able to function as a volatile memory.
  • the hysteresis characteristic of the drain current is clearly shown, it means that the voltage difference due to hysteresis is large, so that the threshold voltage difference of the memory element is increased when the polymer memory insulating layer having a large voltage difference due to hysteresis is used, so that driving at low voltage becomes possible. .
  • FIG. 3 is a graph comparing drain current characteristics of an organic memory device according to an exemplary embodiment of the present invention.
  • FIG. 3 (a) and 3 (b) show drain current characteristics when a polyvinyl alcohol (PVA) single layer is used as an insulating layer, and FIG. 3 (a) shows 75 ° C. for 3 hours. It is a drain current characteristic when it is maintained, and FIG. 3 (b) is a drain current characteristic when 100 ° C. is maintained for 3 hours, and when a high temperature of 100 ° C. or more is applied as compared to the drain current characteristic at 75 ° C., the drain current is It can be seen that the characteristic changes rapidly.
  • PVA polyvinyl alcohol
  • FIG. 3 are graphs showing drain current characteristics when a polyvinyl alcohol (PVA) and a heme protein (HEM) protein mixture is used as an insulating layer.
  • PVA polyvinyl alcohol
  • HOM heme protein
  • FIG. 4 is a graph comparing hysteresis characteristics of an organic memory device according to an exemplary embodiment of the present invention.
  • FIG. 4A and 4B show the hysteresis characteristics of the drain current when a polyvinyl alcohol (PVA) single layer is used as the insulating layer.
  • FIG. Drain current hysteresis characteristics when the °C is maintained Figure 4 (b) is a hysteresis characteristic of the drain current when 100 °C is maintained for 3 hours, a high temperature of 100 °C or more compared with the drain current characteristics at 75 °C When this is applied, it can be seen that the hysteresis characteristics of the drain current greatly change.
  • 4C and 4D are graphs illustrating drain current hysteresis characteristics when a polyvinyl alcohol (PVA) and a heme protein mixed material is used as an insulating layer.
  • c) is a drain current hysteresis characteristic when 75 °C is maintained for 3 hours
  • Figure 3 (d) is a drain current hysteresis characteristic when 100 °C is maintained for 3 hours
  • the drain current hysteresis characteristics at 75 °C It can be seen that the drain current hysteresis characteristics are maintained when the high temperature of 100 ° C. or more is applied, but the hysteresis characteristics are maintained as it is.
  • FIG. 5 is a graph comparing thermal stability of an organic memory device according to an exemplary embodiment of the present invention.
  • Reference numeral “A” of FIG. 5 denotes a drain current when a polyvinyl alcohol (PVA) and a heme protein (HEM) protein mixture is used as an insulating layer, and when the temperature reaches 100 ° C., the drain current is temporarily Although it changes abruptly and restores to the range of drain current, when the polyvinyl alcohol (PVA) single layer of symbol "B" is used as an insulating layer, the drain current rapidly increases when the drain current reaches 100 ° C. And you can see that it is not restored.
  • PVA polyvinyl alcohol
  • HEM heme protein
  • the organic memory device according to the present invention does not significantly change the hysteresis characteristics even at a high temperature of 100 ° C. or higher, and thermal stability is improved by improving the driving temperature as the drain current is restored to a normal range. It is possible to secure stability.
  • 6A through 6D are cross-sectional views sequentially illustrating a method of manufacturing an organic memory device according to an embodiment of the present invention.
  • a gate electrode 110 is formed on the substrate 100.
  • the gate electrode 110 is formed by thermal evaporation of a conductive material and then patterned.
  • the conductive material may include, for example, gold (Au), silver (Ag), copper (Cu), nickel (Ni) / aluminum, Polymers and the like can be used.
  • the polymer memory insulating layer 120 is formed to a thickness of 150 to 350 nm on the substrate 100 on which the gate electrode 110 is formed.
  • polyvinyl alcohol Polyvinyl Alcohol
  • Heme protein heme protein
  • the stirred mixed solution is coated on the substrate 100 on which the gate electrode 110 is formed.
  • the mixed solution coating may be performed by a spin coating method, and after the coating is completed, heat treatment is performed at a temperature of 80 ° C. to 120 ° C. for 10 to 14 hours to form the polymer memory insulating layer 120.
  • the charge transport layer 130 is formed on the polymer memory insulating layer 120, but the P3HT (poly (3-hexylthiophene)) is spin-coated, for example, to increase the charge transport efficiency. To coat.
  • P3HT poly (3-hexylthiophene)
  • the charge transport layer 130 may include a polymer active layer as an organic semiconductor layer.
  • a conductive material such as gold (Au), silver (Ag), copper (Cu), nickel (Ni) / aluminum, or polymer is formed.
  • the source electrode 140 and the drain electrode 150 spaced apart by a predetermined distance are formed through the process.

Abstract

본 발명은 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 고분자 물질의 혼합 물질로 이루어진 고분자 메모리 절연층을 게이트 전극과 전하 수송층 사이에 형성하여, 히스테리시스(hysteresis)를 나타내는 전기적으로 분극 가능하도록 하여 드레인 전류가 히스테리시스 특성을 갖도록 함으로써 트랜지스터 구조를 가지면서 메모리 기능을 갖는 유기 메모리 소자 그 제조 방법에 관한 것이다. 이를 위한, 본 발명은 기판 상에 형성된 게이트 전극과 소오스 및 드레인 전극을 포함하는 트랜지스터에 있어서, 게이트 전극과 소오스 및 드레인 전극 사이에 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 철 함유 단백질(Heme protein)의 혼합 물질로 이루어져 히스테리시스를 나타내는 전기적으로 분극 가능한 고분자 메모리 절연층이 형성된 것이다.

Description

유기 메모리 소자 및 그 제조 방법
본 발명은 유기 메모리 소자 및 유기 메모리 소자의 제조 방법에 관한 것으로서, 더욱 상세하게는 폴리비닐알코올(PVA : Polyvinyl Alcohol) 절연물질과 헴 단백질(Heme protein)의 혼합된 절연층의 히스테리시스 특성에 의하여 트랜지스터의 구조를 가지면서도 비휘발성 메모리의 기능을 할 수 있는 유기 메모리 소자 및 그 제조 방법에 관한 것이다.
정보통신 산업과 휴대용 정보 기기의 비약적인 발전에 따라 대용량 비휘발성 메모리 소자에 대한 요구가 증가하고 있다. 현재 이러한 비휘발성 메모리 소자는 실리콘 재료에 기반을 둔 플래시 메모리 (flash memory)가 주류를 이루고 있으나, 기존의 플래시 메모리는 기록/소거 횟수가 제한되고, 기록 속도가 느리며, 고집적, 소형화가 곤란한 등의 기술적 한계가 드러남에 따라서 다양한 형태의 차세대 비 휘발성 메모리 소자에 대한 연구가 진행되고 있다.
일례로 메모리 소자의 메모리층 재료로 유기물을 사용하여, 기존의 실리콘 메모리 소자의 물리적인 한계를 극복하고, 초고속, 고용량, 저소비전력, 저가격 특성을 갖는 차세대 비휘발성 메모리 소자를 구현하기 위한 기술의 개발이 활발하게 진행되고 있다.
이러한 유기 메모리 소자로서 한국등록특허 1190570호 및 한국등록특허 1234225호에 적당한 유전율을 가지면서 메모리 기능을 갖는 폴리비닐알코올(polyvinyl alcohol; PVA)로 이루어지는 절연층을 갖는 유기 메모리 소자에 대한 기술이 개시되어 있다.
상기 선행문헌에 따르면 유기 메모리 소자는 게이트 전극층과 소오스 및 드레인 전극 층 사이에 폴리메틸메타크릴레이트(polymethyl methacrylate; PMMA), 폴리비닐페놀(polyvinyl phenol; PVP) 및 폴리비닐알코올(polyvinyl alcohol; PVA)로 이루어진 군에서 선택된 적어도 하나로 이루어진 터널링 유기 절연층을 포함하는 구조를 갖는다.
이러한 폴리비닐알코올(polyvinyl alcohol; PVA)로 이루어지는 절연층을 갖는 유기 메모리 소자의 경우 유전율이 높아 전하 이동도가 높아지는 장점이 있지만 그만큼 누설 전류를 많이 발생하게 되는 단점이 있으며, 85℃ 이하의 낮은 유리 전이온도로 인하여 고온 구동이 어렵고 저온에서만 구동이 가능하다는 단점이 있다.
배경기술의 단점을 해소하기 위한 본 발명의 목적은, 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 고분자 물질의 혼합 물질로 이루어진 고분자 메모리 절연층을 게이트 전극과 전하 수송층 사이에 형성하여, 히스테리시스(hysteresis)를 나타내는 전기적으로 분극 가능하도록 하여 드레인 전류가 히스테리시스 특성을 갖도록 함으로써 트랜지스터 구조를 가지면서 메모리 기능을 갖는 유기 메모리 소자 그 제조 방법을 제공함에 있다.
과제를 해결하기 위한 본 발명의 유기 메모리 소자는 기판 상에 형성된 게이트 전극과 소오스 및 드레인 전극을 포함하는 트랜지스터에 있어서, 게이트 전극과 소오스 및 드레인 전극 사이에 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 철 함유 단백질의 혼합 물질로 이루어져 히스테리시스를 나타내는 전기적으로 분극 가능한 고분자 메모리 절연층을 포함한다.
또한, 본 발명의 유기 메모리 소자는 상기 기판 상에 형성된 게이트 전극, 게이트 전극 상에 형성되며 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 철 함유 단백질(Heme protein)의 혼합 물질로 이루어져 히스테리시스를 나타내는 전기적으로 분극 가능한 고분자 메모리 절연층, 고분자 메모리 절연층 상에 형성된 전하 수송층; 및 전하 수송층 상에 일정 거리 이격되게 각각 형성된 소오스 및 드레인 전극을 포함한다.
이때, 본 발명에 따른 유기 메모리 소자는 철 함유 단백질로 말에서 수득한 헴 단백질(Heme protein)로 이루어질 수 있다.
또한, 과제를 해결하기 위한 본 발명의 유기 메모리 소자의 제조 방법은, 기판 상에 게이트 전극을 형성하는 단계와, 게이트 전극 상에 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 철 함유 단백질의 혼합 물질로 이루어진 고분자 메모리 절연층을 형성하는 단계와, 고분자 메모리 절연층 상에 전하 수송층을 형성하는 단계 및 정공 수송층 상에 일정 거리 이격되는 드레인 전극과 소오스 전극을 형성하는 단계를 포함한다.
또한, 고분자 메모리 절연층 형성단계는 폴리비닐알코올(PVA : Polyvinyl Alcohol) 용액에 헴 단백질(Heme protein)을 혼합하는 과정과, 혼합 용액을 스터링(stirring)하는 과정과, 스터링된 혼합 용액을 게이트 전극이 형성된 기판에 코팅하여 고분자 메모리 절연층을 형성하는 과정으로 이루어질 수 있다.
또, 혼합 용액은 폴리비닐알코올(PVA : Polyvinyl Alcohol)에 대하여 헴 단백질(Heme protein)을 20~40 중량 퍼센트(wt%)로 혼합할 수 있고, 스터링(stirring) 과정은 상온에서 18~26시간 동안 실시할 수 있다.
또, 혼합 용액은 스핀 코팅 방식으로 코팅한 후에 80℃~120℃의 온도 하에서 10~14 시간 열처리할 수 있다.
아울러, 전하 수송층을 정공 수송층으로 형성할 수 있다.
본 발명은 히스테리시스(hysteresis)를 나타내는 전기적으로 분극 가능한 물질을 이용하는 경우 메모리의 기능 갖는 특성을 이용한 것으로서, 폴리비닐알코올(PVA : Polyvinyl Alcohol)에 철을 함유하여 전기적인 특성이 뛰어난 헴(HEME) 단백질을 첨가함으로써, 기존 보다 얇은 두께와 저전압에서도 우수한 드레인 전류 특성을 얻을 수 있다.
또한, 본 발명은 85℃ 이하의 낮은 유리 전이온도를 갖는 폴리비닐알코올(PVA : Polyvinyl Alcohol) 높은 유리 전이 온도를 갖는 헴(HEME) 단백질을 혼합한 절연층을 이용함으로써 고온에서 안정적으로 동작 가능한 유기 메모리 소자를 얻을 수 있다.
도 1은 본 발명의 실시예에 따른 유기 메모리 소자의 단면도.
도 2는 본 발명의 실시예에 따른 유기 메모리 소자의 동작 원리를 나타낸 단면도.
도 3은 본 발명의 실시예에 따른 유기 메모리 소자의 드레인 전류 특성을 비교한 그래프.
도 4는 본 발명의 실시예에 따른 유기 메모리 소자의 히스테리시스 특성을 비교한 그래프.
도 5는 본 발명의 실시예에 따른 유기 메모리 소자의 열적 안정성을 비교한 그래프.
도 6a 내지 도 6d는 본 발명의 실시예에 따른 유기 메모리 소자 제조 방법을 순차로 나타낸 공정 단면도.
이하에서는 첨부된 도면을 참조하여 본 발명의 바람직한 일 실시예를 상세하게 설명하기로 한다.
도 1은 본 발명의 실시예에 따른 유기 메모리 소자의 단면도이고, 도 2는 본 발명의 실시예에 따른 유기 메모리 소자의 동작 원리를 나타낸 단면도로서, 기판(100), 기판 상에 형성된 게이트 전극(110), 게이트 전극(110) 상에 형성되는 고분자 메모리 절연층(120), 전하 수송층(130)과 소오스 전극(140) 및 드레인 전극(150)을 이루어진다.
본 발명은 게이트 전극(110)과 전하 수송층(130) 사이에 위치하는 절연층(130)이 히스테리시스(hysteresis)를 나타내는 전기적으로 분극 가능한 물질로 이루어질 경우 메모리의 기능을 할 수 있다는 점을 이용하는 것으로서, 히스테리시스 특성을 이용한 메모리 소자는 전압을 증가시킬 때의 전류 변화 곡선과 전압을 감소시킬 때의 전류 변화 곡선이 상이한 히스테리시스 곡선을 이용하여 히스테리시스 곡선의 각 사분면을 저장 수단(00,01,10,11)으로 이용하는 기술이다.
우선, 기판(100)은 실리콘(silicon) 기판, 유리 기판 또는 플라스틱(plastic) 기판 등이 이용될 수 있다.
게이트 전극(110)은 예시적으로, 금(Au), 은(Ag), 구리(Cu), 니켈(Ni)/알루미늄, 폴리머 등의 도전성 물질로 형성될 수 있다.
고분자 메모리 절연층(120)은 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 고분자 물질인 헴 단백질(Heme protein)의 혼합 물질로 이루어지며, 유전율이 6ε 이다. 그리고, 헴 단백질(Heme protein)은 말 세포에서 수득한 것을 특징으로 한다.
전하 수송층(130)은 고분자 메모리 절연층 상에 형성된 것으로서, 전하의 수송 효율을 높이기 위하여 정공 수송층으로 형성할 수 있고, 예시적으로 P3HT(poly(3-hexylthiophene))로 형성할 수 있다.
소오스 전극(140)과 드레인 전극(150)은 전하 수송층(130) 상에 일정 거리 이격되게 형성되는 것으로서, 금(Au), 은(Ag), 구리(Cu), 니켈(Ni)/알루미늄, 폴리머 등의 도전성 물질로 형성될 수 있다.
본 발명에 따르면, 고분자 메모리 절연층으로 이용되는 폴리비닐알코올(PVA : Polyvinyl Alcohol)의 경우 적당한 유전율과 메모리 기능을 가진 것으로서, 트랜지스터 구조를 사용하여 절연체 단층으로 사용했을 때, 저전압 메모리 구동 가능하고 물에 잘 녹는 성질이 있어 단백질 같은 바이오 물질과 반응할 경우 전기적인 물성이 생성 가능한 물질이다.
헴 단백질(Heme protein)의 경우 철을 함유하고 있으며 전기적인 특성이 뛰어나기 때문에, 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 헴 단백질(Heme protein)로 이루어진 고분자 메모리 절연층은 자체 히스테리시스 특성을 갖게 된다.
즉, 도 2에 도시된 바와 같이 게이트 전극(110)에 전압을 인가하면 고분자 메모리 절연층(120)이 전기적으로 분극되어 히스테리시스 현상이 발생하게 되고, 이로 인하여 전하 수송층(130)에도 정공 히스테리시스 현상이 유도된다.
이와 같이 전하 수송층(130)의 정공 이동에 히스테리시스 특성이 발생함에 따라 소오스 전극(140)에서 드레인 전극(150)으로의 전하 이동도가 높아져, 드레인 전류가 히스테리시스 특성을 가지게 되므로 트랜지스터 구조를 가지면서도 비휘발성의 메모리 기능을 할 수 있게 되는 것이다.
즉, 드레인 전류의 히스테리시스 특성이 명확히 나타난다는 것은 히스테리시스에 의한 전압차가 크다는 것을 의미하므로 히스테리시스에 의한 전압차가 큰 고분자 메모리 절연층이 사용되면 메모리 소자의 문턱전압차가 증가되므로, 저전압에서도 구동이 가능해지게 된다.
도 3은 본 발명의 실시예에 따른 유기 메모리 소자의 드레인 전류 특성을 비교한 그래프이다.
도 3의 (a)와 (b)는 폴리비닐알코올(PVA : Polyvinyl Alcohol) 단일층을 절연층으로 이용했을 경우의 드레인 전류 특성을 나타낸 것으로서, 도 3의 (a)는 3시간 동안 75℃가 유지될 경우의 드레인 전류 특성이고, 도 3의 (b)는 3시간 동안 100℃가 유지될 경우 드레인 전류 특성으로서, 75℃에서의 드레인 전류 특성과 비교했을 때 100℃ 이상의 고온이 가해지면 드레인 전류 특성이 급격하게 변화하는 것을 볼 수 있다.
도 3의 (c)와 (d)는 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 헴 단백질(Heme protein) 혼합 물질을 절연층으로 이용했을 경우의 드레인 전류 특성을 나타낸 그래프로서, 도 3의 (c)는 3시간 동안 75℃가 유지될 경우의 드레인 전류 특성이고, 도 3의 (d)는 3시간 동안 100℃가 유지될 경우 드레인 전류 특성으로서, 75℃에서의 드레인 전류 특성과 100℃ 이상의 고온이 가해졌을 경우의 드레인 전류 특성에 크게 차이가 없는 것을 볼 수 있다.
도 4는 본 발명의 실시예에 따른 유기 메모리 소자의 히스테리시스 특성을 비교한 그래프이다.
도 4의 (a)와 (b)는 폴리비닐알코올(PVA : Polyvinyl Alcohol) 단일층을 절연층으로 이용했을 경우의 드레인 전류의 히스테리시스 특성을 나타낸 것으로서, 도 4의 (a)는 3시간 동안 75℃가 유지될 경우의 드레인 전류 히스테리시스 특성이고, 도 4의 (b)는 3시간 동안 100℃가 유지될 경우 드레인 전류의 히스테리시스 특성으로서, 75℃에서의 드레인 전류 특성과 비교했을 때 100℃ 이상의 고온이 가해지면 드레인 전류의 히스테리시스 특성이 크게 변화하는 것을 볼 수 있다.
도 4의 (c)와 (d)는 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 헴 단백질(Heme protein) 혼합 물질을 절연층으로 이용했을 경우의 드레인 전류 히스테리시스 특성을 나타낸 그래프로서, 도 4의 (c)는 3시간 동안 75℃가 유지될 경우의 드레인 전류 히스테리시스 특성이고, 도 3의 (d)는 3시간 동안 100℃가 유지될 경우 드레인 전류 히스테리시스 특성으로서, 75℃에서의 드레인 전류 히스테리시스 특성과 100℃ 이상의 고온이 가해졌을 경우의 드레인 전류 히스테리시스 특성이 일부 변화가 있지만 히스테리시스 특성이 그대로 유지되는 것을 볼 수 있다.
도 5는 본 발명의 실시예에 따른 유기 메모리 소자의 열적 안정성을 비교한 그래프이다.
도 5의 도면 부호"A"는 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 헴 단백질(Heme protein) 혼합 물질을 절연층으로 이용했을 경우의 드레인 전류로서, 100℃가 되었을 때, 드레인 전류가 일시적으로 급격하게 변화하였다가 드레인 전류의 범위로 복원되지만, 도면 부호"B"의 폴리비닐알코올(PVA : Polyvinyl Alcohol) 단일층을 절연층으로 이용했을 경우 드레인 전류는 100℃가 되었을 때 드레인 전류가 급격히 증가하고 복원 되지 않는 것을 볼 수 있다.
이와 같이 본 발명에 따른 유기 메모리 소자는 100℃ 이상의 고온에서도 히스테리시스 특성이 크게 변화하지 않을 뿐만 아니라, 드레인 전류가 정상 범위로 복원됨에 따라 고온에서 동작이 가능해짐에 따라 구동온도를 향상시킴으로써 안정성을 열적 안정성을 확보할 수 있는 것이다.
도 6a 내지 도 6d는 본 발명의 실시예에 따른 유기 메모리 소자 제조 방법을 순차로 나타낸 공정 단면도이다.
도 6a를 참조하면, 기판(100)에 게이트 전극(110)을 형성한다.
게이트 전극(110)은 도전성 물질을 열 증착(thermal evaporation)한 후 패터닝 함으로써 형성되며, 도전성 물질은 예시적으로 금(Au), 은(Ag), 구리(Cu), 니켈(Ni)/알루미늄, 폴리머 등이 이용될 수 있다.
도 6b를 참조하면, 게이트 전극(110)이 형성된 기판(100) 상에 고분자 메모리 절연층(120)을 150~350nm 두께로 형성한다.
고분자 메모리 절연층(120)을 히스테리시스(hysteresis)를 나타내는 전기적으로 분극 가능한 물질로 형성하는 것으로서, 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 헴 단백질(Heme protein)을 혼합 용액을 이용한다.
구체적으로는, 폴리비닐알코올(PVA : Polyvinyl Alcohol)에 대하여 헴 단백질(Heme protein) 20~40의 중량 퍼센트(wt%)의 혼합 용액을 제조한 후에 상온에서 18~26시간 동안 스터링(stirring)한다.
그리고, 스터링(stirring)된 혼합 용액을 게이트 전극(110)이 형성된 기판(100) 상에 코팅한다. 이때, 혼합 용액 코팅은 스핀 코팅 방식으로 진행 할 수 있으며, 코팅이 완료된 후에 80℃~120℃의 온도 하에서 10~14시간 열처리하여 하여 고분자 메모리 절연층(120)을 형성한다.
도 6c를 참조하면, 고분자 메모리 절연층(120) 상에 전하 수송층(130)을 형성하되, 전하 수송 효율을 높이기 위하여 정공 수송층 예시적으로 P3HT(poly(3-hexylthiophene))을 스핀 코팅 방식 등을 이용하여 코팅한다.
이때, 전하 수송층(130)은 유기 반도체층으로서 폴리머 활성층을 포함할 수 있다.
도 6d를 참조하면, 전하 수송층(130) 상에 도전성 물질 예시적으로 금(Au), 은(Ag), 구리(Cu), 니켈(Ni)/알루미늄, 폴리머 등의 도전성 물질을 형성한 후에 패터닝 공정을 통하여 일정 거리 이격되는 소오스 전극(140)과 드레인 전극(150)을 형성한다.
비록 본 발명이 상기 언급된 바람직한 실시예와 관련하여 설명되어졌지만, 발명의 요지와 범위로부터 벗어남이 없이 다양한 수정이나 변형을 하는 것이 가능하다. 따라서 첨부된 특허청구의 범위는 본 발명의 요지에서 속하는 이러한 수정이나 변형을 포함할 것이다.

Claims (11)

  1. 기판 상에 형성된 게이트 전극과 소오스 및 드레인 전극을 포함하는 유기 메모리 소자에 있어서,
    상기 게이트 전극과 소오스 및 드레인 전극 사이에 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 철 함유 단백질(Heme protein)의 혼합 물질로 이루어져 히스테리시스를 나타내는 전기적으로 분극 가능한 고분자 메모리 절연층이 형성된 것을 특징으로 하는 유기 메모리 소자.
  2. 제 1항에 있어서,
    상기 철 함유 단백질은 말 세포에서 수득한 헴 단백질(Heme protein)인 것을 특징으로 하는 유기 메모리 소자.
  3. 기판;
    상기 기판 상에 형성된 게이트 전극;
    상기 게이트 전극 상에 형성되며 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 철 함유 단백질(Heme protein)의 혼합 물질로 이루어져 히스테리시스를 나타내는 전기적으로 분극 가능한 고분자 메모리 절연층;
    상기 고분자 메모리 절연층 상에 형성된 전하 수송층; 및
    상기 전하 수송층 상에 일정 거리 이격되게 각각 형성된 소오스 및 드레인 전극을 포함하는 것을 특징으로 하는 유기 메모리 소자.
  4. 제 3항에 있어서,
    상기 철 함유 단백질은 말 세포에서 수득한 헴 단백질(Heme protein)인 것을 특징으로 하는 유기 메모리 소자.
  5. 제 3항에 있어서,
    상기 전하 수송층은 정공 수송층인 것을 특징으로 하는 유기 메모리 소자.
  6. 기판 상에 게이트 전극을 형성하는 단계;
    상기 게이트 전극 상에 형성되며 폴리비닐알코올(PVA : Polyvinyl Alcohol)과 철 함유 단백질의 혼합 물질로 이루어져 히스테리시스를 나타내는 전기적으로 분극 가능한 고분자 메모리 절연층을 형성하는 단계;
    상기 고분자 메모리 절연층 상에 전하 수송층을 형성하는 단계;
    상기 전하 수송층 상에 일정 거리 이격되는 소오스 전극과 드레인 전극을 형성하는 단계를 포함하는 것을 특징으로 하는 유기 메모리 소자의 제조 방법.
  7. 제 6항에 있어서,
    상기 고분자 메모리 절연층 형성단계는
    상기 폴리비닐알코올(PVA : Polyvinyl Alcohol) 용액에 헴 단백질(Heme protein)을 혼합하여 혼합 용액을 형성하는 과정과,
    상기 혼합 용액을 스터링(stirring)하는 과정과,
    상기 스터링된 혼합 용액을 상기 게이트 전극이 형성된 기판에 코팅하여 고분자 메모리 절연층을 형성하는 과정으로 이루어지는 것을 특징으로 하는 유기 메모리 소자의 제조 방법.
  8. 제 7항에 있어서,
    상기 혼합 용액은 상기 폴리비닐알코올(PVA : Polyvinyl Alcohol)에 대하여 헴 단백질(Heme protein)을 20~40 중량 퍼센트(wt%)로 혼합한 것을 특징으로 하는 유기 메모리 소자의 제조 방법.
  9. 제 7항에 있어서,
    상기 스터링(stirring) 과정은 상온에서 18~26시간 동안 실시하는 것을 특징으로 하는 유기 메모리 소자의 제조 방법.
  10. 제 7항에 있어서,
    상기 혼합 용액을 스핀 코팅 방식으로 코팅한 후에 80℃~120℃의 온도 하에서 10~14 시간 열처리하는 것을 특징으로 하는 유기 메모리 소자의 제조 방법.
  11. 제 6항에 있어서,
    상기 전하 수송층으로서 정공 수송층을 형성하는 것을 특징으로 하는 유기 메모리 소자의 제조 방법.
PCT/KR2016/003925 2015-04-20 2016-04-15 유기 메모리 소자 및 그 제조 방법 WO2016171430A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150055084A KR101630677B1 (ko) 2015-04-20 2015-04-20 유기 메모리 소자 및 그 제조 방법
KR10-2015-0055084 2015-04-20

Publications (1)

Publication Number Publication Date
WO2016171430A1 true WO2016171430A1 (ko) 2016-10-27

Family

ID=56354972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003925 WO2016171430A1 (ko) 2015-04-20 2016-04-15 유기 메모리 소자 및 그 제조 방법

Country Status (2)

Country Link
KR (1) KR101630677B1 (ko)
WO (1) WO2016171430A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102269117B1 (ko) * 2019-04-05 2021-06-24 주식회사 지브레인 신경 신호 측정 및 광자극용 미세 전극 배열장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195644A1 (en) * 2001-06-08 2002-12-26 Ananth Dodabalapur Organic polarizable gate transistor apparatus and method
KR100871281B1 (ko) * 2007-10-02 2008-11-28 광주과학기술원 고압 수소 열처리를 통한 금속 나노크리스탈 메모리 소자제조 공정
KR20120059865A (ko) * 2010-12-01 2012-06-11 국민대학교산학협력단 플렉서블 유기 메모리 소자 및 그 제조방법
KR20130006990A (ko) * 2011-06-28 2013-01-18 고려대학교 산학협력단 다층박막으로 산화환원 단백질을 포함하는 스위칭 소자 및 이의 제조방법
KR101348090B1 (ko) * 2012-10-16 2014-01-09 고려대학교 산학협력단 단백질 레이어를 포함하는 전계효과 트랜지스터 메모리 장치 및 그의 제조방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101234225B1 (ko) * 2011-04-26 2013-02-18 국민대학교산학협력단 플렉서블 유기 메모리 소자 및 그 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020195644A1 (en) * 2001-06-08 2002-12-26 Ananth Dodabalapur Organic polarizable gate transistor apparatus and method
KR100871281B1 (ko) * 2007-10-02 2008-11-28 광주과학기술원 고압 수소 열처리를 통한 금속 나노크리스탈 메모리 소자제조 공정
KR20120059865A (ko) * 2010-12-01 2012-06-11 국민대학교산학협력단 플렉서블 유기 메모리 소자 및 그 제조방법
KR20130006990A (ko) * 2011-06-28 2013-01-18 고려대학교 산학협력단 다층박막으로 산화환원 단백질을 포함하는 스위칭 소자 및 이의 제조방법
KR101348090B1 (ko) * 2012-10-16 2014-01-09 고려대학교 산학협력단 단백질 레이어를 포함하는 전계효과 트랜지스터 메모리 장치 및 그의 제조방법

Also Published As

Publication number Publication date
KR101630677B1 (ko) 2016-06-16

Similar Documents

Publication Publication Date Title
Ni et al. Recent process of flexible transistor‐structured memory
Wang et al. Highly reliable top-gated thin-film transistor memory with semiconducting, tunneling, charge-trapping, and blocking layers all of flexible polymers
JP2010251770A (ja) 有機強誘電メモリーセル
WO2020075972A1 (ko) 전기장을 이용한 전류 경로 제어 방법 및 전자 소자
Kim et al. Nonvolatile memory thin-film transistors using biodegradable chicken albumen gate insulator and oxide semiconductor channel on eco-friendly paper substrate
CN1615552A (zh) 电化学装置
US9318596B2 (en) Ferroelectric field-effect transistor
US11171179B2 (en) Memory array, method for manufacturing memory array, memory array sheet, method for manufacturing memory array sheet, and wireless communication apparatus
Wang et al. Manipulating the hysteresis via dielectric in organic field-effect transistors toward synaptic applications
Ye et al. The hidden potential of polysilsesquioxane for high‐k: analysis of the origin of its dielectric nature and practical low‐voltage‐operating applications beyond the unit device
WO2016171430A1 (ko) 유기 메모리 소자 및 그 제조 방법
KR101190570B1 (ko) 플렉서블 유기 메모리 소자 및 그 제조방법
KR101234225B1 (ko) 플렉서블 유기 메모리 소자 및 그 제조방법
KR101004735B1 (ko) 유기 박막 트랜지스터, 이의 제조방법 및 이를 이용한바이오센서
Hwang et al. Two-in-One Device with Versatile Compatible Electrical Switching or Data Storage Functions Controlled by the Ferroelectricity of P (VDF-TrFE) via Photocrosslinking
KR101204338B1 (ko) 유기 박막 트랜지스터 및 이의 제조 방법
WO2016171436A1 (ko) 고온 열처리를 이용한 유기 메모리 소자 및 그 제조 방법
US20150295193A1 (en) Semiconductor device using paper as a substrate and method of manufacturing the same
WO2016171437A1 (ko) 하이브리드 절연층을 가지는 메모리 소자 및 그의 제조 방법
WO2010131901A2 (ko) 비휘발성 메모리 소자
CN105823972B (zh) 一种有机场效应晶体管存储器最小存储深度的计算方法
KR101687834B1 (ko) 종이를 기판으로 이용하는 트랜지스터 및 메모리 장치와 그 제조방법
KR20080097977A (ko) 강유전체 메모리 장치와 전계효과 트랜지스터 및 그 제조방법
WO2014081248A1 (en) Semiconductor device using paper as a substrate and method of manufacturing the same
Salaoru et al. Electrically re-writable non-volatile memory device-using a blend of sea salt and polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783363

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16783363

Country of ref document: EP

Kind code of ref document: A1