WO2016171236A1 - Method for recovering rare-earth elements - Google Patents

Method for recovering rare-earth elements Download PDF

Info

Publication number
WO2016171236A1
WO2016171236A1 PCT/JP2016/062711 JP2016062711W WO2016171236A1 WO 2016171236 A1 WO2016171236 A1 WO 2016171236A1 JP 2016062711 W JP2016062711 W JP 2016062711W WO 2016171236 A1 WO2016171236 A1 WO 2016171236A1
Authority
WO
WIPO (PCT)
Prior art keywords
rare earth
microorganism
earth elements
acid
earth element
Prior art date
Application number
PCT/JP2016/062711
Other languages
French (fr)
Japanese (ja)
Inventor
光雄 山下
Original Assignee
学校法人 芝浦工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 芝浦工業大学 filed Critical 学校法人 芝浦工業大学
Priority to JP2017514195A priority Critical patent/JP6793402B2/en
Priority to BR112017022818-1A priority patent/BR112017022818B1/en
Priority to CA2982716A priority patent/CA2982716C/en
Publication of WO2016171236A1 publication Critical patent/WO2016171236A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P3/00Preparation of elements or inorganic compounds except carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/02Apparatus therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/18Extraction of metal compounds from ores or concentrates by wet processes with the aid of microorganisms or enzymes, e.g. bacteria or algae
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for recovering rare earth elements using microorganisms capable of eluting rare earth elements, and a rare earth element recovery apparatus.
  • Rare earth element is a group of 15 elements collectively called scandium (Sc) and yttrium (Y) of atomic number 21 of Group 3 of the periodic table and lanthanoids of 57 to 71. Point to. Rare earth elements have a special electron orbital atomic structure and have properties such as fluorescence, magnetism, and superconductivity at high temperatures, so they are indispensable for the Japanese industry as fluorescent materials, permanent magnets, and superconducting materials. It is a metal. In particular, the demand for dysprosium soot (Dy) is increasing as a raw material for strong magnets that can withstand high temperatures called heat-resistant neodymium (Nd) magnets.
  • Dy dysprosium soot
  • Dy not only has a limited number of producing countries, but also has an impact on environmental conservation measures, and export prices continue to fluctuate.
  • Nd magnets are used as motors in next-generation automobiles, mobile phones, and personal computers, and are produced approximately 16,000 tons annually in Japan. Recycling of 5,600 tons of polishing waste discharged from the manufacturing process has been attempted by physicochemical treatment.
  • the physicochemical recovery method cannot completely recover rare earth elements from low-concentration contents. Therefore, REE recycling recovery has a problem of recovering low-concentration residual rare earth elements.
  • the importance of environmental conservation and resource recycling society has been emphasized. As one of the new technologies for solving these problems, microbial metal metabolism has attracted attention.
  • microorganisms The metal metabolism of microorganisms is known to be converted to elemental state by specific respiration such as denitrification, and selective enrichment and accumulation of manganese.
  • respiration such as denitrification
  • selective enrichment and accumulation of manganese due to the lack of elucidation of microbial functions and the development of systems for following up on these functions, resources are hardly recycled using microorganisms.
  • Patent Document 1 describes a microorganism (accession number NITE BP-01593) belonging to the family Teratosphaeriaceae as a microorganism having the ability to solidify rare earth elements, and a method for solidifying rare earth elements using the microorganisms. Has been.
  • Patent Document 1 describes a T9 strain (Teratosphaeriaceae sp. T9) belonging to the family Teratosphaeriaceae that accumulates and solidifies REE from a solution. This microorganism can solidify and recover 90% Dy soot in an accumulation test using a low concentration Dy solution. However, in order to put it into practical use, it is necessary to increase the efficiency in a shorter time.
  • An object of the present invention is to investigate a REE metabolism mechanism by elucidating the REE metabolism mechanism, and to establish a REE collection technique using microorganisms.
  • An object of the present invention is to provide a method for solidifying and recovering a rare earth element using a microorganism having the ability to solidify the rare earth element, and a rare earth element recovery apparatus.
  • the present inventor first elucidated the REE accumulation characteristics and accumulation sites of microorganisms having the ability to solidify rare earth elements, and elucidated the chemical state of the REE solidified recovery product, which is a metabolite. . Then, optimization of the REE recovery conditions from the solution using the above-mentioned microorganisms was examined, and further a method for refining the REE solidified recovered material was studied. As a result, it was found that 100% Dy can be desorbed from the Dy solidified recovered product using EDTA or HCl, and that Dy solidified and recovered by reusing the cells after Dy desorbing has led to the completion of the present invention.
  • the aspect of the present invention relates to the following.
  • a step of solidifying a rare earth element by culturing a microorganism having the ability to solidify the rare earth element in a solution containing the rare earth element, and a treatment of the microorganism containing the solidified rare earth element with a chelating agent or an acid.
  • a method for recovering rare earth elements comprising a step of recovering rare earth elements.
  • the microorganism has the ability to solidify one or more rare earth elements selected from yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu), and dysprosium (Dy). The method described.
  • the microorganism has a scientific property that the colony has a black, rod-like shape (major axis 10 ⁇ m, minor axis 2 ⁇ m), spore (spherical 1 ⁇ m), pH 2 to 4 and optimal growth, any of [1] to [4] The method of crab.
  • the reaction proceeds at room temperature and pressure, so that an energy saving and low cost recycling process can be provided.
  • FIG. 1 shows a Dy desorption test from a Dy soot solidified product.
  • FIG. 2 shows a Dy accumulation test using the T9 strain after desorption of Dy.
  • FIG. 3 shows the 7th day of culture in the Dy accumulation test using the cells after the desorption test.
  • FIG. 4 shows a continuous REE straw collection system using T9 strain.
  • the method for recovering rare earth elements according to the present invention includes a step of solidifying a rare earth element by culturing a microorganism having the ability to solidify the rare earth element in a solution containing the rare earth element, and a chelate of the microorganism containing the solidified rare earth element. It is a method including the process of collect
  • the microorganism used in the present invention is a microorganism having an ability to solidify rare earth elements.
  • rare earth elements include Sc (scandium), Y (yttrium), La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), There are 17 species of Eu (europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium) and Lu (lutetium).
  • the microorganism of the present invention only needs to have the ability to solidify at least one of the rare earth elements described above.
  • the microorganism of the present invention is a microorganism having the ability to solidify one or more rare earth elements selected from yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu) and dysprosium (Dy).
  • the microorganism has the ability to solidify dysprosium (Dy).
  • the microorganism has the ability to solidify all of yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu) and dysprosium (Dy).
  • solidification means that a rare earth element dissolved in a solution is insolubilized (mineralized).
  • a microorganism-containing medium to which a rare earth chloride solution (for example, DyCl 3 solution) is added is inoculated with a sample containing microorganisms, cultured under conditions that allow the microorganisms to grow, and then the supernatant of the sampling sample.
  • a rare earth chloride solution for example, DyCl 3 solution
  • Microorganisms having the ability to solidify rare earth elements of the present invention can be isolated and collected by screening from wild strains, mutant strains and the like by the method described above or a method equivalent thereto.
  • the genus to which the microorganism having the ability to solidify rare earth elements of the present invention is not particularly limited.
  • a method of classifying microorganisms (identification of genus species) based on 16S rRNA information and the like for microorganisms collected from environmental samples and the like is known.
  • the microorganism used in the present invention may be any microorganism such as a wild-type strain, a mutant strain, and a recombinant produced by genetic engineering techniques.
  • the genus to which the microorganisms capable of solidifying rare earth elements of the present invention belong preferably belongs to the family Teratosphaeriaceae (for example, Penidiella genus) or Dosideales Microorganisms (eg, Mycosphaerellaceae family microorganisms).
  • the microorganism has been found to have a homology of 95% or more in the base sequences of 18SrDNA, 28SrDNA-D1 / D2, and ITS-5.8SrDNA.
  • a microorganism having 95% or more homology with a microorganism belonging to the family Teratosphaeriaceae in the nucleotide sequences of 18SrDNA, 28SrDNA-D1 / D2, and ITS-5.8SrDNA can be used.
  • the T9 strain (Teratosphaeriaceae sp. T9) used in the examples of the present specification can be cited (see International Publication WO2014 / 178360) .
  • the T9 strain under the accession number NITE BP-01593, was established on April 15, 2013 by the National Institute of Technology and Evaluation, Microorganisms Deposit Center (Zip code 292-0818, 2-5 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan). 8 Room 122).
  • the T9 strain has a scientific property that the colonies are black and rod-shaped (major axis 10 ⁇ m, minor axis 2 ⁇ m), spores (spherical 1 ⁇ m), pH 2 to 4 and optimal for growth.
  • the T9 strain belongs to the genus Penidiella.
  • a rare earth element is solidified by culturing a microorganism having the ability to solidify the rare earth element of the present invention in a solution containing the rare earth element.
  • the kind of rare earth element to be solidified is not particularly limited, but is preferably one or more selected from yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu), and dysprosium (Dy), particularly preferably. Is dysprosium (Dy).
  • the method for culturing the microorganism of the present invention is not particularly limited as long as the rare earth element can be solidified, and suitable culture conditions can be appropriately selected according to the properties of the microorganism to be used.
  • the culture is performed at a temperature of 25 to 40 ° C., preferably at a temperature of 25 to 35 ° C., particularly preferably at 28 to 32 ° C. under aerobic conditions such as pH 2 to 4 of the medium and shaking culture. be able to.
  • the rare earth element solidification ability of the microorganism may be improved.
  • the rare earth element can be solidified by the above method, and then the solidified rare earth element can be recovered.
  • the solidified rare earth element can be recovered by treating the microorganism containing the solidified rare earth element with a chelating agent or an acid to elute the rare earth element from the microorganism.
  • the chelating agent is not particularly limited as long as it can elute rare earth elements from microorganisms.
  • ethylenediaminetetraacetic acid (EDTA), L-aspartic acid diacetic acid (ASDA), L-glutamic acid diacetic acid (GLDA), ethylenediamine -N, N'-disuccinic acid (EDDS), (diethylenetriaminepentaacetic acid (DTPA), nitrilotriacetic acid (NTA), etc. can be used.
  • the acid is not particularly limited as long as it can elute rare earth elements from microorganisms.
  • inorganic acids hydroochloric acid, sulfuric acid, nitric acid, etc.
  • organic acids formic acid, acetic acid, citric acid, oxalic acid, etc.
  • the concentration of the chelating agent and the acid is not particularly limited as long as the rare earth element can be eluted from the microorganism, and can be set as appropriate.
  • 3 mM to 1000 mM is preferable, 3 mM to 500 mM is more preferable, 10 mM to 500 mM is further preferable, 30 mM to 500 mM is further preferable, and 30 mM to 300 mM is further preferable.
  • hydrochloric acid 3 mM to 1000 mM is preferable, 30 mM to 1000 mM is more preferable, 30 mM to 500 mM is further preferable, and 50 mM to 500 mM is further preferable.
  • the recovery of rare earth elements can be performed by a known method such as centrifugation, filter filtration, or a combination thereof.
  • a microorganism immobilized on a carrier can be used.
  • the carrier for immobilizing microorganisms is not particularly limited, and the shape, structure, size, material and the like can be appropriately selected.
  • the shape of the bag carrier examples include a spherical shape, a granular shape, a lump shape (pellet shape), a sheet shape, a column shape, a net shape, and a capsule shape.
  • the structure of the carrier it may be formed of one type of member or two or more types of members.
  • the carrier may be a single layer structure or a laminated structure.
  • the fine structure of the carrier is not particularly limited as long as it is a structure in which a microorganism and a solution containing a rare earth element can be contacted, and examples thereof include a porous structure and a network structure. Such a structure is advantageous because the contact area between the microorganisms immobilized on the carrier and the solution containing the rare earth element can be increased.
  • the size of the carrier can be appropriately selected according to the size of the container that accommodates the carrier.
  • the material of the cocoon carrier is preferably a polysaccharide, protein, synthetic polymer, inorganic material, etc., but is not particularly limited.
  • the polysaccharide include cellulose, dextran, agarose, sodium alginate, agar, and carrageenan.
  • the protein include gelatin, albumin, collagen and the like.
  • the synthetic polymer include acrylamide, polyvinyl alcohol, polyethylene glycol, sodium polyacrylate, polyvinyl chloride, polystyrene, and polyurethane.
  • the inorganic substance include silica gel, activated carbon, sand, zeolite, porous glass, anthracite, zeolite, foamed brick, and molten slag.
  • the method for immobilizing microorganisms on the carrier is not particularly limited, and can be performed according to a conventional method.
  • a carrier binding method, a crosslinking method, a comprehensive method and the like are preferable.
  • the carrier binding method is a method of immobilizing microorganisms on the surface of a water-insoluble carrier.
  • the crosslinking method is a method of crosslinking with a reagent having two or more functional groups.
  • the inclusion method is a method in which microorganisms are encapsulated in a gel lattice (lattice type) or coated with a polymer film (microcapsule).
  • the carrier on which the microorganisms are fixed is accommodated in a container when contacting with a solution containing a rare earth element. Since the carrier is accommodated in the container, the contact between the carrier and the solution containing the rare earth element can be efficiently and controlled.
  • the shape, structure, size, and material of the container are not particularly limited, and can be appropriately selected according to the purpose. Suitable examples of the shape of the container include a cylindrical shape. Examples of the material of the container include glass, resin, and stainless steel.
  • the microorganism treated with the chelating agent or the acid can be recovered.
  • the rare earth element can be solidified and recovered by culturing again in the solution containing the rare earth element using the recovered microorganism.
  • An example of the continuous REE soot recovery system described above is shown in FIG. A carrier on which a microorganism having the ability to solidify rare earth elements is introduced into a culture tank containing a solution containing rare earth elements, and the microorganisms solidify the rare earth elements (first figure from the left).
  • carrier with which the microorganisms containing the solidified rare earth element were fixed is taken out from the said culture tank (2nd figure from the left).
  • the carrier on which the solidified microorganism containing the rare earth element is fixed is introduced into an elution tank containing a chelating agent or an acid to elute the rare earth element (third figure from the left).
  • the carrier on which the microorganisms eluting the rare earth elements are fixed can be taken out from the elution tank and reused (fourth figure from the left).
  • a carrier on which microorganisms having the ability to solidify rare earth elements are fixed (b) a culture vessel for culturing microorganisms on the carrier in a solution containing rare earth elements; and (c) An apparatus is provided for recovering rare earth elements including an elution tank containing a chelating agent or acid.
  • a chelating agent or acid Specific examples of the microorganism, the carrier, the chelating agent, and the acid having the ability to solidify rare earth elements in the above apparatus are as described above in the present specification.
  • Example 1 Dy desorption test from REE solidified material (1) Method ⁇ Medium and culture conditions Liquid culture is performed using inorganic salt minimum medium (BSM) (distilled water, NH4Cl 0.24 g / L, MgSO4 ⁇ 7H2O 0.12 g / L, CaCl2 ⁇ 2H2O 0.2 g / L, KH2PO4 0.05 g / L L, K2HPO4 0.05 g / L, NaCl 0.1 g / L, Yeast Extract 0.1 g / L, Glucose 2 g / L, H3BO3 0.6 mg / L, CoCl2 ⁇ 6H2O 0.16 mg / L, CuCl2 0.067 mg / L, MnCl2 0.63 mg / L, ZnCl2 0.22 mg / L) was sterilized by autoclave (121 ° C, 15 minutes), temperature 30 ° C, rotary shaking 120 rpm. The culture pH was adjusted with
  • BSM adjusted to pH 2.5 with 20 mM potassium hydrogen phthalate-HCl buffer was used. 50 mL of BSM was dispensed into a 100 mL Erlenmeyer flask, and DyCl3 solution was added at a final concentration of 100 mg / L. The BSM after addition of Dy was inoculated with 0.5 mL of the T9 strain culture solution on the 4th day of preculture, and cultured for 7 days under conditions of 30 ° C and rotary shaking (120 rpm).
  • a Dy desorption test was conducted to recover Dy with high purity from the Dy solidified product derived from the T9 strain.
  • the Dy solidified recovery used in the test the Dy solidified recovered 3 days after the Dy accumulation test was used. The collected material was dried overnight at a room temperature of about 25 ° C., and then the dry weight was measured. The Dy concentration in the Dy collection was calculated from the Dy decrease in the accumulation test. The dried Dy solidified recovered product was added to the desorption solution to a final concentration of 500 mg / L Dy (about 3 mM).
  • EDTA ethylenediaminetetraacetic acid
  • HCl hydrochloric acid
  • the concentration of the desorption solution was 300 mM, 30 mM, and 3 mM, respectively.
  • the Dy desorption reaction was performed at 30 ° C. for 3 hours with 120 rpm shaking.
  • the desorption reaction solution was sampled every 0.5 mL in a timely manner, and the element concentration in the supernatant was quantified by ICP-AES.
  • Results Fig. 1 shows the results of the Dy desorption test from the Dy solidified recovered material.
  • EDTA dissolved more than 90% Dy at 3 hours of reaction at all concentrations tested.
  • the EDTA concentration with the highest desorption rate was 30 mM, and 100% of Dy was desorbed after 3 hours of reaction.
  • 100% Dy was desorbed after 30 minutes of reaction at 300 mM.
  • 30 mM and 3 mM HCl concentrations little Dy was desorbed.
  • the solution pH for EDTA was 300 mM for 7.8, 30 mM and 3 mM, 8.2, and for HCL, 300 mM was 0.9, 30 mM was 1.7, and 3 mM was 2.4.
  • Example 2 Reuse of T9 strain after Dy desorption (1) Method The T9 strain after Dy desorption was cultured for reuse, and a Dy accumulation test was performed. After Dy desorption, the solidified product containing T9 strain viable bacteria was recovered with a 0.2 ⁇ m filter. Similar to the Dy accumulation test, the culture was carried out for 7 days by inoculating 1% (v / v) in BSM (pH 2.5) containing 100 mg / L Dy. 1.0 mL of the culture solution was sampled in a timely manner, and the element concentration in the supernatant was quantified by ICP-AES.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Genetics & Genomics (AREA)
  • Materials Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The problem of the present invention is to provide a method for solidifying and recovering rare-earth elements using microorganisms that have the capability to solidify rare-earth elements, and to provide a device for recovering rare-earth elements. The present invention provides a method for recovering rare-earth elements, including: a step for culturing microorganisms that have the capability to solidify rare-earth elements, the microorganisms being cultured in a solution that contains a rare-earth element, to thereby solidify the rare-earth element; and a step for treating the microorganisms including the solidified rare-earth element using a chelating agent or an acid to thereby recover the rare-earth element.

Description

希土類元素の回収方法Recovery method of rare earth elements
 本発明は、希土類元素を溶出させる能力を有する微生物を用いて希土類元素を回収する方法、並びに希土類元素の回収装置に関する。 The present invention relates to a method for recovering rare earth elements using microorganisms capable of eluting rare earth elements, and a rare earth element recovery apparatus.
 希土類元素(REE)は、周期表第三族の原子番号21番のスカンジウム(Sc)及び39番のイットリウム(Y)と、57番から71番のランタノイドと総称される15元素の元素グループのことを指す。希土類元素は、特殊な電子軌道の原子構造をしており、蛍光や磁性、高温での超伝導性などの性質を持つため、蛍光材料や永久磁石、超伝導材料として日本の産業にとって欠かせない金属である。特に、ジスプロシウム (Dy)は、耐熱性ネオジム(Nd)磁石と呼ばれる高温に耐える強力磁石の原料としてその需要が増加している。 Rare earth element (REE) is a group of 15 elements collectively called scandium (Sc) and yttrium (Y) of atomic number 21 of Group 3 of the periodic table and lanthanoids of 57 to 71. Point to. Rare earth elements have a special electron orbital atomic structure and have properties such as fluorescence, magnetism, and superconductivity at high temperatures, so they are indispensable for the Japanese industry as fluorescent materials, permanent magnets, and superconducting materials. It is a metal. In particular, the demand for dysprosium soot (Dy) is increasing as a raw material for strong magnets that can withstand high temperatures called heat-resistant neodymium (Nd) magnets.
 Dyは産出国が限られているだけでなく、さらに環境保全対策等の影響があり輸出価格は乱高下し続けている。また、Nd磁石は、モーターとして次世代型自動車や携帯電話、パソコンに利用されており、日本国内で年間約16,000トン生産されている。その製造工程から排出される5,600トンの研磨屑は、物理化学的処理によるリサイクルが試みられている。しかし、物理化学的な回収方法は、低濃度の含有物から希土類元素を完全に回収することができない。そのため、REEリサイクル回収は、低濃度の残存希土類元素の回収が課題である。昨今、環境保全や資源循環型社会の重要性が強調されている。こうした課題を解決するための新たな技術の 1 つとして、微生物の金属代謝が注目されている。微生物の金属代謝は、脱窒のような特異的な呼吸による元素態への変換や、マンガンの選択的濃縮・蓄積等が知られる。しかし、微生物機能の解明やその機能をフォローアップするためのシステム開発が進まなかったことにより、微生物を用いた資源のリサイクルはほとんど行われていない。 Dy not only has a limited number of producing countries, but also has an impact on environmental conservation measures, and export prices continue to fluctuate. Nd magnets are used as motors in next-generation automobiles, mobile phones, and personal computers, and are produced approximately 16,000 tons annually in Japan. Recycling of 5,600 tons of polishing waste discharged from the manufacturing process has been attempted by physicochemical treatment. However, the physicochemical recovery method cannot completely recover rare earth elements from low-concentration contents. Therefore, REE recycling recovery has a problem of recovering low-concentration residual rare earth elements. In recent years, the importance of environmental conservation and resource recycling society has been emphasized. As one of the new technologies for solving these problems, microbial metal metabolism has attracted attention. The metal metabolism of microorganisms is known to be converted to elemental state by specific respiration such as denitrification, and selective enrichment and accumulation of manganese. However, due to the lack of elucidation of microbial functions and the development of systems for following up on these functions, resources are hardly recycled using microorganisms.
 特許文献1には、希土類元素を固化する能力を有する微生物としてテラトスファエリアセアエ(Teratosphaeriaceae)科に属する微生物(受託番号NITE BP-01593)、並びに上記微生物を用いた希土類元素の固化方法が記載されている。 Patent Document 1 describes a microorganism (accession number NITE BP-01593) belonging to the family Teratosphaeriaceae as a microorganism having the ability to solidify rare earth elements, and a method for solidifying rare earth elements using the microorganisms. Has been.
国際公開WO2014/178360号公報International Publication WO2014 / 178360
 特許文献1には、溶液中からREEを蓄積し濃縮固化するテラトスファエリアセアエ(Teratosphaeriaceae)科に属するT9株(Teratosphaeriaceae sp. T9)が記載されている。この微生物は、低濃度Dy溶液を用いた蓄積試験で 90%のDy を固化回収できる。しかし、実用化するためにはさらに短時間で効率を高める必要がある。本発明では、REE代謝メカニズムを解明することによって高効率なREE 蓄積方法を探究し、微生物を用いた REE 回収技術を確立することを目的とする。本発明の課題は、希土類元素を固化する能力を有する微生物を用いて希土類元素を固化及び回収する方法、並びに希土類元素の回収装置を提供することである。 Patent Document 1 describes a T9 strain (Teratosphaeriaceae sp. T9) belonging to the family Teratosphaeriaceae that accumulates and solidifies REE from a solution. This microorganism can solidify and recover 90% Dy soot in an accumulation test using a low concentration Dy solution. However, in order to put it into practical use, it is necessary to increase the efficiency in a shorter time. An object of the present invention is to investigate a REE metabolism mechanism by elucidating the REE metabolism mechanism, and to establish a REE collection technique using microorganisms. An object of the present invention is to provide a method for solidifying and recovering a rare earth element using a microorganism having the ability to solidify the rare earth element, and a rare earth element recovery apparatus.
 本発明者は上記課題を解決することを目的として、先ず、希土類元素を固化する能力を有する微生物のREE 蓄積特性と蓄積部位を解明し、代謝産物であるREE 固化回収物の化学状態を解明した。そして上記微生物を用いた溶液からのREE回収条件の最適化を検討し、さらにREE固化回収物の精錬方法を検討した。その結果、EDTA又はHClを用いてDy固化回収物から100%のDyを脱着できること、並びにDy脱着後の菌体を再利用してDy 固化回収できることを見出し、本発明を完成するに至った。 In order to solve the above problems, the present inventor first elucidated the REE accumulation characteristics and accumulation sites of microorganisms having the ability to solidify rare earth elements, and elucidated the chemical state of the REE solidified recovery product, which is a metabolite. . Then, optimization of the REE recovery conditions from the solution using the above-mentioned microorganisms was examined, and further a method for refining the REE solidified recovered material was studied. As a result, it was found that 100% Dy can be desorbed from the Dy solidified recovered product using EDTA or HCl, and that Dy solidified and recovered by reusing the cells after Dy desorbing has led to the completion of the present invention.
 すなわち、本発明の態様は以下に関する。
[1]希土類元素を固化する能力を有する微生物を、希土類元素を含む溶液中で培養することによって希土類元素を固化する工程、及び固化した希土類元素を含む微生物をキレート剤又は酸で処理することによって希土類元素を回収する工程を含む、希土類元素を回収する方法。
[2]微生物が、イットリウム(Y)、プラセオジム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)及びジスプロシウム(Dy)から選択される1以上の希土類元素を固化する能力を有する、[1]に記載の方法。
[3]微生物が、イットリウム(Y)、プラセオジム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)及びジスプロシウム(Dy)の全てを固化する能力を有する、[1]又は[2]に記載の方法。
[4]微生物が、テラトスファエリアセアエ(Teratosphaeriaceae)科に属する、[1]から[3]の何れかに記載の方法。
[5]微生物が、コロニーは黒色、棒状の形態(長径10μm、短径2μm)、胞子(球形1μm)、pH2~4で増殖最適という科学的性質を有する、[1]から[4]の何れかに記載の方法。
[6]微生物が、受託番号NITE BP-01593を有する微生物である、[1]から[5]の何れかに記載の方法。
That is, the aspect of the present invention relates to the following.
[1] A step of solidifying a rare earth element by culturing a microorganism having the ability to solidify the rare earth element in a solution containing the rare earth element, and a treatment of the microorganism containing the solidified rare earth element with a chelating agent or an acid. A method for recovering rare earth elements, comprising a step of recovering rare earth elements.
[2] The microorganism has the ability to solidify one or more rare earth elements selected from yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu), and dysprosium (Dy). The method described.
[3] The method according to [1] or [2], wherein the microorganism has an ability to solidify all of yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu), and dysprosium (Dy). .
[4] The method according to any one of [1] to [3], wherein the microorganism belongs to the family Teratosphaeriaceae.
[5] The microorganism has a scientific property that the colony has a black, rod-like shape (major axis 10 μm, minor axis 2 μm), spore (spherical 1 μm), pH 2 to 4 and optimal growth, any of [1] to [4] The method of crab.
[6] The method according to any one of [1] to [5], wherein the microorganism is a microorganism having a deposit number of NITE BP-01593.
[7]キレート剤がEDTAであり、酸が塩酸である、[1]から[6]の何れかに記載の方法。
[8]キレート剤が3mMから1000mMのEDTAであり、酸が30mMから1000mMの塩酸である、[1]から[7]の何れかに記載の方法。
[9]微生物が担体上に固定されている、[1]から[8]の何れかに記載の方法。
[10](i)[1]から[9]の何れかに記載の方法により希土類元素を回収する工程;
(ii)上記工程(i)においてキレート剤又は酸で処理された微生物を回収する工程、及び
(iii)上記工程(ii)において回収した微生物を用いて[1]から[9]の何れかに記載の方法により希土類元素を回収する工程を含む、希土類元素を回収する方法。
[11](a)希土類元素を固化する能力を有する微生物を固定した担体;及び
(b)希土類元素を含む溶液中で上記担体上の微生物を培養するための培養槽;及び
(c)キレート剤又は酸を収容するための溶離槽;
を含む、[1]から[10]の何れかに記載の方法により希土類元素を回収するための装置。
[7] The method according to any one of [1] to [6], wherein the chelating agent is EDTA and the acid is hydrochloric acid.
[8] The method according to any one of [1] to [7], wherein the chelating agent is 3 mM to 1000 mM EDTA, and the acid is 30 mM to 1000 mM hydrochloric acid.
[9] The method according to any one of [1] to [8], wherein the microorganism is immobilized on a carrier.
[10] (i) A step of recovering rare earth elements by the method according to any one of [1] to [9];
(Ii) a step of recovering a microorganism treated with a chelating agent or an acid in the step (i), and (iii) any one of [1] to [9] using the microorganism recovered in the step (ii) A method for recovering rare earth elements, comprising a step of recovering rare earth elements by the method described.
[11] (a) a carrier on which microorganisms having the ability to solidify rare earth elements are fixed; and (b) a culture vessel for culturing microorganisms on the carrier in a solution containing rare earth elements; and (c) a chelating agent. Or an elution tank for containing acid;
An apparatus for recovering rare earth elements by the method according to any one of [1] to [10].
 本発明による微生物を用いた希土類元素の回収方法によれば、物理化学的手法と異なり、常温・常圧で反応が進むため、省エネルギー・低コストのリサイクルプロセスを提供することができる。 According to the method for recovering rare earth elements using microorganisms according to the present invention, unlike the physicochemical method, the reaction proceeds at room temperature and pressure, so that an energy saving and low cost recycling process can be provided.
図1は、Dy 固化回収物からのDy脱着試験を示す。FIG. 1 shows a Dy desorption test from a Dy soot solidified product. 図2は、Dy 脱着後のT9株を用いたDy蓄積試験を示す。FIG. 2 shows a Dy accumulation test using the T9 strain after desorption of Dy. 図3は、脱着試験後の菌体を用いたDy蓄積試験の培養7日目を示す。FIG. 3 shows the 7th day of culture in the Dy accumulation test using the cells after the desorption test. 図4は、T9 株を応用した連続的なREE 回収システムを示す。FIG. 4 shows a continuous REE straw collection system using T9 strain.
 以下、本発明の実施の形態について説明する。
 本発明による希土類元素を回収する方法は、希土類元素を固化する能力を有する微生物を、希土類元素を含む溶液中で培養することによって希土類元素を固化する工程、及び固化した希土類元素を含む微生物をキレート剤又は酸で処理することによって希土類元素を回収する工程を含む方法である。
Embodiments of the present invention will be described below.
The method for recovering rare earth elements according to the present invention includes a step of solidifying a rare earth element by culturing a microorganism having the ability to solidify the rare earth element in a solution containing the rare earth element, and a chelate of the microorganism containing the solidified rare earth element. It is a method including the process of collect | recovering rare earth elements by processing with an agent or an acid.
 本発明で用いる微生物は、希土類元素を固化する能力を有する微生物である。
 希土類元素とは、具体的には、Sc(スカンジウム)、Y(イットリウム)、La(ランタン)、Ce(セリウム)、Pr(プラセオジム)、Nd(ネオジム)、Pm(プロメチウム)、Sm(サマリウム)、Eu(ユウロピウム)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)及びLu(ルテチウム)の17種である。本発明の微生物は、上記した希土類元素のうちの少なくとも1種以上を固化する能力を有すればよい。好ましくは、本発明の微生物は、イットリウム(Y)、プラセオジム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)及びジスプロシウム(Dy)から選択される1以上の希土類元素を固化する能力を有する微生物であり、好ましくは、微生物は、ジスプロシウム(Dy)を固化する能力を有する。特に好ましくは、微生物は、イットリウム(Y)、プラセオジム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)及びジスプロシウム(Dy)の全てを固化する能力を有する。
The microorganism used in the present invention is a microorganism having an ability to solidify rare earth elements.
Specific examples of rare earth elements include Sc (scandium), Y (yttrium), La (lanthanum), Ce (cerium), Pr (praseodymium), Nd (neodymium), Pm (promethium), Sm (samarium), There are 17 species of Eu (europium), Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium) and Lu (lutetium). The microorganism of the present invention only needs to have the ability to solidify at least one of the rare earth elements described above. Preferably, the microorganism of the present invention is a microorganism having the ability to solidify one or more rare earth elements selected from yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu) and dysprosium (Dy). Yes, preferably the microorganism has the ability to solidify dysprosium (Dy). Particularly preferably, the microorganism has the ability to solidify all of yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu) and dysprosium (Dy).
 本発明において、固化とは、溶液中に溶存している希土類元素が不溶化(ミネラリゼーション)することを意味する。微生物が希土類元素を固化する能力を有することは、実施例に記載の方法により確認することができる。具体的には、希土類元素の塩化物の溶液(例えばDyCl3溶液)を添加した微生物用培地に、微生物を含む試料を接種し、微生物を増殖できる条件下で培養した後、サンプリング試料の上清中における希土類元素濃度を測定することによって、希土類元素を固化する能力を測定することができる。本発明の希土類元素を固化する能力を有する微生物は、上記又はそれに準じた方法により、野生株、変異株等の中からスクリーニングすることで単離採取することができる。 In the present invention, solidification means that a rare earth element dissolved in a solution is insolubilized (mineralized). The ability of microorganisms to solidify rare earth elements can be confirmed by the method described in the examples. Specifically, a microorganism-containing medium to which a rare earth chloride solution (for example, DyCl 3 solution) is added is inoculated with a sample containing microorganisms, cultured under conditions that allow the microorganisms to grow, and then the supernatant of the sampling sample By measuring the concentration of the rare earth element therein, the ability to solidify the rare earth element can be measured. Microorganisms having the ability to solidify rare earth elements of the present invention can be isolated and collected by screening from wild strains, mutant strains and the like by the method described above or a method equivalent thereto.
 本発明の希土類元素を固化する能力を有する微生物が属する属は、特に限定されない。環境試料などから採取した微生物について、16SrRNAの情報等に基づいて微生物を分類(属種の同定)する方法は公知である。本発明で使用する微生物は、野生株、変異株、遺伝子工学的手法等により作製される組換え体などの何れの微生物であってもよい。 The genus to which the microorganism having the ability to solidify rare earth elements of the present invention is not particularly limited. A method of classifying microorganisms (identification of genus species) based on 16S rRNA information and the like for microorganisms collected from environmental samples and the like is known. The microorganism used in the present invention may be any microorganism such as a wild-type strain, a mutant strain, and a recombinant produced by genetic engineering techniques.
 本発明の希土類元素を固化する能力を有する微生物が属する属は、好ましくはテラトスファエリアセアエ(Teratosphaeriaceae)科に属する微生物(例えば、ペニジエラ(Penidiella)属微生物)、又はドシデアレス(Dothideales)目に属する微生物(例えば、マイコスファエレラシアエ(Mycosphaerellaceae)科微生物)である。上記微生物は、18SrDNA、28SrDNA-D1/D2、ITS-5.8SrDNAの塩基配列において95%以上の相同性を有することが判明している。上記のように、本発明においては、18SrDNA、28SrDNA-D1/D2、ITS-5.8SrDNAの塩基配列において、テラトスファエリアセアエ(Teratosphaeriaceae)科に属する微生物と95%以上の相同性を有する微生物を使用することができる。テラトスファエリアセアエ(Teratosphaeriaceae)科に属する微生物の一例としては、本明細書の実施例で使用したT9株(Teratosphaeriaceae sp. T9)を挙げることができる(国際公開WO2014/178360号公報を参照)。T9株は、受託番号NITE BP-01593として、2013年4月15日に独立行政法人 製品評価技術基盤機構特許微生物寄託センター(郵便番号292-0818 日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託されている。T9株は、コロニーは黒色、棒状の形態(長径10μm、短径2μm)、胞子(球形1μm)、pH2~4で増殖最適という科学的性質を有する。T9株は、ペニジエラ(Penidiella)属に属する。 The genus to which the microorganisms capable of solidifying rare earth elements of the present invention belong preferably belongs to the family Teratosphaeriaceae (for example, Penidiella genus) or Dosideales Microorganisms (eg, Mycosphaerellaceae family microorganisms). The microorganism has been found to have a homology of 95% or more in the base sequences of 18SrDNA, 28SrDNA-D1 / D2, and ITS-5.8SrDNA. As described above, in the present invention, a microorganism having 95% or more homology with a microorganism belonging to the family Teratosphaeriaceae in the nucleotide sequences of 18SrDNA, 28SrDNA-D1 / D2, and ITS-5.8SrDNA Can be used. As an example of microorganisms belonging to the family Teratosphaeriaceae (Teratosphaeriaceae), the T9 strain (Teratosphaeriaceae sp. T9) used in the examples of the present specification can be cited (see International Publication WO2014 / 178360) . The T9 strain, under the accession number NITE BP-01593, was established on April 15, 2013 by the National Institute of Technology and Evaluation, Microorganisms Deposit Center (Zip code 292-0818, 2-5 Kazusa Kamashichi, Kisarazu City, Chiba Prefecture, Japan). 8 Room 122). The T9 strain has a scientific property that the colonies are black and rod-shaped (major axis 10 μm, minor axis 2 μm), spores (spherical 1 μm), pH 2 to 4 and optimal for growth. The T9 strain belongs to the genus Penidiella.
 本発明によれば、希土類元素を含む溶液中で、本発明の希土類元素を固化する能力を有する微生物を培養することによって、希土類元素を固化する。固化する希土類元素の種類は特に限定されないが、好ましくは、イットリウム(Y)、プラセオジム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)及びジスプロシウム(Dy)から選択される1以上であり、特に好ましくはジスプロシウム(Dy)である。 According to the present invention, a rare earth element is solidified by culturing a microorganism having the ability to solidify the rare earth element of the present invention in a solution containing the rare earth element. The kind of rare earth element to be solidified is not particularly limited, but is preferably one or more selected from yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu), and dysprosium (Dy), particularly preferably. Is dysprosium (Dy).
 本発明の微生物を培養する方法は、希土類元素を固化できる限り特に限定されず、使用する微生物の性質に応じて好適な培養条件を適宜選択することができる。例えば、T9株の場合には、培地のpH2~4、振とう培養などの好気条件下、温度25~40℃、好ましくは温度25~35℃、特に好ましくは28~32℃で培養を行うことができる。 The method for culturing the microorganism of the present invention is not particularly limited as long as the rare earth element can be solidified, and suitable culture conditions can be appropriately selected according to the properties of the microorganism to be used. For example, in the case of the T9 strain, the culture is performed at a temperature of 25 to 40 ° C., preferably at a temperature of 25 to 35 ° C., particularly preferably at 28 to 32 ° C. under aerobic conditions such as pH 2 to 4 of the medium and shaking culture. be able to.
 本発明の希土類元素を固化する能力を有する微生物を培養する際には、好ましくはリン酸の存在下において培養を行うことができる。リン酸の存在下において培養を行うことにより、微生物の希土類元素固化能力を向上させることができる場合がある。 When culturing a microorganism having the ability to solidify the rare earth element of the present invention, it can be preferably cultured in the presence of phosphoric acid. By culturing in the presence of phosphoric acid, the rare earth element solidification ability of the microorganism may be improved.
 本発明においては、上記方法により希土類元素を固化し、その後、固化された希土類元素を回収することができる。
 固化された希土類元素の回収は、固化した希土類元素を含む微生物をキレート剤又は酸で処理することによって、希土類元素を微生物から溶離させることにより行うことができる。
In the present invention, the rare earth element can be solidified by the above method, and then the solidified rare earth element can be recovered.
The solidified rare earth element can be recovered by treating the microorganism containing the solidified rare earth element with a chelating agent or an acid to elute the rare earth element from the microorganism.
 キレート剤としては、希土類元素を微生物から溶離できるものであれば特に限定されないが、例えば、エチレンジアミン四酢酸(EDTA)、L-アスパラギン酸二酢酸(ASDA)、L-グルタミン酸二酢酸(GLDA)、エチレンジアミン-N,N’-ジコハク酸 (EDDS)、(ジエチレントリアミン五酢酸(DTPA)、ニトリロ三酢酸(NTA)などを使用することができる。
 酸としては、希土類元素を微生物から溶離できるものであれば特に限定されないが、例えば、無機酸(塩酸、硫酸、硝酸など)又は有機酸(ギ酸、酢酸、クエン酸、シュウ酸など)を使用することができる。
The chelating agent is not particularly limited as long as it can elute rare earth elements from microorganisms. For example, ethylenediaminetetraacetic acid (EDTA), L-aspartic acid diacetic acid (ASDA), L-glutamic acid diacetic acid (GLDA), ethylenediamine -N, N'-disuccinic acid (EDDS), (diethylenetriaminepentaacetic acid (DTPA), nitrilotriacetic acid (NTA), etc. can be used.
The acid is not particularly limited as long as it can elute rare earth elements from microorganisms. For example, inorganic acids (hydrochloric acid, sulfuric acid, nitric acid, etc.) or organic acids (formic acid, acetic acid, citric acid, oxalic acid, etc.) are used. be able to.
 キレート剤及び酸の濃度は、希土類元素を微生物から溶離できる限り特に限定されず、適宜設定することができる。例えば、EDTAの場合には、3mMから1000mMが好ましく、3mMから500mMがより好ましく、10mMから500mMがさらに好ましく、30mMから500mMがさらに好ましく、30mMから300mMがさらに好ましい。塩酸の場合には、3mMから1000mMが好ましく、30mMから1000mMがより好ましく、30mMから500mMがさらに好ましく、50mMから500mMがさらに好ましい。 The concentration of the chelating agent and the acid is not particularly limited as long as the rare earth element can be eluted from the microorganism, and can be set as appropriate. For example, in the case of EDTA, 3 mM to 1000 mM is preferable, 3 mM to 500 mM is more preferable, 10 mM to 500 mM is further preferable, 30 mM to 500 mM is further preferable, and 30 mM to 300 mM is further preferable. In the case of hydrochloric acid, 3 mM to 1000 mM is preferable, 30 mM to 1000 mM is more preferable, 30 mM to 500 mM is further preferable, and 50 mM to 500 mM is further preferable.
 希土類元素の回収は、遠心分離、フィルター濾過、又はそれらの組み合わせなど公知の方法で行うことができる。 The recovery of rare earth elements can be performed by a known method such as centrifugation, filter filtration, or a combination thereof.
 本発明において好ましくは、担体上に固定した微生物を使用することができる。
 微生物を固定するための担体としては、特に限定されず、形状、構造、大きさ、材質等を適宜選択することができる。
In the present invention, preferably, a microorganism immobilized on a carrier can be used.
The carrier for immobilizing microorganisms is not particularly limited, and the shape, structure, size, material and the like can be appropriately selected.
  担体の形状としては、例えば、球状、粒状、塊状(ペレット状)、シート状、柱状、網状、カプセル状などが挙げられる。担体の構造としては、1種の部材で形成されていてもよいし、2種以上の部材で形成されていてもよい。担体は、単層構造でも積層構造でもよい。担体の微細構造としては、例えば、微生物と、希土類元素を含む溶液とが接触可能な構造であれば特に制限はないが、例えば、多孔質構造、網状構造などが挙げられる。このような構造の場合、担体に固定化された微生物と、希土類元素を含む溶液との接触面積を大きくすることができるため有利である。また、担体の大きさは、担体を収容する容器の大きさ等に応じて適宜選択することができる。 Examples of the shape of the bag carrier include a spherical shape, a granular shape, a lump shape (pellet shape), a sheet shape, a column shape, a net shape, and a capsule shape. As the structure of the carrier, it may be formed of one type of member or two or more types of members. The carrier may be a single layer structure or a laminated structure. The fine structure of the carrier is not particularly limited as long as it is a structure in which a microorganism and a solution containing a rare earth element can be contacted, and examples thereof include a porous structure and a network structure. Such a structure is advantageous because the contact area between the microorganisms immobilized on the carrier and the solution containing the rare earth element can be increased. In addition, the size of the carrier can be appropriately selected according to the size of the container that accommodates the carrier.
  担体の材質としては、多糖類、タンパク質、合成高分子、無機物などが好ましいが、特に限定されない。多糖類としては、セルロース、デキストラン、アガロース、アルギン酸ナトリウム、寒天、カラギーナンなどが挙げられる。タンパク質としては、ゼラチン、アルブミン、コラーゲンなどが挙げられる。合成高分子としては、アクリルアミド、ポリビニルアルコール、ポリエチレングリコール、ポリアクリル酸ナトリウム、ポリビニルクロリド、ポリスチレン、ポリウレタンなどが挙げられる。無機物としては、シリカゲル、活性炭、砂、ゼオライト、多孔性ガラス、アンスラサイト、ゼオライト、発泡煉石、溶融スラグなどが挙げられる。 The material of the cocoon carrier is preferably a polysaccharide, protein, synthetic polymer, inorganic material, etc., but is not particularly limited. Examples of the polysaccharide include cellulose, dextran, agarose, sodium alginate, agar, and carrageenan. Examples of the protein include gelatin, albumin, collagen and the like. Examples of the synthetic polymer include acrylamide, polyvinyl alcohol, polyethylene glycol, sodium polyacrylate, polyvinyl chloride, polystyrene, and polyurethane. Examples of the inorganic substance include silica gel, activated carbon, sand, zeolite, porous glass, anthracite, zeolite, foamed brick, and molten slag.
 担体に微生物を固定化する方法は、特に限定されず、常法に従って行うことができる。例えば、担体結合法、架橋法、包括法などが好ましい。担体結合法は、水に不溶性の担体の表面に微生物を固定化させる方法である。架橋法は、2個以上の官能基を持つ試薬と架橋させる方法である。包括法は、微生物をゲルの格子内に包み込むか(格子型)又はポリマーの皮膜によって被覆する方法(マイクロカプセル)である。 The method for immobilizing microorganisms on the carrier is not particularly limited, and can be performed according to a conventional method. For example, a carrier binding method, a crosslinking method, a comprehensive method and the like are preferable. The carrier binding method is a method of immobilizing microorganisms on the surface of a water-insoluble carrier. The crosslinking method is a method of crosslinking with a reagent having two or more functional groups. The inclusion method is a method in which microorganisms are encapsulated in a gel lattice (lattice type) or coated with a polymer film (microcapsule).
  微生物を固定した担体は、希土類元素を含む溶液と接触させる際に容器中に収容されていることが好ましい。担体が容器に収容されていることにより、担体と希土類元素を含む溶液との接触を効率よく、かつ制御して行うことができる。
 容器の形状、構造、大きさ、材質は特に限定されず、目的に応じて適宜選択することができる。容器の形状としては、例えば、円筒状などが好適に挙げられる。容器の材質としては、例えば、ガラス、樹脂、ステンレスなどが挙げられる。
It is preferable that the carrier on which the microorganisms are fixed is accommodated in a container when contacting with a solution containing a rare earth element. Since the carrier is accommodated in the container, the contact between the carrier and the solution containing the rare earth element can be efficiently and controlled.
The shape, structure, size, and material of the container are not particularly limited, and can be appropriately selected according to the purpose. Suitable examples of the shape of the container include a cylindrical shape. Examples of the material of the container include glass, resin, and stainless steel.
 本発明においては、本明細書中において上記した方法により希土類元素を微生物から溶離させた後に、キレート剤又は酸で処理された微生物を回収することができる。回収した回収した微生物を用いて、再度、希土類元素を含む溶液中で培養を行うことによって希土類元素を固化及び回収することができる。上記した連続的なREE 回収システムの一例を図4に示す。希土類元素を固化する能力を有する微生物を固定した担体を、希土類元素を含む溶液を含む培養槽の中に導入して、上記微生物に希土類元素を固化させる(左から1番目の図)。次に、固化した希土類元素を含む微生物が固定された担体を、上記培養槽から取り出す(左から2番目の図)。固化した希土類元素を含む微生物が固定された担体を、キレート剤又は酸を含む溶離槽に導入して、希土類元素を溶離させる(左から3番目の図)。希土類元素を溶離した微生物が固定された担体を、上記溶離槽から取り出し、再利用することができる(左から4番目の図)。 In the present invention, after the rare earth element is eluted from the microorganism by the method described above in this specification, the microorganism treated with the chelating agent or the acid can be recovered. The rare earth element can be solidified and recovered by culturing again in the solution containing the rare earth element using the recovered microorganism. An example of the continuous REE soot recovery system described above is shown in FIG. A carrier on which a microorganism having the ability to solidify rare earth elements is introduced into a culture tank containing a solution containing rare earth elements, and the microorganisms solidify the rare earth elements (first figure from the left). Next, the support | carrier with which the microorganisms containing the solidified rare earth element were fixed is taken out from the said culture tank (2nd figure from the left). The carrier on which the solidified microorganism containing the rare earth element is fixed is introduced into an elution tank containing a chelating agent or an acid to elute the rare earth element (third figure from the left). The carrier on which the microorganisms eluting the rare earth elements are fixed can be taken out from the elution tank and reused (fourth figure from the left).
 本発明によれば、(a)希土類元素を固化する能力を有する微生物を固定した担体;(b)希土類元素を含む溶液中で上記担体上の微生物を培養するための培養槽;及び(c)キレート剤又は酸を含む溶離槽;を含む希土類元素を回収するための装置が提供される。上記装置における、希土類元素を固化する能力を有する微生物、担体、キレート剤及び酸の具体例は本明細書中上記した通りである。 According to the present invention, (a) a carrier on which microorganisms having the ability to solidify rare earth elements are fixed; (b) a culture vessel for culturing microorganisms on the carrier in a solution containing rare earth elements; and (c) An apparatus is provided for recovering rare earth elements including an elution tank containing a chelating agent or acid. Specific examples of the microorganism, the carrier, the chelating agent, and the acid having the ability to solidify rare earth elements in the above apparatus are as described above in the present specification.
 以下の実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例により特に限定されるものではない。 The present invention will be described more specifically with reference to the following examples, but the present invention is not particularly limited to the following examples.
実施例1:REE 固化回収物からの Dy 脱着試験
(1) 方法
・ 培地および培養条件
 液体培養は、無機塩最少培地(BSM) (蒸留水、NH4Cl 0.24 g/L、MgSO4・7H2O 0.12 g/L、CaCl2・2H2O 0.2 g/L、KH2PO4  0.05 g/L、K2HPO4  0.05 g/L、NaCl 0.1 g/L、Yeast Extract 0.1 g/L、Glucose 2 g/L、H3BO3  0.6 mg/L、CoCl2・6H2O  0.16 mg/L、CuCl2  0.067 mg/L、MnCl2  0.63 mg/L、ZnCl2  0.22 mg/L)  をオートクレーブ殺菌  (121°C、15 分)  を行い、温度30°C、回転振とう 120rpm の条件で行われた。培養pHは、実験に合わせて HCl または NaOH溶液を用いて調整された。
Example 1: Dy desorption test from REE solidified material
(1) Method ・ Medium and culture conditions Liquid culture is performed using inorganic salt minimum medium (BSM) (distilled water, NH4Cl 0.24 g / L, MgSO4 ・ 7H2O 0.12 g / L, CaCl2 ・ 2H2O 0.2 g / L, KH2PO4 0.05 g / L L, K2HPO4 0.05 g / L, NaCl 0.1 g / L, Yeast Extract 0.1 g / L, Glucose 2 g / L, H3BO3 0.6 mg / L, CoCl2 ・ 6H2O 0.16 mg / L, CuCl2 0.067 mg / L, MnCl2 0.63 mg / L, ZnCl2 0.22 mg / L) was sterilized by autoclave (121 ° C, 15 minutes), temperature 30 ° C, rotary shaking 120 rpm. The culture pH was adjusted with HCl or NaOH solution according to the experiment.
・ Dy 蓄積試験
 20mMフタル酸水素カリウム-HCl緩衝液で pH2.5 に調製したBSMを用いた。100 mL三角フラスコにBSMを50mL分注し、DyCl3溶液を終濃度100 mg/Lで添加した。Dy添加後のBSMに前培養 4 日目のT9株培養液を 0.5 mL 接種し、30°C、回転振とう  (120rpm)の条件下で 7 日間培養した。
-Dy accumulation test BSM adjusted to pH 2.5 with 20 mM potassium hydrogen phthalate-HCl buffer was used. 50 mL of BSM was dispensed into a 100 mL Erlenmeyer flask, and DyCl3 solution was added at a final concentration of 100 mg / L. The BSM after addition of Dy was inoculated with 0.5 mL of the T9 strain culture solution on the 4th day of preculture, and cultured for 7 days under conditions of 30 ° C and rotary shaking (120 rpm).
・Dy 脱着試験
 T9株由来のDy 固化回収物から高純度でDy を回収するために、Dy脱着試験を行った。試験に用いたDy固化回収物は、Dy蓄積試験3日後のDy固化回収物を用いた。回収物は、25°C程度の常温で一昼夜乾燥され、その後乾燥重量が測定された。Dy 回収物中のDy濃度は、蓄積試験のDy減少量から算出した。乾燥したDy固化回収物を、終濃度500 mg/L Dy(約 3 mM)となるように脱着液に添加した。脱着液として、エチレンジアミン四酢酸  (EDTA)溶液および塩酸(HCl)溶液を使用した。脱着液の濃度は、それぞれ300 mMおよび30 mM、3 mM の終濃度を実施した。Dy脱着反応は、30°C、3時間、120rpm振とうで行われた。脱着反応液は適時0.5 mL ごとにサンプリングされ、上清中の元素濃度は、ICP-AES により定量された。
-Dy Desorption Test A Dy desorption test was conducted to recover Dy with high purity from the Dy solidified product derived from the T9 strain. As the Dy solidified recovery used in the test, the Dy solidified recovered 3 days after the Dy accumulation test was used. The collected material was dried overnight at a room temperature of about 25 ° C., and then the dry weight was measured. The Dy concentration in the Dy collection was calculated from the Dy decrease in the accumulation test. The dried Dy solidified recovered product was added to the desorption solution to a final concentration of 500 mg / L Dy (about 3 mM). As the desorption liquid, ethylenediaminetetraacetic acid (EDTA) solution and hydrochloric acid (HCl) solution were used. The concentration of the desorption solution was 300 mM, 30 mM, and 3 mM, respectively. The Dy desorption reaction was performed at 30 ° C. for 3 hours with 120 rpm shaking. The desorption reaction solution was sampled every 0.5 mL in a timely manner, and the element concentration in the supernatant was quantified by ICP-AES.
(2) 結果
 Dy 固化回収物からのDy 脱着試験の結果を図1に示す。EDTAは、試験したすべての濃度において反応3時間で90%以上のDyを溶解した。最も脱着率の高かった EDTA濃度は、30 mMで、反応時間3時間で 100%のDyを脱着した。HClの場合は、300 mMで、反応30分後に 100%のDyを脱着した。30mMおよび3mMのHCl濃度では、Dyをほとんど脱着しなかった。溶液 pH は、EDTAでは 300 mMが7.8、30 mM および3 mMが8.2、HCLでは 300 mM が 0.9、30 mM が 1.7、3 mM が 2.4 であった。このpH の結果から、溶液のpHに関わらずDyを脱着できることがわかった。以上の結果から、Dy固化回収物から30 mM EDTA または 300 mM HCl を用いてすべての Dy を再溶解させることが可能と示された。
(2) Results Fig. 1 shows the results of the Dy desorption test from the Dy solidified recovered material. EDTA dissolved more than 90% Dy at 3 hours of reaction at all concentrations tested. The EDTA concentration with the highest desorption rate was 30 mM, and 100% of Dy was desorbed after 3 hours of reaction. In the case of HCl, 100% Dy was desorbed after 30 minutes of reaction at 300 mM. At 30 mM and 3 mM HCl concentrations, little Dy was desorbed. The solution pH for EDTA was 300 mM for 7.8, 30 mM and 3 mM, 8.2, and for HCL, 300 mM was 0.9, 30 mM was 1.7, and 3 mM was 2.4. From this pH result, it was found that Dy can be desorbed regardless of the pH of the solution. From the above results, it was shown that it was possible to redissolve all Dy from the Dy solidified collection using 30 mM EDTA or 300 mM HCl.
実施例2:Dy 脱着後の T9 株の再利用
(1) 方法
 Dy 脱着後のT9 株を、再度利用するために培養し、Dy蓄積試験を行った。Dy脱着後にT9株生菌を含む固化物を0.2 μmフィルターにより回収された。Dy蓄積試験と同様に、培養は、100 mg/L Dy を含む BSM (pH2.5)  に 1% (v/v) を植菌して7日間行われた。培養液は適時 1.0  mL をサンプリングされ、上清中の元素濃度は、ICP-AES により定量された。
Example 2: Reuse of T9 strain after Dy desorption
(1) Method The T9 strain after Dy desorption was cultured for reuse, and a Dy accumulation test was performed. After Dy desorption, the solidified product containing T9 strain viable bacteria was recovered with a 0.2 μm filter. Similar to the Dy accumulation test, the culture was carried out for 7 days by inoculating 1% (v / v) in BSM (pH 2.5) containing 100 mg / L Dy. 1.0 mL of the culture solution was sampled in a timely manner, and the element concentration in the supernatant was quantified by ICP-AES.
(2) 結果
 T9株をDy 蓄積回収に繰り返して使用可能かどうかを明らかにするために、Dy 脱着後の菌体を用いてDy蓄積試験を行った。その結果を図2に示す。T9株は、脱着液の種類や濃度に関係なく、培養3 日目に溶存Dyを 40-50 mg/L まで減少した。Dy  蓄積試験により増殖した培養液を図3に示す。EDTAおよびHClによりDyを脱着された菌体は、BSMに比べて暗緑色の培養物が増加していることから、菌体が増殖していることがわかる。さらに、HClによりDyを脱着された菌体は、EDTAによる脱着菌体よりも培養液の色が濃いことから、増殖が活発であると考えられた。以上の結果から、EDTAおよびHClによりDy 脱着されたT9株菌体は、BSMで再度増殖し、Dy 蓄積回収に再使用可能 であることが示された。
(2) Results In order to clarify whether the T9 strain can be repeatedly used for Dy accumulation and recovery, a Dy accumulation test was performed using the cells after Dy desorption. The result is shown in FIG. The T9 strain decreased the dissolved Dy to 40-50 mg / L on the third day of culture regardless of the type and concentration of the desorption solution. The culture solution grown by the Dy accumulation test is shown in FIG. The microbial cells desorbed by EDTA and HCl have an increased dark green culture compared to BSM, indicating that the microbial cells are growing. Furthermore, the bacterial cells from which Dy was desorbed by HCl were thought to be actively proliferating because the culture solution had a darker color than the desorbed cells by EDTA. From the above results, it was shown that T9 strain cells Dy-desorbed by EDTA and HCl grew again in BSM and could be reused for Dy accumulation and recovery.
(実施例の考察)
 Dy固化回収物からのDy脱着試験では、30 mM EDTA溶液を用いて3時間、300 mM HCl を用いて30分でDyを100%脱離できた (図1)。また、HClによる脱着試験で得られたDyを含む溶液に、炭酸ナトリウム溶液と加えることで、炭酸塩としてDyの沈殿回収が可能であった。さらに、EDTAおよびHClで脱離処理された後の菌体は、再度、増 殖およびDy蓄積が可能であることが明らかとなった (図3)。このことは、応用開発に向けた大きな利点である。
(Consideration of Examples)
In the Dy desorption test from the Dy solidified product, 100% Dy could be desorbed in 3 hours using 30 mM EDTA solution and 30 minutes using 300 mM HCl (FIG. 1). Further, by adding a sodium carbonate solution to a solution containing Dy obtained by the desorption test with HCl, precipitation recovery of Dy as a carbonate was possible. Furthermore, it was revealed that the cells after detachment treatment with EDTA and HCl can again grow and accumulate Dy (FIG. 3). This is a great advantage for application development.

Claims (11)

  1. 希土類元素を固化する能力を有する微生物を、希土類元素を含む溶液中で培養することによって希土類元素を固化する工程、及び固化した希土類元素を含む微生物をキレート剤又は酸で処理することによって希土類元素を回収する工程を含む、希土類元素を回収する方法。 A step of solidifying the rare earth element by culturing a microorganism having the ability to solidify the rare earth element in a solution containing the rare earth element, and treating the rare earth element by treating the microorganism containing the solidified rare earth element with a chelating agent or an acid. A method for recovering rare earth elements, comprising a step of recovering.
  2. 微生物が、イットリウム(Y)、プラセオジム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)及びジスプロシウム(Dy)から選択される1以上の希土類元素を固化する能力を有する、請求項1に記載の方法。 The method according to claim 1, wherein the microorganism has the ability to solidify one or more rare earth elements selected from yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu) and dysprosium (Dy). .
  3. 微生物が、イットリウム(Y)、プラセオジム(Pr)、ネオジム(Nd)、ユウロピウム(Eu)及びジスプロシウム(Dy)の全てを固化する能力を有する、請求項1又は2に記載の方法。 The method according to claim 1 or 2, wherein the microorganism has the ability to solidify all of yttrium (Y), praseodymium (Pr), neodymium (Nd), europium (Eu) and dysprosium (Dy).
  4. 微生物が、テラトスファエリアセアエ(Teratosphaeriaceae)科に属する、請求項1から3の何れか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the microorganism belongs to the family Teratosphaeriaceae.
  5. 微生物が、コロニーは黒色、棒状の形態(長径10μm、短径2μm)、胞子(球形1μm)、pH2~4で増殖最適という科学的性質を有する、請求項1から4の何れか1項に記載の方法。 5. The microorganism according to any one of claims 1 to 4, wherein the microorganism has a scientific property that the colonies are black, rod-shaped (major axis 10 μm, minor axis 2 μm), spores (spherical 1 μm), pH 2 to 4 and optimal for growth. the method of.
  6. 微生物が、受託番号NITE BP-01593を有する微生物である、請求項1から5の何れか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the microorganism is a microorganism having a deposit number of NITE BP-01593.
  7. キレート剤がEDTAであり、酸が塩酸である、請求項1から6の何れか1項に記載の方法。 The method according to any one of claims 1 to 6, wherein the chelating agent is EDTA and the acid is hydrochloric acid.
  8. キレート剤が3mMから1000mMのEDTAであり、酸が30mMから1000mMの塩酸である、請求項1から7の何れか1項に記載の方法。 The method according to any one of claims 1 to 7, wherein the chelating agent is 3 mM to 1000 mM EDTA, and the acid is 30 mM to 1000 mM hydrochloric acid.
  9. 微生物が担体上に固定されている、請求項1から8の何れか1項に記載の方法。 The method according to any one of claims 1 to 8, wherein the microorganism is immobilized on a carrier.
  10. (i)請求項1から9の何れか1項に記載の方法により希土類元素を回収する工程;
    (ii)上記工程(i)においてキレート剤又は酸で処理された微生物を回収する工程、及び
    (iii)上記工程(ii)において回収した微生物を用いて請求項1から9の何れか1項に記載の方法により希土類元素を回収する工程を含む、希土類元素を回収する方法。
    (I) recovering rare earth elements by the method according to any one of claims 1 to 9;
    (Ii) The step of recovering the microorganism treated with the chelating agent or acid in the step (i), and (iii) The microorganism recovered in the step (ii) is used in any one of claims 1 to 9. A method for recovering rare earth elements, comprising a step of recovering rare earth elements by the method described.
  11. (a)希土類元素を固化する能力を有する微生物を固定した担体;及び
    (b)希土類元素を含む溶液中で上記担体上の微生物を培養するための培養槽;及び
    (c)キレート剤又は酸を収容するための溶離槽;
    を含む、請求項1から10の何れか1項に記載の方法により希土類元素を回収するための装置。
    (A) a carrier on which microorganisms having the ability to solidify rare earth elements are fixed; and (b) a culture vessel for culturing microorganisms on the carrier in a solution containing rare earth elements; and (c) a chelating agent or acid. An elution tank for containment;
    The apparatus for collect | recovering rare earth elements by the method of any one of Claim 1 to 10 containing this.
PCT/JP2016/062711 2015-04-24 2016-04-22 Method for recovering rare-earth elements WO2016171236A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017514195A JP6793402B2 (en) 2015-04-24 2016-04-22 How to recover rare earth elements
BR112017022818-1A BR112017022818B1 (en) 2015-04-24 2016-04-22 METHOD AND APPARATUS TO RECOVER RARE EARTH ELEMENTS
CA2982716A CA2982716C (en) 2015-04-24 2016-04-22 Method for recovering rare earth elements

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015089492 2015-04-24
JP2015-089492 2015-04-24

Publications (1)

Publication Number Publication Date
WO2016171236A1 true WO2016171236A1 (en) 2016-10-27

Family

ID=57144009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/062711 WO2016171236A1 (en) 2015-04-24 2016-04-22 Method for recovering rare-earth elements

Country Status (4)

Country Link
JP (1) JP6793402B2 (en)
BR (1) BR112017022818B1 (en)
CA (1) CA2982716C (en)
WO (1) WO2016171236A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046554A (en) * 2021-03-09 2021-06-29 中南大学 Method for leaching weathering crust elution-deposited rare earth ore by using metabolite of microorganism

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115491490A (en) * 2022-09-23 2022-12-20 中南大学 Method for enhancing permeability of bioleaching agent in leaching process of ionic rare earth ore

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989733A (en) * 1982-11-11 1984-05-24 Agency Of Ind Science & Technol Method for recovering samarium and cobalt from samarium-cobalt alloy powder by ion exchange method
JPH01133920A (en) * 1987-09-11 1989-05-26 Gte Lab Inc Ion exchange for recovery of scandium
JPH01502976A (en) * 1987-04-23 1989-10-12 ジーティーイー・プロダクツ・コーポレイション Ion exchange method for separation of scandium and thorium
WO2014178360A1 (en) * 2013-05-01 2014-11-06 学校法人 芝浦工業大学 Microorganism having ability to elute rare earth element, method for eluting rare earth element, microorganism having ability to solidify rare earth element and method for solidifying rare earth element
JP2015045041A (en) * 2013-08-27 2015-03-12 京セラ株式会社 Method for recovering tungsten compound

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989733A (en) * 1982-11-11 1984-05-24 Agency Of Ind Science & Technol Method for recovering samarium and cobalt from samarium-cobalt alloy powder by ion exchange method
JPH01502976A (en) * 1987-04-23 1989-10-12 ジーティーイー・プロダクツ・コーポレイション Ion exchange method for separation of scandium and thorium
JPH01133920A (en) * 1987-09-11 1989-05-26 Gte Lab Inc Ion exchange for recovery of scandium
WO2014178360A1 (en) * 2013-05-01 2014-11-06 学校法人 芝浦工業大学 Microorganism having ability to elute rare earth element, method for eluting rare earth element, microorganism having ability to solidify rare earth element and method for solidifying rare earth element
JP2015045041A (en) * 2013-08-27 2015-03-12 京セラ株式会社 Method for recovering tungsten compound

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113046554A (en) * 2021-03-09 2021-06-29 中南大学 Method for leaching weathering crust elution-deposited rare earth ore by using metabolite of microorganism
CN113046554B (en) * 2021-03-09 2022-03-11 中南大学 Method for leaching weathering crust elution-deposited rare earth ore by using metabolite of microorganism

Also Published As

Publication number Publication date
BR112017022818A2 (en) 2018-07-17
JPWO2016171236A1 (en) 2018-02-22
BR112017022818B1 (en) 2021-09-21
CA2982716A1 (en) 2016-10-27
CA2982716C (en) 2023-09-26
JP6793402B2 (en) 2020-12-02

Similar Documents

Publication Publication Date Title
Pollmann et al. Bio-recycling of metals: Recycling of technical products using biological applications
Ting et al. Use of polyvinyl alcohol as a cell immobilization matrix for copper biosorption by yeast cells
CA2915318C (en) Process of isolating rare earth elements
JP6278475B2 (en) Microorganism having ability to elute rare earth elements, method for eluting rare earth elements, microorganism having ability to solidify rare earth elements, and method for solidifying rare earth elements
CN1676635A (en) Process for separating and recovering sludge and heavy metals in soil
JP6793402B2 (en) How to recover rare earth elements
CN103620070B (en) Indium recovery method
JP2013001964A (en) Method for recovering rare earth
Gao et al. Efficient precious metal Rh (III) adsorption by waste P. pastoris and P. pastoris surface display from high-density culture
JP6488907B2 (en) Recovery method of rare earth elements using microorganisms
Lhamo et al. Bioleaching of rare earth elements from industrial and electronic wastes: mechanism and process efficiency
CN112974512B (en) Application of bacillus fusiformis with MICP function in tailing greening restoration
Ting et al. Comparative study on polyvinyl alcohol and alginate for cell immobilization in biosorption
Fisher Recycling of rare earths
CN109047269A (en) Solidify the method for the cementing industrial residue of cobalt containing heavy metal using Staphylococcus cohnis solution urea subspecies
CN109395692B (en) Preparation of modified magnetic perlite adsorbent and method for enriching rare earth from heavy yttrium rare earth wastewater
Cho et al. Biosorption of copper by immobilized biomass of Pseudomonas stutzeri
JP2015227482A (en) Method for separating rare earth element using microorganism and novel microorganism
US20050136426A1 (en) Bacterial phytochelatin synthetase
CN114162896B (en) Nano zero-valent iron-loaded ceramsite and preparation method thereof
JP2013226101A (en) Dysprosium-neodymium-accumulating microorganism and method for accumulating dysprosium-neodymium
CN110937696B (en) Composite material and method for removing nitrogen and phosphorus in wastewater
Safarik et al. Magnetically responsive microbial cells for metal ions removal and detection
WO2024050288A2 (en) Microbial platform for rare earth bioaccumulation
CN115896091A (en) Immobilized rhodotorula glutinis composite material and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16783257

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2982716

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2017514195

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017022818

Country of ref document: BR

122 Ep: pct application non-entry in european phase

Ref document number: 16783257

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112017022818

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20171023