WO2016170700A1 - Energy storage system and energy storage method - Google Patents

Energy storage system and energy storage method Download PDF

Info

Publication number
WO2016170700A1
WO2016170700A1 PCT/JP2015/075357 JP2015075357W WO2016170700A1 WO 2016170700 A1 WO2016170700 A1 WO 2016170700A1 JP 2015075357 W JP2015075357 W JP 2015075357W WO 2016170700 A1 WO2016170700 A1 WO 2016170700A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
hydrogen
fuel cell
energy storage
Prior art date
Application number
PCT/JP2015/075357
Other languages
French (fr)
Japanese (ja)
Inventor
門田 行生
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Publication of WO2016170700A1 publication Critical patent/WO2016170700A1/en
Priority to PH12017501922A priority Critical patent/PH12017501922B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J15/00Systems for storing electric energy
    • H02J15/008Systems for storing electric energy using hydrogen as energy vector
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • Embodiments of the present invention relate to an energy storage system and an energy storage method.
  • a power generation system that generates power using natural energy such as solar power generation or wind power generation is attracting attention.
  • This power generation system includes, for example, a power generation unit, an auxiliary power supply unit, a fuel cell unit, and a control unit.
  • Auxiliary power supply units such as secondary batteries and capacitors compensate for and stabilize short-term fluctuations in hours or days of power generated by the power generation unit.
  • the fuel cell unit electrolyzes water with the electric power generated by the power generation unit to generate hydrogen, and stores the generated hydrogen. Then, the stored hydrogen is used as fuel to reconvert it into electric power, thereby compensating and stabilizing the amount of long-term fluctuation of the electric power generated by the power generation unit throughout the season or throughout the year.
  • the control unit controls the power generation unit, the auxiliary power source unit, and the fuel cell unit in an integrated manner, and constantly monitors the power generation amount and the power demand by the power generation system, so that the power generation amount generated by the power generation unit is short-term. Control is performed on one or both of the auxiliary power supply unit and the fuel cell unit so as to compensate for the lack of power generation. Furthermore, this control unit performs control to adjust the amount of hydrogen stored in the fuel cell unit throughout the season or throughout the year.
  • auxiliary power supply unit is used to compensate for and stabilize power fluctuations in units of hours or days, it is necessary to increase the capacity of the auxiliary power supply unit.
  • the power generation unit stops due to a disaster or the like, there is a possibility that hydrogen used in the fuel cell to supply power to the load is consumed in a short time.
  • the present invention has been made in consideration of such points, and is an energy storage system capable of storing hydrogen in an amount corresponding to the amount of power consumed by a load in a predetermined period with higher accuracy.
  • the purpose is to provide.
  • the control device includes an acquisition unit that acquires a first power value indicating a time-series value of first power in a predetermined period, and a second power value that indicates a time-series value of the planned power in the predetermined period The ratio between the added value of the insufficient power value based on the difference between the first power value and the second power value in the predetermined period and the added value of the surplus power value based on the difference
  • a generation unit corresponding to the system efficiency of the hydrogen energy storage device, a control for producing hydrogen according to the surplus power value, and a control for performing power generation using the hydrogen according to the shortage power value,
  • the control part which performs this with respect to the said hydrogen energy storage apparatus is characterized by the above-mentioned.
  • FIG. 1 is a block diagram illustrating the configuration of the energy storage system according to the first embodiment.
  • FIG. 2 is a block diagram illustrating the configuration of the energy storage system according to the second embodiment.
  • FIG. 3 is a block diagram illustrating the configuration of the energy storage system according to the third embodiment.
  • FIG. 4 is a modification of the third embodiment, and is a block diagram when the third embodiment is applied in combination with the second embodiment.
  • FIG. 5 is a block diagram illustrating the configuration of the energy storage system according to the fourth embodiment.
  • the energy storage system calculates the amount of power consumed by a load supplied with power from the power generation unit and the fuel cell during a predetermined period, and supplies an amount of hydrogen corresponding to the calculated amount of power.
  • an amount of hydrogen corresponding to the amount of power consumed by the load during the predetermined period is stored in the hydrogen tank with higher accuracy. More details will be described below.
  • FIG. 1 is a block diagram illustrating a configuration of an energy storage system 100 according to the first embodiment.
  • the energy storage system 100 includes a fuel cell unit 120, a control unit 140, and an auxiliary power unit 160.
  • the fuel cell unit 120 is a system unit that generates power using hydrogen and oxygen, and includes a water electrolysis unit 122, a hydrogen tank 124, an oxygen tank 126, and a fuel cell 128.
  • the water electrolysis unit 122 generates hydrogen and oxygen by electrolysis of water using the power supplied from the power system 2. Specifically, water used for electrolysis is supplied to the water electrolysis unit 122 via the water pipe 4. In addition, power is supplied to the power system 2 from the power generation unit 6 using renewable energy, and the water electrolysis unit 122 uses the power supplied via the power system 2 to perform electrolysis of water. Produce hydrogen and oxygen.
  • Hydrogen generated by the water electrolysis unit 122 is transferred to the hydrogen tank 124 via the hydrogen pipe 8 and stored in the hydrogen tank 124.
  • This hydrogen tank 124 constitutes a hydrogen storage unit in the present embodiment.
  • oxygen generated by the water electrolysis unit 122 is transferred to the oxygen tank 126 through the oxygen pipe 10 and stored in the oxygen tank 126.
  • the fuel cell 128 is connected to the hydrogen pipe 8 for supplying hydrogen and the oxygen pipe 10 for supplying oxygen, and generates electricity using hydrogen and oxygen supplied from these pipes.
  • the generated electricity is transmitted to the power system 2 to which the fuel cell 128 is connected.
  • the hydrogen pipe 8 has a path directly connected to the water electrolysis unit 122 and the fuel cell 128, and a path connected between the water electrolysis unit 122 and the fuel cell 128 via the hydrogen tank 124. And have.
  • the oxygen pipe 10 is connected to a path directly connected to the water electrolysis unit 122 and the fuel cell 128 and between the water electrolysis unit 122 and the fuel cell 128 via an oxygen tank 126. Path. That is, when the water electrolysis unit 122 is not electrolyzing water, the fuel cell 128 generates power using hydrogen stored in the hydrogen tank 124 and oxygen stored in the oxygen tank 126.
  • the fuel cell 128 uses the hydrogen stored in the hydrogen tank 124 and the oxygen tank 126 in addition to the hydrogen and oxygen generated by the water electrolysis unit 122. Power is generated using oxygen stored in The fuel cell 128 can also obtain oxygen from the air. In this case, the oxygen pipe 10 and the oxygen tank 126 may be omitted.
  • the control unit 140 controls the fuel cell unit 120 and the auxiliary battery unit 160, and calculates the amount of power consumed by the load 12 supplied with power from the power generation unit 6 and the fuel cell 128 in a predetermined period.
  • the load 12 is configured from a home, a factory, and the like, and each load 12 is provided with a power consumption measuring unit 14.
  • the control part 140 calculates the electric energy consumed in a predetermined period based on the measurement data which the electric power consumption measurement part 14 measured and shows the electric energy consumption in these loads 12, This calculated electric power
  • the water electrolysis unit 122 is controlled to store an amount of hydrogen corresponding to the amount in the hydrogen tank 124.
  • the auxiliary power supply unit 160 charges and discharges the excess and deficiency of power supplied from the power generation unit 6 and the fuel cell 128 to the load 12.
  • the auxiliary power supply unit 160 is configured such that the charge / discharge control response time is shorter than the control response time of the fuel cell unit 120. That is, the auxiliary power supply unit 160 includes a secondary battery, a capacitor, and the like, and has a capacity sufficient to compensate for excess or deficiency of power due to a delay in control response of the fuel cell unit 120.
  • the power generation unit 6 is configured by a single machine or a plurality of power generation apparatuses among a solar power generation apparatus using sunlight and a wind power generation apparatus using wind power, and is configured by the same type of power generation apparatus.
  • different types of power generation devices may be combined. That is, all of this electric power generation part 6 may be comprised with a solar power generation device, and may be comprised combining a wind power generator and a solar power generation device.
  • the electric power system 2 is comprised by the alternating current system which can raise / lower a voltage easily using a transformer.
  • the load 12 is configured by a single machine or a plurality of devices, all of which may be the same device, or different types of devices may be combined.
  • the generated power of the power generation unit 6 varies depending on the amount of light to the solar panel and the temperature of the solar panel in the case of solar power generation, and the amount of wind to the windmill in the case of wind power generation. Further, the power consumption in the load 12 varies depending on the usage status of the load 12 and the like. For this reason, excess or deficiency of power occurs between the power generation unit 6 and the load 12.
  • the fuel cell unit 120 and the auxiliary power unit 160 compensate for this excess or deficiency of power. That is, the fuel cell unit 120 and the auxiliary power unit 160 operate to balance the power between the power generation unit 6 and the load 12.
  • the auxiliary power supply unit 160 starts supplying power with a response in milliseconds. Subsequently, the fuel cell 128 generates electricity from hydrogen and oxygen and supplies insufficient power. Subsequently, in response to the supply of power, the auxiliary power supply unit 160 stops supplying power. That is, the auxiliary power supply unit 160 supplies power to the load 12 during a period during which there is a response delay in the control response of the generated power in the fuel cell 128.
  • the response delay of the control response of the generated power in the fuel cell unit 120 is, for example, in minutes or more.
  • the auxiliary power supply unit 160 accumulates power with a response in milliseconds. Then, the water electrolysis part 122 produces
  • the response delay of the power consumption control response in the fuel cell unit 120 is, for example, in minutes or more.
  • the auxiliary power supply unit 160 can detect the power surplus or deficiency from the millisecond unit to the minute unit, either of the control response of the power consumption in the water electrolysis unit 122 and the control response of the generated power in the fuel cell 128 cannot follow. Performs charging and discharging operations.
  • the fuel cell unit 120 whose response delay of the control response is in units of seconds may be used for the energy storage system 100.
  • the auxiliary power unit 160 charges / discharges power over / under in units of milliseconds to units of seconds. Perform the action.
  • the capacity of the auxiliary power supply unit 160 increases in accordance with a value obtained by multiplying the output power and the output time. For example, if the multiplied value is halved by shortening the output time, the installed capacity of the secondary battery or capacitor constituting the auxiliary power supply unit 160 is halved, and cost reduction can be expected.
  • the auxiliary power supply unit 160 is configured with a capacity corresponding to a value obtained by multiplying a period in which a response delay of the storage battery unit 120 occurs and an output value of the auxiliary power supply unit 160. Since the period in which this response delay occurs is in minutes, the capacity of the auxiliary power supply unit 160 can be further reduced as compared with the case of compensating for power fluctuations in hours or days as in the past. That is, the installation capacity of the secondary battery and the capacitor constituting the auxiliary power supply unit 160 can be further reduced.
  • control unit 140 Next, the operation of the control unit 140 according to this embodiment will be described with reference to FIG.
  • an example of a control operation in which hydrogen corresponding to the power consumed by the load 12 is stored in the water electrolysis unit 122 in preparation for the case where the power generation of the power generation unit 6 is stopped will be described.
  • the power consumption measuring unit 14 outputs measurement data obtained by measuring the power consumption of the load 12 to the control unit 140.
  • the control unit 140 calculates the amount of power consumed by the load 12 during a predetermined period based on the measurement data. In other words, the control unit 140 calculates the amount of power consumed in the load 12 during the day, for example, as the predetermined period based on the measurement data.
  • the measurement period of the measurement data used for calculation by the control unit 140 is about several times as long as this predetermined period. In this case, based on the average value of the measurement data measured during this measurement period, the control unit 140 calculates the electric energy. Further, the control unit 140 may calculate the amount of electric power based on the maximum value of measurement data measured during the measurement period.
  • control unit 140 controls the water electrolysis unit 122 so as to accumulate hydrogen corresponding to the amount of power consumed by the load 12 for a period of one day or more, for example. Subsequently, the water electrolysis unit 122 stores hydrogen generated by electrolyzing water in the hydrogen tank 124 using surplus power.
  • control unit 140 calculates the amount of power consumed by the load 12 supplied with power from the power generation unit 6 and the fuel cell 128 during a predetermined period, and the amount corresponding to the calculated amount of power is calculated.
  • Control for storing hydrogen in the hydrogen tank 124 is performed on the water electrolysis unit 122.
  • the fuel cell 128 uses the hydrogen stored in the hydrogen tank 124 to generate power for a predetermined period, for example, one day or more. , It can be supplied to the load 12.
  • the amount of power consumed by the load 12 during a predetermined period is calculated, and the amount of hydrogen corresponding to the calculated amount of power is
  • the control unit 140 controls the water electrolysis unit 122 to store in the tank 124. For this reason, the amount of hydrogen corresponding to the power consumed by the load 12 can be stored with higher accuracy. Furthermore, even when the power generation of the power generation unit 6 is stopped, the fuel cell 128 generates power using the hydrogen stored in the hydrogen tank 124, so that the fuel cell 128 is loaded into the load 12 during this predetermined period. It will be possible to supply power.
  • the energy storage system includes measurement data obtained by measuring the generated power of the power generation unit, measurement data obtained by measuring the charge / discharge power of the fuel cell unit, measurement data obtained by measuring the charge / discharge power of the auxiliary power unit, By calculating the amount of power consumed by the load during a predetermined period based on the collected measurement data, the amount of power can be calculated without directly measuring the power consumption of the load. It is a thing. Hereinafter, a different part from 1st Embodiment mentioned above is demonstrated.
  • FIG. 2 is a block diagram illustrating the configuration of the energy storage system 100 according to the second embodiment.
  • the generated power measurement unit 16 is provided in the power generation unit 6 and outputs measurement data obtained by measuring the generated power of the power generation unit 6 to the control unit 140.
  • the first charge / discharge power measuring unit 18 is provided in the fuel cell unit 120, and outputs measurement data obtained by measuring the charge / discharge power of the fuel cell unit 120 to the control unit 140.
  • the second charge / discharge power measuring unit 20 is provided in the auxiliary battery unit 160 and outputs measurement data obtained by measuring the charge / discharge power of the auxiliary power supply unit 160 to the control unit 140.
  • control unit 140 calculates the amount of power consumed by the load 12 per day, for example, and stores the amount of hydrogen corresponding to the calculated amount of power in the hydrogen tank 124. Control is performed on the water electrolysis unit 122. As a result, even when the power generation unit 6 is stopped, the fuel cell 128 generates power using the hydrogen stored in the hydrogen tank 124, so that it is possible to supply more than one day of power to the load 12. .
  • the control unit 140 measures the measurement data obtained by measuring the generated power of the power generation unit 6, and the measurement data obtained by measuring the charge / discharge power of the fuel cell unit 120.
  • the measurement data obtained by measuring the charge / discharge power of the auxiliary power supply unit 160 are collected, and the amount of power consumed by the load 12 during a predetermined period is calculated based on the collected measurement data. For this reason, the amount of power consumed by the load 12 can be calculated without directly measuring the power consumption of the load 12.
  • the energy storage system according to the third embodiment has insufficient power to be supplied to the load by further adding a generator that generates electricity using a fuel different from hydrogen to the energy storage system according to the first embodiment described above. That is what I tried to avoid.
  • a generator that generates electricity using a fuel different from hydrogen to the energy storage system according to the first embodiment described above. That is what I tried to avoid.
  • a different part from 1st Embodiment mentioned above is demonstrated.
  • FIG. 3 is a block diagram illustrating the configuration of the energy storage system 100 according to the third embodiment. As shown in FIG. 3, the energy storage system 100 further includes a generator 180 in the first embodiment described above.
  • the generator 180 is connected to the power system 2 in parallel with the power generation unit 6, generates power using a fuel different from hydrogen, and supplies power to the load 12.
  • this fuel is a fossil fuel such as light oil. That is, the generator 180 is operated when the power generated by the power generation unit 6 is insufficient, and supplies power to the load 12. Thereby, it is possible to avoid a shortage of power supplied to the load 12.
  • the electric power generated by the generator 180 may be used for water electrolysis in the water electrolysis unit 122. That is, this generator 180 can be used as a backup power source or a base power source when the power generation unit 6 is stopped.
  • the generator measurement unit 22 may be provided in the generator 180, and the control unit 140 may be configured to further acquire measurement data obtained by measuring the generated power of the generator 180 from the generator measurement unit 22.
  • the control part 140 measures the measurement data which measured the generated electric power of the electric power generation part 6, the measurement data which measured the charging / discharging electric power of the fuel cell part 120, the measurement data which measured the charging / discharging electric power of the auxiliary power supply part 160, Measurement data obtained by measuring the power generated by the generator 180 is collected, and the amount of power consumed by the load 12 during a predetermined period is calculated based on the collected measurement data.
  • the generator 180 that generates power using a fuel different from hydrogen is operated when the power generated by the power generation unit 6 is insufficient.
  • the generator 180 can be used as a backup power source or a base power source, and a shortage of power supplied to the load 12 can be avoided.
  • the power system is stopped by supplying hydrogen corresponding to the energy consumed by the load during a predetermined period to a household fuel cell that supplies power to the load. Even in this case, an attempt is made to avoid a shortage of power consumed by the load during a predetermined period.
  • a different part from 1st Embodiment mentioned above is demonstrated.
  • FIG. 5 is a block diagram illustrating the configuration of the energy storage system 100 according to the fourth embodiment.
  • the hydrogen pipe 8 is also connected to the household fuel cell 24 in the first embodiment described above.
  • the hydrogen produced in the fuel cell unit 120 can be directly supplied to the home fuel cell 24.
  • the home fuel cell 24 is installed in each household, each factory, or the like as the load 12 and supplied with hydrogen from a hydrogen tank 124 connected to the hydrogen pipe 8.
  • a moving device for the hydrogen stored in the hydrogen tank 124 a moving hydrogen cylinder or a fuel cell vehicle may be used.
  • hydrogen for a predetermined period accumulated in the hydrogen tank 124 can be used as an energy source for the household fuel cell 24.
  • the predetermined period is one day or more, and one day or more of hydrogen is supplied to the household fuel cell 24.
  • the power transmission of the power system 2 is stopped, it is possible to supply the power consumed by the load 12 for one day or more.
  • hydrogen corresponding to the power consumed by the load 12 is supplied to the household fuel cell 24 during a predetermined period. As a result, even when the power system 2 is stopped, the power consumed by the load 12 can be supplied to the load 12 during a predetermined period.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Fuel Cell (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

An energy storage system according to the present embodiment is equipped with a water electrolysis unit, a fuel cell, and a control unit. The water electrolysis unit uses power supplied from a power generation unit using renewable energy to electrolyze water, thereby generating hydrogen, and stores the generated hydrogen in a hydrogen storage unit. The fuel cell uses the hydrogen stored in the hydrogen storage unit to generate electricity. The control unit calculates the amount of power consumed during a prescribed period by a load to which power is supplied from the power generation unit and the fuel cell, and controls the water electrolysis unit so as to store in the hydrogen storage unit an amount of hydrogen in accordance with the calculated amount of power.

Description

エネルギー貯蔵システム、及びエネルギー貯蔵方法Energy storage system and energy storage method
 本発明の実施の形態は、エネルギー貯蔵システム、及びエネルギー貯蔵方法に関する。 Embodiments of the present invention relate to an energy storage system and an energy storage method.
 太陽光発電や風力発電等の自然エネルギーで発電する発電システムが注目されている。この発電システムは例えば、発電部と、補助電源部と、燃料電池部と、制御部とを備えて、構成されている。二次電池やコンデンサ等の補助電源部は、この発電部が発電する電力の時間単位あるいは日単位の短期の変動量を補いかつ安定化させる。一方、燃料電池部は、この発電部が発電した電力により水を電気分解して水素を生成し、この生成した水素を貯蔵しておく。そして、この貯蔵した水素を燃料として使用して電力に再変換することにより、この発電部が発電する電力の季節単位あるいは年間を通しての長期の変動量を補いかつ安定化させる。 A power generation system that generates power using natural energy such as solar power generation or wind power generation is attracting attention. This power generation system includes, for example, a power generation unit, an auxiliary power supply unit, a fuel cell unit, and a control unit. Auxiliary power supply units such as secondary batteries and capacitors compensate for and stabilize short-term fluctuations in hours or days of power generated by the power generation unit. On the other hand, the fuel cell unit electrolyzes water with the electric power generated by the power generation unit to generate hydrogen, and stores the generated hydrogen. Then, the stored hydrogen is used as fuel to reconvert it into electric power, thereby compensating and stabilizing the amount of long-term fluctuation of the electric power generated by the power generation unit throughout the season or throughout the year.
 制御部は、これらの発電部、補助電源部、および燃料電池部を統合的に制御するとともに、この発電システムによる発電量と電力需要とを常時監視し、この発電部が発電する電力量の短期の発電不足を補うように、補助電源部と燃料電池部とのいずれか一方または双方に対して制御を行う。さらにまた、この制御部は、燃料電池部が貯蔵する水素の貯蔵量を、季節単位あるいは年間を通して調節する制御を行う。 The control unit controls the power generation unit, the auxiliary power source unit, and the fuel cell unit in an integrated manner, and constantly monitors the power generation amount and the power demand by the power generation system, so that the power generation amount generated by the power generation unit is short-term. Control is performed on one or both of the auxiliary power supply unit and the fuel cell unit so as to compensate for the lack of power generation. Furthermore, this control unit performs control to adjust the amount of hydrogen stored in the fuel cell unit throughout the season or throughout the year.
特開2006-164637号公報Japanese Patent Laid-Open No. 2006-164637
 しかしながら、時間単位あるいは日単位の電力変動をこの補助電源部を用いて補い安定化させるので、この補助電源部の容量を大きくする必要がある。また、災害等の理由で発電部が停止した場合に、この負荷に電力を供給するために燃料電池で用いられる水素を、短時間で消費してしまう恐れがある。 However, since the auxiliary power supply unit is used to compensate for and stabilize power fluctuations in units of hours or days, it is necessary to increase the capacity of the auxiliary power supply unit. In addition, when the power generation unit stops due to a disaster or the like, there is a possibility that hydrogen used in the fuel cell to supply power to the load is consumed in a short time.
 そこで、本発明は、このような点を考慮してなされたものであり、予め定めた期間に負荷が消費する電力量に応じた量の水素をより高い精度で蓄えることが可能なエネルギー貯蔵システムを提供することを目的とする。 Therefore, the present invention has been made in consideration of such points, and is an energy storage system capable of storing hydrogen in an amount corresponding to the amount of power consumed by a load in a predetermined period with higher accuracy. The purpose is to provide.
 本実施形態に係る制御装置は、所定期間における第1電力の時系列な値を示す第1電力値を取得する取得部と、前記所定期間における計画電力の時系列な値を示す第2電力値を生成する生成部であって、前記所定期間における前記第1電力値と前記第2電力値との差に基づく不足電力値の加算値と、前記差に基づく余剰電力値の加算値との比率が、水素エネルギー貯蔵装置のシステム効率に対応している生成部と、前記余剰電力値に応じて水素を製造させる制御と、前記不足電力値に応じて前記水素を用いた発電を行わせる制御とを、前記水素エネルギー貯蔵装置に対して行う制御部と、を備えることを特徴とする。 The control device according to the present embodiment includes an acquisition unit that acquires a first power value indicating a time-series value of first power in a predetermined period, and a second power value that indicates a time-series value of the planned power in the predetermined period The ratio between the added value of the insufficient power value based on the difference between the first power value and the second power value in the predetermined period and the added value of the surplus power value based on the difference A generation unit corresponding to the system efficiency of the hydrogen energy storage device, a control for producing hydrogen according to the surplus power value, and a control for performing power generation using the hydrogen according to the shortage power value, The control part which performs this with respect to the said hydrogen energy storage apparatus is characterized by the above-mentioned.
図1は、第1実施形態に係るエネルギー貯蔵システムの構成を説明するブロック図である。FIG. 1 is a block diagram illustrating the configuration of the energy storage system according to the first embodiment. 図2は、第2実施形態に係るエネルギー貯蔵システムの構成を説明するブロック図である。FIG. 2 is a block diagram illustrating the configuration of the energy storage system according to the second embodiment. 図3は、第3実施形態に係るエネルギー貯蔵システムの構成を説明するブロック図である。FIG. 3 is a block diagram illustrating the configuration of the energy storage system according to the third embodiment. 図4は、第3実施形態の変形例であり、第2実施形態に第3実施形態を組み合わせて適用した場合のブロック図である。FIG. 4 is a modification of the third embodiment, and is a block diagram when the third embodiment is applied in combination with the second embodiment. 図5は、第4実施形態に係るエネルギー貯蔵システムの構成を説明するブロック図である。FIG. 5 is a block diagram illustrating the configuration of the energy storage system according to the fourth embodiment.
 以下、本発明の実施形態を、図面を参照して説明する。本実施形態は、本発明を限定するものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. This embodiment does not limit the present invention.
 (第1実施形態)
 第1実施形態に係るエネルギー貯蔵システムは、発電部及び燃料電池から電力を供給される負荷が予め定められた期間に消費する電力量を算出し、この算出した電力量に応じた量の水素を水素タンクに蓄えさせることにより、この予め定めた期間にこの負荷が消費する電力量に応じた量の水素を、より高い精度で水素タンクに蓄えさせようとしたものである。より詳しくを、以下に説明する。
(First embodiment)
The energy storage system according to the first embodiment calculates the amount of power consumed by a load supplied with power from the power generation unit and the fuel cell during a predetermined period, and supplies an amount of hydrogen corresponding to the calculated amount of power. By storing in the hydrogen tank, an amount of hydrogen corresponding to the amount of power consumed by the load during the predetermined period is stored in the hydrogen tank with higher accuracy. More details will be described below.
 図1は、第1実施形態に係るエネルギー貯蔵システム100の構成を説明するブロック図である。この図1に示すように、本実施形態に係るエネルギー貯蔵システム100は、燃料電池部120と、制御部140と、補助電源部160とを備えて構成されている。 FIG. 1 is a block diagram illustrating a configuration of an energy storage system 100 according to the first embodiment. As shown in FIG. 1, the energy storage system 100 according to this embodiment includes a fuel cell unit 120, a control unit 140, and an auxiliary power unit 160.
 燃料電池部120は、水素と酸素を用いて発電を行うシステム部であり、水電解部122と、水素タンク124と、酸素タンク126と、燃料電池128とを備えて構成されている。 The fuel cell unit 120 is a system unit that generates power using hydrogen and oxygen, and includes a water electrolysis unit 122, a hydrogen tank 124, an oxygen tank 126, and a fuel cell 128.
 水電解部122は、電力系統2から供給された電力を用いて、水の電気分解により水素と酸素を生成する。具体的には、電気分解に用いられる水は、水配管4を介して水電解部122に供給されている。また、再生可能エネルギーを用いた発電部6からこの電力系統2に電力が供給されており、この電力系統2を介して供給された電力を用いて、水電解部122は、水の電気分解により水素と酸素を生成する。 The water electrolysis unit 122 generates hydrogen and oxygen by electrolysis of water using the power supplied from the power system 2. Specifically, water used for electrolysis is supplied to the water electrolysis unit 122 via the water pipe 4. In addition, power is supplied to the power system 2 from the power generation unit 6 using renewable energy, and the water electrolysis unit 122 uses the power supplied via the power system 2 to perform electrolysis of water. Produce hydrogen and oxygen.
 水素タンク124には、水電解部122が生成した水素が、水素配管8を介して移送され、この水素タンク124で蓄えられる。この水素タンク124が、本実施形態における水素貯蔵部を構成している。また、酸素タンク126には、この水電解部122が生成した酸素が、酸素配管10を介して移送され、この酸素タンク126で蓄えられる。 Hydrogen generated by the water electrolysis unit 122 is transferred to the hydrogen tank 124 via the hydrogen pipe 8 and stored in the hydrogen tank 124. This hydrogen tank 124 constitutes a hydrogen storage unit in the present embodiment. Further, oxygen generated by the water electrolysis unit 122 is transferred to the oxygen tank 126 through the oxygen pipe 10 and stored in the oxygen tank 126.
 燃料電池128は、水素を供給する水素配管8及び酸素を供給する酸素配管10に接続され、これら配管から供給される水素と酸素とを用いて電気を発電する。この発電された電気は、燃料電池128が接続された電力系統2へ送電される。 The fuel cell 128 is connected to the hydrogen pipe 8 for supplying hydrogen and the oxygen pipe 10 for supplying oxygen, and generates electricity using hydrogen and oxygen supplied from these pipes. The generated electricity is transmitted to the power system 2 to which the fuel cell 128 is connected.
 また、水素配管8は、水電解部122と燃料電池128とに直接的に接続される経路と、この水電解部122とこの燃料電池128との間に水素タンク124を介して接続される経路とを有する。同様に、酸素配管10は、水電解部122と燃料電池128とに直接的に接続される経路と、この水電解部122とこの燃料電池128との間に酸素タンク126を介して接続される経路とを有する。すなわち、水電解部122が水の電気分解を行っていない場合、燃料電池128は、水素タンク124に蓄えられた水素と、酸素タンク126に蓄えられた酸素とを用いて発電する。一方、水電解部122が水の電気分解を行っている場合、燃料電池128は、水電解部122で生成された水素と酸素に加えて、水素タンク124に蓄えられた水素と、酸素タンク126に蓄えられた酸素を用いて発電する。なお、この燃料電池128は、空気から酸素を得ることも可能であり、この場合、酸素配管10および酸素タンク126を省略してもよい。 Further, the hydrogen pipe 8 has a path directly connected to the water electrolysis unit 122 and the fuel cell 128, and a path connected between the water electrolysis unit 122 and the fuel cell 128 via the hydrogen tank 124. And have. Similarly, the oxygen pipe 10 is connected to a path directly connected to the water electrolysis unit 122 and the fuel cell 128 and between the water electrolysis unit 122 and the fuel cell 128 via an oxygen tank 126. Path. That is, when the water electrolysis unit 122 is not electrolyzing water, the fuel cell 128 generates power using hydrogen stored in the hydrogen tank 124 and oxygen stored in the oxygen tank 126. On the other hand, when the water electrolysis unit 122 performs electrolysis of water, the fuel cell 128 uses the hydrogen stored in the hydrogen tank 124 and the oxygen tank 126 in addition to the hydrogen and oxygen generated by the water electrolysis unit 122. Power is generated using oxygen stored in The fuel cell 128 can also obtain oxygen from the air. In this case, the oxygen pipe 10 and the oxygen tank 126 may be omitted.
 制御部140は、燃料電池部120と補助電池部160とに対する制御を行うとともに、発電部6及び燃料電池128から電力を供給される負荷12が予め定められた期間に消費する電力量を算出する。すなわち、負荷12は家庭や工場などから構成されており、これらの負荷12にはそれぞれ消費電力計測部14が設けられている。そして、制御部140は、消費電力計測部14が計測した、これらの負荷12における消費電力量を示す計測データに基づいて、予め定められた期間に消費する電力量を算出し、この算出した電力量に応じた量の水素を、水素タンク124に蓄えさせる制御を水電解部122に対して行う。 The control unit 140 controls the fuel cell unit 120 and the auxiliary battery unit 160, and calculates the amount of power consumed by the load 12 supplied with power from the power generation unit 6 and the fuel cell 128 in a predetermined period. . That is, the load 12 is configured from a home, a factory, and the like, and each load 12 is provided with a power consumption measuring unit 14. And the control part 140 calculates the electric energy consumed in a predetermined period based on the measurement data which the electric power consumption measurement part 14 measured and shows the electric energy consumption in these loads 12, This calculated electric power The water electrolysis unit 122 is controlled to store an amount of hydrogen corresponding to the amount in the hydrogen tank 124.
 補助電源部160は、発電部6及び燃料電池128から負荷12に供給される電力の過不足分を充放電する。この充放電の制御応答の時間が、燃料電池部120の制御応答の時間と比較して短くなるように、この補助電源部160は構成されている。すなわち、この補助電源部160は、二次電池やコンデンサなどで構成されており、燃料電池部120の制御応答の遅れによる電力の過不足分を補うに足りる容量を有する。 The auxiliary power supply unit 160 charges and discharges the excess and deficiency of power supplied from the power generation unit 6 and the fuel cell 128 to the load 12. The auxiliary power supply unit 160 is configured such that the charge / discharge control response time is shorter than the control response time of the fuel cell unit 120. That is, the auxiliary power supply unit 160 includes a secondary battery, a capacitor, and the like, and has a capacity sufficient to compensate for excess or deficiency of power due to a delay in control response of the fuel cell unit 120.
 ここで、発電部6は、太陽光を用いた太陽光発電装置、及び風力を用いた風力発電装置の中の、単機または複数の発電装置で構成されており、同種類の発電装置で構成されてもよく、異なる種類の発電装置が組合されて構成されてもよい。すなわち、この発電部6の全てを太陽光発電装置で構成してもよく、風力発電装置と太陽光発電装置などを組み合わせて構成してもよい。 Here, the power generation unit 6 is configured by a single machine or a plurality of power generation apparatuses among a solar power generation apparatus using sunlight and a wind power generation apparatus using wind power, and is configured by the same type of power generation apparatus. Alternatively, different types of power generation devices may be combined. That is, all of this electric power generation part 6 may be comprised with a solar power generation device, and may be comprised combining a wind power generator and a solar power generation device.
 一般に、送電距離が長い場合、送電電圧を上げて送電電流を小さくすることで、送電ロスを低減できる。このため、電力系統2は、変圧器を用いて簡単に電圧の昇降圧が可能な、交流系統で構成されている。なお、電力系統2を直流系統で構成してもよい。また、負荷12は、単機または複数の装置で構成され、全てが同じ装置でもよいし、異なる種類の装置が組み合わされていてもよい。 Generally, when the transmission distance is long, the transmission loss can be reduced by increasing the transmission voltage and reducing the transmission current. For this reason, the electric power system 2 is comprised by the alternating current system which can raise / lower a voltage easily using a transformer. In addition, you may comprise the electric power grid | system 2 with a direct current | flow system. Further, the load 12 is configured by a single machine or a plurality of devices, all of which may be the same device, or different types of devices may be combined.
 以上が本実施形態に係るエネルギー貯蔵システム100の全体構成の説明であるが、次に、図1を参照しつつ、燃料電池部120及び補助電源部160の動作について説明する。 The above is the description of the overall configuration of the energy storage system 100 according to the present embodiment. Next, operations of the fuel cell unit 120 and the auxiliary power supply unit 160 will be described with reference to FIG.
 発電部6の発電電力は、太陽光発電であれば太陽光パネルへの光量や太陽光パネルの温度で、風力発電であれば風車への風量で変化する。また、負荷12における消費電力はこの負荷12の利用状況等で変化する。このため、この発電部6とこの負荷12との間で電力の過不足が生じる。この電力の過不足を、燃料電池部120及び補助電源部160が補う動作をする。すなわち、この燃料電池部120及びこの補助電源部160が、発電部6と負荷12との間における電力バランスを取る動作をするのである。 The generated power of the power generation unit 6 varies depending on the amount of light to the solar panel and the temperature of the solar panel in the case of solar power generation, and the amount of wind to the windmill in the case of wind power generation. Further, the power consumption in the load 12 varies depending on the usage status of the load 12 and the like. For this reason, excess or deficiency of power occurs between the power generation unit 6 and the load 12. The fuel cell unit 120 and the auxiliary power unit 160 compensate for this excess or deficiency of power. That is, the fuel cell unit 120 and the auxiliary power unit 160 operate to balance the power between the power generation unit 6 and the load 12.
 まず、発電部6の発電電力が不足している場合には、ミリ秒単位の応答で、補助電源部160が電力の供給を開始する。続いて、燃料電池128が水素と酸素とから電気を生成し、不足する電力を供給する。続いて、この電力の供給に応じて、この補助電源部160は、電力の供給を停止する。すなわち、この燃料電池128における発電電力の制御応答の応答遅れが生じている間の期間、この補助電源部160が電力を負荷12に供給する。燃料電池部120における発電電力の制御応答の応答遅れは、例えば分単位以上である。 First, when the power generated by the power generation unit 6 is insufficient, the auxiliary power supply unit 160 starts supplying power with a response in milliseconds. Subsequently, the fuel cell 128 generates electricity from hydrogen and oxygen and supplies insufficient power. Subsequently, in response to the supply of power, the auxiliary power supply unit 160 stops supplying power. That is, the auxiliary power supply unit 160 supplies power to the load 12 during a period during which there is a response delay in the control response of the generated power in the fuel cell 128. The response delay of the control response of the generated power in the fuel cell unit 120 is, for example, in minutes or more.
 次に、発電部6の発電電力が負荷12の消費電力に対して余っている場合には、ミリ秒単位の応答で、補助電源部160が電力を蓄積する。続いて、水電解部122が電気分解で水から水素と酸素を生成し、余った電力を消費する。続いて、この電気分解の開始に応じて、この補助電源部160は、電力の蓄積を停止する。すなわち、この水電解部122における消費電力の制御応答の応答遅れが生じている間の期間、この補助電源部160が余った電力を消費する。燃料電池部120における消費電力の制御応答の応答遅れは、例えば分単位以上である。 Next, when the generated power of the power generation unit 6 is surplus with respect to the power consumption of the load 12, the auxiliary power supply unit 160 accumulates power with a response in milliseconds. Then, the water electrolysis part 122 produces | generates hydrogen and oxygen from water by electrolysis, and consumes surplus electric power. Subsequently, in response to the start of electrolysis, the auxiliary power supply unit 160 stops the accumulation of electric power. That is, the auxiliary power unit 160 consumes excess power during a period during which a response delay of the control response of power consumption in the water electrolysis unit 122 occurs. The response delay of the power consumption control response in the fuel cell unit 120 is, for example, in minutes or more.
 このように、補助電源部160は、水電解部122における消費電力の制御応答、および燃料電池128における発電電力の制御応答、のいずれかが追従できない、ミリ秒単位から分単位の電力過不足を充放電する動作を行う。また、制御応答の応答遅れが秒単位の燃料電池部120をエネルギー貯蔵システム100に用いてもよく、この場合、この補助電源部160は、ミリ秒単位から秒単位の電力過不足を充放電する動作を行う。 As described above, the auxiliary power supply unit 160 can detect the power surplus or deficiency from the millisecond unit to the minute unit, either of the control response of the power consumption in the water electrolysis unit 122 and the control response of the generated power in the fuel cell 128 cannot follow. Performs charging and discharging operations. In addition, the fuel cell unit 120 whose response delay of the control response is in units of seconds may be used for the energy storage system 100. In this case, the auxiliary power unit 160 charges / discharges power over / under in units of milliseconds to units of seconds. Perform the action.
 次に、補助電源部160の容量と、補助電源部160における出力時間との関係について説明する。一般に、補助電源部160の容量は、出力電力と出力時間とを乗算した値に応じて大きくなる。例えば、この乗算した値を、この出力時間を短くすることで半分にすれば、この補助電源部160を構成する二次電池またはコンデンサの設備容量は半分になり、コストダウンが期待できる。 Next, the relationship between the capacity of the auxiliary power supply unit 160 and the output time in the auxiliary power supply unit 160 will be described. In general, the capacity of the auxiliary power supply unit 160 increases in accordance with a value obtained by multiplying the output power and the output time. For example, if the multiplied value is halved by shortening the output time, the installed capacity of the secondary battery or capacitor constituting the auxiliary power supply unit 160 is halved, and cost reduction can be expected.
 この補助電源部160は、蓄電池部120の応答遅れが生じている期間と補助電源部160の出力値とを乗算した値に応じた容量で構成されている。この応答遅れが生じている期間は分単位であるので、従来のように時間単位や日単位の電力変動を補う場合と比較して、補助電源部160の容量をより低減することができる。すなわち、補助電源部160を構成する二次電池やコンデンサの設備容量をより低減することができる。 The auxiliary power supply unit 160 is configured with a capacity corresponding to a value obtained by multiplying a period in which a response delay of the storage battery unit 120 occurs and an output value of the auxiliary power supply unit 160. Since the period in which this response delay occurs is in minutes, the capacity of the auxiliary power supply unit 160 can be further reduced as compared with the case of compensating for power fluctuations in hours or days as in the past. That is, the installation capacity of the secondary battery and the capacitor constituting the auxiliary power supply unit 160 can be further reduced.
 次に、図1を参照しつつ、本実施形態に係るこの制御部140の動作について説明する。ここでは、発電部6の発電が停止した場合に備えて、負荷12で消費する電力に対応する水素を水電解部122に蓄えさせる制御動作の例を説明する。 Next, the operation of the control unit 140 according to this embodiment will be described with reference to FIG. Here, an example of a control operation in which hydrogen corresponding to the power consumed by the load 12 is stored in the water electrolysis unit 122 in preparation for the case where the power generation of the power generation unit 6 is stopped will be described.
 まず、消費電力計測部14は、負荷12の消費電力を計測した計測データを制御部140に出力する。次に、この制御部140は、この計測データに基づいて、予め定められた期間にこの負荷12が消費する電力量を算出する。すなわち、この制御部140は、計測データに基づいて、この予め定められた期間として例えば一日の間に、この負荷12において消費する電力量を算出する。 First, the power consumption measuring unit 14 outputs measurement data obtained by measuring the power consumption of the load 12 to the control unit 140. Next, the control unit 140 calculates the amount of power consumed by the load 12 during a predetermined period based on the measurement data. In other words, the control unit 140 calculates the amount of power consumed in the load 12 during the day, for example, as the predetermined period based on the measurement data.
 また、制御部140が算出するのに用いる計測データの計測期間は、この予め定められた期間の数倍程度とする。この場合、この計測期間に計測された計測データの平均値に基づいて、この制御部140は電力量を算出する。また、この計測期間に計測された計測データの最大値などに基づいて、この電力量を制御部140が算出してもよい。 Further, the measurement period of the measurement data used for calculation by the control unit 140 is about several times as long as this predetermined period. In this case, based on the average value of the measurement data measured during this measurement period, the control unit 140 calculates the electric energy. Further, the control unit 140 may calculate the amount of electric power based on the maximum value of measurement data measured during the measurement period.
 次に、制御部140は、例えば一日分以上の期間に、負荷12が消費する電力量に対応する水素を、蓄積するように水電解部122を制御する。続いて、この水電解部122は、余剰の電力を用いて、水を電気分解することにより生成した水素を水素タンク124に蓄える。 Next, the control unit 140 controls the water electrolysis unit 122 so as to accumulate hydrogen corresponding to the amount of power consumed by the load 12 for a period of one day or more, for example. Subsequently, the water electrolysis unit 122 stores hydrogen generated by electrolyzing water in the hydrogen tank 124 using surplus power.
 このように、制御部140は、発電部6及び燃料電池128から電力を供給されるこの負荷12が予め定められた期間に消費する電力量を算出し、この算出した電力量に応じた量の水素をこの水素タンク124に蓄えさせる制御をこの水電解部122に対して行うものである。 In this way, the control unit 140 calculates the amount of power consumed by the load 12 supplied with power from the power generation unit 6 and the fuel cell 128 during a predetermined period, and the amount corresponding to the calculated amount of power is calculated. Control for storing hydrogen in the hydrogen tank 124 is performed on the water electrolysis unit 122.
 これにより、再生可能エネルギーを用いた発電部6が停止した場合でも、水素タンク124に蓄えられた水素をこの燃料電池128が用いて、予め定められた期間である例えば一日分以上の電力を、負荷12に供給することが可能となる。 As a result, even when the power generation unit 6 using renewable energy is stopped, the fuel cell 128 uses the hydrogen stored in the hydrogen tank 124 to generate power for a predetermined period, for example, one day or more. , It can be supplied to the load 12.
 以上のように、本実施形態に係るエネルギー貯蔵システム100によれば、負荷12が予め定められた期間に消費する電力量を算出するとともに、この算出した電力量に応じた量の水素を、水素タンク124に蓄えさせる制御を水電解部122に対して制御部140が行うこととした。このため、この負荷12が消費する電力に応じた量の水素をより高い精度で蓄えることができる。さらにまた、発電部6の発電が停止した場合でも、この水素タンク124に蓄えた水素を用いて燃料電池128が発電することにより、この予め定められた期間の間、この燃料電池128が負荷12に電力を供給することができるようになる。 As described above, according to the energy storage system 100 according to the present embodiment, the amount of power consumed by the load 12 during a predetermined period is calculated, and the amount of hydrogen corresponding to the calculated amount of power is The control unit 140 controls the water electrolysis unit 122 to store in the tank 124. For this reason, the amount of hydrogen corresponding to the power consumed by the load 12 can be stored with higher accuracy. Furthermore, even when the power generation of the power generation unit 6 is stopped, the fuel cell 128 generates power using the hydrogen stored in the hydrogen tank 124, so that the fuel cell 128 is loaded into the load 12 during this predetermined period. It will be possible to supply power.
 (第2実施形態)
 第2実施形態に係るエネルギー貯蔵システムは、発電部の発電電力を計測した計測データと、燃料電池部の充放電電力を計測した計測データと、補助電源部の充放電電力を計測した計測データとを収集し、これら収集した計測データに基づいて、負荷が予め定められた期間に消費する電力量を算出することにより、負荷の消費電力を直接計測せずとも、その電力量を算出できるようにしたものである。以下、上述した第1実施形態と異なる部分を説明する。
(Second Embodiment)
The energy storage system according to the second embodiment includes measurement data obtained by measuring the generated power of the power generation unit, measurement data obtained by measuring the charge / discharge power of the fuel cell unit, measurement data obtained by measuring the charge / discharge power of the auxiliary power unit, By calculating the amount of power consumed by the load during a predetermined period based on the collected measurement data, the amount of power can be calculated without directly measuring the power consumption of the load. It is a thing. Hereinafter, a different part from 1st Embodiment mentioned above is demonstrated.
 図2は、第2実施形態に係るエネルギー貯蔵システム100の構成を説明するブロック図である。この図2に示すように、発電電力計測部16は発電部6に設けられており、この発電部6の発電電力を計測した計測データを制御部140へと出力する。第1充放電電力計測部18は燃料電池部120に設けられており、この燃料電池部120の充放電電力を計測した計測データを制御部140へと出力する。同様に第2充放電電力計測部20は補助電池部160に設けられており、この補助電源部160の充放電電力を計測した計測データを制御部140へと出力する。 FIG. 2 is a block diagram illustrating the configuration of the energy storage system 100 according to the second embodiment. As shown in FIG. 2, the generated power measurement unit 16 is provided in the power generation unit 6 and outputs measurement data obtained by measuring the generated power of the power generation unit 6 to the control unit 140. The first charge / discharge power measuring unit 18 is provided in the fuel cell unit 120, and outputs measurement data obtained by measuring the charge / discharge power of the fuel cell unit 120 to the control unit 140. Similarly, the second charge / discharge power measuring unit 20 is provided in the auxiliary battery unit 160 and outputs measurement data obtained by measuring the charge / discharge power of the auxiliary power supply unit 160 to the control unit 140.
 そして、制御部140は、これら収集した計測データに基づいて、例えば一日にこの負荷12で消費する電力量を算出し、この算出した電力量に応じた量の水素を水素タンク124に蓄えさせる制御を水電解部122に対して行う。これにより、発電部6が停止した場合でも、燃料電池128がこの水素タンク124に蓄えられた水素を用いて発電することで、一日分以上の電力を負荷12に供給することが可能となる。 Then, based on the collected measurement data, the control unit 140 calculates the amount of power consumed by the load 12 per day, for example, and stores the amount of hydrogen corresponding to the calculated amount of power in the hydrogen tank 124. Control is performed on the water electrolysis unit 122. As a result, even when the power generation unit 6 is stopped, the fuel cell 128 generates power using the hydrogen stored in the hydrogen tank 124, so that it is possible to supply more than one day of power to the load 12. .
 以上のように、本実施形態に係るエネルギー貯蔵システム100によれば、制御部140が、発電部6の発電電力を計測した計測データと、燃料電池部120の充放電電力を計測した計測データと、補助電源部160の充放電電力を計測した計測データとを収集し、これら収集した計測データに基づいて、負荷12が予め定められた期間に消費する電力量を算出することとした。このため、負荷12の消費電力を直接計測せずとも、この負荷12の消費する電力量を算出することができる。 As described above, according to the energy storage system 100 according to the present embodiment, the control unit 140 measures the measurement data obtained by measuring the generated power of the power generation unit 6, and the measurement data obtained by measuring the charge / discharge power of the fuel cell unit 120. The measurement data obtained by measuring the charge / discharge power of the auxiliary power supply unit 160 are collected, and the amount of power consumed by the load 12 during a predetermined period is calculated based on the collected measurement data. For this reason, the amount of power consumed by the load 12 can be calculated without directly measuring the power consumption of the load 12.
 (第3実施形態)
 第3実施形態に係るエネルギー貯蔵システムは、上述した第1実施形態に係るエネルギー貯蔵システムに対して、水素と異なる燃料を用いて発電する発電機を更に加えることにより、負荷に供給する電力が不足することを回避しようとしたものである。以下、上述した第1実施形態と異なる部分を説明する。
(Third embodiment)
The energy storage system according to the third embodiment has insufficient power to be supplied to the load by further adding a generator that generates electricity using a fuel different from hydrogen to the energy storage system according to the first embodiment described above. That is what I tried to avoid. Hereinafter, a different part from 1st Embodiment mentioned above is demonstrated.
 図3は、第3実施形態に係るエネルギー貯蔵システム100の構成を説明するブロック図である。この図3に示すように、エネルギー貯蔵システム100は、上述した第1実施形態において、発電機180を更に備える。 FIG. 3 is a block diagram illustrating the configuration of the energy storage system 100 according to the third embodiment. As shown in FIG. 3, the energy storage system 100 further includes a generator 180 in the first embodiment described above.
 発電機180は、発電部6と並列に電力系統2に接続されており、水素と異なる燃料を用いて発電し、負荷12へ電力を供給する。例えば、この燃料は、軽油等の化石燃料である。すなわち、この発電機180は、この発電部6の発電電力が不足する場合に運転し、この負荷12へ電力を供給する。これにより、負荷12に供給する電力が不足することを回避することができる。 The generator 180 is connected to the power system 2 in parallel with the power generation unit 6, generates power using a fuel different from hydrogen, and supplies power to the load 12. For example, this fuel is a fossil fuel such as light oil. That is, the generator 180 is operated when the power generated by the power generation unit 6 is insufficient, and supplies power to the load 12. Thereby, it is possible to avoid a shortage of power supplied to the load 12.
 また、発電機180が発電する電力は、水電解部122における水の電気分解などにも使用してもよい。すなわち、この発電機180を、発電部6が停止した場合のバックアップ電源や、ベース電源として用いることができる。 Further, the electric power generated by the generator 180 may be used for water electrolysis in the water electrolysis unit 122. That is, this generator 180 can be used as a backup power source or a base power source when the power generation unit 6 is stopped.
 さらにまた、図4に示すように、上述した第2実施形態に本実施形態を組み合わせて適用することも可能である。すなわち、発電機180に発電機計測部22を設け、制御部140が、発電機180の発電電力を計測した計測データを、発電機計測部22から更に取得するように構成してもよい。そして、制御部140は、発電部6の発電電力を計測した計測データと、燃料電池部120の充放電電力を計測した計測データと、補助電源部160の充放電電力を計測した計測データと、発電機180の発電電力を計測した計測データとを収集し、これら収集した計測データに基づいて、負荷12が予め定められた期間に消費する電力量を算出する。 Furthermore, as shown in FIG. 4, it is also possible to apply the present embodiment in combination with the second embodiment described above. That is, the generator measurement unit 22 may be provided in the generator 180, and the control unit 140 may be configured to further acquire measurement data obtained by measuring the generated power of the generator 180 from the generator measurement unit 22. And the control part 140 measures the measurement data which measured the generated electric power of the electric power generation part 6, the measurement data which measured the charging / discharging electric power of the fuel cell part 120, the measurement data which measured the charging / discharging electric power of the auxiliary power supply part 160, Measurement data obtained by measuring the power generated by the generator 180 is collected, and the amount of power consumed by the load 12 during a predetermined period is calculated based on the collected measurement data.
 以上のように、本実施形態に係るエネルギー貯蔵システム100によれば、水素と異なる燃料を用いて発電する発電機180を、発電部6の発電電力が不足する場合に運転することとした。これにより、発電機180をバックアップ電源やベース電源として利用することができ、負荷12に供給する電力が不足することを回避することができる。 As described above, according to the energy storage system 100 according to the present embodiment, the generator 180 that generates power using a fuel different from hydrogen is operated when the power generated by the power generation unit 6 is insufficient. Thereby, the generator 180 can be used as a backup power source or a base power source, and a shortage of power supplied to the load 12 can be avoided.
 (第4実施形態)
 第4実施形態に係るエネルギー貯蔵システムは、予め定められた期間に負荷が消費するエネルギーに対応する水素を、この負荷に電力を供給する家庭用燃料電池に供給することにより、電力系統が停止した場合でも、予め定められた期間の間にこの負荷が消費する電力が不足することを回避しようとしたものである。以下、上述した第1実施形態と異なる部分を説明する。
(Fourth embodiment)
In the energy storage system according to the fourth embodiment, the power system is stopped by supplying hydrogen corresponding to the energy consumed by the load during a predetermined period to a household fuel cell that supplies power to the load. Even in this case, an attempt is made to avoid a shortage of power consumed by the load during a predetermined period. Hereinafter, a different part from 1st Embodiment mentioned above is demonstrated.
 図5は、第4実施形態に係るエネルギー貯蔵システム100の構成を説明するブロック図である。この図5に示すように、エネルギー貯蔵システム100は、上述した第1実施形態において、水素配管8が家庭用燃料電池24にも接続されている。これにより、燃料電池部120で生成した水素をこの家庭用燃料電池24にも直接的に供給することが可能となっている。 FIG. 5 is a block diagram illustrating the configuration of the energy storage system 100 according to the fourth embodiment. As shown in FIG. 5, in the energy storage system 100, the hydrogen pipe 8 is also connected to the household fuel cell 24 in the first embodiment described above. As a result, the hydrogen produced in the fuel cell unit 120 can be directly supplied to the home fuel cell 24.
 家庭用燃料電池24は、負荷12である各家庭や各工場等に設置され、水素配管8と接続された水素タンク124の水素が供給される。この水素タンク124に蓄えられた水素の移動装置として、移動用水素ボンベや、燃料電池自動車を用いてもよい。これにより、電力系統2が故障し、送電を停止した場合でも、この水素タンク124に蓄積した予め定められた期間分の水素を、この家庭用燃料電池24のエネルギー源として用いることができる。例えば、この予め定められた期間は一日以上であり、一日分以上の水素を、この家庭用燃料電池24に供給する。これにより、この電力系統2の送電が停止した場合でも、一日以上の間、負荷12が消費する電力を供給することが可能となる。 The home fuel cell 24 is installed in each household, each factory, or the like as the load 12 and supplied with hydrogen from a hydrogen tank 124 connected to the hydrogen pipe 8. As a moving device for the hydrogen stored in the hydrogen tank 124, a moving hydrogen cylinder or a fuel cell vehicle may be used. Thereby, even when the power system 2 breaks down and power transmission is stopped, hydrogen for a predetermined period accumulated in the hydrogen tank 124 can be used as an energy source for the household fuel cell 24. For example, the predetermined period is one day or more, and one day or more of hydrogen is supplied to the household fuel cell 24. Thereby, even when the power transmission of the power system 2 is stopped, it is possible to supply the power consumed by the load 12 for one day or more.
 以上のように、本実施形態に係るエネルギー貯蔵システム100によれば、予め定められた期間に負荷12が消費する電力に対応する水素を、家庭用燃料電池24に供給することとした。これにより、電力系統2が停止した場合でも、予め定められた期間の間にこの負荷12が消費する電力を負荷12に供給することが可能となる。 As described above, according to the energy storage system 100 according to the present embodiment, hydrogen corresponding to the power consumed by the load 12 is supplied to the household fuel cell 24 during a predetermined period. As a result, even when the power system 2 is stopped, the power consumed by the load 12 can be supplied to the load 12 during a predetermined period.
 以上、いくつかの実施形態を説明したが、これらの実施形態は、例としてのみ提示したものであり、発明の範囲を限定することを意図したものではない。本明細書で説明した新規なシステムおよび方法は、その他の様々な形態で実施することができる。また、本明細書で説明したシステムおよび方法の形態に対し、発明の要旨を逸脱しない範囲内で、種々の省略、置換、変更を行うことができる。添付の特許請求の範囲およびこれに均等な範囲は、発明の範囲や要旨に含まれるこのような形態や変形例を含むように意図されている。 Although several embodiments have been described above, these embodiments are presented only as examples, and are not intended to limit the scope of the invention. The novel systems and methods described herein can be implemented in a variety of other forms. Various omissions, substitutions, and changes can be made to the system and method embodiments described in the present specification without departing from the scope of the invention. The appended claims and their equivalents are intended to include such forms and modifications as fall within the scope and spirit of the invention.

Claims (9)

  1.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水電解部と、
     前記水素貯蔵部に蓄えられた水素を用いて発電する燃料電池と、
     前記発電部及び前記燃料電池から電力を供給される負荷が予め定められた期間に消費する電力量を算出し、この算出した電力量に応じた量の水素を前記水素貯蔵部に蓄えさせる制御を前記水電解部に対して行う制御部と、
     を備えることを特徴とするエネルギー貯蔵システム。
    A water electrolysis unit that generates hydrogen by electrolysis of water using electric power supplied from a power generation unit using renewable energy, and stores the generated hydrogen in a hydrogen storage unit;
    A fuel cell that generates electricity using hydrogen stored in the hydrogen storage unit;
    Control is performed to calculate the amount of power consumed by a load supplied with power from the power generation unit and the fuel cell during a predetermined period, and to store an amount of hydrogen corresponding to the calculated amount of power in the hydrogen storage unit. A control unit for the water electrolysis unit;
    An energy storage system comprising:
  2.  前記発電部及び前記燃料電池から前記負荷に供給される電力の過不足分を充放電する補助電源部であって、前記燃料電池の制御応答の遅れによる電力の過不足分を補うに足りる容量を有する補助電源部を更に備える請求項1に記載のエネルギー貯蔵システム。 An auxiliary power supply unit that charges and discharges the excess and deficiency of power supplied from the power generation unit and the fuel cell to the load, and has a capacity sufficient to compensate for the excess and deficiency of power due to a delay in control response of the fuel cell. The energy storage system according to claim 1, further comprising an auxiliary power supply unit having the power supply unit.
  3.  前記水電解部における消費電力の制御応答、および前記燃料電池における発電電力の制御応答、のいずれかが追従できない、ミリ秒単位から秒単位の期間における過不足分の電力、またはミリ秒単位から分単位の期間における過不足分の電力を、前記補助電源部が充放電する請求項2に記載のエネルギー貯蔵システム。 Either the control response of the power consumption in the water electrolysis unit or the control response of the generated power in the fuel cell cannot follow the excess or deficient power in the period from millisecond to second, or minute from the millisecond. The energy storage system according to claim 2, wherein the auxiliary power supply unit charges and discharges excess and deficient power in a unit period.
  4.  前記予め定められた期間は、前記発電部からの電力供給が停止してから1日以上である請求項1乃至3のいずれか一項に記載のエネルギー貯蔵システム。 The energy storage system according to any one of claims 1 to 3, wherein the predetermined period is one day or more after power supply from the power generation unit is stopped.
  5.  前記制御部は、前記負荷の消費電力を計測した計測データを消費電力計測部から収集し、この収集した計測データに基づいて、前記負荷が前記予め定められた期間に消費する電力量を算出する請求項1乃至4のいずれか一項に記載のエネルギー貯蔵システム。 The control unit collects measurement data obtained by measuring the power consumption of the load from the power consumption measurement unit, and calculates the amount of power consumed by the load during the predetermined period based on the collected measurement data. The energy storage system according to any one of claims 1 to 4.
  6.  前記制御部は、前記発電部の発電電力を計測した計測データと、前記燃料電池の充放電電力を計測した計測データと、前記補助電源部の充放電電力を計測した計測データとを収集し、これら収集した計測データに基づいて、前記負荷が前記予め定められた期間に消費する電力量を算出する請求項2乃至4のいずれか一項に記載のエネルギー貯蔵システム。 The control unit collects measurement data obtained by measuring the generated power of the power generation unit, measurement data obtained by measuring charge / discharge power of the fuel cell, and measurement data obtained by measuring charge / discharge power of the auxiliary power unit, The energy storage system according to any one of claims 2 to 4, wherein an amount of electric power consumed by the load during the predetermined period is calculated based on the collected measurement data.
  7.  前記発電部と並列に、水素と異なる燃料を用いて発電する発電機を更に備える請求項1乃至6のいずれか一項に記載のエネルギー貯蔵システム。 The energy storage system according to any one of claims 1 to 6, further comprising a generator that generates electricity using a fuel different from hydrogen in parallel with the power generation unit.
  8.  前記負荷が消費するエネルギーの一日分以上の水素を、前記負荷に電力を供給する家庭用燃料電池に供給する請求項1乃至7のいずれか一項に記載のエネルギー貯蔵システム。 The energy storage system according to any one of claims 1 to 7, wherein hydrogen of one day or more of energy consumed by the load is supplied to a household fuel cell that supplies electric power to the load.
  9.  再生可能エネルギーを用いた発電部から供給された電力を用いて、水の電気分解により水素を生成し、この生成した水素を水素貯蔵部に蓄える水電解部と、前記水素貯蔵部に蓄えられた水素を用いて発電する燃料電池とを備える燃料電池システムのエネルギー貯蔵方法であって、
     前記発電部及び前記燃料電池から電力を供給される負荷が予め定められた期間に消費する電力量を算出する算出ステップと、
     この算出した電力量に応じた量の水素を前記水素貯蔵部に蓄えさせる制御を前記水電解部に対して行う制御ステップと、
     を備えることを特徴とするエネルギー貯蔵方法。
    Using the electric power supplied from the power generation unit using renewable energy, hydrogen is generated by electrolysis of water, and the water electrolysis unit that stores the generated hydrogen in the hydrogen storage unit and the hydrogen storage unit An energy storage method for a fuel cell system comprising a fuel cell that generates power using hydrogen,
    A calculation step of calculating an amount of power consumed by a load supplied with power from the power generation unit and the fuel cell in a predetermined period;
    A control step for controlling the water electrolysis unit to cause the hydrogen storage unit to store an amount of hydrogen corresponding to the calculated amount of power;
    An energy storage method comprising:
PCT/JP2015/075357 2015-04-23 2015-09-07 Energy storage system and energy storage method WO2016170700A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PH12017501922A PH12017501922B1 (en) 2015-04-23 2017-10-20 Energy storage system and energy storage method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-088542 2015-04-23
JP2015088542A JP6114777B2 (en) 2015-04-23 2015-04-23 Energy storage system and energy storage method

Publications (1)

Publication Number Publication Date
WO2016170700A1 true WO2016170700A1 (en) 2016-10-27

Family

ID=57143839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/075357 WO2016170700A1 (en) 2015-04-23 2015-09-07 Energy storage system and energy storage method

Country Status (3)

Country Link
JP (1) JP6114777B2 (en)
PH (1) PH12017501922B1 (en)
WO (1) WO2016170700A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156882B2 (en) 2018-04-27 2021-10-26 Chongqing Boe Optoelectronics Technology Co., Ltd. Circuit substrate, display device and driving method
CN115505429A (en) * 2021-06-07 2022-12-23 本田技研工业株式会社 Fuel preparation system
US11656612B2 (en) 2021-07-19 2023-05-23 Air Products And Chemicals, Inc. Method and apparatus for managing industrial gas production
CN117200277A (en) * 2023-11-01 2023-12-08 佛山电力设计院有限公司 Composite energy storage system and control method thereof
US11994135B2 (en) 2021-06-14 2024-05-28 Air Products And Chemicals, Inc. Method and apparatus for compressing a gas feed with a variable flow rate

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102046045B1 (en) * 2017-11-01 2019-11-18 (주)지필로스 Renewable energy storage system and operating method thereof
JP7178599B2 (en) * 2018-06-13 2022-11-28 パナソニックIpマネジメント株式会社 Power supply system and its control method
JP7087872B2 (en) 2018-09-20 2022-06-21 トヨタ自動車株式会社 Community system
JP2020047497A (en) * 2018-09-20 2020-03-26 トヨタ自動車株式会社 Community system
JP2020047495A (en) * 2018-09-20 2020-03-26 トヨタ自動車株式会社 Community system
WO2020121447A1 (en) * 2018-12-12 2020-06-18 東芝エネルギーシステムズ株式会社 Control device for hydrogen system, and control method for hydrogen system
JP2021059748A (en) * 2019-10-04 2021-04-15 日立造船株式会社 Water electrolysis device, and method of controlling water electrolysis device
JP7336172B2 (en) * 2020-01-23 2023-08-31 東芝エネルギーシステムズ株式会社 Control device for hydrogen system, hydrogen generation system, and control method for hydrogen system
CN115483694B (en) * 2022-10-24 2023-07-04 珠海康晋电气股份有限公司 Power energy-saving dispatching system based on distributed power grid data

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047168A (en) * 2001-08-01 2003-02-14 Nippon Telegr & Teleph Corp <Ntt> Uninterruptive power supply device
JP2005539476A (en) * 2002-09-17 2005-12-22 ウイスコンシン アラムニ リサーチ ファンデーション Control of small distributed energy resources
WO2012056836A1 (en) * 2010-10-27 2012-05-03 シャープ株式会社 Solar power generation system
JP2013009548A (en) * 2011-06-27 2013-01-10 Nippon Acp Kk Uninterruptible power supply system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126206A (en) * 1994-10-28 1996-05-17 Kyocera Corp Power supply device
JP5101444B2 (en) * 2008-09-10 2012-12-19 三菱重工業株式会社 Power storage device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003047168A (en) * 2001-08-01 2003-02-14 Nippon Telegr & Teleph Corp <Ntt> Uninterruptive power supply device
JP2005539476A (en) * 2002-09-17 2005-12-22 ウイスコンシン アラムニ リサーチ ファンデーション Control of small distributed energy resources
WO2012056836A1 (en) * 2010-10-27 2012-05-03 シャープ株式会社 Solar power generation system
JP2013009548A (en) * 2011-06-27 2013-01-10 Nippon Acp Kk Uninterruptible power supply system

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11156882B2 (en) 2018-04-27 2021-10-26 Chongqing Boe Optoelectronics Technology Co., Ltd. Circuit substrate, display device and driving method
CN115505429A (en) * 2021-06-07 2022-12-23 本田技研工业株式会社 Fuel preparation system
US11994135B2 (en) 2021-06-14 2024-05-28 Air Products And Chemicals, Inc. Method and apparatus for compressing a gas feed with a variable flow rate
US11656612B2 (en) 2021-07-19 2023-05-23 Air Products And Chemicals, Inc. Method and apparatus for managing industrial gas production
CN117200277A (en) * 2023-11-01 2023-12-08 佛山电力设计院有限公司 Composite energy storage system and control method thereof
CN117200277B (en) * 2023-11-01 2024-02-27 佛山电力设计院有限公司 Composite energy storage system and control method thereof

Also Published As

Publication number Publication date
PH12017501922A1 (en) 2018-03-05
JP6114777B2 (en) 2017-04-12
PH12017501922B1 (en) 2018-03-05
JP2016208694A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
JP6114777B2 (en) Energy storage system and energy storage method
US10193343B2 (en) Method for managing power of energy storage system connected with renewable energy
JP5100132B2 (en) Frequency adjustment system and frequency adjustment method
US9640996B2 (en) Electric power supply system
JP5073258B2 (en) Control method of sodium-sulfur battery
US7378820B2 (en) Electrical power generation system and method for generating electrical power
US10756544B2 (en) Energy storage system and management method thereof
US20190067945A1 (en) Domestic energy generation installation and operating method for operating a domestic energy generation installation
US7821159B2 (en) Metering pump power source
US8148844B2 (en) Power supply system including alternative sources
JP5529887B2 (en) Control system, correction device, and power control method
US8253271B2 (en) Home power supply system
US20190157876A1 (en) Method for controlling a microgrid
RU2014101451A (en) HYBRID POWER PLANT IN WHICH A COMBINATION OF GENERATING MEANS AND REAL-TIME ENERGY ACCUMULATION SYSTEM IS USED
JP6492174B2 (en) How to operate the charging station
KR20160001249A (en) Home energy management system using photovoltaic generation and energy storage system
JP2010074989A (en) Distributed power system and method of stabilizing system voltage using same
US20190058340A1 (en) Energy storage system with improved operating time and operation method thereof
Brinkhaus et al. All year power supply with off-grid photovoltaic system and clean seasonal power storage
US20150028675A1 (en) Electrical power system and method for operating an electrical power system
KR20190109017A (en) Energy Management System of Islanded Micro-Grid
KR102268723B1 (en) System and method for controlling charging rate
US20170279281A1 (en) Power generation assembly, management system and method
KR20120110478A (en) Energy storage system for new renewable energy generator and method for controlling the same
JP2015213389A (en) Storage battery operation method and power control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889939

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12017501922

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889939

Country of ref document: EP

Kind code of ref document: A1