WO2016170251A1 - Assemblage de bras de ciseaux pour mecanisme de levage en ciseaux d'une nacelle elevatrice - Google Patents

Assemblage de bras de ciseaux pour mecanisme de levage en ciseaux d'une nacelle elevatrice Download PDF

Info

Publication number
WO2016170251A1
WO2016170251A1 PCT/FR2016/050879 FR2016050879W WO2016170251A1 WO 2016170251 A1 WO2016170251 A1 WO 2016170251A1 FR 2016050879 W FR2016050879 W FR 2016050879W WO 2016170251 A1 WO2016170251 A1 WO 2016170251A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
arm
scissor
arms
assembly according
Prior art date
Application number
PCT/FR2016/050879
Other languages
English (en)
Inventor
Pierre Anglade
Original Assignee
Haulotte Group
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haulotte Group filed Critical Haulotte Group
Priority to CA2982876A priority Critical patent/CA2982876C/fr
Priority to EP16720458.5A priority patent/EP3286126B1/fr
Priority to CN201680022513.XA priority patent/CN107531470B/zh
Priority to US15/567,366 priority patent/US10358330B2/en
Priority to AU2016252090A priority patent/AU2016252090B2/en
Publication of WO2016170251A1 publication Critical patent/WO2016170251A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F11/00Lifting devices specially adapted for particular uses not otherwise provided for
    • B66F11/04Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations
    • B66F11/042Lifting devices specially adapted for particular uses not otherwise provided for for movable platforms or cabins, e.g. on vehicles, permitting workmen to place themselves in any desired position for carrying out required operations actuated by lazy-tongs mechanisms or articulated levers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F3/00Devices, e.g. jacks, adapted for uninterrupted lifting of loads
    • B66F3/22Lazy-tongs mechanisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F7/00Lifting frames, e.g. for lifting vehicles; Platform lifts
    • B66F7/06Lifting frames, e.g. for lifting vehicles; Platform lifts with platforms supported by levers for vertical movement
    • B66F7/065Scissor linkages, i.e. X-configuration
    • B66F7/0666Multiple scissor linkages vertically arranged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/127Working platforms

Definitions

  • the present invention relates to the field of mobile elevating work platforms (also referred to as PEMP) still commonly referred to as aerial work platforms. It relates more particularly to scissor lifts.
  • PEMP mobile elevating work platforms
  • aerial work platforms still commonly referred to as aerial work platforms. It relates more particularly to scissor lifts.
  • Scissor lifts are machines designed to allow one or more people to work at height. They include a frame, a work platform and a lifting mechanism of the work platform.
  • the chassis is mounted on wheels to allow movement of the aerial platform to the ground.
  • the work platform includes a tray surrounded by a railing. It is intended to accommodate one or more people and possibly also loads such as tools or other material, materials such as paint, cement, etc.
  • the working platform is supported by the lifting mechanism which is mounted on the chassis.
  • the lifting mechanism lifts the work platform from a lowered position on the frame to the desired working height, usually by means of one or more hydraulic cylinders. Depending on the models concerned, the maximum working height generally varies between 6 and 18 meters.
  • FIGS. 1 and 2 illustrate such a lifting platform of the prior art which is marketed by the applicant in its range called Optimum: the chassis is referenced 1, the scissor lift mechanism 2, the work platform 3, the hydraulic actuating cylinder of the lifting mechanism of the working platform 4.
  • the scissor lift mechanism comprises pairs of tubular beams hinged together at their center like scissors, a plurality of such scissors being mounted above each other others by their articulated ends: cf. the four pairs (21, 22), (23, 24), (25, 26) and (27, 28). These four pairs of stacked scissors constitute a first set of stacked scissors. As is the most common case, the scissor mechanism comprises a second set of stacked scissors which is identical to the first set and parallel thereto while being offset laterally with respect to the first: cf. the four pairs (31, 32), (33, 34), (35, 36) and (37, 38). The use of two sets of parallel scissors ensures the horizontal stability of the work platform.
  • the lifting mechanism 2 comprises 4 stages of scissors indicated by the references 11 to 14, but there may be more or less.
  • Scissor beams are also commonly referred to as scissor arms.
  • the hydraulic cylinder 4 is mounted at both ends to the sets of scissors, each to another stage of scissors. In this way, the cylinder can open and close the scissors to raise and lower the work platform.
  • one of the ends of the hydraulic cylinder 4 is mounted on the chassis of the aerial platform.
  • the lower ends of two homologous beams of the first stage 11 are pivotally mounted on the frame 1 by an axis 15 while the lower ends of the two other homologous beams of the same stage are traversed by an axis 16 which is slidably mounted on the frame 1.
  • the upper ends of two homologous beams of the last stage 14 are pivotally mounted under the working platform 3 by an axis 17 while the lower ends of the other two beams counterparts of the same floor are traversed by an axis 18 which is slidably mounted under the working platform 3.
  • the inner beams of the same scissor stage are rigidly interconnected by spacers so as to form a one-piece assembly.
  • Figure 4 illustrates the case of the inner beams 24 and 34 of the second scissors stage 12 which are interconnected by a respective spacer 40, 41 at each end.
  • a third spacer connecting the inner beams is arranged at their center for the other scissor stages 11, 13 and 14, because it does not interfere with the cylinder 4.
  • these spacers are mounted in holes in the internal beams. More specifically, the spacers pass through the inner beams and are welded to each side of the inner beams.
  • these spacers have a cylindrical section and serve as a mounting housing at each end for a respective pivot axis 42, 43 for the corresponding inner and outer arms 24, 25 and 34, 35.
  • the pivot axes 42, 43 are blocked in the spacer by a respective bolt 44, 45.
  • the outer beams 25, 35 each comprise a through hole in which is housed a bushing 50, respectively 51.
  • the bushes 50, 51 are welded on each side to the outer beam corresponding 25, respectively 35.
  • the bushings 50, 51 define the mounting housing pivot axes 42, 43 respectively.
  • the bushes 50, 51 are each provided with a plain bearing ring 52, 53 respectively.
  • a respective elastic ring 54, 55 blocks the sliding of the outer arms 25, 25 on the corresponding pivot axis 42, 43.
  • the connecting struts of the inner beams of the scissor lift mechanism do not receive the pivot axes of the inner and outer beams.
  • the spacers are welded to the inner beams at a location offset from the pivot axis of the beams. The latter are each received in the internal beams by means of a socket fixed in a passage hole similarly to the case of the outer arms.
  • the weld seams at the boss of the sleeves or spacers passing through the beams can be the seat of significant stress concentrations that limit their fatigue life. Therefore, it is generally necessary to resume, once the welding operations have been completed, the bores of the bushings welded in the beams and, where appropriate, those of the spacers welded in the inner beams at their two ends serving to accommodate the pins. pivoting in order to control the level of mechanical stresses in the axes and in the weld seams of the sleeves and spacers on the beams. In the case of spacers, the machining is even more complicated because of the size of the one-piece assembly constituted by the inner beams connected together.
  • US 2008/0105498 A1 proposes to replace the welding by a plastic deformation operation of the ends of the sleeve after mounting in the passage hole of the beam to keep it in place in the beam.
  • This solution can pose difficulties in terms of the precision of the parts.
  • it requires placing a spacer in the beam through which the sleeve is received, which makes more complex the manufacture of the scissor beam.
  • the object of the present invention is to at least partially overcome the aforementioned drawbacks.
  • a scissor arm assembly for a scissor lift mechanism of the work platform of an aerial work platform, comprising a first scissor arm and a second scissor arm. scissors mounted together pivotably about an axis traversing the two arms, wherein:
  • each of the arms is formed by a tubular beam which presents:
  • a second local reinforcing plate welded to the outer surface of a second side of the beam which is opposite the first side of the beam;
  • the axis is supported circumferentially in the first through hole by both the beam and the first reinforcing plate;
  • the axis is supported circumferentially in the second through hole both by the beam and the second reinforcing plate; and o the axis is free of support inside the beam between the first through hole and the second through hole.
  • pivot axis it is indeed unnecessary for the pivot axis to be supported over the entire width of the scissor beam as is generally the case in the prior art. It will be understood that those skilled in the art will dimension the reinforcing plates, in particular their thickness, so that the width of the through holes is appropriate to properly support the pivot axis which is received with respect to the mechanical stresses. to which they will be subjected within the aerial platform.
  • the shape and size of the reinforcing plates are not directly imposed by those of the pivot axis or a part receiving the axis as is the case of the sleeve or spacer in the Prior art, these may be chosen by those skilled in the art so as to limit the stress concentrations in the weld bead that binds them to the beams to improve its fatigue life.
  • the length of the weld bead - which is determined by the perimeter of the reinforcing plates - may advantageously be chosen greater than that of the weld bead usually applied at the boss of the sleeves or spacers passing through the beam. in the case of the prior art.
  • the solution of the invention allows the use of a tubular beam without having to weaken with openings.
  • the two holes for passage of the axis can advantageously be made - or finished in case of pre-drilling - after the welding operation of the reinforcing plates. In this way, the possible deformations of the beam due to welding will not influence the positioning of the through holes. Furthermore, the machining operations of the through holes are minimized because the cumulative depth of the two axis passage holes is less than the width of the scissor beam unlike the case of bushings or spacers in the prior art.
  • the assembly of the scissor arms according to the invention can also be used for single scissor lifts, that is to say which comprise only one set of stacked scissors.
  • the scissor arm assembly according to this first aspect of the invention comprises one or more of the following features:
  • the axis is locked in translation relative to the two arms
  • a respective smooth bearing ring is arranged in the first through hole and in the second through hole of the second arm;
  • a stop member is removably attached to the first arm and interferes with the axis by shape cooperation to stop translation of the shaft relative to the first arm;
  • the stop member interferes with the axis by shape cooperation to lock the axis also in rotation relative to the first arm;
  • the axis has at least one groove engaged by the stop element to block the axis both in translation and in rotation with respect to the first arm;
  • the stop element is fixed to the first arm by screws
  • the stop member is plate-shaped
  • the assembly comprises a mounting plate for an actuator of the scissor lift mechanism, the mounting plate being mounted to the first arm;
  • An end of the mounting plate is mounted to the first arm through the axis, the mounting plate being mounted on the axis and sandwiched between the stop member and the first arm;
  • the assembly comprises at least a second axis through which one end of the mounting plate is mounted to the first arm and wherein: the beam forming the first arm has:
  • the mounting plate is mounted on the second axis and sandwiched between the first arm and a second stop member removably attached to the first arm, the second stop element interfering with the second axis by shape cooperation for block the translation of the second axis relative to the first arm;
  • the second stop element is identical to the first stop element
  • the assembly comprises two further scissor arms pivotally mounted together about the axis, the other two arms being axially spaced from the first and second arms, the other two scissor arms being identical to the first and second scissor arms and held on the axis in the same way as the first and second scissor arms.
  • the invention proposes a lifting platform comprising a chassis, a work platform and a scissor lift mechanism mounted on the frame and supporting the work platform to move it upwards, in which the scissor lift mechanism comprises at least one scissor arm assembly according to the first aspect. It is advantageous that all the scissor arms at their different pivotal connection areas with the other scissor arms of the lifting mechanism and the manner of pivotably assembling them are made in accordance with the scissor arm assembly such as defined according to the first aspect of the invention.
  • Figures 1 and 2 each show a perspective view of the same double scissor lift platform of the prior art, its working platform being respectively in the lowered position and in the raised state.
  • Figure 3 is a perspective view of the scissor lift mechanism of the aerial platform of Figures 1 and 2.
  • FIG. 4 is a perspective view of the one-piece assembly formed by the internal beams of the second scissor stage of the lifting mechanism of FIG. 3.
  • Figure 5 is a partial sectional view of the assembly, at one end, of the one-piece assembly of Figure 3 with the outer beams of the third scissor stage.
  • FIG. 6 is a perspective view of the scissor lift mechanism according to one embodiment of the invention which is intended to replace that of FIG. for the lifting platform of Figures 1 and 2, the latter being viewed from a point of view placed on the other side of the lifting mechanism with respect to Figure 3.
  • FIG. 7 is a partial sectional view showing the assembly of two inner scissors arms of the second stage with the two outer arms of the third stage of the lifting mechanism of FIG. 6.
  • Figures 8 and 9 each show a perspective view of an inner scissor arm of the second stage of the lifting mechanism of Figure 6, the first showing the outward side of the aerial lift and the second showing the side towards the inside of the aerial platform, that is to say the side of the arm that faces the other set of stacked scissors.
  • Figure 10 is a perspective view of a stop plate used in the assembly illustrated in Figure 7.
  • FIG. 11 is a perspective view of an arm pivot axis of the lifting mechanism of FIG. 6.
  • FIG. 12 is a local sectional view taken perpendicular to the pivot axis at one of the stop plates of the portion of the assembly shown in FIG. 7.
  • Figure 13 is a local perspective view of the lifting mechanism of Figure 6 made at the mounting plates of one end of the hydraulic actuator cylinder.
  • Fig. 14 is a perspective view of one of the jack mounting plates visible in Fig. 13.
  • FIG. 15 is a view in local section through the arms to which the mounting plates of the jack of FIG. 13 are mounted.
  • FIG 6 shows an overview of the scissor lift mechanism which is intended to replace that of the prior art of Figure 3 in the aerial platform of Figures 1 and 2.
  • the general configuration of the lifting mechanism is similar to that of Figure 3. Like this, it comprises two sets of scissors parallel and distant from each other.
  • Each set of scissors comprises pairs of tubular beams hinged together in their center in the manner of scissors, a plurality of such scissors being mounted one above the other by their ends hinged together: cf. the four pairs (121, 122), (123, 124), (125, 126) and (127, 128) defining the first set of stacked scissors and the four pairs of scissors (131, 132), (133, 134) , (135, 136) and (137, 138) defining the second set of stacked scissors.
  • the section of the tubular beams is preferably rectangular or square, but may be different.
  • the lifting mechanism also includes 4 stages of scissors referenced from 11 to 14, but there may be more or less. It also includes the axes 15 and 16 mounted at the lower ends of the beams of the first stage 11 to be mounted on the frame 1 pivotally connected to the first and slidably connected to the second. In the same way, there are the axes 17 and 18 mounted at the upper ends of the beams of the last stage 14 to be mounted under the working platform 3 in pivotal connection for the first and in sliding connection for the second . There is also the hydraulic cylinder 4 to actuate the scissor mechanism which is mounted between the first and third scissor stages 11, 13. Alternatively, the cylinder 4 can be mounted between other stages of scissors or between the chassis 1 and one of the scissor stages. It can also be provided several cylinders 4 instead of one, each can be mounted on different scissor stages.
  • Figure 7 shows the structure of the inner beam 124 and the outer beam 125 of the first set of scissors stacked at their pivotal connection, and how to assemble them. It is the same for the inner beam 134 and the outer beam 135 of the second set of stacked scissors.
  • the structure of the beams 124, 125 because the structure of the beams 134, 135 and their pivoting assembly are identical.
  • the structure of all the scissor beams at their different pivotal connection areas with the other scissor beams of the lifting mechanism and the manner of pivotally assembling them are preferably always the same. Therefore, the following description applies to any pivotal connection between any scissor beam with another scissor beam of the lifting mechanism, whether it is a connection in their central part or in their zone. end, any differences in implementation being mentioned where appropriate.
  • FIGS. 8 and 9 show in an isolated manner the beam 124 on both sides, it being specified that this description also applies to the beam 134. It is possible to distinguish the three pivot axis passages which traverse the beam 124 from one side to the other : one at each end for mounting in pivotal connection with the beams 121 and 125 and one which is central for mounting in pivotal connection with the beam 123.
  • a reinforcing plate is welded on each side of the beam 124 of preferably over the entire contour of the reinforcement plate: cf. the reinforcing plates 80 and 81 at each end axis passage of the beam and the reinforcing plates 80A, 81A at the central axis passage of the beam 124.
  • the reinforcing plates 81 are identical to the reinforcing plates 80 , but they are crossed in addition by two threads - visible, but not referenced - which also cross the side of the beam 124 on which they are welded. These threads are intended to receive screws 95 visible in Figure 7.
  • the reinforcing plates 80A and 81A are identical to the reinforcing plates 80 and 81 respectively, except to note that the axis passage y is centered while the passage of The axis is off-center for the reinforcing plates 80 and 81 because of its arrangement towards the end of the beam. The threads are placed symmetrically on either side of the axis passage in the case of the plates 81 and 81 A.
  • Each of the axis passages consists of two axis passage holes 103, 104.
  • the axis passage hole 103 is defined by the through hole together the reinforcing plate 80, respectively 80 A and the side wall of the beam 124 on which it is welded.
  • the axis passage hole 104 is defined by the through hole together the reinforcing plate 81, respectively 81A and the side wall of the beam 124 on which it is welded.
  • the axis passage defined by the holes 103, 104 of the beam 124 is traversed by a pivot axis 70.
  • the axis 70 is supported circumferentially in the first through hole 103 at a time by the reinforcing plate 80 and the wall of the beam 124 on which it is welded.
  • the axis 70 is circumferentially supported in the second through hole by both the reinforcing plate 104 and the wall of the beam 124 on which it is welded. Is visible in Figure 7 the fact that the axis of the beam passage 124 is free of socket or similar piece connecting the two opposite walls of the beam 124 unlike the case of the prior art.
  • the scissors arm formed by the beam 124 with its reinforcing plates 80, 81 circumferentially supports the axis only by means of the two through holes 103, 104. Therefore, the skilled person will choose the thickness reinforcing plates 80, 81, respectively 80A, 81A, suitably for the pivot axis 70 to be supported under satisfactory conditions by the two through-holes 103, 104.
  • the outer scissors arms formed by the beams 125, 135 are preferably identical to the inner ones 124, 134, with two exceptions that will be mentioned hereinafter.
  • the beams 125, 135 each have a reinforcing plate 82 welded to each side of the beam at the axis passage through which the axis 70 passes, but - first difference - there are no threads to receive screws 95.
  • each of the axis passages consists of two axial passage holes 101, 102. All the considerations mentioned above concerning the circumferential support of the axis 70 in the axis passage holes 103, 104 are also valid for the axis passage holes 101, 102, unless specified - second difference with the beam 124 - that a plain bearing ring 83 is mounted in each axis passage hole 101, 102 to reduce friction with the axis 70. As can be seen in Figure 7, each bearing ring 83 is stopped axially towards the inside of the beam 125 by a shoulder formed in the hole corresponding to the axis 101, 102.
  • the beam 125 is free to pivot about the axis 70 while it is locked in rotation relative to the beam 124 as we shall see.
  • the axis passage holes 101, 102 are free of plain bearings, but are machined and optionally surface treated or coated to form plain bearings. Locking the axis 70 in rotation with respect to the beam 124 avoids having to also arrange smooth bearings in the through holes 103, 104.
  • the two beams 124, 125 are free to rotate relative to the axis 70.
  • a washer 100 is preferably mounted on the axis 70 between the beams 124 and 125 in order to limit the friction between them during their pivoting.
  • the axis 70 is locked in translation relative to the two beams 124, 125, and also with respect to the beams 134, 135. This can be achieved by any appropriate means, for example an elastic ring 85 on the side of the outer beam 125 and a shoulder on the axis 70 on the side of the inner beam 124.
  • a stop member removably attached to the beam 124 and interfering with the axis 70 by cooperation of form to stop both translation and rotation of the axis 70 relative to the beam 124.
  • the stop member is preferably made in the form of a plate 90 illustrated in FIG. 10.
  • the stop plate 10 has a notch 92 having two parallel edges and two smooth holes 91.
  • the two smooth holes 91 serve to fix the stop plate 90 on the reinforcing plate 81 of the beam 124 by means of the screws 95 screwed into the two tappings formed in the reinforcing plate 81 and the corresponding wall of the beam 124.
  • the parallel edges of the notch 92 serve to engage two parallel grooves 71 and diametrically opposite formed in the axis 70 for this purpose: cf. the local cut perpendicular to the axis 70 at the two grooves 71 of Figure 12.
  • FIG. 11 shows the axis 70 in perspective: it shows only one of the two grooves 71 for the connection of the axis 70 with the beam 124 due to the perspective. For the same reason, it also shows only one of the grooves 71 for the connection of the axis 70 with the beam 134. It also shows two grooves 72 which are not visible in Figure 7 because optional, but will be useful later. There is still a groove 73 at each end to receive the corresponding elastic ring 85.
  • the manufacture of the stop plates 90 and the realization of the grooves 71 - and also 72 if necessary - on the axis 70 are very simple.
  • the axis 70 is provided with a single groove 71 with which the stop plate 90 cooperates instead of two diametrically opposed grooves 71 in which case the shape of the notch 92 of the stop plate is adapted in result.
  • the embodiment with two grooves 71 diametrically opposed is preferable from the mechanical point of view.
  • such a stop member removably attached to the beam 124 and interfering with the axis 70 by shape cooperation is used to stop only the translation of the axis 70 relative to the beam 124 in the case where we do not want to block the rotation of one relative to the other.
  • the stop element is permanently fixed on the beam 124, but it is preferable that it is fixed removably as this advantageously allows to disassemble the lifting mechanism in case of failure of an axis of pivoting or scissor arm to replace it.
  • the translation and rotation of the axis 70 with respect to the outer beam 125 is blocked instead of the inner beam 124, in which case the above-mentioned stop element can be provided on the side of the outer beam 125. to be removably attached.
  • the axis 70 makes it possible to rigidly connect the inner beams 124, 134 to each other, in view of the locking in translation of the axis 70 with respect to the internal beams 124, 134.
  • the two sets of parallel scissors are therefore rigidly connected to each other without the use of spacers. This avoids any welds spacers scissor beams that tend to deform the beams.
  • the result is a weight gain because a common axis has a material section smaller than that of a spacer.
  • the use of a stop element, including in the form of the stop plate 90, which has just been described can also be applied to a short axis of pivoting of scissor beams.
  • the passages for the axes 15 and 16 in the lower ends of the scissor arms of the first stage 11, and those for the axes 17 and 18 in the upper ends of the scissor arms of the last stage 1 may advantageously be made of the same way as the passages of the axes of pivoting of the beams between them.
  • These axes 15 to 18 can advantageously be maintained in the scissor arms by means of stop elements interfering with these axes in the same manner as described for the axes of pivoting of the scissor arms together, in particular by means of stop plates 90.
  • the cylinder rod 4 is mounted to each of the inner scissor beams 126, 136 by means of a respective mounting plate 200 of generally triangular shape.
  • Each mounting plate 200 is mounted in the same way to the scissor beam concerned. As a result, it will only be described for beam 126.
  • FIG. 14 shows a mounting plate 200. It comprises a projection 201 forming a housing for receiving an end of an axis on which is articulated the end of the rod of the jack 4. It comprises at each end a passage hole of 202, respectively 203 axis, and two smooth holes 204, 205 respectively, made on either side of the axis passage hole.
  • one end of the mounting plate 200 is mounted on the end axis 70 pivotally connecting the scissor beams 123, 126 on the one hand and the scissor beams 133 , 136 on the other hand. Since the pivotal assembly of these beams is identical - with one exception - to that described with reference to FIGS. 7 to 12, the same reference numerals have been used to designate identical elements. The only difference from FIG. 7 is that the mounting plate 200 is further mounted on the axis 70 which passes through the through hole 203, the mounting plate 200 being sandwiched between the stop plate 90 and the reinforcing plate 81 of the beam 126.
  • the screws 95 are aimed in the reinforcing plate 81 and the corresponding wall of the beam 126 through both the holes 91 of the stop plate 90 and the holes 205 of the Mounting plate 200. Due to the material thickness of the mounting plate 200, the stop plate 90 engages the grooves 72 of the axis 70 provided for this purpose instead of the grooves 71.
  • the grooves 72 are identical to the grooves 71 and serve for the same function - already described above - locking the axis 70 relative to the inner beam of scissors through the stop plate 90.
  • the grooves 72 are therefore only axially offset relative to the grooves 71, as can be seen in FIG. to take into account the material thickness of the mounting plate 200.
  • the grooves 71 are not used in this case and could be omitted from the axis 70.
  • the other end of the mounting plate 200 - which corresponds to the through hole 202 - is not mounted on a pivot axis of scissor beams because the mounting plate 200 does not extend to the axis of central pivoting scissor beams 125, 126.
  • Such can obviously be the case and the mounting of this other end of the mounting plate on the central pivot axis would be in the same way as for the end corresponding to the hole passage 203 which has just been described.
  • the other end of the mounting plate 200 is mounted on a mounting axis 170 dedicated for this purpose alone.
  • the axis 170 is received in an axis passage made in the beam 126 which is reinforced by a reinforcing plate 180, 181 welded on each side of the beam, in the same way as for the case of the pivot axis passages. scissor beams.
  • These reinforcing plates are also preferably identical to the reinforcing plates 80A, 81 A.
  • the mounting plate 200 is mounted on the axis 170 which passes through the through hole 202. The holding in position of the mounting plate 200 against the beam 126 is provided in the same way as at its other end, for which reason the same reference numbers were used to designate identical elements.
  • the mounting plate 200 is sandwiched between a stop plate 90 screwed into the reinforcing plate 181 and the beam 126 by screws 95 passing through the holes 204 provided for this purpose.
  • This stop plate 90 also cooperates with grooves - similar to the grooves 72 of the axis 70 - formed in the axis 170 to block the translation of the axis 170 relative to the beam 126.
  • the plate stop 90 also maintains the axis 170 in the beam 126.
  • both ends of the mounting plate may be mounted on a respective dedicated mounting shaft as described, but it is more advantageous to mount the jack mounting plates on at least one pivot axis of scissor beams. or two, for the sake of simplification of manufacture.
  • the invention provides a scissor arm assembly for a scissor lift mechanism of the work platform of an aerial work platform, comprising:
  • first scissor arm and a second scissor arm pivotally mounted together about an axis
  • the third and fourth arms are axially distant from the first and second arms;
  • a respective stop member is removably attached to the first and third arms and interferes with the axis by shape cooperation to stop translation of the shaft relative to the first and third arms respectively.
  • the first and third arms are preferably mounted on the axis between the second and fourth arms.
  • the assembly is free of spacer extending between the first and third arms.
  • the stop elements interfere with the axis by shape cooperation to block the axis also in rotation relative to the first arm.
  • the axis has at least one respective groove which is each engaged by a respective one of the stop elements to block the axis both in translation and in rotation with respect to first and third arms respectively.
  • the stop members are preferably attached to the first and third arms respectively by screws.
  • the stop elements may advantageously be in the form of a plate.
  • Each of the arms is preferably formed by a tubular beam.
  • the invention also proposes a lifting platform comprising a frame, a work platform and a scissor lift mechanism mounted on the frame and supporting the work platform to move it upwards, in which the lifting mechanism scissors comprises at least one scissor arm assembly according to this other aspect of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Civil Engineering (AREA)
  • Forklifts And Lifting Vehicles (AREA)
  • Jib Cranes (AREA)

Abstract

L'assemblage de bras de ciseaux pour nacelle élévatrice, comprend un deux bras de ciseaux (124, 125) montés de façon pivotante autour d'un axe (70). Chaque bras est formé par une poutre tubulaire laquelle présente une plaque de renfort locale (80, 81, 82) soudée de chaque côté. Chaque bras (124, 125) présente deux trous de passage (101, 102; 103, 104) de l'axe (70) réalisés chacun dans un côté respectif de la poutre et de la plaque de renfort correspondante. L'axe (70) est supporté circonférentiellement dans chaque trou à la fois par la paroi de la poutre et par la plaque de renfort (80, 81, 82) correspondante. L'axe est libre de support à l'intérieur de la poutre entre les deux trous de passage (101, 102; 103, 104). On évite ainsi de souder de part et d'autre de la poutre de ciseaux une pièce insérée dans celle-ci pour loger l'axe (70).

Description

ASSEMBLAGE DE BRAS DE CISEAUX POUR MECANISME DE LEVAGE EN CISEAUX D'UNE NACELLE ELEVATRICE
La présente invention concerne le domaine des plates-formes élévatrices mobiles de personnel (désignées aussi par l'acronyme PEMP) encore communément appelées nacelles élévatrices. Elle concerne plus particulièrement les nacelles élévatrices à ciseaux.
Les nacelles élévatrices à ciseaux sont des machines destinées à permettre à une ou plusieurs personnes de travailler en hauteur. Elles comprennent un châssis, une plate- forme de travail et un mécanisme de levage de la plate-forme de travail. Le châssis est monté sur des roues pour permettre le déplacement de la nacelle élévatrice au sol. La plate-forme de travail comprend un plateau entouré d'un garde-corps. Elle est prévue pour recevoir une ou plusieurs personnes et éventuellement aussi des charges telles que des outils ou autre matériel, des matériaux tels que peinture, ciment, etc .. La plate- forme de travail est supportée par le mécanisme de levage lequel est monté sur le châssis. Le mécanisme de levage permet d'élever la plate-forme de travail depuis une position abaissée sur le châssis jusqu'à la hauteur de travail souhaitée, généralement au moyen d'un ou plusieurs vérins hydrauliques. Selon les modèles concernées, la hauteur maximale de travail varie généralement entre 6 et 18 mètres.
Les figures 1 et 2 illustrent une telle nacelle élévatrice de l'art antérieur qui est commercialisée par la demanderesse dans sa gamme appelée Optimum : le châssis y est référencé 1, le mécanisme de levage en ciseaux 2, la plate-forme de travail 3, le vérin hydraulique d'actionnement du mécanisme de levage de la plate-forme de travail 4.
Comme cela est bien visible sur la vue agrandie de la figure 3, le mécanisme de levage en ciseaux comprend des paires de poutres tubulaires articulées entre elles en leur centre à la façon de ciseaux, une pluralité de tels ciseaux étant montés les uns au-dessus des autres par leurs extrémités articulées entre elles : cf. les quatre paires (21, 22), (23, 24), (25, 26) et (27, 28). Ces quatre paires de ciseaux empilés constituent un premier ensemble de ciseaux empilés. Comme c'est le cas le plus fréquent, le mécanisme en ciseaux comprend un deuxième ensemble de ciseaux empilés qui est identique au premier ensemble et parallèle à celui-ci tout en étant décalé latéralement par rapport au premier : cf. les quatre paires (31, 32), (33, 34), (35, 36) et (37, 38). Le fait de recourir à deux ensembles de ciseaux parallèles assure la stabilité horizontale de la plate-forme de travail. On parle de nacelle élévatrice à double ciseaux dans ce cas. En l'occurrence, le mécanisme de levage 2 comprend 4 étages de ciseaux indiqués par les références 11 à 14, mais il peut y en avoir plus ou moins. L'on désigne aussi communément les poutres de ciseaux par bras de ciseaux. Le vérin hydraulique 4 est monté par ses deux extrémités aux ensembles de ciseaux, chacune à un autre étage de ciseaux. De la sorte, le vérin permet d'ouvrir et de fermer les ciseaux pour lever et abaisser la plate-forme de travail. Pour d'autres nacelles élévatrices de l'art antérieur, une des extrémités du vérin hydraulique 4 est montée sur le châssis de la nacelle élévatrice. Afin de permettre le l'ouverture et la fermeture des ciseaux, les extrémités inférieures de deux poutres homologues du premier étage 11 sont montées pivotantes sur le châssis 1 par un axe 15 tandis que les extrémités inférieures des deux autres poutres homologues du même étage sont traversées par un axe 16 qui est monté coulissant sur le châssis 1. Similairement, les extrémités supérieures de deux poutres homologues du dernier étage 14 sont montées pivotantes sous la plate-forme de travail 3 par un axe 17 tandis que les extrémités inférieures des deux autres poutres homologues du même étage sont traversées par un axe 18 qui est monté coulissant sous la plate-forme de travail 3.
Pour conférer une rigidité d'ensemble au mécanisme de levage et éviter les déformations des deux ensembles de ciseaux en direction latérale de la nacelle élévatrice, ces derniers sont liés entre eux généralement à tous les étages. Plus précisément, les poutres intérieures d'un même étage de ciseaux sont rigidement liées entre elles par des entretoises de sorte à former un ensemble monobloc. La figure 4 illustre le cas des poutres intérieures 24 et 34 du deuxième étage de ciseaux 12 qui sont liés entre elles par une entretoise respective 40, 41 à chaque extrémité. Une troisième entretoise liant les poutres intérieures est agencée en leur centre pour les autres étages de ciseaux 11, 13 et 14, du fait qu'elle n'interfère pas avec le vérin 4. Comme cela est visible sur la figure 5, ces entretoises sont montées dans des trous ménagés dans les poutres intérieures. Plus précisément, les entretoises traversent les poutres intérieures et sont soudées sur chaque côté des poutres intérieures.
Par ailleurs, ces entretoises ont une section cylindrique et servent de logement de montage à chaque extrémité pour un axe de pivotement respectif 42, 43 pour les bras intérieur et extérieur correspondant 24, 25 et 34, 35. Les axes de pivotement 42, 43 sont bloqués dans l'entretoise par un boulon respectif 44, 45. Les poutres extérieures 25, 35 comprennent chacun un trou de passage dans lequel est logée une douille 50, respectivement 51. Les douilles 50, 51 sont soudées de chaque côté sur la poutre extérieure correspondante 25, respectivement 35. Les douilles 50, 51 définissent le logement de montage des axes de pivotement 42, 43 respectivement. Pour cela, les douilles 50, 51 sont pourvues chacune d'une bague de palier lisse 52, 53 respectivement. Un anneau élastique respectif 54, 55 bloque le coulissement des bras extérieurs 25, 25 sur l'axe de pivotement correspondant 42, 43. Il existe sur le marché d'autres nacelles élévatrices à ciseaux dans lesquels les entretoises de liaison des poutres intérieures du mécanisme de levage en ciseaux ne reçoivent pas les axes de pivotement des poutres intérieures et extérieures. Dans ce cas, les entretoises sont soudées sur les poutres intérieures à un endroit décalé par rapport aux passages des axes de pivotement des poutres. Ces derniers sont reçus chacun dans les poutres intérieures par le biais d'une douille fixée dans un trou de passage similairement au cas des bras extérieurs.
La fabrication d'un tel mécanisme de levage est en pratique délicate et coûteuse. En effet, les passages des axes de pivotement dans les poutres intérieures et extérieures doivent être disposés de façon précise, ce d'autant plus que les défauts de positionnement se répercute d'un étage de ciseaux à l'autre. A défaut, le mécanisme de levage peut être sujet à une fatigue prématurée. Or, les opérations de soudage aussi bien des douilles dans les poutres de ciseaux que des entretoises de liaison dans ou sur les poutres intérieures, selon qu'elles servent de logement aux axes de pivotement ou non, conduisent à des déformations des poutres et des ensembles monobloc constitués par les bras intérieurs de chaque étage de ciseaux. Ces déformations conduisent à des défauts de positionnement relatif des logements d'axe de pivotement qu'il est indispensable de limiter au maximum. Par ailleurs, les cordons de soudure au niveau du bossage des douilles ou des entretoises traversant les poutres peuvent être le siège de concentrations de contrainte importantes qui limitent d'autant leur durée de vie en fatigue. De ce fait, il est généralement nécessaire de reprendre, une fois les opérations de soudage réalisées, les alésages des douilles soudées dans les poutres et, le cas échéant, ceux des entretoises soudées dans les poutres intérieures à leurs deux extrémités servant au logement des axes de pivotement afin notamment de maîtriser le niveau des contraintes mécaniques dans les axes et dans les cordons de soudure des douilles et des entretoises sur les poutres. Dans le cas des entretoises, l'usinage est encore plus compliqué en raison de l'encombrement de l'ensemble monobloc constitué par les poutres intérieures reliées entre elles.
Pour ce qui concerne le montage, dans les poutres de ciseaux, des douilles logeant les axes de pivotement, US 2008/0105498 Al propose de remplacer le soudage par une opération de déformation plastique des extrémités de la douille après montage dans le trou de passage de la poutre afin de la maintenir en place dans la poutre. Cette solution peut poser des difficultés en termes de précision des pièces. De plus, elle nécessite de placer une entretoise dans la poutre à travers laquelle la douille est reçue, ce qui rend plus complexe la fabrication de la poutre de ciseaux. Il est nécessaire aussi de réaliser une ouverture dans la poutre tubulaire pour y introduire Γ entretoise, ce qui fragilise la poutre. Alternativement, il faut utiliser des poutres avec un profil en U qui ont une résistance mécanique moindre que les poutres tubulaires.
Le but de la présente invention est de pallier au moins partiellement les inconvénients précités.
A cette fin, la présente invention propose, selon un premier aspect, un assemblage de bras de ciseaux pour mécanisme de levage en ciseaux de la plate-forme de travail d'une nacelle élévatrice, comprenant un premier bras de ciseaux et un deuxième bras de ciseaux montés ensemble de manière pivotante autour d'un axe traversant les deux bras, dans lequel :
chacun des bras est formé par une poutre tubulaire laquelle présente :
o une première plaque de renfort locale soudée sur la surface extérieure d'un premier côté de la poutre ; et
o une deuxième plaque de renfort locale soudée sur la surface extérieure d'un deuxième côté de la poutre qui est opposé au premier côté de la poutre ;
chacun des bras présente :
o un premier trou de passage de l'axe réalisé dans la première plaque de renfort et le premier côté de la poutre, et
o un deuxième trou de passage (102 ; 104) de l'axe réalisé dans la deuxième plaque de renfort et le deuxième côté de la poutre ;
dans lequel :
o l'axe est supporté circonférentiellement dans le premier trou de passage à la fois par la poutre et la première plaque de renfort ;
o l'axe est supporté circonférentiellement dans le deuxième trou de passage à la fois par la poutre et la deuxième plaque de renfort ; et o l'axe est libre de support à l'intérieur de la poutre entre le premier trou de passage et le deuxième trou de passage.
Il est en effet inutile que l'axe de pivotement soit supporté sur toute la largeur de la poutre de ciseaux comme c'est généralement le cas dans l'art antérieur. L'on comprendra que l'homme du métier dimensionnera les plaques de renfort, en particulier leur épaisseur, de manière à ce que la largeur des trous de passage soit appropriée pour supporter correctement l'axe de pivotement qui est reçu eu égard aux contraintes mécaniques auxquels ils seront soumis au sein de la nacelle élévatrice.
Cette façon de réaliser l'assemblage des bras de ciseaux évite de recourir à des pièces de logement des axes de pivotement qui traversent de part en part les poutres de ciseaux et qui sont soudées sur elles de chaque côté. Autrement dit, elle dispense de recourir, comme c'était le cas dans l'art antérieur, à des douilles de logement des axes de pivotement montées dans les poutres de ciseaux et soudées de part et d'autre de celles-ci, ainsi que, dans le cas de nacelles élévatrices à doubles ciseaux, le fait de faire pénétrer et traverser les poutres de ciseaux en les y soudant de part et d'autre des entretoises de liaison des bras intérieurs. Etant donné que la forme et la taille des plaques de renfort ne sont pas directement imposées par celles de l'axe de pivotement ou d'une pièce recevant l'axe comme c'est le cas de la douille ou de l'entretoise dans l'art antérieur, celles-ci peuvent être choisies par l'homme du métier de manière à limiter les concentrations de contrainte dans le cordon de soudure qui les lient aux poutres afin d'améliorer sa durée de vie en fatigue. De ce point de vue, la longueur du cordon de soudure - lequel est déterminé par le périmètre des plaques de renfort - peut être avantageusement choisie plus grande que celle du cordon de soudure appliqué habituellement au niveau du bossage des douilles ou des entretoises traversant la poutre dans le cas de l'art antérieur. Par ailleurs, contrairement à US 2008/0105498 Al, la solution de l'invention permet d'utiliser une poutre tubulaire sans avoir à l'affaiblir avec des ouvertures.
Les deux trous de passage de l'axe peuvent avantageusement être réalisés - ou finis en cas de pré-perçage - après l'opération de soudage des plaques de renfort. De la sorte, les éventuelles déformations de la poutre due au soudage n'influenceront pas le positionnement des trous de passage. Par ailleurs, les opérations d'usinage des trous de passage sont minimisées car la profondeur cumulée des deux trous de passage d'axe est inférieure à la largeur de la poutre de ciseaux contrairement au cas des douilles ou entretoises dans l'art antérieur.
Bien entendu, la façon de réaliser l'assemblage des bras de ciseaux selon l'invention peut être utilisée pour chacune des liaisons pivotantes entre un bras et d'autres bras. Il est avantageux que toutes les liaisons pivotantes entre un bras avec d'autres bras soient réalisées ainsi.
Dans le cas des nacelles élévatrices à double ciseaux, il est particulièrement avantageux de combiner l'assemblage des bras de ciseaux selon l'invention avec une solution de liaison rigide des poutres intérieures entre elles sans soudure. Il peut néanmoins aussi être utilisé avec ses avantages propres dans le cas où les entretoises sont soudées sur les poutres intérieures à des endroits décalés des axes. Dans ce cas, l'usinage des trous de passage des axes de pivotement dans les bras intérieurs est réalisé préférentiellement après le soudage des entretoises.
L'on comprendra que l'assemblage des bras de ciseaux selon l'invention peut être utilisé aussi pour des nacelles élévatrices à simple ciseaux, c'est-à-dire qui ne comprennent qu'un seul ensemble de ciseaux empilés. Suivant des modes de réalisation préférés, l'assemblage de bras de ciseaux selon ce premier aspect de l'invention comprend une ou plusieurs des caractéristiques suivantes :
l'axe est bloqué en translation par rapport aux deux bras ;
- l'axe est bloqué en rotation par rapport au premier bras ;
- une bague de palier lisse respective est agencée dans le premier trou de passage et dans le deuxième trou de passage du deuxième bras ;
un élément d'arrêt est fixé de manière amovible au premier bras et interfère avec l'axe par coopération de forme pour arrêter la translation de l'axe par rapport au premier bras ;
l'élément d'arrêt interfère avec l'axe par coopération de forme pour bloquer l'axe également en rotation par rapport au premier bras ;
l'axe présente au moins une rainure engagée par l'élément d'arrêt pour bloquer l'axe à la fois en translation et en rotation par rapport au premier bras ;
- l'élément d'arrêt est fixé au premier bras par des vis ;
l'élément d'arrêt est en forme de plaque ;
l'assemblage comprend une plaque de montage pour un actionneur du mécanisme de levage en ciseaux, la plaque de montage étant montée au premier bras ;
- une extrémité de la plaque de montage est montée au premier bras par le biais de l'axe, la plaque de montage étant montée sur l'axe et prise en sandwich entre l'élément d'arrêt et le premier bras ;
l'assemblage comprend au moins un deuxième axe par le biais duquel une extrémité de la plaque de montage est montée au premier bras et dans lequel : o la poutre formant le premier bras présente :
une troisième plaque de renfort locale soudée sur la surface extérieure du premier côté de la poutre ;
une quatrième plaque de renfort locale soudée sur la surface extérieure du deuxième côté de la poutre ;
un premier trou de passage du deuxième axe réalisé dans la troisième plaque de renfort et le premier côté de la poutre et dans lequel le deuxième axe est supporté circonférentiellement à la fois par la poutre et la troisième plaque de renfort ; et
un deuxième trou de passage du deuxième axe réalisé dans la quatrième plaque de renfort et le deuxième côté de la poutre et dans lequel le deuxième axe est supporté circonférentiellement à la fois par la poutre et la quatrième plaque de renfort ; et o la plaque de montage est montée sur le deuxième axe et pris en sandwich entre le premier bras et un deuxième élément d'arrêt fixé de manière amovible au premier bras, le deuxième élément d'arrêt interférant avec le deuxième axe par coopération de forme pour bloquer la translation du deuxième axe par rapport au premier bras ;
le deuxième élément d'arrêt est identique au premier élément d'arrêt ;
l'assemblage comprend deux autres bras de ciseaux montés ensemble de manière pivotante autour de l'axe, les deux autres bras étant distant axialement des premier et deuxième bras, les deux autres bras de ciseaux étant identiques aux premier et deuxième bras de ciseaux et maintenus sur l'axe de la même manière que les premier et deuxième bras de ciseaux.
L'invention propose selon un deuxième aspect une nacelle élévatrice, comprenant un châssis, une plate-forme de travail et un mécanisme de levage en ciseaux monté sur le châssis et supportant la plate-forme de travail pour la déplacer en hauteur, dans laquelle le mécanisme de levage en ciseaux comprend au moins un assemblage de bras de ciseaux selon le premier aspect. Il est avantageux que tous les bras de ciseaux au niveau de leurs différentes zones de liaison pivotante avec les autres bras de ciseaux du mécanisme de levage et la façon de les assembler de manière pivotante soient réalisés conformément à l'assemblage de bras de ciseaux tel que défini selon le premier aspect de l'invention.
D'autres aspects, caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit d'un mode de réalisation préféré de l'invention, donnée à titre d'exemple et en référence au dessin annexé.
Les figures 1 et 2 représentent chacune une vue en perspective d'une même nacelle élévatrice à double ciseaux de l'art antérieur, sa plate-forme de travail étant respectivement en position abaissée et à l'état levé.
La figure 3 est une vue en perspective du mécanisme de levage en ciseaux de la nacelle élévatrice des figures 1 et 2.
La figure 4 est une vue en perspective de l'ensemble monobloc formé par les poutres intérieures du deuxième un étage de ciseaux du mécanisme de levage de la figure 3.
La figure 5 est une vue en coupe partielle de l'assemblage, à une extrémité, de l'ensemble monobloc de la figure 3 avec les poutres extérieures du troisième étage de ciseaux.
La figure 6 est une vue en perspective du mécanisme de levage en ciseaux selon un mode de réalisation de l'invention qui est destiné à remplacer celui de la figure 3 pour la nacelle élévatrice des figures 1 et 2, celui-ci étant regardé d'un point de vue placé de l'autre côté du mécanisme de levage par rapport à la figure 3.
La figure 7 est une vue en coupe partielle montrant l'assemblage de deux bras de ciseaux intérieurs du deuxième étage avec les deux bras extérieurs du troisième étage du mécanisme de levage de la figure 6.
Les figures 8 et 9 représentent chacune une vue en perspective d'un bras de ciseaux intérieur du deuxième étage du mécanisme de levage de la figure 6, la première montrant le côté vers l'extérieur de la nacelle élévatrice et la deuxième montrant le côté vers l'intérieur de la nacelle élévatrice, c'est-à-dire le côté du bras qui fait face à l'autre ensemble de ciseaux empilés.
La figure 10 est une vue en perspective d'une plaque d'arrêt utilisée dans l'assemblage illustré par la figure 7.
La figure 11 est une vue en perspective d'un axe de pivotement de bras du mécanisme de levage de la figure 6.
La figure 12 est une vue en coupe locale faite perpendiculairement à l'axe de pivotement au niveau de l'une des plaques d'arrêt de la partie de l'assemblage montrée à la figure 7.
La figure 13 est une vue locale en perspective du mécanisme de levage de la figure 6 faite au niveau des plaques de montage d'une extrémité du vérin hydraulique d'actionnement.
La figure 14 est une vue en perspective d'une des plaques de montage de vérin visible sur la figure 13.
La figure 15 est une vue en coupe locale à travers les bras auxquels sont montés les plaques de montage du vérin de la figure 13.
Nous allons décrire ci-après un mode de réalisation préféré de l'invention en référence aux figures 6 à 15.
La figure 6 montre une vue d'ensemble du mécanisme de levage en ciseaux qui est prévu pour se substituer à celui de l'art antérieur de la figure 3 dans la nacelle élévatrice des figures 1 et 2.
La configuration générale du mécanisme de levage est similaire à celui de la figure 3. Comme celui-ci, il comprend deux ensembles de ciseaux parallèles et distants l'un de l'autre. Chaque ensemble de ciseaux comprend des paires de poutres tubulaires articulées entre elles en leur centre à la façon de ciseaux, une pluralité de tels ciseaux étant montés les uns au-dessus des autres par leurs extrémités articulées entre elles : cf. les quatre paires (121, 122), (123, 124), (125, 126) et (127, 128) définissant le premier ensemble de ciseaux empilés et les quatre paires de ciseaux (131, 132), (133, 134), (135, 136) et (137, 138) définissant le deuxième ensemble de ciseaux empilés. La section des poutres tubulaires est préférentiellement rectangulaire ou carré, mais peut être différente. Le mécanisme de levage comprend aussi 4 étages de ciseaux référencés de 11 à 14, mais il peut y en avoir plus ou moins. L'on y retrouve aussi les axes 15 et 16 montées aux extrémités inférieures des poutres du premier étage 11 destinés à être montés sur le châssis 1 en liaison pivotante pour le premier et en liaison coulissante pour le deuxième. De la même manière, l'on y retrouve les axes 17 et 18 montés aux extrémités supérieures des poutres du dernier étage 14 destinés à être montés sous la plate-forme de travail 3 en liaison pivotante pour le premier et en liaison coulissante pour le deuxième. L'on y retrouve aussi le vérin hydraulique 4 pour actionner le mécanisme en ciseaux qui est monté entre le premier et le troisième étages de ciseaux 11 , 13. Alternativement, le vérin 4 peut être monté entre d'autres étages de ciseaux ou encore entre le châssis 1 et un des étages de ciseaux. Il peut également être prévu plusieurs vérins 4 au lieu d'un seul, chacun pouvant être monté à des étages de ciseaux différents.
Dans la suite, nous décrirons les spécificités du mécanisme de levage de la figure
6.
En référence aux figures 7 à 12, nous décrirons plus particulièrement la structure des bras de ciseaux et la façon de les assembler de manière pivotante entre eux, ainsi que la manière dont on relie rigidement les deux ensembles de ciseaux parallèles entre eux.
La figure 7 montre la structure de la poutre intérieure 124 et de la poutre extérieure 125 du premier ensemble de ciseaux empilés au niveau de leur liaison pivotante, ainsi que la façon de les assembler. Il en est de même pour la poutre intérieure 134 et la poutre extérieure 135 du deuxième ensemble de ciseaux empilés. Nous limiterons la description au cas des poutres 124, 125 car la structure des poutres 134, 135 et leur assemblage pivotant sont identiques. Plus généralement, la structure de toutes les poutres de ciseaux au niveau de leurs différentes zones de liaison pivotante avec les autres poutres de ciseaux du mécanisme de levage et la façon de les assembler de manière pivotante sont préférentiellement toujours les mêmes. De ce fait, la description ci-après vaut pour toute liaison pivotante entre une poutre de ciseaux quelconque avec une autre poutre de ciseaux du mécanisme de levage, qu'il s'agisse d'une liaison en leur partie centrale ou en leur zone d'extrémité, les éventuelles différences de mise en œuvre étant mentionnées le cas échéant.
Les figures 8 et 9 montrent de façon isolée la poutre 124 des deux côtés, étant précisé que cette description vaut aussi pour la poutre 134. L'on y distingue les trois passages d'axe de pivotement qui traversent la poutre 124 de part en part : un à chaque extrémité pour le montage en liaison pivotante avec les poutres 121 et 125 et un qui est central pour le montage en liaison pivotante avec la poutre 123. A chaque passage d' axe, une plaque de renfort est soudée de chaque côté de la poutre 124 de préférence sur tout le contour de la plaque de renfort : cf. les plaques de renfort 80 et 81 à chaque passage d'axe d'extrémité de la poutre et les plaques de renfort 80A, 81A au passage d'axe central de la poutre 124. Les plaques de renfort 81 sont identiques aux plaques de renfort 80, mais elles sont traversées en plus par deux taraudages - visibles, mais non référencés - qui traversent aussi le côté de la poutre 124 sur lequel elles sont soudées. Ces taraudages sont destinés à recevoir des vis 95 visibles sur la figure 7. Les plaques de renfort 80A et 81 A sont identiques aux plaques de renfort 80 et 81 respectivement, sauf à remarquer que le passage d'axe y est centré tandis le passage d'axe est décentré pour les plaques de renfort 80 et 81 en raison de son agencement vers l'extrémité de la poutre. Les taraudages sont placés symétriquement de part et d'autre du passage d'axe dans le cas des plaques 81 et 81 A.
Chacun des passages d'axe est constitué de deux trous de passage d'axe 103, 104.
Le trou de passage d'axe 103 est défini par le trou traversant ensemble la plaque de renfort 80, respectivement 80 A et la paroi du côté de la poutre 124 sur laquelle elle est soudée. Similairement, le trou de passage d'axe 104 est défini par le trou traversant ensemble la plaque de renfort 81 , respectivement 81A et la paroi du côté de la poutre 124 sur laquelle elle est soudée.
En référence à la figure 7, le passage d'axe défini par les trous 103, 104 de la poutre 124 est traversé par un axe de pivotement 70. L'axe 70 est supporté circonférentiellement dans le premier trou de passage 103 à la fois par la plaque de renfort 80 et la paroi de la poutre 124 sur laquelle elle est soudée. Similairement, l'axe 70 est supporté circonférentiellement dans le deuxième trou de passage à la fois par la plaque de renfort 104 et la paroi de la poutre 124 sur laquelle elle est soudée. Est visible sur la figure 7 le fait que le passage d'axe de la poutre 124 est exempt de douille ou pièce similaire reliant les deux parois opposés de la poutre 124 contrairement au cas de l'art antérieur. Autrement dit, le bras de ciseaux formé par la poutre 124 avec ses plaques de renfort 80, 81 supporte circonférentiellement l'axe uniquement au moyen des deux trous de passage 103, 104. De ce fait, l'homme du métier choisira l'épaisseur des plaques de renfort 80, 81, respectivement 80A, 81 A, de façon appropriée pour que l'axe de pivotement 70 soit supporté dans des conditions satisfaisantes par les deux trous de passage 103, 104.
Les bras de ciseaux extérieurs formés par les poutres 125, 135 sont de préférence identiques à ceux intérieurs 124, 134, à deux exceptions près que nous mentionnerons ci-après. Les poutres 125, 135 présentent chacune une plaque de renfort 82 soudée sur chaque côté de la poutre au niveau du passage d'axe traversé par l'axe 70, mais - première différence - il n'y a pas de taraudages pour recevoir des vis 95.
Les plaques de renfort 82 sont de préférence identiques aux plaques de renfort 80. Comme pour la poutre 124, chacun des passages d'axe est constitué de deux trous de passage d'axe 101, 102. Toutes les considérations mentionnées plus haut à propos du support circonférentiel de l'axe 70 dans les trous de passage d'axe 103, 104 valent aussi pour les trous de passage d'axe 101, 102, sauf à préciser - deuxième différence avec la poutre 124 - qu'une bague de palier lisse 83 respective est montée dans chaque trou de passage d'axe 101, 102 pour réduire les frottements avec l'axe 70. Comme cela est visible sur la figure 7, chaque bague de palier lisse 83 est arrêtée axialement vers l'intérieur de la poutre 125 par un épaulement ménagé dans le trou de passage d'axe 101, 102 correspondant. Cette différence est liée au fait que la poutre 125 est libre de pivoter autour de l'axe 70 tandis qu'il est bloqué en rotation par rapport à la poutre 124 comme nous le verrons. En variante, les trous de passage d'axe 101, 102 sont dépourvues de bagues de palier lisse, mais sont usinés et soumis éventuellement à un traitement de surface ou pourvu de revêtement de manière à former des paliers lisses. Le fait de bloquer l'axe 70 en rotation par rapport à la poutre 124 évite de devoir ménager aussi des paliers lisses dans les trous de passage 103, 104. En variante, les deux poutres 124, 125 sont libres en rotation par rapport à l'axe 70.
Une rondelle 100 est de préférence montée sur l'axe 70 entre les poutres 124 et 125 afin de limiter le frottement entre elles lors de leur pivotement.
L'axe 70 est bloqué en translation par rapport aux deux poutres 124, 125, et aussi par rapport aux poutres 134, 135. Cela peut être réalisé par tout moyen approprié par exemple un anneau élastique 85 du côté de la poutre extérieure 125 et un épaulement sur l'axe 70 du côté de la poutre intérieure 124.
Mais dans le cas préféré où l'axe 70 est bloqué en rotation par rapport à la poutre 124, il peut avantageusement être recouru à un élément d'arrêt fixé de manière amovible à la poutre 124 et interférant avec l'axe 70 par coopération de forme pour arrêter à la fois la translation et la rotation de l'axe 70 par rapport à la poutre 124.
L'élément d'arrêt est de préférence réalisé sous la forme d'une plaque 90 illustrée à la figure 10. La plaque d'arrêt 10 présente une encoche 92 ayant deux bords parallèles et deux trous lisses 91. Comme cela est visible sur la figure 7, les deux trous lisses 91 servent à fixer la plaque d'arrêt 90 sur la plaque de renfort 81 de la poutre 124 au moyen des vis 95 vissées dans les deux taraudages ménagés dans la plaque de renfort 81 et la paroi correspondante de la poutre 124. Les bords parallèles de l'encoche 92 servent à engager deux rainures 71 parallèles et diamétralement opposés ménagées dans l'axe 70 à cet effet : cf. la coupe locale perpendiculairement à l'axe 70 au niveau des deux rainures 71 de la figure 12. La plaque d'arrêt 90 vient ainsi en prise dans les rainures 71 à la façon d'une clé plate. De la sorte, la plaque d'arrêt 90 bloque à la fois l'axe 70 en translation et en rotation par rapport à la poutre 124. La figure 11 montre l'axe 70 en perspective : on y voit qu'une seule des deux rainures 71 pour la liaison de l'axe 70 avec la poutre 124 du fait de la perspective. Pour la même raison, l'on y voit aussi qu'une seule des rainures 71 pour la liaison de l'axe 70 avec la poutre 134. L'on y voit aussi deux rainures 72 qui ne sont pas visibles sur la figure 7 car optionnelles, mais dont on verra l'utilité plus loin. L'on y voit encore une gorge 73 à chaque extrémité pour recevoir l'anneau élastique 85 correspondant. L'on remarquera que la fabrication des plaques d'arrêt 90 et la réalisation des rainures 71 - et aussi 72 le cas échéant - sur l'axe 70 sont très simples. En variante, l'axe 70 est pourvu d'une seule rainure 71 avec laquelle coopère la plaque d'arrêt 90 au lieu de deux rainures 71 diamétralement opposées auquel cas la forme de l'encoche 92 de la plaque d'arrêt est adaptée en conséquence. Cependant, la réalisation avec deux rainures 71 diamétralement opposées est préférable du point de vue mécanique.
En variante, on utilise un tel élément d'arrêt fixé de manière amovible à la poutre 124 et interférant avec l'axe 70 par coopération de forme pour arrêter seulement la translation de l'axe 70 par rapport à la poutre 124 dans le cas où l'on ne souhaite pas bloquer la rotation de l'un par rapport à l'autre. Par exemple, il suffit de remplacer les rainures 71 par une gorge circonférentielle ménagée dans l'axe 70 destinée à être engagée par les bords de l'encoche 92 de la plaque d'arrêt 90.
En variante, l'élément d'arrêt est fixé à demeure sur la poutre 124, mais il est préférable qu'il y soit fixé de façon amovible car cela permet avantageusement de démonter le mécanisme de levage en cas de défaillance d'un axe de pivotement ou d'un bras de ciseaux afin de le remplacer.
En variante, l'on bloque la translation et la rotation de l'axe 70 par rapport à la poutre extérieure 125 au lieu de la poutre intérieure 124 auquel cas l'élément d'arrêt précité peut être prévu du côté de la poutre extérieure 125 pour y être fixé de manière amovible.
L'on remarquera que l'axe 70 permet de relier rigidement entre elles les poutres intérieures 124, 134, compte tenu du blocage en translation de l'axe 70 par rapport aux poutres intérieures 124, 134. Les deux ensembles de ciseaux parallèles sont donc reliés rigidement entre eux sans recourir à des entretoises. L'on évite ainsi les éventuelles soudures des entretoises aux poutres de ciseaux qui ont tendance à déformer les poutres. De plus, il en résulte un gain en poids car un axe commun présente une section de matière inférieure à celle d'une entretoise. De plus, le recours à un élément d'arrêt, y compris sous la forme de la plaque d'arrêt 90, qui vient d'être décrit peut aussi être appliqué à un axe de pivotement de poutres de ciseaux qui est court, c'est-à-dire qui ne reçoit que deux poutres de ciseaux au lieu de quatre. C'est le cas par exemple de l'axe de pivotement dans la partie centrale des poutres 123, 124 du premier ensemble de ciseaux et de l'axe de pivotement dans la partie centrale des poutres 133, 134 du deuxième ensemble de ciseaux du fait qu'un axe commun à ces quatre poutres interférerait avec le vérin de levage 4. C'est le cas aussi dans notre exemple de l'axe de pivotement central des poutres 125, 126 et de l'axe de pivotement central des poutres 135, 136 comme on le voit distinctement sur la figure 13.
Par ailleurs, les passages pour les axes 15 et 16 dans les extrémités inférieures des bras de ciseaux du premier étage 11, et ceux pour les axes 17 et 18 dans les extrémités supérieures des bras de ciseaux du dernier étage 1 peuvent avantageusement être réalisés de la même façon que les passages des axes de pivotement des poutres entre elles. Ces axes 15 à 18 peuvent avantageusement être maintenus dans les bras de ciseaux à l'aide d'éléments d'arrêt interférant avec ces axes de la même manière que décrite pour les axes de pivotement des bras de ciseaux entre eux, en particulier par des plaques d'arrêt 90. En référence aux figures 13 à 15, nous décrirons le montage d'une extrémité du vérin d'actionnement 4, en l'occurrence sa tige, aux poutres intérieures de ciseaux du troisième étage 13, étant précisé que l'autre extrémité du vérin est de préférence montée de la même manière aux poutres intérieures de ciseaux du premier étage 11.
La tige du vérin 4 est montée à chacune des poutres intérieures de ciseaux 126, 136 par le biais d'une plaque de montage 200 respective de forme générale triangulaire. Chaque plaque de montage 200 est montée de la même manière à la poutre de ciseaux concernée. De ce fait, on ne le décrira que pour la poutre 126.
La figure 14 montre une plaque de montage 200. Elle comprend une saillie 201 formant un logement pour recevoir une extrémité d'un axe sur lequel est articulée l'extrémité de la tige du vérin 4. Elle comprend à chaque extrémité un trou de passage d'axe 202, respectivement 203, et deux trous lisses 204, respectivement 205, réalisés de part et d'autre du trou de passage d'axe.
Comme cela est visible sur les figures 13 et 15, une extrémité de la plaque de montage 200 est montée sur l'axe d'extrémité 70 reliant de façon pivotante les poutres de ciseaux 123, 126 d'une part et les poutres de ciseaux 133, 136 d'autre part. Etant donné que l'assemblage pivotant de ces poutres est identique - à une exception près - à celui décrit en référence aux figures 7 à 12, les mêmes numéros de référence ont été utilisés pour désigner les éléments identiques. La seule différence par rapport à la figure 7 est que la plaque de montage 200 est montée en plus sur l'axe 70 qui traverse le trou de passage 203, la plaque de montage 200 étant prise en sandwich entre la plaque d'arrêt 90 et la plaque de renfort 81 de la poutre 126. Les vis 95 sont visées dans la plaque de renfort 81 et la paroi correspondante de la poutre 126 à travers à la fois les trous 91 de la plaque d'arrêt 90 et les trous 205 de la plaque de montage 200. Compte tenu de la surépaisseur de matière de la plaque de montage 200, la plaque d'arrêt 90 engage les rainures 72 de l'axe 70 prévues à cet effet au lieu des rainures 71. Les rainures 72 sont identiques aux rainures 71 et servent à la même fonction - déjà décrite plus haut - de blocage de l'axe 70 par rapport à la poutre intérieure de ciseaux grâce à la plaque d'arrêt 90. Les rainures 72 sont donc seulement décalées axialement par rapport aux rainures 71, comme cela est visible sur la figure 11, afin de tenir compte de la surépaisseur de matière de la plaque de montage 200. Bien entendu, les rainures 71 ne servent pas dans ce cas et pourraient donc être omises de l'axe 70.
L'autre extrémité de la plaque de montage 200 - qui correspond au trou de passage 202 - n'est pas montée sur un axe de pivotement de poutres de ciseaux car la plaque de montage 200 ne s'étend pas jusqu'à l'axe de pivotement central des poutres de ciseaux 125, 126. Tel peut évidemment être le cas et le montage de cette autre extrémité de la plaque de montage sur l'axe de pivotement central se ferait de la même manière que pour l'extrémité correspondant au trou de passage 203 qui vient d'être décrite.
Dans le cas représenté, l'autre extrémité de la plaque de montage 200 est montée sur un axe de montage 170 dédié à cette seule fin. L'axe 170 est reçu dans un passage d'axe réalisé dans la poutre 126 qui est renforcé par une plaque de renfort 180, 181 soudée de chaque côté de la poutre, de manière identique que pour le cas des passages d'axe de pivotement des poutres de ciseaux. Ces plaques de renfort sont d'ailleurs de préférence identiques aux plaques de renfort 80A, 81 A. La plaque de montage 200 est montée sur l'axe 170 qui traverse le trou de passage 202. Le maintien en position de la plaque de montage 200 contre la poutre 126 est assuré de la même façon qu'à son autre extrémité, raison pour laquelle les mêmes numéros de référence ont été utilisés pour désigner les éléments identiques. Autrement dit, la plaque de montage 200 est prise en sandwich entre une plaque d'arrêt 90 vissée dans la plaque de renfort 181 et la poutre 126 par des vis 95 traversant les trous 204 prévus à cet effet. Cette plaque d'arrêt 90 coopère aussi avec des rainures - similaires aux rainures 72 de l'axe 70 - ménagées dans l'axe 170 pour bloquer la translation de l'axe 170 par rapport à la poutre 126. Il en résulte que la plaque d'arrêt 90 maintien aussi l'axe 170 dans la poutre 126. En variante, les deux extrémités de la plaque de montage peuvent être montées sur un axe de montage dédié respectif de la façon décrite, mais il est plus avantageux de monter les plaques de montage de vérin sur au moins un axe de pivotement de poutres de ciseaux, voire deux, par souci de simplification de la fabrication.
L'on comprendra que les différentes manières de monter la plaque de montage
200 à un bras de ciseaux qui viennent d'être décrites peuvent aussi être utilisées dans le cas d'une nacelle élévatrice à simple ciseaux pour fixer à un bras de ciseaux un support de montage d'une extrémité du vérin d'actionnement du mécanisme de levage en ciseaux qui comprend une plaque identique ou similaire à la plaque de montage 200.
Bien entendu, la présente invention n'est pas limitée au mode de réalisation et variantes précédemment décrits et représentés, mais elle est susceptible de nombreuses variantes accessibles à l'homme de l'art.
L'on comprendra aussi que le fait de relier rigidement ensemble les deux ensembles de ciseaux parallèles - sans recourir à des entretoises - au moyen d'axes de pivotement commun aux poutres de ciseaux des deux ensembles de ciseaux parallèles et d'éléments d'arrêt interférant avec les axes tel que décrit plus haut, en particulier sous la forme des plaques d'arrêt 90, peut être mis en œuvre indépendamment de la structure des passages d'axe de pivotement des poutres de ciseaux selon l'invention. Ainsi, selon un autre aspect, l'invention propose un assemblage de bras de ciseaux pour mécanisme de levage en ciseaux de la plate-forme de travail d'une nacelle élévatrice, comprenant :
- un premier bras de ciseaux et un deuxième bras de ciseaux montés ensemble de manière pivotante autour d'un axe, et
- un troisième bras de ciseaux et un quatrième bras de ciseaux montés ensemble de manière pivotante autour du même axe,
dans lequel :
les troisième et quatrième bras sont distants axialement des premier et deuxième bras ; et
un élément d'arrêt respectif est fixé de manière amovible aux premier et troisième bras et interfère avec l'axe par coopération de forme pour arrêter la translation de l'axe par rapport aux premier et troisième bras respectivement.
Les premier et troisième bras sont préférentiellement montés sur l'axe entre les deuxième et quatrième bras. De façon avantageuse, l'assemblage est exempt d'entretoise s'étendant entre les premier et troisième bras. Il est avantageux que les éléments d'arrêt interfèrent avec l'axe par coopération de forme pour bloquer l'axe également en rotation par rapport au premier bras. Il est encore avantageux que l'axe présente au moins une rainure respective qui soit engagée chacune par l'un respectif des éléments d'arrêt pour bloquer l'axe à la fois en translation et en rotation par rapport aux premier et troisième bras respectivement. Les éléments d'arrêt sont de préférence fixés aux premier et troisième bras respectivement par des vis. Les éléments d'arrêt peuvent être avantageusement en forme de plaque. Chacun des bras est de préférence formé par une poutre tubulaire. L'invention propose aussi une nacelle élévatrice comprenant un châssis, une plate-forme de travail et un mécanisme de levage en ciseaux monté sur le châssis et supportant la plate-forme de travail pour la déplacer en hauteur, dans laquelle le mécanisme de levage en ciseaux comprend au moins un assemblage de bras de ciseaux selon cet autre aspect de l'invention.

Claims

REVENDICATIONS
Assemblage de bras de ciseaux pour mécanisme de levage en ciseaux de la plateforme de travail d'une nacelle élévatrice, comprenant un premier bras de ciseaux (124) et un deuxième bras de ciseaux (125) montés ensemble de manière pivotante autour d'un axe (70) traversant les deux bras, dans lequel :
chacun des bras est formé par une poutre tubulaire laquelle présente :
o une première plaque de renfort locale (80 ; 82) soudée sur la surface extérieure d'un premier côté de la poutre ; et
o une deuxième plaque de renfort locale (81 ; 82) soudée sur la surface extérieure d'un deuxième côté de la poutre qui est opposé au premier côté de la poutre ;
chacun des bras présente :
o un premier trou de passage (101 ; 103) de l'axe réalisé dans la première plaque de renfort et le premier côté de la poutre, et
o un deuxième trou de passage (102 ; 104) de l'axe réalisé dans la deuxième plaque de renfort et le deuxième côté de la poutre ;
dans lequel :
o l'axe est supporté circonférentiellement dans le premier trou de passage à la fois par la poutre et la première plaque de renfort ;
o l'axe est supporté circonférentiellement dans le deuxième trou de passage à la fois par la poutre et la deuxième plaque de renfort ; et o l'axe est libre de support à l'intérieur de la poutre entre le premier trou de passage et le deuxième trou de passage.
Assemblage selon la revendication 1, dans lequel l'axe est bloqué en translation par rapport aux deux bras.
Assemblage selon la revendication 2, dans lequel l'axe est bloqué en rotation par rapport au premier bras (124).
4. Assemblage selon la revendication 3, dans lequel une bague de palier lisse (83) respective est agencée dans le premier trou de passage et dans le deuxième trou de passage du deuxième bras (125). Assemblage selon l'une quelconque des revendications 2 à 4, comprenant un élément d'arrêt (90) fixé de manière amovible au premier bras (124) et interférant avec l'axe (70) par coopération de forme pour arrêter la translation de l'axe par rapport au premier bras.
Assemblage selon la revendication 5, dans lequel l'élément d'arrêt (90) interfère avec l'axe par coopération de forme pour bloquer l'axe (70) également en rotation par rapport au premier bras (124).
Assemblage selon la revendication 6, dans lequel l'axe (70) présente au moins une rainure (71) engagée par l'élément d'arrêt (90) pour bloquer l'axe (70) à la fois en translation et en rotation par rapport au premier bras (124).
Assemblage selon l'une quelconque des revendications 5 à 7, dans lequel l'élément d'arrêt (90) est fixé au premier bras par des vis (95).
Assemblage selon l'une quelconque des revendications 5 à 8, dans lequel l'élément d'arrêt est en forme de plaque (90).
Assemblage selon l'une quelconque des revendications 5 à 9, comprenant une plaque de montage (200) pour un actionneur du mécanisme de levage en ciseaux, la plaque de montage étant montée au premier bras.
11. Assemblage selon la revendication 10, dans lequel une extrémité de la plaque de montage (200) est montée au premier bras (126) par le biais de l'axe (70), la plaque de montage étant montée sur l'axe et prise en sandwich entre l'élément d'arrêt (90) et le premier bras (126).
12. Assemblage selon la revendication 10 ou 11, comprenant au moins un deuxième axe (170) par le biais duquel une extrémité de la plaque de montage est montée au premier bras (126) et dans lequel :
la poutre formant le premier bras présente :
o une troisième plaque de renfort locale (180) soudée sur la surface extérieure du premier côté de la poutre ;
o une quatrième plaque de renfort locale (181) soudée sur la surface extérieure du deuxième côté de la poutre ; o un premier trou de passage du deuxième axe (170) réalisé dans la troisième plaque de renfort (180) et le premier côté de la poutre et dans lequel le deuxième axe est supporté circonférentiellement à la fois par la poutre et la troisième plaque de renfort ; et
o un deuxième trou de passage du deuxième axe (170) réalisé dans la quatrième plaque de renfort (180) et le deuxième côté de la poutre et dans lequel le deuxième axe est supporté circonférentiellement à la fois par la poutre et la quatrième plaque de renfort ; et
la plaque de montage (200) est montée sur le deuxième axe (170) et pris en sandwich entre le premier bras et un deuxième élément d'arrêt (90) fixé de manière amovible au premier bras (126), le deuxième élément d'arrêt interférant avec le deuxième axe par coopération de forme pour bloquer la translation du deuxième axe (170) par rapport au premier bras.
13. Assemblage selon la revendication 12, dans lequel le deuxième élément d'arrêt est identique au premier élément d'arrêt.
14. Assemblage selon l'une quelconque des revendications 2 à 13, comprenant deux autres bras de ciseaux (134, 135) montés ensemble de manière pivotante autour de l'axe (70), les deux autres bras étant distant axialement des premier et deuxième bras (124, 125), les deux autres bras de ciseaux étant identiques aux premier et deuxième bras de ciseaux et maintenus sur l'axe (70) de la même manière que les premier et deuxième bras de ciseaux. 15. Nacelle élévatrice, comprenant un châssis (1), une plate-forme de travail (3) et un mécanisme de levage en ciseaux (2) monté sur le châssis et supportant la plate- forme de travail (3) pour la déplacer en hauteur, dans laquelle le mécanisme de levage en ciseaux comprend au moins un assemblage de bras de ciseaux selon l'une quelconque des revendications 1 à 14.
PCT/FR2016/050879 2015-04-18 2016-04-15 Assemblage de bras de ciseaux pour mecanisme de levage en ciseaux d'une nacelle elevatrice WO2016170251A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CA2982876A CA2982876C (fr) 2015-04-18 2016-04-15 Assemblage de bras de ciseaux pour mecanisme de levage en ciseaux d'une nacelle elevatrice
EP16720458.5A EP3286126B1 (fr) 2015-04-18 2016-04-15 Assemblage de bras de ciseaux pour mecanisme de levage en ciseaux d'une nacelle elevatrice
CN201680022513.XA CN107531470B (zh) 2015-04-18 2016-04-15 用于高空工作平台的剪刀式升降机构的剪刀臂组件
US15/567,366 US10358330B2 (en) 2015-04-18 2016-04-15 Scissor arm assembly for a scissor lifting mechanism of an aerial work platform
AU2016252090A AU2016252090B2 (en) 2015-04-18 2016-04-15 Scissor arm assembly for a scissor lift

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1553475A FR3035098B1 (fr) 2015-04-18 2015-04-18 Nacelle elevatrice a mecanisme de levage en ciseaux
FR1553475 2015-04-18

Publications (1)

Publication Number Publication Date
WO2016170251A1 true WO2016170251A1 (fr) 2016-10-27

Family

ID=53484014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2016/050879 WO2016170251A1 (fr) 2015-04-18 2016-04-15 Assemblage de bras de ciseaux pour mecanisme de levage en ciseaux d'une nacelle elevatrice

Country Status (7)

Country Link
US (1) US10358330B2 (fr)
EP (1) EP3286126B1 (fr)
CN (1) CN107531470B (fr)
AU (1) AU2016252090B2 (fr)
CA (1) CA2982876C (fr)
FR (1) FR3035098B1 (fr)
WO (1) WO2016170251A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10221054B2 (en) * 2015-08-19 2019-03-05 Vehicle Service Group, Llc High-strength composite structures for vehicle lifts
WO2020190534A1 (fr) * 2019-03-15 2020-09-24 Oshkosh Corporation Table élévatrice à ciseaux dotée de broches décalées

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113972A (en) * 1988-08-10 1992-05-19 Haak Martin Sr Scissor-type lifting device, particularly for a work platform
US6276489B1 (en) * 1999-02-10 2001-08-21 Genie Industries, Inc. Flanged cross tubes for use in scissors linkages
US20080105498A1 (en) 2006-06-12 2008-05-08 Genie Industries, Inc. Joint assembly and related methods

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US136883A (en) 1873-03-18 Improvement in fire-escapes
US2402579A (en) * 1945-05-24 1946-06-25 Weaver Mfg Co Load lifter
US2921645A (en) * 1956-10-23 1960-01-19 Fairchild Engine & Airplane Extensible ladder
US3442351A (en) * 1967-01-20 1969-05-06 Patricia D Parrish Method and apparatus for rapidly establishing an elevated work platform
US3596735A (en) * 1969-10-30 1971-08-03 Howard H Denier Portable elevator working and load-lifting platform
US3623707A (en) * 1969-11-05 1971-11-30 Chem Rubber Co Laboratory jack
US3880259A (en) * 1973-02-12 1975-04-29 Autoquip Corp Power apparatus for truck loading elevator
US4175644A (en) * 1973-10-15 1979-11-27 Robert Staines Scissors lift
US3920096A (en) * 1974-07-01 1975-11-18 Upright Inc Vertical hydraulic ram system for scissors assembly scaffold
WO1990001456A1 (fr) 1988-08-10 1990-02-22 Holland Lift B.V. Mecanisme de levage a parallelogrammes articules pour plateformes de travail
US5145029A (en) 1991-09-11 1992-09-08 Kidde Industries, Inc. Self-storing maintenance stand for a scissor lift aerial work platform
CA2115870C (fr) 1993-08-31 1999-01-05 Kenneth J. Zimmer Plate-forme de travail aerienne munie d'une seule poutre
US20060180403A1 (en) * 2005-01-07 2006-08-17 Hanlon Mark T Screw scissor lift
CN101993016B (zh) * 2009-08-12 2014-07-09 鸿富锦精密工业(深圳)有限公司 升降机构
CN101723285A (zh) * 2010-01-07 2010-06-09 上海攀杰机械有限公司 井道型无障碍升降平台
US8919735B2 (en) * 2011-02-24 2014-12-30 Rosenboom Machine & Tool, Inc. Scissor stack assembly
US8740191B2 (en) * 2011-06-10 2014-06-03 Ace Laser Tek, Inc. Laboratory jack
US9644378B2 (en) * 2011-12-12 2017-05-09 Ancra International Llc Variable height support
DE202012008386U1 (de) * 2012-09-01 2013-12-02 Christoph Mohr Scherenhubtisch
CN203048502U (zh) * 2013-01-29 2013-07-10 浙江大大不锈钢有限公司 一种焊管合缝机液压剪刀叉升降台
CN203065096U (zh) * 2013-03-04 2013-07-17 常州汉肯科技有限公司 剪叉杆及其制成的剪叉机构
US11383963B2 (en) * 2017-03-03 2022-07-12 Jlg Industries, Inc. Obstacle detection system for an aerial work platform

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5113972A (en) * 1988-08-10 1992-05-19 Haak Martin Sr Scissor-type lifting device, particularly for a work platform
US6276489B1 (en) * 1999-02-10 2001-08-21 Genie Industries, Inc. Flanged cross tubes for use in scissors linkages
US20080105498A1 (en) 2006-06-12 2008-05-08 Genie Industries, Inc. Joint assembly and related methods

Also Published As

Publication number Publication date
US10358330B2 (en) 2019-07-23
FR3035098A1 (fr) 2016-10-21
EP3286126A1 (fr) 2018-02-28
AU2016252090A1 (en) 2017-11-30
AU2016252090B2 (en) 2020-01-30
EP3286126B1 (fr) 2019-09-25
FR3035098B1 (fr) 2017-03-31
CN107531470B (zh) 2019-10-25
CA2982876A1 (fr) 2016-10-27
US20180162707A1 (en) 2018-06-14
CA2982876C (fr) 2023-02-28
CN107531470A (zh) 2018-01-02

Similar Documents

Publication Publication Date Title
FR2965199A1 (fr) Bride d'aide au travail de tubes comportant plusieurs parties.
EP3131746B1 (fr) Pièce polygonale à alvéoles pour une âme de panneau, en particulier de réflecteur d'antenne de satellite
FR2965198A1 (fr) Bride comportant un chemin de guidage en plusieurs parties.
EP3286126B1 (fr) Assemblage de bras de ciseaux pour mecanisme de levage en ciseaux d'une nacelle elevatrice
FR2774350A1 (fr) Structure de chassis pour un engin de travaux publics
EP0504081B1 (fr) Pied, pour embase de conteneur, du type palette, pouvant être empilé
WO2011067545A2 (fr) Abri pour bassins d'agrement adoptant partiellement ou en totalite la forme d'une rotonde
FR2560864A1 (fr) Montage de fleches telescopiques
EP3922511B1 (fr) Procédé de fixation par soudure d'un support d'interface sur un profilé de glissière de siège de véhicule
EP2426265A1 (fr) Bras de démolition du type destiné à être relié par une liaison articulée au porteur d'un engin de démolition et engin de démolition équipé d'un tel bras
EP3645872B1 (fr) Tronçon de mât d'éolienne, mât d'éolienne et procédé d'assemblage
FR2699977A1 (fr) Dispositif de rotation employant des paliers à rouleaux avec contact de roulement.
FR2774407A1 (fr) Bras de levage allonge et a stabilite accrue pour un engin
EP1692070B1 (fr) Chariot et portique comprenant un tel chariot
FR2934193A1 (fr) Dispositif de coffrage destine a etre rapporte sur au moins une poutre et procede d'aboutage de poutres a l'aide d'un tel dispositif
WO2008155475A1 (fr) Outil de positionnement de jupes arrière de véhicule sur une ligne d'assemblage, et son utilisation
EP0636448B1 (fr) Unité d'indexation précise d'une palette dans le référentiel d'un poste de travail
FR2979890A1 (fr) Organe de support destine a etre fixe sur une structure de support d'une caisse de vehicule automobile
FR2858040A1 (fr) Ensemble de liaison pour la realisation des coins d'une structure tubulaire
WO2012038650A1 (fr) Structure de support d'une caisse d'un véhicule comportant un moyen d'actionnement d'un pied de support
FR2781515A1 (fr) Element de plancher d'echafaudage
WO2003092438A2 (fr) Tabourets extensibles
BE1012512A3 (fr) Procede et installation pour la reparation d'elements de construction metalliques.
FR2774408A1 (fr) Procede de fabrication d'une structure de bras de levage d'engin
FR2465049A1 (fr) Procede de montage au sol de reservoirs de stockage verticaux

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16720458

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2982876

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15567366

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016252090

Country of ref document: AU

Date of ref document: 20160415

Kind code of ref document: A