WO2016169485A1 - 基于光纤光栅的可辨周向测斜传感器 - Google Patents

基于光纤光栅的可辨周向测斜传感器 Download PDF

Info

Publication number
WO2016169485A1
WO2016169485A1 PCT/CN2016/079823 CN2016079823W WO2016169485A1 WO 2016169485 A1 WO2016169485 A1 WO 2016169485A1 CN 2016079823 W CN2016079823 W CN 2016079823W WO 2016169485 A1 WO2016169485 A1 WO 2016169485A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
equal
fixing member
cantilever beam
grating
Prior art date
Application number
PCT/CN2016/079823
Other languages
English (en)
French (fr)
Inventor
曹玉强
姜明月
蒋善超
隋青美
王静
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2016169485A1 publication Critical patent/WO2016169485A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C9/00Measuring inclination, e.g. by clinometers, by levels

Definitions

  • the invention relates to the field of optical fiber sensing technology, in particular to a fiber grating sensor capable of discriminating circumferential inclination.
  • fiber Bragg grating sensing technology meets the requirements of high precision, long distance and long-term measurement, and provides a good technical means to solve the above key problems. Therefore, fiber grating inclinometer sensors are gradually being applied to various projects.
  • Yan Huafu uses the bending theory formula and differential algorithm of the beam to obtain the strain of each point of the in-situ inclinometer according to the linear relationship between the wavelength change of the fiber Bragg grating and the strain to obtain the change of the slope.
  • FBG sensors with identifiable circumferential inclination are rarely reported.
  • the present invention discloses a discrete circumferential inclinometer sensor based on a fiber grating.
  • the present invention measures the tilt angle by the relationship between the strain of the isosceles beam at the time of tilting and the central wavelength change of the fiber grating. Since the sensor has two equal-strength cantilever beams that are perpendicular to each other but not in contact with each other, the direction of the tilt can also be obtained by the space vector method.
  • a fiber grating-based discriminable circumferential inclinometer sensor includes a sensor housing, wherein the sensor housing is provided with two pairs of fixing members, each pair of fixing members for fixing a corresponding one-strength cantilever beam, and two equal-strength cantilever beams at The space is perpendicular to each other but not in contact with each other.
  • Each of the equal-strength cantilever beams is affixed with a mass at the bottom, and two fiber pigtails are taken out from the top of the sensor casing, and are inserted into the hollow protection tube and connected to the demodulator;
  • Two equal-strength cantilever beams perpendicular to each other in space are deformed when the sensor is tilted to measure the tilt angle of the sensor in the z-axis direction, and at the same time, by the displacement of the equal-strength cantilever beam when mapped to the xy plane,
  • the tilt direction on the xy plane enables a measurable circumferential slope measurement.
  • One of the fiber pigtails is connected to the corresponding sensitive grating, the sensitive grating is connected to the temperature compensation grating attached to the inner wall of the sensor casing, and the other fiber pigtail is connected to the corresponding sensitive grating, and the sensitive gratings are respectively pasted in their respective corresponding ones. Equal strength on the cantilever beam.
  • the sensor housing is cylindrical, and the upper end of the sensor housing is provided with a sensor upper cover for use with the sensor housing.
  • the lower end of the sensor housing is provided with a sensor base for use with the sensor housing.
  • the top of the sensor upper cover has a threaded opening to realize the ejection of the fiber pigtail.
  • Each of the pair of fixing members includes a first fixing member and a second fixing member.
  • the first fixing member and the second fixing member are two rectangular blocks of different sizes, and the first fixing member and the second fixing member are equal in height. However, the width of the first fixing member is equal to the length of the second fixing member, and the first fixing member is screwed to the top of the inner wall of the sensor upper cover.
  • the second fixing member is fixed to the side of the first fixing member by screws, and an equal-strength cantilever beam is sandwiched between the first fixing member and the second fixing member.
  • the first fixing member is provided with a hole in the middle thereof and communicates with the threaded opening of the top of the sensor upper cover, and the fiber pigtail fiber of the sensitive grating adhered to the surface of the equal-strength cantilever beam is led out by the hole.
  • the carbon fiber board is selected as the base body, and the uniform-strength cantilever beam is set to an isosceles triangle in an effective force range in order to ensure uniform deformation of the force.
  • the mass is made of copper and has a cylindrical shape and is attached to the bottom end of the iso-strength cantilever beam for generating force.
  • the sensitive grating is adhered to the equal-strength cantilever beam by using ⁇ -cyanoacrylate.
  • the gate region is adhered to the inner wall of the sensor casing by using ⁇ -cyanoacrylate, and is connected in series with the sensitive grating.
  • is the angle at which one of the equal-strength cantilever beams is inclined.
  • is the inclination angle of the sensor in the vertical direction;
  • F is the external force
  • l is the length of the cantilever beam
  • b 0 is the width of the fixed end
  • h is the thickness of the cantilever beam
  • E is the elastic modulus of the cantilever beam
  • ⁇ B is the grating wavelength
  • ⁇ B is the grating wavelength change .
  • Can be obtained by wavelength analysis and can be regarded as a known amount
  • X'Y'Z' is a coordinate system after the sensor is tilted
  • the invention has accurate measurement and simple structure.
  • the fiber grating-based discriminable circumferential inclination sensor according to the present invention uses a fiber grating as a core sensitive component, and uses two equal-strength cantilever beams that are perpendicular to each other in space, and generates deformation when the sensor is tilted to measure the sensor.
  • the inclination angle of the axial direction is measured by the displacement on the xy plane when the equal-strength cantilever beam is deformed, and the inclination direction on the xy plane is measured, thereby realizing the recognizable circumferential inclination measurement.
  • 1 is a schematic view showing the appearance of a identifiable circumferential inclination measuring sensor
  • Figure 2 is a view showing the internal structure of the identifiable circumferential inclination measuring sensor
  • Figure 3 is a schematic view of an equal strength cantilever beam
  • Figure 4 is a schematic view of the sensor housing
  • Figure 5 is a schematic view of the sensor base
  • Figure 6 is a schematic view of the sensor upper cover
  • Figure 7 is a schematic view of a mass block
  • Figure 8 is a schematic view of the first fixing member
  • Figure 9 is a schematic view of the second fixing member
  • Figure 10a is an elevational view of the initial state of the cantilever beam acceptance model
  • Figure 10b is a side view of the initial state of the equal-strength cantilever beam acceptance model
  • Figure 11a isometric view of the cantilever beam accepting model tilt angle as the ⁇ state
  • Figure 11b isometric side cantilever beam accepting model tilt angle is ⁇ state side view
  • Figure 12 is a schematic diagram of the XYZ coordinate system
  • FIGS. 1-6 A schematic diagram of the appearance of the fiber grating-based discriminable circumferential inclination sensor according to the present invention is shown in FIGS. 1-6.
  • the sensor mainly comprises a sensor housing 2, and the internal fixing member comprises a first fixing member 8 and a second fixing member 5, an equal-strength cantilever beam 6, a mass 7, a sensitive grating 9, a temperature compensation grating 10, a sensor upper cover 3 and a sensor base. 4.
  • Two equal-strength cantilever beams 6 are respectively fixed in the sensor housing 2 by two internal fixing members, and two equal-intensity cantilever beams 6 are respectively adhered with sensitive gratings 9, and the bottom portions are respectively provided with mass blocks 7, temperature compensation gratings 10 and One of the sensitive gratings 9 attached to the equal-strength cantilever beam is connected in series to the inner wall of the sensor casing 2, and the two fiber pigtails 1 are taken out from the top of the sensor, and inserted into the hollow protection tube to be connected to the demodulator.
  • the sensor housing 2 is cylindrical and made of 304 stainless steel with a threaded opening at the top to enable the ejection of the fiber pigtail 1.
  • the internal fixing member is divided into two parts, and each part of the internal fixing member is one large and one small two rectangular parallelepiped blocks, each of which is fixed with an equal-strength cantilever beam 6.
  • the mass 7 is made of copper and has a cylindrical shape and is attached to the bottom end of the iso-strength cantilever beam 6 for generating a force.
  • the equal-strength cantilever beam 6 for generating strain selects a carbon fiber board as a substrate, and ⁇ -cyanoacrylate is used as a binder for the fiber grating and the iso-strength cantilever beam 6.
  • the equal-strength cantilever beam 6 is designed as an isosceles triangle within the effective force range.
  • the mass 7 for generating a force is selected from copper and has a cylindrical shape and is attached to the bottom end of the iso-strength cantilever beam 6.
  • the principle of sensor measurement is further illustrated as follows: When the sensor is tilted, the vertical equal-strength cantilever beam 6 will be tilted under the action of the mass 7, thereby deforming, thereby changing the center wavelength of the fiber grating.
  • the fiber wavelength demodulation device is used to demodulate the change of the center wavelength of the fiber grating, and the angle corresponding to the inclination of the equal-strength cantilever beam 6 is measured.
  • l the length of the cantilever beam; the width of the b 0 fixed end; the thickness of the h cantilever beam; the elastic modulus of the E cantilever beam.
  • the initial state of the cantilever beam stress model is shown in Figures 10a-10b. Assuming the inclination angle is ⁇ , the force model of the cantilever beam is shown in Figures 11a-11b.
  • the force model of the cantilever beam is:

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Transform (AREA)

Abstract

一种基于光纤光栅的可辨周向测斜传感器,包括传感器外壳(2),所述传感器外壳(2)内设置有两对固定件(5、8),每对固定件(5、8)用于固定相应的一个等强度悬臂梁(6),两个等强度悬臂梁(6)在空间上相互垂直但不接触,每个等强度悬臂梁(6)底部粘贴有质量块(7),两根光纤尾纤(1)从传感器外壳(2)顶端引出,套入空心保护管后与解调仪连接;空间上相互垂直的两个等强度悬臂梁(6),在传感器倾斜时产生形变以测得传感器在z轴方向的倾斜角度,同时,通过等强度悬臂梁(6)形变时映射到xy平面上的位移,测得在xy平面上的倾斜方向,从而实现可辨周向的斜度测量,并且测量精确,结构简单。

Description

基于光纤光栅的可辨周向测斜传感器 技术领域
本发明涉及光纤传感技术领域,特别涉及一种可辨周向测斜的光纤光栅传感器。
背景技术
自20世纪90年代以来,由于具有不受电磁干扰影响,尺寸小,重量轻,使用寿命长等优点,光纤光栅传感技术发展迅速。传统的移动式、固定式测斜传感器已经广泛应用于各种工程中斜度的监测中,如F.A.Tavenas提出了在岩土工程中应用测斜仪检测路堤软土的侧向变形;王春晓采用三轴正交加速度传感器测量地球重力矢量和三轴正交磁强传感器测量地磁场矢量来测量斜度。但传统测斜传感器存在较大的不足,如数据采集仪器会出现漂移误差,测斜仪导轮磨损、偏移等会带来误差等。光纤光栅传感技术作为传感技术的新阶段,它满足了测量的高精度、远距离和长期性要求,为解决上述关键问题提供了良好的技术手段。因此光纤光栅测斜传感器正逐步应用于各种工程中。如裴华富通过梁的弯曲理论公式和差分算法,根据光纤布拉格光栅波长变化与应变之间的线性关系求得原位测斜仪各测点的应变来求得其斜度的变化。但关于可辨周向测斜的光纤光栅传感器的研究和应用很少报道。
发明内容
为解决现有技术存在的不足,本发明公开了基于光纤光栅的可辨周向测斜传感器,本发明通过倾斜时等强度悬臂梁的应变与光纤光栅中心波长变化的关系测得倾斜的角度,由于传感器内部有两个相互垂直但不接触的等强度悬臂梁,还可以利用空间向量法求得倾斜的方向。
为实现上述目的,本发明的具体方案如下:
基于光纤光栅的可辨周向测斜传感器,包括传感器外壳,所述传感器外壳内设置有两对固定件,每对固定件用于固定相应的一个等强度悬臂梁,两个等强度悬臂梁在空间上相互垂直但不接触,每个等强度悬臂梁底部粘贴有质量块,两根光纤尾纤从传感器外壳顶端引出,套入空心保护管后与解调仪连接;
空间上相互垂直的两个等强度悬臂梁,在传感器倾斜时产生形变以测得传感器在z轴方向的倾斜角度,同时,通过等强度悬臂梁形变时映射到xy平面上的位移,测得在xy平面上的倾斜方向,从而实现可辨周向的斜度测量。
其中一根光纤尾纤与对应的敏感光栅相连,敏感光栅与粘贴在传感器外壳上内壁上的温度补偿光栅相连,另一根光纤尾纤与对应的敏感光栅相连,敏感光栅分别粘贴在各自对应的等强度悬臂梁上。
所述传感器外壳为圆柱形,传感器外壳上端设置有与其相配合使用的传感器上盖,传感器外壳下端设置有与其相配合使用的传感器底座,传感器上盖顶部有螺纹口以实现光纤尾纤的引出。
所述每对固定件均包括第一固定件及第二固定件,第一固定件及第二固定件为两个大小不相等的长方体块,第一固定件及第二固定件二者高相等,但第一固定件的宽与第二固定件的长相等,第一固定件用螺丝固定于传感器上盖内壁顶部。
所述第二固定件用螺丝固定于第一固定件侧面,第一固定件和第二固定件之间夹有等强度悬臂梁。
所述第一固定件中间设有孔且与传感器上盖顶部的螺纹口相通,粘贴于等强度悬臂梁表面的敏感光栅的光纤尾纤由此孔引出。
所述的等强度悬臂梁,选择碳纤维板作为基体,为保证其受力均匀产生均匀形变,等强度悬臂梁在有效受力范围内设置为等腰三角形。
所述的质量块,材料选择为铜,形状为圆柱形,将其粘贴在等强度悬臂梁底端,用于产生作用力。
所述的敏感光栅,用α-氰基丙烯酸乙酯将栅区粘贴于等强度悬臂梁上。
所述的温度补偿光栅,用α-氰基丙烯酸乙酯将栅区粘贴于传感器外壳内壁上,与敏感光栅串联。
当传感器向某一方向倾斜使得两个等强度悬臂梁均发生形变时,设θ为其中一个等强度悬臂梁倾斜的角度,
Figure PCTCN2016079823-appb-000001
为另一个等强度悬臂梁倾斜的角度,φ为传感器在竖直方向的倾斜角度;
Figure PCTCN2016079823-appb-000002
其中,F为外界作用力,l为悬臂梁的长度;b0为固定端的宽;h为悬臂梁的厚度;E为悬臂梁的弹性模量,λB为光栅波长,ΔλB为光栅波长变化。
由上式知,θ、
Figure PCTCN2016079823-appb-000003
可由波长解析得出,可视为已知量;
建立XYZ坐标系,X’Y’Z’为传感器倾斜之后的坐标系;
传感器倾斜后与Z轴方向夹角,求解时:
Figure PCTCN2016079823-appb-000004
倾斜后可求得
Figure PCTCN2016079823-appb-000005
则,
Figure PCTCN2016079823-appb-000006
所以,求得传感器倾斜后与Z轴方向夹角
Figure PCTCN2016079823-appb-000007
映射到XY平面上,设倾斜的方向与X轴正方向夹角为α,令
Figure PCTCN2016079823-appb-000009
则,
Figure PCTCN2016079823-appb-000010
所以,求得传感器的倾斜方向与X轴正方向夹角:
Figure PCTCN2016079823-appb-000011
本发明的有益效果:
本发明测量精确,结构简单。本发明所述的基于光纤光栅的可辨周向测斜传感器,以光纤光栅作为核心敏感元件,利用空间上相互垂直的两个等强度悬臂梁,在传感器倾斜时产生形变以测得传感器在z轴方向的倾斜角度,同时,通过等强度悬臂梁形变时映射到xy平面上的位移,测得在xy平面上的倾斜方向,从而实现可辨周向的斜度测量。
附图说明
图1为可辨周向测斜传感器的外观示意图;
图2为可辨周向测斜传感器内部结构图;
图3为等强度悬臂梁示意图;
图4为传感器外壳示意图;
图5为传感器底座示意图;
图6为传感器上盖示意图;
图7为质量块示意图;
图8为第一固定件示意图;
图9为第二固定件示意图;
图10a等强度悬臂梁受理模型初始状态正视图;
图10b等强度悬臂梁受理模型初始状态侧视图;
图11a等强度悬臂梁受理模型倾斜角为θ状态正视图;
图11b等强度悬臂梁受理模型倾斜角为θ状态侧视图;
图12XYZ坐标系示意图;
图中:1——光纤尾纤,2——传感器外壳,3——传感器上盖,4——传感器底座,5——第二固定件,6——等强度悬臂梁,7——质量块,8——第一固定件,9——粘贴于等强度悬臂梁上的敏感光栅,10——温度补偿光栅。
具体实施方式:
下面结合附图对本发明进行详细说明:
本发明所涉及的基于光纤光栅的可辨周向测斜传感器的外观示意图如图1-6所示。该传感器主要包括传感器外壳2、内部固定件包括第一固定件8及第二固定件5、等强度悬臂梁6、质量块7、敏感光栅9、温度补偿光栅10、传感器上盖3和传感器底座4。在传感器外壳2内分别用两个内部固定件固定两个等强度悬臂梁6,两个等强度悬臂梁6上分别粘有敏感光栅9,且底部分别装有质量块7,温度补偿光栅10与其中一个粘贴于等强度悬臂梁上的敏感光栅9串联后粘贴于传感器外壳2的内壁,两根光纤尾纤1从传感器顶端引出,套入空心保护管后与解调仪连接。
传感器外壳2为圆柱形,材料为304不锈钢,顶部有螺纹口以实现光纤尾纤1的引出。
如图8-9所示,内部固定件分两部分,每部分内部固定件为一大一小两个长方体块,各固定一个等强度悬臂梁6。两个等强度悬臂梁6,在空间上相互垂直但不接触。
如图7所示,质量块7,材料选择为铜,形状为圆柱形,将其粘贴在等强度悬臂梁6底端,用于产生作用力。用于产生应变的等强度悬臂梁6选择碳纤维板作为基体,选用α-氰基丙烯酸乙酯作为光纤光栅和等强度悬臂梁6的粘合剂。为保证其受力均匀产生均匀形变,等强度悬臂梁6在有效受力范围内设计为等腰三角形。用于产生作用力的质量块7,材料选择为铜,形状为圆柱形,将其粘贴在等强度悬臂梁6底端。
传感器测量原理进一步说明如下:当传感器发生倾斜,竖直的等强度悬臂梁6会在质量块7的作用下产生倾斜,从而发生形变,进而改变光纤光栅的中心波长。通过光纤波长解调设备解调光纤光栅中心波长的变化,测得对应等强度悬臂梁6倾斜的角度。等强度悬臂梁6表面应变ε与外界作用力F之间的关系式:
Figure PCTCN2016079823-appb-000012
式中,l悬臂梁的长度;b0固定端的宽;h悬臂梁的厚度;E悬臂梁的弹性模量。
光栅波长变化:
ΔλB=0.78*ε*λB
悬臂梁受力模型初始状态如图10a-10b所示,假设倾斜角为θ则悬臂梁的受力模型如图11a-11b所示,悬臂梁的受力模型为:
F切向=F·sinθ  (2)
因此波长与倾斜角度之间的关系为:
Figure PCTCN2016079823-appb-000013
当传感器向某一方向倾斜使得两个等强度悬臂梁6均发生形变时,设θ为其中一个等强度悬臂梁倾斜的角度,
Figure PCTCN2016079823-appb-000014
为另一个等强度悬臂梁倾斜的角度,φ为传感器在竖直方向的倾斜角度。由式(3)知,θ、
Figure PCTCN2016079823-appb-000015
可由波长解析得出,可视为已知量。建立如下图12所示的XYZ坐标系,X’Y’Z’为传感器倾斜之后的坐标系。
Figure PCTCN2016079823-appb-000016
倾斜后可求得
Figure PCTCN2016079823-appb-000017
则,
Figure PCTCN2016079823-appb-000018
所以,求得传感器倾斜后与Z轴方向夹角
Figure PCTCN2016079823-appb-000019
映射到XY平面上,设倾斜的方向与X轴正方向夹角为α,令
Figure PCTCN2016079823-appb-000020
Figure PCTCN2016079823-appb-000021
则,
Figure PCTCN2016079823-appb-000022
所以,求得传感器的倾斜方向与X轴正方向夹角
Figure PCTCN2016079823-appb-000023
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。

Claims (10)

  1. 基于光纤光栅的可辨周向测斜传感器,其特征是,包括传感器外壳,所述传感器外壳内设置有两对固定件,每对固定件用于固定相应的一个等强度悬臂梁,两个等强度悬臂梁在空间上相互垂直但不接触,每个等强度悬臂梁底部粘贴有质量块,两根光纤尾纤从传感器外壳顶端引出,套入空心保护管后与解调仪连接;
    空间上相互垂直的两个等强度悬臂梁,在传感器倾斜时产生形变以测得传感器在z轴方向的倾斜角度,同时,通过等强度悬臂梁形变时映射到xy平面上的位移,测得在xy平面上的倾斜方向,从而实现可辨周向的斜度测量。
  2. 如权利要求1所述的基于光纤光栅的可辨周向测斜传感器,其特征是,其中一根光纤尾纤与对应的敏感光栅相连,敏感光栅与粘贴在传感器外壳上内壁上的温度补偿光栅相连,另一根光纤尾纤与对应的敏感光栅相连,敏感光栅分别粘贴在各自对应的等强度悬臂梁上。
  3. 如权利要求1所述的基于光纤光栅的可辨周向测斜传感器,其特征是,所述传感器外壳为圆柱形,传感器外壳上端设置有与其相配合使用的传感器上盖,传感器外壳下端设置有与其相配合使用的传感器底座,传感器上盖顶部有螺纹口以实现光纤尾纤的引出。
  4. 如权利要求1所述的基于光纤光栅的可辨周向测斜传感器,其特征是,所述每对固定件均包括第一固定件及第二固定件,第一固定件及第二固定件为两个大小不相等的长方体块,第一固定件及第二固定件二者高相等,但第一固定件的宽与第二固定件的长相等,第一固定件用螺丝固定于传感器上盖内壁顶部。
  5. 如权利要求4所述的基于光纤光栅的可辨周向测斜传感器,其特征是,所述第二固定件用螺丝固定于第一固定件侧面,第一固定件和第二固定件之间夹有等强度悬臂梁;
    所述第一固定件中间设有孔且与传感器上盖顶部的螺纹口相通,粘贴于等强度悬臂梁表面的敏感光栅的光纤尾纤由此孔引出。
  6. 如权利要求1或5所述的基于光纤光栅的可辨周向测斜传感器,其特征是,所述的等强度悬臂梁,选择碳纤维板作为基体,为保证其受力均匀产生均匀形变,等强度悬臂梁在有效受力范围内设置为等腰三角形。
  7. 如权利要求1所述的基于光纤光栅的可辨周向测斜传感器,其特征是,所述的质量块,材料选择为铜,形状为圆柱形,将其粘贴在等强度悬臂梁底端,用于产生作用力。
  8. 如权利要求2所述的基于光纤光栅的可辨周向测斜传感器,其特征是,所述敏感光栅,用α-氰基丙烯酸乙酯将栅区粘贴于等强度悬臂梁上;
    所述温度补偿光栅,用α-氰基丙烯酸乙酯将栅区粘贴于传感器外壳内壁上,与敏感光栅串联。
  9. 如权利要求1所述的基于光纤光栅的可辨周向测斜传感器,其特征是,当传感器向某一方向倾斜使得两个等强度悬臂梁均发生形变时,设θ为其中一个等强度悬臂梁倾斜的角度,
    Figure PCTCN2016079823-appb-100001
    为另一个等强度悬臂梁倾斜的角度,φ为传感器在竖直方向的倾斜角度;
    Figure PCTCN2016079823-appb-100002
    其中,F为外界作用力,l为悬臂梁的长度;b0为固定端的宽;h为悬臂梁的厚度;E为悬臂梁的弹性模量,λB为光栅波长,ΔλB为光栅波长变化,由上式知,θ、
    Figure PCTCN2016079823-appb-100003
    可由波长解析得出。
  10. 如权利要求9所述的基于光纤光栅的可辨周向测斜传感器,其特征是,建立XYZ坐标系,X’Y’Z’为传感器倾斜之后的坐标系;
    传感器倾斜后与Z轴方向夹角,求解时:
    Figure PCTCN2016079823-appb-100004
    倾斜后可求得
    Figure PCTCN2016079823-appb-100005
    则,
    Figure PCTCN2016079823-appb-100006
    所以,求得传感器倾斜后与Z轴方向夹角
    Figure PCTCN2016079823-appb-100007
    映射到XY平面上,设倾斜的方向与X轴正方向夹角为α,令
    Figure PCTCN2016079823-appb-100008
    Figure PCTCN2016079823-appb-100009
    则,
    Figure PCTCN2016079823-appb-100010
    所以,求得传感器的倾斜方向与X轴正方向夹角:
    Figure PCTCN2016079823-appb-100011
PCT/CN2016/079823 2015-04-23 2016-04-21 基于光纤光栅的可辨周向测斜传感器 WO2016169485A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510203232.1 2015-04-23
CN201510203232.1A CN104764438B (zh) 2015-04-23 2015-04-23 基于光纤光栅的可辨周向测斜传感器

Publications (1)

Publication Number Publication Date
WO2016169485A1 true WO2016169485A1 (zh) 2016-10-27

Family

ID=53646417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/079823 WO2016169485A1 (zh) 2015-04-23 2016-04-21 基于光纤光栅的可辨周向测斜传感器

Country Status (2)

Country Link
CN (1) CN104764438B (zh)
WO (1) WO2016169485A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643655A (zh) * 2017-03-06 2017-05-10 沈阳建筑大学 一种重力式光纤光栅倾角传感器
CN106996819A (zh) * 2017-04-12 2017-08-01 东北大学 一种基于伸缩杆结构的光纤光栅多级称重传感器
CN107907921A (zh) * 2017-12-27 2018-04-13 盐城工学院 具有温度自补偿特性的双翻漏斗式光纤光栅雨量传感器
CN108519065A (zh) * 2018-04-18 2018-09-11 红云红河烟草(集团)有限责任公司 一种差动式光纤Bragg光栅倾角传感器及其使用方法
CN108917656A (zh) * 2018-07-24 2018-11-30 蚌埠学院 一种双轴光纤光栅倾斜传感器
CN110274662A (zh) * 2018-03-13 2019-09-24 中国石油化工股份有限公司 一种浮盘状态监测传感系统
CN110793675A (zh) * 2019-11-19 2020-02-14 大连理工大学 一种光纤光栅土压力传感器
CN113074760A (zh) * 2021-03-31 2021-07-06 西安石油大学 一种微应变光纤光栅传感器、应力测量系统及其工作方法
CN113310461A (zh) * 2021-04-23 2021-08-27 中铁第一勘察设计院集团有限公司 温度不敏感的光纤二维倾角传感器
CN114087971A (zh) * 2021-11-23 2022-02-25 韩泽旭 一种拉线位移传感器
CN114353686A (zh) * 2021-09-10 2022-04-15 重庆交通大学 隧道衬砌的曲率分布智能获取方法及相关装置
CN115615395A (zh) * 2022-11-18 2023-01-17 山东科技大学 一种光纤光栅采空区上覆岩层测倾仪及其测量方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104764438B (zh) * 2015-04-23 2017-03-01 山东大学 基于光纤光栅的可辨周向测斜传感器
CN104990513B (zh) * 2015-07-23 2017-08-11 福州大学 一种适用于古建筑木结构圆柱倾斜的长期监测方法
CN105180900B (zh) * 2015-08-28 2018-01-02 中国科学院半导体研究所 一种光纤倾斜仪
CN105953751A (zh) * 2016-06-23 2016-09-21 武汉科技大学 分布式变形测量装置、方法与光纤光栅倾角传感器、结构
CN106840013A (zh) * 2016-12-29 2017-06-13 北京希卓信息技术有限公司 滑移监测传感器及边坡滑移应变监测系统
CN108036769A (zh) * 2018-01-11 2018-05-15 盐城工学院 一种可辨方向的自温补光纤光栅测斜传感器
CN110274576B (zh) * 2018-03-13 2021-04-30 中国石油化工股份有限公司 一种用于浮顶储罐的浮盘倾角计算测量方法、系统及应用
CN110118539B (zh) * 2019-05-24 2021-04-16 西南交通大学 一种克服温度干扰的光纤倾角传感器及方法
CN110196040B (zh) * 2019-06-17 2021-10-08 福建博海工程技术有限公司 一种建筑倾斜监测装置及其监测方法
CN110567402A (zh) * 2019-10-25 2019-12-13 石家庄铁道大学 光纤光栅测倾仪
CN110595395A (zh) * 2019-10-25 2019-12-20 石家庄铁道大学 光纤光栅测斜仪
CN112229345B (zh) * 2020-10-15 2021-07-06 武汉科技大学 一种不受振动影响的光纤光栅倾斜传感器
CN115638749A (zh) * 2022-12-21 2023-01-24 北京精诚恒创科技有限公司 一种基于光纤光栅的二维倾角传感器及倾角测量方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106389A1 (en) * 2004-04-02 2005-11-10 Geum-Suk Lee A method of measuring an angle using an optical fiber sensor
JP2007205740A (ja) * 2006-01-31 2007-08-16 Tobishima Corp Fbg光ファイバセンサを用いた傾斜計
CN103245304A (zh) * 2013-04-18 2013-08-14 国家电网公司 用于杆塔水平角度测量的带温度补偿光纤角度传感器
CN203177817U (zh) * 2013-04-18 2013-09-04 国家电网公司 用于杆塔水平角度测量的带温度补偿光纤角度传感器
CN103335614A (zh) * 2013-06-14 2013-10-02 国家电网公司 一种用于绝缘子风偏角测量的光纤角度传感器
CN203364774U (zh) * 2013-06-14 2013-12-25 国家电网公司 一种用于绝缘子风偏角测量的光纤角度传感器
CN104764438A (zh) * 2015-04-23 2015-07-08 山东大学 基于光纤光栅的可辨周向测斜传感器

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI250326B (en) * 2003-11-28 2006-03-01 Prime Optical Fiber Corp Optical fiber inclinometer
CN1304822C (zh) * 2004-10-29 2007-03-14 清华大学 一种光纤光栅倾斜角度传感器
CN101603827A (zh) * 2009-03-26 2009-12-16 中国计量学院 新型光纤光栅二维倾斜角度传感器
CN201688838U (zh) * 2010-06-08 2010-12-29 中国计量学院 一种温度不敏感型光纤光栅倾斜传感器
CN204115725U (zh) * 2014-11-12 2015-01-21 上海光栅信息技术有限公司 一种温度自补偿高灵敏度大量程fbg倾斜传感器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005106389A1 (en) * 2004-04-02 2005-11-10 Geum-Suk Lee A method of measuring an angle using an optical fiber sensor
JP2007205740A (ja) * 2006-01-31 2007-08-16 Tobishima Corp Fbg光ファイバセンサを用いた傾斜計
CN103245304A (zh) * 2013-04-18 2013-08-14 国家电网公司 用于杆塔水平角度测量的带温度补偿光纤角度传感器
CN203177817U (zh) * 2013-04-18 2013-09-04 国家电网公司 用于杆塔水平角度测量的带温度补偿光纤角度传感器
CN103335614A (zh) * 2013-06-14 2013-10-02 国家电网公司 一种用于绝缘子风偏角测量的光纤角度传感器
CN203364774U (zh) * 2013-06-14 2013-12-25 国家电网公司 一种用于绝缘子风偏角测量的光纤角度传感器
CN104764438A (zh) * 2015-04-23 2015-07-08 山东大学 基于光纤光栅的可辨周向测斜传感器

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106643655A (zh) * 2017-03-06 2017-05-10 沈阳建筑大学 一种重力式光纤光栅倾角传感器
CN106643655B (zh) * 2017-03-06 2023-07-14 沈阳建筑大学 一种重力式光纤光栅倾角传感器
CN106996819A (zh) * 2017-04-12 2017-08-01 东北大学 一种基于伸缩杆结构的光纤光栅多级称重传感器
CN107907921A (zh) * 2017-12-27 2018-04-13 盐城工学院 具有温度自补偿特性的双翻漏斗式光纤光栅雨量传感器
CN107907921B (zh) * 2017-12-27 2024-05-24 盐城工学院 具有温度自补偿特性的双翻漏斗式光纤光栅雨量传感器
CN110274662A (zh) * 2018-03-13 2019-09-24 中国石油化工股份有限公司 一种浮盘状态监测传感系统
CN110274662B (zh) * 2018-03-13 2024-05-14 中国石油化工股份有限公司 一种浮盘状态监测传感系统
CN108519065A (zh) * 2018-04-18 2018-09-11 红云红河烟草(集团)有限责任公司 一种差动式光纤Bragg光栅倾角传感器及其使用方法
CN108917656B (zh) * 2018-07-24 2024-05-17 蚌埠学院 一种双轴光纤光栅倾斜传感器
CN108917656A (zh) * 2018-07-24 2018-11-30 蚌埠学院 一种双轴光纤光栅倾斜传感器
CN110793675A (zh) * 2019-11-19 2020-02-14 大连理工大学 一种光纤光栅土压力传感器
CN110793675B (zh) * 2019-11-19 2024-05-03 大连理工大学 一种光纤光栅土压力传感器
CN113074760A (zh) * 2021-03-31 2021-07-06 西安石油大学 一种微应变光纤光栅传感器、应力测量系统及其工作方法
CN113074760B (zh) * 2021-03-31 2022-07-19 西安石油大学 一种微应变光纤光栅传感器、应力测量系统及其工作方法
CN113310461A (zh) * 2021-04-23 2021-08-27 中铁第一勘察设计院集团有限公司 温度不敏感的光纤二维倾角传感器
CN113310461B (zh) * 2021-04-23 2023-02-17 中铁第一勘察设计院集团有限公司 温度不敏感的光纤二维倾角传感器
CN114353686A (zh) * 2021-09-10 2022-04-15 重庆交通大学 隧道衬砌的曲率分布智能获取方法及相关装置
CN114353686B (zh) * 2021-09-10 2023-10-20 重庆交通大学 隧道衬砌的曲率分布智能获取方法及相关装置
CN114087971A (zh) * 2021-11-23 2022-02-25 韩泽旭 一种拉线位移传感器
CN115615395B (zh) * 2022-11-18 2023-03-28 山东科技大学 一种光纤光栅采空区上覆岩层测倾仪及其测量方法
CN115615395A (zh) * 2022-11-18 2023-01-17 山东科技大学 一种光纤光栅采空区上覆岩层测倾仪及其测量方法

Also Published As

Publication number Publication date
CN104764438B (zh) 2017-03-01
CN104764438A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2016169485A1 (zh) 基于光纤光栅的可辨周向测斜传感器
CN108180841B (zh) 一种基于光纤光栅的滑坡内部位移监测方法
CN101424522B (zh) 光纤布拉格光栅fbg三维测头
CN204854656U (zh) 基于光纤光栅的双向测斜传感器
US8448514B2 (en) Sensing device with whisker elements
He et al. Temperature-insensitive 2D tilt sensor with three fiber Bragg gratings
CN108760109A (zh) 基于布拉格光纤光栅的可变量程的土体压力测量装置和方法
CN110567378B (zh) 一种光纤位移传感器及其测量方法
CN104697677B (zh) 一种压磁式应力传感器
CN111829596B (zh) 一种土体监测系统以及方法
CN105004267B (zh) 基于光纤布拉格光栅的谐振式纳米三坐标接触式测头
Jiang et al. Distinguishable circumferential inclined direction tilt sensor based on fiber Bragg grating with wide measuring range and high accuracy
CN204461363U (zh) 一种材料表面应变光纤光栅反向差动检测传感器件
CN108036769A (zh) 一种可辨方向的自温补光纤光栅测斜传感器
CN210268626U (zh) 一种基于光纤光栅全方位监测桩身的高精度测斜杆
Li et al. A temperature-insensitive FBG displacement sensor with a 10-nanometer-grade resolution
CN105890533A (zh) 一种材料表面应变光纤光栅反向差动检测传感器件
CN208269894U (zh) 一种可辨方向的自温补光纤光栅测斜传感器
CN207585757U (zh) 一种具有自温补特性的三维微振光纤光栅传感器
CN111964603A (zh) 一种基于光杠杆的光纤布拉格光栅应变传感器的标定方法
CN202974172U (zh) 一种用于微纳米尺度二维尺寸测量的微触觉测头
CN202795839U (zh) 一种测量杨氏模量的实验装置
CN221302322U (zh) 一种用于保护光纤倾角传感器的封装装置
CN113686232B (zh) 外径测量工具
CN213363685U (zh) 一种基于光纤位移传感器的位移测量装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782632

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782632

Country of ref document: EP

Kind code of ref document: A1