WO2016169331A1 - 数字预失真样本筛选方法和装置 - Google Patents

数字预失真样本筛选方法和装置 Download PDF

Info

Publication number
WO2016169331A1
WO2016169331A1 PCT/CN2016/074412 CN2016074412W WO2016169331A1 WO 2016169331 A1 WO2016169331 A1 WO 2016169331A1 CN 2016074412 W CN2016074412 W CN 2016074412W WO 2016169331 A1 WO2016169331 A1 WO 2016169331A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
screening
base station
sample
digital predistortion
Prior art date
Application number
PCT/CN2016/074412
Other languages
English (en)
French (fr)
Inventor
王明哲
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016169331A1 publication Critical patent/WO2016169331A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/32Modifications of amplifiers to reduce non-linear distortion

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a digital predistortion sample screening method and apparatus.
  • the digital pre-distortion technique pre-distorts the input signal on the input side of the RF power amplifier, and its characteristics are opposite to those of the power amplifier distortion, which is used to cancel the nonlinear distortion of the power amplifier.
  • pre-distortion processing technology has been increasingly favored by operators and widely used because of its improved power amplifier efficiency and reduced production and operation costs.
  • the common application of multiple standards has been getting more and more applications in our lives.
  • the modern base station equipment has widely adopted the SDR (Software Defined Radio) platform.
  • the same hardware platform supports multiple signal systems.
  • the future base stations are multi-mode base stations.
  • the signal protocols vary widely, and the intermodulation effects of different signal forms are different. Especially in the case of mixed mode of two or more signal systems, more complicated means are needed to extract the most.
  • Suitable for DPD (Digital Pre-Distortion) training samples are directed to only one or a few single-mode signals, and in the case of mixing of multiple standard signals, the versatility is low, and a better DPD sample cannot be obtained. Therefore, the stability of the power amplifier output signal ACPR (Adjacent Channel Power Ratio) index cannot be guaranteed.
  • ACPR Adjacent Channel Power Ratio
  • the main object of the present invention is to provide a digital predistortion sample screening method and apparatus, aiming at solving the problem that the power amplifier output signal ACPR is unstable.
  • the present invention provides a digital predistortion sample screening method, including the steps of:
  • the data stream transmitted by the base station is filtered according to the screening parameter to obtain a first digital predistortion sample.
  • the step of filtering the data stream transmitted by the base station according to the screening parameter to obtain the first digital predistortion sample comprises:
  • the respective sub-data streams are filtered according to their corresponding screening parameters to obtain a first digital pre-distortion sample.
  • the method further includes:
  • the data stream is filtered by using a preset gear priority parameter to obtain a third digital predistortion sample
  • the step of filtering the data stream by using a preset gear priority parameter to obtain a third digital predistortion sample includes:
  • the step of filtering the data stream by using the screening parameter to obtain a second digital predistortion sample comprises:
  • a second digital pre-distortion sample is generated based on the data at each of the preset locations.
  • the method further includes:
  • a second digital pre-distortion sample is generated based on the acquired data.
  • the present invention further provides a digital predistortion sample screening device, the device comprising:
  • a receiving module configured to receive a base station standard message
  • the screening module is configured to filter the data stream transmitted by the base station according to the screening parameter to obtain a first digital predistortion sample.
  • the screening module comprises:
  • a determining unit configured to determine, according to the base station standard message, that the current base station system is a single mode or a mixed mode
  • An acquiring unit configured to acquire each sub-data stream in a data stream transmitted by the base station when the current base station system is a mixed mode
  • a screening unit configured to filter each sub-data stream according to its corresponding screening parameter to obtain a first number Word predistortion samples.
  • the acquiring unit is further configured to: when the current base station system is a single-mode system, obtain a screening parameter corresponding to the single-mode system;
  • the screening unit is further configured to: filter the data stream by using the screening parameter to obtain a second digital predistortion sample
  • the screening unit is further configured to filter the data stream by using a preset gear priority parameter to obtain a third digital predistortion sample;
  • the screening module further includes a processing unit configured to interleave the second digital predistortion sample and the third digital predistortion sample to obtain a first digital predistortion sample.
  • the acquiring unit is further configured to acquire an average power corresponding to each preset length of the data segment in the data stream, and determine a power gear position where the data segment corresponding to the obtained average power is located priority;
  • the processing unit is further configured to generate a third digital predistortion sample according to each data in the data segment corresponding to the highest priority power gear.
  • the screening module when the screening parameter includes a picking position, the screening module further includes a first collecting unit configured to collect data at each preset position of each data frame in the data stream;
  • the processing unit is further configured to generate a second digital pre-distortion sample according to the data at each preset position.
  • the screening module when the screening parameter includes a peak screening number, the screening module further includes a second collecting unit configured to collect data of each data power in the data stream that is greater than a preset power; The processing unit is further configured to generate a second digital pre-distortion sample based on the collected data.
  • the present invention obtains a screening parameter corresponding to the base station standard message by receiving a base station standard message, and filters the data stream transmitted by the base station according to the screening parameter to obtain a first digital predistortion sample.
  • the single-mode/mixed-mode signal can ensure the screening of the better DPD input samples, obtain higher DPD performance, and ensure the stability of the power amplifier output signal ACPR index.
  • FIG. 1 is a schematic flow chart of a first embodiment of a digital predistortion sample screening method according to the present invention
  • FIG. 2 is a schematic flow chart of a second embodiment of a digital predistortion sample screening method according to the present invention.
  • FIG. 3 is a schematic diagram showing the refinement process of step 25 in FIG. 2;
  • FIG. 4 is a schematic diagram showing the refinement process of step 26 in FIG. 2;
  • FIG. 5 is a schematic diagram of a preferred functional module of the digital predistortion sample screening apparatus of the present invention.
  • FIG. 6 is a schematic diagram of a refinement function module of the screening module of FIG. 5.
  • the main solution of the embodiment of the present invention is: receiving a base station standard message, acquiring a screening parameter corresponding to the base station standard message, and screening the data stream transmitted by the base station according to the screening parameter to obtain a first digital predistortion sample.
  • the existing digital pre-distortion sample screening method is only for one or several single-mode signals, the versatility in the case of the mixed-mode signal is not strong, and the better digital pre-distortion training effect cannot be achieved. This causes the power amplifier output signal ACPR to be unstable.
  • the present invention provides a digital predistortion sample screening method.
  • FIG. 1 is a schematic flowchart diagram of a first embodiment of a digital predistortion sample screening method according to the present invention.
  • the digital predistortion sample screening method includes:
  • Step S10 Receive a base station standard message, and obtain a screening parameter corresponding to the base station standard message.
  • Step S20 Filter the data stream transmitted by the base station according to the screening parameter to obtain a first digital predistortion sample.
  • Receiving a cell standard message sent by the base station control software determining the base station mode, that is, whether the base station is in a single mode, a mixed mode, or a triple mode, and selecting a corresponding screening parameter according to the configuration of the base station mode. That is, the screening parameters corresponding to the base station system are obtained. Generating, according to the screening parameter, a corresponding effective signal, determining, according to the effective signal of the data, which data of the data stream transmitted by the base station is required to extract a DPD sample, that is, transmitting at the base station according to the effective signal of the frequency The qualified DPD sample data is filtered out in the data stream to obtain the first digital predistortion sample.
  • the base station system ie, the cell system, is a standard signal form defined in a wireless communication protocol.
  • the mainstream base station systems in the world include GSM/UMTS (Universal Mobile Telecommunications System)/TD-SCDMA (Time Division-Synchronous Code Division Multiple Access)/LTE FDD/LTE TDD (Time). Division Duplexing, Time Division Duplex) / GSM & UMTS Mixed Mode / GSM & LTE FDD Mixed Mode / UMTS & LTE FDD Mixed Mode / GSM & UMTS & LTE FDD three-mode mixed mode, etc., where the mixed mode depends on the operator's needs.
  • GSM/UMTS Universal Mobile Telecommunications System
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • LTE FDD/LTE TDD Time Division Duplexing, Time Division Duplex) / GSM & UMTS Mixed Mode / GSM & LTE FDD Mixed Mode / UMTS & LTE F
  • Performing DPD sample screening on the data stream transmitted by the base station includes trigger, stop, acquisition, and protection states, and receiving an interface valid signal of an ADC (Analog-to-Digital Converter) As an input logic condition.
  • ADC Analog-to-Digital Converter
  • the data in the data stream transmitted by the base station is started to be filtered.
  • Place The trigger status is the confirmation status of the valid signal for DPD sample screening.
  • a trigger signal will be generated and transferred to the acquisition state.
  • the stop state that is, stopping the screening of the DPD sample, automatically stops after collecting a set of data, does not do any action, and waits for a valid acquisition trigger signal to perform the next acquisition number.
  • the DPD sample data that meets the trigger trigger condition is continuously filtered from the data stream transmitted by the base station.
  • the protection state is transferred to the protection state after issuing a command to stop the acquisition. At this time, all trigger conditions are masked, and only the DPD sample screening task is completed to ensure the integrity of the selected DPD samples. Sex.
  • the four states of the trigger, stop, acquisition, and protection states are implemented by a program in an FPGA (Field-Programmable Ggate Aarray). The four states switch between jumps according to the trigger condition or die in a certain state. For example, after the board is powered on, the default is in the "stop” state. When there is no trigger signal, it is “ fallen” and does not move in the stop state. When the condition of "starting” is received, it is stopped. The state is switched to the "capture” state for counting.
  • the screening parameter corresponding to the base station standard message is obtained by receiving the base station standard message, and the data stream transmitted by the base station is filtered according to the screening parameter to obtain the first digital predistortion sample.
  • the single-mode/mixed-mode signal can ensure the screening of the better DPD input samples, obtain higher DPD performance, and ensure the stability of the power amplifier output signal ACPR index.
  • FIG. 2 is a schematic flowchart diagram of a second embodiment of a digital predistortion sample screening method according to the present invention.
  • a second embodiment of the digital pre-distortion sample screening method of the present invention is proposed based on the first embodiment.
  • the step S20 includes:
  • Step S21 determining, according to the base station standard message, that the current base station system is a single mode or a mixed mode
  • Step S22 when the current base station system is a mixed mode, acquiring each sub data stream in the data stream transmitted by the base station;
  • Step S23 Filter each of the sub data streams according to their corresponding screening parameters to obtain a first digital predistortion sample.
  • the corresponding screening parameters are filtered to obtain a first digital predistortion sample. For example, when the base station system is a GSM/LTE FDD mixed-mode base station, acquiring a GSM data stream and an LTE FDD data stream in the GSM/LTE FDD mixed-mode base station, according to the screening parameters corresponding to the GSM data stream and the LTE FDD data.
  • the corresponding filter parameter of the stream generates a corresponding effective signal of the acquisition number
  • the DPD samples of the GSM data stream in the GSM/LTE FDD mixed mode base station are screened according to the effective signal of the GSM data stream
  • the effective signal of the LTE FDD data stream is filtered according to the effective number of the LTE FDD data stream. Extracting the DPD samples of the LTE FDD data stream in the GSM/LTE FDD mixed-mode base station, and screening the DPD samples of the GSM data stream and the DPD samples of the LTE FDD data stream from the GSM/LTE FDD mixed-mode base station as the first digital pre- Distortion sample.
  • Step S24 Obtain a screening parameter corresponding to the single-mode system when the current base station system is a single-mode system;
  • Step S25 screening the data stream by using the screening parameter to obtain a second digital predistortion sample
  • Step S26 Filtering the data stream by using a preset gear priority parameter to obtain a third digital predistortion sample
  • Step S27 performing intersection of the second digital predistortion sample and the third digital predistortion sample to obtain a first digital predistortion sample.
  • the screening parameters corresponding to the single-mode system are obtained; and the data stream is separately filtered by using the screening parameter and the preset gear priority parameter, according to the screening parameter and The preset gear priority parameter generates a frequency effective signal and a priority effective signal, and performs DPD sample screening on the data stream according to the data effective signal to obtain a second digital predistortion sample, which is effective according to the priority
  • the signal performs DPD sample screening on the data stream to obtain a third digital predistortion sample, and the second digital predistortion sample and the third digital predistortion sample are intersected to obtain the first digital predistortion sample.
  • step S25 when the screening parameter includes a mining position, step S25 includes:
  • Step S251 collecting data at each preset position of each data frame in the data stream
  • Step S252 generating a second digital predistortion sample according to the data at each preset position.
  • the screening parameter includes a picking position, generating a screen position effective signal, and collecting, according to the screen position effective signal, data at each preset position of each data frame in the data stream transmitted by the base station, according to the collected
  • the data at each of the preset locations is generated to generate a second digital predistortion sample.
  • step S25 includes:
  • Step S253 collecting data that each data power in the data stream is greater than a preset power
  • Step S254 generating a second digital predistortion sample according to the collected data.
  • the peak threshold of the sieve number is configured, that is, the preset power is set, and the peak sieve threshold is estimated according to the link calibration value to give an initial value.
  • a peak effective signal is generated, and each data power of the data stream transmitted by the base station is greater than the preset power according to the peak effective signal, and the second digital predistortion sample is generated according to the collected data.
  • step S26 includes:
  • Step S261 Obtain an average power corresponding to each preset length of the data segment in the data stream, and determine a power gear position and a priority level of the data segment corresponding to the obtained average power.
  • Step S262 generating a third digital predistortion sample according to each data in the data segment corresponding to the highest priority power gear.
  • the preset gear priority parameter is selected as the screening parameter, and the average power corresponding to the data segment of each preset length in the data stream is obtained, and the obtained average is determined. a power level and a priority of the data segment corresponding to the power, generating a priority effective signal, and generating a third digital predistortion according to each data in the data segment corresponding to the power signal with the highest priority sample.
  • Each GSM burst sequence consists of an information segment, a guard band, a training sequence, a frame stealing flag, and a tail bit.
  • the training sequence is fixed data
  • the information segment is a reflection of the real service.
  • the guard band data is all zero.
  • the DPD sampling point is configured to perform normal DPD sample screening on the data stream transmitted by the GSM single-mode base station.
  • the DPD sampling point refers to a data source point.
  • the DPD sampling point is a power amplifier input and an output, and the DPD sampling point is fixed. Set the DPD sample filter combination logic to count the two sets of data by location.
  • a set of data locations is located in the information area, because the data in this area can truly reflect the power amplifier characteristics as the business changes.
  • the GSM frequency hopping function is enabled, the peak value of the data in the information area is basically the same.
  • the data is in the second power level, and the data in the information area is not present in the first power level. Therefore, it is necessary to collect data samples with small transmission power of data streams transmitted by the GSM base station for DPD sample screening, the data samples with small transmission power are located in the falling edge region, and the other data samples are in the falling edge position.
  • the screening parameter is a picking position, collecting data at each preset position of each data frame in the data stream, and generating a second digital predistortion sample according to the data at each preset position.
  • the preset position is a falling edge position. The falling edge position is configured, and the effective number signal is generated at the picking position, and the data in the falling edge position of the data stream transmitted by the GSM single mode base station is collected to generate a second digital predistortion sample.
  • the preset gear priority parameter is selected as the screening parameter.
  • the power level set by the GSM single-mode base station is three gear positions, 10W (watt) is the first power gear position, and 20W is the second power gear position. 30W is the third power position.
  • the first power gear corresponds to a priority of 8
  • the second power gear corresponds to a priority of 9
  • the third power gear corresponds to a priority of 10.
  • the data of one window transmitted by the GSM single-mode base station that is, the average power of one thousand data is 20 W
  • the corresponding priority is 9, the average power is collected as 20 W. data.
  • the GSM single-mode base station transmits data of a window for the second time, when the average power of the data is 30 W, it is judged that it is in the third power position, and the corresponding priority is 10, which is higher than the priority of the previous data. If the data of the average power of 20 W is discarded, data with an average power of 30 W is discarded, and when the data with an average power of 30 W is collected, the priority of the third power level is lowered by one. , down to 9.
  • the digital pre-distortion samples are generated for each of the data in the data segment corresponding to the falling edge position and the highest priority power gear.
  • the received base station is a GSM/LTE FDD mixed mode base station.
  • the one frame signal of the GSM/LTE FDD exhibits different average power and peak-to-average ratio in different time slots in different time slots.
  • some symbol position signals have higher average power, and some The average power of the symbol position is very low, and the difference between the two is more than 10db.
  • the mining number corresponding to the mining mode of the GSM/LTE FDD mixed-mode base station is the mining position and the peak screening number. That is, the acquisition mode of the GSM/LTE FDD mixed-mode base station is a set of position-by-position mode and a set of peak sieve mode.
  • the DPD sample collection manner of the data stream transmitted by the GSM/LTE FDD mixed mode base station may be selected in a parallel manner or a serial manner, and is selected in a parallel manner from the data stream transmitted by the GSM/LTE FDD mixed mode base station.
  • two DPD samples are required to screen the combined logic. In this way, two sets of data can be collected simultaneously in a certain period of time. If a DPD sample is collected from the data stream transmitted by the GSM/LTE FDD mixed-mode base station in a serial manner, only one DPD sample is needed to filter the combination logic. At this time, only one set of data can be collected in a certain period of time, if It takes a long time to collect two sets of data.
  • Which method is selected to collect DPD samples from the data stream transmitted by the GSM/LTE FDD mixed-mode base station depends on the resources of the FPGA, and in this embodiment, the data stream transmitted from the GSM/LTE FDD mixed-mode base station is serially used.
  • the data stream transmitted from the GSM/LTE FDD mixed-mode base station is serially used.
  • sequential acquisition of the DPD samples for example, collecting GSM data in the data stream transmitted by the GSM/LTE FDD mixed-mode base station, and then performing LTE on the data stream transmitted by the GSM/LTE FDD mixed-mode base station.
  • the FDD data is collected, that is, the DPD sample is filtered for the GSM data, and then the DPD sample is filtered for the LTE FDD data.
  • the DPD sample screening for the GSM data has been described in detail in this embodiment, and the description thereof will not be repeated here.
  • the GSM/LTE FDD mixed-mode base station When performing DPD sample screening on the LTE FDD data in the data stream transmitted by the GSM/LTE FDD mixed-mode base station, the GSM/LTE FDD mixed-mode base station sends an enable signal to configure a peak threshold of the screen number, that is, setting a preset power. If the initial value of the peak screening threshold is set to 5 W, if the single data power in the LTE FDD data stream transmitted by the GSM/LTE FDD mixed-mode base station is 8 W, a peak valid signal is generated, according to the peak valid signal. The data with the power of 8 W is collected. If the power of the single data in the LTE FDD data stream transmitted by the GSM/LTE FDD mixed-mode base station is less than 5 W, the data is not collected.
  • the preset gear priority parameter is selected as the screening parameter, and the average power corresponding to the data segment of each preset length in the data stream transmitted by the GSM/LTE FDD mixed-mode base station is obtained, and the data segment corresponding to the obtained average power is determined.
  • the power gear position and the priority level generate a priority effective signal, and generate a third digital predistortion sample according to each data in the data segment corresponding to the power bit position with the highest priority.
  • This embodiment ensures that the single-mode or mixed-mode system can screen out the better DPD input samples, obtain higher DPD performance, and ensure the stability of the power amplifier output signal ACPR.
  • the invention further provides a digital predistortion sample screening device.
  • FIG. 5 is a schematic diagram of functional modules of a first embodiment of a digital predistortion sample screening apparatus according to the present invention.
  • the device includes:
  • the receiving module 10 is configured to receive a base station standard message
  • the obtaining module 20 is configured to acquire a screening parameter corresponding to the base station standard message
  • the screening module 30 is configured to filter the data stream transmitted by the base station according to the screening parameter to obtain a first digital predistortion sample.
  • Receiving a cell standard message sent by the base station control software determining the base station mode, that is, whether the base station is in a single mode, a mixed mode, or a triple mode, and selecting a corresponding screening parameter according to the configuration of the base station mode. That is, the screening parameters corresponding to the base station system are obtained.
  • Generating a corresponding effective number signal according to the screening parameter, according to the effective signal of the counting number Determining which data in the data stream of the data stream transmitted by the base station is required to extract a DPD sample, that is, selecting the qualified DPD sample data in the data stream transmitted by the base station according to the data acquisition trigger signal, that is, obtaining the first digital predistortion sample.
  • the base station system ie, the cell system, is a standard signal form defined in a wireless communication protocol.
  • the mainstream base station systems in the world include GSM/UMTS (Universal Mobile Telecommunications System)/TD-SCDMA (Time Division-Synchronous Code Division Multiple Access)/LTE FDD/LTE TDD (Time). Division Duplexing, Time Division Duplex) / GSM & UMTS Mixed Mode / GSM & LTE FDD Mixed Mode / UMTS & LTE FDD Mixed Mode / GSM & UMTS & LTE FDD three-mode mixed mode, etc., where the mixed mode depends on the operator's needs.
  • GSM/UMTS Universal Mobile Telecommunications System
  • TD-SCDMA Time Division-Synchronous Code Division Multiple Access
  • LTE FDD/LTE TDD Time Division Duplexing, Time Division Duplex) / GSM & UMTS Mixed Mode / GSM & LTE FDD Mixed Mode / UMTS & LTE F
  • Performing DPD sample screening on the data stream transmitted by the base station includes trigger, stop, acquisition, and protection states, and receiving an interface valid signal of an ADC (Analog-to-Digital Converter) As an input logic condition.
  • ADC Analog-to-Digital Converter
  • the trigger state is an acknowledgement state of a valid signal for performing DPD sample screening.
  • a trigger signal will be generated and transferred to the acquisition state.
  • the stop state that is, stopping the screening of the DPD sample, automatically stops after collecting a set of data, does not do any action, and waits for a valid acquisition trigger signal to perform the next acquisition number.
  • the DPD sample data that meets the trigger trigger condition is continuously filtered from the data stream transmitted by the base station.
  • the protection state is transferred to the protection state after issuing a command to stop the acquisition. At this time, all trigger conditions are masked, and only the DPD sample screening task is completed to ensure the integrity of the selected DPD samples. Sex.
  • the four states of the trigger, stop, acquisition, and protection states are implemented by a program in an FPGA (Field-Programmable Ggate Aarray). The four states switch between jumps according to the trigger condition or die in a certain state. For example, after the board is powered on, the default is in the "stop” state. When there is no trigger signal, it is “ fallen” and does not move in the stop state. When the condition of "starting” is received, it is stopped. The state is switched to the "capture” state for counting.
  • the screening parameter corresponding to the base station standard message is obtained by receiving the base station standard message, and the data stream transmitted by the base station is filtered according to the screening parameter to obtain the first digital predistortion sample.
  • the single-mode/mixed-mode signal can ensure the screening of the better DPD input samples, obtain higher DPD performance, and ensure the stability of the power amplifier output signal ACPR index.
  • the screening module 30 includes:
  • the determining unit 31 is configured to determine, according to the base station standard message, that the current base station system is a single mode or a mixed mode;
  • the obtaining unit 32 acquires each sub-data stream in the data stream transmitted by the base station when the current base station system is a mixed mode;
  • the screening unit 33 is configured to filter the respective sub-data streams according to their corresponding screening parameters to obtain a first digital pre-distortion sample.
  • the corresponding screening parameters are filtered to obtain a first digital predistortion sample. For example, when the base station system is a GSM/LTE FDD mixed-mode base station, acquiring a GSM data stream and an LTE FDD data stream in the GSM/LTE FDD mixed-mode base station, according to the GSM data stream.
  • the corresponding screening parameter and the screening parameter corresponding to the LTE FDD data stream generate a corresponding effective signal
  • the DPD sample of the GSM data stream in the GSM/LTE FDD mixed-mode base station is filtered according to the effective signal of the GSM data stream, according to
  • the effective signal of the LTE FDD data stream filters the DPD samples of the LTE FDD data stream in the GSM/LTE FDD mixed-mode base station, and selects the DPD samples and the LTE FDD data of the GSM data stream from the GSM/LTE FDD mixed-mode base station.
  • the DPD sample of the stream is the first digital predistortion sample.
  • the obtaining unit 32 is further configured to: when the current base station system is a single-mode system, obtain a screening parameter corresponding to the single-mode system;
  • the screening unit 33 is further configured to: filter the data stream by using the screening parameter to obtain a second digital predistortion sample;
  • the screening unit 33 is further configured to filter the data stream by using a preset gear priority parameter to obtain a third digital predistortion sample;
  • the screening module 30 further includes a processing unit 34 configured to interleave the second digital predistortion samples and the third digital predistortion samples to obtain the first digital predistortion samples.
  • the screening parameters corresponding to the single-mode system are obtained; and the data stream is separately filtered by using the screening parameter and the preset gear priority parameter, according to the screening parameter and The preset gear priority parameter generates a frequency effective signal and a priority effective signal, and performs DPD sample screening on the data stream according to the data effective signal to obtain a second digital predistortion sample, which is effective according to the priority
  • the signal performs DPD sample screening on the data stream to obtain a third digital predistortion sample, and the second digital predistortion sample and the third digital predistortion sample are intersected to obtain the first digital predistortion sample.
  • the screening module 30 further includes a first collecting unit 35 configured to collect data at each preset position of each data frame in the data stream;
  • the processing unit 34 is further configured to generate a second digital pre-distortion sample according to the data at each preset position.
  • the screening parameter includes a picking position, generating a screen position effective signal, and collecting, according to the screen position effective signal, data at each preset position of each data frame in the data stream transmitted by the base station, according to the collected
  • the data at each of the preset locations is generated to generate a second digital predistortion sample.
  • the screening module 30 further includes a second collecting unit 36 configured to collect data of each data power in the data stream that is greater than a preset power;
  • the processing unit 34 is further configured to generate a second digital pre-distortion sample based on the collected data.
  • the peak threshold of the sieve number is configured, that is, the preset power is set, and the peak sieve threshold is estimated according to the link calibration value to give an initial value.
  • a peak effective signal is generated, and each data power of the data stream transmitted by the base station is greater than the preset power according to the peak effective signal, and the second digital predistortion sample is generated according to the collected data.
  • the acquiring unit 32 is further configured to acquire a data segment corresponding to each preset length in the data stream. Average power, determining the power level and priority of the data segment corresponding to the obtained average power;
  • the processing unit 34 is further configured to generate a third digital predistortion sample according to each data in the data segment corresponding to the highest priority power gear.
  • the preset gear priority parameter is selected as the screening parameter, and the average power corresponding to the data segment of each preset length in the data stream is obtained, and the obtained average is determined. a power level and a priority of the data segment corresponding to the power, generating a priority effective signal, and generating a third digital predistortion according to each data in the data segment corresponding to the power signal with the highest priority sample.
  • Each GSM burst sequence consists of an information segment, a guard band, a training sequence, a frame stealing flag, and a tail bit.
  • the training sequence is fixed data
  • the information segment is a reflection of real service, which changes with voice or control information.
  • the band data is all 0.
  • the DPD sampling point is configured to perform normal DPD sample screening on the data stream transmitted by the GSM single-mode base station.
  • the DPD sampling point refers to a data source point.
  • the DPD sampling point is a power amplifier input and an output, and the DPD sampling point is fixed. Set the DPD sample filter combination logic to count the two sets of data by location.
  • a set of data locations is located in the information area, because the data in this area can truly reflect the power amplifier characteristics as the business changes.
  • the GSM frequency hopping function is enabled, the peak value of the data in the information area is basically the same.
  • the data is in the second power level, and the data in the information area is not present in the first power level. Therefore, it is necessary to collect data samples with small transmission power of data streams transmitted by the GSM base station for DPD sample screening, the data samples with small transmission power are located in the falling edge region, and the other data samples are in the falling edge position.
  • the screening parameter is a picking position, collecting data at each preset position of each data frame in the data stream, and generating a second digital predistortion sample according to the data at each preset position.
  • the preset position is a falling edge position. The falling edge position is configured, and the effective number signal is generated at the picking position, and the data in the falling edge position of the data stream transmitted by the GSM single mode base station is collected to generate a second digital predistortion sample.
  • the preset gear priority parameter is selected as the screening parameter.
  • the power level set by the GSM single-mode base station is three gear positions, 10W (watt) is the first power gear position, and 20W is the second power gear position. 30W is the third power position.
  • the first power gear corresponds to a priority of 8
  • the second power gear corresponds to a priority of 9
  • the third power gear corresponds to a priority of 10.
  • the data of one window transmitted by the GSM single-mode base station that is, the average power of one thousand data is 20 W
  • the corresponding priority is 9, the average power is collected as 20 W. data.
  • the GSM single-mode base station transmits data of a window for the second time, when the average power of the data is 30 W, it is judged that it is in the third power position, and the corresponding priority is 10, which is higher than the priority of the previous data. If the data of the average power of 20 W is discarded, data with an average power of 30 W is discarded, and when the data with an average power of 30 W is collected, the priority of the third power level is lowered by one. , down to 9.
  • the digital pre-distortion samples are generated for each of the data in the data segment corresponding to the falling edge position and the highest priority power gear.
  • the received base station is a GSM/LTE FDD mixed mode base station.
  • the one frame signal of the GSM/LTE FDD exhibits different average power and peak-to-average ratio in different time slots in different time slots.
  • some symbol position signals have higher average power, and some The average power of the symbol position is very low, and the difference between the two is more than 10db.
  • the mining number corresponding to the mining mode of the GSM/LTE FDD mixed-mode base station is the mining position and the peak screening number. That is, the acquisition mode of the GSM/LTE FDD mixed-mode base station is a set of position-by-position mode and a set of peak sieve mode.
  • the DPD sample collection manner of the data stream transmitted by the GSM/LTE FDD mixed mode base station may be selected in a parallel manner or a serial manner, and is selected in a parallel manner from the data stream transmitted by the GSM/LTE FDD mixed mode base station.
  • two DPD samples need to be combined to filter the combination logic so that two sets of data can be collected simultaneously in a certain period of time. If a DPD sample is collected from the data stream transmitted by the GSM/LTE FDD mixed-mode base station in a serial manner, only one DPD sample is needed to filter the combination logic. At this time, only one set of data can be collected in a certain period of time, if It takes a long time to collect two sets of data.
  • Which method is selected to collect DPD samples from the data stream transmitted by the GSM/LTE FDD mixed-mode base station depends on the resources of the FPGA, and in this embodiment, the data stream transmitted from the GSM/LTE FDD mixed-mode base station is serially used.
  • the data stream transmitted from the GSM/LTE FDD mixed-mode base station is serially used.
  • sequential acquisition of the DPD samples for example, collecting GSM data in the data stream transmitted by the GSM/LTE FDD mixed-mode base station, and then performing LTE on the data stream transmitted by the GSM/LTE FDD mixed-mode base station.
  • the FDD data is collected, that is, the DPD sample is filtered for the GSM data, and then the DPD sample is filtered for the LTE FDD data.
  • the DPD sample screening for the GSM data has been described in detail in this embodiment, and the description thereof will not be repeated here.
  • the GSM/LTE FDD mixed-mode base station When performing DPD sample screening on the LTE FDD data in the data stream transmitted by the GSM/LTE FDD mixed-mode base station, the GSM/LTE FDD mixed-mode base station sends an enable signal to configure a peak threshold of the screen number, that is, setting a preset power. If the initial value of the peak screening threshold is set to 5 W, if the single data power in the LTE FDD data stream transmitted by the GSM/LTE FDD mixed-mode base station is 8 W, a peak valid signal is generated, according to the peak valid signal. The data with the power of 8 W is collected. If the power of the single data in the LTE FDD data stream transmitted by the GSM/LTE FDD mixed-mode base station is less than 5 W, the data is not collected.
  • the preset gear priority parameter is selected as the screening parameter, and the average power corresponding to the data segment of each preset length in the data stream transmitted by the GSM/LTE FDD mixed-mode base station is obtained, and the data segment corresponding to the obtained average power is determined.
  • the power gear position and the priority level generate a priority effective signal, and generate a third digital predistortion sample according to each data in the data segment corresponding to the power bit position with the highest priority.
  • This embodiment ensures that the single-mode or mixed-mode system can screen out the better DPD input samples, obtain higher DPD performance, and ensure the stability of the power amplifier output signal ACPR.
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • a storage medium such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.
  • the single-mode/mixed-mode signal can ensure the screening of the better DPD input samples, obtain higher DPD performance, and ensure the stability of the power amplifier output signal ACPR index.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transmitters (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种数字预失真样本筛选方法,包括步骤:接收基站制式消息,获取所述基站制式消息对应的筛选参数;根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。本发明还公开了一种数字预失真样本筛选装置。本发明实现了在单模或混模制式下,都能保证功率放大器输出信号ACPR指标的稳定。

Description

数字预失真样本筛选方法和装置 技术领域
本发明涉及无线通讯技术领域,尤其涉及一种数字预失真样本筛选方法和装置。
背景技术
数字预失真技术是在射频功率放大器的输入侧对输入信号作预先失真处理,其特性与功放失真特性相反,用于抵消功放的非线性失真。在无线通讯领域,预失真处理技术因其提高了功放效率,降低了生产和运营成本,越来越受到运营商的青睐并得到了广泛的应用。随着无线通信技术的发展,多种制式共同应用在我们生活中也得到了越来越大的应用。
现代基站设备已广泛采用SDR(Software Defined Radio,软件无线电)平台,同一硬件平台支持多种信号制式,将来的基站均是多模基站。而无线通信系统不同制式,其信号协议千差万别,不同信号形式所产生的互调影响也不相同,尤其在两种和两种以上信号制式的混模情况下,就需要更复杂的手段来提取最适合于DPD(Digital Pre-Distortion,数字预失真)训练的样本。当前的各种DPD样本筛选方法和装置,都是只针对某一种或某几种单模制式信号,而在多种制式信号混合的情况下通用性较低,不能获得较佳的DPD样本,从而不能保证功率放大器输出信号ACPR(Adjacent Channel Power Ratio,邻信道功率比)指标的稳定。
发明内容
本发明的主要目的在于提供一种数字预失真样本筛选方法及装置,旨在解决功率放大器输出信号ACPR不稳定的问题。
为实现上述目的,本发明提供的一种数字预失真样本筛选方法,包括步骤:
接收基站制式消息,获取所述基站制式消息对应的筛选参数;
根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。
在本发明的实施例中,所述根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本的步骤包括:
基于所述基站制式消息确定当前基站制式为单模制式或者混模制式;
在当前基站制式为混模制式时,获取基站发射的数据流中的各个子数据流;
对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数字预失真样本。
在本发明的实施例中,所述基于所述基站制式消息确定当前基站制式为单模制式或者混模制式的步骤之后,还包括:
在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;
采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本;
采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本;
对所述第二数字预失真样本和所述第三数字预失真样本求交集得到第一数字预失真样本。
在本发明的实施例中,所述采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本的步骤包括:
获取所述数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级;
根据优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
在本发明的实施例中,在所述筛选参数包括采数位置时,所述采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本的步骤包括:
采集所述数据流中各个数据帧各个预设位置处的数据;
根据各个预设位置处的数据生成第二数字预失真样本。
在本发明的实施例中,在所述筛选参数包括峰值筛数时,所述采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本的步骤之后,还包括:
采集所述数据流中每个数据功率大于预设功率的数据;
根据采集到的数据生成第二数字预失真样本。
此外,为实现上述目的,本发明还提供一种数字预失真样本筛选装置,所述装置包括:
接收模块,设置为接收基站制式消息;
获取模块,设置为获取所述基站制式消息对应的筛选参数;
筛选模块,设置为根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。
在本发明的实施例中,所述筛选模块包括:
确定单元,设置为基于所述基站制式消息确定当前基站制式为单模制式或者混模制式;
获取单元,设置为在当前基站制式为混模制式时,获取基站发射的数据流中的各个子数据流;
筛选单元,设置为对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数 字预失真样本。
在本发明的实施例中,所述获取单元,还设置为在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;
所述筛选单元,还设置为采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本;
所述筛选单元,还设置为采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本;
所述筛选模块还包括处理单元,设置为对所述第二数字预失真样本和所述第三数字预失真样本求交集得到第一数字预失真样本。
在本发明的实施例中,所述获取单元,还设置为获取所述数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级;
所述处理单元,还设置为根据优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
在本发明的实施例中,在所述筛选参数包括采数位置时,所述筛选模块还包括第一采集单元,设置为采集所述数据流中各个数据帧各个预设位置处的数据;
所述处理单元,还设置为根据各个预设位置处的数据生成第二数字预失真样本。
在本发明的实施例中,在所述筛选参数包括峰值筛数时,所述筛选模块还包括第二采集单元,设置为采集所述数据流中每个数据功率大于预设功率的数据;所述处理单元,还设置为根据采集到的数据生成第二数字预失真样本。
本发明通过接收基站制式消息,获取所述基站制式消息对应的筛选参数;根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。使在单模/混模信号下均能保证筛选到较优DPD输入样本,获得较高的DPD性能,保证功率放大器输出信号ACPR指标的稳定。
附图说明
图1为本发明数字预失真样本筛选方法第一实施例的流程示意图;
图2为本发明数字预失真样本筛选方法第二实施例的流程示意图;
图3为图2中步骤25的细化流程示意图;
图4为图2中步骤26的细化流程示意图;
图5为本发明数字预失真样本筛选装置较佳的功能模块示意图;
图6为图5中筛选模块的细化功能模块示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明实施例的主要解决方案是:接收基站制式消息,获取所述基站制式消息对应的筛选参数;根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。通过接收基站制式消息,获取所述基站制式消息对应的筛选参数,使在单模/混模信号下均能保证筛选到较优DPD输入样本,获得较高的DPD性能,保证功率放大器输出信号ACPR指标的稳定。
由于现有的数字预失真样本筛选方法,都只是针对某一种或几种单模制式信号,在混模制式信号的情况下通用性不强,且不能达到较佳的数字预失真训练效果,导致功率放大器输出信号ACPR不稳定。
基于上述问题,本发明提供一种数字预失真样本筛选方法。
参照图1,图1为本发明数字预失真样本筛选方法的第一实施例的流程示意图。
在本实施例中,所述数字预失真样本筛选方法包括:
步骤S10,接收基站制式消息,获取所述基站制式消息对应的筛选参数;
步骤S20,根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。
接收基站主控软件下发的小区制式消息,确定所述基站制式模式,即所述基站是单模、混模还是三模等模式,根据所述基站制式模式的配置选择对应的筛选参数。即获取所述基站制式对应的筛选参数。根据所述筛选参数产生对应的采数有效信号,根据所述采数有效信号确定所述基站发射的数据流的数据中哪些数据是需要提取DPD样本,即根据所述采数有效信号在基站发射的数据流中筛选出符合条件的DPD样本数据,即得到第一数字预失真样本。
所述基站制式即小区制式,是无线通信协议中定义的标准信号形式。目前全球主流的基站制式有GSM/UMTS(Universal Mobile Telecommunications System,通用移动通信系统)/TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)/LTE FDD/LTE TDD(Time Division Duplexing,时分双工)/GSM&UMTS混模/GSM&LTE FDD混模/UMTS&LTE FDD混模/GSM&UMTS&LTE FDD三模混模等,其中混模方式随运营商需求而定。
对所述基站发射的数据流进行DPD样本筛选包括触发、停止、采数和保护态几个状态,同时还要接收反馈ADC(Analog-to-Digital Converter,模/数转换器)的接口有效信号作为输入逻辑条件。当各种逻辑条件均满足的时候,开始筛选所述基站发射的数据流中的数据。所 述触发状态,是进行DPD样本筛选的有效信号的确认状态。当各种筛选条件满足时,将产生触发信号,转入采数状态。所述停止状态,即停止DPD样本筛选,在采集一组数据之后,会自动停止下来,不做任何动作,等待有效的采数触发信号,以进行下一次的采数。在所述采数状态下,开始连续从所述基站发射的数据流中筛选符合采数触发条件的DPD样本数据。所述保护状态,当发出停止采数的命令后,转入所述保护状态,此时,将屏蔽掉所有触发条件,只完成本次DPD样本筛选任务,以确保所筛选出的DPD样本的完整性。所述触发、停止、采数和保护态四个状态是在FPGA(Field-Programmable Ggate Aarray,现场可编程门阵列)中用程序实现的。四个状态之间根据触发条件进行跳转切换或者在某个状态死循环。比如单板上电后,默认在“停止”状态,当没有任何触发信号的时候,就“陷死”在停止状态不动,当接收到“启动”采数的条件后,就从“停止”状态切换到“捕获”状态进行采数了。
本实施例通过接收基站制式消息,获取所述基站制式消息对应的筛选参数,根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。使在单模/混模信号下均能保证筛选到较优DPD输入样本,获得较高的DPD性能,保证功率放大器输出信号ACPR指标的稳定。
参照图2,图2为本发明数字预失真样本筛选方法的第二实施例的流程示意图。基于第一实施例提出本发明数字预失真样本筛选方法的第二实施例,在本实施例中,所述步骤S20包括:
步骤S21,基于所述基站制式消息确定当前基站制式为单模制式或者混模制式;
步骤S22,在当前基站制式为混模制式时,获取基站发射的数据流中的各个子数据流;
步骤S23,对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数字预失真样本。
基于所述基站制式消息确定当前基站制式为单模制式还是混模制式,当所述基站制式为混模制式时,获取基站发射的数据流中各个子数据流,对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数字预失真样本。如当所述基站制式为GSM/LTE FDD混模基站时,获取GSM/LTE FDD混模基站中GSM数据流和LTE FDD数据流,根据所述GSM数据流对应的筛选参数和所述LTE FDD数据流对应的筛选参数产生对应的采数有效信号,根据GSM数据流的采数有效信号筛选出GSM/LTE FDD混模基站中GSM数据流的DPD样本,根据LTE FDD数据流的采数有效信号筛选出GSM/LTE FDD混模基站中LTE FDD数据流的DPD样本,从所述GSM/LTE FDD混模基站中筛选出GSM数据流的DPD样本和LTE FDD数据流的DPD样本即为第一数字预失真样本。
步骤S24,在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;
步骤S25,采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本;
步骤S26,采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本;
步骤S27,对所述第二数字预失真样本和所述第三数字预失真样本求交集得到第一数字预失真样本。
在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;采用所述筛选参数以及预设的档位优先级参数分别对所述数据流进行筛选,根据所述筛选参数以及预设的档位优先级参数产生采数有效信号和优先级有效信号,根据所述采数有效信号对所述数据流进行DPD样本筛选,得到第二数字预失真样本,根据所述优先级有效信号对所述数据流进行DPD样本筛选,得到第三数字预失真样本,对所述第二数字预失真样本和第三数字预失真样本求交集得到所述第一数字预失真样本。
具体地,参照图3,在所述筛选参数包括采数位置时,步骤S25包括:
步骤S251,采集所述数据流中各个数据帧各个预设位置处的数据;
步骤S252,根据各个预设位置处的数据生成第二数字预失真样本。
当所述筛选参数包括采数位置时,产生筛数位置有效信号,根据所述筛数位置有效信号采集所述基站发射的数据流中各个数据帧的各个预设位置处的数据,根据所采集到的各个预设位置处的数据生成第二数字预失真样本。
在所述筛选参数包括峰值门限时,步骤S25包括:
步骤S253,采集所述数据流中每个数据功率大于预设功率的数据;
步骤S254,根据采集到的数据生成第二数字预失真样本。
在所述筛选参数包括峰值门限时,配置筛数的峰值门限,即设置预设功率,所述峰值筛数门限根据链路定标值推算给出初始值。产生峰值有效信号,根据所述峰值有效信号采集基站发射的数据流中每个数据功率大于预设功率的数据,根据所采集到的数据生成第二数字预失真样本。
具体地,参照图4,步骤S26包括:
步骤S261,获取所述数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级;
步骤S262,根据优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
不管是在单模基站或者混模基站的情况下,选择预设的档位优先级参数作为筛选参数,获取所述数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级,产生优先级有效信号,根据所述优先级有效信号采集优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
当接收到的基站为GSM单模基站消息。每个GSM突发脉冲序列由信息段、保护带、训练序列、偷帧标志和尾比特构成,其中训练序列是固定数据,信息段是真实业务的反映,随 着话音或控制信息而变化,保护带数据全为0。配置DPD采样点,以对GSM单模基站发射的数据流进行正常的DPD样本筛选。所述DPD采样点是指数据来源点,对于本实施例中的DPD采样点来说,所述DPD采样点就是功率放大器输入和输出,所述DPD采样点是固定的。设置DPD样本筛选组合逻辑为两组数据按位置采数。一组数据位置位于信息区,因为这个区域的数据随着业务变化,能真实的反映功放特性。当有GSM跳频功能开启的时候,信息区的数据表现的峰值基本上一样高,在多功率档的DPD结构中,会造成小功率档位无筛选样本,指标较差,如可能信息区的数据都在第二功率档位中,而第一功率档位就不存在信息区的数据。因此需要采集一些GSM基站发射的数据流的传输功率小的数据样本进行DPD样本筛选,所述传输功率小的数据样本位于下降沿区域,另一组数据样本为下降沿位置。在这种情况下,所述筛选参数为采数位置,采集所述数据流中各个数据帧各个预设位置处的数据,根据各个预设位置处的数据生成第二数字预失真样本。在GSM模式中,所述预设位置为下降沿位置。配置下降沿位置,在所述采数位置产生采数有效信号,采集GSM单模基站发射的数据流中处于下降沿位置的数据,生成第二数字预失真样本。
同时选择预设的档位优先级参数作为筛选参数,如所述GSM单模基站所设置的功率等级为三个档位,10W(瓦特)为第一功率档位,20W为第二功率档位,30W为第三功率档位。所述第一功率档位对应的优先级为8,所述第二功率档位对应的优先级为9,所述第三功率档位对应的优先级为10。如当GSM单模基站发射的一个窗口的数据,即一千个数据的平均功率为20W时,判断其处于第二功率档位,对应的优先级为9,则采集所述平均功率为20W的数据。当GSM单模基站第二次发射的一个窗口的数据时,所述数据的平均功率为30W时,判断其处于第三功率档位,对应的优先级为10,比上一段数据的优先级要大,则丢弃所述上一段平均功率为20W的数据,采集平均功率为30W的数据,当采集到足够的平均功率为30W的数据时,将所述第三功率档位的优先级降一级,降为9。如果当存在有两个功率档位的优先级一样的情况时,当开始采集GSM单模基站发射的数据流中数据时,先采集到相同优先级所对应的功率档位的数据时,就一直采集所述功率档位所对应的数据,如所述第三功率档位和所述第二功率档位对应的优先级都为9时,当先采集到第二功率档位所对应的数据,则之后就一直采集所述第二功率档位所对应的数据,直到采集到足够的GSM单模基站发射的数据流中的数据,生成第三数字预失真样本。
对生成的第二数字预失真样本和第三数字预失真样本求交集,得到GSM单模基站发射的数据流的数字预失真样本,即从所述GSM单模基站发射的数据流中筛选出处于下降沿位置和优先级最高的功率档位所对应的数据段中的各个数据生成数字预失真样本。
当接收到的基站为GSM/LTE FDD混模基站。所述GSM/LTE FDD的一帧信号不同时隙上以符号为单位表现为不同的平均功率和峰均比,在实际业务的某个时刻,有的符号位置信号平均功率较高,而有的符号位置平均功率很低,两者相差10db多。所述GSM/LTE FDD混模基站的采数模式所对应的筛选采数为采数位置和峰值筛数。即GSM/LTE FDD混模基站的采数模式为一组按位置采数模式,一组峰值筛数模式。所述GSM/LTE FDD混模基站发射的数据流的DPD样本采集方式既可以选择并行方式也可以选择串行方式,当选择并行方式从所述GSM/LTE FDD混模基站发射的数据流中采集DPD样本时,需要有两个DPD样本筛选组合逻 辑,这样才可以在一定的时间内同时采集到两组数据。如果采用串行方式从所述GSM/LTE FDD混模基站发射的数据流中采集DPD样本时,只需要一个DPD样本筛选组合逻辑,这时,在一定时间内只能采集到一组数据,如果要采集到两组数据就得延长时间。选择何种方式从所述GSM/LTE FDD混模基站发射的数据流中采集DPD样本视FPGA的资源而定,本实施例中使用串行方式从GSM/LTE FDD混模基站发射的数据流中进行DPD样本的先后采集,如可以先对所述GSM/LTE FDD混模基站发射的数据流中的GSM数据进行采集,然后再对所述GSM/LTE FDD混模基站发射的数据流中的LTE FDD数据进行采集,即先对GSM数据进行DPD样本筛选,然后再对LTE FDD数据进行DPD样本筛选。所述对GSM数据的进行DPD样本筛选在本实施例已经详细描述,在这里不再重复说明。
在对GSM/LTE FDD混模基站发射的数据流中的LTE FDD数据进行DPD样本筛选时,根据所述GSM/LTE FDD混模基站发出使能信号,配置筛数的峰值门限,即设置预设功率。如将所述峰值筛数门限的初始值设置为5W,若所述GSM/LTE FDD混模基站发射的LTE FDD数据流中单个数据功率为8W时,产生峰值有效信号,根据所述峰值有效信号采集所述功率为8W的数据,若所述GSM/LTE FDD混模基站发射的LTE FDD数据流中单个数据功率低于5W时,则不采集。根据采集到数据的瞬时功率大于预设功率的数据生成第二数字预失真样本。同时选择预设的档位优先级参数作为筛选参数,获取GSM/LTE FDD混模基站发射的数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级,产生优先级有效信号,根据所述优先级有效信号采集优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
对所述第二数字预失真样本和所述第三数字预失真样本求交集,得到第一数字预失真样本,即得到GSM/LTE FDD混模基站发射的数字预失真样本。
本实施例保证了单模或者混模制式下,都可以筛选出较优的DPD输入样本,获得较高的DPD性能,保证功率放大器输出信号ACPR的稳定。
本发明进一步提供了一种数字预失真样本筛选装置。
参照图5,图5为本发明数字预失真样本筛选装置的第一实施例的功能模块示意图。
在本实施例中,所述装置包括:
接收模块10,设置为接收基站制式消息;
获取模块20,设置为获取所述基站制式消息对应的筛选参数;
筛选模块30,设置为根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。
接收基站主控软件下发的小区制式消息,确定所述基站制式模式,即所述基站是单模、混模还是三模等模式,根据所述基站制式模式的配置选择对应的筛选参数。即获取所述基站制式对应的筛选参数。根据所述筛选参数产生对应的采数有效信号,根据所述采数有效信号 确定所述基站发射的数据流的数据中哪些数据是需要提取DPD样本,即根据所述采数触发信号在基站发射的数据流中筛选出符合条件的DPD样本数据,即得到第一数字预失真样本。
所述基站制式即小区制式,是无线通信协议中定义的标准信号形式。目前全球主流的基站制式有GSM/UMTS(Universal Mobile Telecommunications System,通用移动通信系统)/TD-SCDMA(Time Division-Synchronous Code Division Multiple Access,时分同步码分多址)/LTE FDD/LTE TDD(Time Division Duplexing,时分双工)/GSM&UMTS混模/GSM&LTE FDD混模/UMTS&LTE FDD混模/GSM&UMTS&LTE FDD三模混模等,其中混模方式随运营商需求而定。
对所述基站发射的数据流进行DPD样本筛选包括触发、停止、采数和保护态几个状态,同时还要接收反馈ADC(Analog-to-Digital Converter,模/数转换器)的接口有效信号作为输入逻辑条件。当各种逻辑条件均满足的时候,开始筛选所述基站发射的数据流中的数据。所述触发状态,是进行DPD样本筛选的有效信号的确认状态。当各种筛选条件满足时,将产生触发信号,转入采数状态。所述停止状态,即停止DPD样本筛选,在采集一组数据之后,会自动停止下来,不做任何动作,等待有效的采数触发信号,以进行下一次的采数。在所述采数状态下,开始连续从所述基站发射的数据流中筛选符合采数触发条件的DPD样本数据。所述保护状态,当发出停止采数的命令后,转入所述保护状态,此时,将屏蔽掉所有触发条件,只完成本次DPD样本筛选任务,以确保所筛选出的DPD样本的完整性。所述触发、停止、采数和保护态四个状态是在FPGA(Field-Programmable Ggate Aarray,现场可编程门阵列)中用程序实现的。四个状态之间根据触发条件进行跳转切换或者在某个状态死循环。比如单板上电后,默认在“停止”状态,当没有任何触发信号的时候,就“陷死”在停止状态不动,当接收到“启动”采数的条件后,就从“停止”状态切换到“捕获”状态进行采数了。
本实施例通过接收基站制式消息,获取所述基站制式消息对应的筛选参数,根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。使在单模/混模信号下均能保证筛选到较优DPD输入样本,获得较高的DPD性能,保证功率放大器输出信号ACPR指标的稳定。
具体地,参照图6,所述筛选模块30包括:
确定单元31,设置为基于所述基站制式消息确定当前基站制式为单模制式或者混模制式;
获取单元32,在当前基站制式为混模制式时,获取基站发射的数据流中的各个子数据流;
筛选单元33,设置为对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数字预失真样本。
基于所述基站制式消息确定当前基站制式为单模制式还是混模制式,当所述基站制式为混模制式时,获取基站发射的数据流中各个子数据流,对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数字预失真样本。如当所述基站制式为GSM/LTE FDD混模基站时,获取GSM/LTE FDD混模基站中GSM数据流和LTE FDD数据流,根据所述GSM数据流 对应的筛选参数和所述LTE FDD数据流对应的筛选参数产生对应的采数有效信号,根据GSM数据流的采数有效信号筛选出GSM/LTE FDD混模基站中GSM数据流的DPD样本,根据LTE FDD数据流的采数有效信号筛选出GSM/LTE FDD混模基站中LTE FDD数据流的DPD样本,从所述GSM/LTE FDD混模基站中筛选出GSM数据流的DPD样本和LTE FDD数据流的DPD样本即为第一数字预失真样本。
进一步地,所述获取单元32,还设置为在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;
所述筛选单元33,还设置为采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本;
所述筛选单元33,还设置为采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本;
所述筛选模块30还包括处理单元34,设置为对所述第二数字预失真样本和所述第三数字预失真样本求交集得到所述第一数字预失真样本。
在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;采用所述筛选参数以及预设的档位优先级参数分别对所述数据流进行筛选,根据所述筛选参数以及预设的档位优先级参数产生采数有效信号和优先级有效信号,根据所述采数有效信号对所述数据流进行DPD样本筛选,得到第二数字预失真样本,根据所述优先级有效信号对所述数据流进行DPD样本筛选,得到第三数字预失真样本,对所述第二数字预失真样本和第三数字预失真样本求交集得到所述第一数字预失真样本。
在所述筛选参数包括采数位置时,所述筛选模块30还包括第一采集单元35,设置为采集所述数据流中各个数据帧各个预设位置处的数据;
所述处理单元34,还设置为根据各个预设位置处的数据生成第二数字预失真样本。
当所述筛选参数包括采数位置时,产生筛数位置有效信号,根据所述筛数位置有效信号采集所述基站发射的数据流中各个数据帧的各个预设位置处的数据,根据所采集到的各个预设位置处的数据生成第二数字预失真样本。
在所述筛选参数包括峰值门限时,所述筛选模块30还包括第二采集单元36,设置为采集所述数据流中每个数据功率大于预设功率的数据;
所述处理单元34,还设置为根据采集到的数据生成第二数字预失真样本。
在所述筛选参数包括峰值门限时,配置筛数的峰值门限,即设置预设功率,所述峰值筛数门限根据链路定标值推算给出初始值。产生峰值有效信号,根据所述峰值有效信号采集基站发射的数据流中每个数据功率大于预设功率的数据,根据所采集到的数据生成第二数字预失真样本。
进一步地,所述获取单元32,还设置为获取所述数据流中各个预设长度的数据段对应的 平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级;
所述处理单元34,还设置为根据优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
不管是在单模基站或者混模基站的情况下,选择预设的档位优先级参数作为筛选参数,获取所述数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级,产生优先级有效信号,根据所述优先级有效信号采集优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
当接收到的基站为GSM单模基站消息。每个GSM突发脉冲序列由信息段、保护带、训练序列、偷帧标志和尾比特构成,其中训练序列是固定数据,信息段是真实业务的反映,随着话音或控制信息而变化,保护带数据全为0。配置DPD采样点,以对GSM单模基站发射的数据流进行正常的DPD样本筛选。所述DPD采样点是指数据来源点,对于本实施例中的DPD采样点来说,所述DPD采样点就是功率放大器输入和输出,所述DPD采样点是固定的。设置DPD样本筛选组合逻辑为两组数据按位置采数。一组数据位置位于信息区,因为这个区域的数据随着业务变化,能真实的反映功放特性。当有GSM跳频功能开启的时候,信息区的数据表现的峰值基本上一样高,在多功率档的DPD结构中,会造成小功率档位无筛选样本,指标较差,如可能信息区的数据都在第二功率档位中,而第一功率档位就不存在信息区的数据。因此需要采集一些GSM基站发射的数据流的传输功率小的数据样本进行DPD样本筛选,所述传输功率小的数据样本位于下降沿区域,另一组数据样本为下降沿位置。在这种情况下,所述筛选参数为采数位置,采集所述数据流中各个数据帧各个预设位置处的数据,根据各个预设位置处的数据生成第二数字预失真样本。在GSM模式中,所述预设位置为下降沿位置。配置下降沿位置,在所述采数位置产生采数有效信号,采集GSM单模基站发射的数据流中处于下降沿位置的数据,生成第二数字预失真样本。
同时选择预设的档位优先级参数作为筛选参数,如所述GSM单模基站所设置的功率等级为三个档位,10W(瓦特)为第一功率档位,20W为第二功率档位,30W为第三功率档位。所述第一功率档位对应的优先级为8,所述第二功率档位对应的优先级为9,所述第三功率档位对应的优先级为10。如当GSM单模基站发射的一个窗口的数据,即一千个数据的平均功率为20W时,判断其处于第二功率档位,对应的优先级为9,则采集所述平均功率为20W的数据。当GSM单模基站第二次发射的一个窗口的数据时,所述数据的平均功率为30W时,判断其处于第三功率档位,对应的优先级为10,比上一段数据的优先级要大,则丢弃所述上一段平均功率为20W的数据,采集平均功率为30W的数据,当采集到足够的平均功率为30W的数据时,将所述第三功率档位的优先级降一级,降为9。如果当存在有两个功率档位的优先级一样的情况时,当开始采集GSM单模基站发射的数据流中数据时,先采集到相同优先级所对应的功率档位的数据时,就一直采集所述功率档位所对应的数据,如所述第三功率档位和所述第二功率档位对应的优先级都为9时,当先采集到第二功率档位所对应的数据,则之后就一直采集所述第二功率档位所对应的数据,直到采集到足够的GSM单模基站发射的数据流中的数据,生成第三数字预失真样本。
对生成的第二数字预失真样本和第三数字预失真样本求交集,得到GSM单模基站发射的数据流的数字预失真样本,即从所述GSM单模基站发射的数据流中筛选出处于下降沿位置和优先级最高的功率档位所对应的数据段中的各个数据生成数字预失真样本。
当接收到的基站为GSM/LTE FDD混模基站。所述GSM/LTE FDD的一帧信号不同时隙上以符号为单位表现为不同的平均功率和峰均比,在实际业务的某个时刻,有的符号位置信号平均功率较高,而有的符号位置平均功率很低,两者相差10db多。所述GSM/LTE FDD混模基站的采数模式所对应的筛选采数为采数位置和峰值筛数。即GSM/LTE FDD混模基站的采数模式为一组按位置采数模式,一组峰值筛数模式。所述GSM/LTE FDD混模基站发射的数据流的DPD样本采集方式既可以选择并行方式也可以选择串行方式,当选择并行方式从所述GSM/LTE FDD混模基站发射的数据流中采集DPD样本时,需要有两个DPD样本筛选组合逻辑,这样才可以在一定的时间内同时采集到两组数据。如果采用串行方式从所述GSM/LTE FDD混模基站发射的数据流中采集DPD样本时,只需要一个DPD样本筛选组合逻辑,这时,在一定时间内只能采集到一组数据,如果要采集到两组数据就得延长时间。选择何种方式从所述GSM/LTE FDD混模基站发射的数据流中采集DPD样本视FPGA的资源而定,本实施例中使用串行方式从GSM/LTE FDD混模基站发射的数据流中进行DPD样本的先后采集,如可以先对所述GSM/LTE FDD混模基站发射的数据流中的GSM数据进行采集,然后再对所述GSM/LTE FDD混模基站发射的数据流中的LTE FDD数据进行采集,即先对GSM数据进行DPD样本筛选,然后再对LTE FDD数据进行DPD样本筛选。所述对GSM数据的进行DPD样本筛选在本实施例已经详细描述,在这里不再重复说明。
在对GSM/LTE FDD混模基站发射的数据流中的LTE FDD数据进行DPD样本筛选时,根据所述GSM/LTE FDD混模基站发出使能信号,配置筛数的峰值门限,即设置预设功率。如将所述峰值筛数门限的初始值设置为5W,若所述GSM/LTE FDD混模基站发射的LTE FDD数据流中单个数据功率为8W时,产生峰值有效信号,根据所述峰值有效信号采集所述功率为8W的数据,若所述GSM/LTE FDD混模基站发射的LTE FDD数据流中单个数据功率低于5W时,则不采集。根据采集到数据的瞬时功率大于预设功率的数据生成第二数字预失真样本。同时选择预设的档位优先级参数作为筛选参数,获取GSM/LTE FDD混模基站发射的数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级,产生优先级有效信号,根据所述优先级有效信号采集优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
对所述第二数字预失真样本和所述第三数字预失真样本求交集,得到第一数字预失真样本,即得到GSM/LTE FDD混模基站发射的数字预失真样本。
本实施例保证了单模或者混模制式下,都可以筛选出较优的DPD输入样本,获得较高的DPD性能,保证功率放大器输出信号ACPR的稳定。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。通过以上的实施方式的描 述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
工业实用性
通过接收基站制式消息,获取所述基站制式消息对应的筛选参数;根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。使在单模/混模信号下均能保证筛选到较优DPD输入样本,获得较高的DPD性能,保证功率放大器输出信号ACPR指标的稳定。

Claims (12)

  1. 一种数字预失真样本筛选方法,所述数字预失真样本筛选方法包括以下步骤:
    接收基站制式消息,获取所述基站制式消息对应的筛选参数;
    根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。
  2. 如权利要求1所述的数字预失真样本筛选方法,其中,所述根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本的步骤包括:
    基于所述基站制式消息确定当前基站制式为单模制式或者混模制式;
    在当前基站制式为混模制式时,获取基站发射的数据流中的各个子数据流;
    对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数字预失真样本。
  3. 如权利要求2所述的数字预失真样本筛选方法,其中,所述基于所述基站制式消息确定当前基站制式为单模制式或者混模制式的步骤之后,还包括:
    在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;
    采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本;
    采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本;
    对所述第二数字预失真样本和所述第三数字预失真样本求交集得到第一数字预失真样本。
  4. 如权利要求3所述的数字预失真样本筛选方法,其中,所述采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本的步骤包括:
    获取所述数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级;
    根据优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
  5. 如权利要求3所述的数字预失真样本筛选方法,其中,在所述筛选参数包括采数位置时,所述采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本的步骤包括:
    采集所述数据流中各个数据帧各个预设位置处的数据;
    根据各个预设位置处的数据生成第二数字预失真样本。
  6. 如权利要求3所述的数字预失真样本筛选方法,其中,在所述筛选参数包括峰值筛数时,所述采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本的步骤之后,还包括:
    采集所述数据流中每个数据功率大于预设功率的数据;
    根据采集到的数据生成第二数字预失真样本。
  7. 一种数字预失真样本筛选装置,所述数字预失真样本筛选装置包括:
    接收模块,设置为接收基站制式消息;
    获取模块,设置为获取所述基站制式消息对应的筛选参数;
    筛选模块,设置为根据所述筛选参数对基站发射的数据流进行筛选,以得到第一数字预失真样本。
  8. 如权利要求7所述的数字预失真样本筛选装置,其中,所述筛选模块包括:
    确定单元,设置为基于所述基站制式消息确定当前基站制式为单模制式或者混模制式;
    获取单元,设置为在当前基站制式为混模制式时,获取基站发射的数据流中的各个子数据流;
    筛选单元,设置为对所述各个子数据流按照其对应的筛选参数进行筛选,以得到第一数字预失真样本。
  9. 如权利要求8所述的数字预失真样本筛选装置,其中,所述获取单元,还设置为在当前基站制式为单模制式时,获取所述单模制式对应的筛选参数;
    所述筛选单元,还设置为采用所述筛选参数对所述数据流进行筛选得到第二数字预失真样本;
    所述筛选单元,还设置为采用预设的档位优先级参数对所述数据流进行筛选,得到第三数字预失真样本;
    所述筛选模块还包括处理单元,设置为对所述第二数字预失真样本和所述第三数字预失真样本求交集得到第一数字预失真样本。
  10. 如权利要求9所述的数字预失真样本筛选装置,其中,所述获取单元,还设置为获取所述数据流中各个预设长度的数据段对应的平均功率,确定所获取的平均功率对应的数据段所在的功率档位和优先级;
    所述处理单元,还设置为根据优先级最高的功率档位所对应的数据段中的各个数据生成第三数字预失真样本。
  11. 如权利要求9所述的数字预失真样本筛选装置,其中,在所述筛选参数包括采数位置时,所述筛选模块还包括第一采集单元,设置为采集所述数据流中各个数据帧各个预设位置处的数据;
    所述处理单元,还设置为根据各个预设位置处的数据生成第二数字预失真样本。
  12. 如权利要求9所述的数字预失真样本筛选装置,其中,在所述筛选参数包括峰值筛数时,所述筛选模块还包括第二采集单元,设置为采集所述数据流中每个数据功率大于预设功率的数据;所述处理单元,还设置为根据采集到的数据生成第二数字预失真样本。
PCT/CN2016/074412 2015-04-23 2016-02-24 数字预失真样本筛选方法和装置 WO2016169331A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510196733.1 2015-04-23
CN201510196733.1A CN106160676A (zh) 2015-04-23 2015-04-23 数字预失真样本筛选方法和装置

Publications (1)

Publication Number Publication Date
WO2016169331A1 true WO2016169331A1 (zh) 2016-10-27

Family

ID=57143716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074412 WO2016169331A1 (zh) 2015-04-23 2016-02-24 数字预失真样本筛选方法和装置

Country Status (2)

Country Link
CN (1) CN106160676A (zh)
WO (1) WO2016169331A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995176A (zh) * 2019-12-31 2020-04-10 西安烽火电子科技有限责任公司 一种改善数字预失真系统性能的数据筛选方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115277381B (zh) * 2022-07-29 2023-06-20 深圳市兆驰数码科技股份有限公司 基于dpd数据可用性判断机制的数据传输方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082752A (zh) * 2010-02-25 2011-06-01 大唐移动通信设备有限公司 一种数字预失真处理方法及设备
CN102510765A (zh) * 2011-11-28 2012-06-20 华为技术有限公司 预失真系数的调整方法及装置
CN103581940A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种数字预失真数据采集方法及其实现装置
US20140133527A1 (en) * 2012-11-12 2014-05-15 Xilinx, Inc. Digital pre-distortion in a communication network

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082752A (zh) * 2010-02-25 2011-06-01 大唐移动通信设备有限公司 一种数字预失真处理方法及设备
CN102510765A (zh) * 2011-11-28 2012-06-20 华为技术有限公司 预失真系数的调整方法及装置
CN103581940A (zh) * 2012-07-31 2014-02-12 中兴通讯股份有限公司 一种数字预失真数据采集方法及其实现装置
US20140133527A1 (en) * 2012-11-12 2014-05-15 Xilinx, Inc. Digital pre-distortion in a communication network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110995176A (zh) * 2019-12-31 2020-04-10 西安烽火电子科技有限责任公司 一种改善数字预失真系统性能的数据筛选方法
CN110995176B (zh) * 2019-12-31 2023-09-05 西安烽火电子科技有限责任公司 一种改善数字预失真系统性能的数据筛选方法

Also Published As

Publication number Publication date
CN106160676A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
CN105075143B (zh) 一种天线切换系统以及方法
RU2658656C2 (ru) Многорежимный беспроводной терминал
US20060221913A1 (en) Integrated network management of a software defined radio system
CN103929767A (zh) 一种基于声波或光波通信的无线网络设置方法
CN101790256B (zh) 一种收信机、发信机及其信号处理方法
US9374177B2 (en) Method, device, and system for processing communications system signal
WO2013063921A1 (zh) 多模射频接收处理芯片和多模终端
CN204615820U (zh) 射频收发电路及终端
CN104883142A (zh) 无线通讯装置、方法及其功率放大器
CN108495344A (zh) 一种网络切换方法、装置以及终端
WO2016169331A1 (zh) 数字预失真样本筛选方法和装置
US20090011736A1 (en) Switching Channel Pass Receive Filter
US10440608B2 (en) Method and apparatus for downlink and uplink compression of nonstandard bandwidth of LTE system
CN113645016B (zh) 一种信号处理系统和方法
US8885765B2 (en) Method and a user terminal for processing digital predistortion
CN101710836A (zh) 一种扫频装置及扫频方法
CN104617966A (zh) Wlan抗邻频道干扰装置及方法
CN101938448B (zh) 具有自动载波跟踪功能的cfr处理方法及装置、通信系统
CN102843116B (zh) 用于多模接收机的宽带滤波装置及方法
CN102780500A (zh) 一种数模兼容的uhf频段无线数字对讲机接收电路
CN105871392A (zh) 接收机与通信终端
CN105491628B (zh) 一种通话信道切换方法及移动终端
CN104735689A (zh) 移动通信网络空中接口监测系统
CN109391274A (zh) 一种数据处理方法及设备
CN105245246A (zh) 一种全双工无线通信系统消除自干扰的方法与接收机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16782479

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16782479

Country of ref document: EP

Kind code of ref document: A1