WO2016167552A1 - 인체 착용 장치 및 이의 동작 방법 - Google Patents
인체 착용 장치 및 이의 동작 방법 Download PDFInfo
- Publication number
- WO2016167552A1 WO2016167552A1 PCT/KR2016/003859 KR2016003859W WO2016167552A1 WO 2016167552 A1 WO2016167552 A1 WO 2016167552A1 KR 2016003859 W KR2016003859 W KR 2016003859W WO 2016167552 A1 WO2016167552 A1 WO 2016167552A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- light emitting
- human body
- human
- light receiving
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 45
- 238000001514 detection method Methods 0.000 claims description 31
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 239000008280 blood Substances 0.000 claims description 7
- 210000004369 blood Anatomy 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 230000003287 optical effect Effects 0.000 description 17
- 238000000926 separation method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 8
- 230000006870 function Effects 0.000 description 7
- 238000012545 processing Methods 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000013186 photoplethysmography Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 238000004590 computer program Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000007257 malfunction Effects 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 210000000707 wrist Anatomy 0.000 description 4
- 208000017667 Chronic Disease Diseases 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000005070 sampling Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 235000005911 diet Nutrition 0.000 description 2
- 230000037213 diet Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 206010020772 Hypertension Diseases 0.000 description 1
- 206010037180 Psychiatric symptoms Diseases 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 208000026106 cerebrovascular disease Diseases 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 230000005548 health behavior Effects 0.000 description 1
- 208000019622 heart disease Diseases 0.000 description 1
- 238000009532 heart rate measurement Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6844—Monitoring or controlling distance between sensor and tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/02—Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
- A61B5/024—Detecting, measuring or recording pulse rate or heart rate
- A61B5/02438—Detecting, measuring or recording pulse rate or heart rate with portable devices, e.g. worn by the patient
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/1455—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
- A61B5/14551—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6802—Sensor mounted on worn items
- A61B5/681—Wristwatch-type devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
- G06F3/011—Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B2560/00—Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
- A61B2560/02—Operational features
- A61B2560/0242—Operational features adapted to measure environmental factors, e.g. temperature, pollution
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/103—Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
- A61B5/11—Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
- A61B5/1118—Determining activity level
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/68—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
- A61B5/6801—Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
- A61B5/6843—Monitoring or controlling sensor contact pressure
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7221—Determining signal validity, reliability or quality
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F1/00—Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
- G06F1/26—Power supply means, e.g. regulation thereof
- G06F1/32—Means for saving power
- G06F1/3203—Power management, i.e. event-based initiation of a power-saving mode
- G06F1/3206—Monitoring of events, devices or parameters that trigger a change in power modality
- G06F1/3231—Monitoring the presence, absence or movement of users
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/12—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
- H01L31/16—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources
- H01L31/167—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto the semiconductor device sensitive to radiation being controlled by the light source or sources the light sources and the devices sensitive to radiation all being semiconductor devices characterised by potential barriers
Definitions
- Embodiments relate to a wearable device and a method of operating the same.
- a wearable device for wearing on a body part or clothing including a watch type mobile phone worn on a user's wrist, has been developed.
- Chronic diseases such as high blood pressure, diabetes, cerebrovascular disease and heart disease continue to increase.
- the causes are almost half of disease outbreaks caused by health behaviors of individuals and groups, especially diets and sports-related diets. Therefore, it is difficult to solve such chronic diseases by the biomedical model of modern medicine alone, and a health-promoting approach of removing the health risk factors through the improvement of lifestyle is required.
- the pulse rate measurement method has largely used piezoelectric type using piezo element, magnetic type using Magnetic Tunnel Junction (MTJ) element, compression type using film type pressure sensor, and bioelectrical impedance. Impedance type, optical type using an optical sensor, and the like, and recently, a human-mounted pulse measuring device that can be worn on a wrist or neck has been proposed.
- MTJ Magnetic Tunnel Junction
- FIG. 1 is a view showing a wearable device according to the prior art.
- the human wearing device includes a substrate 10, a light emitting device 20, a light receiving device 30, a structure 40, a partition 50, and an optical window 60.
- the substrate 10 is a base substrate for mounting the components constituting the wearable device.
- the light emitting device 20 generates light of a specific wavelength band according to the light emission control signal.
- the light receiving element 30 receives light incident according to light generated through the light emitting element 20.
- Structure 40 is a support structure for supporting the optical window 60.
- the partition wall 50 is disposed between the light emitting element 20 and the light receiving element 30 to prevent the light generated through the light emitting element 20 from directly entering the light receiving element 30.
- the optical window 60 is disposed on the light emitting surface and the light receiving surface of the light emitting element 20 and the light receiving element 30, respectively, to protect the light emitting element 20 and the light receiving element 30 from the outside.
- the human body wearing apparatus detects a human body signal according to the voltage of the light received through the light receiving element 30 (that is, the light receiving voltage).
- the human body signal may include heart rate or oxygen saturation.
- the human wearing device as described above, it should detect whether or not worn on the body of the person, and detects the human body signal in accordance with the detection result.
- the light emitting device 20 generates light
- the light receiving device 30 measures the magnitude of the incident light current.
- the measured light current includes relatively low ambient light.
- the measured light current includes high ambient light. It is.
- the human wearing device when the human wearing device is worn on the human body, the test subject and the human wearing device are in close contact with each other, and thus the input path of ambient light is almost blocked, so that a weak light current is detected. As the separation distance between the human wearing devices increases, a large photocurrent is detected by being exposed to ambient light.
- the human body wearing apparatus detects whether the human body wearing apparatus is worn on the human body according to the magnitude of the photocurrent detected through the light receiving unit 30.
- FIG. 2 is a graph illustrating a condition for detecting whether a human body wearing apparatus according to the related art is worn.
- the magnitude of the received voltage detected through the light receiver 30 increases.
- the wearable device determines a reference value Vth in a state where the wearable device is not worn, and when the received voltage is smaller than the reference value, the wearable device is worn on the human body. If the magnitude of the received voltage is larger than the reference value Vth, the human body wearing apparatus is detected as not being worn on the human body.
- the wear state of the human body wearable device can be distinguished in a bright place by day or in illumination, but the light current due to the ambient light is weak at night or in a dark place, so that the correct wearing state is not detected. There is a problem.
- the wear detection method as described above even when the human wearing device is in contact with a non-human object, the light current due to the ambient light is weak, so even when the human wearing device is not actually worn on the human body There is a problem that malfunctions while wearing.
- the embodiment provides a human body wearing apparatus and an operation method thereof capable of detecting an accurate wearing state of the human body wearing apparatus without being affected by the external environment.
- the embodiment provides a human wearing device and an operation method thereof that can distinguish whether the human wearing device is worn on the human body or in contact with an object.
- an apparatus for wearing a human body may include a light emitting unit configured to generate light to the outside; A light receiving unit receiving light incident from the outside; And a controller configured to control an operation of the light emitting unit, detect an intensity of light incident to the light receiving unit according to an operation of the light emitting unit, and detect a wearing state of the human wearing device based on the detected light intensity.
- the wear state may be detected by using a difference value between light intensity incident to the light receiving unit in the on period of the light emitting unit and light incident to the light receiving unit in the off period of the light emitting unit.
- the controller detects the state of the human wearing device as the non-wearing state when the difference value is 0, and detects the state of the human wearing device as the wearing state when the difference value is greater than zero.
- the controller may detect the state of the human wearing device as a wearing state if the difference value is greater than a preset reference value, and if the difference value is less than or equal to a preset reference value, indicate the state of the human wearing device. Detects in a non-wear state.
- the reference value is determined by at least one of the amount of light leakage directly from the light emitting portion to the light receiving portion and the amount of light reflection by an external environment.
- the light emitting part may include a first light emitting part for generating light having a first wavelength and a second light emitting part for generating light having a second wavelength different from the first wavelength, and the controller may include the first light emitting part.
- the wearing state is detected using any one of the second light emitting units, and the heart rate and blood oxygen saturation are detected using both the first light emitting unit and the second light emitting unit.
- the light emitting unit may include a first light emitting unit for generating first light and a second light emitting unit for generating second light, and the light receiving unit receives light incident from the outside according to an operation of the first light emitting unit. And a second light receiving unit configured to receive light incident from the outside according to the operation of the second light emitting unit.
- the first light emitting unit and the first light receiving unit may be operated at predetermined intervals according to a control signal of the control unit to detect a wearing state of the human body wearing apparatus.
- the second light emitting unit and the second light receiving unit may be configured to control the control unit.
- the human body wearing apparatus detects a human body signal to a human body wearing the device according to the control signal.
- the controller detects an object on which the human wearing device is worn based on the intensity of light received through the light receiving unit in the on-section of the light emitting unit.
- the control unit may detect a pulse wave raw signal waveform by using the intensity of light received through the light receiver in the on period of the light emitting unit, and second-order differentiate the detected pulse wave raw signal waveform to generate a second differential signal waveform. And generating a peak signal waveform by detecting a peak signal in the generated second derivative signal waveform, and determining an object to which the human wearing device is worn based on a pulse interval of peak signals included in the generated peak signal waveform. do.
- the controller may determine that the human body wear device is worn on a human body when the pulse interval is within the range of 30 to 240 bpm, and when the pulse interval is outside the range of 30 to 240 bpm, the human body wearing device may be It is judged to be worn on.
- the display apparatus may further include a display unit configured to display at least one of wearing state information of the human body wearing apparatus and a human body detection signal detected by the human body on which the human body wearing apparatus is worn, according to a control signal of the controller.
- the operating method of the wearable device includes the steps of outputting a pulse signal including an on period and off period; Operating a light emitting unit according to the pulse signal; Detecting an intensity of light incident to the light receiving unit in the on period and an intensity of light incident to the light receiving unit in the off period; Detecting a difference between light intensity in the on period and light intensity in the off period; And determining whether the human body wearing device is worn on an object based on the difference value.
- determining whether the object is worn on the object if the difference value is 0, determining the state of the human wearing device as a non-wearing state, and if the difference value is greater than 0, the state of the human wearing device Determining the wearing state.
- the determining of whether the object is worn on the object may include determining a state of the human wearing device as a wearing state when the difference value is greater than a preset reference value, and the difference value is smaller than or equal to a preset reference value. If the same, the step of determining the state of the human wearing device as a non-wearing state.
- the reference value is determined by at least one of the amount of light leakage directly from the light emitting portion to the light receiving portion and the amount of light reflection by an external environment.
- the light emitting unit may include a first light emitting unit for generating light of a first wavelength and a second light emitting unit for generating light having a second wavelength different from the first wavelength, and the wearing of the light may be determined by the first light emitting unit.
- the light emitting part is made by light emission of any one of the light emitting part and the second light emitting part.
- the light emitting unit may include a first light emitting unit for generating first light and a second light emitting unit for generating second light, and the light receiving unit receives light incident from the outside according to an operation of the first light emitting unit. And a second light receiving unit to receive light incident from the outside according to the operation of the second light emitting unit, and the wearing is determined by the operation of the first light emitting unit and the first light receiving unit.
- the method may further include determining an object on which the human body wearing device is worn based on the intensity of light received through the light receiving unit in the on period when the state of the human body wearing device is detected as the wearing state.
- the determining of the object may include detecting a pulse wave raw signal waveform by using intensity of light received through the light receiver in an on-section of the light emitting unit, and performing second derivative of the detected pulse wave raw signal waveform. Generating a second differential signal waveform; detecting a peak signal from the generated second differential signal waveform; generating a peak signal waveform; and based on a pulse interval of the peak signals included in the generated peak signal waveform And determining an object on which the human wearing device is worn.
- the pulse interval is within the range of 30 ⁇ 240bpm, determining that the human wearing device is worn on the human body, and if the pulse interval is outside the range of 30 ⁇ 240bpm, the human wearing device is worn on the object And determining that it has been done.
- the method may further include displaying at least one of wearing state information of the human wearing device and a human body detection signal detected by a human body wearing the human wearing device.
- a human body wearing device is worn on a human body regardless of a bright place by day or lighting and a night or dark place can be accurately detected.
- FIG. 1 is a view showing a wearable device according to the prior art.
- FIG. 2 is a graph illustrating a condition for detecting whether a human body wearing apparatus according to the related art is worn.
- FIG. 3 is a configuration diagram schematically showing the configuration of a wearable device according to a first embodiment of the present invention.
- FIG. 4 is a cross-sectional view showing the structure of a wearable device according to a first embodiment of the present invention.
- FIG. 5 is a graph illustrating a condition for detecting whether a human body wearing device according to an exemplary embodiment of the present invention is worn.
- FIG. 6 is a view illustrating a light emitting unit and a light receiving unit in a state where a human body wearing device according to an embodiment is in close contact with a human body.
- FIG. 7 is a view illustrating a light emitting unit and a light receiving unit in a state in which a human wearing device is spaced apart from the human body by a first distance.
- FIG. 8 is a view illustrating a light emitting unit and a light receiving unit in a state where a human wearing device according to an embodiment is completely spaced apart from a human body.
- FIG. 9 is a flowchart illustrating a step-by-step method of operating a wearable device according to a first embodiment of the present invention.
- FIG. 10 is a graph illustrating a change in a light receiving voltage with respect to light incident to a light receiving unit in a state in which a human wearing device contacts an object.
- FIG. 11 is a view illustrating a light emitting unit and a light receiving unit when the human body wearing apparatus according to the embodiment is worn while being fully in contact with an object.
- FIG. 12 illustrates a state of the light emitting unit and the light receiving unit when the human body wearing apparatus according to the embodiment is placed at a position spaced apart from the object by a first distance.
- FIG. 13 is a view illustrating a light emitting unit and a light receiving unit in a state where a human body wearing apparatus is completely spaced apart from an object.
- FIG. 14 is a diagram illustrating a signal detected by an embodiment of the present invention.
- 15 is a flowchart for explaining a method of detecting an object to be worn in a wearable device according to an embodiment of the present invention.
- 16 is a view showing the configuration of a wearable device according to a second embodiment of the present invention.
- 17 is a flowchart for explaining a method of operating a wearable device according to a second embodiment of the present invention step by step.
- FIG. 18 is a view showing the configuration of a wearable device according to a third embodiment of the present invention.
- Combinations of each block and each step of the flowchart in the accompanying drawings may be performed by computer program instructions.
- These computer program instructions may be mounted on a processor of a general purpose computer, special purpose computer, or other programmable data processing equipment such that the instructions executed by the processor of the computer or other programmable data processing equipment are executed in each block or flowchart of the figure. It will create means for performing the functions described in the steps.
- These computer program instructions may be stored in a computer usable or computer readable memory that can be directed to a computer or other programmable data processing equipment to implement functionality in a particular manner, and thus the computer usable or computer readable memory.
- Instructions stored therein may produce an article of manufacture containing instruction means for performing the functions described in each step of each block or flowchart of the figure.
- Computer program instructions may also be mounted on a computer or other programmable data processing equipment, such that a series of operating steps may be performed on the computer or other programmable data processing equipment to create a computer-implemented process to create a computer or other programmable data. Instructions for performing the processing equipment may also provide steps for executing the functions described in each block of the figures and in each step of the flowchart.
- each block or step may represent a portion of a module, segment or code that includes one or more executable instructions for executing a specified logical function (s).
- a specified logical function s.
- the functions noted in the blocks or steps may occur out of order.
- the two blocks or steps shown in succession may in fact be executed substantially concurrently or the blocks or steps may sometimes be performed in the reverse order, depending on the functionality involved.
- FIG 3 is a configuration diagram schematically showing a configuration of a human wearing device according to a first embodiment of the present invention
- Figure 4 is a cross-sectional view showing the structure of the human wearing device according to a first embodiment of the present invention.
- the human wearing device 100 may include a light emitter 110, a light receiver 120, and a controller 130.
- the light emitter 110 generates light according to a control signal of the controller 130.
- the light emitting unit 110 may be classified into light emitting means for generating light and driving means for driving the light emitting means.
- the driving means of the light emitting unit 110 is a digital-to-analog converter 111 for converting a digital signal output through the controller 130 into an analog signal, and the signal converted through the digital-to-analog converter 111 as a primary A first amplifier 112 for amplifying, and a second amplifier 113 for amplifying the second amplified signal first through the first amplifier 112.
- the digital-analog converter 111 converts the digital signal into an analog signal in order to set the current of the light emitting element 114.
- the first and second amplifiers 112 and 113 are signal amplifiers for supplying an alternating current necessary for driving the light emitting element 114 to the light emitting element 114.
- the light emitting means of the light emitting unit 110 includes a light emitting element 114 for generating light according to the signal amplified by the second amplifier 113.
- the light emitting device 114 may be implemented as a light emitting diode (LED).
- the light emitting device 114 may generate light having different wavelengths according to the human body signal to be detected. That is, the light emitting device 114 may be a red light emitting diode that generates light having a wavelength of 660 nm when the human body signal to be detected is a heart rate.
- the light receiver 120 receives incident light including light reflected from a subject under light emission of the light emitter 110.
- the light receiving unit 120 includes a light receiving element 121 for receiving the incident light, a first amplifier 122 and a first amplifier 122 for first amplifying an optical signal incident through the light receiving element 121. And a second amplifier 123 for second amplifying the first amplified signal through the second amplifier 123, and an analog-digital converter 124 for converting the second amplified signal through the second amplifier 123 into a digital signal.
- the light receiving element 121 receives light incident from the outside.
- the light receiving element 121 may be implemented as a photodiode PD or a transistor TR.
- the first amplifier 122 converts the weak photocurrent detected by the light receiving element 121 into a voltage and amplifies it, which may be a TIA (Transimpedance Amplifier).
- TIA Transimpedance Amplifier
- the second amplifier 123 amplifies the voltage amplified by the first amplifier 122 to a voltage of sufficient magnitude to be processed by the analog-to-digital converter 124.
- analog-to-digital converter 124 converts the analog voltage into a corresponding digital voltage according to a designated sampling rate.
- the controller 130 controls the operations of the light emitter 110 and the light receiver 120.
- the controller 130 detects the magnitude of the optical signal received through the light receiver 120 according to the operation mode of the light emitter 110 and the light receiver 120, and operates according to the intensity of the detected light signal. Do this.
- the operation mode includes a wearing state detection mode and a human body signal detection mode.
- the wearing state detection mode is a mode for detecting whether the human body wearing apparatus 100 is worn on a human body using the light emitting unit 110 and the light receiving unit 120.
- the human body signal detection mode is a mode for detecting a human body signal on a human body on which the human body wearing device 100 is worn using the light emitting unit 110 and the light receiving unit 120.
- the human body signal detection mode is a mode that is performed while the human body wearing device 100 is worn on a human body.
- the wearing state detection mode is a mode that is performed every predetermined period, and detects whether the human body wearing apparatus 100 is worn on the human body or whether the human body wearing apparatus 100 previously worn is separated from the human body. This mode is for
- the controller 130 performs an operation corresponding to the intensity of light received through the light receiver 120 according to the determined mode.
- control unit 130 enters the wearing state detection mode, light is generated through the light emitting unit 110, and accordingly, the human body wearing apparatus 100 according to the intensity of light received through the light receiving unit 120. ) Is determined to be worn on the subject.
- the state worn on the subject includes both a state in which the human body wearing apparatus 100 is worn on a human body and a state in which the body wearing apparatus 100 is in contact with an object.
- the controller 130 determines whether the human wearing device 100 is worn on the human body or touches a simple object.
- the controller 130 causes the light emitting unit 110 and the light receiving unit 120 to operate in a human body signal detection mode, and thus receives an optical signal. Detects the human body signal according to its intensity.
- the structure of the wearable device 100 as described above includes a substrate 140, a light emitting device 114, a light receiving device 121, a structure 150, a partition wall 160, and an optical window. And 170.
- the substrate 140 is a base substrate for mounting the components constituting the wearable device.
- the light emitting element 114 generates light of a specific wavelength band according to the light emission control signal.
- the light receiving element 121 receives light incident according to light generated through the light emitting element 114.
- Structure 150 is a support structure for supporting the optical window 170.
- the partition wall 160 is disposed between the light emitting element 114 and the light receiving element 121 to prevent the light generated through the light emitting element 114 from directly entering the light receiving element 121.
- the optical window 170 is disposed spaced apart from the light emitting surface and the light receiving surface of the light emitting element 114 and the light receiving element 121 at a predetermined interval, and protects the light emitting element 114 and the light receiving element 121 from the outside.
- the optical window 170 forms an optical path such that light generated through the light emitting element 114 is supplied to the outside, and also allows the light incident from the outside to be supplied to the light receiving element 121.
- the light receiving element 121 receives light incident from the outside, and the light is largely composed of three lights.
- the light received through the light receiver 120 includes at least one of the first light DC1, the second light DC2, and the third light DC3.
- the first light DC1 refers to light incident to the light receiving part 120 according to external ambient light regardless of the operation of the light emitting part 110.
- the second light DC2 refers to light that is generated through the light emitting unit 110 and is reflected by the surface of the subject and is incident on the light receiving unit 120 according to the light reflected from the surface. .
- the third light DC3 is reflected by the skin tissue of the subject (human body), and the light generated through the light emitting unit 110 is incident on the light receiving unit 120 according to the light reflected from the skin tissue. Means light.
- whether the first to the third light is incident on the light receiving unit 120 is determined by the separation distance between the human wearing device 100 and the subject.
- the separation distance means a distance between the surface of the human wearing device 100, that is, the optical window 170 and the surface of the subject, and is determined by the wearing state of the human wearing device 100.
- the wearing state of the wearable device 100 includes a first state, a second state, and a third state.
- the first state means a state in which the human wearing device 100 is completely in contact with the subject.
- the second state means a state in which the body wearing apparatus 100 and the subject are spaced apart by a first distance.
- the third state means a state in which the human wearing device 100 is completely spaced from the subject, that is, a state in which the human wearing device 100 is not worn on the subject.
- the third state refers to a state in which the body wearing apparatus 100 and the subject are spaced apart by a second distance greater than the first distance.
- the wearable device 100 when the user of the wearable device 100 wears the wearable device 100 on the wrist, the wearable device 100 is spaced apart from the wrist at a predetermined interval to minimize inconvenience in use. Wear it.
- FIG. 5 is a graph illustrating a condition for detecting whether a human body wearing device according to an exemplary embodiment of the present invention is worn.
- the light receiver 120 receives light from the outside, and the light includes the first light DC1, the second light DC2, and the third light DC3 as described above.
- the first light DC1 refers to light incident to the light receiving unit 120 by ambient light.
- the intensity of the first light DC1 is determined by setting the minimum value 0 in a state where the human wearing device 100 is in close contact with the subject (that is, the separation distance is 0).
- the first light DC1 has a characteristic of increasing in intensity as the separation distance increases.
- the second light DC2 refers to light that is reflected by the surface of the object to be incident on the light receiving unit 120.
- the intensity of the second light DC2 has a maximum value in a state in which the human wearing device 100 and the subject are spaced apart by a specific interval, and the separation distance is decreased in the specific interval. It has a characteristic that decreases as it increases.
- the third light DC3 refers to light that is reflected by the skin tissue of the subject and is incident to the light receiving unit 120.
- the intensity of the third light DC3 has a maximum value in a state in which the human wearing device 100 is in close contact with the subject, and decreases as the separation distance increases. Has characteristics.
- the intensity of the third light DC3 has a value of 0 from the moment when the separation distance exceeds a specific distance.
- the intensity of light detected by the light receiving unit 120 according to an on operation and an off operation of the light emitting unit 110.
- 6 to 8 are diagrams illustrating conditions for each condition of the light emitting unit 110 and the light receiving unit 120 according to an exemplary embodiment of the present invention.
- the light emitting unit 110 When the controller 130 enters the wearing detection mode, the light emitting unit 110 outputs a pulse signal for sequentially performing on and off operations.
- the light emitter 110 sequentially performs an on operation and an off operation according to the pulse signal.
- the controller 130 detects the intensity of the light received through the light receiver 120 according to the operation of the light emitter 110 that sequentially performs the on and off operations.
- FIG. 6 shows the state of the light emitting unit 110 and the light receiving unit 120 in a state where the human wearing device 100 is completely in contact with the subject.
- the subject substantially refers to the human body.
- FIG. 6 shows the state of the light emitting unit 110 and the light receiving unit 120 when the human body wearing apparatus 100 is worn in a state of being completely in contact with the human body.
- 6 (a) shows the conditions of the light emitting unit 110 and the light receiving unit 120 in a condition in which ambient light exists, that is, in a day or a bright place.
- 6 (b) shows the conditions of the light emitting unit 110 and the light receiving unit 120 in the absence of ambient light, that is, at night or in a dark place.
- the light emission voltage refers to the intensity of light generated by the light emission operation of the light emitting unit 110
- the light receiving voltage refers to the intensity of the light incident to the light receiving unit 120.
- the light emitter 110 generates light having a specific light emission voltage in an on section according to a pulse signal of the controller 130, and does not generate the light in an off section.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- ambient light or the light receiving unit 120 may occur.
- the light reflected from the surface of the subject is not incident.
- the light emitting unit 110 does not perform a light emitting operation, and thus the third light DC3 is not incident on the light receiving unit 120. Has a value.
- the light receiving unit 120 has a specific light receiving voltage in the on-section of the light emitting unit 110.
- the third light is received, and the first to third lights are not all received in the off period of the light emitting unit 110.
- the intensity of the light received through the light receiver 120 in the on period of the light emitter 110 and the intensity of the light received through the light receiver 120 in the off period of the light emitter 110 are equal to the third light. The difference occurs by the intensity.
- the light emitter 110 generates light having a specific light emission voltage in an on period in response to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- ambient light or the light receiving unit 120 may occur.
- the light reflected from the surface of the subject is not incident.
- the third light DC3 reflected from the skin tissue of the subject is incident on the light receiving unit 120, and the third light DC3 is incident on the incident light unit 110.
- the received light voltage is detected.
- the light emitting unit 110 does not perform a light emitting operation, and thus the third light DC3 is not incident on the light receiving unit 120. Has a value.
- the intensity of the light received through the light receiving unit 120 in the on period of the light emitting unit 110 and the light received through the light receiving unit 120 in the off period of the light emitting unit 110 The difference occurs in the intensity by the intensity of the third light.
- FIG. 7 illustrates a state of the light emitting unit 110 and the light receiving unit 120 in a state where the human body wearing apparatus 100 is slightly spaced apart from the human body (a state separated by a first distance).
- FIG. 7A shows conditions of the light emitter 110 and the light receiver 120 in a condition in which ambient light exists, that is, in a day or a bright place.
- FIG. 7B illustrates a state where the light emitter 110 and the light receiver 120 do not have ambient light, that is, at night or in a dark place.
- the light emitter 110 generates light having a specific light emission voltage in an on period in response to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- the light receiving unit 120 includes the first light DC1 according to the ambient light, the second light DC2 according to the light reflected from the skin surface, and the blood. All of the third light DC3 reflected from the skin tissue of the sample is incident, and thus the received voltage according to the incident first light DC1, the second light DC2, and the third light DC3 is detected. .
- the light emitting unit 110 does not perform a light emitting operation in the off period of the light emitting unit 110. Accordingly, the light receiving unit 120 has the second light DC and the third light DC3. It is not incident.
- the light receiving unit 120 receives only the first light DC1 according to the ambient light, and the light receiving voltage according to the first light DC1 is detected.
- the light receiving unit 120 is a first light emitting unit 110 in the on section of the light emitting unit 110. To receive all of the third light, and receive only the first light in the off period of the light emitting unit 110.
- the second light is intensified by the light received through the light receiver 120 in the on period of the light emitter 110 and the light received through the light receiver 120 in the off period of the light emitter 110. And a difference occurs by the sum of the intensity of the third light.
- the light emitter 110 generates light having a specific light emission voltage in an on period in response to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- both the light reflected from the surface of the subject and the light reflected from the skin tissue are incident on the light receiving unit 120. . That is, since the condition is a condition that there is no ambient light, the first light corresponding to the ambient light is not incident on the light receiving unit 120, and thus only the second light and the third light are incident on the light receiving unit 120. do.
- the light receiving unit 120 includes the second light DC2 according to the light reflected from the skin surface and the third light DC3 reflected from the skin tissue of the subject. ) Is incident, and the light receiving voltage according to the incident second light DC2 and the third light DC3 is detected.
- the light emitting unit 110 does not perform a light emission operation in the off period of the light emitting unit 110, and thus, the light receiving unit 120 also has the second light DC and the third light DC3. It is not incident.
- the light receiving unit 120 does not receive all of the first light to the third light, and thus a light receiving voltage having a value of zero is detected.
- the light receiving unit 120 may be formed in the on-section of the light emitting unit 110.
- the second and third lights are received, and the first to third lights are not received in the off period of the light emitting unit 110.
- the intensity of light received through the light receiving unit 120 in the on period of the light emitting unit 110 and the light received through the light receiving unit 120 in the off period of the light emitting unit 110 is the same.
- the difference occurs in the intensity by the sum of the intensities of the second light and the third light.
- FIG. 8 illustrates a state of the light emitting unit 110 and the light receiving unit 120 in a state where the human body wearing apparatus 100 is completely spaced apart from the human body (a state separated by a second distance greater than the first distance).
- FIG. 8 shows the state of the light emitting unit 110 and the light receiving unit 120 in a situation where the human body wearing apparatus 100 is not worn on the human body.
- 8 (a) shows the conditions of the light emitter 110 and the light receiver 120 in a condition where ambient light exists, that is, in a day or a bright place.
- 8 (b) shows the state of the light emitting unit 110 and the light receiving unit 120 in the absence of ambient light, that is, at night or in a dark place.
- the light emitter 110 generates light having a specific light emission voltage in an on period according to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- the light generated through the light emitting unit 110 is not reflected by the skin surface or the skin tissue of the human body. .
- the ambient light is incident on the light receiving unit 120 in a state where the human wearing device 100 and the subject are separated by the second distance.
- the light emitting unit 110 does not perform a light emitting operation in the off period of the light emitting unit 110, and thus only the first light DC1 corresponding to the ambient light is incident on the light receiving unit 120.
- the light receiving unit 120 receives only the first light DC1 according to the ambient light, and the light receiving voltage according to the first light DC1 is detected.
- the light receiving unit 120 may be on and off of the light emitting unit 110. In all, only the first light is received.
- the intensity of light received through the light receiver 120 in the on period of the light emitter 110 and the intensity of light received through the light receiver 120 in the off period of the light emitter 110 have the same value. .
- the light emitter 110 generates light having a specific light emission voltage in an on period according to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- (b) of FIG. 8 is a condition in which no ambient light exists, and accordingly, any light is incident on the light receiving unit 120 in a state where the human body wearing apparatus 100 and the subject are separated by a second distance. It doesn't work.
- the intensity of light received through the light receiver 120 in the on period of the light emitter 110 and the intensity of light received through the light receiver 120 in the off period of the light emitter 110 are 0.
- the light receiving voltage of the light receiving unit 120 and the light emitting unit 110 are turned off in the on section of the light emitting unit 110.
- the light receiving voltages of the light receiving units 120 are not equal to each other and have a predetermined difference value.
- a light receiving voltage with respect to light incident to the light receiving unit 120 in an on section of the light emitting unit 110, and The light receiving voltages of the light incident to the light receiving unit 120 in the off period of the light emitting unit 110 have the same value.
- control unit 130 is based on the difference value according to the intensity of each light incident through the light receiving unit 120 in the on period and the off period of the light emitting unit 110 is worn on the human body 100 to the human body. It is determined whether or not the worn state.
- the controller 130 determines the wearing state of the wearable device 100 according to the following equation.
- Von represents the intensity of the light incident to the light receiving unit 120 in the on period of the light emitting unit 110
- Voff means the intensity of the light incident to the light receiving unit 120 in the off period of the light emitting unit 110. do.
- Equation 1 is an expression under ideal conditions (ieal).
- the light leakage from the light emitting element to the light receiving element may occur according to the mechanical condition in the state in which the human body wearing apparatus 100 is not worn substantially, and light reflection by an external environment may exist.
- the difference value between Von and Voff may have a specific value other than zero.
- the difference value between Von and Voff is measured (that is, the amount of direct light leakage transmitted from the light emitting element to the light receiving element and the amount of light reflection by the external environment) And based on this, the following equation 2 for detecting the correct wearing state of the human wearing device 100 is determined.
- Voff means the intensity of the light incident to the light receiving unit 120 in the off period of the light emitting unit 110.
- the Vth is a threshold voltage for determining a wearing state of the human wearing device 100.
- control unit 130 may detect the wearing state of the human wearing device 100 through Equation 1, but in order to detect the wearing state more accurately, the threshold voltage is based on the light leakage amount and the light reflection amount.
- the intensity of the light incident on the light receiving unit 120 in the on period of the light emitting unit 110 and the intensity of the light incident on the light receiving unit 120 in the off period of the light emitting unit 110 are greater than the threshold. In this case, it is determined that the wearable device 100 is worn on the human body.
- FIG. 9 is a flowchart illustrating a step-by-step method of operating the wearable device 100 according to the first embodiment of the present invention.
- the controller 130 determines whether the mode of the wearable device 100 is a wear detection mode or a human detection mode (step 100).
- the controller 130 when the determination result (step 100), in which the mode of the wearable device 100 is a wear detection mode, the controller 130 outputs a light emission control signal for controlling an operation of the light emitter 110, and emits light. In operation 110, a light emission operation (sequentially performing an on operation and an off operation) is performed according to the emission control signal.
- the controller 130 monitors the intensity (light receiving voltage) of the light incident to the light receiving unit 120 according to the light emission operation of the light emitting unit 110 (operation 120).
- the controller 130 may include a first light receiving voltage Von for the intensity of light incident to the light receiving unit 120 in the on period of the light emitting unit 110, and the light receiving unit in the off period of the light emitting unit 110.
- the second light receiving voltage Voff with respect to the intensity of the light incident on 120 is checked.
- the controller 130 detects a difference value between the first light reception voltage and the second light reception voltage and determines whether the difference value is greater than a predetermined threshold value (step 140).
- the controller 130 may detect the human wearing device 100 as a wearing state, and accordingly, enter the human body signal detection mode (operation 150).
- the controller 130 detects the human wearing device 100 as a non-wearing state (step 160).
- the control unit 130 determines whether the mode of the human wearing device 100 is a human body signal detection mode if not the wear detection mode (step 170), the human wearing device ( If the mode 100 is the human body signal detection mode, the human body signal detection operation is performed (step 180).
- the human wearing device 100 can be detected that the human wearing device 100 is worn on the subject in the same manner as described above, but whether the subject is a human body or an object may not be accurately detected.
- FIG. 10 is a graph illustrating a change in a light receiving voltage with respect to light incident to the light receiving unit while the human body wearing apparatus 100 is in contact with an object.
- the human wearing device 100 When the human wearing device 100 contacts the object, light corresponding to the first light DC1 and the second light DC2 is incident on the light receiving unit 120. That is, since the object does not have skin tissue, the third light DC3 representing the light reflected from the skin tissue is not incident to the light receiver 120.
- the intensity of the first light DC1 is determined by setting the minimum value 0 in a state where the human wearing device 100 is in close contact with the subject (that is, the separation distance is 0).
- the first light DC1 has a characteristic of increasing in intensity as the separation distance increases.
- the second light DC2 refers to light that is reflected by the surface of the object to be incident on the light receiving unit 120.
- the intensity of the second light DC2 has a maximum value in a state where the human wearing device 100 and the subject are spaced apart by a specific interval, and the separation distance decreases at the specific interval. It has a characteristic that decreases with increasing.
- 11 to 13 are diagrams illustrating conditions for each condition of the light emitting unit 110 and the light receiving unit 120 in a situation where the human body wearing apparatus 100 contacts an object other than the human body.
- FIG. 11 shows the state of the light emitting unit 110 and the light receiving unit 120 when the human body wearing apparatus 100 is worn in a state of being completely in contact with an object.
- 11 (a) shows the conditions of the light emitting unit 110 and the light receiving unit 120 in a condition in which ambient light exists, that is, in a day or a bright place.
- 6 (b) shows the conditions of the light emitting unit 110 and the light receiving unit 120 in the absence of ambient light, that is, at night or in a dark place.
- ambient light may be transmitted to the light receiving unit 120.
- Light reflected from the surface of the subject is not incident.
- the light emitting unit 110 does not perform a light emitting operation in the off period of the light emitting unit 110, and thus no light is incident on the light receiving unit 120.
- the light receiving unit 120 emits light in the on and off sections of the light emitting unit 110. It will not receive.
- the intensity of light received through the light receiver 120 in the on period of the light emitter 110 and the intensity of light received through the light receiver 120 in the off period of the light emitter 110 have the same value.
- FIG. 11B is the same as FIG. 6A, and thus, light is not incident on the light receiving unit 120 in the on and off periods of the light emitting unit 110.
- the intensity of the light received through the light receiving unit 120 in the on period of the light emitting unit 110 and the light received through the light receiving unit 120 in the off period of the light emitting unit 110 Intensities have the same value.
- FIG. 12 illustrates a state of the light emitting unit 110 and the light receiving unit 120 in a state where the human body wearing apparatus 100 is slightly spaced apart from the object (a state spaced apart by a first distance).
- FIG. 12 illustrates the states of the light emitting unit 110 and the light receiving unit 120 when the human body wearing apparatus 100 is placed at a position spaced apart from the object by a first distance.
- 12 (a) shows the conditions of the light emitting unit 110 and the light receiving unit 120 in a condition in which ambient light exists, that is, in a day or a bright place.
- 12 (b) shows conditions of the light emitter 110 and the light receiver 120 in the absence of ambient light, that is, at night or in a dark place.
- the light emitter 110 generates light having a specific light emission voltage in an on period according to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- both the ambient light and the light reflected from the surface of the subject are incident on the light receiving unit 120.
- both the first light DC1 according to the ambient light and the second light DC2 according to the light reflected from the skin surface are incident on the light receiving unit 120.
- a light receiving voltage according to the incident first light DC1 and the second light DC2 is detected.
- the light emitting unit 110 does not perform a light emitting operation in the off period of the light emitting unit 110, so that the second light DC does not enter the light receiving unit 120.
- the light receiving unit 120 receives only the first light DC1 according to the ambient light, and the light receiving voltage according to the first light DC1 is detected.
- the light receiving unit 120 is an on section of the light emitting unit 110. Receives first to second light, and receives only the first light in an off period of the light emitting unit 110.
- the intensity of the light received through the light receiver 120 in the on period of the light emitter 110 and the intensity of the light received through the light receiver 120 in the off period of the light emitter 110 are equal to the second light. The difference occurs by the intensity.
- the light emitter 110 generates light having a specific light emission voltage in an on period in response to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- the human body wearing apparatus 100 and the subject (object) are spaced apart by the first distance, only the light reflected from the surface of the subject is incident on the light receiving unit 120. That is, since the condition is a condition that no ambient light exists, the first light corresponding to the ambient light is not incident on the light receiving unit 120, and thus only the second light is incident on the light receiving unit 120.
- the light receiving unit 120 detects a light receiving voltage according to the second light DC2 according to the light reflected from the surface of the object.
- the light emitting unit 110 does not perform a light emitting operation in the off period of the light emitting unit 110, and thus the second light DC is not incident on the light receiving unit 120.
- the light receiving unit 120 does not receive both the first light and the second light, and thus a light receiving voltage having a value of zero is detected.
- the light receiving unit 120 may be formed in the on-section of the light emitting unit 110. 2 light is received, and the first and second light is not received in the off period of the light emitting unit 110.
- the intensity of light received through the light receiving unit 120 in the on period of the light emitting unit 110 and the light received through the light receiving unit 120 in the off period of the light emitting unit 110 is the same. Therefore, even in a dark environment, the intensity of light received through the light receiving unit 120 in the on period of the light emitting unit 110 and the light received through the light receiving unit 120 in the off period of the light emitting unit 110. The difference occurs in intensity by the intensity of the second light.
- the human body wearing apparatus 100 may not accurately detect whether the human body wearing apparatus 100 is worn on a human body rather than an object.
- FIG. 13 illustrates a state of the light emitting unit 110 and the light receiving unit 120 in a state where the human body wearing apparatus 100 is completely spaced from an object (a state spaced apart by a second distance greater than the first distance).
- FIG. 13 shows the states of the light emitting unit 110 and the light receiving unit 120 when the human body wearing apparatus 100 is not in contact with an object.
- FIG. 13 (a) shows the state of the light emitting unit 110 and the light receiving unit 120 in a condition where ambient light exists, that is, in a day or a bright place.
- FIG. 13 (b) shows the state of the light emitting unit 110 and the light receiving unit 120 in the absence of ambient light, that is, at night or in a dark place.
- the light emitter 110 generates light having a specific light emission voltage in an on period in response to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- the light generated through the light emitting unit 110 is not reflected by the surface of the object.
- the ambient light is incident on the light receiving unit 120 in a state where the human wearing device 100 and the subject are separated by the second distance.
- the light emitting unit 110 does not perform a light emitting operation in the off period of the light emitting unit 110, and thus only the first light DC1 corresponding to the ambient light is incident on the light receiving unit 120.
- the light receiving unit 120 receives only the first light DC1 according to the ambient light, and the light receiving voltage according to the first light DC1 is detected.
- the light receiving unit 120 may be on and off of the light emitting unit 110. In all, only the first light is received.
- the intensity of light received through the light receiver 120 in the on period of the light emitter 110 and the intensity of light received through the light receiver 120 in the off period of the light emitter 110 have the same value. .
- the light emitter 110 generates light having a specific light emission voltage in an on period according to a pulse signal of the controller 130, and does not generate the light in an off period.
- the light receiving unit 120 receives the light in the on period and the off period of the light emitting unit 110, respectively.
- FIG. 13B is a condition in which no ambient light exists, and thus, any light is incident on the light receiving unit 120 in a state where the human wearing device 100 and the subject are separated by a second distance. It doesn't work.
- the intensity of light received through the light receiver 120 in the on period of the light emitter 110 and the intensity of light received through the light receiver 120 in the off period of the light emitter 110 are 0.
- a difference occurs between the first light receiving voltage in the on period and the second light receiving voltage in the off period. Only the difference between the first light receiving voltage and the second light receiving voltage does not accurately detect whether the human body wearing apparatus 100 is worn on a human body.
- the human wearing device 100 when it is detected that the state of the human wearing device 100 is in a wearing state, the human wearing device 100 performs an additional determination process for detecting whether the object worn by the human wearing device 100 is a human body or an object. .
- the controller 130 detects signals according to the operations of the light emitter 110 and the light receiver 120, and analyzes the detected signals to determine whether the object is a human body or an object.
- FIG. 14 is a diagram illustrating a signal detected by an embodiment of the present invention.
- the controller 130 detects a photoplethysmography (PPG) raw signal waveform connecting only a light receiving voltage in an on-interval section of the light receiving voltage received through the light receiving unit 120.
- PPG photoplethysmography
- the controller 130 detects a second derivative waveform obtained by quadratic differentiating the PPG raw signal waveform.
- the controller 130 detects the peak waveform by extracting only the peak signal included in the second derivative waveform, and detects a pulse interval (HR: HEART RATE) between the peak signals within the detected peak waveform.
- HR HEART RATE
- the pulse interval is present in the range of 30 to 240 bpm (beat per minute), and accordingly, the control unit 130 has the pulse interval of 30 to 240 bpm. Determine whether it exists in the range.
- the control unit 130 detects that the human wearing device 100 is worn on the human body, if the pulse interval is outside the range of 30 ⁇ 240bpm the human body It is determined that the wearing device 100 is in contact with the object.
- 15 is a flowchart illustrating a step-by-step method of detecting an object to be worn in the human wearing device 100 according to an embodiment of the present invention.
- the controller 130 detects a PPG raw signal waveform by connecting only a light receiving voltage corresponding to an on period of the light emitting unit 110 among the light receiving voltages of the light receiving unit 120 (operation 200).
- controller 130 performs a second derivative of the detected PPG raw signal waveform to detect a second derivative signal (step 210).
- controller 130 detects only the peak signal from the detected second derivative signal (step 220).
- the controller 130 determines whether the interval HR between the peak signals falls within a range of 30 to 240 bpm based on the detected peak signal (step 230).
- the controller 130 determines that the human wearing device 100 is currently worn on the human body (step 240), and the pulse interval is 30 If outside the range of ⁇ 240bpm it is determined that the human wearing device 100 is currently worn (or contacted) to the object (step 250).
- FIG. 16 is a diagram illustrating a configuration of the human body wearing apparatus 200 according to the second embodiment of the present invention.
- the human wearing device 200 may include a light emitter 210, a light receiver 220, and a controller 230.
- the light emitter 210 includes a first light emitter and a second light emitter.
- the first light emitting unit may firstly amplify the signal converted by the first digital-to-analog converter 211 and the first digital-to-analog converter 211 that converts the digital signal output through the controller 230 into an analog signal.
- the first digital-analog converter 211 converts the digital signal into an analog signal in order to set the current of the light emitting element 214.
- the first and second amplifiers 212 and 213 are signal amplifiers for supplying an alternating current necessary for driving the light emitting element 214 to the light emitting element 214.
- the first light emitting device 214 may be implemented as a light emitting diode (LED).
- LED light emitting diode
- the second light emitting part includes the same configuration as that of the first light emitting part, and preferably comprises a first amplifier for firstly amplifying the signal converted by the second digital-to-analog converter 215 and the second digital-to-analog converter 215.
- the first amplifier 216, the second amplifier 217 for second amplifying the signal amplified first through the first amplifier 216 and the second light emitting element 218 for generating light based on the second amplified signal a first amplifier for firstly amplifying the signal converted by the second digital-to-analog converter 215 and the second digital-to-analog converter 215.
- the first amplifier 216, the second amplifier 217 for second amplifying the signal amplified first through the first amplifier 216 and the second light emitting element 218 for generating light based on the second amplified signal ).
- the human body wearing apparatus 200 according to the second embodiment is different from the human body wearing apparatus 100 according to the first embodiment when the light emitting part is composed of a plurality of parts.
- the human wearing device 100 includes only one light emitting unit for generating light of a specific wavelength band.
- the wearer 200 may include a first light emitting part generating light having a first wavelength and a second light emitting part generating light having a second wavelength different from the wavelength.
- the first light emitting device 214 constituting the first light emitting part may be a red light emitting diode that emits light having a wavelength of 660 nm, and the second light emitting device 218 constituting the second light emitting part generates light having a wavelength of 940 nm. It may be an infrared light emitting diode.
- the light according to the infrared wavelength and the red wavelength has different absorption characteristics depending on whether hemoglobin contains oxygen in the blood.
- the controller 230 measures oxygen saturation in the blood based on the light receiving voltage of the light receiving unit 220 according to the operation of the first light emitting unit and the light receiving voltage of the light receiving unit 220 according to the operation of the second light emitting unit.
- the light emission operation of the first light emitting unit and the second light emitting unit is performed by a pulse signal output through the controller 230.
- the pulse signal includes a first section for turning on the second light emitting part, a second section for turning off both the first light emitting part and the second light emitting part, a third section for turning on the first light emitting part, and a first light emitting part and a first light emitting part. It consists of repetition of the 4th period which turns off all the 2 light emission parts.
- the controller 230 detects the wearing state as described in the first embodiment by using at least one of the light receiving voltage according to the operation of the first light emitting unit and the light receiving voltage according to the operation of the second light emitting unit. You can perform the operation.
- the light receiving unit 220 receives incident light including light reflected from the subject according to the light emission operation of the light emitting unit 210.
- the light receiving unit 220 includes a light receiving element 221 for receiving the incident light, a first amplifier 222 and a first amplifier 222 for first amplifying an optical signal incident through the light receiving element 221. And a second amplifier 223 for second amplifying the first amplified signal through the second amplifier 223, and an analog-digital converter 224 for converting the second amplified signal through the second amplifier 223 into a digital signal.
- the light receiving element 221 receives light incident from the outside.
- the light receiving element 221 may be implemented as a photodiode PD or a transistor TR.
- the first amplifier 222 converts the weak photocurrent detected by the light receiving element 221 into a voltage and amplifies it, which may be a TIA (Transimpedance Amplifier).
- TIA Transimpedance Amplifier
- the second amplifier 223 amplifies the voltage amplified by the first amplifier 222 to a voltage of sufficient magnitude to be processed by the analog-to-digital converter 224.
- analog-to-digital converter 224 converts the analog voltage into a corresponding digital voltage according to a designated sampling rate.
- the controller 230 controls the operations of the light emitter 210 and the light receiver 220.
- the controller 230 operates one of the first and second light emitting units, and accordingly detects the wearing state as described in the first embodiment. do.
- the controller 230 When it is detected as a wearing state, the controller 230 performs an operation of determining whether the object to be worn is a human body or an object, and the operation is the same as described in the first embodiment.
- the light emitting part used to determine the wearing target is a first light emitting part for measuring the heart rate.
- the controller 230 controls operations of the first light emitting unit and the second light emitting unit to periodically detect heart rate and blood oxygen saturation.
- controller 230 allows the display 240 to display the human state information including the detected heart rate and blood oxygen saturation.
- 17 is a flowchart for explaining a method of operating a wearable device according to a second embodiment of the present invention step by step.
- the controller 230 outputs a pulse signal for sequentially emitting light of a plurality of light emitting units (300).
- the controller 230 checks the received voltage of the light receiving unit according to the light generated by at least one light emitting unit among the plurality of light emitting units that emit light sequentially by the pulse signal (S310).
- the controller 230 identifies the first received voltage in the light emitting section of the light emitting unit and the second light receiving voltage in the light emitting section of the light emitting unit, respectively, in step 320.
- the controller 230 checks a difference value between the first light reception voltage and the second light reception voltage and determines whether the determined difference value is greater than a predetermined threshold value Vth.
- the controller 230 determines the state of the human wearing device as a wearing state, and accordingly enters the human body signal detection mode (step 340).
- the controller 230 determines the state of the human wearing device as a non-wear state (step 350).
- FIG. 18 is a diagram illustrating a configuration of a human body wearing apparatus 300 according to a third exemplary embodiment of the present invention.
- the human wearing device 300 includes a light emitter 310, a light receiver 320, and a controller 330.
- the human wearing device 300 is the same as the human wearing device 100 according to the first embodiment, except that the light emitting portion and the light receiving portion are composed of a plurality of.
- the human body wearing apparatus 100 detects the human body signal in the human body signal detection mode using one light emitting unit and the light receiving unit, and also detects the wearing state in the wearing state detection mode.
- the light emitting portion and the light receiving portion for detecting the human body signal and the light emitting portion and the light receiving portion for detecting the wearing state are separately configured.
- the human body wearing apparatus 300 may detect a human body signal while periodically detecting a human body signal.
- the first light emitting unit may firstly amplify the signal converted by the first digital-to-analog converter 311 and the first digital-to-analog converter 311 to convert the digital signal output through the controller 330 into an analog signal.
- the first digital-analog converter 311 converts the digital signal into an analog signal in order to set the current of the first light emitting device 314.
- the first and second amplifiers 312 and 313 are signal amplifiers for supplying an alternating current necessary for driving the light emitting element 314 to the first light emitting element 314.
- the first light emitting device 314 may be implemented as a light emitting diode (LED).
- LED light emitting diode
- the second light emitting part includes the same configuration as that of the first light emitting part, and preferably comprises a first amplifying signal converted by the second digital-to-analog converter 315 and the second digital-to-analog converter 315.
- first light emitting device 214 and the second light emitting device 218 may generate light having the same wavelength, or may generate light having different wavelengths.
- the light receiver 320 includes a first light receiver that receives light incident by the operation of the first light emitter, and a second light receiver that receives light incident by the operation of the second light emitter.
- the first light receiving unit includes a first light receiving element 321 for receiving the incident light, a first amplifier 322 for first amplifying an optical signal incident through the light receiving element 321, and the first amplifier 322.
- a second amplifier 323 for second amplifying the first amplified signal through the second amplifier; and an analog-digital converter 324 for converting the second amplified signal through the second amplifier 323 into a digital signal.
- the first light receiving element 321 receives light incident from the outside.
- the first light receiving element 321 may be implemented as a photodiode PD or a transistor TR.
- the first amplifier 322 converts the weak photocurrent detected by the first light receiving element 321 into a voltage and amplifies it, which may be a TIA (Transimpedance Amplifier).
- TIA Transimpedance Amplifier
- the second amplifier 323 amplifies the voltage amplified by the first amplifier 322 to a voltage of sufficient magnitude so that the analog-to-digital converter 324 can be processed.
- analog-to-digital converter 324 converts the analog voltage into a corresponding digital voltage according to a designated sampling rate.
- the second light receiving unit includes a second light receiving element 325 for receiving the incident light, a first amplifier 326 for first amplifying an optical signal incident through the second light receiving element 325, and the second light receiving element.
- a second amplifier 327 for second amplifying the first amplified signal through the first amplifier 326, and an analog-to-digital converter 328 for converting the second amplified signal to the digital signal through the second amplifier 327 ).
- the controller 330 performs substantially the same operation as the controller 130 according to the first embodiment.
- the controller 330 detects the wearing state of the plurality of light emitting units and the light receiving units according to the operation of the first light emitting unit and the first light receiving unit in the wearing state detection mode.
- the controller 330 detects a human body state (heart rate, etc.) according to the operation of the second light emitting unit and the second light receiving unit in the human body signal detection mode.
- the human body wearing apparatus may detect the wearing state regardless of the human body state detection from time to time by using the first light emitting unit.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Surgery (AREA)
- Public Health (AREA)
- Pathology (AREA)
- Veterinary Medicine (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Cardiology (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physiology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Optics & Photonics (AREA)
- Human Computer Interaction (AREA)
- General Physics & Mathematics (AREA)
- Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
- Vascular Medicine (AREA)
Abstract
실시 예에 따른 인체 착용 장치는 외부로 광을 발생하는 발광부; 외부로부터 입사되는 광을 수신하는 수광부; 및 상기 발광부의 동작을 제어하고, 발광부의 동작에 따라 상기 수광부로 입사되는 광의 세기를 검출하고, 상기 검출한 광의 세기를 토대로 상기 인체 착용 장치의 착용 상태를 검출하는 제어부를 포함하며, 상기 제어부는, 상기 발광부의 온 구간에서 상기 수광부로 입사되는 광의 세기와, 상기 발광부의 오프 구간에서 상기 수광부로 입사되는 광의 차이 값을 이용하여 상기 착용 상태를 검출한다.
Description
실시 예는, 인체 착용 장치 및 이의 동작 방법에 관한 것이다.
통상적으로, 휴대용 단말기는 전자부품의 고감도, 소형화 및 경량화 추세에 따라 가고 있으며, 제1세대로 바 타입(Bar Type)의 휴대폰이 보편화 되었고, 제2세대로 플립 타입(Flip Type)의 휴대폰이 일반화 되었으며, 현재에는 플립 타입과 제3세대의 폴더 타입(Folder Type)의 휴대폰이 공존하여 보편화된 추세에 있다.
또한, 사용자의 손목에 착용하는 시계 타입(Watch Type)의 휴대폰을 비롯하여 신체 일부나 의류에 착용하는 인체 착용 장치(wearable device)가 개발되었다.
한편, 최근 생활수준의 향상과 의료기술의 발전에 따라 전 세계적으로 고령화의 추세가 두드러지고 있다. 이와 같은 인구 고령화와 동반하여 만성질환 유병율이 증가하고 있고, 고령 사회의 또 다른 문제점으로, 핵가족화에 따른 가족 부양 능력 감퇴로 인한 독거 노인의 증가와 고독사(孤獨死)가 중요한 사회적 이슈(issue)로 대두되고 있다.
고혈압, 당뇨병, 뇌혈관질환, 심장질환 등의 만성 질환자는 지속적으로 증가하고 있다. 그 원인으로는 특히 건강과 관련된 식이, 운동 등 개인이나 집단의 건강 행태에 의한 질병 발생이 거의 절반 이상을 차지한다. 따라서 현대 의학의 생물의학적 모델에 의한 접근만으로는 이러한 만성 질환을 해결하기 어려우며 새로운 질병 관리 방법, 즉 생활 습관 개선을 통한 건강 위험 인자 제거라는 건강 증진적 접근이 요구된다.
따라서, 최근에는 맥박수 계측 방법에는 크게 피에조(piezo) 소자 등을 이용하는 압전식, 자기 접합 터널(MTJ: Magnetic Tunnel Junction) 소자를 이용하는 자기식, 필름형 압박센서를 이용하는 압박식, 생체 전기 임피던스를 이용하는 임피던스식, 광 센서를 이용하는 광학식 등이 있으며, 최근에는 손목이나 목에 착용이 가능한 인체 장착형 맥박 측정 장치가 제안되고 있다.
도 1은 종래 기술에 따른 인체 착용 장치를 나타낸 도면이다.
도 1을 참조하면, 인체 착용 장치는 기판(10), 발광 소자(20), 수광 소자(30), 구조물(40), 격벽(50) 및 광학 윈도우(60)를 포함한다.
기판(10)는 인체 착용 장치를 구성하는 구성요소들을 장착하기 위한 베이스 기판이다.
발광 소자(20)는 발광 제어신호에 따라 특정 파장대의 광을 발생한다.
수광 소자(30)는 상기 발광 소자(20)를 통해 발생한 광에 따라 입사되는 광을 수광한다.
구조물(40)은 상기 광학 윈도우(60)를 지지하기 위한 지지 구조물이다.
격벽(50)은 상기 발광 소자(20) 및 수광 소자(30) 사이에 배치되어, 상기 발광 소자(20)를 통해 발생한 광이 직접적으로 상기 수광 소자(30)로 입사되는 것을 방지한다.
광학 윈도우(60)는 상기 발광 소자(20) 및 수광 소자(30)의 발광면 및 수광면에 각각 배치되어, 외부로부터 상기 발광 소자(20) 및 수광 소자(30)를 보호한다.
상기와 같은 인체 착용 장치는, 상기 수광 소자(30)를 통해 수신된 광의 전압(즉, 수광 전압)에 따라 인체 신호를 검출한다. 여기에서, 상기 인체 신호는 심박수나 산소 포화도 등을 포함할 수 있다.
한편, 상기와 같은 인체 착용 장치는, 사람의 신체에 착용되었는지 여부를 검출해야 하며, 상기 검출 결과에 따라 상기 인체 신호를 검출하게 된다.
종래 기술에서 상기 착용 여부를 검출하는 방법은 다음과 같다.
발광 소자(20)는 광을 발생시키며, 상기 수광 소자(30)는 입사되는 광 전류의 크기를 측정한다. 이때, 상기 인체 착용 장치가 인체에 착용된 경우에 상기 측정된 광 전류에는 비교적 낮은 주변광이 포함되어 있고, 상기 인체 착용 장치가 인체에 미착용된 경우에는 상기 측정된 광 전류에는 높은 주변광이 포함되어 있다.
즉, 상기 인체 착용 장치가 인체에 착용된 상태에는 피검체와 상기 인체 착용 장치가 상호 밀착되어 주변광의 투입 경로가 거의 차단되므로, 미약한 광 전류가 검출되지만, 상기 미착용된 상태에서는 상기 피검체와 인체 착용 장치 사이의 이격 거리가 증가함에 따라 주변광에 노출되어 큰 광 전류가 검출되게 된다.
따라서, 상기 인체 착용 장치는, 상기 수광부(30)를 통해 검출되는 광 전류의 크기에 따라 상기 인체 착용 장치가 인체에 착용되었는지 여부를 검출한다.
도 2는 종래 기술에 따른 인체 착용 장치의 착용 여부를 검출하는 조건을 나타내는 그래프이다.
도 2를 참조하면, 인체 착용 장치와 피검체(바람직하게는, 인체) 사이의 이격 거리가 증가할 수록, 상기 수광부(30)를 통해 검출되는 수광 전압의 크기는 증가하게 된다.
따라서, 인체 착용 장치는, 인체 착용 장치가 미착용된 상태에서의 기준 값(Vth)을 결정하고, 상기 수광 전압의 크기가 상기 기준 값보다 작은 작은 경우에는 상기 인체 착용 장치가 인체에 착용된 상태인 것으로 검출하고, 상기 수광 전압의 크기가 기준 값(Vth)보다 큰 경우에는 상기 인체 착용 장치가 인체에 미착용된 상태인 것으로 검출한다.
그러나, 상기와 같은 종래 기술에 따른 착용 여부 검출 방법은 다음과 같은 문제점이 있다.
상기와 같은 착용 여부 검출 방법은 낮이나 조명에 의한 밝은 장소에서는 상기 인체 착용 장치의 착용 상태의 구분이 가능하지만, 밤이나 어두운 장소에서는 주변광에 의한 광 전류가 미약하므로, 정확한 착용 상태를 검출하지 못하는 문제점이 있다.
또한, 상기와 같은 착용 여부 검출 방법은 사람이 아닌 사물에 상기 인체 착용 장치가 접촉한 상태에서도 상기 주변광에 의한 광 전류가 미약하므로, 상기 인체 착용 장치가 실질적으로 인체에 착용되지 않은 상태에서도 인체에 착용된 상태로 오작동하는 문제점이 있다.
실시 예에서는, 외부 환경에 영향을 받지 않고 인체 착용 장치의 정확한 착용 상태를 검출할 수 있는 인체 착용 장치 및 이의 동작 방법을 제공한다.
또한, 실시 예에서는, 인체 착용 장치가 인체에 착용되었는지 아니면 사물에 접촉하였는지를 구분할 수 있는 인체 착용 장치 및 이의 동작 방법을 제공한다.
제안되는 실시 예에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 제안되는 실시 예가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
실시 예에 따른 인체 착용 장치는 외부로 광을 발생하는 발광부; 외부로부터 입사되는 광을 수신하는 수광부; 및 상기 발광부의 동작을 제어하고, 발광부의 동작에 따라 상기 수광부로 입사되는 광의 세기를 검출하고, 상기 검출한 광의 세기를 토대로 상기 인체 착용 장치의 착용 상태를 검출하는 제어부를 포함하며, 상기 제어부는, 상기 발광부의 온 구간에서 상기 수광부로 입사되는 광의 세기와, 상기 발광부의 오프 구간에서 상기 수광부로 입사되는 광의 차이 값을 이용하여 상기 착용 상태를 검출한다.
또한, 상기 제어부는, 상기 차이 값이 0이면, 상기 인체 착용 장치의 상태를 미착용 상태로 검출하고, 상기 차이 값이 0보다 크면, 상기 인체 착용 장치의 상태를 착용 상태로 검출한다.
또한, 상기 제어부는, 상기 차이 값이 기설정된 기준 값보다 크면, 상기 인체 착용 장치의 상태를 착용 상태로 검출하고, 상기 차이 값이 기 설정된 기준 값보다 작거나 같으면, 상기 인체 착용 장치의 상태를 미착용 상태로 검출한다.
또한, 상기 기준 값은, 상기 발광부에서 상기 수광부로의 직접적인 광 누설량 및 외부 환경에 의한 광 반사량 중 적어도 어느 하나에 의해 결정된다.
또한, 상기 발광부는, 제 1 파장의 광을 발생하는 제 1 발광부와, 상기 제 1 파장과 다른 제 2 파장의 광을 발생하는 제 2 발광부를 포함하며, 상기 제어부는, 상기 제 1 발광부 및 제 2 발광부 중 어느 하나의 발광부를 이용하여 상기 착용 상태를 검출하며, 상기 제 1 발광부 및 제 2 발광부를 모두 이용하여, 심박수 및 혈중 산소 포화도를 검출한다.
또한, 상기 발광부는, 제 1 광을 발생하는 제 1 발광부와, 제 2 광을 발생하는 제 2 발광부를 포함하며, 상기 수광부는, 상기 제 1 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 1 수광부와, 상기 제 2 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 2 수광부를 포함한다.
또한, 상기 제 1 발광부 및 제 1 수광부는, 상기 제어부의 제어신호에 따라 기설정된 주기마다 동작하여 상기 인체 착용 장치의 착용 상태를 검출하며, 상기 제 2 발광부 및 제 2 수광부는, 상기 제어부의 제어신호에 따라 상기 인체 착용 장치가 착용된 인체에 대한 인체 신호를 검출한다.
또한, 상기 제어부는, 상기 인체 착용 장치의 상태가 착용 상태로 검출되면, 상기 발광부의 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 토대로 상기 인체 착용 장치가 착용된 대상물을 검출한다.
또한, 상기 제어부는, 상기 발광부의 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 이용하여 맥파 원시 신호 파형을 검출하고, 상기 검출한 맥파 원시 신호 파형을 2차 미분하여, 2차 미분 신호 파형을 생성하며, 상기 생성한 2차 미분 신호 파형에서 피크 신호를 검출하여 피크 신호 파형을 생성하며, 상기 생성한 피크 신호 파형에 포함된 피크 신호들의 펄스 간격을 토대로 상기 인체 착용 장치가 착용된 대상물을 판단한다.
또한, 상기 제어부는, 상기 펄스 간격이 30~240bpm 범위 내에 속하면, 상기 인체 착용 장치가 인체에 착용된 것으로 판단하고, 상기 펄스 간격이 상기 30~240bpm 범위를 벗어나면, 상기 인체 착용 장치가 사물에 착용된 것으로 판단한다.
또한, 상기 제어부의 제어신호에 따라 상기 인체 착용 장치의 착용 상태 정보 및 상기 인체 착용 장치가 착용된 인체에서 검출한 인체 검출 신호 중 적어도 하나를 디스플레이하는 디스플레이부를 포함한다.
한편, 실시 예에 따른 인체 착용 장치의 동작 방법은 온 구간 및 오프 구간을 포함하는 펄스 신호를 출력하는 단계; 상기 펄스 신호에 따라 발광부가 동작하는 단계; 상기 온 구간에서 수광부로 입사되는 광의 세기와, 상기 오프 구간에서 수광부로 입사되는 광의 세기를 검출하는 단계; 상기 온 구간에서의 광의 세기와 오프 구간에서의 광의 세기의 차이 값을 검출하는 단계; 및 상기 차이 값을 토대로 상기 인체 착용 장치가 대상물에 착용되었는지 여부를 판단하는 단계를 포함한다.
또한, 상기 대상물에 착용되었는지 여부를 판단하는 단계는, 상기 차이 값이 0이면, 상기 인체 착용 장치의 상태를 미착용 상태로 판단하는 단계와, 상기 차이 값이 0보다 크면, 상기 인체 착용 장치의 상태를 착용 상태로 판단하는 단계를 포함한다.
또한, 상기 대상물에 착용되었는지 여부를 판단하는 단계는 상기 차이 값이 기설정된 기준 값보다 크면, 상기 인체 착용 장치의 상태를 착용 상태로 판단하는 단계와, 상기 차이 값이 기 설정된 기준 값보다 작거나 같으면, 상기 인체 착용 장치의 상태를 미착용 상태로 판단하는 단계를 포함한다.
또한, 상기 기준 값은, 상기 발광부에서 상기 수광부로의 직접적인 광 누설량 및 외부 환경에 의한 광 반사량 중 적어도 어느 하나에 의해 결정된다.
또한, 상기 발광부는, 제 1 파장의 광을 발생하는 제 1 발광부와, 상기 제 1 파장과 다른 제 2 파장의 광을 발생하는 제 2 발광부를 포함하며, 상기 착용 여부 판단은, 상기 제 1 발광부 및 제 2 발광부 중 어느 하나의 발광부의 발광에 의해 이루어진다.
또한, 상기 발광부는, 제 1 광을 발생하는 제 1 발광부와, 제 2 광을 발생하는 제 2 발광부를 포함하며, 상기 수광부는, 상기 제 1 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 1 수광부와, 상기 제 2 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 2 수광부를 포함하며, 상기 착용 여부 판단은, 상기 제 1 발광부 및 제 1 수광부의 동작에 의해 이루어진다.
또한, 상기 인체 착용 장치의 상태가 착용 상태로 검출되면, 상기 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 토대로 상기 인체 착용 장치가 착용된 대상물을 판단하는 단계를 더 포함한다.
또한, 상기 대상물을 판단하는 단계는, 상기 발광부의 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 이용하여 맥파 원시 신호 파형을 검출하는 단계와, 상기 검출한 맥파 원시 신호 파형을 2차 미분하여, 2차 미분 신호 파형을 생성하는 단계와, 상기 생성한 2차 미분 신호 파형에서 피크 신호를 검출하여 피크 신호 파형을 생성하는 단계와, 상기 생성한 피크 신호 파형에 포함된 피크 신호들의 펄스 간격을 토대로 상기 인체 착용 장치가 착용된 대상물을 판단하는 단계를 포함한다.
또한, 상기 펄스 간격이 30~240bpm 범위 내에 속하면, 상기 인체 착용 장치가 인체에 착용된 것으로 판단하는 단계와, 상기 펄스 간격이 상기 30~240bpm 범위를 벗어나면, 상기 인체 착용 장치가 사물에 착용된 것으로 판단하는 단계를 포함한다.
또한, 상기 인체 착용 장치의 착용 상태 정보 및 상기 인체 착용 장치가 착용된 인체에서 검출한 인체 검출 신호 중 적어도 하나를 디스플레이하는 단계를 더 포함한다.
본 발명에 따른 실시 예에 의하면, 낮이나 조명에 의한 밝은 장소 및 밤이나 어두운 장소에 상관 없이 인체 착용 장치가 인체에 착용되었는지 여부를 정확하게 검출할 수 있다.
또한, 본 발명에 따른 실시 예에 의하면, 인체 착용 장치가 인체가 아닌 사물에 접촉되어 있을 때를 정확하게 구분하여, 상기 인체 착용 장치가 사물에 접촉되었을때 발생할 수 있는 다양한 오작동을 방지할 수 있다.
도 1은 종래 기술에 따른 인체 착용 장치를 나타낸 도면이다.
도 2는 종래 기술에 따른 인체 착용 장치의 착용 여부를 검출하는 조건을 나타내는 그래프이다.
도 3은 본 발명의 제 1 실시 예에 따른 인체 착용 장치의 구성을 개략적으로 나타낸 구성도이다.
도 4는 본 발명의 제 1 실시 예에 따른 인체 착용 장치의 구조를 보여주는 단면도이다.
도 5는 본 발명의 실시 예에 따른 인체 착용 장치의 착용 여부를 검출하는 조건을 나타내는 그래프이다.
도 6은 실시 예에 따른 인체 착용 장치가 인체와 완전히 밀착된 상태에서의 발광부 및 수광부의 상태를 보여준다.
도 7은 실시 예에 따른 인체 착용 장치가 인체에서 제 1 거리만큼 이격된 상태에서의 발광부와 수광부의 상태를 보여준다.
도 8은 실시 예에 따른 인체 착용 장치가 인체에서 완전 이격된 상태에서의 발광부와 수광부의 상태를 보여준다.
도 9는 본 발명의 제 1 실시 예에 따른 인체 착용 장치의 동작 방법을 단계별로 설명하기 위한 흐름도이다.
도 10은 실시 예에 따른 인체 착용 장치가 사물에 접촉한 상태에서, 수광부로 입사되는 광에 대한 수광 전압의 변화를 보여주는 그래프이다.
도 11은 실시 예에 따른 인체 착용 장치가 사물에 완전히 밀착된 상태로 착용된 경우에서의 발광부와 수광부의 상태를 보여준다.
도 12는 실시 예에 따른 인체 착용 장치가 사물에서 제 1 거리만큼 이격된 위치에 놓이게 되는 경우의 발광부와 수광부의 상태를 보여준다.
도 13은 실시 예에 따른 인체 착용 장치가 사물에서 완전 이격된 상태에서의 발광부와 수광부의 상태를 보여준다.
도 14는 본 발명의 실시 예에 의해 검출되는 신호를 보여주는 도면이다.
도 15는 본 발명의 실시 예에 따른 인체 착용 장치의 착용 대상물을 검출하는 방법을 단계별로 설명하기 위한 흐름도이다.
도 16은 본 발명의 제 2 실시 예에 따른 인체 착용 장치의 구성을 보여주는 도면이다.
도 17은 본 발명의 제 2 실시 예에 따른 인체 착용 장치의 동작 방법을 단계별로 설명하기 위한 흐름도이다.
도 18은 본 발명의 제 3 실시 예에 따른 인체 착용 장치의 구성을 보여주는 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.
첨부된 도면의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 프로세서를 통해 수행되는 그 인스트럭션들이 도면의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방식으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 도면의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 도면의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.
도 3은 본 발명의 제 1 실시 예에 따른 인체 착용 장치의 구성을 개략적으로 나타낸 구성도이고, 도 4는 본 발명의 제 1 실시 예에 따른 인체 착용 장치의 구조를 보여주는 단면도이다.
도 3을 참조하면, 인체 착용 장치(100)는 발광부(110), 수광부(120) 및 제어부(130)를 포함한다.
발광부(110)는 제어부(130)의 제어신호에 따라 광을 발생시킨다.
발광부(110)는 크게 광을 발생시키는 발광 수단과, 상기 발광 수단을 구동시키는 구동 수단으로 구분할 수 있다.
상기 발광부(110)의 구동 수단은 제어부(130)를 통해 출력되는 디지털 신호를 아날로그 신호로 변환하는 디지털-아날로그 변환기(111), 상기 디지털-아날로그 변환기(111)를 통해 변환된 신호를 1차 증폭하는 제 1 증폭기(112), 상기 제 1 증폭기(112)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(113)를 포함한다.
여기에서, 상기 디지털-아날로그 변환기(111)는 발광 소자(114)의 전류를 설정해주기 위하여, 상기 디지털 신호를 아날로그 신호로 변환한다.
그리고, 제 1 및 2 증폭기(112, 113)은 상기 발광 소자(114)의 구동에 필요한 교류 전류를 상기 발광 소자(114)로 공급하기 위한 신호 증폭부이다.
그리고, 상기 발광부(110)의 발광 수단은 상기 제 2 증폭기(113)를 통해 증폭된 신호에 따라 광을 발생하는 발광 소자(114)를 포함한다. 상기 발광 소자(114)는 발광 다이오드(LED: Light Emitting Diode)로 구현 가능하다.
또한, 상기 발광 소자(114)는 검출될 인체 신호에 따라 서로 다른 파장의 광을 발생시킬 수 있다. 즉, 상기 발광 소자(114)는 상기 검출할 인체 신호가 심박수인 경우, 660nm 파장의 광을 발생시키는 레드 발광 다이오드일 수 있다.
수광부(120)는 상기 발광부(110)의 발광 동작에 따라 피검체에서 반사된 광을 포함한 입사 광을 수신한다.
수광부(120)는 상기 입사되는 광을 수신하는 수광 소자(121)와, 상기 수광 소자(121)를 통해 입사된 광 신호를 1차 증폭하는 제 1 증폭기(122), 상기 제 1 증폭기(122)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(123), 상기 제 2 증폭기(123)를 통해 2차 증폭된 신호를 디지털 신호로 변환하는 아날로그-디지털 변환기(124)를 포함한다.
수광 소자(121)는 외부로부터 입사되는 광을 수신한다. 이때, 수광 소자(121)는 포토 다이오드(PD)나 트랜지스터(TR)로 구현 가능한다.
또한, 상기 제 1 증폭기(122)는 상기 수광 소자(121)에서 검출되는 미약한 광 전류를 전압으로 변환시켜 증폭하며, 이는 TIA(Transimpedance Amplifier)일 수 있다.
또한, 제 2 증폭기(123)는 상기 제 1 증폭기(122)를 통해 증폭된 전압을 상기 아날로그-디지털 변환기(124)에서 처리 가능하도록 충분한 크기의 전압으로 증폭시킨다.
또한, 아날로그-디지털 변환기(124)는 지정된 샘플링 레이트(SAMPLING RATE)에 따라 아날로그 전압을 이에 상응하는 디지털 전압으로 변환해준다.
제어부(130)는 발광부(110) 및 수광부(120)의 동작을 제어한다.
또한, 제어부(130)는 상기 발광부(110) 및 수광부(120)의 동작 모드에 따라 상기 수광부(120)를 통해 수신된 광 신호의 크기를 검출하고, 상기 검출된 광 신호의 세기에 따른 동작을 수행한다.
이때, 상기 동작 모드는 착용 상태 검출 모드 및 인체 신호 검출 모드를 포함한다.
상기 착용 상태 검출 모드는 상기 발광부(110) 및 수광부(120)를 이용하여 상기 인체 착용 장치(100)가 인체에 착용된 상태인지 여부를 검출하기 위한 모드이다.
그리고, 인체 신호 검출 모드는 상기 발광부(110) 및 수광부(120)를 이용하여 상기 인체 착용 장치(100)가 착용된 인체에 대한 인체 신호를 검출하기 위한 모드이다.
상기 인체 신호 검출 모드는, 상기 인체 착용 장치(100)가 인체에 착용된 상태에서 수행되는 모드이다.
그리고, 착용 상태 검출 모드는 기설정된 주기마다 수행되는 모드이며, 상기 인체 착용 장치(100)가 인체에 착용되었는지, 아니면 이전에 착용되어있던 상기 인체 착용 장치(100)가 상기 인체로부터 분리되었는지를 검출하기 위한 모드이다.
상기 제어부(130)는 상기 결정된 모드에 따라 상기 수광부(120)를 통해 수신된 광의 세기에 따라 그에 대응하는 동작을 수행한다.
특히, 제어부(130)는 착용 상태 검출 모드에 진입하면, 상기 발광부(110)를 통해 광이 발생되도록 하고, 그에 따라 상기 수광부(120)를 통해 수신되는 광의 세기에 따라 상기 인체 착용 장치(100)가 피검체에 착용된 상태인지를 판단한다.
여기에서, 상기 피검체에 착용된 상태는, 상기 인체 착용 장치(100)가 인체에 착용된 상태와, 상기 인체 착용 장치(100)가 사물에 접촉한 상태를 모두 포함한다.
이에 따라, 상기 제어부(130)는 상기 인체 착용 장치(100)가 피검체에 착용된 상태로 판단되면, 상기 인체 착용 장치(100)가 인체에 착용되었는지, 아니면 단순한 사물에 접촉하였는지를 판단한다.
그리고, 제어부(130)는 상기 인체 착용 장치(100)가 인체에 착용된 것으로 판단되면, 상기 발광부(110)와 수광부(120)가 인체 신호 검출 모드로 동작하도록 하고, 그에 따라 수신되는 광 신호의 세기에 따른 인체 신호를 검출한다.
한편, 도 4를 참조하면, 상기와 같은 인체 착용 장치(100)의 구조는, 기판(140), 발광 소자(114), 수광 소자(121), 구조물(150), 격벽(160) 및 광학 윈도우(170)를 포함한다.
기판(140)는 인체 착용 장치를 구성하는 구성요소들을 장착하기 위한 베이스 기판이다.
발광 소자(114)는 발광 제어신호에 따라 특정 파장대의 광을 발생한다.
수광 소자(121)는 상기 발광 소자(114)를 통해 발생한 광에 따라 입사되는 광을 수광한다.
구조물(150)은 상기 광학 윈도우(170)를 지지하기 위한 지지 구조물이다.
격벽(160)은 상기 발광 소자(114) 및 수광 소자(121) 사이에 배치되어, 상기 발광 소자(114)를 통해 발생한 광이 직접적으로 상기 수광 소자(121)로 입사되는 것을 방지한다.
광학 윈도우(170)는 상기 발광 소자(114) 및 수광 소자(121)의 발광면 및 수광면과 일정 간격 이격되어 배치되며, 외부로부터 상기 발광 소자(114) 및 수광 소자(121)를 보호한다.
또한, 광학 윈도우(170)는 상기 발광 소자(114)를 통해 발생한 광이 외부로 공급되도록 광 경로를 형성하며, 또한, 상기 외부에서 입사되는 광이 상기 수광 소자(121)로 공급되도록 한다.
이때, 상기 수광 소자(121)는 외부로부터 입사되는 광을 수신하는데, 상기 광은 크게 3개의 광으로 구성된다.
다시 말해서, 상기 수광부(120)를 통해 수신된 광은 제 1 광(DC1), 제 2 광(DC2) 및 제 3 광(DC3) 중 적어도 1개 이상의 광을 포함한다.
상기 제 1 광(DC1)은 상기 발광부(110)의 동작과는 무관하게, 외부의 주변광에 따라 상기 수광부(120)로 입사되는 광을 의미한다.
그리고, 상기 제 2 광(DC2)은 상기 발광부(110)를 통해 발생한 광이 피검체의 표면에 의해 반사되고, 상기 표면에서 반사된 광에 따라 상기 수광부(120)로 입사되는 광을 의미한다.
그리고, 상기 제 3 광(DC3)은 상기 발광부(110)를 통해 발생한 광이 피검체(인체)의 피부 조직에 의해 반사되고, 상기 피부 조직에서 반사된 광에 따라 상기 수광부(120)로 입사되는 광을 의미한다.
이때, 상기 제 1 내지 3 광에 대한 상기 수광부(120)로의 입사 여부는, 상기 인체 착용 장치(100)와 피검체 사이의 이격 거리에 의해 결정된다.
상기 이격 거리는, 상기 인체 착용 장치(100)의 표면, 다시 말해서 상기 광학 윈도우(170)와 피검체의 표면 사이의 거리를 의미하며, 상기 인체 착용 장치(100)의 착용 상태에 의해 결정된다.
상기 인체 착용 장치(100)의 착용 상태는 제 1 상태, 제 2 상태 및 제 3 상태를 포함한다.
상기 제 1 상태는, 상기 인체 착용 장치(100)가 피검체와 완전히 밀착된 상태를 의미한다.
상기 제 2 상태는, 상기 인체 착용 장치(100)와 상기 피검체 사이가 제 1 거리만큼 이격된 상태를 의미한다.
상기 제 3 상태는, 상기 인체 착용 장치(100)가 상기 피검체로부터 완전히 히격된 상태, 다시 말해서 상기 인체 착용 장치(100)가 상기 피검체에 미착용된 상태를 의미한다.
즉, 상기 제 3 상태는 상기 인체 착용 장치(100)와 상기 피검체 사이가 상기 제 1 거리보다 큰 제 2 거리만큼 이격된 상태를 의미한다.
다시 말해서, 일반적으로 상기 인체 착용 장치(100)의 사용자는 상기 인체 착용 장치(100)를 손목에 착용하는 경우, 사용상의 불편함을 최소화하기 위하여 상기 인체 착용 장치(100)를 손목에서 일정 간격 이격시켜 착용하게 된다.
따라서, 실시 예에서는, 상기 이격 거리가 제 1 거리 내에 속하는 경우, 상기 인체 착용 장치(100)가 상기 피검체에 착용된 상태로 판단한다.
도 5는 본 발명의 실시 예에 따른 인체 착용 장치의 착용 여부를 검출하는 조건을 나타내는 그래프이다.
도 5를 참조하면, 수광부(120)는 외부로부터 광을 수신하는데, 상기 광은 상기 설명한 바와 같이, 제 1 광(DC1), 제 2 광(DC2) 및 제 3 광(DC3)를 포함한다.
상기 제 1 광(DC1)은 상기 설명한 바와 같이, 주변 광에 의해, 상기 수광부(120)로 입사되는 광을 의미한다.
도 5에 도시된 바와 같이, 상기 제 1 광(DC1)의 세기는, 상기 인체 착용 장치(100)가 피검체에 완전히 밀착한 상태(다시 말해서, 이격 거리가 0)에서 최소 값(0)을 가진다. 또한, 상기 제 1 광(DC1)은 상기 이격 거리가 증가할 수록 세기도 함께 증가하는 특성을 갖는다.
또한, 상기 제 2 광(DC2)은 상기 설명한 바와 같이, 피검체의 표면에 의해 반사되어, 상기 수광부(120)로 입사되는 광을 의미한다.
도 5에 도시된 바와 같이, 상기 제 2 광(DC2)의 세기는 상기 인체 착용 장치(100)와 피검체가 특정 간격만큼 이격된 상태에서 최대 값을 가지며, 상기 특정 간격에서 이격거리가 감소하거나 증가할 수록 감소하는 특성을 갖는다.
그리고, 상기 제 3 광(DC3)은 상기 설명한 바와 같이, 상기 피검체의 피부 조직에 의해 반사되어, 상기 수광부(120)로 입사되는 광을 의미한다.
도 5에 도시된 바와 같이, 상기 제 3 광(DC3)의 세기는, 상기 인체 착용 장치(100)가 상기 피검체에 완전히 밀착한 상태에서 최대 값을 가지며, 상기 이격 거리가 증가할 수록 감소하는 특성을 갖는다. 그리고, 상기 제 3 광(DC3)의 세기는 상기 이격 거리가 특정 거리를 넘어서는 순간부터는 0의 값을 갖는다.
이에 따라, 상기 인체 착용 장치(100)가 착용된 상태(완전 밀착 또는 기설정된 거리만큼 이격)에는, 상기 발광부(110)의 온 동작 및 오프 동작에 따라 상기 수광부(120)에서 검출되는 광의 세기에 차이가 발생하나, 미착용 시에는 내부 광 누설이나, 피검체 외의 외부 반사가 없다는 가정하에 광의 세기에 차이가 발생하지 않는다.
도 6 내지 8은 본 발명의 실시 예에 따른 발광부(110) 및 수광부(120)의 조건별 상태를 보여주는 도면이다.
제어부(130)는 착용 여부 검출 모드로 진입하면, 상기 발광부(110)가 온 동작 및 오프 동작을 순차적으로 수행하기 위한 펄스 신호를 출력한다.
상기 펄스 신호에 따라 상기 발광부(110)는 온 동작 및 오프 동작을 순차적으로 수행한다.
그리고, 제어부(130)는 상기 순차적으로 온 동작 및 오프 동작을 수행하는 발광부(110)의 동작에 따라 상기 수광부(120)를 통해 수신되는 광의 세기를 검출한다.
도 6은, 인체 착용 장치(100)가 피검체와 완전히 밀착된 상태에서의 발광부(110) 및 수광부(120)의 상태를 보여준다. 여기에서, 상기 피검체는 실질적으로 인체를 의미한다.
즉, 도 6은 인체 착용 장치(100)가 인체에 완전히 밀착된 상태로 착용된 경우에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
그리고, 도 6의 (a)는 주변 광이 존재하는 조건, 다시 말해서 낮이나 밝은 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다. 그리고, 도 6의 (b)는 주변 광이 존재하지 않는 조건, 다시 말해서, 밤이나 어두운 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다.
한편, 아래에서, 발광 전압은 상기 발광부(110)의 발광 동작에 따라 발생하는 광의 세기를 의미하고, 수광 전압은 상기 수광부(120)로 입사된 광의 세기를 의미한다.
도 6의 (a)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 완전히 밀착된 상태, 다시 말해서 상기 인체 착용 장치(100)와 피검체 사이의 이격 거리가 0인 상태에서는, 상기 수광부(120)로 주변 광이나, 상기 피검체의 표면에서 반사되는 광은 입사되지 않는다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 피검체의 피부 조직에서 반사되는 제 3 광(DC3)만이 입사되고, 상기 입사된 제 3 광(DC3)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 제 3 광(DC3)도 입사되지 않음에 따라 0의 값을 가진다.
다시 말해서, 주변 광이 존재하는 낮이나 밝은 장소에서 상기 인체 착용 장치(100)가 피검체에 완전히 밀착한 상태에서, 상기 수광부(120)는 발광부(110)의 온 구간에서 특정 수광 전압을 가지는 제 3 광을 수신하게 되고, 상기 발광부(110)의 오프 구간에서 제 1 내지 제 3 광을 모두 수신하지 않게 된다.
따라서, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기에는 상기 제 3 광의 세기만큼 차이가 발생한다.
도 6의 (b)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 완전히 밀착된 상태, 다시 말해서 상기 인체 착용 장치(100)와 피검체 사이의 이격 거리가 0인 상태에서는, 상기 수광부(120)로 주변 광이나, 상기 피검체의 표면에서 반사되는 광은 입사되지 않는다.
*이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 피검체의 피부 조직에서 반사되는 제 3 광(DC3)만이 입사되고, 상기 입사된 제 3 광(DC3)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 제 3 광(DC3)도 입사되지 않음에 따라 0의 값을 가진다.
따라서, 상기 어두운 장소에서도, 상기 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기에는 상기 제 3 광의 세기만큼 차이가 발생한다.
도 7은 인체 착용 장치(100)가 인체에서 약간 이격된 상태(제 1 거리만큼 이격된 상태)에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
즉, 도 7은 인체 착용 장치(100)가 인체에 착용은 되었지만, 상기 인체에 완전히 밀착되어 있지 않고, 제 1 거리만큼 이격되어 착용한 상황에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
그리고, 도 7의 (a)는 주변 광이 존재하는 조건, 다시 말해서 낮이나 밝은 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다. 그리고, 도 7의 (b)는 주변 광이 존재하지 않는 조건, 다시 말해서, 밤이나 어두운 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다.
도 7의 (a)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 제 1 거리만큼 이격된 상태에서는, 상기 수광부(120)로 주변 광, 상기 피검체의 표면에서 반사되는 광 및 상기 피부 조직에서 반사된 광이 모두 입사된다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 주변 광에 따른 제 1 광(DC1), 상기 피부 표면에서 반사된 광에 따른 제 2 광(DC2) 및 상기 피검체의 피부 조직에서 반사되는 제 3 광(DC3)이 모두 입사되고, 그에 따라 상기 입사된 제 1 광(DC1), 제 2 광(DC2) 및 제 3 광(DC3)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 제 2 광(DC) 및 제 3 광(DC3)이 입사되지 않는다.
따라서, 상기 발광부(110)의 오프 구간에서, 상기 수광부(120)는 상기 주변광에 따른 제 1 광(DC1)만이 입사되고, 상기 제 1 광(DC1)에 따른 수광 전압이 검출된다.
다시 말해서, 주변 광이 존재하는 낮이나 밝은 장소에서 상기 인체 착용 장치(100)가 피검체로부터 제 1 거리만큼 이격된 상태에, 상기 수광부(120)는 발광부(110)의 온 구간에서 제 1 내지 제 3 광을 모두 수신하게 되고, 상기 발광부(110)의 오프 구간에서 제 1 광만을 수신하게 된다.
따라서, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기에는 상기 제 2 광 및 제 3 광의 세기의 합만큼 차이가 발생한다.
도 7의 (b)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 제 1 거리만큼 이격된 상태에서는, 상기 수광부(120)로 상기 피검체의 표면에서 반사되는 광 및 상기 피부 조직에서 반사된 광이 모두 입사된다. 즉, 상기 조건은 주변 광이 존재하지 않는 조건이므로, 상기 수광부(120)로 주변광에 대응하는 제 1 광은 입사되지 않으며, 이에 따라 상기 수광부(120)에는 제 2 광 및 제 3 광만이 입사된다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 피부 표면에서 반사된 광에 따른 제 2 광(DC2) 및 상기 피검체의 피부 조직에서 반사되는 제 3 광(DC3)이 입사되고, 상기 입사된 제 2 광(DC2) 및 제 3 광(DC3)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 제 2 광(DC) 및 제 3 광(DC3)도 입사되지 않는다.
따라서, 상기 발광부(110)의 오프 구간에서, 상기 수광부(120)는 상기 제 1 광 내지 제 3 광을 모두 수신하지 않게 되며, 이에 따른 0의 값을 가지는 수광 전압이 검출된다.
다시 말해서, 주변 광이 존재하지 않는 밤이나 어두운 장소에서 상기 인체 착용 장치(100)가 피검체로부터 제 1 거리만큼 이격된 상태에, 상기 수광부(120)는 발광부(110)의 온 구간에서 제 2 및 제 3 광을 수신하게 되고, 상기 발광부(110)의 오프 구간에서는 제 1 내지 제 3 광을 모두 수신하지 않게 된다.
따라서, 주변이 어두운 상황에서도, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기에는 상기 제 2 광 및 제 3 광의 세기의 합만큼 차이가 발생한다.
도 8은 인체 착용 장치(100)가 인체에서 완전 이격된 상태(상기 제 1 거리보다 큰 제 2 거리만큼 이격된 상태)에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
즉, 도 8은 인체 착용 장치(100)가 인체에 미착용된 상황에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
그리고, 도 8의 (a)는 주변 광이 존재하는 조건, 다시 말해서 낮이나 밝은 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다. 그리고, 도 8의 (b)는 주변 광이 존재하지 않는 조건, 다시 말해서, 밤이나 어두운 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다.
도 8의 (a)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는, 상기 발광부(110)를 통해 발생한 광이 상기 인체의 피부 표면이나 피부 조직에 의해 반사가 이루어지지 않게 된다.
이에 따라, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는 상기 수광부(120)로 주변 광만이 입사된다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 주변 광에 따른 제 1 광(DC1)만이 입사되고, 그에 따라 상기 입사된 제 1 광(DC1)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 주변광에 따른 제 1 광(DC1)만이 입사된다.
따라서, 상기 발광부(110)의 오프 구간에서, 상기 수광부(120)는 상기 주변광에 따른 제 1 광(DC1)만이 입사되고, 상기 제 1 광(DC1)에 따른 수광 전압이 검출된다.
다시 말해서, 주변 광이 존재하는 낮이나 밝은 장소에서 상기 인체 착용 장치(100)가 피검체로부터 제 2 거리만큼 이격된 상태에, 상기 수광부(120)는 발광부(110)의 온 구간 및 오프 구간에서 모두 상기 제 1 광만을 수신하게 된다.
따라서, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기는 동일한 값을 가진다.
또한, 도 8의 (b)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는, 상기 발광부(110)를 통해 발생한 광이 상기 인체의 피부 표면이나 피부 조직에 의해 반사가 이루어지지 않게 된다. 또한, 상기 도 8의 (b)는 주변 광도 존재하지 않는 조건이며, 이에 따라, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는 상기 수광부(120)로 그 어떠한 광도 입사되지 않는다.
이에 따라, 상기 발광부(110)의 온 구간 및 오프 구간에서, 상기 수광부(120)에는 광이 입사되지 않으며, 이에 따른 0의 값을 가지는 수광 전압이 검출된다.
따라서, 상기 조건에서 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기는 0이라는 동일한 값을 가진다.
상기 도 6 및 도 7에서와 같이, 상기 인체 착용 장치(100)가 인체에 착용된 상태에서는, 발광부(110)의 온 구간에서 수광부(120)의 수광 전압과, 발광부(110)의 오프 구간에서 수광부(120)의 수광 전압은 서로 동일하지 않고, 일정 크기의 차이 값을 가진다.
*또한, 도 8에서와 같이, 상기 인체 착용 장치(100)가 인체에 미착용된 상태에서는, 상기 발광부(110)의 온 구간에서 상기 수광부(120)로 입사되는 광에 대한 수광 전압과, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)로 입사되는 광에 대한 수광 전압은 서로 동일한 값을 가진다.
이에 따라, 제어부(130)는 상기 발광부(110)의 온 구간 및 오프 구간에서 상기 수광부(120)를 통해 입사되는 각각의 광의 세기에 따른 차이 값을 토대로 상기 인체 착용 장치(100)가 인체에 착용된 상태인지 아닌지를 판단한다.
즉, 제어부(130)는 아래의 식에 따라 상기 인체 착용 장치(100)의 착용 상태를 판단한다.
[식 1]
Von - Voff = 0 , 미착용 상태
Von - Voff > 0, 착용 상태
여기에서, 상기 Von은 발광부(110)의 온 구간에서 수광부(120)로 입사되는 광의 세기를 나타낸 것이고, Voff는 발광부(110)의 오프 구간에서 수광부(120)로 입사되는 광의 세기를 의미한다.
한편, 상기 식 1은 이상적인 조건(ieal)에서의 식이다.
그러나, 실질적으로 상기 인체 착용 장치(100)가 미착용된 상태에서 기구 조건에 따라 상기 발광 소자에서 수광 소자로의 직접적인 광 누설이 발생할 수 있고, 외부 환경에 의한 광 반사가 존재할 수도 있다.
따라서, 상기 인체 착용 장치(100)가 미착용된 상태에서도, 상기 Von과 Voff의 차이 값은 0이 아닌 특정 값을 가질 수 있다.
이에 따라, 실시 예에서는 상기 인체 착용 장치(100)가 미착용된 상태에서, 상기 Von과 Voff의 차이 값을 측정(즉, 발광 소자에서 수광 소자로의 전달되는 직접적인 광 누설량 및 외부 환경에 의한 광 반사량)하고, 이를 토대로 상기 인체 착용 장치(100)의 정확한 착용 상태를 검출하기 위한 아래와 같은 식 2를 결정한다.
[식 2]
Von - Voff ≤ Vth , 미착용 상태
Von - Voff > Vth, 착용 상태
여기에서, 상기 Von은 발광부(110)의 온 구간에서 수광부(120)로 입사되는 광의 세기를 나타낸 것이고, Voff는 발광부(110)의 오프 구간에서 수광부(120)로 입사되는 광의 세기를 의미하며, 상기 Vth는 상기 인체 착용 장치(100)의 착용 상태를 판단하기 위한 임계 전압이다.
이에 따라, 상기 제어부(130)는 상기 식 1을 통해 상기 인체 착용 장치(100)의 착용 상태를 검출할 수 있지만, 보다 정확하게 상기 착용 상태를 검출하기 위하여, 상기 광 누설량 및 광 반사량을 토대로 임계 전압을 결정하고, 그에 따라 상기 발광부(110)의 온 구간에서 수광부(120)로 입사되는 광의 세기와 발광부(110)의 오프 구간에서 수광부(120)로 입사되는 광의 세기가 상기 임계 값보다 큰 경우에 상기 인체 착용 장치(100)가 인체에 착용된 경우로 판단한다.
도 9는 본 발명의 제 1 실시 예에 따른 인체 착용 장치(100)의 동작 방법을 단계별로 설명하기 위한 흐름도이다.
도 9를 참조하면, 제어부(130)는 인체 착용 장치(100)의 모드가 착용 검출 모드인지, 아니면 인체 검출 모드인지 여부를 판단한다(100단계).
그리고, 상기 판단결과(100단계), 상기 인체 착용 장치(100)의 모드가 착용 검출 모드이면, 제어부(130)는 발광부(110)의 동작을 제어하기 위한 발광 제어 신호를 출력하고, 발광부(110)는 상기 발광 제어 신호에 따라 발광 동작(온 동작 및 오프 동작을 순차적으로 수행)을 수행한다(110단계).
제어부(130)는 상기 발광부(110)의 발광 동작에 따라 상기 수광부(120)로 입사되는 광에 대한 세기(수광 전압)을 모니터링한다(120단계).
이어서, 제어부(130)는 상기 발광부(110)의 온 구간에서 상기 수광부(120)로 입사되는 광의 세기에 대한 제 1 수광 전압(Von)과, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)로 입사되는 광의 세기에 대한 제 2 수광 전압(Voff)을 확인한다.
그리고, 상기 제어부(130)는 상기 제 1 수광 전압과 제 2 수광 전압의 차이 값을 검출하고, 상기 차이 값이 기설정된 임계 값보다 큰지 여부를 판단한다(140단계).
이어서, 제어부(130)는 상기 차이 값이 기설정된 임계 값보다 크면, 상기 인체 착용 장치(100)를 착용 상태로 검출하고, 그에 따라 인체 신호 검출 모드로 진입하도록 할 수 있다(150단계).
또한, 제어부(130)는 상기 차이 값이 상기 기설정된 임계 값보다 크지 않으면(작거나 같으면), 상기 인체 착용 장치(100)를 미착용 상태로 검출한다(160단계).
한편, 상기 판단결과(100단계), 상기 제어부(130)는 상기 인체 착용 장치(100)의 모드가 착용 검출 모드가 아니면 인체 신호 검출 모드인지 여부를 판단하고(170단계), 상기 인체 착용 장치(100)의 모드가 인체 신호 검출 모드이면 인체 신호 검출 동작을 수행한다(180단계).
한편, 상기와 같은 방법으로 인체 착용 장치(100)가 피검체에 착용된 상태임이 검출될 수 있지만, 상기 피검체가 인체인지 사물인지는 정확하게 검출되지 못할 수 있다.
도 10은 인체 착용 장치(100)가 사물에 접촉한 상태에서, 수광부로 입사되는 광에 대한 수광 전압의 변화를 보여주는 그래프이다.
상기 인체 착용 장치(100)가 사물에 접촉한 경우, 상기 수광부(120)에는 제 1 광(DC1) 및 제 2 광(DC2)에 따른 광이 입사된다. 즉, 상기 사물은 피부 조직이 존재하지 않기 때문에 상기 피부 조직에서 반사되는 광을 나타내는 제 3 광(DC3)은 수광부(120)로 입사되지 않는다.
도 10에 도시된 바와 같이, 상기 제 1 광(DC1)의 세기는, 상기 인체 착용 장치(100)가 피검체에 완전히 밀착한 상태(다시 말해서, 이격 거리가 0)에서 최소 값(0)을 가진다. 또한, 상기 제 1 광(DC1)은 상기 이격 거리가 증가할 수록 세기도 함께 증가하는 특성을 갖는다.
또한, 상기 제 2 광(DC2)은 상기 설명한 바와 같이, 피검체의 표면에 의해 반사되어, 상기 수광부(120)로 입사되는 광을 의미한다.
도 10에 도시된 바와 같이, 상기 제 2 광(DC2)의 세기는 상기 인체 착용 장치(100)와 피검체가 특정 간격만큼 이격된 상태에서 최대 값을 가지며, 상기 특정 간격에서 이격거리가 감소하거나 증가할 수록 감소하는 특성을 갖는다.
도 11 내지 도 13은 인체 착용 장치(100)가 인체가 아닌 사물에 접촉한 상황에서, 발광부(110) 및 수광부(120)의 조건별 상태를 보여주는 도면이다.
즉, 도 11은 인체 착용 장치(100)가 사물에 완전히 밀착된 상태로 착용된 경우에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
그리고, 도 11의 (a)는 주변 광이 존재하는 조건, 다시 말해서 낮이나 밝은 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다. 그리고, 도 6의 (b)는 주변 광이 존재하지 않는 조건, 다시 말해서, 밤이나 어두운 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다.
여기에서, 상기 인체 착용 장치(100)와 사물에 완전히 밀착된 상태, 다시 말해서 상기 인체 착용 장치(100)와 피검체 사이의 이격 거리가 0인 상태에서는, 상기 수광부(120)로 주변 광이나, 상기 피검체의 표면에서 반사되는 광은 입사되지 않는다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 특정 광이 입사되지 않는다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 광이 입사되지 않는다.
다시 말해서, 주변 광이 존재하는 낮이나 밝은 장소에서 상기 인체 착용 장치(100)가 피검체에 완전히 밀착한 상태에서, 상기 수광부(120)는 발광부(110)의 온 구간 및 오프 구간에서 광을 수신하지 않게 된다.
따라서, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기는 서로 동일한 값을 가진다.
도 11의 (b)도 상기 도 6의 (a)와 동일하게, 이에 따라, 상기 발광부(110)의 온 구간 및 오프 구간에서, 상기 수광부(120)에는 광이 입사되지 않는다.
따라서, 상기 어두운 장소에서도, 상기 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기에는 서로 동일한 값을 가진다.
한편, 이러한 조건은 상기 도 8의 (a) 및 (b)에서의 조건과 동일하며, 온 구간에서의 수광 전압과 오프 구간에서의 수광 전압이 서로 동일한 값을 가지며, 이에 따라 상기와 같이 인체 착용 장치(100)가 사물에 완전히 밀착한 상태에서는 상기 인체 착용 장치(100)가 인체에 미착용된 상태로 정확한 검출이 가능하다.
도 12는 인체 착용 장치(100)가 사물에서 약간 이격된 상태(제 1 거리만큼 이격된 상태)에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
즉, 도 12는 인체 착용 장치(100)가 사물에서 제 1 거리만큼 이격된 위치에 놓이게 되는 경우의 발광부(110)와 수광부(120)의 상태를 보여준다.
그리고, 도 12의 (a)는 주변 광이 존재하는 조건, 다시 말해서 낮이나 밝은 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다. 그리고, 도 12의 (b)는 주변 광이 존재하지 않는 조건, 다시 말해서, 밤이나 어두운 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다.
도 12의 (a)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 제 1 거리만큼 이격된 상태에서는, 상기 수광부(120)로 주변 광 및 상기 피검체의 표면에서 반사되는 광이 모두 입사된다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 주변 광에 따른 제 1 광(DC1) 및 상기 피부 표면에서 반사된 광에 따른 제 2 광(DC2)이 모두 입사되고, 그에 따라 상기 입사된 제 1 광(DC1) 및 제 2 광(DC2)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 제 2 광(DC)이 입사되지 않는다.
따라서, 상기 발광부(110)의 오프 구간에서, 상기 수광부(120)는 상기 주변광에 따른 제 1 광(DC1)만이 입사되고, 상기 제 1 광(DC1)에 따른 수광 전압이 검출된다.
다시 말해서, 주변 광이 존재하는 낮이나 밝은 장소에서 상기 인체 착용 장치(100)가 피검체(사물)로부터 제 1 거리만큼 이격된 상태에, 상기 수광부(120)는 발광부(110)의 온 구간에서 제 1 내지 제 2 광을 수신하게 되고, 상기 발광부(110)의 오프 구간에서 제 1 광만을 수신하게 된다.
따라서, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기에는 상기 제 2 광의 세기만큼 차이가 발생한다.
도 12의 (b)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체(사물)가 제 1 거리만큼 이격된 상태에서는, 상기 수광부(120)로 상기 피검체의 표면에서 반사되는 광만이 입사된다. 즉, 상기 조건은 주변 광이 존재하지 않는 조건이므로, 상기 수광부(120)로 주변광에 대응하는 제 1 광은 입사되지 않으며, 이에 따라 상기 수광부(120)에는 제 2 광만이 입사된다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 피검체의 표면에서 반사된 광에 따른 제 2 광(DC2)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 제 2 광(DC)도 입사되지 않는다.
따라서, 상기 발광부(110)의 오프 구간에서, 상기 수광부(120)는 상기 제 1 광 및 제 2 광을 모두 수신하지 않게 되며, 이에 따른 0의 값을 가지는 수광 전압이 검출된다.
다시 말해서, 주변 광이 존재하지 않는 밤이나 어두운 장소에서 상기 인체 착용 장치(100)가 피검체로부터 제 1 거리만큼 이격된 상태에, 상기 수광부(120)는 발광부(110)의 온 구간에서 제 2 광을 수신하게 되고, 상기 발광부(110)의 오프 구간에서는 제 1 및 제 2 광을 모두 수신하지 않게 된다.
따라서, 주변이 어두운 상황에서도, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기에는 상기 제 2 광의 세기만큼 차이가 발생한다.
이로 인해, 상기 인체 착용 장치(100)가 사물에 제 1 거리만큼 이격된 상태에서는 상기 온 구간에서의 수광 전압과 오프 구간에서의 수광 전압에는 제 2 광의 세기만큼 차이가 발생하며, 이에 따라 상기 식 1이나 식 2를 가지고는 상기 인체 착용 장치(100)가 사물이 아닌 인체에 착용된 상태인지를 정확하게 검출하지 못하게 된다.
도 13은 인체 착용 장치(100)가 사물에서 완전 이격된 상태(상기 제 1 거리보다 큰 제 2 거리만큼 이격된 상태)에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
즉, 도 13은 인체 착용 장치(100)가 사물과 접촉하지 않은 상황에서의 발광부(110)와 수광부(120)의 상태를 보여준다.
그리고, 도 13의 (a)는 주변 광이 존재하는 조건, 다시 말해서 낮이나 밝은 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다. 그리고, 도 13의 (b)는 주변 광이 존재하지 않는 조건, 다시 말해서, 밤이나 어두운 장소에서의 발광부(110) 및 수광부(120)의 상태를 보여준다.
도 13의 (a)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는, 상기 발광부(110)를 통해 발생한 광이 상기 사물의 표면에 의해 반사가 이루어지지 않게 된다.
이에 따라, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는 상기 수광부(120)로 주변 광만이 입사된다.
이에 따라, 상기 발광부(110)의 온 구간에서, 상기 수광부(120)에는 상기 주변 광에 따른 제 1 광(DC1)만이 입사되고, 그에 따라 상기 입사된 제 1 광(DC1)에 따른 수광 전압이 검출된다.
또한, 상기 발광부(110)의 오프 구간에서 상기 발광부(110)는 발광 동작을 수행하지 않게 되며, 이에 따라 상기 수광부(120)에는 상기 주변광에 따른 제 1 광(DC1)만이 입사된다.
따라서, 상기 발광부(110)의 오프 구간에서, 상기 수광부(120)는 상기 주변광에 따른 제 1 광(DC1)만이 입사되고, 상기 제 1 광(DC1)에 따른 수광 전압이 검출된다.
다시 말해서, 주변 광이 존재하는 낮이나 밝은 장소에서 상기 인체 착용 장치(100)가 피검체로부터 제 2 거리만큼 이격된 상태에, 상기 수광부(120)는 발광부(110)의 온 구간 및 오프 구간에서 모두 상기 제 1 광만을 수신하게 된다.
따라서, 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기는 동일한 값을 가진다.
또한, 도 13의 (b)를 참조하면, 발광부(110)는 제어부(130)의 펄스 신호에 따라 온 구간에서는 특정 발광 전압을 가지는 광을 발생하고, 오프 구간에서는 상기 광을 발생시키지 않는다.
이때, 상기 수광부(120)는 상기 발광부(110)의 온 구간 및 오프 구간에서 각각 광을 수신하게 된다.
여기에서, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는, 상기 발광부(110)를 통해 발생한 광이 상기 사물의 표면에 의해 반사가 이루어지지 않게 된다. 또한, 상기 도 13의 (b)는 주변 광도 존재하지 않는 조건이며, 이에 따라, 상기 인체 착용 장치(100)와 피검체가 제 2 거리만큼 이격된 상태에서는 상기 수광부(120)로 그 어떠한 광도 입사되지 않는다.
이에 따라, 상기 발광부(110)의 온 구간 및 오프 구간에서, 상기 수광부(120)에는 광이 입사되지 않으며, 이에 따른 0의 값을 가지는 수광 전압이 검출된다.
따라서, 상기 조건에서 발광부(110)의 온 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기와, 상기 발광부(110)의 오프 구간에서 상기 수광부(120)를 통해 수신되는 광의 세기는 0이라는 동일한 값을 가진다.
상기와 같이, 인체 착용 장치(100)가 사물과 제 1 거리만큼 이격된 상태에서는, 상기 온 구간에서의 제 1 수광 전압과, 오프 구간에서의 제 2 수광 전압에 차이가 발생하게 되며, 이에 따라 상기 제 1 수광 전압과 제 2 수광 전압의 차이만을 가지고서 상기 인체 착용 장치(100)가 인체에 착용되었는지를 정확하게 검출하지 못하게 된다.
따라서, 실시 예에서는, 상기 인체 착용 장치(100)의 상태가 착용 상태인 것으로 검출되면, 상기 인체 착용 장치(100)가 착용된 대상이 인체인지 아니면 사물인지를 검출하기 위한 추가 판단 과정을 수행한다.
이를 위해, 제어부(130)는 상기 발광부(110)와 수광부(120)의 동작에 따른 신호를 검출하고, 상기 검출된 신호를 분석하여 상기 대상이 인체인지 사물인지를 판단한다.
도 14는 본 발명의 실시 예에 의해 검출되는 신호를 보여주는 도면이다.
도 14에 도시된 바와 같이 제어부(130)는 상기 수광부(120)를 통해 수광된 수광 전압 중 온 구간에서의 수광 전압만을 연결한 광전용적맥파(PPG:Photoplethysmography) 원시 신호 파형을 검출한다.
그리고, 제어부(130)는 상기 PPG 원시 신호 파형을 2차 미분한 2차 미분 파형을 검출한다.
이어서, 제어부(130)는 상기 2차 미분 파형에 포함된 피크 신호만을 추출하여 피크 파형을 검출하고, 상기 검출한 피크 파형 내에서 피크 신호들간의 펄스 간격(HR: HEART RATE)을 검출한다.
이때, 상기 인체 착용 장치(100)가 인체가 착용된 상태라면, 상기 펄스 간격은 30~240bpm(beat per minute) 범위 내에 존재하게 되며, 이에 따라 상기 제어부(130)는 상기 펄스 간격이 30~240bpm 범위 내에 존재하는지 여부를 판단한다.
*그리고, 상기 제어부(130)는 상기 펄스 간격이 30~240bpm 범위 내에 존재하면, 상기 인체 착용 장치(100)가 인체에 착용되었음을 감지하고, 상기 펄스 간격이 30~240bpm 범위를 벗어난 경우에는 상기 인체 착용 장치(100)가 사물에 접촉되어 있는 것으로 판단한다.
상기와 같이 본 발명에 따른 실시 예에 의하면, 낮이나 조명에 의한 밝은 장소 및 밤이나 어두운 장소에 상관 없이 인체 착용 장치가 인체에 착용되었는지 여부를 정확하게 검출할 수 있다.
또한, 본 발명에 따른 실시 예에 의하면, 인체 착용 장치가 인체가 아닌 사물에 접촉되어 있을 때를 정확하게 구분하여, 상기 인체 착용 장치가 사물에 접촉되었을때 발생할 수 있는 다양한 오작동을 방지할 수 있다.
도 15는 본 발명의 실시 예에 따른 인체 착용 장치(100)의 착용 대상물을 검출하는 방법을 단계별로 설명하기 위한 흐름도이다.
도 15를 참조하면, 제어부(130)는 상기 수광부(120)의 수광 전압 중 발광부(110)의 온 구간에 대응하는 수광 전압만을 연결하여 PPG 원시 신호 파형을 검출한다(200단계).
이후, 제어부(130)는 상기 검출한 PPG 원시 신호 파형을 2차 미분하여 2차 미분 신호를 검출한다(210단계).
또한, 제어부(130)는 상기 검출한 2차 미분 신호로부터 피크 신호만을 검출한다(220단계).
그리고, 제어부(130)는 상기 검출한 피크 신호를 토대로 피크 신호들 사이의 간격(HR)이 30~240bpm 범위 내에 속하는지 여부를 판단한다(230단계).
이후, 제어부(130)는 상기 피크 신호들 사이의 펄스 간격이 30~240bpm 범위 내에 속하면, 상기 인체 착용 장치(100)가 현재 인체에 착용된 것으로 판단하고(240단계), 상기 펄스 간격이 30~240bpm 범위를 벗어나면 상기 인체 착용 장치(100)가 현재 사물에 착용(또는 접촉)된 것으로 판단한다(250단계).
상기와 같이 본 발명에 따른 실시 예에 의하면, 낮이나 조명에 의한 밝은 장소 및 밤이나 어두운 장소에 상관 없이 인체 착용 장치가 인체에 착용되었는지 여부를 정확하게 검출할 수 있다.
또한, 본 발명에 따른 실시 예에 의하면, 인체 착용 장치가 인체가 아닌 사물에 접촉되어 있을 때를 정확하게 구분하여, 상기 인체 착용 장치가 사물에 접촉되었을때 발생할 수 있는 다양한 오작동을 방지할 수 있다.
도 16은 본 발명의 제 2 실시 예에 따른 인체 착용 장치(200)의 구성을 보여주는 도면이다.
도 16을 참조하면, 인체 착용 장치(200)는 발광부(210), 수광부(220) 및 제어부(230)를 포함한다.
발광부(210)는 제 1 발광부 및 제 2 발광부를 포함한다.
제 1 발광부는, 제어부(230)를 통해 출력되는 디지털 신호를 아날로그 신호로 변환하는 제 1 디지털-아날로그 변환기(211), 상기 제 1 디지털-아날로그 변환기(211)를 통해 변환된 신호를 1차 증폭하는 제 1 증폭기(212), 상기 제 1 증폭기(212)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(213) 및 상기 2차 증폭된 신호를 토대로 광을 발생하는 제 1 발광 소자(214)를 포함한다.
여기에서, 상기 제 1 디지털-아날로그 변환기(211)는 발광 소자(214)의 전류를 설정해주기 위하여, 상기 디지털 신호를 아날로그 신호로 변환한다.
그리고, 제 1 및 2 증폭기(212, 213)은 상기 발광 소자(214)의 구동에 필요한 교류 전류를 상기 발광 소자(214)로 공급하기 위한 신호 증폭부이다.
그리고, 상기 제 1 발광 소자(214)는 발광 다이오드(LED: Light Emitting Diode)로 구현 가능하다.
제 2 발광부는, 상기 제 1 발광부와 동일한 구성을 포함하며, 바람직하게 제 2 디지털-아날로그 변환기(215), 상기 제 2 디지털-아날로그 변환기(215)를 통해 변환된 신호를 1차 증폭하는 제 1 증폭기(216), 상기 제 1 증폭기(216)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(217) 및 상기 2차 증폭된 신호를 토대로 광을 발생하는 제 2 발광 소자(218)를 포함한다.
즉, 제 2 실시 예에 따른 인체 착용 장치(200)는 상기 제 1 실시 예에 따른 인체 착용 장치(100)와 비교해볼 때, 상기 발광부가 복수 개로 구성된 부분이 상이하다.
다시 말해서, 상기 제 1 실시 예에 따른 인체 착용 장치(100)는 특정 파장대의 광을 발생시키는 1개의 발광부만을 포함한다.
그리고, 상기 제 2 실시 예에 따른 인체 착용 장치(200)는 제 1 파장의 광을 발생하는 제 1 발광부와, 상기 파장과 다른 제 2 파장의 광을 발생하는 제 2 발광부를 포함한다.
즉, 제 1 발광부를 구성하는 제 1 발광 소자(214)는 660nm 파장의 광을 발생하는 레드 발광 다이오드일 수 있고, 제 2 발광부를 구성하는 제 2 발광 소자(218)는 940nm 파장의 광을 발생하는 적외선 발광 다이오드일 수 있다.
다시 말해서, 적외선 파장과 레드 파장에 따른 광은 혈중 헤모글로빈의 산소 포함 여부에 따라 서로 다른 흡광 특성을 가지게 된다.
따라서, 제어부(230)는 상기 제 1 발광부의 동작에 따른 수광부(220)의 수광 전압 및 제 2 발광부의 동작에 따른 수광부(220)의 수광 전압을 토대로 혈중 산소 포화도를 측정한다.
이때, 제 1 발광부와 제 2 발광부의 발광 동작은 상기 제어부(230)를 통해 출력되는 펄스 신호에 의해 이루어진다.
상기 펄스 신호는, 제 2 발광부를 온시키는 제 1 구간과, 제 1 발광부 및 제 2 발광부를 모두 오프시키는 제 2 구간과, 제 1 발광부를 온 시키는 제 3 구간과, 제 1 발광부 및 제 2 발광부를 모두 오프시키는 제 4 구간의 반복으로 이루어진다.
따라서, 제어부(230)는 상기 제 1 발광부의 동작에 따른 수광 전압 및 제 2 발광부의 동작에 따른 수광 전압 중 적어도 어느 하나의 수광 전압을 이용하여, 상기 제 1 실시 예에서 설명한 바와 같은 착용 상태 검출 동작을 수행할 수 있다.
또한, 수광부(220)는 상기 발광부(210)의 발광 동작에 따라 피검체에서 반사된 광을 포함한 입사 광을 수신한다.
수광부(220)는 상기 입사되는 광을 수신하는 수광 소자(221)와, 상기 수광 소자(221)를 통해 입사된 광 신호를 1차 증폭하는 제 1 증폭기(222), 상기 제 1 증폭기(222)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(223), 상기 제 2 증폭기(223)를 통해 2차 증폭된 신호를 디지털 신호로 변환하는 아날로그-디지털 변환기(224)를 포함한다.
수광 소자(221)는 외부로부터 입사되는 광을 수신한다. 이때, 수광 소자(221)는 포토 다이오드(PD)나 트랜지스터(TR)로 구현 가능하다.
또한, 상기 제 1 증폭기(222)는 상기 수광 소자(221)에서 검출되는 미약한 광 전류를 전압으로 변환시켜 증폭하며, 이는 TIA(Transimpedance Amplifier)일 수 있다.
또한, 제 2 증폭기(223)는 상기 제 1 증폭기(222)를 통해 증폭된 전압을 상기 아날로그-디지털 변환기(224)에서 처리 가능하도록 충분한 크기의 전압으로 증폭시킨다.
또한, 아날로그-디지털 변환기(224)는 지정된 샘플링 레이트(SAMPLING RATE)에 따라 아날로그 전압을 이에 상응하는 디지털 전압으로 변환해준다.
제어부(230)는 발광부(210) 및 수광부(220)의 동작을 제어한다.
이에 대해서는, 상기 제 1 실시 예와 중복되는 부분은 상세한 설명을 생략하기로 한다.
일단, 제어부(230)는 착용 상태 검출 모드로 진입하는 경우, 상기 제 1 발광부 및 제 2 발광부 중 어느 하나의 발광부를 동작시키며, 이에 따라 상기 제 1 실시 예에서 설명한 바와 같은 착용 상태를 검출한다.
그리고, 착용 상태로 검출된 경우, 상기 제어부(230)는 상기 착용 대상이 인체인지 사물인지를 판단하는 동작을 수행하며, 상기 동작도 상기 제 1 실시 예에서 설명한 바와 동일하다.
이때, 상기 착용 대상을 판단하기 위해 사용되는 발광부는, 상기 심박수를 측정하기 위한 제 1 발광부임이 바람직하다.
그리고, 제어부(230)는 상기 인체 착용 장치(200)가 인체에 착용된 것으로 판단되면, 제 1 발광부 및 제 2 발광부의 동작을 제어하여, 주기적으로 심박수 및 혈중 산소 포화도가 검출되도록 한다.
또한, 제어부(230)는 상기 검출된 심박수 및 혈중 산소 포화도를 포함하는 인체 상태 정보가 디스플레이부(240)에 디스플레이되도록 한다.
도 17은 본 발명의 제 2 실시 예에 따른 인체 착용 장치의 동작 방법을 단계별로 설명하기 위한 흐름도이다.
도 17을 참조하면, 제어부(230)는 복수의 발광부의 순차적 발광을 위한 펄스 신호를 출력한다(300단계).
이후, 제어부(230)는 상기 펄스 신호에 의해 순차적으로 발광하는 복수의 발광부 중 적어도 어느 하나의 발광부에 의해 발생한 광에 따른 수광부의 수광 전압을 확인한다(310단계).
이어서, 제어부(230)는 상기 확인한 수광 전압을 발광부의 발광 온 구간에서의 제 1 수광 전압과, 발광부의 발광 오프 구간에서의 제 2 수광 전압을 각각 확인한다(320단계).
그리고, 제어부(230)는 상기 제 1 수광 전압과 제 2 수광 전압의 차이 값을 확인하고, 상기 확인한 차이 값이 기설정된 임계 값(Vth)보다 큰지 여부를 판단한다(330단계).
이어서, 제어부(230)는 상기 차이 값이 기설정된 임계 값보다 크면, 상기 인체 착용 장치의 상태를 착용 상태로 판단하고, 그에 따라 인체 신호 검출 모드로 진입한다(340단계).
또한, 제어부(230)는 상기 차이 값이 기설정된 임계 값보다 크지 않으면, 상기 인체 착용 장치의 상태를 미착용 상태로 판단한다(350단계).
도 18은 본 발명의 제 3 실시 예에 따른 인체 착용 장치(300)의 구성을 보여주는 도면이다.
도 18을 참조하면, 인체 착용 장치(300)는 발광부(310), 수광부(320) 및 제어부(330)를 포함한다.
여기에서, 상기 인체 착용 장치(300)는 발광부 및 수광부가 복수 개로 구성된 것을 제외하면, 제 1 실시 예에 따른 인체 착용 장치(100)와 동일하다.
즉, 제 1 실시 예에서의 인체 착용 장치(100)는 하나의 발광부 및 수광부를 이용하여 인체 신호 검출 모드에서 인체 신호를 검출하고, 또한 착용 상태 검출 모드에서 착용 상태를 검출하였다.
*그러나, 제 3 실시 예에서는, 인체 신호를 검출하는 발광부 및 수광부와, 착용 상태를 검출하는 발광부와 수광부를 각각 별개로 구성시킨다.
이에 따라, 제 3 실시 예에 따른 인체 착용 장치(300)는 주기적으로 인체 신호를 검출하면서, 착용 상태도 검출할 수 있도록 한다.
제 1 발광부는, 제어부(330)를 통해 출력되는 디지털 신호를 아날로그 신호로 변환하는 제 1 디지털-아날로그 변환기(311), 상기 제 1 디지털-아날로그 변환기(311)를 통해 변환된 신호를 1차 증폭하는 제 1 증폭기(312), 상기 제 1 증폭기(312)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(313) 및 상기 2차 증폭된 신호를 토대로 광을 발생하는 제 1 발광 소자(314)를 포함한다.
여기에서, 상기 제 1 디지털-아날로그 변환기(311)는 제 1 발광 소자(314)의 전류를 설정해주기 위하여, 상기 디지털 신호를 아날로그 신호로 변환한다.
그리고, 제 1 및 2 증폭기(312, 313)은 상기 발광 소자(314)의 구동에 필요한 교류 전류를 상기 제 1 발광 소자(314)로 공급하기 위한 신호 증폭부이다.
그리고, 상기 제 1 발광 소자(314)는 발광 다이오드(LED: Light Emitting Diode)로 구현 가능하다.
제 2 발광부는, 상기 제 1 발광부와 동일한 구성을 포함하며, 바람직하게 제 2 디지털-아날로그 변환기(315), 상기 제 2 디지털-아날로그 변환기(315)를 통해 변환된 신호를 1차 증폭하는 제 1 증폭기(316), 상기 제 1 증폭기(316)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(317) 및 상기 2차 증폭된 신호를 토대로 광을 발생하는 제 2 발광 소자(318)를 포함한다.
또한, 상기 제 1 발광 소자(214) 및 제 2 발광 소자(218)는 서로 동일한 파장의 광을 발생시킬 수 있으며, 이와 다르게 서로 다른 파장의 광을 발생시킬 수 있다.
또한, 수광부(320)는 상기 제 1 발광부의 동작에 따라 입사되는 광을 수신하는 제 1 수광부와, 제 2 발광부의 동작에 따라 입사되는 광을 수신하는 제 2 수광부를 포함한다.
제 1 수광부는 상기 입사되는 광을 수신하는 제 1 수광 소자(321)와, 상기 수광 소자(321)를 통해 입사된 광 신호를 1차 증폭하는 제 1 증폭기(322), 상기 제 1 증폭기(322)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(323), 상기 제 2 증폭기(323)를 통해 2차 증폭된 신호를 디지털 신호로 변환하는 아날로그-디지털 변환기(324)를 포함한다.
제 1 수광 소자(321)는 외부로부터 입사되는 광을 수신한다. 이때, 제 1 수광 소자(321)는 포토 다이오드(PD)나 트랜지스터(TR)로 구현 가능하다.
또한, 상기 제 1 증폭기(322)는 상기 제 1 수광 소자(321)에서 검출되는 미약한 광 전류를 전압으로 변환시켜 증폭하며, 이는 TIA(Transimpedance Amplifier)일 수 있다.
또한, 제 2 증폭기(323)는 상기 제 1 증폭기(322)를 통해 증폭된 전압을 상기 아날로그-디지털 변환기(324)에서 처리 가능하도록 충분한 크기의 전압으로 증폭시킨다.
또한, 아날로그-디지털 변환기(324)는 지정된 샘플링 레이트(SAMPLING RATE)에 따라 아날로그 전압을 이에 상응하는 디지털 전압으로 변환해준다.
또한, 제 2 수광부는 상기 입사되는 광을 수신하는 제 2 수광 소자(325)와, 상기 제 2 수광 소자(325)를 통해 입사된 광 신호를 1차 증폭하는 제 1 증폭기(326), 상기 제 1 증폭기(326)를 통해 1차 증폭된 신호를 2차 증폭하는 제 2 증폭기(327), 상기 제 2 증폭기(327)를 통해 2차 증폭된 신호를 디지털 신호로 변환하는 아날로그-디지털 변환기(328)를 포함한다.
제어부(330)는 상기 제 1 실시 예에 따른 제어부(130)와 실질적으로 동일한 동작을 수행한다.
다만, 제어부(330)는 복수 개로 구성된 발광부 및 수광부에 대하여, 착용 상태 검출 모드에서, 제 1 발광부 및 제 1 수광부의 동작에 따라 착용 상태를 검출한다.
또한, 제어부(330)는 인체 신호 검출 모드에서, 제 2 발광부 및 제 2 수광부의 동작에 따라 인체 상태(심박수 등)를 검출한다.
제 3 실시 예에 따른 인체 착용 장치는, 수시로 제 1 발광부를 이용하여 인체 상태 검출과는 무관하게 착용 상태를 검출할 수 있다.
또한, 이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어져서는 안 될 것이다.
Claims (20)
- 인체 착용 장치에 있어서,외부로 광을 발생하는 발광부;외부로부터 입사되는 광을 수신하는 수광부; 및상기 발광부의 동작을 제어하고, 발광부의 동작에 따라 상기 수광부로 입사되는 광의 세기를 검출하고, 상기 검출한 광의 세기를 토대로 상기 인체 착용 장치가 특정 대상물에 착용되었는지 여부를 판단하는 제어부를 포함하며,상기 제어부는,상기 발광부의 온 구간에서 상기 수광부로 입사되는 광의 세기와, 상기 발광부의 오프 구간에서 상기 수광부로 입사되는 광의 세기의 차이 값을 이용하여 상기 착용 여부를 판단하는인체 착용 장치.
- 제 1 항에 있어서,상기 제어부는,상기 차이 값이 0이면, 상기 인체 착용 장치가 미착용된 것으로 판단하고,상기 차이 값이 0보다 크면, 상기 인체 착용 장치가 특정 대상물에 착용된 것으로 판단하는인체 착용 장치.
- 제 1항에 있어서,상기 제어부는,상기 차이 값이 기설정된 기준 값보다 크면, 상기 인체 착용 장치가 특정 대상물에 착용된 것으로 판단하고,상기 차이 값이 기 설정된 기준 값보다 작거나 같으면, 상기 인체 착용 장치가 미착용된 것으로 판단하는인체 착용 장치.
- 제 3항에 있어서,상기 기준 값은,상기 발광부에서 상기 수광부로의 직접적인 광 누설량 및 외부 환경에 의한 광 반사량 중 적어도 어느 하나에 의해 결정되는인체 착용 장치.
- 제 1항에 있어서,상기 발광부는,제 1 파장의 광을 발생하는 제 1 발광부와,상기 제 1 파장과 다른 제 2 파장의 광을 발생하는 제 2 발광부를 포함하며,상기 제어부는,상기 제 1 발광부 및 제 2 발광부 중 어느 하나의 발광부를 이용하여 상기 착용 여부를 판단하며,상기 제 1 발광부 및 제 2 발광부를 모두 이용하여, 심박수 및 혈중 산소 포화도를 검출하는인체 착용 장치.
- 제 1항에 있어서,상기 발광부는,제 1 광을 발생하는 제 1 발광부와,제 2 광을 발생하는 제 2 발광부를 포함하며,상기 수광부는,상기 제 1 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 1 수광부와,상기 제 2 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 2 수광부를 포함하는인체 착용 장치.
- 제 6항에 있어서,상기 제 1 발광부 및 제 1 수광부는,상기 제어부의 제어신호에 따라 기설정된 주기마다 동작하여 상기 인체 착용 장치의 착용 여부를 판단하기 위한 발광 및 수광 동작을 수행하며,상기 제 2 발광부 및 제 2 수광부는,상기 제어부의 제어신호에 따라 상기 인체 착용 장치가 착용된 인체에 대한 인체 신호를 검출하기 위한 발광 및 수광 동작을 수행하는인체 착용 장치.
- 제 2항 또는 제 3항에 있어서,상기 제어부는,상기 인체 착용 장치의 상태가 특정 대상물에 착용된 것으로 판단되면, 상기 발광부의 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 토대로 상기 특정 대상물이 인체인지 여부를 판단하는인체 착용 장치.
- 제 8항에 있어서,상기 제어부는,상기 발광부의 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 이용하여 맥파 원시 신호 파형을 검출하고,상기 검출한 맥파 원시 신호 파형을 2차 미분하여, 2차 미분 신호 파형을 생성하며,상기 생성한 2차 미분 신호 파형에서 피크 신호를 검출하여 피크 신호 파형을 생성하며,상기 생성한 피크 신호 파형에 포함된 피크 신호들의 펄스 간격을 토대로 상기 특정 대상물이 인체인지 여부를 판단하는인체 착용 장치.
- 제 9항에 있어서,상기 제어부는,상기 펄스 간격이 30~240bpm 범위 내에 속하면, 상기 인체 착용 장치가 인체에 착용된 것으로 판단하고,상기 펄스 간격이 상기 30~240bpm 범위를 벗어나면, 상기 인체 착용 장치가 사물에 착용된 것으로 판단하는인체 착용 장치.
- 제 10항에 있어서,상기 제어부의 제어신호에 따라 상기 인체 착용 장치의 착용 상태 정보 및 상기 인체 착용 장치가 착용된 인체에서 검출한 인체 검출 신호 중 적어도 하나를 디스플레이하는 디스플레이부를 포함하는인체 착용 장치.
- 인체 착용 장치의 동작 방법에 있어서,온 구간 및 오프 구간을 포함하는 펄스 신호를 출력하는 단계;상기 펄스 신호에 따라 발광부가 동작하는 단계;상기 온 구간에서 수광부로 입사되는 광의 세기와, 상기 오프 구간에서 수광부로 입사되는 광의 세기를 검출하는 단계;상기 온 구간에서의 광의 세기와 오프 구간에서의 광의 세기의 차이 값을 검출하는 단계; 및상기 차이 값을 토대로 상기 인체 착용 장치가 특정 대상물에 착용되었는지 여부를 판단하는 단계를 포함하는인체 착용 장치의 동작 방법.
- 제 12 항에 있어서,상기 특정 대상물에 착용되었는지 여부를 판단하는 단계는,상기 차이 값이 0이면, 상기 인체 착용 장치가 미착용된 것으로 판단하는 단계와,상기 차이 값이 0보다 크면, 상기 인체 착용 장치가 특정 대상물에 착용된 것으로 판단하는 단계를 포함하는인체 착용 장치의 동작 방법.
- 제 12항에 있어서,상기 대상물에 착용되었는지 여부를 판단하는 단계는,상기 차이 값이 기설정된 기준 값보다 크면, 상기 인체 착용 장치가 특정 대상물에 착용된 것으로 판단하는 단계와,상기 차이 값이 기 설정된 기준 값보다 작거나 같으면, 상기 인체 착용 장치가 미착용된 것으로 판단하는 단계를 포함하는인체 착용 장치의 동작 방법.
- 제 14항에 있어서,상기 기준 값은,상기 발광부에서 상기 수광부로의 직접적인 광 누설량 및 외부 환경에 의한 광 반사량 중 적어도 어느 하나에 의해 결정되는인체 착용 장치의 동작 방법.
- 제 12항에 있어서,상기 발광부는,제 1 파장의 광을 발생하는 제 1 발광부와,상기 제 1 파장과 다른 제 2 파장의 광을 발생하는 제 2 발광부를 포함하며,상기 착용 여부 판단은,상기 제 1 발광부 및 제 2 발광부 중 어느 하나의 발광부의 발광에 의해 이루어지는인체 착용 장치의 동작 방법.
- 제 12항에 있어서,상기 발광부는,제 1 광을 발생하는 제 1 발광부와,제 2 광을 발생하는 제 2 발광부를 포함하며,상기 수광부는,상기 제 1 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 1 수광부와,상기 제 2 발광부의 동작에 따라 외부로부터 입사되는 광을 수신하는 제 2 수광부를 포함하며,상기 착용 여부 판단은,상기 제 1 발광부 및 제 1 수광부의 동작에 의해 이루어지는인체 착용 장치의 동작 방법.
- 제 13항 또는 제 14항에 있어서,상기 인체 착용 장치의 상태가 특정 대상물에 착용된 것으로 판단되면, 상기 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 토대로 상기 인체 착용 장치가 착용된 특정 대상물이 인체인지 여부를 판단하는 단계를 더 포함하는인체 착용 장치의 동작 방법.
- 제 18항에 있어서,상기 인체인지 여부를 판단하는 단계는,상기 발광부의 온 구간에서 상기 수광부를 통해 수광되는 광의 세기를 이용하여 맥파 원시 신호 파형을 검출하는 단계와,상기 검출한 맥파 원시 신호 파형을 2차 미분하여, 2차 미분 신호 파형을 생성하는 단계와,상기 생성한 2차 미분 신호 파형에서 피크 신호를 검출하여 피크 신호 파형을 생성하는 단계와,상기 생성한 피크 신호 파형에 포함된 피크 신호들의 펄스 간격을 토대로 상기 인체인지 여부를 판단하는 단계를 포함하는인체 착용 장치의 동작 방법.
- 제 19항에 있어서,상기 인체인지 여부를 판단하는 단계는,상기 펄스 간격이 30~240bpm 범위 내에 속하면, 상기 인체 착용 장치가 인체에 착용된 것으로 판단하는 단계와,상기 펄스 간격이 상기 30~240bpm 범위를 벗어나면, 상기 인체 착용 장치가 사물에 착용된 것으로 판단하는 단계를 포함하는인체 착용 장치의 동작 방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16780275.0A EP3284398B1 (en) | 2015-04-14 | 2016-04-12 | Human body wearable device and operation method thereof |
US15/566,299 US11076769B2 (en) | 2015-04-14 | 2016-04-12 | Human body wearable device and operation method thereof |
CN201680028186.9A CN107635456B (zh) | 2015-04-14 | 2016-04-12 | 人体可穿戴设备及其操作方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020150052742A KR102415906B1 (ko) | 2015-04-14 | 2015-04-14 | 인체 착용 장치 및 이의 동작 방법 |
KR10-2015-0052742 | 2015-04-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167552A1 true WO2016167552A1 (ko) | 2016-10-20 |
Family
ID=57126017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2016/003859 WO2016167552A1 (ko) | 2015-04-14 | 2016-04-12 | 인체 착용 장치 및 이의 동작 방법 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11076769B2 (ko) |
EP (1) | EP3284398B1 (ko) |
KR (1) | KR102415906B1 (ko) |
CN (1) | CN107635456B (ko) |
WO (1) | WO2016167552A1 (ko) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107820410A (zh) * | 2017-09-22 | 2018-03-20 | 深圳市汇顶科技股份有限公司 | 可穿戴设备的佩戴状态检测方法、装置和可穿戴设备 |
CN108337903A (zh) * | 2018-01-24 | 2018-07-27 | 深圳市汇顶科技股份有限公司 | 一种佩戴状态的检测方法及其检测模块、可穿戴设备 |
CN110418606A (zh) * | 2017-03-30 | 2019-11-05 | 阿尔卑斯阿尔派株式会社 | 生物体信息测定装置 |
CN111134648A (zh) * | 2018-11-01 | 2020-05-12 | 华为终端有限公司 | 心率检测方法及电子设备 |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102680468B1 (ko) * | 2016-11-07 | 2024-07-03 | 삼성전자주식회사 | 분광기 및 분광기의 동작 방법 |
KR102408028B1 (ko) * | 2017-09-06 | 2022-06-13 | 삼성전자 주식회사 | 착용 상태에 기반한 생체 정보 획득 방법 및 그 전자 장치 |
KR102511513B1 (ko) | 2017-12-01 | 2023-03-20 | 삼성전자주식회사 | 복수의 센서를 이용한 착용 감지 방법 및 이를 구현한 전자 장치 |
US12066702B1 (en) | 2018-09-25 | 2024-08-20 | Apple Inc. | Systems and methods for distinguishing between a user and an object |
CN111176422B (zh) * | 2018-11-09 | 2023-08-01 | 奇酷互联网络科技(深圳)有限公司 | 智能穿戴设备及其操作方法、计算机可读存储介质 |
CN111493847A (zh) * | 2019-01-31 | 2020-08-07 | 深圳市爱都科技有限公司 | 一种人体生理参数监测组件和穿戴设备 |
CN110151158A (zh) * | 2019-06-21 | 2019-08-23 | 深圳市奋达智能技术有限公司 | 一种低功耗动态和静态连续心率的测量方法及装置 |
US11857298B1 (en) | 2019-09-06 | 2024-01-02 | Apple Inc. | Devices having matter differentiation detectors |
US11717197B2 (en) | 2019-09-27 | 2023-08-08 | Apple Inc. | Physiological monitoring system for measuring oxygen saturation |
CN110584632A (zh) * | 2019-10-21 | 2019-12-20 | 深圳市汇顶科技股份有限公司 | 佩戴检测方法、装置、芯片、设备及存储介质 |
CN111123385B (zh) * | 2019-11-11 | 2021-03-19 | 广州安协科技股份有限公司 | 一种带有自学习功能的漫反射式物体检测方法及装置 |
WO2021165050A1 (en) * | 2020-02-17 | 2021-08-26 | Koninklijke Philips N.V. | System to secure health safety during charging of health wearable |
US11573351B2 (en) | 2020-03-06 | 2023-02-07 | Apple, Inc. | Optical sensor having a magnetic optical barrier |
US11723563B1 (en) | 2020-09-11 | 2023-08-15 | Apple Inc. | Correcting for emitted light wavelength variation in blood-oxygen saturation measurements at wearable electronic device |
US12089931B1 (en) | 2020-09-11 | 2024-09-17 | Apple Inc. | Optical sensor for skin-contact detection and physiological parameter measurement at wearable electronic device |
US12074244B2 (en) | 2020-09-14 | 2024-08-27 | Apple Inc. | Optical sensor package with magnetic component for device attachment |
WO2022094742A1 (zh) | 2020-11-03 | 2022-05-12 | 深圳市汇顶科技股份有限公司 | 佩戴状态检测方法、装置以及可穿戴设备 |
CN115105067A (zh) * | 2021-03-19 | 2022-09-27 | 成都鼎桥通信技术有限公司 | 血氧饱和度的测量方法、装置、可穿戴设备及介质 |
WO2023158043A1 (en) * | 2022-02-16 | 2023-08-24 | Samsung Electronics Co., Ltd. | Method and device for measuring heart rate |
WO2023180205A1 (en) * | 2022-03-21 | 2023-09-28 | Ams-Osram Ag | Proximity sensing system, ear-mountable playback device and proximity sensing method |
CN116007669B (zh) * | 2023-01-03 | 2024-06-18 | 芯海科技(深圳)股份有限公司 | 佩戴状态检测的方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101000467B1 (ko) * | 2010-01-19 | 2010-12-14 | 주식회사 제이유에이치 | 손목 착용형 맥박 측정 장치 및 그 제어 방법 |
US20130005310A1 (en) * | 2011-06-29 | 2013-01-03 | Lg Electronics Inc. | Mobile terminal and method of measuring bioelectric signals thereof |
KR20130043486A (ko) * | 2011-10-20 | 2013-04-30 | 어보브반도체 주식회사 | 근접센싱 방법 및 그 장치 |
US20140142403A1 (en) * | 2012-06-22 | 2014-05-22 | Fitbit, Inc. | Biometric monitoring device with heart rate measurement activated by a single user-gesture |
KR20150009032A (ko) * | 2013-07-09 | 2015-01-26 | 엘지전자 주식회사 | 이동 단말기 및 이의 제어방법 |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5421329A (en) | 1994-04-01 | 1995-06-06 | Nellcor, Inc. | Pulse oximeter sensor optimized for low saturation |
KR100537503B1 (ko) | 2002-12-31 | 2005-12-19 | 삼성전자주식회사 | 공간형정보입력장치 구성 방법, 재구성 방법, 착용인식방법 및그 장치 |
EP1880666B1 (fr) * | 2006-07-21 | 2009-07-01 | ETA SA Manufacture Horlogère Suisse | Pulsomètre portable au poignet et procédé de commande associé |
US8419649B2 (en) * | 2007-06-12 | 2013-04-16 | Sotera Wireless, Inc. | Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms |
KR101218200B1 (ko) | 2010-03-18 | 2013-01-03 | (주)락싸 | 인체 장착형 센서셋 및 그 동작 방법 |
US20120150052A1 (en) | 2010-12-13 | 2012-06-14 | James Buchheim | Heart rate monitor |
TWI475193B (zh) * | 2011-11-18 | 2015-03-01 | Pixart Imaging Inc | 光學測距系統及其運作方法 |
CN103156591A (zh) | 2011-12-13 | 2013-06-19 | 史考契工业公司 | 心率监测器 |
GB201203005D0 (en) | 2012-02-22 | 2012-04-04 | Polyphotonix Ltd | Medical apparatus and method |
US9005129B2 (en) * | 2012-06-22 | 2015-04-14 | Fitbit, Inc. | Wearable heart rate monitor |
EP2892421A1 (en) * | 2012-09-04 | 2015-07-15 | Whoop, Inc. | Systems, devices and methods for continuous heart rate monitoring and interpretation |
CN104207755B (zh) * | 2013-06-03 | 2018-06-29 | 飞比特公司 | 可佩戴心率监视器 |
CN105380635A (zh) * | 2013-06-03 | 2016-03-09 | 飞比特公司 | 心率数据收集 |
US10602981B2 (en) * | 2014-05-30 | 2020-03-31 | Microsoft Technology Licensing, Llc | Optical pressure sensor |
US20150374240A1 (en) * | 2014-06-26 | 2015-12-31 | Salutron, Inc. | Heart Rate Inference Based On Accelerometer And Cardiac Model |
US9442523B2 (en) * | 2014-07-25 | 2016-09-13 | Salutron, Inc. | User-wearable devices with power conserving features |
US9794653B2 (en) * | 2014-09-27 | 2017-10-17 | Valencell, Inc. | Methods and apparatus for improving signal quality in wearable biometric monitoring devices |
-
2015
- 2015-04-14 KR KR1020150052742A patent/KR102415906B1/ko active IP Right Grant
-
2016
- 2016-04-12 CN CN201680028186.9A patent/CN107635456B/zh active Active
- 2016-04-12 US US15/566,299 patent/US11076769B2/en active Active
- 2016-04-12 WO PCT/KR2016/003859 patent/WO2016167552A1/ko active Application Filing
- 2016-04-12 EP EP16780275.0A patent/EP3284398B1/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101000467B1 (ko) * | 2010-01-19 | 2010-12-14 | 주식회사 제이유에이치 | 손목 착용형 맥박 측정 장치 및 그 제어 방법 |
US20130005310A1 (en) * | 2011-06-29 | 2013-01-03 | Lg Electronics Inc. | Mobile terminal and method of measuring bioelectric signals thereof |
KR20130043486A (ko) * | 2011-10-20 | 2013-04-30 | 어보브반도체 주식회사 | 근접센싱 방법 및 그 장치 |
US20140142403A1 (en) * | 2012-06-22 | 2014-05-22 | Fitbit, Inc. | Biometric monitoring device with heart rate measurement activated by a single user-gesture |
KR20150009032A (ko) * | 2013-07-09 | 2015-01-26 | 엘지전자 주식회사 | 이동 단말기 및 이의 제어방법 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3284398A4 * |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110418606A (zh) * | 2017-03-30 | 2019-11-05 | 阿尔卑斯阿尔派株式会社 | 生物体信息测定装置 |
CN107820410A (zh) * | 2017-09-22 | 2018-03-20 | 深圳市汇顶科技股份有限公司 | 可穿戴设备的佩戴状态检测方法、装置和可穿戴设备 |
WO2019056293A1 (zh) * | 2017-09-22 | 2019-03-28 | 深圳市汇顶科技股份有限公司 | 可穿戴设备的佩戴状态检测方法、装置和可穿戴设备 |
CN107820410B (zh) * | 2017-09-22 | 2019-12-17 | 深圳市汇顶科技股份有限公司 | 可穿戴设备的佩戴状态检测方法、装置和可穿戴设备 |
CN108337903A (zh) * | 2018-01-24 | 2018-07-27 | 深圳市汇顶科技股份有限公司 | 一种佩戴状态的检测方法及其检测模块、可穿戴设备 |
EP3542711A4 (en) * | 2018-01-24 | 2019-11-13 | Shenzhen Goodix Technology Co., Ltd. | PORT STATE DETECTION METHOD, DETECTION MODULE, AND PORTABLE DEVICE THEREOF |
US11172884B2 (en) | 2018-01-24 | 2021-11-16 | Shenzhen GOODIX Technology Co., Ltd. | Method and module for detecting wearing state and wearable device |
CN111134648A (zh) * | 2018-11-01 | 2020-05-12 | 华为终端有限公司 | 心率检测方法及电子设备 |
CN111134648B (zh) * | 2018-11-01 | 2021-05-04 | 华为终端有限公司 | 心率检测方法及电子设备 |
Also Published As
Publication number | Publication date |
---|---|
US11076769B2 (en) | 2021-08-03 |
EP3284398B1 (en) | 2021-06-30 |
KR102415906B1 (ko) | 2022-07-01 |
CN107635456B (zh) | 2021-06-08 |
CN107635456A (zh) | 2018-01-26 |
EP3284398A1 (en) | 2018-02-21 |
KR20160122595A (ko) | 2016-10-24 |
EP3284398A4 (en) | 2018-12-05 |
US20180098708A1 (en) | 2018-04-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016167552A1 (ko) | 인체 착용 장치 및 이의 동작 방법 | |
WO2020004721A1 (ko) | 초광대역 임펄스 레이더 신호를 이용한 바이탈 정보 측정 방법 | |
WO2020101249A1 (en) | Method, electronic device, and storage medium for detecting biometric information | |
WO2015102156A1 (ko) | 모바일 디바이스의 체지방 측정 방법 및 장치 | |
WO2017155341A1 (en) | Apparatus and method for controlling auto focus of camera module | |
WO2016099097A1 (ko) | 이동 단말을 이용한 스케줄 알림 방법 및 그 이동 단말 | |
WO2021033933A1 (en) | Display apparatus and control method thereof | |
WO2018074900A1 (en) | Electronic apparatus and method of detecting information about target object by using ultrasound waves | |
WO2014196724A1 (ko) | 벽걸이형 플렉시블 디스플레이 | |
WO2012005483A2 (ko) | 정전 용량 변화 감지 방법, 장치 및 그 방법을 실행하는 프로그램이 기록된 기록매체, 및 그 방법을 사용한 터치 감지 방법, 장치 및 그 방법을 실행하는 프로그램이 기록된 기록매체 | |
WO2020032604A1 (ko) | 출입 관리 시스템 및 이를 이용한 출입 관리 방법 | |
WO2016018016A1 (en) | Display assembly and display apparatus using the same background | |
WO2016204496A1 (en) | System and method of providing information of peripheral device | |
CN101093431A (zh) | 输入/输出装置和方法、记录介质以及程序 | |
WO2010137921A2 (en) | Led driver | |
WO2020130535A1 (en) | Electronic device including earphone, and method of controlling the electronic device | |
WO2017039264A1 (ko) | 사용자 단말기 및 수면 관리 방법 | |
WO2018194201A1 (ko) | 교류전원의 위상각 제어 통신을 이용한 기기 제어 장치 및 방법 | |
WO2021177582A1 (ko) | 피부 접촉을 센싱하여 초음파를 발생시키는 고강도 집속형 초음파 기기 | |
WO2017164717A1 (ko) | 센서 모듈 및 이의 동작 방법 | |
WO2017196023A1 (en) | Camera module and auto focusing method thereof | |
WO2022169185A2 (ko) | 터치 센서 및 이를 포함하는 터치 입력 장치 | |
WO2016111492A1 (en) | Display module and display apparatus having the same | |
WO2019088448A1 (ko) | 조도를 측정하기 위한 전자 장치 및 그의 동작 방법 | |
WO2021137630A1 (en) | Display apparatus and method of controlling the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16780275 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15566299 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |