WO2016167528A1 - Method for directly converting human fibroblasts into neural stem cells using small molecule compounds - Google Patents

Method for directly converting human fibroblasts into neural stem cells using small molecule compounds Download PDF

Info

Publication number
WO2016167528A1
WO2016167528A1 PCT/KR2016/003819 KR2016003819W WO2016167528A1 WO 2016167528 A1 WO2016167528 A1 WO 2016167528A1 KR 2016003819 W KR2016003819 W KR 2016003819W WO 2016167528 A1 WO2016167528 A1 WO 2016167528A1
Authority
WO
WIPO (PCT)
Prior art keywords
stem cells
neural stem
cells
small molecule
disease
Prior art date
Application number
PCT/KR2016/003819
Other languages
French (fr)
Korean (ko)
Inventor
홍성회
최경아
황인식
Original Assignee
고려대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160044187A external-priority patent/KR101816103B1/en
Application filed by 고려대학교산학협력단 filed Critical 고려대학교산학협력단
Priority to CN201680019389.1A priority Critical patent/CN107454913B/en
Priority to JP2017538402A priority patent/JP6599468B2/en
Priority to US15/545,314 priority patent/US10711245B2/en
Publication of WO2016167528A1 publication Critical patent/WO2016167528A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/30Nerves; Brain; Eyes; Corneal cells; Cerebrospinal fluid; Neuronal stem cells; Neuronal precursor cells; Glial cells; Oligodendrocytes; Schwann cells; Astroglia; Astrocytes; Choroid plexus; Spinal cord tissue

Definitions

  • the present invention relates to a method for converting human fibroblasts into neural stem cells, and more particularly, to a method for directly converting from human fibroblasts to neural stem cells using a combination of small molecule compounds without introducing an external gene and its use. .
  • Retrodifferentiated stem cells have similar properties to embryonic stem cells, but viral systems, a method commonly used to form pluripotent stem cells, can mutate by random insertion of genes. Plasmids, proteins, RNA, etc. are used to solve the problem of the virus, but new problems may occur due to low efficiency and use of oncogenes.
  • neural stem cells Due to these problems, methods for directly differentiating into neural stem cells using fibroblasts have recently been studied, and various transcription factors using a viral system are introduced to induce neural stem cells from fibroblasts. Only branched transcription factors were used to reach neural stem cells. Neural stem cells can self-renew and thus get as many cells as they want and can differentiate into neurons. In addition, neural stem cells derived from fibroblasts of each individual by direct cross-differentiation method are very useful cells for the treatment of refractory brain disease because there is no ethical problem, immune rejection and tumor formation after transplantation.
  • Cell therapy is a method of implanting and treating experimentally induced healthy cells to replace damaged cells and tissues in the human body.
  • skin cells can be used to directly convert to desired cells, and genetic manipulations can be used to replace normal genes before transplanting.
  • direct cross-differentiation methods that have been studied previously are difficult to use as a practical cell therapy because they introduce a foreign gene.
  • the present inventors have made efforts to induce fibroblasts into neural stem cells using only small molecule compounds without introducing external genes, and thus, they are capable of proliferating in sufficient amounts for transplantation and are genetically stable neural stem cells without tumor formation. It was confirmed that the preparation can be completed the present invention.
  • An object of the present invention is to provide a method for producing neural stem cells by culturing human fibroblasts in a medium containing a small molecule compound, and a cell therapeutic agent for treating brain diseases containing the prepared neural stem cells as an active ingredient.
  • the present invention comprises the steps of culturing human fibroblasts in a medium comprising thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542 and CHIR99021 It provides a method for producing a neural stem cell comprising.
  • the present invention also provides a cell therapy for the treatment of brain diseases containing neural stem cells produced by the above method.
  • Figure 2 shows the results of confirming the gene expression according to the addition of 13 small molecule materials.
  • Figure 3 is a result confirming the morphological changes of the cells according to the use of four, six, eight small molecule compounds.
  • 5 is a result of confirming the expression of marker genes and proteins in the early and late stages of induced neural stem cells.
  • Figure 7 shows the results of analyzing the cell proliferation rate of the induced neural stem cells.
  • FIG. 8 shows the results of confirming epigenetic genetic changes of induced neural stem cells using bisulfite PCR analysis.
  • Figure 11 shows the results of analyzing the brain of the mouse transplanted induced neural stem cells.
  • the small molecule material was used to construct an optimal combination of small molecule materials for inducing human fibroblasts into neural stem cells, and the function of each of the various small molecule materials was confirmed.
  • This induces human neural stem cells with a culture medium consisting of a combination of small molecule materials, secures genetic stability without chromosomal abnormalities, and establishes optimized culture conditions for prolonged proliferation and maintenance of induced neural stem cells.
  • the basic characteristics of human neural stem cells and the differentiation ability of trigeminal nervous system cells and various kinds of neurons were confirmed, and induced human neural stem cells were confirmed to differentiate into trigeminal neural cells without tumor formation after transplantation.
  • some small molecule substances regulate the expression of endoderm and mesoderm-related genes, the inducibility of endoderm and mesoderm-related cells was confirmed.
  • the present invention includes the step of culturing human fibroblasts in a medium comprising thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542 and CHIR99021. It relates to a method for producing neural stem cells.
  • Thiazovivin N-benzyl-2- (pyrimidin-4-ylamino) thiazole-4-carboxamide
  • Rho / ROCK Rho / ROCK signal inducing apoptosis of neurons and neural stem cells and neural stem cells. It is known to block PTEN signaling, which inhibits the proliferation of cells, and is expected to inhibit neural stem cell apoptosis, increase self-renewal and self-proliferation (Matthias Groszer, et al., Science 294: 2186, 2001). .
  • the thiazovivin is a substance that selectively inhibits ROCK (Rho-associated kinase) as an inhibitor of Rho-associated kinase (ROCK), and Y-27632 may be used in addition to thiazovivin. . Treating the thiazobibin in the medium to be included in an effective concentration, the effective concentration may be affected depending on factors well known in the art, such as the type and culture method of the medium.
  • VPN valproic acid, 2-propylpentanoic acid
  • valproic acid valproic acid, 2-propylpentanoic acid
  • promote expression of cell proliferation inhibitors and genes essential for differentiation induce differentiation of cells (cancer cells), inhibit angiogenesis, and fix cell cycle to G1 status to apoptosis of cancer cells It is known to exhibit strong cytostatic anti-cancer activity by inducing apoptosis.
  • Histone deacetylase inhibits gene transcription via pRB / E2F, and the destruction of histone acetylation is associated with a number of cancer developments, and HDAC is associated with hypoxia, mortgage ( Iii) HDAC is known to be recognized as an important regulator of cell carcinogenesis and differentiation by inhibiting the expression of cell proliferation factor and expressing it under severe environmental conditions such as cell carcinogenesis.
  • the VPA is known to cause inositol reduction, inhibit GSK-3 ⁇ , activate the ERK pathway, and stimulate PPAR activity.
  • HDAC inhibitor histone deacetylase inhibitor
  • VPA valproic acid, 2-propylpentanoic acid
  • TSA trachostatin
  • the derivative may be variously pharmaceutically acceptable.
  • Inorganic or organic salts If the treatment concentration is too low, it will be difficult to see the effect. If the concentration is too high, it will be toxic, so it is necessary to check the appropriate concentration according to the cell type.
  • purmorphamine is a purine compound, and is known to be involved in the Shh signaling system.
  • the permopamine is not particularly limited as long as it can induce the Shh signal, and various derivatives may be used.
  • 2- (1-Naphthoxy) -6- (4-morpholinoanilino) -9-cyclohexylpurin) can be purchased commercially.
  • the permophamine may be treated with a medium commonly used to induce differentiation into neural stem cell-like cells. This treatment of Shh analogs, permophamine, there is an advantage that does not need to introduce a gene to produce neural stem cells from human fibroblasts.
  • the permophamine is included in the medium at an effective concentration. Effective concentrations of permopamine may be affected by factors well known in the art, such as media type and culture method.
  • A-8301 is a TGF- ⁇ type I receptor inhibitor that binds to the TGF- ⁇ type I receptor and interferes with the normal signaling process of TGF- ⁇ type I.
  • TGF- ⁇ type I Transforming growth factor- ⁇ type I
  • TGF- ⁇ type I is a multifunctional peptide that has various functions on cell proliferation, differentiation and various cell types. It is known to play a pivotal role in the growth and differentiation of various tissues such as cell differentiation and to inhibit the proliferation of neural stem cells.
  • any TGF- ⁇ type I receptor inhibitor including SB432542 may be used, and the low molecular weight TGF- ⁇ type I receptor inhibitor A-8301 may be purchased or used on the market. Can be used to promote neural stem cell proliferation by the inhibitor treatment.
  • the TGF- ⁇ type I receptor inhibitor A-8301 is treated in the medium to be included in an effective concentration. Effective concentrations may be affected by factors well known in the art, such as media type and culture method.
  • SB431542 serves to improve chromosome stability by inducing rapid reverse differentiation with an ALK5 (Activin Receptor-Like Kinase-5) inhibitor.
  • CHIR99021 is a GSK (glycogen synthase kinase) inhibitor and is a substance targeting GSK1 / 2, an upstream molecule of GSK1 / 2 involved in GSK signaling.
  • the CHIR99021 is represented as aminopyrimidine, and all GSK inhibitors may be used in addition to CHIR99021.
  • DZNep Deazaneplanocin A
  • 5-AZA 5-AZA
  • at least one small molecule compound selected from the group consisting of PD0325901, Ascorbic acid, PS48, Forskolin and Tranylcypromine, but It is not limited.
  • 5-Azacitidine means 4-amino-1- ⁇ -D-ribofuranosyl-1,3,5-triazine-2 (1H) -one It is named (4-amino-1- ⁇ -D-ribofuranosyl-1,3,5-triazin-2 (1H) -one) and is a compound known to have a DNA demethylation action.
  • 5-azacytidine is also known as an anti-neoplastic drug that is active against leukemia, lymphoma and various solid tumors.
  • the 5-azacytidine can be obtained by synthesizing by a general chemical synthesis method known in the art, or can be purchased commercially available (eg Sigma-Aldrich (St Louis, Mo, USA)).
  • PD0325901 is one of the inhibitors of MEK / ERK signaling pathway
  • ascorbic acid is one of the water-soluble vitamins and has strong antioxidant properties.
  • phospholine acts to directly activate the catalytic subunit of dadenylate cyclase to increase the concentration of intracellular cAMP, and tranylcipromine is monoamine oxidation, an enzyme that normally degrades norepinephrine at the nerve endings. It acts to inhibit enzyme (MAO).
  • the culture medium includes all media commonly used for culturing neural stem cells.
  • the medium used for culturing generally contains a carbon source, a nitrogen source and a trace element component.
  • the medium is preferably composed of DMEM / F12, N2, B27, basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF).
  • the medium for inducing stem cell culture of the present invention can be used without limitation a basal medium known in the art.
  • the basal medium may be prepared by artificially synthesizing, or a commercially prepared medium may be used.
  • commercially prepared media include Dulbecco's Modified Eagle's Medium (DMEM), Minimal Essential Medium (MEM), Basic Medium Eagle (BME), RPMI 1640, F-10, F-12, ⁇ -MEM ( ⁇ -Minimal). essential medium), G-MEM (Glasgow's Minimal Essential Medium), and Isocove's Modified Dulbecco's Medium, but are not limited thereto.
  • DMEM Dulbecco's Modified Eagle's Medium
  • MEM Minimal Essential Medium
  • BME Basic Medium Eagle
  • RPMI 1640 F-10, F-12
  • ⁇ -MEM ⁇ -Minimal
  • essential medium G-MEM (Glasgow's Minimal Essential Medium)
  • the culture period is preferably 10 to 15 days, but is not limited thereto.
  • the step of subcultured cells and suspended culture to form a sphere is preferable to further include a step of the suspension culture after the attached spear formed culture, but is not limited thereto.
  • the suspension culture and the adhesion culture are cultured for 7 to 10 days, respectively, and the step of floating culture again after attaching the formed spheres is preferably repeated 2 to 4 times, but is not limited thereto.
  • neural stem cells have a self-replicating ability and neurons and / or glia, for example, astrocytes, oligodendrocytes and / or Schwann cells ( It is an undifferentiated cell having multi-differentiation ability to differentiate into Schwann cell).
  • Neural stem cells are differentiated into neural cells, such as neurons or glia, through the steps of neural precursor cells or glia precursor cells that produce specific nervous system cells.
  • the neural stem cells may be characterized by expressing nestin, sox1 or musashi1, astrocytes, oligodendrocytes, neurons (neurons), dopamine neurons, gaba neurons , Motor neuron and choline neurons may be characterized in that the differentiation into any one or more selected from the group consisting of, but is not limited thereto.
  • the neural stem cells may be characterized by maintaining chromosome stability, and may be characterized by maintaining an undifferentiated state of 10 passages or more, but is not limited thereto.
  • the technology of the present invention is a method of ensuring genetic stability of inducing neural stem cells from human fibroblasts without introducing an external gene, and is designed to solve a method of inducing genetic defects using existing genes.
  • human fibroblasts are directly converted to neural stem cells using only a combination of small molecule materials.
  • problems of the existing technology for example, ethical and immune rejection problems associated with embryonic stem cells, tumorigenesis problems of embryonic stem cells and dedifferentiated stem cells, It is very likely to be used as a cell therapy.
  • the production of neural stem cells directly using somatic cells of brain disease patients can be used as a new cell model for studying the pathogenesis of brain diseases due to damage or death of nerve cells.
  • Neural stem cells produced in this way are very fast and economical compared to dedifferentiated stem cells.
  • De-differentiated stem cells are more than double the time and cost required to produce dedifferentiated stem cells and to differentiate them back into neurons.
  • cross-differentiated neural stem cells do not have ethical problems because they do not need to secure neural stem cells from the fetus or the adult brain, and adult stem cells have self-renewal ability.
  • cross-differentiated neural stem cells have the advantage that they can produce as many cells as desired because there is no limit to self-renewal capacity.
  • cross-differentiated neural stem cells can be produced using the patient's own cells, there is no immune rejection reaction, patient-specific cell modeling for disease research, patient-specific toxicity evaluation of the developed drug and new drug development Can be.
  • the cross-differentiated neural stem cells of the present invention do not use an external gene, there is no possibility of tumorigenesis caused by indiscriminate insertion of an external gene, and thus, the cross-differentiated neural stem cells of the present invention will be highly applicable to cell therapy.
  • the present invention relates to a cell therapy agent for treating brain diseases containing neural stem cells produced by a method comprising culturing human fibroblasts in a medium containing a small molecule compound in another aspect.
  • the brain disease may be characterized by stroke, stroke, cerebral hemorrhage, cerebral infarction, Alzheimer's disease, dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, multiple nerve atrophy, epilepsy, peak disease and Creutzfeldt-Jakob disease. It is not limited to this.
  • the present invention can be used as a clinically applicable neural stem cells for the treatment of brain diseases, and can be used as a brain disease cell model that can be directly used in pathogenesis research when producing diseased neuronal stem cells derived from patients with hereditary cerebral disease.
  • a mutated gene By replacing the mutated gene with a normal gene, it can be used as a cell therapy for the treatment of patients with hereditary brain diseases.
  • cellular therapeutic agent refers to a medicinal product (US FDA regulation) used for the purpose of treatment, diagnosis, and prevention of cells and tissues prepared through isolation, culture, and special manipulation from humans. Or through a series of actions such as proliferating and screening living autologous, allogeneic, or heterologous cells in vitro or otherwise altering the biological properties of a cell to restore tissue function. Means the drug used for the purpose.
  • treatment means any action that improves or benefits the condition of the disease by administration of the cell therapy agent.
  • the route of administration of the cell therapy composition of the present invention may be administered via any general route as long as it can reach the desired tissue.
  • Parenteral administration for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration may be, but is not limited thereto.
  • composition may be formulated in a suitable form with a pharmaceutical carrier generally used for cell therapy.
  • a pharmaceutical carrier generally used for cell therapy.
  • 'Pharmaceutically acceptable' refers to a composition that is physiologically acceptable and does not cause an allergic or similar reaction, such as gastrointestinal disorders, dizziness or the like, when administered to a human.
  • Pharmaceutically acceptable carriers include, for example, water, suitable oils, saline, carriers for parenteral administration such as aqueous glucose and glycols, and the like, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium hydrogen sulfite, sodium sulfite or ascorbic acid. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol.
  • Other pharmaceutically acceptable carriers may be referred to those described in the following references (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).
  • composition may also be administered by any device in which the cell therapy agent can migrate to the target cell.
  • the cell therapy composition of the present invention may include a therapeutically effective amount of cell therapy for the treatment of a disease.
  • therapeutically effective amount means an amount of an active ingredient or pharmaceutical composition that induces a biological or medical response in a tissue system, animal or human, as thought by a researcher, veterinarian, doctor or other clinician. This includes amounts that induce alleviation of the symptoms of the disease or disorder being treated.
  • the optimal cell therapy content can be readily determined by one skilled in the art and includes the type of disease, the severity of the disease, the amount of other components contained in the composition, the type of formulation, and the age, weight, general health, sex and diet of the patient. It can be adjusted according to various factors including the time of administration, the route of administration and the rate of secretion of the composition, the duration of treatment, and the drugs used simultaneously. In consideration of all the above factors, it is important to include an amount that can achieve the maximum effect in a minimum amount without side effects.
  • the daily dose of stem cells of the present invention is 1.0 ⁇ 10 4 to 1.0 ⁇ 10 10 cells / kg body weight, preferably 1.0 ⁇ 10 5 to 1.0 ⁇ 10 9 cells / kg body weight divided into one or several times May be administered.
  • the actual dosage of the active ingredient should be determined in light of several relevant factors such as the disease to be treated, the severity of the disease, the route of administration, the patient's weight, age and gender, and therefore the dosage may It does not limit the scope of the present invention in terms of aspects.
  • composition comprising the cell therapy of the present invention as an active ingredient in the treatment method of the present invention is rectal, intravenous (intravenous therapy, iv), intraarterial, intraperitoneal, intramuscular, intrasternal, transdermal, topical, intraocular Or via the intradermal route.
  • intravenous therapy iv
  • intraarterial intraarterial
  • intraperitoneal intramuscular
  • intrasternal transdermal
  • topical intraocular Or via the intradermal route.
  • the present invention provides a method of treatment comprising administering to a mammal a therapeutically effective amount of said cell therapy composition of the invention.
  • mammal refers to a mammal that is the subject of treatment, observation or experiment, preferably human.
  • Fibroblast markers Thy1
  • neural stem cell markers nestin, sox1, sox2, pax6
  • MET or EMT markers snail. AFP, GATA4
  • gene expression patterns of markers related to maintaining chromosomal stability Zsacn4 were confirmed using quantitative PCR (FIG. 2).
  • the fibroblasts were transformed into neural stem cells using the culture medium under various conditions except one small molecule material from the conditions in which the eight small molecule materials identified in Example 1-1 were added all at once. It was. 1 ⁇ 10 5 human fibroblasts were prepared in a 60 mm dish, and the morphological changes of the cells were confirmed by changing the culture medium under various conditions every 2 to 3 days from the following day. In addition, changes in expression patterns of various genes were observed through the cells obtained during subculture.
  • the neural stem cells induced through the culture medium containing 6 or 8 small molecule compounds maintained the shape of the neural stem cells even when cultured for a long time with continuous passage.
  • PCR and immunocytochemistry were performed to determine whether neural stem cells express markers of neural stem cells.
  • neural stem cells express nestin through immunocytochemistry (ICC) staining, and PCR expression of the neural stem cell markers nestin, sox1, and musashi1 is similar to neural stem cells derived from human embryonic stem cells. It was confirmed that the degree (Fig. 4).
  • the morphology of the cells was observed at each of the early and late stages of induced neural stem cells.
  • the expression of nestin through immunocytochemistry (ICC) staining and gene expression of the nestin, sox1, and musashi1 neural stem cell markers using PCR were confirmed (FIG. 5).
  • chromosomal analysis confirmed the presence or absence of chromosomal abnormalities in the early and late stages of the induced neural stem cells (Fig. 6), compared with the growth rate of the cells during the proliferation and maintenance of neural stem cells derived from human embryonic stem cells ( 7).
  • the induced neural stem cells were found to be able to continue culturing without chromosomal abnormalities while maintaining the shape and properties of neural stem cells even during long-term culture.
  • bisulfite PCR showed methylation / acetylation of the promoter region of nestin, a neuronal stem cell marker, to confirm epigenetic genetic changes. It was confirmed that the characteristics of fibroblasts were completely changed to the characteristics of neural stem cells (Fig. 8).
  • Example 4 In vitro differentiation of induced human neural stem cells
  • Examples 1 to 3 confirmed that inducing neural stem cells from human fibroblasts using small molecule materials was successfully performed. More specifically, in order to confirm the characteristics and availability of neural stem cells, differentiation ability in vitro was confirmed. First, they differentiated into trigeminal neurons (astrocyte), oligodendrocyte (neuron) and neurons (neuron).
  • human fibroblasts are highly useful as cell therapeutics for the treatment of brain diseases.
  • Example 5 In vivo differentiation of induced human neural stem cells
  • Examples 3 and 4 it was confirmed in vitro that the neural stem cells derived from human fibroblasts can be successfully differentiated into trigeminal nerve cells using small molecule materials.
  • human neural stem cells induced in the brain of mouse (Oriental Bio, Balb / c) were transplanted. It was. Then, the mice transplanted with human neural stem cells induced for 3 to 7 months were continuously observed.
  • the brain of the mouse transplanted with the neural stem cells induced by the small molecule compound showed no tumor formation externally for 3 to 7 months (FIG. 11A), and brain tissue was confirmed by H & E (Haematoxylin and Eosin) staining. It was also confirmed that no tumor formation was observed (FIG. 11B).
  • the induced neural stem cells were successfully transplanted through the expression of neural stem cell markers (FIG. 11C), and the induced neural stem cells 3 to 7 months after transplantation expressed human cell-specific markers and neuron-specific markers. It was confirmed that the transplanted cells were differentiated into neurons (FIG. 11D). This indicates that human neural stem cells induced by small molecule compounds can be differentiated into neurons without transplantation after transplantation.
  • induced neural stem cells can be used as an optimal model cell to study the development of neurons and the pathogenesis of brain disease, and as a cell therapy for the treatment of brain diseases in humans due to the advantage of not generating tumors. The probability is very high.
  • the method of directly converting human fibroblasts into neural stem cells using only small molecule materials without introducing the genes according to the present invention secures a sufficient amount of cells and various kinds of functional neurons for use in cell therapy through induction of genetically stable neural stem cells. Because it can be differentiated and does not generate tumors, it is useful for brain disease cell therapy.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Cell Biology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Neurology (AREA)
  • Neurosurgery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biotechnology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Zoology (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention relates to a method for converting human fibroblasts into neural stem cells and, more specifically, to a method for directly converting human fibroblasts into neural stem cells using only a combination of small molecule compounds without an introduction of foreign genes; and a use thereof. The method according to the present invention for directly converting human fibroblasts into neural stem cells using only small molecule materials without gene introduction is useful for utilization in a cellular therapeutic agent of brain diseases, as it is possible to secure a sufficient amount of cells to be used in cell therapy through the induction of genetically stable neural stem cells, and to differentiate into various types of functional nerve cells, and tumors are not caused.

Description

소분자 화합물을 이용한 인간 섬유아세포를 신경줄기세포로 직접 전환하는 방법Direct conversion of human fibroblasts into neural stem cells using small molecule compounds
본 발명은 인간 섬유아세포를 신경줄기세포로 전환하는 방법에 관한 것으로, 더욱 상세하게는 외부 유전자의 도입 없이 소분자 화합물의 조합만을 이용하여 인간 섬유아세포로부터 신경줄기세포로 직접 전환시키는 방법 및 그 용도에 관한 것이다.The present invention relates to a method for converting human fibroblasts into neural stem cells, and more particularly, to a method for directly converting from human fibroblasts to neural stem cells using a combination of small molecule compounds without introducing an external gene and its use. .
인간 섬유아세포를 역분화 만능줄기세포 (induced pluripotent stem cell)로 유도시킨 연구가 2007년 진행됨에 따라 세포의 리프로그래밍 (reprogramming)에 대한 관심이 급증하기 시작하였다. 이전의 줄기세포 연구에 이용된 인간 배아줄기세포의 경우 인간의 배아 사용으로 인한 윤리적 문제와, 면역거부반응 문제 그리고 분화되지 않은 배아줄기세포가 이식될 경우 테라토마 (teratoma) 형성의 문제가 있으며, 성체 줄기세포의 경우에는 세포의 확보가 어렵고 분화능에 제한이 있다는 문제점을 가지고 있다. 그러나 역분화줄기세포는 윤리적 문제로부터 회피되고 면역거부반응 문제는 없지만, 분화되지 않은 줄기세포가 이식 될 경우 테라토마 형성의 문제를 일으킬 수 있다. 역분화 줄기세포는 배아줄기세포와 유사한 성질을 가지고 있으나, 역분화 만능줄기세포를 형성하는데 주로 이용되는 방법인 바이러스 시스템은 유전자의 무작위적인 삽입에 의해 돌연변이를 형성시킬 수 있다. 바이러스의 문제점을 해결하고자 플라스미드, 단백질, RNA 등을 이용하고 있으나, 효율성이 낮고 암유전자를 이용한다는 점에서 확인되지 않은 새로운 문제가 발생할 수 있다.Interest in cell reprogramming began to grow in 2007 when studies led to human fibroblasts induced into pluripotent stem cells. Human embryonic stem cells used in previous stem cell research have ethical problems due to the use of human embryos, immune rejection problems, and teratoma formation when undifferentiated embryonic stem cells are transplanted. In the case of stem cells, it is difficult to secure cells and has a problem in that they have differentiation ability. However, de-differentiated stem cells are avoided from ethical problems and do not have an immune rejection problem. However, when undifferentiated stem cells are transplanted, they may cause teratoma formation. Retrodifferentiated stem cells have similar properties to embryonic stem cells, but viral systems, a method commonly used to form pluripotent stem cells, can mutate by random insertion of genes. Plasmids, proteins, RNA, etc. are used to solve the problem of the virus, but new problems may occur due to low efficiency and use of oncogenes.
이러한 역분화 만능줄기세포의 문제점을 해결하는 방안으로 직접교차분화 방법을 이용한 인간 섬유아세포를 원하는 세포로 직접 분화 (direct conversion)시키는 연구가 보고되었다. 그 중에서도 난치성 뇌질환의 치료를 목적으로 하는 섬유아세포를 이용한 신경세포로의 직접분화 연구가 활발하게 진행되어, 인간의 섬유아세포에 다양한 조합의 신경세포 관련 전사인자를 도입하고, 이를 통해 신경세포를 형성하는 연구를 성공시켰다. 이는 난치성 뇌질환의 세포치료제로써 사용 가능성을 보여 주었으나, 신경세포로는 이미 분화된 세포이기 때문에 세포치료에 이용할 만큼 충분한 양의 세포를 확보하는 어려움이 있다.In order to solve the problem of the pluripotent stem cells, a study has been reported to directly convert human fibroblasts into desired cells using a direct cross-differentiation method. Among them, the direct differentiation research into fibroblasts using fibroblasts for the treatment of intractable brain disease has been actively conducted, introducing various combinations of neuronal cell-related transcription factors into human fibroblasts, Formed research was successful. This has been shown to be used as a cell therapy for intractable brain disease, but since the neurons are already differentiated cells, there is a difficulty in securing a sufficient amount of cells for use in cell therapy.
이와 같은 문제로 인해 최근에는 섬유아세포를 이용하여 신경줄기세포로 직접 분화시키는 방법들이 연구되고 있고, 바이러스 시스템을 이용한 여러 가지 전사인자들을 도입하여 섬유아세포에서부터 신경줄기세포를 유도하는 방법이지만, 최근에는 단 한 가지 전사인자만을 이용하여 신경줄기세포를 유도할 수 있는 수준에까지 이르렀다. 신경줄기세포는 자가 재생 (self-renew)이 가능하기 때문에 원하는 만큼의 세포를 얻을 수 있고, 신경세포로 분화가 가능하다. 또한, 직접교차분화 방법으로 각 개인의 섬유아세포에서부터 유도된 신경줄기세포는 윤리적인 문제와 면역거부반응 그리고 이식 후 종양형성의 문제가 없기 때문에 난치성 뇌질환의 세포치료제로 이용하기에 매우 유용한 세포이다.Due to these problems, methods for directly differentiating into neural stem cells using fibroblasts have recently been studied, and various transcription factors using a viral system are introduced to induce neural stem cells from fibroblasts. Only branched transcription factors were used to reach neural stem cells. Neural stem cells can self-renew and thus get as many cells as they want and can differentiate into neurons. In addition, neural stem cells derived from fibroblasts of each individual by direct cross-differentiation method are very useful cells for the treatment of refractory brain disease because there is no ethical problem, immune rejection and tumor formation after transplantation.
세포치료는 인체 내 손상된 세포 및 조직을 대체하기 위해 실험적으로 유도한 건강한 세포를 이식하여 치료하는 방법이다. 유전적 요인으로 인한 질병을 가지는 환자의 경우에는 피부세포를 이용하여 원하는 세포로 직접 전환하고, 유전자 조작으로 정상 유전자를 대체한 후 이식에 이용할 수 있다. 그러나, 이전부터 연구되어 온 직접교차분화 방법들은 외부 유전자를 도입하는 방식이기 때문에 실질적인 세포치료제로 사용하기는 어렵다. Cell therapy is a method of implanting and treating experimentally induced healthy cells to replace damaged cells and tissues in the human body. In the case of patients with a disease caused by genetic factors, skin cells can be used to directly convert to desired cells, and genetic manipulations can be used to replace normal genes before transplanting. However, direct cross-differentiation methods that have been studied previously are difficult to use as a practical cell therapy because they introduce a foreign gene.
이에, 본 발명자들은 외부 유전자 도입 없이 소분자 화합물만을 이용하여 섬유아세포를 신경줄기세포로 유도하고자 예의 노력한 결과, 이식에 필요한 충분한 양으로 증식이 가능하고 종양형성 없이 유전적으로도 안정한 (genomic DNA stability) 신경줄기세포를 제조할 수 있는 것을 확인하고 본 발명을 완성하였다. Accordingly, the present inventors have made efforts to induce fibroblasts into neural stem cells using only small molecule compounds without introducing external genes, and thus, they are capable of proliferating in sufficient amounts for transplantation and are genetically stable neural stem cells without tumor formation. It was confirmed that the preparation can be completed the present invention.
발명의 요약Summary of the Invention
본 발명의 목적은 소분자 화합물을 포함하는 배지에서 인간 섬유아세포를 배양하여 신경줄기세포를 제조하는 방법 및 상기 제조된 신경줄기세포를 유효성분으로 함유하는 뇌질환 치료용 세포치료제를 제공하는데 있다.Disclosure of Invention An object of the present invention is to provide a method for producing neural stem cells by culturing human fibroblasts in a medium containing a small molecule compound, and a cell therapeutic agent for treating brain diseases containing the prepared neural stem cells as an active ingredient.
상기 목적을 달성하기 위하여, 본 발명은 티아조비빈(Thiazovivin), 발프로익 산(Valproic acid), 퍼모파민(Purmorphamine), A8301, SB431542 및 CHIR99021를 포함하는 배지에서 인간 섬유아세포를 배양하는 단계를 포함하는 신경줄기세포의 제조방법을 제공한다.In order to achieve the above object, the present invention comprises the steps of culturing human fibroblasts in a medium comprising thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542 and CHIR99021 It provides a method for producing a neural stem cell comprising.
본 발명은 또한, 상기 방법에 의해 제조된 신경줄기세포를 함유하는 뇌질환 치료용 세포치료제를 제공한다.The present invention also provides a cell therapy for the treatment of brain diseases containing neural stem cells produced by the above method.
도 1은 13종 소분자 물질의 첨가에 따른 세포의 형태학적 변화를 확인한 결과이다.1 shows the results of confirming the morphological changes of the cells according to the addition of 13 small molecule materials.
도 2는 13종 소분자 물질의 첨가에 따른 유전자 발현을 확인한 결과이다.Figure 2 shows the results of confirming the gene expression according to the addition of 13 small molecule materials.
도 3은 소분자 화합물 4종, 6종, 8종의 사용에 따른 세포의 형태학적 변화를 확인한 결과이다.Figure 3 is a result confirming the morphological changes of the cells according to the use of four, six, eight small molecule compounds.
도 4는 유도된 신경줄기세포의 형태학적 확인, 마커 유전자 및 단백질의 발현을 확인한 결과이다.4 is a result of confirming the morphological confirmation of the induced neural stem cells, the expression of marker genes and proteins.
도 5는 유도된 신경줄기세포의 초기단계와 후기단계의 형태학적 확인, 마커 유전자 및 단백질의 발현을 확인한 결과이다.5 is a result of confirming the expression of marker genes and proteins in the early and late stages of induced neural stem cells.
도 6은 유도된 신경줄기세포의 염색체 분석을 통한 염색체를 확인한 결과이다.6 is a result of confirming the chromosome through the chromosome analysis of the induced neural stem cells.
도 7은 유도된 신경줄기세포의 시기별 세포 증식률을 분석한 결과이다.Figure 7 shows the results of analyzing the cell proliferation rate of the induced neural stem cells.
도 8은 바이설파이트(bisulfite) PCR 분석을 이용한 유도된 신경줄기세포의 후성 유전적 변화를 확인한 결과이다.FIG. 8 shows the results of confirming epigenetic genetic changes of induced neural stem cells using bisulfite PCR analysis.
도 9는 유도된 신경줄기세포의 삼신경계 세포로의 분화를 확인한 결과이다.9 is a result confirming the differentiation of induced neural stem cells into trigeminal nervous system cells.
도 10은 유도된 신경줄기세포의 다양한 종류의 신경세포로의 분화를 확인한 결과이다.10 is a result of confirming the differentiation of the induced neural stem cells into various types of neurons.
도 11은 유도된 신경줄기세포가 이식된 마우스의 뇌를 분석한 결과이다.Figure 11 shows the results of analyzing the brain of the mouse transplanted induced neural stem cells.
발명의 상세한 설명 및 바람직한 Detailed description of the invention and preferred 구현예Embodiment
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명에서는 소분자 물질을 이용하여 인간 섬유아세포를 신경줄기세포로 유도하기 위한 최적의 소분자 물질의 조합을 구축하고, 다양한 소분자 물질들 각각의 기능을 확인하였다. 이로써 소분자 물질의 조합으로 이루어진 배양액으로 인간 신경줄기세포를 유도하고, 염색체 이상 없는 유전적 안정성을 확보하였고, 유도된 신경줄기세포를 장기간 증식 및 유지하기 위한 최적화된 배양조건을 확립하였다. 이후, 인간 신경줄기세포의 기본적 특성 확인 및 삼신경계 세포와 다양한 종류의 신경세포로의 분화능을 확인하고, 유도된 인간 신경줄기세포는 이식후 종양형성 없이 삼신경계 세포로 분화됨을 확인하였다. 또한, 소분자 물질 일부가 내배엽 및 중배엽 관련 유전자의 발현을 조절함에 따라, 내배엽과 중배엽 관련 세포의 유도가능성을 확인하였다.In the present invention, the small molecule material was used to construct an optimal combination of small molecule materials for inducing human fibroblasts into neural stem cells, and the function of each of the various small molecule materials was confirmed. This induces human neural stem cells with a culture medium consisting of a combination of small molecule materials, secures genetic stability without chromosomal abnormalities, and establishes optimized culture conditions for prolonged proliferation and maintenance of induced neural stem cells. Thereafter, the basic characteristics of human neural stem cells and the differentiation ability of trigeminal nervous system cells and various kinds of neurons were confirmed, and induced human neural stem cells were confirmed to differentiate into trigeminal neural cells without tumor formation after transplantation. In addition, as some small molecule substances regulate the expression of endoderm and mesoderm-related genes, the inducibility of endoderm and mesoderm-related cells was confirmed.
따라서, 본 발명은 일 관점에서 티아조비빈(Thiazovivin), 발프로익 산(Valproic acid), 퍼모파민(Purmorphamine), A8301, SB431542 및 CHIR99021를 포함하는 배지에서 인간 섬유아세포를 배양하는 단계를 포함하는 신경줄기세포의 제조방법에 관한 것이다.Accordingly, the present invention includes the step of culturing human fibroblasts in a medium comprising thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542 and CHIR99021. It relates to a method for producing neural stem cells.
본 발명에서 "티아조비빈(Thiazovivin: N-benzyl-2-(pyrimidin-4-ylamino)thiazole-4-carboxamide)"은 신경세포와 신경줄기세포의 세포사멸을 유도하는 Rho/ROCK 신호를 막고 신경줄기세포의 증식을 억제하는 PTEN 신호를 막는다고 알려져 있어, 신경줄기세포의 세포사멸 억제와 자가재생능력과 자가증식능력을 증가시킬 수 있을 것으로 예상된다(Matthias Groszer, et al., Science 294: 2186, 2001). 상기 티아조비빈(Thiazovivin)은 ROCK 억제제 (inhibitor of Rho-associated kinase: ROCK)로 ROCK(Rho-associated kinase)을 선택적으로 억제하는 역할을 하는 물질로 티아조비빈 외에 Y-27632 등을 사용할 수 있다. 상기 티아조비빈을 배지에 처리하여 유효 농도로 포함되도록 하며, 배지의 종류 및 배양방법 등 당분야에서 잘 알려진 요소에 따라 유효농도는 영향을 받을 수 있다. In the present invention, "Thiazovivin (N-benzyl-2- (pyrimidin-4-ylamino) thiazole-4-carboxamide)" prevents Rho / ROCK signal inducing apoptosis of neurons and neural stem cells and neural stem cells. It is known to block PTEN signaling, which inhibits the proliferation of cells, and is expected to inhibit neural stem cell apoptosis, increase self-renewal and self-proliferation (Matthias Groszer, et al., Science 294: 2186, 2001). . The thiazovivin is a substance that selectively inhibits ROCK (Rho-associated kinase) as an inhibitor of Rho-associated kinase (ROCK), and Y-27632 may be used in addition to thiazovivin. . Treating the thiazobibin in the medium to be included in an effective concentration, the effective concentration may be affected depending on factors well known in the art, such as the type and culture method of the medium.
본 발명에서 "VPA (valproic acid, 2-프로필펜타노익산)"은 히스톤 디아세틸라아제 억제제 (histone deacetylase inhibitor)로 히스톤 디아세틸라아제를 억제하는 물질들을 의미하며, 크로마틴을 고아세틸화 상태로 만들어 세포증식억제인자 및 분화유도에 필수적인 유전자들의 발현을 촉진하여 세포 (암세포)의 분화를 유도하고 혈관신생 (angiogenesis)을 억제하며, 세포주기를 G1상태로 고정시켜 암세포 (cancer cell)의 아폽토시스 (apoptosis)를 유발하여 강한 세포증식억제 (cytostatic) 항암활성을 나타내는 것으로 알려져 있다. 히스톤 디아세틸라아제 (HDAC)는 pRB/E2F를 매개로 유전자 전사 (gene transcription)을 억제하며, 히스톤 아세틸레이션 (histone acetylation)의 파괴가 여러 가지 암 발생과 관련되어 있고, HDAC는 저산소증, 저당 (低糖), 세포암화 등 열악한 환경조건에서 고발현되어 세포증식억제인자의 발현을 저해하여 세포증식을 촉진시키는 역할을 하여, HDAC는 세포암화 및 분화조절에 중요조절인자로 인식되고 있다고 알려져 있다. 특히, 상기 VPA는 이노시톨 감소를 유발하고, GSK-3β를 저해하고 ERK pathway를 활성화시키고, PPAR 활성을 자극하는 것으로 알려져 있다. In the present invention, "VPA (valproic acid, 2-propylpentanoic acid)" refers to a substance that inhibits histone deacetylase as a histone deacetylase inhibitor, and a high acetylation state of chromatin. Promote expression of cell proliferation inhibitors and genes essential for differentiation, induce differentiation of cells (cancer cells), inhibit angiogenesis, and fix cell cycle to G1 status to apoptosis of cancer cells It is known to exhibit strong cytostatic anti-cancer activity by inducing apoptosis. Histone deacetylase (HDAC) inhibits gene transcription via pRB / E2F, and the destruction of histone acetylation is associated with a number of cancer developments, and HDAC is associated with hypoxia, mortgage ( Iii) HDAC is known to be recognized as an important regulator of cell carcinogenesis and differentiation by inhibiting the expression of cell proliferation factor and expressing it under severe environmental conditions such as cell carcinogenesis. In particular, the VPA is known to cause inositol reduction, inhibit GSK-3β, activate the ERK pathway, and stimulate PPAR activity.
상기 히스톤 디아세틸라아제 억제제 (HDAC inhibitor) VPA (valproic acid, 2-프로필펜타노익산) 외에도 트라코스타틴 (trichostatin, TSA) 또는 그 유도체 등을 사용할 수 있으며, 상기 유도체는 약제학적으로 허용가능한 각종 무기염 또는 유기염을 포함한다. 처리 농도는 너무 낮으면 효과를 보기 어렵고, 농도가 너무 높으면 독성을 가지게 되므로 세포의 종류에 따라 적정한 농도를 확인해야 한다. In addition to the histone deacetylase inhibitor (HDAC inhibitor) VPA (valproic acid, 2-propylpentanoic acid), trachostatin (TSA) or a derivative thereof may be used, and the derivative may be variously pharmaceutically acceptable. Inorganic or organic salts. If the treatment concentration is too low, it will be difficult to see the effect. If the concentration is too high, it will be toxic, so it is necessary to check the appropriate concentration according to the cell type.
본 발명에서 "퍼모파민 (purmorphamine)"은 퓨린화합물 (purine compound)로서, Shh 신호체계에 관여하는 것으로 알려져 있다. 상기 퍼모파민은 Shh 시그널을 유도할 수 있다면 특별한 제한이 있는 것은 아니며 다양한 유도체가 사용될 수 있다. 예를 들어 2-(1-Naphthoxy)-6-(4-morpholinoanilino)-9-cyclohexylpurin) 등을 시중에서 구입하여 사용할 수 있다. 상기 퍼모파민은 신경줄기세포 유사세포로 역분화를 유도하기 위하여 통상적으로 사용되는 배지에 처리하면 된다. 이렇게 Shh 유사체인 퍼모파민을 처리하면 인간 섬유아세포로부터 신경줄기세포를 제조하기 위해 유전자를 도입할 필요가 없는 이점이 있다. 상기 퍼모파민은 상기 배지에 유효 농도로 포함되도록 한다. 배지의 종류와 배양방법 등 당분야에서 잘 알려진 요소에 따라 퍼모파민의 유효 농도는 영향을 받을 수 있다. In the present invention, "purmorphamine" is a purine compound, and is known to be involved in the Shh signaling system. The permopamine is not particularly limited as long as it can induce the Shh signal, and various derivatives may be used. For example, 2- (1-Naphthoxy) -6- (4-morpholinoanilino) -9-cyclohexylpurin) can be purchased commercially. The permophamine may be treated with a medium commonly used to induce differentiation into neural stem cell-like cells. This treatment of Shh analogs, permophamine, there is an advantage that does not need to introduce a gene to produce neural stem cells from human fibroblasts. The permophamine is included in the medium at an effective concentration. Effective concentrations of permopamine may be affected by factors well known in the art, such as media type and culture method.
본 발명에서 "A-8301"은 TGF-β 타입 I 리셉터 억제제(TGF-β type I receptor inhibitor)로 TGF-β 타입 I 리셉터에 결합하여 TGF-β 타입 I의 정상적인 신호전달 과정을 방해하는 물질을 의미한다(Tojo M et al., Cancer Sci. 96: 791-800, 2005). TGF-β 타입 I (Transforming growth factor-β type I)은 세포증식, 분화 및 다양한 종류의 세포에 다양한 작용을 하는 다기능성 펩타이드로서, 이러한 다기능성은 지방세포형성, 근세포형성, 골세포형성, 상피세포 분화 등 여러 조직의 성장 및 분화에서 중추적인 역할을 하며, 신경줄기세포의 증식을 억제한다고 알려져 있다. 상기 TGF-β 타입 I 리셉터 억제제 A-8301 외에도 SB432542을 포함한 모든 TGF-β 타입 I 리셉터 억제제가 사용될 수 있으며, 상기 저분자성 물질 TGF-β 타입 I 리셉터 억제제 A-8301는 시중에서 구입하여 사용하거나 제조하여 사용할 수 있으며 상기 억제제 처리에 의해 신경줄기세포증식이 촉진된다. 상기 TGF-β 타입 I 리셉터 억제제 A-8301는 배지에 처리하여 유효 농도로 포함되도록 한다. 배지의 종류 및 배양방법 등 당분야에서 잘 알려진 요소에 따라 유효농도는 영향을 받을 수 있다. In the present invention, "A-8301" is a TGF-β type I receptor inhibitor that binds to the TGF-β type I receptor and interferes with the normal signaling process of TGF-β type I. (Tojo M et al., Cancer Sci. 96: 791-800, 2005). TGF-β type I (Transforming growth factor-β type I) is a multifunctional peptide that has various functions on cell proliferation, differentiation and various cell types. It is known to play a pivotal role in the growth and differentiation of various tissues such as cell differentiation and to inhibit the proliferation of neural stem cells. In addition to the TGF-β type I receptor inhibitor A-8301, any TGF-β type I receptor inhibitor including SB432542 may be used, and the low molecular weight TGF-β type I receptor inhibitor A-8301 may be purchased or used on the market. Can be used to promote neural stem cell proliferation by the inhibitor treatment. The TGF-β type I receptor inhibitor A-8301 is treated in the medium to be included in an effective concentration. Effective concentrations may be affected by factors well known in the art, such as media type and culture method.
본 발명에서 "SB431542"는 ALK5(Activin Receptor-Like Kinase-5) 억제제로 신속한 역분화를 유도하여 염색체 안정성을 향상시키는 역할을 한다.In the present invention, "SB431542" serves to improve chromosome stability by inducing rapid reverse differentiation with an ALK5 (Activin Receptor-Like Kinase-5) inhibitor.
본 발명에서 "CHIR99021"은 GSK (glycogen synthase kinase) 억제제로 GSK 신호전달과정에 관여하는 GSK1/2의 업스트림(upstream) 분자인 GSK1/2를 표적으로 하는 물질이다. 상기 CHIR99021은 아미노피리미딘(aminopyrimidine)으로 표시되며, CHIR99021 외에도 모든 GSK 억제제가 사용될 수 있다. In the present invention, "CHIR99021" is a GSK (glycogen synthase kinase) inhibitor and is a substance targeting GSK1 / 2, an upstream molecule of GSK1 / 2 involved in GSK signaling. The CHIR99021 is represented as aminopyrimidine, and all GSK inhibitors may be used in addition to CHIR99021.
본 발명에 있어서, DZNep (Deazaneplanocin A) 또는 5-AZA를 추가로 포함하는 것이 바람직하나, 이에 한정되는 것은 아니다. 또한, PD0325901, 아스코브산 (Ascorbic acid), PS48, 포스콜린 (Forskolin) 및 트라닐시프로민 (Tranylcypromine)으로 구성되는 군에서 선택된 1종 이상의 소분자 화합물을 추가로 더 포함하는 것이 바람직하나, 이에 한정되는 것은 아니다.In the present invention, it is preferable to further include DZNep (Deazaneplanocin A) or 5-AZA, but is not limited thereto. In addition, it is preferable to further include at least one small molecule compound selected from the group consisting of PD0325901, Ascorbic acid, PS48, Forskolin and Tranylcypromine, but It is not limited.
본 발명에서, "5-아자싸이티딘(5-Azacitidine, 5-AZA)" 은 4-아미노-1-β-D-리보푸라노실-1,3,5-트리아진-2(1H)-온(4-amino-1-β-D-ribofuranosyl-1,3,5-triazin-2(1H)-one) 로 명명되며, DNA 탈메틸화 작용을 가지는 것으로 알려진 화합물이다. 또한, 5-아자싸이티딘은, 백혈병, 림프종 및 다양한 고형 종양에 대해 활성을 나타내는 항신생물성 약물로도 알려져 있다. 상기 5-아자싸이티딘은 당업계에 알려진 일반적인 화학적 합성 방법에 의하여 합성하여 수득하거나, 시판되는 것을 구입하여 사용할 수 있다 (예, Sigma-Aldrich (St Louis, Mo, USA)).In the present invention, "5-Azacitidine (5-AZA)" means 4-amino-1-β-D-ribofuranosyl-1,3,5-triazine-2 (1H) -one It is named (4-amino-1-β-D-ribofuranosyl-1,3,5-triazin-2 (1H) -one) and is a compound known to have a DNA demethylation action. 5-azacytidine is also known as an anti-neoplastic drug that is active against leukemia, lymphoma and various solid tumors. The 5-azacytidine can be obtained by synthesizing by a general chemical synthesis method known in the art, or can be purchased commercially available (eg Sigma-Aldrich (St Louis, Mo, USA)).
본 발명에서 PD0325901는 MEK/ERK 신호전달 경로 저해제 중 하나이며, 아스코브산은 수용성 비타민의 하나로 강한 항산화성을 가진다.In the present invention, PD0325901 is one of the inhibitors of MEK / ERK signaling pathway, and ascorbic acid is one of the water-soluble vitamins and has strong antioxidant properties.
본 발명에서 포스콜린은 다데닐산고리화효소의 촉매소단위를 직접 활성화하여 세포내 cAMP의 농도를 상승시키는 작용을 하며, 트라닐시프로민은 신경말단에서 정상적으로 노르에피네프린을 분해하는 효소인 모노아민산화효소 (MAO)를 억제하는 작용을 한다.In the present invention, phospholine acts to directly activate the catalytic subunit of dadenylate cyclase to increase the concentration of intracellular cAMP, and tranylcipromine is monoamine oxidation, an enzyme that normally degrades norepinephrine at the nerve endings. It acts to inhibit enzyme (MAO).
본 발명에 있어서, 배양 배지는 신경줄기세포 배양에 통상적으로 사용되는 배지를 모두 포함한다. 배양에 사용되는 배지는 일반적으로 탄소원, 질소원 및 미량원소 성분을 포함한다. 이에 한정되는 것은 아니나, 상기 배지는 DMEM/F12, N2, B27, bFGF(basic fibroblast growth factor), 및 EGF(epidermal growth factor)로 이루어지는 것이 바람직하다. In the present invention, the culture medium includes all media commonly used for culturing neural stem cells. The medium used for culturing generally contains a carbon source, a nitrogen source and a trace element component. Although not limited thereto, the medium is preferably composed of DMEM / F12, N2, B27, basic fibroblast growth factor (bFGF), and epidermal growth factor (EGF).
본 발명의 유도된 줄기세포 배양을 위한 배지는 당업계에 알려진 기본 배지를 제한 없이 사용할 수 있다. 기본 배지는 인위적으로 합성하여 제조할 수 있으며, 상업적으로 제조된 배지를 사용할 수도 있다. 상업적으로 제조되는 배지의 예를 들면, DMEM(Dulbecco's Modified Eagle's Medium), MEM(Minimal Essential Medium), BME(Basal Medium Eagle), RPMI 1640, F-10, F-12, α-MEM(α-Minimal essential Medium), G-MEM(Glasgow's Minimal Essential Medium) 및 Isocove's Modified Dulbecco's Medium 등이 있으나, 이에 한정되는 것은 아니며 DMEM 배지일 수 있다. 본 발명의 구체적인 실시예에서는 DMEM 배지에 배양시켰다.The medium for inducing stem cell culture of the present invention can be used without limitation a basal medium known in the art. The basal medium may be prepared by artificially synthesizing, or a commercially prepared medium may be used. Examples of commercially prepared media include Dulbecco's Modified Eagle's Medium (DMEM), Minimal Essential Medium (MEM), Basic Medium Eagle (BME), RPMI 1640, F-10, F-12, α-MEM (α-Minimal). essential medium), G-MEM (Glasgow's Minimal Essential Medium), and Isocove's Modified Dulbecco's Medium, but are not limited thereto. In a specific embodiment of the present invention was cultured in DMEM medium.
본 발명에 있어서, 배양 기간은 10~15일인 것이 바람직하나, 이에 한정되는 것은 아니다.In the present invention, the culture period is preferably 10 to 15 days, but is not limited thereto.
본 발명에 있어서, 상기 세포를 계대배양한 후 부유 배양하여 스피어를 형성하는 단계; 및 상기 형성된 스피어를 부착 배양한 후 다시 부유 배양하는 단계를 추가로 포함하는 것이 바람직하나, 이에 한정되는 것은 아니다. 상기 부유 배양 및 부착 배양은 각각 7~10일 동안 배양하는 것이 바람직하며, 상기 형성된 스피어를 부착 배양한 후 다시 부유 배양하는 단계는 2~4회 반복하는 것이 바람직하나, 이에 한정되는 것은 아니다. In the present invention, the step of subcultured cells and suspended culture to form a sphere; And it is preferable to further include a step of the suspension culture after the attached spear formed culture, but is not limited thereto. Preferably, the suspension culture and the adhesion culture are cultured for 7 to 10 days, respectively, and the step of floating culture again after attaching the formed spheres is preferably repeated 2 to 4 times, but is not limited thereto.
본 발명에서, "신경줄기세포"는 자기복제능력을 가지고 있으며 뉴론(neuron) 및/또는 글리아(glia), 예를 들면, 성상세포(astrocyte), 희돌기교세포(oligodendrocyte) 및/또는 슈반세포(Schwann cell) 등으로 분화하는 다분화 능력을 가진 미분화세포이다. 신경 줄기세포는 특정한 신경계 세포를 만들어내는 신경전구세포나 글리아 전구세포의 단계를 거쳐서 신경세포(neural cell), 예를 들면 뉴론이나 글리아로 분화하게 된다.In the present invention, "nerve stem cells" have a self-replicating ability and neurons and / or glia, for example, astrocytes, oligodendrocytes and / or Schwann cells ( It is an undifferentiated cell having multi-differentiation ability to differentiate into Schwann cell). Neural stem cells are differentiated into neural cells, such as neurons or glia, through the steps of neural precursor cells or glia precursor cells that produce specific nervous system cells.
본 발명에 있어서, 상기 신경줄기세포는 nestin, sox1 또는 musashi1을 발현하는 것을 특징으로 할 수 있으며, 별아교세포 (astrocyte), 희소돌기아교세포 (oligodendrocyte), 뉴런 (neuron), 도파민 신경세포, 가바 신경세포, 운동 신경세포 및 콜린 신경세포로 구성된 군에서 선택되는 어느 하나 이상으로 분화되는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the neural stem cells may be characterized by expressing nestin, sox1 or musashi1, astrocytes, oligodendrocytes, neurons (neurons), dopamine neurons, gaba neurons , Motor neuron and choline neurons may be characterized in that the differentiation into any one or more selected from the group consisting of, but is not limited thereto.
본 발명에 있어서, 상기 신경줄기세포는 염색체 안정성을 유지시키는 것을 특징으로 할 수 있으며, 10계대 이상 미분화 상태를 유지하는 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the neural stem cells may be characterized by maintaining chromosome stability, and may be characterized by maintaining an undifferentiated state of 10 passages or more, but is not limited thereto.
인간 섬유아세포(Fibroblast)를 직접전환(Direct conversion) 방법을 이용하여 신경줄기세포로 유도하는 대부분의 방법은 신경줄기세포의 형성에 관련된 외부 유전자를 도입하는 방식으로 이루어지고 있다. 이때 다양한 방법을 통해 외부 유전자를 도입하게 되는데, 주로 이용되는 방법은 lentiviral 또는 retroviral 벡터 시스템을 이용하는 것이다. 바이러스를 이용하여 유전자를 도입하는 것은 외부 유전자의 무작위적인 인테그레이션(integration)으로 인한 유전적 불안정성(genomic instability)을 야기하여, 향후 환자에 임상적용 시 암이 발생할 가능성이 있다. 이러한 이유로 인해 점차적으로 외부 유전자를 주입하지 않고 소분자 물질(small molecule)을 이용하는 방법들이 제시되고 있는 실정이다. 그러나 최근 다양한 소분자 화합물들을 이용하여 직접전환을 유도하는 연구가 활발하게 진행되고 있음에도 불구하고 최소한 하나의 유전자는 이용되고 있으며, 유전자 도입 없이는 여전히 인간 체세포로부터 원하는 신경줄기세포로 전환할 수 없는 상태이다. Most methods of inducing human fibroblasts into neural stem cells using a direct conversion method are performed by introducing external genes related to neural stem cell formation. At this time, the external genes are introduced through various methods, and the most commonly used method is using a lentiviral or retroviral vector system. The introduction of genes using viruses causes genetic instability due to random integration of foreign genes, which may lead to cancer in future clinical applications. For this reason, methods for using small molecules without gradually injecting external genes have been proposed. However, despite the recent progress in research on inducing direct conversion using various small molecule compounds, at least one gene has been used, and without the introduction of genes, it is still unable to convert from human somatic cells to desired neural stem cells.
그러나, 본 발명 기술은 외부 유전자의 도입 없이 인간 섬유아세포에서부터 신경줄기세포를 유도하는 유전적 안정성이 확보된 방법으로써, 기존의 유전자를 이용한 유전적 결손을 유도하는 방법을 해결하고자 고안된 것이다.However, the technology of the present invention is a method of ensuring genetic stability of inducing neural stem cells from human fibroblasts without introducing an external gene, and is designed to solve a method of inducing genetic defects using existing genes.
본 발명에서는 소분자 물질의 조합만을 이용하여 인간 섬유아세포를 신경줄기세포로 직접전환 하였다. 이에, 기존의 기술이 가진 많은 문제점들, 예를 들면, 배아줄세포와 관련된 윤리적인 문제와 면역거부문제, 배아줄기세포와 역분화 줄기세포가 가지고 있는 종양형성 문제 등을 극복함으로써, 환자를 위한 세포치료제로 활용 가능성이 매우 높다. 뿐만 아니라, 뇌질환 환자 체세포를 이용한 직접적으로 신경줄기세포로의 제작은 신경세포의 손상 또는 사멸로 인한 뇌질환의 발병기전 연구를 위한 새로운 세포 모델로 활용될 수 있다. 이러한 방법으로 제작된 신경줄기세포는 역분화 줄기세포와 비교시 매우 빠르고, 경제적이다. 역분화 줄기세포는 역분화 줄기세포로 제작하는 과정과 이를 다시 신경세포로의 분화시키는데 소요되는 시간과 비용이 2배 이상 많다. In the present invention, human fibroblasts are directly converted to neural stem cells using only a combination of small molecule materials. Thus, by overcoming many of the problems of the existing technology, for example, ethical and immune rejection problems associated with embryonic stem cells, tumorigenesis problems of embryonic stem cells and dedifferentiated stem cells, It is very likely to be used as a cell therapy. In addition, the production of neural stem cells directly using somatic cells of brain disease patients can be used as a new cell model for studying the pathogenesis of brain diseases due to damage or death of nerve cells. Neural stem cells produced in this way are very fast and economical compared to dedifferentiated stem cells. De-differentiated stem cells are more than double the time and cost required to produce dedifferentiated stem cells and to differentiate them back into neurons.
또한, 성체 신경줄기세포와 본 발명에 따른 교차분화 신경줄기세포를 비교하면, 교차분화 신경줄기세포는 태아 또는 성체 뇌로부터 신경줄기세포를 확보할 필요가 없기 때문에 윤리적인 문제가 없고, 성체 줄기세포는 자가 재생능력이 제한되어 있지만, 교차분화 신경줄기세포는 자가 재생능력에 한계가 없어 원하는 만큼의 충분한 세포를 생산할 수 있다는 장점이 있다. 뿐만 아니라, 교차분화 신경줄기세포는 환자 본인의 세포를 이용하여 제작 가능하기 때문에 면역거부 반응이 없으며, 질병연구를 위한 환자 맞춤형 세포모델링이 가능하고, 개발된 약물의 환자 맞춤형 독성 평가 및 신약개발에 이용될 수 있다. 특히, 본 발명의 교차분화 신경줄기세포는 외부 유전자를 사용하지 않기 때문에 외부 유전자의 무분별한 삽입으로 인해 발생하는 종양형성의 가능성이 없어, 세포치료제로 활용 가능성이 높다할 것이다.In addition, when comparing adult neural stem cells with cross-differentiated neural stem cells according to the present invention, cross-differentiated neural stem cells do not have ethical problems because they do not need to secure neural stem cells from the fetus or the adult brain, and adult stem cells have self-renewal ability. Although limited, cross-differentiated neural stem cells have the advantage that they can produce as many cells as desired because there is no limit to self-renewal capacity. In addition, cross-differentiated neural stem cells can be produced using the patient's own cells, there is no immune rejection reaction, patient-specific cell modeling for disease research, patient-specific toxicity evaluation of the developed drug and new drug development Can be. In particular, since the cross-differentiated neural stem cells of the present invention do not use an external gene, there is no possibility of tumorigenesis caused by indiscriminate insertion of an external gene, and thus, the cross-differentiated neural stem cells of the present invention will be highly applicable to cell therapy.
따라서, 본 발명은 다른 관점에서 소분자 화합물을 포함하는 배지에서 인간섬유아세포를 배양하는 단계를 포함하는 방법에 의해 제조된 신경줄기세포를 함유하는 뇌질환 치료용 세포치료제에 관한 것이다.Accordingly, the present invention relates to a cell therapy agent for treating brain diseases containing neural stem cells produced by a method comprising culturing human fibroblasts in a medium containing a small molecule compound in another aspect.
본 발명에 있어서, 상기 뇌질환은 뇌졸중, 중풍, 뇌일혈, 뇌경색, 알츠하이머, 치매, 헌팅톤병, 파킨슨병, 다발성 경화증, 다발성 신경위축, 간질, 피크병 및 크로이츠펠트-야콥병인 것을 특징으로 할 수 있으나, 이에 한정되는 것은 아니다.In the present invention, the brain disease may be characterized by stroke, stroke, cerebral hemorrhage, cerebral infarction, Alzheimer's disease, dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, multiple nerve atrophy, epilepsy, peak disease and Creutzfeldt-Jakob disease. It is not limited to this.
본 발명은 뇌질환 치료를 위한 임상적용 가능한 신경줄기세포로 활용이 가능하며, 유전성 뇌 경질환 환자 유래 질병신경줄기세포를 제작할 경우 발병기전 연구에 직접적으로 활용될 수 있는 뇌질환 세포모델로 사용될 수 있고, 유전자 조작을 이용한 돌연변이 유전자를 정상 유전자로 대체 하게 되면 유전성 뇌질환 환자 치료를 위한 세포치료제로 사용될 수 있다.The present invention can be used as a clinically applicable neural stem cells for the treatment of brain diseases, and can be used as a brain disease cell model that can be directly used in pathogenesis research when producing diseased neuronal stem cells derived from patients with hereditary cerebral disease. By replacing the mutated gene with a normal gene, it can be used as a cell therapy for the treatment of patients with hereditary brain diseases.
본 발명의 용어 "세포치료제(cellular therapeutic agent)"란, 인간으로부터 분리, 배양 및 특수한 조작을 통해 제조된 세포 및 조직으로 치료, 진단 및 예방의 목적으로 사용되는 의약품(미국 FDA 규정)으로서, 세포 혹은 조직의 기능을 복원시키기 위하여 살아있는 자가, 동종, 또는 이종세포를 체외에서 증식 선별하거나 다른 방법으로 세포의 생물학적 특성을 변화시키는 등의 일련의 행위를 통하여 이러한 세포가 질병의 치료, 진단 및 예방의 목적으로 사용되는 의약품을 의미한다.As used herein, the term "cellular therapeutic agent" refers to a medicinal product (US FDA regulation) used for the purpose of treatment, diagnosis, and prevention of cells and tissues prepared through isolation, culture, and special manipulation from humans. Or through a series of actions such as proliferating and screening living autologous, allogeneic, or heterologous cells in vitro or otherwise altering the biological properties of a cell to restore tissue function. Means the drug used for the purpose.
본 발명에서 용어, "치료"는 상기 세포치료제의 투여로 질환의 증세가 호전되거나 이롭게 되는 모든 행위를 의미한다.In the present invention, the term "treatment" means any action that improves or benefits the condition of the disease by administration of the cell therapy agent.
본 발명의 세포치료제 조성물의 투여 경로는 목적 조직에 도달할 수 있는 한 어떠한 일반적인 경로를 통하여 투여될 수 있다. 비경구 투여, 예를 들어, 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피내 투여될 수 있으나, 이에 제한되지는 않는다.The route of administration of the cell therapy composition of the present invention may be administered via any general route as long as it can reach the desired tissue. Parenteral administration, for example, intraperitoneal administration, intravenous administration, intramuscular administration, subcutaneous administration, intradermal administration may be, but is not limited thereto.
상기 조성물은 세포 치료에 일반적으로 사용되는 약제학적 담체와 함께 적합한 형태로 제형화될 수 있다. '약학적으로 허용되는'이란 생리학적으로 허용되고 인간에게 투여될 때, 통상적으로 위장 장애, 현기증 등과 같은 알레르기 반응 또는 이와 유사한 반응을 일으키지 않는 조성물을 말한다. 약학적으로 허용되는 담체로는 예를 들면, 물, 적합한 오일, 식염수, 수성 글루코스 및 글리콜 등과 같은 비경구 투여용 담체 등이 있으며 안정화제 및 보존제를 추가로 포함할 수 있다. 적합한 안정화제로는 아황산수소나트륨, 아황산나트륨 또는 아스코르브산과 같은 항산화제가 있다. 적합한 보존제로는 벤즈알코늄 클로라이드, 메틸- 또는 프로필-파라벤 및 클로로부탄올이 있다. 그 밖의 약학적으로 허용되는 담체로는 다음의 문헌에 기재되어 있는 것을 참고로 할 수 있다 (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).The composition may be formulated in a suitable form with a pharmaceutical carrier generally used for cell therapy. 'Pharmaceutically acceptable' refers to a composition that is physiologically acceptable and does not cause an allergic or similar reaction, such as gastrointestinal disorders, dizziness or the like, when administered to a human. Pharmaceutically acceptable carriers include, for example, water, suitable oils, saline, carriers for parenteral administration such as aqueous glucose and glycols, and the like, and may further include stabilizers and preservatives. Suitable stabilizers include antioxidants such as sodium hydrogen sulfite, sodium sulfite or ascorbic acid. Suitable preservatives include benzalkonium chloride, methyl- or propyl-paraben and chlorobutanol. Other pharmaceutically acceptable carriers may be referred to those described in the following references (Remington's Pharmaceutical Sciences, 19th ed., Mack Publishing Company, Easton, PA, 1995).
또한 상기 조성물은 세포치료제가 표적 세포로 이동할 수 있는 임의의 장치에 의해 투여될 수도 있다. The composition may also be administered by any device in which the cell therapy agent can migrate to the target cell.
본 발명의 세포치료제 조성물은 질환의 치료를 위하여 치료학적으로 유효한 양의 세포치료제를 포함할 수 있다.The cell therapy composition of the present invention may include a therapeutically effective amount of cell therapy for the treatment of a disease.
용어 치료학적으로 유효한 양(therapeutically effective amount)은 연구자, 수의사, 의사 또는 기타 임상에 의해 생각되는 조직계, 동물 또는 인간에서 생물학적 또는 의학적 반응을 유도하는 유효 성분 또는 약학적 조성물의 양을 의미하는 것으로, 이는 치료되는 질환 또는 장애의 증상의 완화를 유도하는 양을 포함한다. The term therapeutically effective amount means an amount of an active ingredient or pharmaceutical composition that induces a biological or medical response in a tissue system, animal or human, as thought by a researcher, veterinarian, doctor or other clinician. This includes amounts that induce alleviation of the symptoms of the disease or disorder being treated.
본 발명의 조성물에 포함되는 세포치료제는 원하는 효과에 따라 변화될 것임은 당업자에게 자명하다. 그러므로 최적의 세포치료제 함량은 당업자에 의해 쉽게 결정될 수 있으며, 질환의 종류, 질환의 중증도, 조성물에 함유된 다른 성분의 함량, 제형의 종류, 및 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 동시 사용되는 약물을 비롯한 다양한 인자에 따라 조절될 수 있다. 상기 요소를 모두 고려하여 부작용 없이 최소한의 양으로 최대 효과를 얻을 수 있는 양을 포함하는 것이 중요하다. 예컨대, 본 발명의 줄기세포의 1일 투여량은 1.0×104 내지 1.0×1010 세포/kg 체중, 바람직하게는 1.0×105 내지 1.0×109 세포/kg 체중을 1회 또는 수회로 나누어 투여할 수 있다. 그러나, 유효성분의 실제 투여량은 치료하고자 하는 질환, 질환의 중증도, 투여경로, 환자의 체중, 연령 및 성별 등의 여러 관련 인자에 비추어 결정되어야 하는 것으로 이해되어야 하며, 따라서, 상기 투여량은 어떠한 면으로든 본 발명의 범위를 한정하는 것은 아니다.It will be apparent to those skilled in the art that the cell therapy agent included in the composition of the present invention will vary depending on the desired effect. Therefore, the optimal cell therapy content can be readily determined by one skilled in the art and includes the type of disease, the severity of the disease, the amount of other components contained in the composition, the type of formulation, and the age, weight, general health, sex and diet of the patient. It can be adjusted according to various factors including the time of administration, the route of administration and the rate of secretion of the composition, the duration of treatment, and the drugs used simultaneously. In consideration of all the above factors, it is important to include an amount that can achieve the maximum effect in a minimum amount without side effects. For example, the daily dose of stem cells of the present invention is 1.0 × 10 4 to 1.0 × 10 10 cells / kg body weight, preferably 1.0 × 10 5 to 1.0 × 10 9 cells / kg body weight divided into one or several times May be administered. However, it should be understood that the actual dosage of the active ingredient should be determined in light of several relevant factors such as the disease to be treated, the severity of the disease, the route of administration, the patient's weight, age and gender, and therefore the dosage may It does not limit the scope of the present invention in terms of aspects.
또한, 본 발명의 치료방법에서 본 발명의 세포치료제를 유효성분으로 포함하는 조성물은 직장, 정맥내(intravenous therapy, i.v), 동맥내, 복강내, 근육내, 흉골내, 경피, 국소, 안구내 또는 피내 경로를 통해 통상적인 방식으로 투여할 수 있다.In addition, the composition comprising the cell therapy of the present invention as an active ingredient in the treatment method of the present invention is rectal, intravenous (intravenous therapy, iv), intraarterial, intraperitoneal, intramuscular, intrasternal, transdermal, topical, intraocular Or via the intradermal route.
본 발명은 포유동물에게 치료학적으로 유효한 양의 본 발명의 상기 세포치료제 조성물을 투여하는 것을 포함하는 치료방법을 제공한다. 여기에서 사용된 용어 포유동물은 치료, 관찰 또는 실험의 대상인 포유동물을 말하며, 바람직하게는 인간을 말한다.The present invention provides a method of treatment comprising administering to a mammal a therapeutically effective amount of said cell therapy composition of the invention. The term mammal, as used herein, refers to a mammal that is the subject of treatment, observation or experiment, preferably human.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 요지에 따라 본 발명의 범위가 이들 실시예에 의해 제한되지 않는다는 것은 당업계에서 통상의 지식을 가진 자에 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention in more detail, it will be apparent to those skilled in the art that the scope of the present invention is not limited by these examples in accordance with the gist of the present invention. .
실시예 1: 소분자 화합물의 기능 확인 및 조합Example 1 Function Verification and Combination of Small Molecule Compounds
1-1: 소분자 화합물의 기능 확인1-1: Confirmation of function of small molecule compound
인간 섬유아세포를 신경줄기세포로 유도하기 위해 리프로그래밍(Reprogramming)에 관련된 다양한 소분자 화합물 중 13종을 선택적으로 선별하여 사용하였다 (표 1). In order to induce human fibroblasts into neural stem cells, 13 kinds of various small molecule compounds related to reprogramming were selectively selected and used (Table 1).
Figure PCTKR2016003819-appb-T000001
Figure PCTKR2016003819-appb-T000001
소분자 물질 각각의 기능을 확인하고 최적의 조합을 찾기 위해, 인간 섬유아세포 1×105개를 60mm dish에 준비하고 다음날 DMEM/F12, N2, B27, bFGF, EGF로 구성된 neurobasal medium에 소분자 물질 13개 (PD0325901, SB431542, Thiazovivin, Ascorbic acid, PS48, CHIR99021, Deazaneplanocin A, Valproic acid, Forskolin, Tranylcypromine, A8301, 5-AZA, Purmorphamine)를 하나씩 각각 첨가하여 처리하였다. 이후 2~3일마다 배양액을 바꿔주면서 세포의 형태학적 변화를 확인하였다 (도 1). 5일마다 계대배양을 진행하고 이 단계에서 유전자 발현 패턴을 확인하기 위해 일부 세포를 확보하였다. 이처럼 시기별로 얻어진 세포에서 섬유아세포 마커(Thy1), 신경줄기세포 마커 (nestin, sox1, sox2, pax6), MET 또는 EMT 마커 (snail. N-cadherin, E-cadherin), 내배엽과 중배엽 형성에 관련된 마커 (AFP, GATA4), 염색체 안정성 유지와 관련된 마커 (Zsacn4)의 유전자 발현 패턴을 quantitative PCR을 이용하여 확인하였다 (도 2). To confirm the function of each small molecule substance and to find the optimal combination, 1 × 10 5 human fibroblasts were prepared in a 60 mm dish and the next day 13 small molecule substances were placed in a neurobasal medium consisting of DMEM / F12, N2, B27, bFGF and EGF. (PD0325901, SB431542, Thiazovivin, Ascorbic acid, PS48, CHIR99021, Deazaneplanocin A, Valproic acid, Forskolin, Tranylcypromine, A8301, 5-AZA, Purmorphamine) were added one by one. After changing the culture solution every 2 to 3 days to confirm the morphological changes of the cells (Fig. 1). Subcultures were performed every 5 days, and some cells were obtained to confirm gene expression patterns at this stage. Fibroblast markers (Thy1), neural stem cell markers (nestin, sox1, sox2, pax6), MET or EMT markers (snail. AFP, GATA4), gene expression patterns of markers related to maintaining chromosomal stability (Zsacn4) were confirmed using quantitative PCR (FIG. 2).
그 결과, 8종의 소분자 물질 (Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021, Deazaneplanocin A, 5-AZA)이 신경줄기세포 마커 유전자의 발현을 뚜렷하게 증가시킨 것이 확인되었다.As a result, it was confirmed that eight small molecule substances (Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021, Deazaneplanocin A, 5-AZA) significantly increased the expression of neural stem cell marker genes.
1-2: 소분자 화합물의 조합1-2: Combination of small molecule compounds
가장 효율적인 신경줄기세포 제작조건을 위하여, 실시예 1-1에서 확인 한 8개의 소분자 물질을 한꺼번에 첨가한 조건에서부터 소분자 물질 1개씩을 뺀 다양한 조건의 배양액을 이용하여 섬유아세포가 신경줄기세포로 변화되는지를 확인하였다. 인간 섬유아세포 1×105개를 60mm dish에 준비하고 다음날부터 하기 표 2의 다양한 조건의 배양액을 2~3일마다 바꿔주면서 세포의 형태학적 변화를 확인하였다. 또한, 계대배양을 하면서 얻어진 세포를 통해 다양한 유전자의 발현 패턴의 변화를 관찰하였다.For the most efficient neural stem cell production conditions, the fibroblasts were transformed into neural stem cells using the culture medium under various conditions except one small molecule material from the conditions in which the eight small molecule materials identified in Example 1-1 were added all at once. It was. 1 × 10 5 human fibroblasts were prepared in a 60 mm dish, and the morphological changes of the cells were confirmed by changing the culture medium under various conditions every 2 to 3 days from the following day. In addition, changes in expression patterns of various genes were observed through the cells obtained during subculture.
Figure PCTKR2016003819-appb-T000002
Figure PCTKR2016003819-appb-T000002
그 결과, 신경줄기세포 마커의 유전자 발현을 증가시키는 6개(Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021)에서 8개(Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021, Deazaneplanocin A, 5-AZA)의 소분자 물질의 조합을 선정하였다. 이를 통하여 6~8개의 소분자 물질만을 이용하여 인간 섬유아세포를 신경줄기세포로 유도할 수 있음을 확인하였다. 또한, 동일한 인간 섬유아세포임에도 불구하고 세포가 유래한 근원의 종류에 따라서 신경줄기세포와 유사한 형태를 가지는 세포가 발견되는 시기가 다른 것을 확인하였다.As a result, eight (Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021, Deazaneplanocin A, 5-) increased the gene expression of neural stem cell markers (Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021). A combination of small molecule materials of AZA) was selected. It was confirmed that human fibroblasts can be induced into neural stem cells using only 6-8 small molecule materials. In addition, despite the same human fibroblasts, it was confirmed that the timing of the discovery of cells having a morphology similar to that of neural stem cells depends on the kind of the source from which the cells are derived.
실시예 2: 인간 섬유아세포로부터 신경줄기세포의 유도 및 배양Example 2: Induction and Cultivation of Neural Stem Cells from Human Fibroblasts
인간 섬유아세포를 신경줄기세포로 변환하는데 필요로 하는 소분자 물질의 조합이 정해짐에 따라, 안정적으로 유도하고 배양하는 조건을 확립 하고자 하였다. 더불어 신경줄기세포로 유도되는 효율을 확인하기 위해 최소 4개의 소분자 화합물이 첨가된 배양액을 이용하여 비교하였다. 먼저, 1×105개의 섬유아세포를 준비한 뒤, DMEM/F12, N2, B27, bFGF, EGF로 구성된 neurobasal medium에 4종(Thiazovivin, Valproic acid, Purmorphamine, A8301), 6종(Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021), 8종(Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021, Deazaneplanocin A, 5-AZA)의 소분자 화합물이 각각 첨가되어 있는 세 가지 조건의 배양액을 처리하였다. As the combination of small molecule materials needed to convert human fibroblasts into neural stem cells was determined, it was intended to establish conditions for stably inducing and culturing. In addition, in order to confirm the efficiency induced by neural stem cells, a comparison was made using a culture medium to which at least four small molecule compounds were added. First, 1 × 10 5 fibroblasts were prepared, and then 4 species (Thiazovivin, Valproic acid, Purmorphamine, A8301), 6 species (Thiazovivin, Valproic acid, Three kinds of culture medium containing Purmorphamine, A8301, SB431542, CHIR99021) and 8 small molecules (Thiazovivin, Valproic acid, Purmorphamine, A8301, SB431542, CHIR99021, Deazaneplanocin A, 5-AZA) were treated.
그 결과, 유도를 시작한지 3일쯤부터 세포의 형태가 서서히 변하기 시작하였다. 7~10일쯤 4개의 소분자 화합물이 첨가된 배양액 조건의 경우 세포의 형태가 섬유아세포 일때와 크게 변하지 않았으나, 6개와 8개의 소분자 화합물이 첨가된 배양액 조건에서는 신경줄기세포와 유사한 형태의 세포가 형성되었다. As a result, about 3 days after the induction, the morphology of the cells began to change slowly. In the culture condition of four small molecule compounds added about 7-10 days, the cell morphology did not change as much as that of fibroblasts. However, in the culture condition in which six and eight small molecule compounds were added, cells similar to neural stem cells were formed.
이후, 계대배양을 진행하여 줄기세포의 성질을 증가시키기 위한 목적으로 petri-dish를 이용하여 suspension으로 배양하였다. Suspension 방법으로 배양한 뒤 7-10일이 지나면 6개와 8개의 소분자 화합물이 첨가된 배양액 조건에서는 대부분의 세포들이 작은 sphere를 형성하게 된다. 반면, 4개의 소분자 화합물이 첨가된 조건에서는 sphere가 제대로 형성되지 않는 것을 확인하였다. 이렇게 형성된 작은 sphere는 PLO/FN이 코팅되어 있는 dish에 부착시키고 또 다시 7-10일 정도를 배양한다. 이 단계의 세포의 형태는 보다 신경줄기세포의 형태와 흡사해지는 것을 확인할 수 있었다 (도 3). Suspension 배양과 부착 배양을 2~4차례 반복하여 진행하자 6개와 8개의 소분자 화합물이 첨가된 배양액 조건에서 세포의 형태가 보다 명확하게 바뀌는 것을 확인할 수 있었다. 그러나 4개의 소분자 화합물이 첨가된 배양액에서는 계속적인 배양에도 불구하고 세포의 형태가 바뀌지 않는 것을 확인하였다. 이렇게 6개 또는 8개의 소분자 화합물을 첨가한 배양액을 통해 유도된 신경줄기세포는 계속적인 계대배양과 함께 오랜 시간동안 배양하여도 신경줄기세포의 형태를 유지하였다. Subsequently, passage was incubated in suspension using petri-dish for the purpose of increasing the properties of stem cells. After 7-10 days of incubation by the suspension method, most cells form small spheres under the culture conditions of 6 and 8 small molecule compounds. On the other hand, it was confirmed that spheres were not formed properly under the conditions in which the four small molecule compounds were added. The small spheres thus formed are attached to a PLO / FN-coated dish and incubated for 7-10 days. It was confirmed that the morphology of the cells at this stage is more similar to that of neural stem cells (FIG. 3). When the suspension culture and the adhesion culture were repeated two to four times, it was confirmed that the morphology of the cells changed more clearly in the culture conditions in which six and eight small molecule compounds were added. However, it was confirmed that the morphology of the cells did not change in the culture medium to which the four small molecule compounds were added, despite the continuous culture. The neural stem cells induced through the culture medium containing 6 or 8 small molecule compounds maintained the shape of the neural stem cells even when cultured for a long time with continuous passage.
실시예 3: 소분자 화합물로 유도된 인간 신경줄기세포의 특성 확인Example 3 Characterization of Human Neural Stem Cells Induced by Small Molecule Compounds
DMEM/F12 + N2B27에 6개의 소분자 화합물로 유도 및 유지한 인간 신경줄기세포가 신경줄기세포의 일반적인 특성을 나타내는지 확인하였다. 먼저, 신경줄기세포가 신경줄기세포의 마커를 발현하는지 확인하고자 PCR과 immunocytochemistry (ICC)를 진행하였다. 그 결과, 면역세포화학 (ICC) 염색을 통해 신경줄기세포가 nestin를 발현하는 것을 확인하였으며, PCR을 통해 신경줄기세포 마커 nestin, sox1, musashi1의 유전자 발현이 인간 배아줄기세포에서 유래한 신경줄기세포와 유사한 발현정도를 나타내는 것을 확인하였다 (도 4). It was confirmed that human neural stem cells induced and maintained with six small molecule compounds in DMEM / F12 + N2B27 exhibited general characteristics of neural stem cells. First, PCR and immunocytochemistry (ICC) were performed to determine whether neural stem cells express markers of neural stem cells. As a result, it was confirmed that neural stem cells express nestin through immunocytochemistry (ICC) staining, and PCR expression of the neural stem cell markers nestin, sox1, and musashi1 is similar to neural stem cells derived from human embryonic stem cells. It was confirmed that the degree (Fig. 4).
장기배양 동안에 신경줄기세포의 성질이 유지되는지 확인하고자 유도된 신경줄기세포의 초기단계 및 후기단계 각각에서 세포의 형태를 관찰하였다. 또한, 면역세포화학 (ICC) 염색을 통한 nestin의 발현 확인과 PCR을 이용한 신경줄기세포 마커 nestin, sox1, musashi1의 유전자 발현을 확인하였다 (도 5). 더불어 염색체 분석을 통하여 유도된 신경줄기세포의 초기단계 및 후기단계에 염색체 이상 유무를 확인하였으며 (도 6), 인간 배아줄기세포에서 유래한 신경줄기세포와 증식 및 유지배양 동안에 세포의 성장 속도를 비교하였다 (도 7). 그 결과, 유도된 신경줄기세포는 장기간 배양 동안에도 신경줄기세포의 형태와 성질을 유지하는 동시에 염색체 이상 없이 계속적인 배양이 가능함을 확인하였다. In order to check whether the properties of neural stem cells are maintained during long-term culture, the morphology of the cells was observed at each of the early and late stages of induced neural stem cells. In addition, the expression of nestin through immunocytochemistry (ICC) staining and gene expression of the nestin, sox1, and musashi1 neural stem cell markers using PCR were confirmed (FIG. 5). In addition, chromosomal analysis confirmed the presence or absence of chromosomal abnormalities in the early and late stages of the induced neural stem cells (Fig. 6), compared with the growth rate of the cells during the proliferation and maintenance of neural stem cells derived from human embryonic stem cells ( 7). As a result, the induced neural stem cells were found to be able to continue culturing without chromosomal abnormalities while maintaining the shape and properties of neural stem cells even during long-term culture.
이후, 후성 유전적 변화를 확인하기 위하여 신경줄기세포 마커인 nestin의 promoter 지역의 methylation/acetylation 유무를 bisulfite PCR로 진행한 결과, 섬유아세포의 특성이 신경줄기세포의 특성으로 완전히 바뀌었음을 확인할 수 있었다 (도 8).Subsequently, bisulfite PCR showed methylation / acetylation of the promoter region of nestin, a neuronal stem cell marker, to confirm epigenetic genetic changes. It was confirmed that the characteristics of fibroblasts were completely changed to the characteristics of neural stem cells (Fig. 8).
실시예 4: 유도된 인간 신경줄기세포의 in vitro 분화능력 확인Example 4: In vitro differentiation of induced human neural stem cells
실시예 1 내지 3을 통하여 소분자 물질을 이용하여 인간 섬유아세포에서부터 신경줄기세포를 유도하는 것이 성공적으로 수행되었다는 것을 확인하였다. 보다 구체적으로 신경줄기세포의 특성 및 이용가능성을 확인하기 위하여 in vitro 상에서의 분화 능력을 확인하였다. 먼저, 삼 신경세포인 별아교세포 (astrocyte), 희소돌기아교세포 (oligodendrocyte) 및 뉴런 (neuron)으로 분화를 진행하였다. Examples 1 to 3 confirmed that inducing neural stem cells from human fibroblasts using small molecule materials was successfully performed. More specifically, in order to confirm the characteristics and availability of neural stem cells, differentiation ability in vitro was confirmed. First, they differentiated into trigeminal neurons (astrocyte), oligodendrocyte (neuron) and neurons (neuron).
그 결과, 소분자 화합물에 의해 유도된 신경줄기세포는 성공적으로 삼 신경세포로 분화가 되는 것을 확인하였다 (도 9). As a result, it was confirmed that neural stem cells induced by the small molecule compound were successfully differentiated into trigeminal neural cells (FIG. 9).
이후, 다양한 종류의 신경세포로 분화가 되는지 확인해 본 결과, 도파민 신경세포, 가바 신경세포, 운동 신경세포, 콜린 신경세포 및 글루타메이트 신경세포로 분화가 되는 것을 확인하였다 (도 10). 이를 통하여 본 발명으로 유도된 인간 신경줄기세포는 다양한 신경세포로의 분화가 가능함을 확인하였다. Then, as a result of confirming that the differentiation of various types of neurons, it was confirmed that the differentiation into dopamine neurons, Gaba neurons, motor neurons, choline neurons and glutamate neurons (Fig. 10). Through this, it was confirmed that the human neural stem cells induced by the present invention can be differentiated into various neurons.
이러한 인간 섬유아세포을 이용한 인간 신경줄기세포로의 유도, 증식 및 다양한 종류의 기능성 신경세포로의 분화능력은 인간의 뇌질환 치료를 위한 세포치료제로써의 활용 가능성이 매우 높다는 보여준다.Induction, proliferation, and differentiation into various types of functional neurons using human fibroblasts show that human fibroblasts are highly useful as cell therapeutics for the treatment of brain diseases.
실시예 5: 유도된 인간 신경줄기세포의 in vivo 분화능력 확인Example 5: In vivo differentiation of induced human neural stem cells
실시예 3 및 4에서는 소분자 물질을 이용하여 인간 섬유아세포에서부터 유도된 신경줄기세포가 성공적으로 삼신경세포로 분화가 가능하다는 것을 in vitro상으로 확인하였다. In Examples 3 and 4 it was confirmed in vitro that the neural stem cells derived from human fibroblasts can be successfully differentiated into trigeminal nerve cells using small molecule materials.
이에, 소분자 물질을 이용하여 인간 섬유아세포에서부터 유도된 신경줄기세포의 in vivo에서의 분화 능력과 종양형성 유무를 관찰하기 위하여, 마우스 (오리엔트바이오, Balb/c)의 뇌에 유도된 인간 신경줄기세포를 이식하였다. 이후, 3개월 내지 7개월 동안 유도된 인간 신경줄기세포가 이식된 생쥐를 지속 관찰하였다.In order to observe the in vivo differentiation capacity and tumor formation of neural stem cells derived from human fibroblasts using small molecule materials, human neural stem cells induced in the brain of mouse (Oriental Bio, Balb / c) were transplanted. It was. Then, the mice transplanted with human neural stem cells induced for 3 to 7 months were continuously observed.
그 결과, 소분자 화합물에 의해 유도된 신경줄기세포가 이식된 생쥐의 뇌는 3개월 내지 7개월 동안 외형적으로 종양형성이 관찰되지 않았고 (도 11A), H&E (Haematoxylin and Eosin) 염색법으로 뇌 조직를 확인하였을 때도 종양형성이 관찰되지 않음을 확인하였다 (도 11B). 또한, 유도된 신경줄기세포는 신경줄기세포 마커발현을 통해 성공적으로 이식된 것을 확인하였으며 (도 11C), 이식 3개월 내지 7개월 후 유도된 신경줄기세포는 인간세포-특이 마커 및 신경세포-특이 마커의 발현을 통해 이식된 세포가 신경세포로 분화되었음을 확인하였다 (도 11D). 이는 소분자 화합물에 의해 유도된 인간 신경줄기세포가 이식 후 종양형성 없이 신경세포로 분화가 가능하다는 것을 나타낸다.As a result, the brain of the mouse transplanted with the neural stem cells induced by the small molecule compound showed no tumor formation externally for 3 to 7 months (FIG. 11A), and brain tissue was confirmed by H & E (Haematoxylin and Eosin) staining. It was also confirmed that no tumor formation was observed (FIG. 11B). In addition, it was confirmed that the induced neural stem cells were successfully transplanted through the expression of neural stem cell markers (FIG. 11C), and the induced neural stem cells 3 to 7 months after transplantation expressed human cell-specific markers and neuron-specific markers. It was confirmed that the transplanted cells were differentiated into neurons (FIG. 11D). This indicates that human neural stem cells induced by small molecule compounds can be differentiated into neurons without transplantation after transplantation.
이러한 유도 신경줄기세포는 신경세포의 발생학적 연구 및 뇌질환 발병 기전을 연구하기 위한 최적의 모델 세포로 활용이 가능하며, 종양을 발생시키지 않는 장점에 의해 인간의 뇌질환 치료를 위한 세포치료제로써의 활용 가능성이 매우 높다.These induced neural stem cells can be used as an optimal model cell to study the development of neurons and the pathogenesis of brain disease, and as a cell therapy for the treatment of brain diseases in humans due to the advantage of not generating tumors. The probability is very high.
본 발명에 따른 유전자 도입없이 소분자 물질만을 이용하여 인간 섬유아세포를 신경줄기세포로 직접 전환하는 방법은 유전적으로 안정한 신경줄기세포의 유도를 통해 세포치료에 이용할 만큼 충분한 양의 세포 확보 및 다양한 종류의 기능성 신경세포로 분화가 가능하고, 종양을 발생시키지 않으므로 뇌질환 세포치료제로 활용에 유용하다.The method of directly converting human fibroblasts into neural stem cells using only small molecule materials without introducing the genes according to the present invention secures a sufficient amount of cells and various kinds of functional neurons for use in cell therapy through induction of genetically stable neural stem cells. Because it can be differentiated and does not generate tumors, it is useful for brain disease cell therapy.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific part of the present invention in detail, it is obvious to those skilled in the art that such a specific description is only a preferred embodiment, thereby not limiting the scope of the present invention. something to do. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (14)

  1. 티아조비빈(Thiazovivin), 발프로익 산(Valproic acid), 퍼모파민(Purmorphamine), A8301, SB431542 및 CHIR99021를 포함하는 배지에서 인간 섬유아세포를 배양하는 단계를 포함하는 신경줄기세포의 제조방법.A method for producing neural stem cells, comprising culturing human fibroblasts in a medium comprising thiazovivin, Valproic acid, Permorphamine, A8301, SB431542 and CHIR99021.
  2. 제1항에 있어서, DZNep (Deazaneplanocin A) 또는 5-AZA를 추가로 포함하는 신경줄기세포의 제조방법.The method of claim 1, further comprising DZNep (Deazaneplanocin A) or 5-AZA.
  3. 제2항에 있어서, PD0325901, 아스코브산 (Ascorbic acid), PS48, 포스콜린 (Forskolin) 및 트라닐시프로민 (Tranylcypromine)으로 구성되는 군에서 선택된 1종 이상의 소분자 화합물을 추가로 포함하는 것을 특징으로 하는 신경줄기세포의 제조방법.The method of claim 2, further comprising at least one small molecule compound selected from the group consisting of PD0325901, Ascorbic acid, PS48, Forskolin, and Tranylcypromine. Method for producing neural stem cells.
  4. 제1항에 있어서, 상기 배지는 N2, B27, bFGF 및 EGF가 포함된 DMEM/F12인 것을 특징으로 하는 신경줄기세포의 제조방법.The method of claim 1, wherein the medium is DMEM / F12 containing N2, B27, bFGF, and EGF.
  5. 제1항에 있어서, 상기 배양은 10~15일 동안 수행하는 것을 특징으로 하는 신경줄기세포의 제조방법.The method of claim 1, wherein the culturing is carried out for 10 to 15 days.
  6. 제1항에 있어서, 상기 세포를 계대배양한 후 부유 배양하여 스피어를 형성하는 단계; 및 상기 형성된 스피어를 부착 배양한 후 다시 부유 배양하는 단계를 추가로 포함하는 것을 특징으로 하는 신경줄기세포의 제조방법.The method of claim 1, further comprising: subcultured with the cells, followed by suspension culture to form a sphere; And culturing the attached spheres and then culturing the suspension again.
  7. 제6항에 있어서, 상기 부유 배양 및 부착 배양은 각각 7~10일 동안 배양하는 것을 특징으로 하는 신경줄기세포의 제조방법.7. The method of claim 6, wherein the suspension culture and the adhesion culture are cultured for 7 to 10 days, respectively.
  8. 제6항에 있어서, 상기 형성된 스피어를 부착 배양한 후 다시 부유 배양하는 단계는 2~4회 반복하는 것을 특징으로 하는 신경줄기세포의 제조방법.According to claim 6, The method of producing neural stem cells, characterized in that the step of culturing the suspension attached again after the culture attached to the formed spheres.
  9. 제1항에 있어서, 상기 신경줄기세포는 nestin, sox1 또는 musashi1을 발현하는 것을 특징으로 하는 신경줄기세포의 제조방법.The method of claim 1, wherein the neural stem cells express nestin, sox1, or musashi1.
  10. 제1항에 있어서, 상기 신경줄기세포는 별아교세포 (astrocyte), 희소돌기아교세포 (oligodendrocyte), 뉴런 (neuron), 도파민 신경세포, 가바 신경세포, 운동 신경세포 및 콜린 신경세포로 구성된 군에서 선택되는 어느 하나 이상으로 분화되는 것을 특징으로 하는 신경줄기세포의 제조방법.According to claim 1, wherein the neural stem cells (astrocyte), oligodendrocyte (oligodendrocyte), neurons (neuron), dopamine neurons, gaba neurons, motor neurons and choline neurons are selected from the group consisting of Method for producing a neural stem cell, characterized in that it is differentiated into any one or more.
  11. 제1항에 있어서, 염색체 안정성을 유지시키는 것을 특징으로 하는 신경줄기세포의 제조방법.The method of producing neural stem cells according to claim 1, wherein the chromosome stability is maintained.
  12. 제1항에 있어서, 상기 신경줄기세포는 10계대 이상 미분화 상태를 유지하는 것을 특징으로 하는 신경줄기세포의 제조방법.The method of claim 1, wherein the neural stem cells are maintained in an undifferentiated state for 10 passages or more.
  13. 제1항 내지 제12항 중 어느 한 항의 방법에 의해 제조된 신경줄기세포를 함유하는 뇌질환 치료용 세포치료제.Cell therapy for the treatment of brain diseases containing neural stem cells produced by the method of any one of claims 1 to 12.
  14. 제13항에 있어서, 상기 뇌질환은 뇌졸중, 중풍, 뇌일혈, 뇌경색, 알츠하이머, 치매, 헌팅톤병, 파킨슨병, 다발성 경화증, 다발성 신경위축, 간질, 피크병 및 크로이츠펠트-야콥병으로 구성된 군에서 선택되는 것을 특징으로 하는 세포치료제.The method of claim 13, wherein the brain disease is selected from the group consisting of stroke, stroke, cerebral hemorrhage, cerebral infarction, Alzheimer's disease, dementia, Huntington's disease, Parkinson's disease, multiple sclerosis, multiple neurotrophic, epilepsy, peak disease and Creutzfeldt-Jakob disease Cell therapy, characterized in that.
PCT/KR2016/003819 2015-04-13 2016-04-12 Method for directly converting human fibroblasts into neural stem cells using small molecule compounds WO2016167528A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201680019389.1A CN107454913B (en) 2015-04-13 2016-04-12 Method for direct transformation of human fibroblasts into neural stem cells using small molecules
JP2017538402A JP6599468B2 (en) 2015-04-13 2016-04-12 Method of directly converting human fibroblasts into neural stem cells using small molecule compounds
US15/545,314 US10711245B2 (en) 2015-04-13 2016-04-12 Direct conversion method of human fibroblasts into neural stem cells using small molecules

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150051993 2015-04-13
KR10-2015-0051993 2015-04-13
KR1020160044187A KR101816103B1 (en) 2015-04-13 2016-04-11 Direct Conversion Method of Human Fibroblasts into Neural Stem Cells Using Small Molecules
KR10-2016-0044187 2016-04-11

Publications (1)

Publication Number Publication Date
WO2016167528A1 true WO2016167528A1 (en) 2016-10-20

Family

ID=57126537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003819 WO2016167528A1 (en) 2015-04-13 2016-04-12 Method for directly converting human fibroblasts into neural stem cells using small molecule compounds

Country Status (1)

Country Link
WO (1) WO2016167528A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321354A4 (en) * 2015-05-19 2018-11-14 Stemlab Inc. Method for inducing oligodendrocyte precursor cells from oct4-induced human somatic cells through direct reprogramming
CN112384613A (en) * 2018-07-10 2021-02-19 株式会社片冈制作所 Method for preparing nerve-like cells
KR102637401B1 (en) * 2022-09-05 2024-02-16 주식회사 스마트셀랩 Lenograstim leading to induce stem cells into motor neuron progenitor cells and differentiate into motor neuron

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070089018A (en) * 2006-02-27 2007-08-30 주식회사 임젠 De-differentiation of astrocytes into neural stem cell using shh
KR20110124106A (en) * 2010-05-10 2011-11-16 고려대학교 산학협력단 Generation composition for induced pluripotent stem cells with shh, fgfr tyrosine kinase inhibitor, mek inhibitor and gsk inhibitor treatment and method of manufacturing induced pluripotent stem cells using the same
KR20130085767A (en) * 2012-01-20 2013-07-30 고려대학교 산학협력단 Method for induction neuroepithelial cell and neural stem cell from somatic cells using direct reprogramming strategy without genetic modification
US20150030570A1 (en) * 2012-02-29 2015-01-29 Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Culture medium for preparing neural stem cells and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070089018A (en) * 2006-02-27 2007-08-30 주식회사 임젠 De-differentiation of astrocytes into neural stem cell using shh
KR20110124106A (en) * 2010-05-10 2011-11-16 고려대학교 산학협력단 Generation composition for induced pluripotent stem cells with shh, fgfr tyrosine kinase inhibitor, mek inhibitor and gsk inhibitor treatment and method of manufacturing induced pluripotent stem cells using the same
KR20130085767A (en) * 2012-01-20 2013-07-30 고려대학교 산학협력단 Method for induction neuroepithelial cell and neural stem cell from somatic cells using direct reprogramming strategy without genetic modification
US20150030570A1 (en) * 2012-02-29 2015-01-29 Guangzhou Institutes of Biomedicine and Health Chinese Academy of Sciences Culture medium for preparing neural stem cells and use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XI, G. ET AL.: "Induced Neural Stem Cells Generated from Rat Fibroblasts", GENOMICS PROTEOMICS BIOINFONNATICS, vol. 11, no. 5, October 2013 (2013-10-01), pages 312 - 319, XP055323553 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3321354A4 (en) * 2015-05-19 2018-11-14 Stemlab Inc. Method for inducing oligodendrocyte precursor cells from oct4-induced human somatic cells through direct reprogramming
AU2016264166B2 (en) * 2015-05-19 2019-09-19 Stemlab Inc. Method of inducing oligodendrocyte precursor cells from oct4 introduced human somatic cells through direct reprogramming
US10767163B2 (en) 2015-05-19 2020-09-08 Stemlab Inc. Method for inducing oligodendrocyte precursor cells from Oct4-induced human somatic cells through direct reprogramming
US11572540B2 (en) 2015-05-19 2023-02-07 Stemlab Inc. Method for inducing oligodendrocyte precursor cells from OCT4-induced human somatic cells through direct reprogramming
CN112384613A (en) * 2018-07-10 2021-02-19 株式会社片冈制作所 Method for preparing nerve-like cells
KR102637401B1 (en) * 2022-09-05 2024-02-16 주식회사 스마트셀랩 Lenograstim leading to induce stem cells into motor neuron progenitor cells and differentiate into motor neuron

Similar Documents

Publication Publication Date Title
KR101816103B1 (en) Direct Conversion Method of Human Fibroblasts into Neural Stem Cells Using Small Molecules
EP2099901B1 (en) Use of a composition contaning human umbilical cord blood-derived mesenchymal stem cell for inducing differentiation and proliferation of neural precursor cells or neural stem cells to neural cells
US10724000B2 (en) Small molecule based conversion of somatic cells into neural crest cells
US9428731B2 (en) Technologies, methods, and products of small molecule directed tissue and organ regeneration from human pluripotent stem cells
WO2016167528A1 (en) Method for directly converting human fibroblasts into neural stem cells using small molecule compounds
EP1705245A1 (en) Neural stem cells
WO2010018996A2 (en) Human neural stem cell, and pharmaceutical composition for the treatment of central or peripheral nervous system disorders and injuries using same
JP4126060B2 (en) Differentiation of mesenchymal stem cells into neurons and neuronal-containing drug components for neurodegenerative diseases
WO2018160028A1 (en) Medium composition for neuron differentiation and method for differentiating somatic cells into neurons using same medium composition
KR101548318B1 (en) Method for generation of neuronal precursor cells, neurons, oligodendrocytes, astrocytes or dopaminergic neurons from somatic cell by neural-specific and neurotrophic factors
Wang et al. Cytokines induce monkey neural stem cell differentiation through Notch signaling
WO2013119026A1 (en) Method for differentiating stem cells into neurons
WO2023054825A1 (en) Medium composition for culturing urine-derived stem cell, method for isolating and culturing urine-derived stem cell using same, urine-derived stem cell with improved therapeutic function for renal disease, and cell therapy product composition containing same
WO2016032152A1 (en) Method for producing astrocytes
Zhao et al. The multi-potentiality of skin-derived stem cells in pigs
Meyer et al. Fetal mouse mesencephalic NPCs generate dopaminergic neurons from post-mitotic precursors and maintain long-term neural but not dopaminergic potential in vitro
WO2019177270A1 (en) Method for isolating and culturing neural stem cells with high efficiency
WO2015080376A1 (en) Method for differentiating nerve cells and hair cells from placental chorion or warthon's jelly-derived mesenchymal stem cells
WO2022045723A1 (en) Composition for promoting differentiation of neural stem cells into dopaminergic neurons
WO2016186346A1 (en) Method for inducing oligodendrocyte precursor cells from oct4-induced human somatic cells through direct reprogramming
WO2023204567A1 (en) Method for converting human somatic cells into proliferative neural stem cells
CN110885787A (en) Method for differentiating umbilical cord mesenchymal stem cells into dopaminergic neurons
KR20220025687A (en) A composition for promoting differentiation of neural stem cells into dopaminergic neurons
WO2016056689A1 (en) Method for proliferating neural progenitor cells and composition for treating nerve disorders containing proliferated neural progenitor cells
WO2020054962A1 (en) Compositions for inhibiting teratoma formation and growth comprising timp-1 and timp-2 as effective components

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780251

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017538402

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15545314

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780251

Country of ref document: EP

Kind code of ref document: A1