WO2016167383A1 - System for monitoring multiple harmful substances - Google Patents
System for monitoring multiple harmful substances Download PDFInfo
- Publication number
- WO2016167383A1 WO2016167383A1 PCT/KR2015/003748 KR2015003748W WO2016167383A1 WO 2016167383 A1 WO2016167383 A1 WO 2016167383A1 KR 2015003748 W KR2015003748 W KR 2015003748W WO 2016167383 A1 WO2016167383 A1 WO 2016167383A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- cable
- light
- optical
- optical cable
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B17/00—Fire alarms; Alarms responsive to explosion
- G08B17/10—Actuation by presence of smoke or gases, e.g. automatic alarm devices for analysing flowing fluid materials by the use of optical means
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/12—Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
- G08B21/14—Toxic gas alarms
-
- G—PHYSICS
- G08—SIGNALLING
- G08B—SIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
- G08B21/00—Alarms responsive to a single specified undesired or abnormal condition and not otherwise provided for
- G08B21/02—Alarms for ensuring the safety of persons
- G08B21/12—Alarms for ensuring the safety of persons responsive to undesired emission of substances, e.g. pollution alarms
- G08B21/16—Combustible gas alarms
Definitions
- the present invention relates to a multi-hazard monitoring system for real-time detection of contamination of various harmful chemicals, including gas and fire smoke, and to measure the concentration of pollution. More specifically, the present invention relates to a combination of spectral principles and light sources. It is a multi-hazard monitoring system that measures and alerts to environmentally harmful environmental substances in real time by measuring chemicals.
- Light which is electromagnetic waves, includes invisible light, such as ultraviolet rays with shorter wavelengths and infrared rays with longer wavelengths, based on visible visible light.
- Infrared, visible and ultraviolet light can be used for material composition analysis, and the advent of high quality light, such as laser beams, has made it possible to analyze fine dust and measure O2 using the 760 nanometer band.
- Infrared rays have been used mainly for chemical composition and concentration analysis.
- the FT-IR (Fourier Transform Infrared Spectroscopy) method is especially known as the mid-infrared region (MIR region, thermal region, finger print), which is characterized by the vibration and rotational motion of molecules.
- MIR region Mid-infrared region
- Near-infrared can measure chemicals by detecting fire and overtone of mid-infrared band absorbing wave, and compared to mid-infrared band, it is relatively moisture resistant and selects materials for optical devices such as reflectors and transmission windows that control these lights.
- the absorption spectral characteristics of the finger print region band are highly valuable in terms of analytical chemistry, and the globa (a kind of ceramic heater), the only light source that can emit the mid infrared band at the same time, is limited in spectral quality.
- the solution is to use the wavelength conversion laser as a light source and to develop one chip array light source. There are many ways to improve.
- the targets of the monitoring system of hazardous chemical substances include various toxic gases, explosive gases, volatile organic compounds and carcinogens, which are mainly used in semiconductor factories, as well as greenhouse gases, fine dust, O2, O3, fire smoke, etc. to be.
- These systems require exceptional responsibility, precision to measure lower concentrations (Sensitivity & Precision), less interfering materials and stability to withstand the various adverse conditions in the field. It is a standard.
- Conventional harmful substance monitoring system has a type of analyzing the harmful substance by inhaling the harmful substance through the tube from each measuring point (process equipment of each semiconductor), and for such a hazardous substance monitoring system. It is disclosed in the call.
- such a conventional hazardous substance monitoring system is a form in which samples from multiple measuring points are sampled through a tube and analyzed in one analysis device, and it is possible to apply an expensive and high performance analysis device, but such an analysis device is usually FT-IR.
- the method is applied and causes malfunctions such as false alarms because accurate analysis cannot be performed due to spectral quality constraints of light source, chemical particle loss and neglect caused by sample sampling method, and interference by site environment. Had a problem.
- a fire detector has been developed and used as a hazardous substance monitoring system, and is disclosed in Korean Patent Laid-Open Publication No. 10-2014-0128535 for such a fire detector.
- Such a conventional fire detector is a case where malfunction is a problem and a useless material that does not respond to a fire. It is necessary to detect the occurrence of smoke in the early stage of full-scale fire development, and smoke detectors using infrared sensors sense only the energy level of some partial band centered on CO2 in the 4.3 micrometer band. There is always the possibility of false alarms being triggered and not detected, depending on the type of substance being burned or the type of substance being burned.
- the conventional fire detector is a type in which a light emitting unit, a light receiving unit, and a Fourier transform infrared analyzer are installed in an open path shape at a point to be measured.
- a light emitting unit a light receiving unit
- a Fourier transform infrared analyzer are installed in an open path shape at a point to be measured.
- the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a real-time multi-hazardous material monitoring system that is quick, verifiable and reliable.
- Multi-hazardous material monitoring system of the present invention for achieving the above object is composed of six light source cables each consisting of three optical fiber bundles, one detection cable consisting of one optical fiber, the six light sources Six optical fiber front ends of the eighteen optical fibers of the cable are arranged on the outer first concentric circle centering on the light incidence plane of the one detection cable, and the remaining twelve optical fiber front ends are located on the first concentric circle outside the first concentric circle.
- a plurality of probe devices to deceive And a light source module which is installed to be connected to the rear end of the optical cable, and supplies light sources having different wavelengths to each of the six light source cables, and analyzes the spectral signals detected by the one detection cable. And a measuring device having a spectrum analysis module for tracking the concentration and calculating the concentration.
- the light source module includes four light emitting diodes connected to four light source cables among the six light source cables, and one light source cable.
- It consists of a laser diode connected to the, and a tungsten halogen lamp connected to one light source cable, the probe device, the probe body of the cylindrical shape with the front and rear openings formed incision holes on both sides of the outer peripheral surface;
- a cover plate coupled to a rear end of the probe body and having a cable connection tube connected to a front end of the optical cable at a center thereof;
- a concave reflector installed at the front end of the probe body and reflecting the light irradiated from the front end of the optical cable to the inside of the probe body and converging to the detection cable disposed at the front end of the optical cable. It is done.
- It is installed to enable communication through the network with the measuring device, and displays the analyzed analysis data of harmful substances from the spectrum analysis module through a monitor, and a siren or alarm broadcast through a speaker to alert a dangerous situation according to the analysis data. It may be configured to further include; a control device for outputting or sending a warning message to the mobile communication terminal of the worker.
- the probe device the connector of the "b" shape that the rear end of the probe body is coupled in a fitting manner; And a vertical pipe coupled to the lower end of the connection pipe and installed to be supported on the ground of the measurement target point.
- the front end of the optical cable may be configured to pass through the vertical pipe and the connection pipe.
- the probe body may be disposed at a height between 150 and 170 cm with respect to the ground of the measurement target point.
- the concave reflector has a diameter of 25.4 mm, and the distance between the front end of the optical cable and the center of the concave reflector may be 200 mm.
- the present invention not only enables rapid, accurate and reliable analysis of harmful substances by overcoming fundamental limitations and malfunctions of existing multiple hazardous chemical monitoring systems, but also detects various harmful substances at the same time to quickly detect harmful gas spills in semiconductor processes. By grasping and dealing with it, it is possible to prevent human injury or loss of equipment.
- the present invention is a structure that detects a combination of light sources in various wavelengths through a probe device, and adopts a multi-measurement method capable of measuring a variety of substances at the same time, various harmful chemicals, fire smoke, Misen dust, O2, O3 can be measured at the same time, and the spectrum information required for analysis can be obtained within a short time within 1 second.
- the multiple hazardous chemical monitoring system of the present invention can significantly reduce the recognition time of dangerous substances by using an optical fiber instead of a sampling tube between the conventional measuring device and the measuring point, and can reduce the loss of the sample due to the adsorption of the sample tube. It can be excluded, the effect can be analyzed quickly and precisely harmful substances.
- the light emitted from the optical fiber has a constant exit angle, and forms two convoluted volume paths on the path from the concave reflector to the light reception until it is received. Since length is secured, it is possible to measure a low concentration of substance, that is, to measure a small amount of harmful substances.
- the present invention uses LD (laser diode), LED (light emitting diode), and tungsten halogen lamp as a light source, it is possible to obtain a high resolution, low noise spectrum, and to automatically display the characteristic peak according to the molecular structure type in the computer. It is possible to predict the structure of the molecule by tracking with.
- LD laser diode
- LED light emitting diode
- tungsten halogen lamp tungsten halogen lamp
- the present invention is effectively linked to the control system based on the fast and reliable analysis data, to provide a breakthrough user interface such as three-dimensional drawing display, automatic movement of the control point to the alarm point, smart reporting that has not been conventionally.
- the probe device of the present invention is configured to have a structure that is easy to connect and disconnect the optical cable, it is necessary to connect only the front end of the optical cable to the probe device, just assembling the connection pipe and the vertical pipe, ensuring fastness and quick maintenance Has the possible effect.
- FIG. 1 is a block diagram schematically showing a multiple hazardous substances monitoring system according to an embodiment of the present invention
- FIG. 2 is a block diagram showing in detail the connection state of the optical cable in FIG.
- Figure 3 is a perspective view of the probe device and the optical cable of the present invention
- Figure 4 is an exploded perspective view of the probe device of Figure 3
- FIG. 5 is a cross-sectional view of main parts of the probe device of FIG. 3;
- FIG. 6 is a view showing the optical fiber arrangement of the six light source cables and one detection cable of the optical cable of the present invention
- Figure 7a is a view showing a light exit surface formed in the front end of the optical cable of the present invention.
- 7B is a view showing the arrangement of the light exit surfaces of the six light source cables and one detection cable of the optical cable of the present invention.
- FIG. 8 is a main perspective view showing the conical volumetric path in the probe device of the present invention.
- FIG. 10 is a view for explaining the angle of incidence and the exit angle of light in the optical fiber of the optical cable of the present invention.
- Embodiments described herein will be described with reference to cross-sectional and / or plan views, which are ideal exemplary views of the present invention.
- the thicknesses of films and regions are exaggerated for effective explanation of technical content. Therefore, the shape of the exemplary diagram may be modified by manufacturing techniques and / or tolerances. Accordingly, the embodiments of the present invention are not limited to the specific forms shown, but also include changes in forms generated according to manufacturing processes.
- the etched regions shown at right angles may be rounded or have a predetermined curvature.
- the regions illustrated in the figures have properties, and the shape of the regions illustrated in the figures is intended to illustrate a particular form of region of the device and is not intended to limit the scope of the invention.
- terms such as first and second are used to describe various components in various embodiments of the present specification, these components should not be limited by such terms. These terms are only used to distinguish one component from another.
- the embodiments described and illustrated herein also include complementary embodiments thereof.
- the multiple hazardous substance monitoring system of the present invention includes a probe device 100, an optical cable 200, a measuring device 300, the control device 400.
- the probe device 100 is connected to the measuring device 300 and the optical cable 200, and is fixedly installed at the measurement target point that needs to be measured. For example, when used in the semiconductor factory (1), it can be installed in the inside / outside of each process equipment / equipment, each inside the exhaust duct (2, hereinafter referred to as "measurement point") that each semiconductor process is performed. .
- Probe device 100 has a structure in which the front end 210 of the optical cable 200 is connected, the light is irradiated from the front end 210 of the optical cable 200, reflected and converged.
- the probe device 100 includes a probe body 110, a cover plate 114, a reflector 120, and an angle adjustment unit 130.
- Probe body 110 is formed in a cylindrical shape of the front and rear open, the incision hole 112 is formed on both sides of the outer peripheral surface is formed to allow air to pass through.
- Probe body 110 may be made of a variety of materials, such as synthetic resin material, metal, of course.
- the cover plate 114 is formed in a disc shape, and is coupled to the means of the probe body 110 through a coupling piece B1.
- a cable connecting tube 114a is provided at the center of the cover plate 114, and the front end 210 of the optical cable 200 is connected to the cable connecting tube 114a by the SMA connector method in the form of a screwed connection. Light irradiated from the front end 210 of the 200 may be irradiated forward toward the inside of the probe body.
- the concave reflector 120 is installed at the inner front end of the probe body 110, and reflects the light irradiated to the inner front of the probe body 110 from the front end 210 of the optical cable 200 so that the front end of the optical cable 200 ( 210) Converge to the center.
- the concave reflector 120 has a diameter of 25.4 mm, and the distance from the front end 210 of the optical cable 200 to the central focal point of the concave surface of the cover plate 114 and the concave reflector is 200 mm. At this time, when the distance between the rear end of the concave reflector 120 and the center focal point of the concave surface is 0.4 mm, the rear end of the concave reflector 120 is 199.6 mm from the cover plate 115.
- the concave reflector 120 of the present invention used a CM254-100-P01, Silver coated concave mirror manufactured by ThorLABS, and used all of 450 nanometer to 20 micrometer wavelength bands including all mid-infrared, near-infrared, and visible light regions. It is suitable for the following, and is configured to have excellent reflectivity (above 97.5% at 450 nanometer ⁇ 2 micrometer, 2 micrometer ⁇ 20 micrometer) in this ultra-wide wavelength band.
- the concave reflector 120 of the present invention may be fixedly installed at the inner front end of the probe body 110, but the angle installed at the front end of the probe body 110 to finely adjust the angle of reflection of light by the concave reflector 120 It is installed in the adjusting unit 130.
- the angle adjusting unit 130 includes a fixed plate 131, three adjustment screws 133, an elastic plate 134, and a movable plate 136.
- Fixing plate 131 is formed in the shape of a disc is inserted and fixed in the form of fitting to the front end of the probe body (110).
- the three adjustment screws 133 are inserted to penetrate the fixing plate 131 so as to be rotatable with respect to the fixing plate 131, and a male thread 133a is formed at the rear portion.
- the elastic plate 134 is made of elastic and flexible materials, such as rubber, is formed in the shape of a disc, is inserted into the inner front end of the probe body 110, the adjustment screw 133 is penetrated, the rear of the fixing plate 131 Is placed.
- the movable plate 136 is inserted into the inner front end of the probe body 110 in the form of a disc, the front of the concave reflector 120 is fixed to the adhesive by adhesive or the like, the adjustment screw 133 on the front of the movable plate 136 A female thread 136a is formed in which the male thread 133a of the screw) is screwed.
- the probe device 100 further includes a connection pipe 116 and a vertical pipe 117 so that the probe body 110 can be installed at a height of 150 to 170 cm from the ground of the measurement target point 2. It can be provided.
- connection pipe 116 is formed in the form of elbow pipe bent in the form of "a", the rear end of the probe body 110 is fitted is installed.
- connection pipe 116 may include a rear cover 116a coupled by a coupling screw B2 to cover the open rear.
- the vertical pipe 117 is approximately 150cm long and is fitted to the bottom of the connection pipe 116 to support the probe body 110 on the ground of the measurement target point (2).
- the front end of the optical cable 200 passes through the interior of the connection pipe 116 and the vertical pipe 117, so that the front end 210 of the optical cable 200 is connected to the cable connection pipe 114a by the SMA connector method. Will be.
- the connection pipe 116 and the vertical pipe 117 so that the probe body 110 can be installed at a height of 150 to 170 cm from the ground. If the measurement target point (2) to be measured is the inside of the device or the duct inside, only the probe body 110 except for the connection pipe 116 and the vertical pipe 117 is fixed to be installed Of course it can.
- the optical cable 200 includes six light source cables 201 and one detection cable 203. Three optical fiber bundles are assigned to six light source cables 201, and one detection cable 203 is assigned to one optical fiber.
- the rear end of the optical cable 200 is formed in a form in which six light source cables 201 and one detection cable 203 are separated from each other without being agglomerated and divided into six light source cables ( At the rear end 205 of 201, three optical fibers of each light source cable 201 are triangulated as shown in Figs. 6A, 6B, 6C, 6E, 6F, and 7G. It is formed in the shape adjacent to each other, and the optical fiber is arrange
- the rear end 205 of the light source cable 210 and the rear end 207 of the detection cable 203 are connected to the light source module 330 and the spectrum analysis module 340 of the measuring device 310 to be described later.
- optical cable 200 of the present invention is formed in a shape separated from each of the rear end (205, 207) of the six light source cable 201 and one detection cable 203 is separated, the remaining portion in the form of optical cable
- the light source cable 201 and the detection cable 203 are bundled together in one sheath and formed in the form of one cable to the probe device 100 spaced apart from the measuring device 310 at a predetermined distance. .
- the front end 210 of the optical cable 200 of the present invention as shown in Figure 7a, the front end of the six light source cables 201 consisting of 18 optical fibers are arranged around the front end of one detection cable 203 A light exit surface configured to be formed is formed.
- six optical fiber front end of the total 18 optical fibers of the six light source cable 201 is configured to be disposed on the first concentric circle on the outer side around the detection cable 203, the remaining 12 optical fiber front end, And arranged on a second concentric circle outside the first concentric circle.
- the light exit surface formed at the front end of the six light source cables 201 has an arrangement structure corresponding to the optical fiber at the front end (see FIG. 6A) of each light source cable 201.
- the optical cable 200 has been described as being composed of six light source cables 201, but the present invention is not limited thereto, and the number thereof varies according to the number of types of light sources provided from the light source module 330. Of course it can be done.
- the optical fiber applied to the optical cable 200 in the present invention is a low-OH (Low Hydroxyl Ion / FG200LEA, 12 dB / km Max. Attenuation) that can simultaneously transmit a light source of 400 ⁇ 2400 micrometer wavelength band among various kinds of optical fiber materials
- the diameter of each optical fiber is 200 micrometers (Fiber core 200 micrometer + /-2%, Fiber cladding 220 + /-2 micrometer) to select 19 in the center of the light exit surface formed at the front end of the optical cable 200
- the optical fiber bundle is formed in the form of focusing all inside the circle of 1 mm in diameter.
- the measuring device 300 is installed to be connected to the rear end of the optical cable 200 to supply light sources having different wavelengths to each of the six light source cables 201. It includes a light source module 330 and a spectrum analysis module 340 for analyzing the spectral signal detected by one detection cable 203 to track the components of the pollutant and calculate the concentration.
- the measuring device 300 may further include a display panel 310 displaying analysis data analyzed by the spectrum analysis module 340.
- the measuring device 300 may include a light source module 330 and a spectrum analysis module 340.
- the controller 320 may control the display panel 310.
- the control unit 320 operates as a computer operating system, controls the light source module 330 by a program, and reads the spectral signal received through the detection cable 203 of the optical cable 200 through the spectrum analysis module 340.
- the analysis generates real-time information and necessary alarms, and shows the operation state through the display panel 310.
- the light source module 330 is composed of four LEDs (light emitting diodes 331,332,333,334), one LD (laser diode, 335), and one tungsten halogen lamp 336 (long wavelength lamp), and four LEDs have six light sources. It is connected to four of the cable 201, one LD is connected to one light source cable 201, one tungsten halogen lamp 336 is connected to one light source cable 201.
- the four LEDs 331, 332, 333, and 334 generate light having different band wavelengths, respectively.
- the spectrum analysis module 340 automatically analyzes the spectral signal by a computer program and displays the result.
- the measuring device 300 of the present invention may be provided with an alarm light 315 on one surface of the casing.
- the control device 400 is installed to enable data communication with the measuring device 300 through the network communication network 5, and displays the hazardous substance analysis data analyzed from the spectrum analysis module 340 on a monitor (not shown). It alerts you of dangerous situations in accordance with the analytical data.
- the control device 400 may be provided with a speaker (not shown) to output the siren or output the alarm discharge, and also, the mobile communication terminal of the worker at the measurement target point (2) network communication network (5) A warning message can be sent to 500.
- the control device 400 performs data communication with the control unit 320 of the measuring device 300 through the network communication network 5 to display a real-time display of the current situation, an alarm of an alarm situation, operation and setting of the device, and record the history. Archive function can be performed. It can perform information display and user interface function through its own monitor, share the same information with remote computer through network, and propagate necessary information to other devices such as mobile.
- the control device 400 may be configured to issue an alarm alarm step by step when the contamination of the material to be measured is detected.
- the six light sources are probe body 110 through the front end of the light source cable 201, that is, the light exit surface.
- the light is irradiated to the front of the inside, and the irradiated light source is reflected through the concave reflector 120, and converges to the front end of the detection cable 203 disposed at the center of the six light source cables 201. .
- the optical spectral signal converged on the detection cable 203 is transmitted to the spectrum analysis module 340 through the detection cable 203, and the spectrum analysis module 340 analyzes the received spectrum signal to remove harmful substances in the air.
- Analytical data can be generated by analyzing the presence and concentration of substances.
- the controller 320 displays the spectrum analysis data analyzed by the spectrum analysis module 340 on the display panel 310, and if the value is equal to or greater than a value set according to the spectrum analysis data, the controller 320 alarms through an alarm lamp 315 or a speaker (not shown). You can output the alarm sound through.
- control device 400 wirelessly communicates with the control unit 320 of the measuring device 300, and outputs a siren or alarm broadcast through a speaker to alert a dangerous situation when the value is higher than a set value according to the spectrum analysis data, or the worker moves. Warning message can be sent to the communication terminal (500).
- the control device 400 may be provided at a local fire station.
- the present invention focuses light emission sources such as LEDs, LDs, and long-wavelength lamps (tungsten halogen lamps) of different wavelength bands on a single probe, thereby rapidly and precisely inciting infrared rays and visible rays at the same time or at different time intervals. Implementation of the wideband spectrum is possible.
- the light is transmitted by the optical cable 200 composed of one optical fiber, irradiated through the probe device 100, and after reflecting the irradiated light, the converged spectral signal is analyzed. Therefore, the hazardous substances can be measured quickly and precisely to verify the presence of hazardous substances and to display an alarm.
- a lamp or a heater such as a glow bar is used to implement a wideband wavelength, but the present invention improves the quality of a spectrum by using a combination of LEDs, LDs, and lamps for long wavelengths having different wavelength bands.
- LD or LED as a light source
- one light source is installed at a measurement target point, but in the present invention, using a fiber as a medium for transmitting light, a light source combining LEDs, LDs, and lamps is placed in a measuring device, and a probe device Placement to place the 100 at a remote location is possible.
- the light irradiated through the front end of the light source cable 201 forms a single conical volume path, and is reflected on the concave reflector 120 once again.
- Conical volume path (volume path) is formed, and converged to the detection cable (203) to detect the contaminants contained in the air in the volumetric light path of 270cm 3 that can ensure the accuracy of the measurement of the material.
- the conventional device is a concept of a linear optical path distance, the volumetric optical path of the present invention can be improved the measurement accuracy.
- the optical cable 200 is made of an optical fiber, and as such an optical fiber has a constant incidence angle, as shown in FIG. 10, light irradiated through the front end of the light source cable 201 by the concave reflector 120. Although it is possible to reflect and converge (light incidence) to the detection cable 203, it is impossible for the light or the like of the light installed in the surrounding ceiling to be incident on the detection cable 203, so that the probe device 100 It is not affected by lighting and will not cause malfunction.
- the present invention relates to a multiple hazardous substance monitoring system, and can be applied to any place where a hazardous substance such as a semiconductor factory must be monitored and coped, and can be applied to the hazardous substance monitoring industry.
Landscapes
- Physics & Mathematics (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Emergency Management (AREA)
- Analytical Chemistry (AREA)
- Business, Economics & Management (AREA)
- Toxicology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Environmental & Geological Engineering (AREA)
- Biochemistry (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Combustion & Propulsion (AREA)
Abstract
A system for monitoring multiple harmful substances is disclosed. The disclosed system for monitoring multiple harmful substances comprises: an optical cable including six light source cables, each of the six cables including a three-strand optical fiber bundle, and one detection cable including a one-strand optical fiber, wherein the front ends of six of the 18 optical fibers of the six light source cables are arranged on a first concentric circle on the outside around the light-incident surface of the one detection cable, and the front ends of the remaining 12 optical fibers have a light-output surface arranged on a second concentric circle more outside than the first concentric circle; a plurality of probe devices installed at points, to be measured, at which the harmful substances are to be measured, and connected to the front end part of the optical cable so as to emit a light source from the six light source cables in the air of the points to be measured and reflect the same so as to concentrate reflected light source on the one detection cable; and a measurement device including a light source module, which is installed so as to be connected to the rear end of the optical cable and provides light sources of different wavelengths to each of the six light source cables, and a spectral analysis module analyzing a spectral signal detected through the one detection cable so as to trace components of pollutants and calculate the concentrations thereof, wherein the light source module comprises four light-emitting diodes connected to four of the six light source cables, a laser diode connected to one light source cable, and a tungsten halogen lamp connected to one light source cable, and the probe device comprises: a cylindrical-shaped probe body of which the front and rear are open and having cut holes formed at both sides of the outer circumferential surface; a cover plate coupled to the rear end of the probe body and having a cable connection tube of which the front end of the optical cable is connected to the center; and a concave reflector installed at the front end of the probe body so as to reflect light emitted from the front end of the optical cable to the inside of the probe body, thereby converging the reflected light at the detection cable arranged at the center of the front end of the optical cable.
Description
본 발명은 가스, 화재 연기를 포함한 각종 유해화학물질의 공기 중 오염 여부를 실시간 감지하고 오염의 농도를 측정하는 다중유해물질 모니터링 시스템에 관한 것으로서, 더욱 상세하게는 분광원리와 광원의 조합을 이용하여 화학물질을 측정하는 것으로 대기 중의 유해한 환경물질을 실시간 측정하고 경보하는 다중 유해물질 모니터링 시스템에 관한 것이다. The present invention relates to a multi-hazard monitoring system for real-time detection of contamination of various harmful chemicals, including gas and fire smoke, and to measure the concentration of pollution. More specifically, the present invention relates to a combination of spectral principles and light sources. It is a multi-hazard monitoring system that measures and alerts to environmentally harmful environmental substances in real time by measuring chemicals.
전자기파인 빛은 눈에 보이는 가시광선을 기준으로 파장이 더 짧은 자외선과 파장이 긴 적외선과 같은 눈에 보이지 않는 빛들도 포함하고 있다. 적외선, 가시 광선, 자외선은 물질 성분 분석을 위해서 사용될 수 있으며 레이저 광선과 같은 품질이 좋은 빛의 등장에 따라 미세 먼지의 분석과 760 nanometer 대역을 활용한 O2의 측정도 가능해 졌다. 화학물질의 성분과 농도 분석을 위해 적외선이 주로 사용되어 왔으며 그 중에서도 특히 FT-IR(푸리에 변환 적외선 분광법) 방식은 분자들의 진동 및 회전 운동이 특징적인 중적외선 영역(MIR region, Thermal region, Finger print region)을 대상으로 글로바 광원과 간섭계(Interferometer)를 적용하여 정성 및 정량 분석에 널리 활용되어 왔다.Light, which is electromagnetic waves, includes invisible light, such as ultraviolet rays with shorter wavelengths and infrared rays with longer wavelengths, based on visible visible light. Infrared, visible and ultraviolet light can be used for material composition analysis, and the advent of high quality light, such as laser beams, has made it possible to analyze fine dust and measure O2 using the 760 nanometer band. Infrared rays have been used mainly for chemical composition and concentration analysis. Among them, the FT-IR (Fourier Transform Infrared Spectroscopy) method is especially known as the mid-infrared region (MIR region, thermal region, finger print), which is characterized by the vibration and rotational motion of molecules. GLOBA light source and interferometer have been widely used in qualitative and quantitative analysis for regions.
근적외선은 화재의 감지와 중적외선 대역 흡수파의 Overtone을 활용하여 화학물질을 측정할 수 있으며 중적외선 대역에 비해 상대적으로 수분에 강하고 이들 빛을 제어하는 반사경, 투과창 등 광학 장치에 대한 재료 선택의 제약이 훨씬 덜하다. 분자 구조 분석을 위해서는 중적외선(Finger print region) 대역의 흡수 스펙트럼 특성이 분석 화학 측면에서 활용 가치가 높으며 중적외선 대역을 동시에 발산할 수 있는 유일한 광원인 글로바(일종의 세라믹 히터)는 스펙트럼 품질에 한계가 있다는 점과 산업 현장에서는 일반 화학 물질들에 의한 간섭성(Cross sensitivity)의 문제가 뒤따르기 때문에 이를 위한 해결책으로 파장 변환 레이저를 광원으로 사용하는 방법, One chip array 광원의 개발 등 정밀도와 신뢰도를 개선하기 위한 여러 가지 방법들이 강구되고 있다.Near-infrared can measure chemicals by detecting fire and overtone of mid-infrared band absorbing wave, and compared to mid-infrared band, it is relatively moisture resistant and selects materials for optical devices such as reflectors and transmission windows that control these lights. Much less restrictive For molecular structure analysis, the absorption spectral characteristics of the finger print region band are highly valuable in terms of analytical chemistry, and the globa (a kind of ceramic heater), the only light source that can emit the mid infrared band at the same time, is limited in spectral quality. In the industrial field, there is a problem of cross sensitivity due to general chemicals.So, the solution is to use the wavelength conversion laser as a light source and to develop one chip array light source. There are many ways to improve.
한편, 유해화학물질 모니터링 시스템의 측정대상은 반도체 공장에서 주로 사용되는 각종 독성 가스, 폭발성 가스, 휘발성 유기 화합물, 발암물질을 비롯하여 지구 온난화의 주범인 온실가스, 미세먼지, O2, O3, 화재 연기 등이다. 이러한 시스템은 신속한 반응성(Responsibility)과 보다 낮은 농도를 측정할 수 있는 정밀성(Sensitivity & Precision), 타물질 간섭이 적고 현장의 다양한 악조건에 견딜 수 있는 안정성(Repeatability & Stability)이 특별히 요구되며 성능 판단의 기준이 된다. Meanwhile, the targets of the monitoring system of hazardous chemical substances include various toxic gases, explosive gases, volatile organic compounds and carcinogens, which are mainly used in semiconductor factories, as well as greenhouse gases, fine dust, O2, O3, fire smoke, etc. to be. These systems require exceptional responsibility, precision to measure lower concentrations (Sensitivity & Precision), less interfering materials and stability to withstand the various adverse conditions in the field. It is a standard.
종래의 유해물질 모니터링 시스템 중에는 각 측정지점(반도체 각각의 공정장비)으로부터 튜브를 통해 유해물질을 흡입하여 유해물질 성분을 분석하는 유형이 있으며, 이러한 유해물질 모니터링 시스템에 대해서 공개특허 10-2014-0125167호에 개시되어 있다. Conventional harmful substance monitoring system has a type of analyzing the harmful substance by inhaling the harmful substance through the tube from each measuring point (process equipment of each semiconductor), and for such a hazardous substance monitoring system. It is disclosed in the call.
이러한 유해물질 모니터링 시스템은 튜브를 통해 시료 채집 후 실험실 측정(Ex situ) 또는 현장 시료를 분석 장치 내부로 펌핑하여 측정하는 샘플링 방식을 사용하고 있기 때문에 시간적으로, 화학적으로 상당한 손실을 감수하고 있으며 실시간 환경안전 측정 장치(In situ EHS Monitoring system)의 목적에도 맞지 않은 경우가 많았다.These hazardous substance monitoring systems use significant sampling and time-to-chemistry and real-time environments because they use a sampling method that collects a sample through a tube and then pumps it to an ex situ or pump a field sample into the analyzer. In many cases, it was also unfit for the purpose of the In situ EHS Monitoring system.
아울러, 이러한 종래의 유해물질 모니터링 시스템은 여러측정지점의 시료를 튜브를 통해 샘플링하여 하나의 분석 장치에서 분석하는 형태로서, 고가의 고성능 분석장치를 적용하는 것이 가능하나 이러한 분석 장치는 대개 FT-IR 방식을 적용하고 있으며, 광원인 글로바가 가지는 스펙트럼 품질의 제약, 시료샘플링방식에서 기인하는 화학적 입자손실과 방치, 현장 환경에 의한 간섭에 의해 정확한 분석이 이루어지지 않아 허의경보와 같은 오작동을 일으키는 문제를 가지고 있었다. In addition, such a conventional hazardous substance monitoring system is a form in which samples from multiple measuring points are sampled through a tube and analyzed in one analysis device, and it is possible to apply an expensive and high performance analysis device, but such an analysis device is usually FT-IR. The method is applied and causes malfunctions such as false alarms because accurate analysis cannot be performed due to spectral quality constraints of light source, chemical particle loss and neglect caused by sample sampling method, and interference by site environment. Had a problem.
한편, 유해물질 모니터링 시스템으로서 화재감지기가 개발되어 사용되고 있으며, 이러한 종래의 화재감지기에 대해 공개특허 10-2014-0128535호에 개시되어 있다. 이러한 종래의 화재감지기는 오동작이 문제가 되는 한편으로 화재에 대해서 반응이 안되는 무용지물인 경우도 상당하다. 본격적인 화재 발전하기 이전 단계에서 연기의 발생을 신속히 감지하는 것이 필요하며, 적외선센서를 이용한 연기 감지기들은 4.3 micrometer 대역의 CO2를 중심으로 하는 몇몇 부분대역의 에너지 수치만 센싱하여 판단하기 때문에 화재의 양상에 따라 또는 타는 물질의 종류에 따라 허위 경보 발생 및 감지를 못할 가능성을 항상 내포하고 있다. Meanwhile, a fire detector has been developed and used as a hazardous substance monitoring system, and is disclosed in Korean Patent Laid-Open Publication No. 10-2014-0128535 for such a fire detector. Such a conventional fire detector is a case where malfunction is a problem and a useless material that does not respond to a fire. It is necessary to detect the occurrence of smoke in the early stage of full-scale fire development, and smoke detectors using infrared sensors sense only the energy level of some partial band centered on CO2 in the 4.3 micrometer band. There is always the possibility of false alarms being triggered and not detected, depending on the type of substance being burned or the type of substance being burned.
특히, 종래의 화재감지기는 측정대상지점에 개방경로형태로 발광부와 수광부 및, 퓨리에 변환 적외선 분석 장치가 설치되어 있는 유형으로서, 여러 지점에 화재감지기를 설치해야 할 경우 각 지점마다 고가의 분석 장치를 설치하기에는 비용상 문제가 있어, 각 지점에 저가의 분석 장치가 설치될 수밖에 없고, 이에 따라 정밀한 분석이 이루어지지 않아 오작동이 빈번하게 일어나는 문제가 있었다. In particular, the conventional fire detector is a type in which a light emitting unit, a light receiving unit, and a Fourier transform infrared analyzer are installed in an open path shape at a point to be measured. There is a cost problem to install the, inexpensive analysis device is inevitably installed at each point, and accordingly there is a problem that malfunction occurs frequently because precise analysis is not made.
본 발명은 상기한 종래의 문제점을 해결하고자 창안된 것으로서 신속하고 검증이 가능하며 신뢰성이 혁신된 실시간 다중 유해물질 모니터링 시스템을 제공하는데 목적이 있다. The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a real-time multi-hazardous material monitoring system that is quick, verifiable and reliable.
상기의 목적을 달성하기 위한 본 발명의 다중 유해물질 모니터링 시스템은 각각 3가닥의 광섬유다발로 이루어진 6개의 광원용 케이블과, 1가닥의 광섬유로 이루어진 1개의 검측용 케이블로 구성되며, 상기 6개의 광원용 케이블의 18개 광섬유 중 6개의 광섬유 전단은 상기 1개의 검측용 케이블의 광입사면을 중심에 두고 외곽의 제1동심원 상에 배치되고, 나머지 12개의 광섬유 전단은 상기 제1동심원보다 외곽의 제2동심원 상에 배치된 광출사면을 갖는 광케이블; 유해물질을 측정하기 위한 측정대상지점에 설치되며, 상기 광케이블의 전단부가 접속되어, 상기 6개의 광원용 케이블로부터 상기 측정대상지점의 공기 중에 광원을 조사하고 반사하여 다시 상기 1개의 검측용 케이블에 집속되게 하는 복수의 프로브 장치; 및, 상기 광케이블의 후단에 연결되도록 설치되며, 상기 6개의 광원용 케이블 각각에 각기 다른 파장의 광원을 공급하는 광원모듈과, 상기 1개의 검측용 케이블에 검측된 스펙트럼신호를 분석하여 오염물질의 성분을 추적하고 농도를 계산하는 스펙트럼분석모듈을 구비한 측정장치;를 포함하며, 상기 광원모듈은 상기 6개의 광원용 케이블 중 4개의 광원용 케이블에 연결되는 4개의 발광다이오드와, 1개의 광원용 케이블에 연결되는 레이저다이오드와, 1개의 광원용 케이블에 연결되는 텅스텐할로겐램프로 구성되며, 상기 프로브장치는, 외주면 양측에 절개공이 형성된 전후가 개방된 원통형태의 프로브몸체; 상기 프로브몸체의 후단에 결합되며, 중심에 상기 광케이블의 전단이 접속되는 케이블접속관을 구비한 덮개판; 및, 상기 프로브몸체의 전단에 설치되어 상기 광케이블의 전단에서 상기 프로브몸체의 내부로 조사된 광을 반사하여 상기 광케이블의 전단 중앙에 배치된 상기 검측용 케이블로 수렴시키는 오목 반사경;을 포함하는 것을 특징으로 한다. Multi-hazardous material monitoring system of the present invention for achieving the above object is composed of six light source cables each consisting of three optical fiber bundles, one detection cable consisting of one optical fiber, the six light sources Six optical fiber front ends of the eighteen optical fibers of the cable are arranged on the outer first concentric circle centering on the light incidence plane of the one detection cable, and the remaining twelve optical fiber front ends are located on the first concentric circle outside the first concentric circle. An optical cable having a light exit surface disposed on two concentric circles; It is installed at the measurement target point for measuring harmful substances, and the front end of the optical cable is connected, and irradiates and reflects the light source in the air of the measurement target point from the six light source cables and collects it on the one detection cable again. A plurality of probe devices to deceive; And a light source module which is installed to be connected to the rear end of the optical cable, and supplies light sources having different wavelengths to each of the six light source cables, and analyzes the spectral signals detected by the one detection cable. And a measuring device having a spectrum analysis module for tracking the concentration and calculating the concentration. The light source module includes four light emitting diodes connected to four light source cables among the six light source cables, and one light source cable. It consists of a laser diode connected to the, and a tungsten halogen lamp connected to one light source cable, the probe device, the probe body of the cylindrical shape with the front and rear openings formed incision holes on both sides of the outer peripheral surface; A cover plate coupled to a rear end of the probe body and having a cable connection tube connected to a front end of the optical cable at a center thereof; And a concave reflector installed at the front end of the probe body and reflecting the light irradiated from the front end of the optical cable to the inside of the probe body and converging to the detection cable disposed at the front end of the optical cable. It is done.
상기 측정장치와 네트워크를 통해 통신이 가능하도록 설치되며, 상기 스펙트럼분석모듈로부터의 분석된 유해물질 분석데이터를 모니터를 통해 표시하고, 상기 분석데이터에 따라 위험상황을 경보하도록 스피커를 통해 사이렌 또는 경보방송을 출력하거나 작업자의 이동통신단말기에 경고메시지를 발송하는 관제장치;를 더 포함하도록 구성할 수 있다. It is installed to enable communication through the network with the measuring device, and displays the analyzed analysis data of harmful substances from the spectrum analysis module through a monitor, and a siren or alarm broadcast through a speaker to alert a dangerous situation according to the analysis data. It may be configured to further include; a control device for outputting or sending a warning message to the mobile communication terminal of the worker.
상기 프로브장치는, 상기 프로브몸체의 후단이 끼움방식으로 결합되는 "ㄱ"자 형상으로 된 연결관; 및, 상기 접속관의 하단에 결합되며, 상기 측정대상지점의 지면에 지지되도록 설치되는 수직관;을 더 포함하며, 상기 광케이블의 전단부는 상기 수직관 및 상기 연결관을 내부를 통과하도록 구성할 수 있다. The probe device, the connector of the "b" shape that the rear end of the probe body is coupled in a fitting manner; And a vertical pipe coupled to the lower end of the connection pipe and installed to be supported on the ground of the measurement target point. The front end of the optical cable may be configured to pass through the vertical pipe and the connection pipe. have.
상기 프로브몸체는 상기 측정대상지점의 지면에 대해 150~170cm 사이의 높이에 배치될 수 있다. The probe body may be disposed at a height between 150 and 170 cm with respect to the ground of the measurement target point.
상기 오목 반사경의 직경은 25.4mm이고, 상기 광케이블의 전단과 상기 오목 반사경의 중심까지의 거리는 200mm로 구성할 수 있다. The concave reflector has a diameter of 25.4 mm, and the distance between the front end of the optical cable and the center of the concave reflector may be 200 mm.
본 발명은 기존의 다중 유해화학물질 모니터링 시스템들이 가진 근본적인 한계점과 오동작을 극복하여 신속하고 정밀하며 신뢰성 있는 유해물질 분석이 가능할 뿐 아니라, 다양한 유해물질을 동시에 감지함으로써 반도체 공정상의 유해가스 유출상황을 신속하게 파악하여 대처함으로써 인명피해나 장치의 손실 등을 방지할 수 있는 효과가 있다. The present invention not only enables rapid, accurate and reliable analysis of harmful substances by overcoming fundamental limitations and malfunctions of existing multiple hazardous chemical monitoring systems, but also detects various harmful substances at the same time to quickly detect harmful gas spills in semiconductor processes. By grasping and dealing with it, it is possible to prevent human injury or loss of equipment.
또한, 본 발명은 다양한 파장대의 광원을 조합하여 프로브장치를 통해 검측하는 구조로서, 여러성분의 물질측정이 동시에 가능한 다중측정방식을 채택하고 있어, 각종 유해화학물질과 화재연기, 미센먼지, O2, O3 등을 동시에 측정할 수 있으며, 1초 이내의 짧은 시간 안에 분석에 필요한 스펙트럼 정보를 얻을 수 있다. In addition, the present invention is a structure that detects a combination of light sources in various wavelengths through a probe device, and adopts a multi-measurement method capable of measuring a variety of substances at the same time, various harmful chemicals, fire smoke, Misen dust, O2, O3 can be measured at the same time, and the spectrum information required for analysis can be obtained within a short time within 1 second.
또한, 본 발명의 다중 유해화학물질 모니터링 시스템은 종래의 측정장치와 측정지점 사이의 샘플링용 튜브대신 광섬유를 사용함으로써 위험물질 인지시간을 획기적으로 줄일 수 있으며, 샘플튜브의 흡착으로 인한 시료의 손실을 배제할 수 있어, 신속하고 정밀이 유해물질 분석이 가능해지는 효과가 있다. In addition, the multiple hazardous chemical monitoring system of the present invention can significantly reduce the recognition time of dangerous substances by using an optical fiber instead of a sampling tube between the conventional measuring device and the measuring point, and can reduce the loss of the sample due to the adsorption of the sample tube. It can be excluded, the effect can be analyzed quickly and precisely harmful substances.
또한, 본 발명은 광섬유에서 출사되는 빛은 일정한 출사각을 가지며, 오목반사경에 반사되어 수광될 때까지의 경로 상에 두 번의 원뿔체적형 광로(Volume path)를 형성하여 탐측에 충분한 측정경로(path length)를 확보하기 때문에 저농도의 물질측정 즉 미세량의 유해물질의 측정이 가능한 효과가 있다. In addition, in the present invention, the light emitted from the optical fiber has a constant exit angle, and forms two convoluted volume paths on the path from the concave reflector to the light reception until it is received. Since length is secured, it is possible to measure a low concentration of substance, that is, to measure a small amount of harmful substances.
또한, 본 발명은 LD(레이져 다이오드), LED(발광 다이오드) 및 텅스텐할로겐 램프를 광원으로 사용함으로써 분해능이 좋고, 노이즈가 적은 스펙트럼을 확보할 수 있으며, 분자구조 유형에 따른 특성 피크를 컴퓨터에서 자동으로 추적하여 분자의 구조예측이 가능해지는 효과가 있다. In addition, the present invention uses LD (laser diode), LED (light emitting diode), and tungsten halogen lamp as a light source, it is possible to obtain a high resolution, low noise spectrum, and to automatically display the characteristic peak according to the molecular structure type in the computer. It is possible to predict the structure of the molecule by tracking with.
또한, 본 발명은 신속하고 신뢰성 있는 분석데이터를 바탕으로 관제시스템과 효과적으로 연동하여, 종래에 없던 3차원 도면 표시, 경보 지점으로의 관제점 자동 이동, 스마트 레포팅 같은 획기적인 사용자 인터페이스를 제공하게 된다.In addition, the present invention is effectively linked to the control system based on the fast and reliable analysis data, to provide a breakthrough user interface such as three-dimensional drawing display, automatic movement of the control point to the alarm point, smart reporting that has not been conventionally.
또한, 본 발명의 프로브장치는 광케이블의 연결과 분리가 용이한 구조를 갖도록 구성되고, 프로브장치에 광케이블의 전단만 연결하고, 접속관과 수직관을 끼우고 조립만하면 되기 때문에 신속성 확보와 신속한 유지보수가 가능한 효과가 있다. In addition, the probe device of the present invention is configured to have a structure that is easy to connect and disconnect the optical cable, it is necessary to connect only the front end of the optical cable to the probe device, just assembling the connection pipe and the vertical pipe, ensuring fastness and quick maintenance Has the possible effect.
도 1은 본 발명의 일 실시 예에 따른 다중 유해물질 모니터링 시스템을 개략적으로 나타낸 블록도이고, 1 is a block diagram schematically showing a multiple hazardous substances monitoring system according to an embodiment of the present invention,
도 2는 도 1에서 광케이블의 연결 상태를 구체적으로 나타낸 블록도이고, 2 is a block diagram showing in detail the connection state of the optical cable in FIG.
도 3은 본 발명의 프로브장치와 광케이블의 사시도이고, Figure 3 is a perspective view of the probe device and the optical cable of the present invention,
도 4는 도 3의 프로브장치의 분리사시도이고, Figure 4 is an exploded perspective view of the probe device of Figure 3,
도 5는 도 3의 프로브장치의 요부단면도이고, 5 is a cross-sectional view of main parts of the probe device of FIG. 3;
도 6은 본 발명의 광케이블의 6개의 광원용 케이블과 1개의 검측용 케이블의 광섬유배치형태를 나타낸 도면이고, 6 is a view showing the optical fiber arrangement of the six light source cables and one detection cable of the optical cable of the present invention,
도 7a는 본 발명의 광케이블의 전단에 형성된 광출사면을 나타낸 도면이고, Figure 7a is a view showing a light exit surface formed in the front end of the optical cable of the present invention,
도 7b는 본 발명의 광케이블의 6개의 광원용케이블과 1개의 검측용 케이블의 광출사면의 배치형태를 나타낸 도면이고, 7B is a view showing the arrangement of the light exit surfaces of the six light source cables and one detection cable of the optical cable of the present invention;
도 8은 본 발명의 프로브장치에서 원뿔형체적광로를 나타낸 요부사시도이고,8 is a main perspective view showing the conical volumetric path in the probe device of the present invention,
도 9는 본 발명의 측정장치의 외형도이고, 9 is an external view of the measuring device of the present invention,
도 10은 본 발명의 광케이블의 광섬유에서의 광의 입사각과 출사각을 설명하기 위한 도면이다. 10 is a view for explaining the angle of incidence and the exit angle of light in the optical fiber of the optical cable of the present invention.
이상의 본 발명의 목적들, 다른 목적들, 특징들 및 이점들은 첨부된 도면과 관련된 이하의 바람직한 실시 예들을 통해서 쉽게 이해될 것이다. 그러나 본 발명은 여기서 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 실시 예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다.Objects, other objects, features and advantages of the present invention will be readily understood through the following preferred embodiments associated with the accompanying drawings. However, the present invention is not limited to the embodiments described herein and may be embodied in other forms. Rather, the embodiments introduced herein are provided so that the disclosure may be made thorough and complete, and to fully convey the spirit of the present invention to those skilled in the art.
본 명세서에서, 어떤 구성요소가 다른 구성요소 상에 있다고 언급되는 경우에 그것은 다른 구성요소 상에 직접 형성될 수 있거나 또는 그들 사이에 제 3의 구성요소가 개재될 수도 있다는 것을 의미한다. 또한 도면들에 있어서, 구성요소들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. In the present specification, when a component is mentioned to be on another component, it means that it may be formed directly on the other component or a third component may be interposed therebetween. In addition, in the drawings, the thickness of the components are exaggerated for the effective description of the technical content.
본 명세서에서 기술하는 실시예들은 본 발명의 이상적인 예시도인 단면도 및/또는 평면도들을 참고하여 설명될 것이다. 도면들에 있어서, 막 및 영역들의 두께는 기술적 내용의 효과적인 설명을 위해 과장된 것이다. 따라서 제조 기술 및/또는 허용 오차 등에 의해 예시도의 형태가 변형될 수 있다. 따라서 본 발명의 실시예들은 도시된 특정 형태로 제한되는 것이 아니라 제조 공정에 따라 생성되는 형태의 변화도 포함하는 것이다. 예를 들면, 직각으로 도시된 식각 영역은 라운드지거나 소정 곡률을 가지는 형태일 수 있다. 따라서 도면에서 예시된 영역들은 속성을 가지며, 도면에서 예시된 영역들의 모양은 소자의 영역의 특정 형태를 예시하기 위한 것이며 발명의 범주를 제한하기 위한 것이 아니다. 본 명세서의 다양한 실시예들에서 제1, 제2 등의 용어가 다양한 구성요소들을 기술하기 위해서 사용되었지만, 이들 구성요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이들 용어들은 단지 어느 구성요소를 다른 구성요소와 구별시키기 위해서 사용되었을 뿐이다. 여기에 설명되고 예시되는 실시예들은 그것의 상보적인 실시예들도 포함한다. Embodiments described herein will be described with reference to cross-sectional and / or plan views, which are ideal exemplary views of the present invention. In the drawings, the thicknesses of films and regions are exaggerated for effective explanation of technical content. Therefore, the shape of the exemplary diagram may be modified by manufacturing techniques and / or tolerances. Accordingly, the embodiments of the present invention are not limited to the specific forms shown, but also include changes in forms generated according to manufacturing processes. For example, the etched regions shown at right angles may be rounded or have a predetermined curvature. Thus, the regions illustrated in the figures have properties, and the shape of the regions illustrated in the figures is intended to illustrate a particular form of region of the device and is not intended to limit the scope of the invention. Although terms such as first and second are used to describe various components in various embodiments of the present specification, these components should not be limited by such terms. These terms are only used to distinguish one component from another. The embodiments described and illustrated herein also include complementary embodiments thereof.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 '포함한다(comprises)' 및/또는 '포함하는(comprising)'은 언급된 구성요소는 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. In this specification, the singular also includes the plural unless specifically stated otherwise in the phrase. As used herein, the words 'comprises' and / or 'comprising' do not exclude the presence or addition of one or more other components.
아래의 특정 실시예들을 기술하는데 있어서, 여러 가지의 특정적인 내용들은 발명을 더 구체적으로 설명하고 이해를 돕기 위해 작성되었다. 하지만 본 발명을 이해할 수 있을 정도로 이 분야의 지식을 갖고 있는 독자는 이러한 여러 가지의 특정적인 내용들이 없어도 사용될 수 있다는 것을 인지할 수 있다. 어떤 경우에는, 발명을 기술하는 데 있어서 흔히 알려졌으면서 발명과 크게 관련 없는 부분들은 본 발명을 설명하는데 있어 별 이유 없이 혼돈이 오는 것을 막기 위해 기술하지 않음을 미리 언급해 둔다.In describing the specific embodiments below, various specific details are set forth in order to explain the invention more specifically and to help understand. However, those skilled in the art can understand that the present invention can be used without these various specific details. In some cases, it is mentioned in advance that parts of the invention which are commonly known in the description of the invention and which are not highly related to the invention are not described in order to prevent confusion in explaining the invention without cause.
이하, 도면을 참조하여, 본 발명의 일 실시 예에 따른 다중 유해물질 모니터링 시스템에 대해 설명한다. Hereinafter, a multi-hazardous material monitoring system according to an embodiment of the present invention will be described with reference to the drawings.
본 발명의 다중 유해물질 모니터링 시스템은 프로브장치(100), 광케이블(200), 측정장치(300), 관제장치(400)를 포함한다. The multiple hazardous substance monitoring system of the present invention includes a probe device 100, an optical cable 200, a measuring device 300, the control device 400.
프로브장치(100)는 측정장치(300)와 광케이블(200)로 연결되며, 측정이 필요한 측정대상지점에 고정하여 설치된다. 예를 들어, 반도체공장(1)에서 사용할 경우, 각 반도체공정이 이루어지는 각 공정장비/설비의 내부/외부, 배기덕트내부 등(2, 이하'측정대상지점'이라함)에 각각 설치될 수 있다. The probe device 100 is connected to the measuring device 300 and the optical cable 200, and is fixedly installed at the measurement target point that needs to be measured. For example, when used in the semiconductor factory (1), it can be installed in the inside / outside of each process equipment / equipment, each inside the exhaust duct (2, hereinafter referred to as "measurement point") that each semiconductor process is performed. .
프로브장치(100)는 광케이블(200)의 전단(210)이 접속되어, 광케이블(200)의 전단(210)에서 광이 조사되고, 반사하여 수렴하는 구조를 갖는다. Probe device 100 has a structure in which the front end 210 of the optical cable 200 is connected, the light is irradiated from the front end 210 of the optical cable 200, reflected and converged.
도 3, 도 4 및 도 5를 참조하면, 구체적으로 프로브장치(100)는 프로브몸체(110) 덮개판(114), 반사경(120), 각도조절유닛(130)을 포함한다. 3, 4 and 5, specifically, the probe device 100 includes a probe body 110, a cover plate 114, a reflector 120, and an angle adjustment unit 130.
프로브몸체(110)는 전후가 개방된 원통형태로 형성되며, 외주면 양측에 절개공(112)이 형성되어 공기가 통하도록 형성된다. 프로브몸체(110)는 합성수지재질, 금속 등 다양한 재질로 이루질 수 있음은 물론이다. Probe body 110 is formed in a cylindrical shape of the front and rear open, the incision hole 112 is formed on both sides of the outer peripheral surface is formed to allow air to pass through. Probe body 110 may be made of a variety of materials, such as synthetic resin material, metal, of course.
덮개판(114)은 원판 형태로 형성되며, 프로브몸체(110)의 수단에 결합피스(B1)를 통해 결합된다. 이 덮개판(114)의 중심에는 케이블접속관(114a)이 구비되며, 이 케이블접속관(114a)에는 광케이블(200)의 전단(210)이 나사체결형태인 SMA 커넥터방식에 의해 접속되어, 광케이블(200)의 전단(210)으로부터 조사되는 광이 프로브몸체 내부를 향해 전방으로 조사될 수 있다. The cover plate 114 is formed in a disc shape, and is coupled to the means of the probe body 110 through a coupling piece B1. A cable connecting tube 114a is provided at the center of the cover plate 114, and the front end 210 of the optical cable 200 is connected to the cable connecting tube 114a by the SMA connector method in the form of a screwed connection. Light irradiated from the front end 210 of the 200 may be irradiated forward toward the inside of the probe body.
오목 반사경(120)은 프로브몸체(110)의 내부 전단에 설치되어, 광케이블(200)의 전단(210)에서 프로브몸체(110)의 내부 전방으로 조사된 광을 반사하여 광케이블(200)의 전단(210) 중앙으로 수렴시킨다. The concave reflector 120 is installed at the inner front end of the probe body 110, and reflects the light irradiated to the inner front of the probe body 110 from the front end 210 of the optical cable 200 so that the front end of the optical cable 200 ( 210) Converge to the center.
본 발명에서 오목 반사경(120)의 직경은 25.4mm로 이루어지고, 광케이블(200)의 전단(210) 즉, 덮개판(114)과 오목 반사경의 오목면의 중심초점까지 거리는 200mm가 되도록 구성된다. 이때, 오목 반사경(120)의 후단과 오목면의 중심초점까지의 거리가 0.4mm일 경우, 덮개판(115)으로부터 오목반사경(120)의 후단이 199.6mm가 되도록 설치된다. In the present invention, the concave reflector 120 has a diameter of 25.4 mm, and the distance from the front end 210 of the optical cable 200 to the central focal point of the concave surface of the cover plate 114 and the concave reflector is 200 mm. At this time, when the distance between the rear end of the concave reflector 120 and the center focal point of the concave surface is 0.4 mm, the rear end of the concave reflector 120 is 199.6 mm from the cover plate 115.
본 발명의 오목 반사경(120)은 ThorLABS社의 CM254-100-P01, Silver coated concave mirror를 사용하였으며, 중적외선, 근적외선, 가시광선 영역을 모두 포함하는 450 nanometer ~ 20 micrometer 파장 대역의 빛을 모두 사용하기에 적합하며, 이 같은 초 광대역 파장 대역에서 우수한 반사율(450 nanometer ~ 2 micrometer에서 97.5%이상, 2 micrometer ~ 20 micrometer)을 갖도록 구성된다. The concave reflector 120 of the present invention used a CM254-100-P01, Silver coated concave mirror manufactured by ThorLABS, and used all of 450 nanometer to 20 micrometer wavelength bands including all mid-infrared, near-infrared, and visible light regions. It is suitable for the following, and is configured to have excellent reflectivity (above 97.5% at 450 nanometer ~ 2 micrometer, 2 micrometer ~ 20 micrometer) in this ultra-wide wavelength band.
본 발명의 오목 반사경(120)은 프로브몸체(110)의 내부 전단에 고정 설치될 수 있으나, 오목 반사경(120)에 의한 빛의 반사각도를 미세조정하기 위하여 프로브몸체(110)의 전단에 설치된 각도조절유닛(130)에 설치된다. The concave reflector 120 of the present invention may be fixedly installed at the inner front end of the probe body 110, but the angle installed at the front end of the probe body 110 to finely adjust the angle of reflection of light by the concave reflector 120 It is installed in the adjusting unit 130.
각도조절유닛(130)은 고정판(131)과, 3개의 조절나사(133)와, 탄성판(134)과, 가동판(136)을 포함한다. The angle adjusting unit 130 includes a fixed plate 131, three adjustment screws 133, an elastic plate 134, and a movable plate 136.
고정판(131)은 원판형태로 형성되어 프로브몸체(110)의 전단에 끼움형태로 삽입고정된다. Fixing plate 131 is formed in the shape of a disc is inserted and fixed in the form of fitting to the front end of the probe body (110).
3개 조절나사(133)는 고정판(131)을 관통하도록 끼워져 고정판(131)에 대해 회전가능하게 설치되며, 후방부에 수나사산(133a)이 형성되어 있다. The three adjustment screws 133 are inserted to penetrate the fixing plate 131 so as to be rotatable with respect to the fixing plate 131, and a male thread 133a is formed at the rear portion.
탄성판(134)은 고무와 같이 탄성과 유연성재질로 이루어지고 원판형태로 형성되며, 프로브몸체(110)의 내부전단에 삽입되며, 조절나사(133)가 관통되며, 고정판(131)의 후방에 배치된다. The elastic plate 134 is made of elastic and flexible materials, such as rubber, is formed in the shape of a disc, is inserted into the inner front end of the probe body 110, the adjustment screw 133 is penetrated, the rear of the fixing plate 131 Is placed.
가동판(136)은 원판형태로 프로브몸체(110)의 내부전단에 삽입되며, 후면에는 오목 반사경(120)의 전면이 접착제 등에 의해 접착고정되며, 가동판(136)의 전면에는 조절나사(133)의 수나사산(133a)이 나사체결되는 암나사산(136a)이 형성되어 있다. The movable plate 136 is inserted into the inner front end of the probe body 110 in the form of a disc, the front of the concave reflector 120 is fixed to the adhesive by adhesive or the like, the adjustment screw 133 on the front of the movable plate 136 A female thread 136a is formed in which the male thread 133a of the screw) is screwed.
상기한 구성에 따라, 사용자가 3개의 조절나사(133) 중 어느 하나의 나사(133)를 일방향 또는 타방향으로 돌려주면, 가동판(136)의 일측부가 고정판(131)과의 이격거리가 조절되게 됨으로써 가동판(136)에 부착된 반사경(120)도 이와 연동되어 배치각도가 조정된다. 이에 따라, 오목 반사경(120)에 의한 빛의 반사각도를 조정할 수 있다. According to the above configuration, when the user rotates any one screw 133 of the three adjustment screw 133 in one direction or the other direction, one side portion of the movable plate 136 is adjusted the separation distance from the fixed plate 131 As a result, the reflecting mirror 120 attached to the movable plate 136 is also linked to this to adjust the placement angle. Thereby, the reflection angle of the light by the concave reflector 120 can be adjusted.
한편, 본 발명에서 프로브장치(100)는 프로브몸체(110)가 측정대상지점(2)의 지면으로부터 150~170cm의 높이상에 설치될 수 있도록 접속관(116)과 수직관(117)을 더 구비할 수 있다. Meanwhile, in the present invention, the probe device 100 further includes a connection pipe 116 and a vertical pipe 117 so that the probe body 110 can be installed at a height of 150 to 170 cm from the ground of the measurement target point 2. It can be provided.
접속관(116)은 "ㄱ" 형태로 꺽인 엘보관 형태로 형성되며, 프로브몸체(110)의 후단이 끼워져 결합설치된다. 또한, 접속관(116)은 개방된 후방을 덮도록 결합나사(B2)에 의해 결합되는 후방덮개(116a)를 구비할 수 있다. The connection pipe 116 is formed in the form of elbow pipe bent in the form of "a", the rear end of the probe body 110 is fitted is installed. In addition, the connection pipe 116 may include a rear cover 116a coupled by a coupling screw B2 to cover the open rear.
수직관(117)은 대략 길이가 150cm로 구성되며, 접속관(116)의 하단에 끼움결결합되어, 측정대상지점(2)의 지면에 프로브몸체(110)를 지지한다. The vertical pipe 117 is approximately 150cm long and is fitted to the bottom of the connection pipe 116 to support the probe body 110 on the ground of the measurement target point (2).
이 경우, 광케이블(200)의 전단부는 접속관(116)과 수직관(117)의 내부를 통과하여, 광케이블(200)의 전단(210)이 케이블접속관(114a)에 SMA 커넥터 방식에 의해 접속되게 된다. In this case, the front end of the optical cable 200 passes through the interior of the connection pipe 116 and the vertical pipe 117, so that the front end 210 of the optical cable 200 is connected to the cable connection pipe 114a by the SMA connector method. Will be.
본 발명의 프로브장치(100)는 측정대상지점(2)이 열린 공간일 경우, 프로브몸체(110)가 지면으로부터 150~170cm 높이상에 설치될 수 있도록 접속관(116)과 수직관(117)을 더 구비한 형태가 될 수 있지만, 측정하고자 하는 측정대상지점(2)이 장치내부이거나 덕트내부일 경우, 접속관(116)과 수직관(117)을 제외한 프로브몸체(110)만 고정시켜 설치할 수 있음은 물론이다. In the probe device 100 of the present invention, when the measurement target point 2 is an open space, the connection pipe 116 and the vertical pipe 117 so that the probe body 110 can be installed at a height of 150 to 170 cm from the ground. If the measurement target point (2) to be measured is the inside of the device or the duct inside, only the probe body 110 except for the connection pipe 116 and the vertical pipe 117 is fixed to be installed Of course it can.
도 3, 도 4, 도 6을 참조하면, 광케이블(200)은 6개의 광원용케이블(201)과, 1개의 검측용케이블(203)로 구성된다. 6개의 광원용 케이블(201)에는 각각 3개의 광섬유 다발이 할당되어 있으며, 1개의 검측용케이블(203)은 1개의 광섬유로 할당되어 있다. 3, 4, and 6, the optical cable 200 includes six light source cables 201 and one detection cable 203. Three optical fiber bundles are assigned to six light source cables 201, and one detection cable 203 is assigned to one optical fiber.
도 3과 같이, 광케이블(200)의 후단은 6개의 광원용 케이블(201)과 1개의 검측용 케이블(203)이 뭉쳐지지 않고 여러 갈래로 갈라져 분리된 형태로 형성되며, 6개의 광원용 케이블(201)의 후단(205)에는 각 광원용 케이블(201)의 세가닥의 광섬유가 도 6의 (a),(b),(c),(e),(f),(g)와 같이 삼각형형태로 인접한 형태로 형성되어 있으며, 검측용 케이블(203)의 후단(207)은 도 6의 (d)와 같이 광섬유가 배치되어 있다. 이러한 광원용 케이블(210)의 후단(205)과 검측용 케이블(203)의 후단(207)은 후술할 측정장치(310)의 광원모듈(330)과 스펙트럼분석모듈(340)에 연결된다. As shown in FIG. 3, the rear end of the optical cable 200 is formed in a form in which six light source cables 201 and one detection cable 203 are separated from each other without being agglomerated and divided into six light source cables ( At the rear end 205 of 201, three optical fibers of each light source cable 201 are triangulated as shown in Figs. 6A, 6B, 6C, 6E, 6F, and 7G. It is formed in the shape adjacent to each other, and the optical fiber is arrange | positioned at the rear end 207 of the detection cable 203 as shown in FIG. The rear end 205 of the light source cable 210 and the rear end 207 of the detection cable 203 are connected to the light source module 330 and the spectrum analysis module 340 of the measuring device 310 to be described later.
또한, 본 발명의 광케이블(200)은 6개의 광원용 케이블(201)과 1개의 검측용 케이블(203)의 각 후단(205,207) 일부는 갈라지도록 분리된 형태로 형성되며, 나머지 부분은 광케이블형태로 모아지는 형태로 구성되어, 측정장치(310)와 일정거리 떨어진 프로브장치(100)까지는 6개의 광원용 케이블(201)과 검측용 케이블(203)이 하나의 피복에 묶여 하나의 케이블형태로 형성된다. In addition, the optical cable 200 of the present invention is formed in a shape separated from each of the rear end (205, 207) of the six light source cable 201 and one detection cable 203 is separated, the remaining portion in the form of optical cable The light source cable 201 and the detection cable 203 are bundled together in one sheath and formed in the form of one cable to the probe device 100 spaced apart from the measuring device 310 at a predetermined distance. .
본 발명의 광케이블(200)의 전단(210)은 도 7a과 같이, 1개의 검측용 케이블(203) 전단을 중심으로 그 외곽에 18개의 광섬유로 구성된 6개의 광원용 케이블(201)의 전단이 배치되도록 구성된 광출사면이 형성된다. 구체적으로, 6개의 광원용 케이블(201)의 총 18개의 광섬유 중 6개의 광섬유 전단은 검측용 케이블(203)를 중심으로 외곽에 제1동심원상에 배치되도록 구성되고, 나머지 12개의 광섬유 전단은, 상기 제1동심원 외곽의 제2동심원상에 배치되도록 구성된다. The front end 210 of the optical cable 200 of the present invention, as shown in Figure 7a, the front end of the six light source cables 201 consisting of 18 optical fibers are arranged around the front end of one detection cable 203 A light exit surface configured to be formed is formed. Specifically, six optical fiber front end of the total 18 optical fibers of the six light source cable 201 is configured to be disposed on the first concentric circle on the outer side around the detection cable 203, the remaining 12 optical fiber front end, And arranged on a second concentric circle outside the first concentric circle.
도 7b를 참고하면, 6개의 광원용 케이블(201)의 전단에 형성된 광출사면은 각 광원용 케이블(201)의 전단(도 6a 참조)의 광섬유에 대응되도록 배치구조를 갖는다. Referring to FIG. 7B, the light exit surface formed at the front end of the six light source cables 201 has an arrangement structure corresponding to the optical fiber at the front end (see FIG. 6A) of each light source cable 201.
한편, 본 실시 예에서, 광케이블(200)은 6개의 광원용 케이블(201)로 구성되는 것을 설명하였으나, 이에 한정되는 것은 아니며 그 수는 광원모듈(330)로부터 제공되는 광원의 종류 수에 따라 다양하게 실시 될 수 있음은 물론이다. Meanwhile, in the present embodiment, the optical cable 200 has been described as being composed of six light source cables 201, but the present invention is not limited thereto, and the number thereof varies according to the number of types of light sources provided from the light source module 330. Of course it can be done.
본 발명에서 광케이블(200)에 적용된 광섬유는 여러 종류의 광섬유 재료중 400~2400 micrometer 파장 대역의 광원을 동시에 전달할 수 있는 Low-OH(Low Hydroxyl Ion/FG200LEA, 12 dB/km Max. attenuation)가 적용되며, 각각의 광섬유의 직경은 200 micrometer(Fiber core 200 micrometer +/- 2%, Fiber cladding 220 +/- 2 micrometer)로 선정하여 광케이브(200)의 전단에 형성된 광출사면의 중심에 19개의 광섬유 다발을 직경 1 mm의 원 내부에 모두 집속시키는 형태로 형성된다. The optical fiber applied to the optical cable 200 in the present invention is a low-OH (Low Hydroxyl Ion / FG200LEA, 12 dB / km Max. Attenuation) that can simultaneously transmit a light source of 400 ~ 2400 micrometer wavelength band among various kinds of optical fiber materials The diameter of each optical fiber is 200 micrometers (Fiber core 200 micrometer + /-2%, Fiber cladding 220 + /-2 micrometer) to select 19 in the center of the light exit surface formed at the front end of the optical cable 200 The optical fiber bundle is formed in the form of focusing all inside the circle of 1 mm in diameter.
도 1, 도 2, 및 도 9를 참조하면, 측정장치(300)는 광케이블(200)의 후단에 연결되도록 설치되어, 상기 6개의 광원용 케이블(201) 각각에 각기 다른 파장의 광원을 공급하는 광원모듈(330)과, 1개의 검측용 케이블(203)에서 검측된 스펙트럼 신호를 분석하여 오염물질의 성분을 추적하고 농도를 계산하는 스펙트럼분석모듈(340)을 포함한다. 1, 2, and 9, the measuring device 300 is installed to be connected to the rear end of the optical cable 200 to supply light sources having different wavelengths to each of the six light source cables 201. It includes a light source module 330 and a spectrum analysis module 340 for analyzing the spectral signal detected by one detection cable 203 to track the components of the pollutant and calculate the concentration.
측정장치(300)는 스펙트럼분석모듈(340)에서 분석된 분석데이터를 표시하는 디스플레이패널(310)을 더 구비할 수 있으며, 이러한 측정장치(300)는 광원모듈(330)과 스펙트럼분석모듈(340), 디스플레이패널(310)을 제어하는 제어부(320)를 구비할 수 있다. The measuring device 300 may further include a display panel 310 displaying analysis data analyzed by the spectrum analysis module 340. The measuring device 300 may include a light source module 330 and a spectrum analysis module 340. The controller 320 may control the display panel 310.
제어부(320)는 컴퓨터 운영체제로 동작하며, 프로그램에 의해 광원모듈(330)을 제어하며, 스펙트럼분석모듈(340)을 통해 광케이블(200)의 검측용 케이블(203)을 통해 수신되는 스펙트럼 신호를 읽고 분석하여 실시간 정보와 필요한 경보를 생성하며, 디스플레이패널(310)을 통해 운영상태를 보여준다. The control unit 320 operates as a computer operating system, controls the light source module 330 by a program, and reads the spectral signal received through the detection cable 203 of the optical cable 200 through the spectrum analysis module 340. The analysis generates real-time information and necessary alarms, and shows the operation state through the display panel 310.
광원모듈(330)은 4개의 LED(발광다이오드,331,332,333,334)와, 1개의 LD(레이저 다이오드, 335)와, 1개의 텅스텐 할로겐램프(336, 장파장 램프)로 구성되어, 4개의 LED는 6개의 광원용 케이블(201) 중 4개에 연결되고, 1개의 LD는 1개의 광원용 케이블(201)과 연결되며, 1개의 텅스텐 할로겐램프(336)는 1개의 광원용 케이블(201)과 연결된다. 여기서 4개의 LED(331,332,333,334)는 각각 다른 대역파장의 광을 발생시킨다. The light source module 330 is composed of four LEDs (light emitting diodes 331,332,333,334), one LD (laser diode, 335), and one tungsten halogen lamp 336 (long wavelength lamp), and four LEDs have six light sources. It is connected to four of the cable 201, one LD is connected to one light source cable 201, one tungsten halogen lamp 336 is connected to one light source cable 201. The four LEDs 331, 332, 333, and 334 generate light having different band wavelengths, respectively.
스펙트럼 분석모듈(340)은 스펙트럼 신호를 컴퓨터 프로그램에 의해서 자동으로 분석하고 결과를 표시한다. The spectrum analysis module 340 automatically analyzes the spectral signal by a computer program and displays the result.
한편, 도 9에 도시된 바와 같이, 본 발명의 측정장치(300)는 케이싱의 일면에 경보등(315)이 구비될 수 있다. On the other hand, as shown in Figure 9, the measuring device 300 of the present invention may be provided with an alarm light 315 on one surface of the casing.
관제장치(400)는 네트워크 통신망(5)을 통해 측정장치(300)와 데이터 통신이 가능하도록 설치되며, 스펙트럼분석모듈(340)로부터 분석된 유해물질 분석데이터를 모니터(미도시) 상에 표시하고, 분석데이터에 따라 위험상황을 경보한다. 이때, 관제장치(400)는 스피커(미도시)를 구비하여 사이렌을 출력하거나, 경보방속을 출력할 수 있으며, 아울러, 네트워크 통신망(5)을 측정대상지점(2)에 있는 작업자의 이동통신단말기(500)에 경고메시지를 발송할 수 있다. The control device 400 is installed to enable data communication with the measuring device 300 through the network communication network 5, and displays the hazardous substance analysis data analyzed from the spectrum analysis module 340 on a monitor (not shown). It alerts you of dangerous situations in accordance with the analytical data. At this time, the control device 400 may be provided with a speaker (not shown) to output the siren or output the alarm discharge, and also, the mobile communication terminal of the worker at the measurement target point (2) network communication network (5) A warning message can be sent to 500.
관제장치(400)는 측정장치(300)의 제어부(320)와 네트워크 통신망(5)을 통해 데이터 통신하여, 현재상황의 실시간 표시, 알람 상황의 경보, 장치에 대한 조작과 설정, 이력의 기록과 보관 기능을 수행할 수 있다. 자체모니터를 통한 정보표시 및 유저인터페이스 기능을 수행하며 네트워크를 통해 원격지의 컴퓨터와 동일한 정보를 공유하고 모바일 등 기타장치 들에게 필요한 사항을 전파할 수 있다. 아울러, 관제장치(400)는 측정하고자 하는 물질의 오염이 검지될 경우, 단계별로 알람경보를 발령하도록 구성될 수 있다. The control device 400 performs data communication with the control unit 320 of the measuring device 300 through the network communication network 5 to display a real-time display of the current situation, an alarm of an alarm situation, operation and setting of the device, and record the history. Archive function can be performed. It can perform information display and user interface function through its own monitor, share the same information with remote computer through network, and propagate necessary information to other devices such as mobile. In addition, the control device 400 may be configured to issue an alarm alarm step by step when the contamination of the material to be measured is detected.
상기한 구성을 갖는 본 발명의 다중 유해물질 모니터링 시스템의 동작에 대해 설명한다. The operation of the multiple hazardous substance monitoring system of the present invention having the above configuration will be described.
광원모듈(330)이 6개의 광원용 케이블(201)에 각기 다른 6개의 파장대역의 광원이 입력되면, 6개의 광원은 광원용 케이블(201)의 전단 즉, 광출사면을 통해 프로브몸체(110)의 내부에 전방으로 광을 조사하고, 조사된 광원은 오목 반사경(120)을 통해 반사되어, 6개의 광원용 케이블(201)의 중심에 배치된 검측용 케이블(203)의 전단에 수렴되게 된다. When the light source module 330 inputs light sources of six different wavelength bands to the six light source cables 201, the six light sources are probe body 110 through the front end of the light source cable 201, that is, the light exit surface. The light is irradiated to the front of the inside, and the irradiated light source is reflected through the concave reflector 120, and converges to the front end of the detection cable 203 disposed at the center of the six light source cables 201. .
이렇게 검측용 케이블(203)에 수렴된 광 스펙트럼신호는 검측용 케이블(203)을 통해 스펙트럼분석모듈(340)에 전달되고, 스펙트럼분석모듈(340)은 수신된 스펙트럼신호를 분석하여 공기중의 유해물질 포함유무와 농도를 분석한 분석테이터를 생성할 수 있다. The optical spectral signal converged on the detection cable 203 is transmitted to the spectrum analysis module 340 through the detection cable 203, and the spectrum analysis module 340 analyzes the received spectrum signal to remove harmful substances in the air. Analytical data can be generated by analyzing the presence and concentration of substances.
제어부(320)는 스펙트럼분석모듈(340)에서 분석된 스펙트럼 분석데이터를 디스플레이패널(310)에 표시하고, 스펙트럼 분석데이터에 따라 설정된 수치 이상이면 경보등(315)을 통해 경보하거나, 스피커(미도시)를 통해 경보음을 출력할 수 있다. The controller 320 displays the spectrum analysis data analyzed by the spectrum analysis module 340 on the display panel 310, and if the value is equal to or greater than a value set according to the spectrum analysis data, the controller 320 alarms through an alarm lamp 315 or a speaker (not shown). You can output the alarm sound through.
아울러, 관제장치(400)는 측정장치(300)의 제어부(320)와 무선통신하며, 스펙트럼분석 데이터에 따라 설정된 수치 이상이면 위험상황을 경보하도록 스피커를 통해 사이렌 또는 경보방송을 출력하거나 작업자의 이동통신단말기(500)에 경고메시지를 발송할 수 있다. 여기서 관제장치(400)는 지역 소방서에 구비될 수도 있다. In addition, the control device 400 wirelessly communicates with the control unit 320 of the measuring device 300, and outputs a siren or alarm broadcast through a speaker to alert a dangerous situation when the value is higher than a set value according to the spectrum analysis data, or the worker moves. Warning message can be sent to the communication terminal (500). Here, the control device 400 may be provided at a local fire station.
상기한 바와 같이, 본 발명은 각기 다른 파장대역의 LED, LD, 장파장 Lamp(텅스텐할로겐램프) 등의 발광원을 하나의 프로브에 집속하여 적외선, 가시광선을 동시에 또는 시간차를 두고 입사시킴으로 신속하고 정밀한 광대역 스펙트럼의 구현이 가능하다. As described above, the present invention focuses light emission sources such as LEDs, LDs, and long-wavelength lamps (tungsten halogen lamps) of different wavelength bands on a single probe, thereby rapidly and precisely inciting infrared rays and visible rays at the same time or at different time intervals. Implementation of the wideband spectrum is possible.
특히, 각기 다른 파장대역을 갖는 광원을 조합하여 하나의 광섬유로 구성된 광케이블(200)에 의해 빛을 전달하고, 프로브장치(100)를 통해 조사하고, 조사 빛을 반사한 후 수렴된 스펙트럼 신호를 분석하여 유해물질을 신속하고 정밀하게 측정하여 유해물질의 존재유무를 검증한 후 경보를 표시할 수 있다. In particular, by combining light sources having different wavelength bands, the light is transmitted by the optical cable 200 composed of one optical fiber, irradiated through the probe device 100, and after reflecting the irradiated light, the converged spectral signal is analyzed. Therefore, the hazardous substances can be measured quickly and precisely to verify the presence of hazardous substances and to display an alarm.
종래에는 광대역 파장을 구현하기 위해서 글로바같은 램프 또는 히터를 사용하였으나, 본 발명은 파장대역이 서로 다른 LED, LD, 장파장을 위한 램프를 조합하여 사용하여 스펙트럼의 품질을 개선하였으며, 또한, 종래에는 LD 또는 LED를 광원으로 사용하는 경우 하나의 광원이 측정대상지점에 설치되었으나, 본 발명에서는 광섬유를 빛의 전달매개체로 사용하여 LED, LD, 램프를 조합한 광원을 측정장치에 에 두고, 프로브장치(100) 들을 원격지에 두는 배치가 가능하게 된다. Conventionally, a lamp or a heater such as a glow bar is used to implement a wideband wavelength, but the present invention improves the quality of a spectrum by using a combination of LEDs, LDs, and lamps for long wavelengths having different wavelength bands. In the case of using LD or LED as a light source, one light source is installed at a measurement target point, but in the present invention, using a fiber as a medium for transmitting light, a light source combining LEDs, LDs, and lamps is placed in a measuring device, and a probe device Placement to place the 100 at a remote location is possible.
또한, 본 발명은 도 8과 같이, 광원용 케이블(201)의 전단을 통해 조사된 광이 한 번의 원뿔형체적광로(Volume path)를 형성하게 되며, 오목 반사경(120)에 반사되면서 다시 한 번 원뿔형체적광로(volume path)를 형성하며, 검측용 케이블(203)에 수렴되므로 물질 측정의 정밀도를 확보할 수 있는 270cm3의 체적형 광로에서 공기에 포함된 오염물질을 탐측하게 된다. 이는 기존의 장치가 직선형 광로거리개념인데 비해, 본 발명의 체적광로는 보다 측정의 정밀도가 향상될 수 있다. In addition, in the present invention, as shown in FIG. 8, the light irradiated through the front end of the light source cable 201 forms a single conical volume path, and is reflected on the concave reflector 120 once again. Conical volume path (volume path) is formed, and converged to the detection cable (203) to detect the contaminants contained in the air in the volumetric light path of 270cm 3 that can ensure the accuracy of the measurement of the material. This is because the conventional device is a concept of a linear optical path distance, the volumetric optical path of the present invention can be improved the measurement accuracy.
아울러, 본 발명은 광케이블(200)은 광섬유로 이루어지고, 이러한 광섬유는 도 10과 같이, 일정한 입사각이 존재함으로서, 광원용 케이블(201)의 전단을 통해 조사된 빛이 오목 반사경(120)에 의해 반사되어, 검측용 케이블(203)로 수렴(광입사)되는 것은 가능하나, 그 외의 주변 천장 등에 설치된 조명의 빛 등이 검측용 케이블(203)에 입사되는 것은 불가능하여 프로브장치(100)가 주변조명에 영향을 받지 않아 오작동을 일으키지 않게 된다. In addition, in the present invention, the optical cable 200 is made of an optical fiber, and as such an optical fiber has a constant incidence angle, as shown in FIG. 10, light irradiated through the front end of the light source cable 201 by the concave reflector 120. Although it is possible to reflect and converge (light incidence) to the detection cable 203, it is impossible for the light or the like of the light installed in the surrounding ceiling to be incident on the detection cable 203, so that the probe device 100 It is not affected by lighting and will not cause malfunction.
이상, 본 발명을 본 발명의 원리를 예시하기 위한 바람직한 실시 예와 관련하여 도시하고 또한 설명하였으나, 본 발명은 그와 같이 도시되고 설명된 그대로의 구성 및 작용으로 한정되는 것이 아니다. 오히려 첨부된 특허청구범위의 사상 및 범주를 일탈함이 없이 본 발명에 대한 다수의 변경 및 수정 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주 되어야 할 것이다.While the invention has been shown and described in connection with preferred embodiments for illustrating the principles of the invention, the invention is not limited to the construction and operation as shown and described. Rather, those skilled in the art will appreciate that many changes and modifications can be made to the present invention without departing from the spirit and scope of the appended claims. Accordingly, all such suitable changes, modifications, and equivalents should be considered to be within the scope of the present invention.
본 발명은 다중 유해물질 모니터링 시스템에 관한 것으로서, 반도체 공장과 같은 유해물질을 모니터링하고 대처해야 하는 모든 장소에 적용할 수 있으며, 유해물질모니터링 산업분야에 적용될 수 있다.The present invention relates to a multiple hazardous substance monitoring system, and can be applied to any place where a hazardous substance such as a semiconductor factory must be monitored and coped, and can be applied to the hazardous substance monitoring industry.
Claims (5)
- 각각 3가닥의 광섬유다발로 이루어진 6개의 광원용 케이블과, 1가닥의 광섬유로 이루어진 1개의 검측용 케이블로 구성되며, 상기 6개의 광원용 케이블의 18개 광섬유 중 6개의 광섬유 전단은 상기 1개의 검측용 케이블의 광입사면을 중심에 두고 외곽의 제1동심원 상에 배치되고, 나머지 12개의 광섬유 전단은 상기 제1동심원보다 외곽의 제2동심원 상에 배치된 광출사면을 갖는 광케이블;It consists of six light source cables each consisting of three optical fiber bundles and one detection cable consisting of one optical fiber, and six optical fiber front ends of one of the eighteen optical fibers of the six light source cables are detected. An optical cable having a light exit surface disposed on a first concentric circle on the outer side of the light incidence plane of the cable, and the remaining twelve optical fiber front ends disposed on a second concentric circle on the outer side of the first concentric circle;유해물질을 측정하기 위한 측정대상지점에 설치되며, 상기 광케이블의 전단부가 접속되어, 상기 6개의 광원용 케이블로부터 상기 측정대상지점의 공기중에 광원을 조사하고 반사하여 다시 상기 1개의 검측용 케이블에 집속되게 하는 복수의 프로브 장치; 및, It is installed at the point of measurement for measuring harmful substances, and the front end of the optical cable is connected, and irradiates and reflects the light source in the air of the point of measurement from the six light source cables and collects the light again in the one detection cable. A plurality of probe devices to deceive; And,상기 광케이블의 후단에 연결되도록 설치되며, 상기 6개의 광원용 케이블 각각에 각기 다른 파장의 광원을 제공하는 광원모듈과, 상기 1개의 검측용 케이블에 검측된 스펙트럼신호를 분석하여 오염물질의 성분을 추적하고 농도를 계산하는 스펙트럼분석모듈을 구비한 측정장치;를 포함하며, It is installed to be connected to the rear end of the optical cable, the light source module for providing a light source having a different wavelength to each of the six light source cables, and by analyzing the spectral signal detected on the one detection cable to track the components of the pollutant It includes; measuring device having a spectrum analysis module for calculating the concentration;상기 광원모듈은 상기 6개의 광원용 케이블 중 4개의 광원용 케이블에 연결되는 4개의 발광다이오드와, 1개의 광원용 케이블에 연결되는 레이저다이오드와, 1개의 광원용 케이블에 연결되는 텅스텐할로겐램프로 구성되며, The light source module includes four light emitting diodes connected to four light source cables among the six light source cables, a laser diode connected to one light source cable, and a tungsten halogen lamp connected to one light source cable. ,상기 프로브장치는,The probe device,외주면 양측에 절개공이 형성된 전후가 개방된 원통형태의 프로브몸체;A probe body having a cylindrical shape in which front and rear openings are formed at both sides of the outer circumferential surface thereof;상기 프로브몸체의 후단에 결합되며, 중심에 상기 광케이블의 전단이 접속되는 케이블접속관을 구비한 덮개판; 및, A cover plate coupled to a rear end of the probe body and having a cable connection tube connected to a front end of the optical cable at a center thereof; And,상기 프로브몸체의 전단에 설치되어 상기 광케이블의 전단에서 상기 프로브몸체의 내부로 조사된 광을 반사하여 상기 광케이블의 전단 중앙에 배치된 상기 검측용 케이블로 수렴시키는 오목 반사경;을 포함하는 것을 특징으로 하는 다중 유해물질 모니터링 시스템.And a concave reflector installed at the front end of the probe body and reflecting the light irradiated from the front end of the optical cable to the inside of the probe body and converging to the detection cable disposed at the center of the front end of the optical cable. Multiple hazardous substance monitoring system.
- 제 1 항에 있어서, The method of claim 1,상기 측정장치와 네트워크를 통해 통신가능하도록 설치되며, 상기 스펙트럼분석모듈로부터의 분석된 유해물질 분석데이터를 모니터를 통해 표시하고, 상기 분석데이터에 따라 위험상황을 경보하도록 스피커를 통해 사이렌 또는 경보방송을 출력하거나 작업자의 이동통신단말기에 경고메시지를 발송하는 관제장치;를 더 포함하는 것을 특징으로 하는 다중유해물질 모니터링 시스템. It is installed to be able to communicate with the measuring device through a network, and displays the analyzed hazardous substance analysis data from the spectrum analysis module through a monitor, and a siren or alarm broadcast through a speaker to alert a dangerous situation according to the analysis data. A control system for outputting or sending a warning message to a mobile communication terminal of the operator; Multi-hazardous material monitoring system further comprising.
- 제 2 항에 있어서, The method of claim 2,상기 프로브장치는, The probe device,상기 프로브몸체의 후단이 끼움방식으로 결합되는 "ㄱ"자 형상으로 된 연결관; 및, A connecting tube having a "b" shape in which a rear end of the probe body is coupled in a fitting manner; And,상기 접속관의 하단에 결합되며, 상기 측정대상지점의 지면에 지지되도록 설치되는 수직관;을 더 포함하며, It is coupled to the lower end of the connection pipe, the vertical pipe is installed to be supported on the ground of the measurement target point; further includes,상기 광케이블의 전단부는 상기 수직관 및 상기 연결관을 내부를 통과하는 것을 특징으로 하는 다중유해물질 모니터링 시스템. The front end of the optical cable multi-hazardous monitoring system, characterized in that passing through the vertical pipe and the connecting pipe.
- 제 3 항에 있어서, The method of claim 3, wherein상기 프로브몸체는 상기 측정대상지점의 지면에 대해 150~170cm 사이의 높이에 배치되는 것을 특징으로 하는 다중유해물질 모니터링 시스템. The probe body is a multi-hazardous monitoring system, characterized in that disposed at a height between 150 ~ 170cm with respect to the ground of the measurement target point.
- 제 1 항에 있어서, The method of claim 1,상기 오목 반사경의 직경은 25.4mm이고, The diameter of the concave reflector is 25.4mm,상기 광케이블의 전단과 상기 오목 반사경의 중심까지의 거리는 200mm인 것을 특징으로 하는 다중유해물질 모니터링 시스템. And a distance between the front end of the optical cable and the center of the concave reflector is 200 mm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2015/003748 WO2016167383A1 (en) | 2015-04-15 | 2015-04-15 | System for monitoring multiple harmful substances |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2015/003748 WO2016167383A1 (en) | 2015-04-15 | 2015-04-15 | System for monitoring multiple harmful substances |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016167383A1 true WO2016167383A1 (en) | 2016-10-20 |
Family
ID=57126606
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/003748 WO2016167383A1 (en) | 2015-04-15 | 2015-04-15 | System for monitoring multiple harmful substances |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016167383A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3907495A1 (en) * | 2020-05-08 | 2021-11-10 | Kidde Technologies, Inc. | Sensor head assembly for a measurement system |
CN114184563A (en) * | 2021-12-02 | 2022-03-15 | 复旦大学 | Ultra-spectral mobile measurement system for atmospheric components |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100259756A1 (en) * | 2009-04-09 | 2010-10-14 | Brian Powell | Sensor head for a dry powder agent |
JP2011089803A (en) * | 2009-10-20 | 2011-05-06 | Kawasaki Heavy Ind Ltd | Gas concentration measuring instrument of internal combustion engine and sensor plug |
JP2014038070A (en) * | 2012-08-20 | 2014-02-27 | Shikoku Research Institute Inc | Gas concentration measuring device and method |
JP2014092381A (en) * | 2012-10-31 | 2014-05-19 | Mitsubishi Heavy Ind Ltd | Device for multi-point measuring gas component concentration in gas |
US8759767B2 (en) * | 2008-08-21 | 2014-06-24 | Lawrence Livermore National Security, Llc | Combined raman and IR fiber-based sensor for gas detection |
-
2015
- 2015-04-15 WO PCT/KR2015/003748 patent/WO2016167383A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8759767B2 (en) * | 2008-08-21 | 2014-06-24 | Lawrence Livermore National Security, Llc | Combined raman and IR fiber-based sensor for gas detection |
US20100259756A1 (en) * | 2009-04-09 | 2010-10-14 | Brian Powell | Sensor head for a dry powder agent |
JP2011089803A (en) * | 2009-10-20 | 2011-05-06 | Kawasaki Heavy Ind Ltd | Gas concentration measuring instrument of internal combustion engine and sensor plug |
JP2014038070A (en) * | 2012-08-20 | 2014-02-27 | Shikoku Research Institute Inc | Gas concentration measuring device and method |
JP2014092381A (en) * | 2012-10-31 | 2014-05-19 | Mitsubishi Heavy Ind Ltd | Device for multi-point measuring gas component concentration in gas |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3907495A1 (en) * | 2020-05-08 | 2021-11-10 | Kidde Technologies, Inc. | Sensor head assembly for a measurement system |
US20210349000A1 (en) * | 2020-05-08 | 2021-11-11 | Kidde Technologies, Inc. | Sensor head assembly for a measurement system |
CN114184563A (en) * | 2021-12-02 | 2022-03-15 | 复旦大学 | Ultra-spectral mobile measurement system for atmospheric components |
CN114184563B (en) * | 2021-12-02 | 2024-03-29 | 复旦大学 | Atmospheric component hyperspectral mobile measurement system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4839527A (en) | Optical-fibre smoke detection/analysis system | |
EP0316172B1 (en) | Portable particle analysers | |
US20200256777A1 (en) | Method and system for particle characterization and identification | |
EP0472637A1 (en) | Apparatus for emitting and receiving light. | |
US6784988B2 (en) | Apparatus and process for analyzing a stream of fluid | |
CN104122223A (en) | Double-optical-path multi-gas infrared sensor | |
RU157463U1 (en) | TRACK GAS ANALYZER | |
CN101379376A (en) | Device and method for spectrometric system | |
US7301641B1 (en) | Fiber optic smoke detector | |
US10724945B2 (en) | Laser detection system and method | |
US20170370835A1 (en) | Optical detector of a value of an atmospheric physical quantity representative of a danger | |
WO2016167383A1 (en) | System for monitoring multiple harmful substances | |
KR20130081843A (en) | Apparatus for simultaneous monitoring of atmosphere contamination at multi-point | |
WO2023163296A1 (en) | Suction-type composite gas sensing device using waveguide | |
KR102407279B1 (en) | Diffusion Composite Gas Detector Using Waveguide | |
CN1527931A (en) | Method and device for evaluating electromagnetic rediation | |
CN214584891U (en) | Extraction type explosion-proof gas analysis device | |
DE50010143D1 (en) | Apparatus for analyzing a gas sample by means of infrared absorption | |
CN101281128B (en) | On-position type gas analysis system with on-position calibration function | |
US7139075B2 (en) | Method and apparatus for measuring the size distribution and concentration of particles in a fluid | |
WO2020171244A1 (en) | Optical waveguide, optical system, and optical gas sensor | |
CN101833847B (en) | Long-corridor toxic gas alarm device with wide absorption spectrum | |
JPH08184556A (en) | Optical gas detector | |
WO2021040247A1 (en) | Gas sensing system using scattered light measurement | |
CN106370601B (en) | Gaseous wide area detection device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15889263 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15889263 Country of ref document: EP Kind code of ref document: A1 |