WO2016167379A2 - Polymer-attached silica capillary for separating oligosaccharides or peptides and method for manufacturing same - Google Patents

Polymer-attached silica capillary for separating oligosaccharides or peptides and method for manufacturing same Download PDF

Info

Publication number
WO2016167379A2
WO2016167379A2 PCT/KR2015/003669 KR2015003669W WO2016167379A2 WO 2016167379 A2 WO2016167379 A2 WO 2016167379A2 KR 2015003669 W KR2015003669 W KR 2015003669W WO 2016167379 A2 WO2016167379 A2 WO 2016167379A2
Authority
WO
WIPO (PCT)
Prior art keywords
silica capillary
polymer
silica
capillary
represented
Prior art date
Application number
PCT/KR2015/003669
Other languages
French (fr)
Korean (ko)
Other versions
WO2016167379A3 (en
Inventor
정원조
Original Assignee
인하대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 인하대학교 산학협력단 filed Critical 인하대학교 산학협력단
Priority to PCT/KR2015/003669 priority Critical patent/WO2016167379A2/en
Publication of WO2016167379A2 publication Critical patent/WO2016167379A2/en
Publication of WO2016167379A3 publication Critical patent/WO2016167379A3/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H1/00Processes for the preparation of sugar derivatives
    • C07H1/06Separation; Purification

Definitions

  • the present invention relates to a silica capillary tube with a polymer for separating ligosaccharides or peptides and a method for preparing the same.
  • the method of bonding the polymer membrane with the polymerization reaction is a well known technique.
  • Inorganic-organic hybrids prepared by such techniques can also be utilized as the stationary phase of chromatography.
  • the Atom Transfer Radical Polymerization (ATRP) method is mainly used to prepare organic-inorganic common stationary phase for chromatography, and the reversible addition-fragmentation chain transfer (RAFT) polymerization method is also partially used. Is being used.
  • atomic transfer radical polymerization In atomic transfer radical polymerization (ATRP), a catalyst mixture consisting of a halide of monovalent copper, a halide of divalent copper, and an amine base is used to induce a polymerization reaction on the silica surface to which a polymerization initiator including terminal halogen is attached.
  • the atomic transfer radical polymerization (ATRP) is known to form a polymer chain in the form of a brush having a large molecular weight and a low degree of dispersion.
  • Some atomic transfer radical polymerization (ATRP) studies have reported that the resulting stationary phase has superior selectivity compared to conventional C 18 stationary phases.
  • Reversible addition-fragmentation according to the chain transfer (RAFT) polymerization mechanism within the CS bond between the first ligand and the second ligand (diethyldithio carbamate) adhering to the surface of the polymer chain may be inserted, known to grow.
  • the necessary initial radicals arise from the thermal self-initialization of the monomers and no additional catalyst is required.
  • the chromatographic separation efficiency of the stationary phase obtained by reversible addition-fragmentation chain transfer (RAF) integration is considered to be significantly inferior to the conventional C 18 stationary phase. .
  • the present inventors have porous' 4 in the silica powder by the reaction of chloromethyl phenyl isocyanate and sodium diethyl dithiocarbamate in turn initiator prepared (S 1 type) attachment silica *, and by jeunghap styrene here polystyrene added silica stationary phase I have made and reported Korean Chem. Soc. 2009, Vol. 30, No. 3) While the stationary phase can give better separation efficiency than C 18, the solute peaks are densified by giving a significantly shorter retention time.
  • the polystyrene layer thus obtained did not form a uniform thickness on the silica surface, but large polystyrene masses were formed irregularly, and the retention time of the analyte solute was reduced by reducing the volume of the accessible pupil and the surface. There was a declining problem. The problem is believed to be the result of fast and uncontrolled polymerization reaction due to the generation of radicals upon very stable restart. Stable reactivation radicals are known to induce the production of polymers with large molecular weights and wide dispersions, ie, inhomogeneous polymer growth, by causing polymer hesitation to grow excessively before chain transfer or termination reactions occur.
  • the present inventors regarded the formation of highly stable polymer intermediate radicals and the growth of uncontrolled polymer chains due to the formation of polystyrene lumps in the above-mentioned studies, and the attachment of a new initiator (type S2) capable of controlling the growth rate of the polymer somewhat.
  • RAFT reversible addition-fragmentation chain transfer
  • the present inventors have found that even if the initiator addition silica of the S 1 form is sufficiently high, the adhesion density of the initiator ligand H is high enough to cause simultaneous and uniform growth of polymer chains in each initiator ligand and polymerization at the point when the chains are clustered together. If it is controlled to be terminated, it is thought that it is possible to further improve the separation efficiency by making a stationary phase to which polymer membrane of better properties is attached.
  • the present inventors react the semi-ung products with dithiocarbamate salt derivatives by using a catalyst which is well soluble in the dispersion solvent in the process of attaching isocyanate having a terminal halogen atom to the particles with isocyanate-hydroxysilica reaction.
  • a new method for producing silica with attached polymerization initiator was developed, and reversible addition-fragmentation chain transfer (RAFT) polymerization was carried out on the silica attached to the polymerization initiator to prepare a new polymer attached silica powder for liquid chromatography stationary phase with high separation efficiency. It was confirmed that it can be obtained and has applied for a patent. Meanwhile, as certain sugars are known as biomarkers of various diseases, sugar analysis has attracted much attention.
  • Capillary Electrophoresis is a very efficient method for the separation of biological materials.
  • the combined analysis of mass spectrometry and capillary electrophore sis (CE) has made it possible to dramatically speed up the process of selecting effective sugars in biomedical research.
  • the stationary phase is filled or attached inside the silica capillary, it is used for capillary
  • CEC Electrochromatography
  • HILIC stationary phase is a stationary phase with a large polarity. When using a water-soluble solvent with a mobile phase polarity, this is called HILIC.
  • the stationary phase is known to have better chromatographic resolution but inferior separation efficiency compared to the C 18 stationary phase, whereas the HILIC stationary phase is known to significantly increase the retention time of sugar due to the high polarity of the ground.
  • the present inventors have developed an open structure capillary ele ctrochromatography (CEC) capillary column having both porous graphite carbon (PGC) stationary phase and HILIC (Hydrophilic Interaction Liquid Chromatography) features.
  • a new open-structure capillary electrochromatography method is to copolymerize styrene of SP 2 structure and acrylamide having a large polarity by reversible addition-fragmentation chain transfer (RAFT) polymerization to form on capillary inner wall.
  • RAFT reversible addition-fragmentation chain transfer
  • Patent Document 1 Korean Registered Patent 10-1116566
  • Non-Patent Document 1 BuJJ. Korean Chew. Soc. 2009, Vol. 30, No. 3
  • An object of the present invention is to provide a method for preparing a silica-capillary tube with a polymer for separating many peptides in a hydrolyzate of a protein such as glucose or maltotriose or a protein such as cytochrome C. Another object of the present invention is to provide a high molecular weight attached silica capillary tube produced by the above production method. Still another object of the present invention is to provide a method for separating oligosaccharides using the above-described silica capillary with polymer. Another object of the present invention is to provide a method for separating peptides using the polymer attached silica capillary.
  • the present invention as shown in the following reaction formula 1, by reacting the hydroxyl group and the ligand represented by the formula (3) present on the inner surface of the silica capillary tube represented by the formula (2) in the presence of a catalyst, the ligand attached silica represented by the formula (4) Preparing a capillary tube (step 1);
  • the monomer was dissolved in a solvent in a silica capillary tube attached to the polymerization initiator represented by Chemical Formula 6 prepared in step 2, and a reversible addition-fragmentation chain transfer (RAFT) polymerization reaction was performed.
  • RAFT reversible addition-fragmentation chain transfer
  • Silica is located on the inner surface of the silica capillary in the reaction formula 1; C 6 -io aromatic ring;
  • R 1 and R 2 are independently hydrogen or alkyl of d- 4 ;
  • M is a monomer constituting the copolymer polymer chain formed in Step 3;
  • n is an integer from 1-10;
  • the present invention is characterized in that the manufacturing method Provides a silica capillary for separating ligosaccharides or peptides. Furthermore, the present invention comprises the steps of reacting oligosaccharides with derivatization and preparing oligosaccharides for structural isomers (step 1); And
  • step 2 of separating the structural isomers of the oligosaccharides prepared in step 1 through the silica capillary.
  • step 2 of separating the structural isomers of the oligosaccharides prepared in step 1 through the silica capillary.
  • the present invention is to hydrolyze the protein to prepare peptides (step 1);
  • step 2 Peptides prepared in the step 1, the step of separating through the silica capillary (step 2) provides a method for separating peptides comprising.
  • Silica capillary with polymer prepared by the manufacturing method according to the present invention has excellent affinity for the polymer film itself and is attached to the inside of the capillary tube in the form of a long, uniform polymer chain, while in a dry state, it shows a solid film shape, but aceto Oligosaccharides such as glucose or maltotriose, or cytokyl, are spread out in mobile phases with high nitrile content and act in the direction of narrowing peak band butterflies on both sides of analyte retention and mass transfer.
  • aceto Oligosaccharides such as glucose or maltotriose, or cytokyl
  • FIG. 1 is a schematic diagram illustrating the preparation of the ligand-attached silica capillary, the polymerization initiator-attached silica capillary, and the polymer-attached silica capillary described in Examples 1 and 2 step by step.
  • Figure 2 is a silica powder and a polymer attached sil prepared in accordance with the present invention A wide range of electron microscopy for the car capillary (scale bar 10 um, A) and a narrow range photograph (scale bar 2um, B).
  • FIG. 3 is a capillary electrochromatography (Capillary) for the maltotriose isomer stones (A, B, C) and D-glucose anomers (W, X, Y) as a silica capillary with polymer prepared according to the present invention
  • Electrochromatography (CEC) is an image showing the optimization process for the acetonitrile composition of the eluent in elution (the acetonitrile content is 95% for A and W, 90% for B and X, and 80% for C and Y, The CE voltage was 30 kV, the sample solution was injected at 12 kV and 5 seconds.
  • the optimized condition was 90/10 acetonitrile / 30 mM sodium acetate pH 6.6 obtained with B and X, and D and Z were obtained under the optimized conditions.
  • Acetone electrochromatogram, ⁇ and Xi are magnified electrochromograms of B and X, respectively).
  • CEC capillary electrochromatography for maltotriose isomers ( ⁇ , ⁇ ) and D-glucose anomers (W, X, Y) with a silica-capillary capillary with polymer prepared according to the present invention.
  • Ele ctrochromatogr.aphy, CEC Ele ctrochromatogr.aphy, CEC
  • the image shows the optimization process for the pH of the eluent (pH is 5.5 for A and W, 6.6 for B and X, 3 for C and Y, and CE voltage.
  • Silver 30kV, sample solution injection 8 kV, 5 seconds, the optimum conditions were 90/10 acetonitrile 3 ⁇ 4 / 30 mM sodium acetate ⁇ 6.
  • FIG. 5 is an electrochromatogram subjected to capillary electrochromatography (CEC) separation analysis of proteomic hydrolyzed samples using a polymer-captured silica capillary prepared in Example 2 (elution condition is a voltage of 30 kV) This was followed by eluting for 10 minutes in a 78/22 acetonitrile / 12.5 mM sodium phosphate pH 6.8 mobile phase and then eluting with a 65/35 acetonitrile / 12.5 mM sodium phosphate pH 6.8 mobile phase, the top of FIG. Separation electrochromatogram for Mick samples, The bottom is an electrochromatogram of acetone, an electroosmotic marker.
  • CEC capillary electrochromatography
  • Step 2 Preparing a silica capillary tube with a polymerization initiator represented by Chemical Formula 6 by reacting the ligand-attached silica capillary tube represented by Chemical Formula 4 with the polymerization initiator represented by Chemical Formula 5 (Step 2); and
  • R 1 and R 2 are independently hydrogen or alkyl of d- 4 ;
  • M is a monomer constituting the copolymerized polymer chainol formed in Step 3;
  • n is an integer from 1-10;
  • the step 1 is to react with a hydroxy group present on the inner surface of the silica capillary tube represented by the formula (2) in the presence of a catalyst and a ligand represented by the formula (3), This step is to prepare a ligand attached silica capillary.
  • the silica capillary tube is pretreated with NaOH solution according to a known method (Bulletin of the Korean Chemical Society, 2014, 35, 542) to activate the silanol groups on the inner wall of the capillary tube.
  • a solution containing 5-40 mg of the ligand represented by Formula 3, 5-35 mg of catalyst and 1-5 mL of anhydrous solvent was carried out at 60-15C C for 1-m silica silica capillary for 6-48 hours. It is preferred to stir, wash with anhydrous solvent and dry in a stream of nitrogen.
  • Ligand attachment is less than 5 mg for ligands represented by Formula 3 above for 1.0 m silica capillaries .
  • the catalyst is less than 5 mg for 1.0 m silica capillary When used as a catalytic effect .
  • the reaction does not progress because it does not come out, there is a problem that the treatment cost increases when it exceeds 35 mg.
  • the reaction anhydrous solvent is used in less than 1 mL with respect to 1.0 m silica capillary tube, there may be a problem that a heterogeneous reaction may occur, and when used in excess of 5 mL, there is a problem of decrease in reaction speed due to mass dilution.
  • reaction temperature is less than 60 ° C there is a problem that the reaction reaction is not easy to progress due to the slow reaction speed, if there is more than 150 ° C there is a problem of reaction.
  • the catalyst can be used as long as it can be dissolved in a nonpolar anhydrous reaction solvent and an organometallic compound having a catalytic effect on the isocyanate-hydroxy reaction.
  • compounds of transition metals having organic substituents are preferred in view of catalytic effect and solubility in solvents. Specifically, dibutyltindichloride, dibutyl tin diacetate
  • the silica capillary tube is usually coated with a polymer coating on the outer wall, a commercial silica capillary having an inner diameter of 25-200 ⁇ and a length of 0.5-5.0 m can be used.
  • a commercial silica capillary having an inner diameter of 25-200 ⁇ and a length of 0.5-5.0 m can be used.
  • the inner diameter of the capillary tube is less than 25 ⁇ , there is a problem that the column is easily clogged, and if more than 200 ym, there is a problem that the separation efficiency of the final column is lowered.
  • the length of the capillary tube is less than 0.5 m, there is a problem that the column separation efficiency is reduced, and if it is more than 5.0 m, there is a problem that the pressure of the column is increased.
  • C 6 - ring 10 may be a phenylene or naphthalene, most preferably phenylene.
  • ligand represented by the formula (3) 4 'chloromethyl phenyl isocyanate, 3-chloromethyl phenyl isocyanate, 2-chloromethyl phenyl isocyanate and the like can be used.
  • the anhydrous solvent may be any anhydrous nonpolar solvent, but a boiling point of 60 ° C. or higher is preferable in order to make the reaction temperature 60 ° C. or higher.
  • step 2 is performed by reacting the silica-attached silica capillary tube represented by Formula 4 prepared in Step 1 with a polymerization initiator represented by Formula 5.
  • silica capillary with attached polymerization initiator I a step.
  • a step For example, with respect to 1.0 m of the ligand-attached silica capillary represented by Formula 4 prepared in Step 1, 10-200 mg of a polymerization initiator represented by Formula 5 and a solution of 0.5-10.0 mL and anhydrous solvent were 25
  • the reaction is preferably carried out with 8 CTC for 4 to 24 hours, washed with anhydrous solvent, and dried under a stream of nitrogen.
  • the polymerization initiator represented by the formula (5) is less than 10 mg with respect to 1.0 m of the ligand-attached silica capillary represented by the formula (4), there is a problem of incomplete reaction completion, when exceeding 200 mg waste and There is a problem of occurrence of side reactions.
  • reaction temperature is less than 25 ° C there is a problem that the reaction rate is too slow, if the reaction temperature exceeds 80 ° C there is a problem that the thermal decomposition of the compound may occur.
  • the polymerization initiator represented by the formula (5) can be used as long as there is a dithio carbamate group, specifically, sodium dimethyldithiocarbamate, sodium dipropyldithiocarbamate, sodium dibutyldithiocarbamate , Sodium dimethyldithiocarbamate and the like can be used. It is preferable to use sodium diethyldithiocarbamate which is commercially available.
  • the semi-anhydrous solvent is polar enough to dissolve the polymerization initiator represented by Formula 5, and has a hydroxyl group, an amino group, Any solvent which does not have a carboxy group can be used. Among these, it is preferable to select a solvent having an ether group, a ketone group or an ester group and having a boiling point of 50 ° C. or more in order to keep the reaction temperature any longer and prevent side reactions. Specifically, the, or the like can be used in anhydrous tetrahydrofuran, diethyl Kerron ethyl acetate.
  • the washing solvent may be tetrahydrofuran, acecetone, methane / water mixed solvent, acetonitrile and the like.
  • the step 3 is a monomer dissolved in a solvent in a silica capillary tube with a polymerization initiator represented by Formula 6 prepared in step 2, and the reversible addition-fragmentation chain Reversible Addition-Fragmentation Chain Transfer (RAFT) is a step of preparing a polymer attached silica capillary represented by Chemical Formula 1 by performing polymerization reaction.
  • RAFT reversible addition-fragmentation chain Reversible Addition-Fragmentation Chain Transfer
  • the electroosmotic flow-induced monomer to the silica capillary tube with a polymerization initiator represented by the formula (6) prepared in step 2 to 1.0 m
  • the electroosmotic flow of the manufactured CEC column is too weak, and when used in excess of 150 mg, there is a problem of waste of material.
  • the retention time of the polar analyte is insufficient. 250 When used in excess of mg, the band or ratio of the polar analyte is too wide.
  • the reaction has a problem of incomplete reaction when the degree is less than 70 ° C, there is a problem of the reaction control impossible if it is more than 150 ° C.
  • reaction time is less than 6 hours, there is a problem of incomplete reaction, and when more than 36 hours, there is a problem of time wastage and side reactions.
  • the nonpolar monomer may be used without limitation as long as it is a compound having a benzene ring and having at least one double bond, but preferably has a molecular weight of 500 or less.
  • styrene, 4-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4'chlorostyrene, 4-bromostyrene, 4-vinylbenzyl chloride, 4-vinylnaphthalene, etc. can be used. It is most preferable to use styrene because it is possible to obtain a stationary phase which is inexpensive and has excellent separation efficiency.
  • the polar monomer may be used without limitation as long as it has a benzene ring, a polar reactive group, and a compound having one or more double bonds, but preferably has a molecular weight of 500 or less.
  • N-phenylacrylamide, 4-amino styrene, 4- ⁇ N- (methylaminoethyl) amino methyl ⁇ styrene, 4-vinyl benzoic acid, 3, 4- dimethic styrene, etc. can be used.
  • the electroosmotic flow-inducing monomer has a carboxyl group or an amino group and can be used without limitation as long as it has a compound having one or more double bonds, but preferably has a molecular weight of 500 or less.
  • acrylic acid, methacrylic acid, methylmethacrylic acid, itaconic acid, allylamine, 4-amino styrene, 4-vinylpyridine, 2-vinylpyridine and the like can be used.
  • the nonpolar antisolvent can be used as long as it can dissolve the monomer well, but preferably has a benzene ring.
  • toluene, xylene, ethylbenzene and the like can be used.
  • the polar reaction solvent can dissolve the polar monomer well, and can be used as long as it does not have a hydroxyl group, amino group, carboxyl group. It is preferable that the boiling point is at least 80 ° C. Specifically, cyclopentanone, cyclonucleic acid temperature, methyl isobutyl ketone, 4-methyl-2-pentanone, or the like can be used.
  • the present invention provides a silica capillary for separation of oligosaccharides or peptides, characterized in that prepared by the above production method.
  • the inner diameter of the silica capillary is 25-200 um;
  • the length is 0.5-5 m;
  • the thickness of the resulting polymer film is 1-10 in dry state. It is good.
  • the present invention comprises the steps of reacting the oligosaccharides with the derivatization reagent to prepare the structural isomers of the oligosaccharides (step 1); And
  • step 1 is a step of preparing a structural isomer of the oligosaccharide by reacting the oligosaccharide with a derivatization reagent.
  • the ligosaccharide is preferably glucose or maltotriose, but is not limited thereto.
  • the derivatization reagent is preferably used para-aminobenzoic ethyl ester (aminobenzoic ethyl ester) #.
  • the structural isomer of the oligosaccharide prepared in Step 1 is reacted with a hydrogen reduction reagent to prepare the structural isomer of the oligosaccharide including the secondary amine before performing the step 2.
  • the hydrogen reduction reagent is preferably used cyanoborohydride (Nadium cyanoborohydride, NaBH 3 CN)-.
  • step 2 is a step of separating the structural isomers of the oligosaccharides prepared in step 1 through the silica capillary. Separation of the Oligosaccharides After that, the separation result can be confirmed by electrochromatogram. Further, the present invention is to hydrolyze the protein to prepare peptides (step 1); And
  • step 1 is a step of preparing a peptide by hydrolyzing the protein.
  • the protein is preferably Cytochrome C, but is not limited thereto.
  • step 2 is a step of separating the peptides prepared in step 1 through the silica capillary. After the separation of the oligosaccharides, the separation result is . This can be confirmed by electrochromatogram.
  • the silica capillary with polymer according to the present invention is characterized in that the peaks of analyte are accelerated as the mass transfer rate is accelerated as the CEC is in frostbite, especially in a solvent with a high content of organic solvent (acetonitrile). There is an effect that the band width is reduced and the separation efficiency is increased.
  • the capillary electro chromatography (CEC) using the silica-attached silica capillary prepared in Example 1 enables the separation of maltotriose co-isomers and D-glucose anomers according to acetonitrile content in the mobile phase.
  • CEC capillary electro chromatography
  • Step 1 Preparation of Silica Capillary Tube with Polymerization Initiator by Catalyzed Isocyanate-hydroxy Reaction
  • a solution was prepared in which 25 mg of 4-chloromethyl phenyl isocyanate and 20 mg of dibutyltin dichlo ride were dissolved in 2.5 mL of anhydrous toluene, which was prepared in a silica capillary with an internal diameter of 50 ⁇ and a length of 584 mm at 85 ° C. Over 20 hours (A process in FIG. 1). after. The capillary was washed with toluene for 10 hours at room temperature, washed for one day with aceron and then dried under nitrogen.
  • FIG. 2 shows a wide range (A) and a narrow range (B) photograph of an electron microscope with respect to a portion of the cross section of the polymer-capsulated silica capillary.
  • a solid polymer film is formed on the inner wall of the silica capillary.
  • the coating is composed of long polymer chains, which are expected to unfold when contacted with a mobile phase containing a large amount of organic solvent (acetonitrile).
  • Step 1 Preparation of Silica Moses 3 ⁇ 4 Attached to Polymerization Initiator by Catalyzed Isocyanate-hydroxy Reaction
  • Step 2 Preparation of Polymer Capillary Silica Tube by RAFT Polymerization Using Silica Capillary Tube with Initiator
  • silica capillary tube with a polymerization initiator prepared in step 1 0.6 mL of styrene, 70 uL methacrylic acid, 70 mg N-phenylacrylamide, dissolved in a mixed solvent of 2 mL toluene and 0.7 mL 4 -methyl-2 -pentanone at 14 ° C for 14 hours. I let go. Afterwards, Sangeun was transferred from to Ruen for 15 hours, 2-propane to 5 hours, 5 ⁇ / 50 (volume ratio) 2-propanol / water mixed solvent for 5 hours, and acetone for 1 hour. It was then dried under a nitrogen environment to prepare a silica attached capillary polymer. The capillary shell polymer was burned off to produce an ultraviolet light absorbing window 84 mm from one end of the silica capillary. Thus, the effective length of the prepared silica capillary column is 71 6 mm.
  • the reaction is carried out by reacting with an aldehyde group of a terminal sugar at one end of the sugar liposaccharide to form a Schiff base, which is reduced to become a secondary amine.
  • a hydrogen reduction reagent sodium cyanob orohydride (NaBH 3 CN) was used.
  • NaBH 3 CN sodium cyanob orohydride
  • D-glucose two anomers are observed when aminated, and only one substance is observed when reductively aminated.
  • maltotriose is D-glucose linked in 3 units It is a party.
  • FIG. 3 is a capillary electrochromatography (Capillary) for the maltotriose isomers (A, B, C) and D-glucose anomers (W, X, Y) as a silica capillary with a polymer prepared according to the present invention
  • Electrochromatography is an image showing the optimization of the acetonitrile composition of the eluent in elution (the acetonitrile content is 95% for A and W, 90% for B and X, 80% for C and Y, The CE voltage was 30 kV, the sample solution was injected at 12 kV, 5 seconds, and the optimum conditions were 90/10 acetonitrile / 30 mM sodium acetate pH 6.6 obtained with B and X, and D and Z were obtained under the optimized conditions.
  • Acetone electrochromatogram, ⁇ and) d are magnified electrochromograms of B and X, respectively). As shown in FIG. 3, when the volume content of acetonitrile was 90%, it was confirmed that maltotriose (B in FIG. 3) and D-glucose (X in FIG. 3) showed optimal separation.
  • CEC Capillary electrochro matography
  • the optimal mobile phase for the separation of maltotriose isomers and D-glucose anomers is 90/10 (volume ratio) acetonitrile / 30 mM sodium acetate pH 6.6.
  • the column performance and reproducibility at the optimum conditions are shown in Table 1 (specifically, Table 1 below shows the column-to-column and day-to-day data and reproducibility 3 of the column separation effect and retention time observed in the optimum mobile phase). to be).
  • Theoretical singular retention time Theoretical singular retention time Saturn / meter (minutes) / meter (minutes) Sieve average% average% average% average%.
  • % RSD is the relative standard deviation in%>.
  • a proteomic sample was prepared as follows as a product of hydrolyzing cytochrome C with trypsin. Mr. torque name seed 5 mg, trypsin 4 mg, 4 M urea aqueous solution 2 mL, 0.2 M ammonium bicarbonate (ammonium bic arbonate) 2 mL given a vigorous shake into a container together to create the solution, 37 ° water bath C Temperature Put in water for 48 hours Do it. After that, the filter was filtered using a 0.2 urn syringe filter, and stored in a 4 ° C. vault.
  • the prepared proteomic sample was subjected to capillary electrochromatography (CEC) separation analysis using the polymer-bonded silica capillary prepared in Example 2, and the results are shown in FIG. 5.
  • Elution conditions elute 10 min in a 78/22 (volume ratio) acetonitrile /12.5 mM clear phosphate (pH 6.8) mobile phase under a voltage of 30 kV and then 65/35 (volume ratio) acetonitrile / 12.5 mM sodium phosphate It was set as conditions eluting with the nitrate (pH 6.8) mobile phase.
  • Sample injection was injected for 5 seconds at a pressure of 8 mbar.
  • Example 5 is an electrochromatogram of capillary electrochromatography (CEC) separation analysis of proteomic hydrolysis samples using a silica-capillary capillary with polymer prepared in Example 2 (elution condition is a voltage of 30 kV) Eluted with 78/22 acetonitrile / 1 2.5 mM sodium phosphate pH 6.8 mobile phase for 10 minutes and then eluted with 65/35 acetonitrile / 12.5 mM digested phosphate pH 6.8 mobile phase, the top of FIG.
  • the separation electrochromogram for the theomic sample the lower part of which is the electrochromatogram of acetone, an electroosmotic flow marker. As shown in FIG.
  • the silica-capillary tube with the polymer prepared by the manufacturing method according to the present invention is prepared with excellent affinity for the polymer film itself, and thus adheres to the inside of the capillary tube in the form of a long, uniform polymer chain, and is dry. Although it has a solid film shape, it spreads widely in this frostbite with high acetonitrile content and acts to narrow the Bon-Ra-na-bavi on both sides of the analyte retention and mass transfer, which is useful for separating various kinds of sugar isomers. Can be used.
  • Silica capillary with polymer prepared by the manufacturing method according to the present invention has excellent affinity for the polymer film itself and is attached to the inside of the capillary tube in the form of a long, uniform polymer chain, while in a dry state, it shows a solid film shape, but aceto As it spreads wide in the mobile phase with high nitrile content and acts in the direction of narrowing peak bands on both sides of the analyte retention and mass transfer, it is possible to obtain sugars such as glucose and maltotriose.

Abstract

The present invention relates to a polymer-attached silica capillary for separating oligosaccharides or peptides and a method for manufacturing the same. The polymer-attached silica capillary manufactured by the method according to the present invention can be favorably used in the separation and analysis of oligosaccharides, such as glucose or maltotriose, and many peptides in hydrolysates of proteins, such as cytochrome C, since a polymer film per se is formed to have excellent affinity and thus is attached to the inside of the capillary in the form of a long and uniform polymer chain; the polymer film shows the shape of a rigid film in a dried state but widely spreads on a mobile phase having a high content of acetonitrile; and the polymer film has an effect of acting in a direction of narrowing the peak band width in both aspects of analyte retention and mass transfer.

Description

[명세서】  [Specification】
【발명의 명칭】  [Name of invention]
올리고당류 또 분리용 고분자 부착 실리카 모세관 및 이의 제조방법  Oligosaccharides and Separation Silica Capillary Tubes with Polymers
【기술분야】 Technical Field
본 발명은 을리고당류 또는 펩티드류 분리용 고분자 부착 실리카 모세관 및 이의 제조방법에 관한 것이다. [배경기술]  The present invention relates to a silica capillary tube with a polymer for separating ligosaccharides or peptides and a method for preparing the same. [Background]
무기구조물의 표면에 증합개시제를 부착시킨 후, 고분자 막을 증합반웅으로 결합시키는 방법은 종래에 잘 알려져 있는 기술이다. 상기와 같은 기술로 ^조되는 무기—유기 혼성물질은 크로마토그래피의 정지상으로도 활용될 수 있다. 크로마토그래피용 유기 -무기 흔성 정지상을 제조하기 위하여 원자전달 라디칼 증합 (Atom Transfer Radical Polymerization, ATRP) 방법이 주로 사용되고 있으며, 가역 부가—파편화 사슬전달 (Reversible Addition- Fragmentation Chain Transfer, RAFT) 중합 방법도 부분적으로 사용되고 있다. 원자전달 라디칼증합 (ATRP)에서는, 일가 구리의 할로겐화물ᅳ, 이가 구리의 할로겐화물, 그리고 아민 염기로 이루어진 촉매혼합물을 사용하여 말단 할로겐을 포함한 중합개시제가 부착된 실리카 표면에 중합반웅을 유도한다. 상기 원자전달 라디칼중합 (ATRP)에서는 큰 분자량과 낮은 분산도를 갖는 브러시 형태의 고분자 사슬이 형성된다고 알려져 있다. 일부 원자전달 라디칼중합 (ATRP) 연구에서는 생성된 정지상이 기존의 C 18 정지상과 비교하여 우수한 선택도 (selectivity)를 갖는 사실을 보고하고 있다. 그러나 원자전달 라디칼중합 (ATRP) 정지상의 분리효율 (이론단수)은 종래의 C 18 정지상에 비하여 상당히 열등한 것으로 보고되고 있다. 가역 부가-파편화 사슬전달 (RAFT) 증합에서는 말단 할로겐을 갖는 리간드를 먼저 실리카 표면에 결합시키고 (도 1 의 A 참조), 다시 디티오카바메이트 염 유도체와 반웅시킴으로써 중합개시제 부착 실리카를 만들며 (도 1 의 B 참조) , 여기에 표면 중합이 진행된다 (도 1 의 C 참조) . 가역 부가-파편화 사슬전달 (RAFT) 중합 메커니즘에 따르면, 표면에 부착하는 1 차 리간드와 2 차 리간드 (diethyldithio carbamate) 사이의 CS 결합 내부에 고분자 사슬이 삽입되고 성장한다고' 알려져 있다. 필요한 초기 라디칼은 모노머의 열적 자체 초기화에 와하여 발생하며, 추가적인 촉매는 필요하지 않다. 하지만, 가역 부가-파편화 사슬전달 (RAF ) 증합으로 얻은 정지상의 크로마토그래피 분리효율은 기존의 C 18 정지상에 비하여 상당히 열등한 것으로 말려져 있다. . 이에, 본 발명자들은 다공성' 실리카 분말에 4 -클로로메틸 페닐이소시아네이트와 소듐 디에틸 디티오카바메이트를 차례로 반응시켜 개시제 (S 1 형) 부착 실리카 * 제조하고, 여기에 스티렌을 증합시켜서 폴리스티렌 부가 실리카 정지상을 만들어 보고한 바 있는데 Korean Chem. Soc. 2009, Vol. 30, No . 3) , 상기 정지상은 C 18 보다 우수한 분리효율을 줄 수 있는 반면, 현저히 짧아진 머무름시간을 주어 용질 봉우리들이 밀집되는 결과를 얻었다. 또, 이렇게 얻은 정지상의 폴리스티렌층은 실리카 표면 위에 일정한 두께로 형성되지 못하고 커다란 폴리스티렌 덩어리들이 불규칙하게 생성되는 양상을 보였으며, 접근 가능한 동공의 부피와 표면을 감소시키는 효과를 보여 분석 용질의 머무름 시간이 감소하는 문제가 있었다. 상기 문제는 매우 안정한 재개시 라디칼의 생성으로 인하여 빠르고 제어되지 않은 중합반웅이 진행된 결과인 것으로 판단된다. 안정한 재개시 라디칼은, 사슬전달이나 종결반웅이 일어나기 전에 고분자 사술이 과도하게 성장하게 함으로써 큰 분자량과 넓은 분산도를 지닌 고분자의 생성, 즉 비 균질 고분자 성장을 유도하는 것으로 알려져 있다. 본 발명자들은 상기 수행한 연구에서 폴리스티렌 덩어리가 생성되는 이유로, 매우 안정한 중합 중간체 라디칼의 형성과 이로 인하여 절제되지 못한 고분자 사슬의 성장으로 보고, 고분자 성장 속도를 다소 조절할 수 있는 새로운 개시제 (S2 형) 부착 실리카를 제조하고, 가역 부가-파편화 사슬전달 (RAFT) 중합을 진행함으로써 얇고 고른 고분자 막이 부착된 새로운 액체크로마토그래피 정지상을 개발하여 이에 대한 특허를 출원 등록한 바 있다 (한국 등록특허 10—1 1 16566) . After attaching the polymerization initiator to the surface of the inorganic structure, the method of bonding the polymer membrane with the polymerization reaction is a well known technique. Inorganic-organic hybrids prepared by such techniques can also be utilized as the stationary phase of chromatography. The Atom Transfer Radical Polymerization (ATRP) method is mainly used to prepare organic-inorganic common stationary phase for chromatography, and the reversible addition-fragmentation chain transfer (RAFT) polymerization method is also partially used. Is being used. In atomic transfer radical polymerization (ATRP), a catalyst mixture consisting of a halide of monovalent copper, a halide of divalent copper, and an amine base is used to induce a polymerization reaction on the silica surface to which a polymerization initiator including terminal halogen is attached. The atomic transfer radical polymerization (ATRP) is known to form a polymer chain in the form of a brush having a large molecular weight and a low degree of dispersion. Some atomic transfer radical polymerization (ATRP) studies have reported that the resulting stationary phase has superior selectivity compared to conventional C 18 stationary phases. But atomic transfer The separation efficiency (theoretical number) of radical polymerization (ATRP) stationary phases has been reported to be significantly inferior to conventional C 18 stationary phases. In reversible addition-fragmentation chain transfer (RAFT) polymerization, a ligand having a terminal halogen is first bound to the silica surface (see A in FIG. 1), and then reacted with a dithiocarbamate salt derivative to form a polymerization initiator attached silica (FIG. 1). B), surface polymerization proceeds here (see C of FIG. 1). Reversible addition-fragmentation according to the chain transfer (RAFT) polymerization mechanism, within the CS bond between the first ligand and the second ligand (diethyldithio carbamate) adhering to the surface of the polymer chain may be inserted, known to grow. The necessary initial radicals arise from the thermal self-initialization of the monomers and no additional catalyst is required. However, the chromatographic separation efficiency of the stationary phase obtained by reversible addition-fragmentation chain transfer (RAF) integration is considered to be significantly inferior to the conventional C 18 stationary phase. . Thus, the present inventors have porous' 4 in the silica powder by the reaction of chloromethyl phenyl isocyanate and sodium diethyl dithiocarbamate in turn initiator prepared (S 1 type) attachment silica *, and by jeunghap styrene here polystyrene added silica stationary phase I have made and reported Korean Chem. Soc. 2009, Vol. 30, No. 3) While the stationary phase can give better separation efficiency than C 18, the solute peaks are densified by giving a significantly shorter retention time. In addition, the polystyrene layer thus obtained did not form a uniform thickness on the silica surface, but large polystyrene masses were formed irregularly, and the retention time of the analyte solute was reduced by reducing the volume of the accessible pupil and the surface. There was a declining problem. The problem is believed to be the result of fast and uncontrolled polymerization reaction due to the generation of radicals upon very stable restart. Stable reactivation radicals are known to induce the production of polymers with large molecular weights and wide dispersions, ie, inhomogeneous polymer growth, by causing polymer hesitation to grow excessively before chain transfer or termination reactions occur. The present inventors regarded the formation of highly stable polymer intermediate radicals and the growth of uncontrolled polymer chains due to the formation of polystyrene lumps in the above-mentioned studies, and the attachment of a new initiator (type S2) capable of controlling the growth rate of the polymer somewhat. By preparing silica and proceeding reversible addition-fragmentation chain transfer (RAFT) polymerization, a new liquid chromatography stationary phase with a thin and even polymer membrane was developed and a patent application was filed (Korea Patent 10—1 1 16566). .
본 발명자들은 S 1 형태의 개시제 부가 실리카라고 하더라도 그 개시제 리간 H의 부착 밀도가 충분히 높아서 각 개시게 리간드에서 동 시다발적이고 균일한 고분자 사슬의 성장이 이루어지고 그 사슬들이 서로 밀집되는 시점에서 중합이 종료되도록 제어된다면 더욱 좋은 물 성의 고분자 막이 부착된 정지상을 만들어 그 분리효율을 더 개선할 수 있다고 생각하였다. The present inventors have found that even if the initiator addition silica of the S 1 form is sufficiently high, the adhesion density of the initiator ligand H is high enough to cause simultaneous and uniform growth of polymer chains in each initiator ligand and polymerization at the point when the chains are clustered together. If it is controlled to be terminated, it is thought that it is possible to further improve the separation efficiency by making a stationary phase to which polymer membrane of better properties is attached.
-이에, 본 발명자들은 말단 할로겐 원자를 지닌 이소시아네이트 를 이소시아네이트 -히드록시실리카' 반웅으로 입자에 부착시키는 과정 에서 그 분산 용매에 잘 녹는 촉매를 사용함으로써, 그 반웅산물을 디 티오카바메이트염 유도체와 반응시켜 증합개시제 부착 실리카를 제조 하는 새로운 방법을 개발하여 , 그 중합 개시계 부착 실리카 위에 가역 부가-파편화 사슬전달 (RAFT) 중합을 진행하여 높은 분리 효율의 액 체 크로마토그래피 정지상용 새로운 고분자 부착 실리카 분말을 얻을 수 있음을 확인하고 이에 대한 특허를 출원한 바 있다. 한편, 특정 당이 다양한 질병의 바이오마커로 알려지면서 , 당류 분석이 많은 관심을 모으고 있다. ' 당의 다양성과 구조적 복잡성으로 인하여 완전한 을리고당의 구조분석이라는 분야는 매우 도전적인 과제 이다. 모세관 전기영동법 (Capillary Electrophoresis , CE)은 생체 물질 들의 분석에 있어 그 분리효율이 매우 뛰어난 방법이다. 질량분석법과 모세관 전기영동법 (Capillary Electrophore sis, CE)을 연계시킨 분석법 으로 인하여, 생 의약 연구분야에서 효과적인 당을 선발하는 과정을 극적으로 가속화시키는 방법 개발이 가능하게 되었다. 실리카 모세관 내부에 정지상을 충전하거나 부착시켜 사용하면, 이것을 모세관 전기크로마토그래피법 (Capillary In the present invention, the present inventors react the semi-ung products with dithiocarbamate salt derivatives by using a catalyst which is well soluble in the dispersion solvent in the process of attaching isocyanate having a terminal halogen atom to the particles with isocyanate-hydroxysilica reaction. A new method for producing silica with attached polymerization initiator was developed, and reversible addition-fragmentation chain transfer (RAFT) polymerization was carried out on the silica attached to the polymerization initiator to prepare a new polymer attached silica powder for liquid chromatography stationary phase with high separation efficiency. It was confirmed that it can be obtained and has applied for a patent. Meanwhile, as certain sugars are known as biomarkers of various diseases, sugar analysis has attracted much attention. Field of structural analysis of sugar hitting a 'full due to the party's diversity and structural complexity is extremely challenging. Capillary Electrophoresis (CE) is a very efficient method for the separation of biological materials. The combined analysis of mass spectrometry and capillary electrophore sis (CE) has made it possible to dramatically speed up the process of selecting effective sugars in biomedical research. When the stationary phase is filled or attached inside the silica capillary, it is used for capillary
Electrochromatography, CEC)이라고 하는데, 단순 실리카 모세관을 쓰는 CE보다 그 분리 선택성이 크게 향상된다. 즉, CEC는 CE와  Electrochromatography (CEC), the separation selectivity is significantly improved compared to CE using a simple silica capillary. In other words, CEC
HPLC(High-Performance Liquid Chromatography) ^ 장점을 모두 취 한 방법이다. 최근에, 모세관 내벽에 얇은 고분자 막을 부착시켜 사용하는 열 린 구조형 모세관 전기크로마토그래피법 (Open Tubular Capillary Electrochromatography, ᄋ T-CEC)이 그 제조 편이성으로 인하여 많 은 관심을 모으고 있다. OT- CEC는 단백질, 펩티드, 당단백질 등과 같 은 다양한 종류의 생체 물질의 분리분석에 유용하게 쓰이고 있는 방법 이다. 당의 구조이성체 분석에 효과적이라고 알려져 있는 정지상으로는 다공성 혹연탄소 (Porous Graphite C arbon, PGC)와 HILIC(Hydrophilic Interaction Liquid Chromatography) 정지상 등이 '있다 . HILIC 정지상 이란 극성이 상당히 큰 정지상인데, 이동상도 극성의 수용성 용매를 쓸 경우 이를 HILIC라고 한다. 당의 구조이성체 분석에 있어서 PGC 정지상은 C 18 정지상에 비하여 크로마토그래피 분리능은 더 좋지만 분리효율은 열등하다고 알려져 있으몌 그에 반해 HILIC 정지상은 정 지상의 높은 극성으로 인하여 당의 머무름 시간이 상당히 증가하는 것 으로 알려져 있다. 본 발명자들은 다공성 혹연탄소 (Porous Graphite Carbon, PGC) 정지상 및 HILIC(Hydrophilic Interaction Liquid Chromatography) 정 지상의 특징을 모두 갖는 열린 구조형 모세관 전기크로마토그래피법 (Capillary Ele ctrochromatography , CEC) 모세관 컬럼을 제조하기 위 하여, S P 2 구조의 스티렌과 큰 극성을 갖는 아크릴아미드를 가역 부가 -파편화 사슬전달 (RAFT) 증합으로 공중합 시켜, 모세관 내벽에 형성 시키는 전략으로 새로운 열린 구조형 모세관 전기크로마토그래피법 High-Performance Liquid Chromatography (HPLC) Recently, open tubular capillary electrochromatography (T-CEC), which uses thin polymer membranes attached to the inner wall of capillaries, has attracted much attention due to its ease of manufacture. OT-CEC is a useful method for the isolation and analysis of various kinds of biological materials such as proteins, peptides and glycoproteins. Stationary phases known to be effective for the analysis of sugar isomers include porous graphite carbide (PGC) and HIdrop (Hydrophilic Interaction Liquid Chromatography). HILIC stationary phase is a stationary phase with a large polarity. When using a water-soluble solvent with a mobile phase polarity, this is called HILIC. PGC in the Analysis of Sugar Structural Isomers The stationary phase is known to have better chromatographic resolution but inferior separation efficiency compared to the C 18 stationary phase, whereas the HILIC stationary phase is known to significantly increase the retention time of sugar due to the high polarity of the ground. The present inventors have developed an open structure capillary ele ctrochromatography (CEC) capillary column having both porous graphite carbon (PGC) stationary phase and HILIC (Hydrophilic Interaction Liquid Chromatography) features. A new open-structure capillary electrochromatography method is to copolymerize styrene of SP 2 structure and acrylamide having a large polarity by reversible addition-fragmentation chain transfer (RAFT) polymerization to form on capillary inner wall.
(Open Tubular Capillary Electrochromatography , OT- CEC) ¾럼.을 제조하여 흡광 크로모포로 유도체화한 D-글루코스의 두 아노머 (Open Tubular Capillary Electrochromatography, OT-CEC) Two D-glucose Anomers Prepared and Derivatized with Absorption Chromophore
(anomer)와 을리고당 (oligosaccharide)의 여러 구조 이성체를 높은 컬 럼 분리효율로 (이론단수 300, 000/m) 분리하는 결과를 발표한 바 있다 (Bulletin of the Korean Chemical Society, 2014 , 35, 539) . 하지만, 상기 연구에서는 스티렌과 아크릴아미드의 높은 극성도 차이에 따른 반응 용매의 선정과; 공중합고분자의 자체 친화성에 어려움이 있어서 컬럼 제조 재현성과 컬럼 분리효을 제고의 한계 등 문제점이 드러났다. 이에, 본 발명자들은 상기 문제점이 개선된 모세관을 제조하기 위하여 연구를 진행하던 중, 반웅 모노머의 선정에 새로운 개념을 도입하고 반응 용매에도 변화를 주어, 생성되는 공중합고분자의 자체 친화도를 높이고 컬럼 제조의 재현성을 제고할뿐만 아니라, 컬럼 분리 효율도 현저히 개선된 고분자 부착 실리카 모세관 및 이의 제조방법을 개발하고 본 발명을 완성하였다. We have reported the separation of several isomers of anomers and oligosaccharides with a high column separation efficiency (30, 000 / m theoretical) (Bulletin of the Korean Chemical Society, 2014, 35, 539). However, in the above study, the selection of the reaction solvent according to the high polarity difference between styrene and acrylamide; Due to the difficulty in self-compatibility of copolymerized polymers, problems such as reproducibility of column production and limitations of improving column separation efficiency were revealed. Accordingly, the inventors of the present invention introduced a new concept in the selection of the reaction reaction monomer while changing the reaction solvent, while improving the affinity of the produced copolymerized polymer while producing a capillary tube in which the above problems were improved. In addition to improving the reproducibility of the present invention, a silica capillary tube with a polymer and a method for preparing the same have been developed and the column separation efficiency is remarkably improved.
【선행기술문헌】 [특허문헌】 Prior Art Documents [Patent Documents]
(특허문헌 1) 한국 등록특허 10-1116566  (Patent Document 1) Korean Registered Patent 10-1116566
[비특허문헌】  [Non-Patent Documents]
(비특허문헌 1) BuJJ. Korean Chew. Soc. 2009, Vol. 30, No. 3  (Non-Patent Document 1) BuJJ. Korean Chew. Soc. 2009, Vol. 30, No. 3
【발명의 상세한 설명】 [Detailed Description of the Invention]
[기술적 과제】  [Technical Challenges]
본 발명의 목적은 글루코오스나 말토트리오스 등의 을리고당류 또는 시토크름 C(Cytochrome C) 등 단백질의 가수분해 산물 내 많은 펩티드류 분리용 고분자 부착 실리카 모세관의 제조방법을 제공하는 것이다. 본 발명의 다른 목적은 상기 제조방법으로 인하여 제조되는 고 분자 부착 실리카 모세관을 제공하는 것이다. 본 발명의 또 다른 목적은 상기 고분자 부착 실리카 모세관을 사용한 올리고당류의 분뫼방법을 제공하는 것이다. 본 발명의 다른 목적은 상기 고분자 부착 실리카 모세관을 사용한 펩타드류의 분리방법을 제공하는 것이다.  Disclosure of Invention An object of the present invention is to provide a method for preparing a silica-capillary tube with a polymer for separating many peptides in a hydrolyzate of a protein such as glucose or maltotriose or a protein such as cytochrome C. Another object of the present invention is to provide a high molecular weight attached silica capillary tube produced by the above production method. Still another object of the present invention is to provide a method for separating oligosaccharides using the above-described silica capillary with polymer. Another object of the present invention is to provide a method for separating peptides using the polymer attached silica capillary.
【기술적 해결방법】 Technical Solution
상기 목적을 달성하기 위하여,  In order to achieve the above object ,
본 발명은 하기 반웅식 1에 나타난 바와 같이, 촉매 존재하에 화학식 2로 표시되는 실리카 모세관 내부 표면에 존재하는 하이드록 시기와 화학식 3으로 표시되는 리간드를 반웅시켜, 화학식 4로 표시되 는 리간드 부착 실리카 모세관을 제조하는 단계 (단계 1);  The present invention, as shown in the following reaction formula 1, by reacting the hydroxyl group and the ligand represented by the formula (3) present on the inner surface of the silica capillary tube represented by the formula (2) in the presence of a catalyst, the ligand attached silica represented by the formula (4) Preparing a capillary tube (step 1);
상기 단계 1에서 제조한 화학식 4로 표시되는 리간드 부착 실리 카 모세관을 화학식 5로 표시되는 중합 개시제와 반웅시켜 화학식 6 으로 표시되는 증합 개시제 부착 실리카 모세관을 제조하는 단계 (단계The ligand-attached silica capillary represented by Formula 4 prepared in Step 1 was reacted with the polymerization initiator represented by Formula 5. Preparing a silica capillary tube with a polymerization initiator represented by
2); 및 2); And
상기 단계 2에서 쎄조한 화학식 6으로 표시되는 중합 개시제 부 착 실리카 모세관 내부에 모노머를 용매에 녹여 채우고, 가역 부가-파 편화 사슬전달 (Reversible Addition -Fragmentation Chain Transfer, RAFT) 중합 반응을 수행하여 화학식 1로 표시되는 공증합 고분자 부 착 실리카 모세관을 제조하는 단계 (단계 3);를 포함하는 실리카 모세 관의 제조방법을 제공한다.  The monomer was dissolved in a solvent in a silica capillary tube attached to the polymerization initiator represented by Chemical Formula 6 prepared in step 2, and a reversible addition-fragmentation chain transfer (RAFT) polymerization reaction was performed. It provides a method for producing a silica capillary tube comprising the step (step 3) of preparing a silica capillary tube with a co-polymer polymer represented by.
[반응식  [Scheme]
Figure imgf000009_0001
Figure imgf000009_0001
상기 반웅식 1에서 실리카 모세관 내부 표면에 위치한 실라카이고;
Figure imgf000009_0002
C6-io의 방향족 고리이고;
Silica is located on the inner surface of the silica capillary in the reaction formula 1;
Figure imgf000009_0002
C 6 -io aromatic ring;
R1 및 R2는 독립적으로 수소 또는 d-4의 알킬이고; R 1 and R 2 are independently hydrogen or alkyl of d- 4 ;
M은 상기 단계 3에서 형성되는 공중합 고분자 사슬을 구성하는 모노머이고;  M is a monomer constituting the copolymer polymer chain formed in Step 3;
n은 1-10의 정수이고;  n is an integer from 1-10;
m은 1-1000의 정수이다. 또한, 본 발명은 상기 제조방법으로 제조되는 것을 특징으로 하 는 을리고당류 또는 펩티드류 분리용 실리카 모세관을 제공한다. 나아가, 본 발명은 올리고당류를 유도체화 시먁과 반옹시켜, 올 리고당류의 구조 이성질체를 준비하는 단계 (단계 1 ) ; 및 m is an integer from 1-1000. In addition, the present invention is characterized in that the manufacturing method Provides a silica capillary for separating ligosaccharides or peptides. Furthermore, the present invention comprises the steps of reacting oligosaccharides with derivatization and preparing oligosaccharides for structural isomers (step 1); And
상기 단계 1에서 준비한 올리고당류의 구조 이성질체를, 상기 실리카 모세관을 통해 분리하는 단계 (단계 2) ;를 포함하는 올리고당류 의 분리방법을 제공한다. 또한, 본 발명은 단백질을 가수분해하여, 펩티드류를 준비하는 단계 (단계 1 ) ; 및  It provides a separation method of the oligosaccharides comprising; step (step 2) of separating the structural isomers of the oligosaccharides prepared in step 1 through the silica capillary. In addition, the present invention is to hydrolyze the protein to prepare peptides (step 1); And
상기 단계 1에서 준비한 펩티드류를, 상기 실리카 모세관을 통해 분리하는 단계 (단계 2) ;를 포함하는 펩티드류의 분리방법을 제공한다.  Peptides prepared in the step 1, the step of separating through the silica capillary (step 2) provides a method for separating peptides comprising.
【유리한 효과】 Advantageous Effects
본 발명에 따른 제조방법으로 인하여 제조되는 고분자 부착 실리카 모세관은 고분자 피막 자체 친화성이 우수하게 제조되어 길고 균일한 고분자 사슬 형태로 모세관 내부에 붙게 되고, 마른 상태에서는 견고한 피막의 형상을 띄지만, 아세토니트릴의 함량이 높은 이동상에서 활짝 펼쳐지며 분석물의 머무름과 물질전달 양면에서 봉우리 띠나비를 좁히는 방향으로 작용하는 효과가 있으므로, 글루코오스나 말토트리오스 등의 올리고당류 또는 시토크름 Silica capillary with polymer prepared by the manufacturing method according to the present invention has excellent affinity for the polymer film itself and is attached to the inside of the capillary tube in the form of a long, uniform polymer chain, while in a dry state, it shows a solid film shape, but aceto Oligosaccharides such as glucose or maltotriose, or cytokyl, are spread out in mobile phases with high nitrile content and act in the direction of narrowing peak band butterflies on both sides of analyte retention and mass transfer.
CCCytochrome C) 등 단백질의 가수분해 산물 내 많은 펩티드류 분리분석에 유용하게 사용할 수 있다. 【도면의 간단한 설명】 It can be useful for separating and analyzing many peptides in hydrolysates of proteins such as CCCytochrome C). [Brief Description of Drawings]
도 1은 실시예 1 및 2에 기술된 리간드 부착 실리카 모세관, 중 합개시제 부착 실리카 모세관 및 고분자 부착 실리카 모세관의 제조를 단계별로 나타난 도식도이다.  FIG. 1 is a schematic diagram illustrating the preparation of the ligand-attached silica capillary, the polymerization initiator-attached silica capillary, and the polymer-attached silica capillary described in Examples 1 and 2 step by step.
도 2는 실리카 분말과 본 발명에 따라 제조된 고분자 부착 실리 카 모세관에 대한 전자현미경의 넓은 범위 (스케일 바 10 um, A) 및 좁 은 범위 사진 (스케일 바 2um, B)아다. Figure 2 is a silica powder and a polymer attached sil prepared in accordance with the present invention A wide range of electron microscopy for the car capillary (scale bar 10 um, A) and a narrow range photograph (scale bar 2um, B).
도 3은 본 발명에 따라 제조된 고분자 부착 실리카 모세관으로 말토트리오스 이성체돌 (A,B , C)과, D -글루코오스 아노머들 (W,X,Y)에 대한 모세관 전기크로마토그래피법 (Capillary Electrochromatography, CEC) 용리에서, 용리액의 아세토니트릴 조성에 대한 최적화 과정을 보여주는 이미지이다 (아세토니트릴 함량은 A와 W에 대하여 95 %, B와 X에 대하여 90% , C와 Y에 대하여 80%이며 , CE 전압은 30kV, 시료용 액 주입은 12 kV, 5초의 조건으로 시행되었으며, 최적화 조건은 B와 X를 얻은 90/ 10 아세토니트릴 /30 mM 소듐 아세테이트 pH 6.6이었고, D와 Z는 최적화조건에서 얻은 아세톤의 전기크로마토그램고, ^과 Xi 은 각각 B와 X의 확대 전기크로마토그램이다) .  Figure 3 is a capillary electrochromatography (Capillary) for the maltotriose isomer stones (A, B, C) and D-glucose anomers (W, X, Y) as a silica capillary with polymer prepared according to the present invention Electrochromatography (CEC) is an image showing the optimization process for the acetonitrile composition of the eluent in elution (the acetonitrile content is 95% for A and W, 90% for B and X, and 80% for C and Y, The CE voltage was 30 kV, the sample solution was injected at 12 kV and 5 seconds. The optimized condition was 90/10 acetonitrile / 30 mM sodium acetate pH 6.6 obtained with B and X, and D and Z were obtained under the optimized conditions. Acetone electrochromatogram, ^ and Xi are magnified electrochromograms of B and X, respectively).
도 4는 본 발명에 따라 제조된 고분자 부착 실리카 모세관으로 말토트리오스 이성체들 (Α,ΒΧ)과, D-글루코오스 아노머들 (W,X,Y)에 대한 CEC 모세관 전기크로마토그래피법 (Capillary 4 is a CEC capillary electrochromatography (Capillary) for maltotriose isomers (Α, ΒΧ) and D-glucose anomers (W, X, Y) with a silica-capillary capillary with polymer prepared according to the present invention.
Ele ctrochromatogr.aphy, CEC) 용리에서 , 용리액의 pH에 대한 최적화 과정을 보여주는 이미지이다 (pH는 A와 W에 대하여 5.5, B와 X에 대 하여 6.6, C와 Y에 대하여 그 3이며, CE 전압은 30kV, 시료용액 주입 은 8 kV, 5초의 조건으로 시행되었으며, 최적화 조건은 B와 X를 얻은 90/10 아세토니트 ¾/30 mM 소듐 아세테이트 ρΗ 6.·6이었고, D와 Ζ는 최적화조건에서 얻은 아세론의 전기크로마토그램이다) . Ele ctrochromatogr.aphy, CEC) In the elution, the image shows the optimization process for the pH of the eluent (pH is 5.5 for A and W, 6.6 for B and X, 3 for C and Y, and CE voltage. Silver 30kV, sample solution injection 8 kV, 5 seconds, the optimum conditions were 90/10 acetonitrile ¾ / 30 mM sodium acetate ρΗ 6. · 6 obtained with B and X, D and 에서 under the optimized conditions Electrochromatogram of aceron obtained).
도 5는 실시예 2에서 제조한 고분자 부착 실리카 모세관으로 프로테오믹 가수분해 시료에 대하여 모세관 전기크로마토그래피법 (Capillary Electrochromatography, CEC) 분리분석을 수행한 전기크로마토그램이다 (용리조건은 30 kV의 전압올 걸고 78/22 아세토니트릴 / 12.5 mM 소듐 포스페이트 pH 6.8 이동상에서 10분 용리하고, 그 다음 65/35 아세토니트릴 / 12.5 mM 소듐 포스페이트 pH 6.8 이동상으로 용리하는 조건으로 하였고, 도 5의 상부는 프로테오믹 시료에 대한 분리 전기크로마토그램이고, 하부는 전기삼투흐름 마커인 아세톤의 전기크로마토그램이다). FIG. 5 is an electrochromatogram subjected to capillary electrochromatography (CEC) separation analysis of proteomic hydrolyzed samples using a polymer-captured silica capillary prepared in Example 2 (elution condition is a voltage of 30 kV) This was followed by eluting for 10 minutes in a 78/22 acetonitrile / 12.5 mM sodium phosphate pH 6.8 mobile phase and then eluting with a 65/35 acetonitrile / 12.5 mM sodium phosphate pH 6.8 mobile phase, the top of FIG. Separation electrochromatogram for Mick samples, The bottom is an electrochromatogram of acetone, an electroosmotic marker.
【발명의 실시를 위한 최선의 형태】 [Best form for implementation of the invention]
이하, 본 발명을 상세히 설명한다. 본 발명은 하기 반응식 1에 나타난 바와 같이 , 촉매 존재하에 화학식 2로 표시되는 실리카 모세관 내부 표면에 존재하는 하이드록 시기와 화학식 3으로 표시되는 리간 ^를 반웅시켜, 화학식 4로 표시되 는 리간드 부착 실리카 모세관을 제조하는 단계 (단계 1);  Hereinafter, the present invention will be described in detail. In the present invention, as shown in Scheme 1, the ligand attached silica represented by the formula (4) by reacting with the hydroxyl group represented by the formula (3) and the hydroxyl group present on the inner surface of the silica capillary tube represented by the formula (2) in the presence of a catalyst Preparing a capillary tube (step 1);
상기 단계 1에서 제조한 화학식 4로 표시되는 리간드 부착 실리 카 모세관을 화학식 5로 표시되는 증합 개시제와 반웅시켜 화학식 6 으로 표시되는 중합 개시제 부착 실리카 모세관을 제조하는 단계 (단계 2); 및  Preparing a silica capillary tube with a polymerization initiator represented by Chemical Formula 6 by reacting the ligand-attached silica capillary tube represented by Chemical Formula 4 with the polymerization initiator represented by Chemical Formula 5 (Step 2); and
상기 단계 2에서 제조한 화학식 6으로 표시되는 중합 개시제 부 착 실리카 모세관 내부에 모노머를 용매에 녹여 채우고, 가역 부가-파 편화' 사술전달 (Reversible Addition^ Fragmentation Chain Transfer, RAFT) 중합 반응을 수행하여 화학식 1로 표시되는 공중합 고분자 부 착 실리카 모세관을 제조하는 단계 (단계 3);를 포함하는 실리카 모세 관의 제조방법올 제공한다.Formula by performing wave pyeonhwa 'principalities transmission (Reversible Addition ^ Fragmentation Chain Transfer, RAFT) polymerization-filled melt the monomers in complex silica capillary inside a polymerization initiator unit represented by a formula (6) prepared in Step 2 in a solvent, reversible addition It provides a method for producing a silica capillary tube comprising the step (step 3) of preparing a silica capillary tube with a copolymerized polymer represented by 1.
반응식 1]  Scheme 1]
Figure imgf000012_0001
Figure imgf000012_0001
상기 반웅식 1에서 실리카 모세관 내부 표면에 위치한 실리카이고
Figure imgf000013_0001
C6 10의 방향족 고리이고;
In the reaction 1 Silica is located on the inner surface of the silica capillary
Figure imgf000013_0001
An aromatic ring of C 6 10 ;
R1 및 R2는 독립적으로 수소 또는 d-4의 알킬이고; R 1 and R 2 are independently hydrogen or alkyl of d- 4 ;
M은 상기 단계 3에서 형성되는 공중합 고분자 사슬올 구성하는 모노머이고;  M is a monomer constituting the copolymerized polymer chainol formed in Step 3;
n은 1-10의 정수이고;  n is an integer from 1-10;
m은 1-1000의 정수이다. 이하, 본 발명에 따른 고분자 부착 실리카 모세관의 제조방법을 단계별로 상세히 .설명한다. 본 발명에 따른 고분자 부착 실리카 모세관의 제조방법에 있어 서, 상기 단계 1은 촉매 존재하에 화학식 2로 표시되는 실리카 모세관 내부 표면에 존재하는 하이드록시기와 화학식 3으로 표시되는 리간드 를 반웅시켜, 화학식 4로 표시되는 리간드 부착 실리카 모세관을 제조 하는 단계이다. 여기서 먼저 공지의 방법 (Bulletin of the Korean Chemical Society, 2014, 35, 542)에 따라 실리카 모세관을 NaOH 용 액으로 전처리하여 모세관 내벽의 실란올 기를 활성화 하는 과정을 거 친다. 일례로, 길이 1 m의 실리카 모세관에 대하여 5-40 mg의 화학식 3으로 표시되는 리간드, 5-35 mg의 촉매 및 1-5 mL의 무수 용매를 섞은 용액을 60-15C C로 6-48시간 홀려 반웅시키고, 무수 용매로 세 척하고 질소 기류에서 건조하는 것이 바람직하다. 상기 화학식 3으로 표시되는 리간드가 1.0 m 실리카 모세관에 대하여 5 mg 미만을 사용하는 경우 리간드 부착이. 낮아지는 문제가 있고, 40 mg을 초과하여 사용하는 경우 재료 낭비의 문제가 있다. 또한, 상기 촉매가 1.0 m 실리카 모세관에 대하여 5 mg 미만으 로 사용하는 경우 촉매 효과가 나타.나지 않아 반웅이 진행되지 못하는 문제가 있고, 35 mg을 초과하면 처리 경비가 많아지는 문제가 있다. 나아가, 상기 반응 무수 용매가 1.0 m 실리카 모세관에 대하여 1 mL 미만으로 사용하는 경우 비균질 반응이 발생할 수 있는 문제가 있고, 5 mL를 초과하여 사용하는 경우 물질 회석에 의한 반웅속도 감 소의 문제가 있다. m is an integer from 1-1000. Hereinafter, a method for preparing a silica capillary tube with a polymer according to the present invention will be described in detail step by step. In the method of preparing a silica capillary with polymer according to the present invention, the step 1 is to react with a hydroxy group present on the inner surface of the silica capillary tube represented by the formula (2) in the presence of a catalyst and a ligand represented by the formula (3), This step is to prepare a ligand attached silica capillary. First, the silica capillary tube is pretreated with NaOH solution according to a known method (Bulletin of the Korean Chemical Society, 2014, 35, 542) to activate the silanol groups on the inner wall of the capillary tube. As an example, a solution containing 5-40 mg of the ligand represented by Formula 3, 5-35 mg of catalyst and 1-5 mL of anhydrous solvent was carried out at 60-15C C for 1-m silica silica capillary for 6-48 hours. It is preferred to stir, wash with anhydrous solvent and dry in a stream of nitrogen. Ligand attachment is less than 5 mg for ligands represented by Formula 3 above for 1.0 m silica capillaries . There is a problem of lowering, there is a problem of material waste when used in excess of 40 mg. In addition, the catalyst is less than 5 mg for 1.0 m silica capillary When used as a catalytic effect . There is a problem that the reaction does not progress because it does not come out, there is a problem that the treatment cost increases when it exceeds 35 mg. Furthermore, when the reaction anhydrous solvent is used in less than 1 mL with respect to 1.0 m silica capillary tube, there may be a problem that a heterogeneous reaction may occur, and when used in excess of 5 mL, there is a problem of decrease in reaction speed due to mass dilution.
또한, 상기 반응온도가 60°C 미만인 경우 반옹속도가 느려 반웅 이 용이하게 진행되지 못하는 문제가 있고, 150°C 초과인 경우 부 반 응의 문제가 있다. In addition, when the reaction temperature is less than 60 ° C there is a problem that the reaction reaction is not easy to progress due to the slow reaction speed, if there is more than 150 ° C there is a problem of reaction.
나아가, 상기 반응시간이 6시간 미만인 경우 불완전한 반응완결 의 문제가 있고, 48시간을 초과하는 경우 시간 낭비 및 부 반웅 발생 의 문제가 있다. 상기 촉매는 비극성 무수 반응 용매에 녹을 수 있고, 이소시아 네이트-히드록시 반응에 촉매효과가 있는 유기금속 화합물이면 모두 사용할 수 있다. 특히 , 유기 치환기를 지닌 전이금속의 화합물이 촉매 효과와 용매에 대한 용해도면에서 바람직하다. 구체적으로는, 이염화 이부틸주석 (dibutyltindichloride), 디부틸틴디아세테이트 Furthermore, if the reaction time is less than 6 hours, there is a problem of incomplete reaction completion, if more than 48 hours there is a problem of waste time and side reactions. The catalyst can be used as long as it can be dissolved in a nonpolar anhydrous reaction solvent and an organometallic compound having a catalytic effect on the isocyanate-hydroxy reaction. In particular, compounds of transition metals having organic substituents are preferred in view of catalytic effect and solubility in solvents. Specifically, dibutyltindichloride, dibutyl tin diacetate
(dibutyltindiacetate), 디부틸틴디라우레이트 (dibutyltindilaurate), 트 리페닐틴아세테이트 (triphenyltinacetate), 트리부틸틴아세테이트(dibutyltindiacetate), dibutyltindilaurate, triphenyltinacetate, tributyltin acetate
(tributyltinacetate), 아연 아세트산 (zinc diacetate), 티타늄 테트라 아세테이트 (titanium tetra-acetate), 코발트 트리스 (2-에틸핵사노에이 트) (cobalt tris(2-ethylhexanoate)), 비스무트 트리스 (2-에틸핵사노에 이트) (bismuth tris(2-ethylhexanoate)) , 아연 디 (2-에될핵사노에이 트) (zinc di(2-ethylhexanoate)), 코발트 트리스 (2,4-펜타디오네이 트) (cobalt tris(2,4-pentadionate)), 티타늄 테트라 (2,4-펜타디오네이 트) (titanium tetra (2,4-pentadionate)), 망간 디 (2, 4-펜타디오네이 트) (manganese di(2, 4 -pentadionate)), 니켈 디 (2,4-펜타디오네이 트) (nickel di(2,4-pentadionate), 지르코늄 테트라 (2,4-펜타디오네이 트) (zirc onium tetra(2 , 4 - pentadionate) ) 등을 사용할 수 있으며 , 이염 화이부틸주석 (dibutyltindichlo ride)을 사용하는 것이 가장 바람직하다. 상기 실리카 모세관은 통상적으로 외벽에 고분자 코팅이 되어 있고, 내경이 25 - 200 μπι이 고ᅳ 길이는 0.5— 5.0 m인 상업용 실리카 모 세관을 사용할 수 있다. 여기서, 상기 모세관의 내경이 25 μπι 미만이 면 컬럼이 쉽게 막히는 문제가 있고, 200 ym 초과이면 최종 컬럼의 분리효율이 저하되는 문제가 있다. 또한, 상기 모세관의 길이가 0.5 m 미만이면 컬럼 분리효율이 감소하는 문제가 있고, 5.0 m 초과이면 컬 럼의 압력이 높아지는 문제가 있다. (tributyltinacetate), zinc diacetate, titanium tetra-acetate, cobalt tris (2-ethylhexanoate), bismuth tris (2-ethylnucleonos) Bismuth tris (2-ethylhexanoate), zinc di (2-ethylhexanoate), cobalt tris (2,4-pentadione) 2,4-pentadionate)), titanium tetra (2,4-pentadionate), manganese di (2,4-pentadioneate) pentadionate)), nickel di (2,4-pentadioneate) (nickel di (2,4-pentadionate), zirconium tetra (2,4-pentadione) (Zirc onium tetra (2,4-pentadionate)) and the like, and dibutyltindichlo ride is most preferred. The silica capillary tube is usually coated with a polymer coating on the outer wall, a commercial silica capillary having an inner diameter of 25-200 μπι and a length of 0.5-5.0 m can be used. Here, if the inner diameter of the capillary tube is less than 25 μπι, there is a problem that the column is easily clogged, and if more than 200 ym, there is a problem that the separation efficiency of the final column is lowered. In addition, when the length of the capillary tube is less than 0.5 m, there is a problem that the column separation efficiency is reduced, and if it is more than 5.0 m, there is a problem that the pressure of the column is increased.
상기 화학식 3에서
Figure imgf000015_0001
C6- 10의 방향족 고리는 페닐렌 또 는 나프탈렌이 될 수 있고, 페닐렌인 것이 가장 바람직하다. 또한, 화 학식 3으로 표시되는 리간드는 4ᅳ클로로메틸 페닐이소시아네이트, 3 - 클로로메틸 페닐이소시아네이트, 2 -클로로메틸 페닐이소시아네이트 등 을 사용할 수 있다. 상기 무수 용매는 무수 비극성 용매면 어느 것이나 사용할 수 있으나, 끓는점이 60 °C 이상인 것이 반웅온도를 60 °C 이상으로 하기 위해서 바람직하다. 구체적으로, 무수 를루엔, 무수 자일렌, 무수 메틸 이소부틸케톤, 무수 메틸이소프로필케론, 싸이클로펜탄온, 부티로락톤 등을 사용할 수 있다. 세척 과정에서의 무수 용매는 무수 를루엔, 아 세톤, 테트라하이드로퓨란, 아세토니트릴 등을 사용할 수 있다. 본 발명에 따른 고분자 부착 실리카 모세관의 제조방법에 있어 서 , 상기 단계 2는 상기 단계 1에서 제조한 화학식 4로 표시되는 리간 드 부착 실리카 모세관을 화학식 5로 표시되는 중합 개시제와 반응시 켜 화학식 6으로 표시되는 증합 개시제 부착 실리카 모세관을 제조하 는 단계이다. 일례로, 상기 단계 1에서 제조한 화학식 4로 표시되는 리간드 부착 실리카 모세관 1 .0 m에 대하여 , 10- 200 mg의 화학식 5 로 표시되는 중합 개시제 및 0.5 - 10.0 mL와 무수 용매를 섞은 용액을 25 - 8CTC로 4 - 24시간 홀려주어 반응시키고ᅳ 무수 용매로 세척한 후, 질소 기류 하에서 건조하는 것이 바람직하다. 여기서 , 상기 화학식 5로 표시되는 중합 개시제가 상기 화학식 4로 표시되는 리간드 부착 실리카 모세관 1.0 m에 대하여 10 mg 미 만으로 사용하는 경우 불완전 반응완결의 문제가 있고, 200 mg을 초 과하는 경우에는 낭비 및 부 반응 발생의 문제가 있다.
In Chemical Formula 3
Figure imgf000015_0001
C 6 - ring 10 may be a phenylene or naphthalene, most preferably phenylene. As the ligand represented by the formula (3), 4 'chloromethyl phenyl isocyanate, 3-chloromethyl phenyl isocyanate, 2-chloromethyl phenyl isocyanate and the like can be used. The anhydrous solvent may be any anhydrous nonpolar solvent, but a boiling point of 60 ° C. or higher is preferable in order to make the reaction temperature 60 ° C. or higher. Specifically, anhydrous toluene, anhydrous xylene, anhydrous methyl isobutyl ketone, anhydrous methyl isopropyl keron, cyclopentanone, butyrolactone and the like can be used. The anhydrous solvent in the washing process may be anhydrous toluene, acetone, tetrahydrofuran, acetonitrile and the like. In the method for preparing a polymer-attached silica capillary tube according to the present invention, step 2 is performed by reacting the silica-attached silica capillary tube represented by Formula 4 prepared in Step 1 with a polymerization initiator represented by Formula 5. To prepare the silica capillary with attached polymerization initiator Is a step. For example, with respect to 1.0 m of the ligand-attached silica capillary represented by Formula 4 prepared in Step 1, 10-200 mg of a polymerization initiator represented by Formula 5 and a solution of 0.5-10.0 mL and anhydrous solvent were 25 The reaction is preferably carried out with 8 CTC for 4 to 24 hours, washed with anhydrous solvent, and dried under a stream of nitrogen. Here, if the polymerization initiator represented by the formula (5) is less than 10 mg with respect to 1.0 m of the ligand-attached silica capillary represented by the formula (4), there is a problem of incomplete reaction completion, when exceeding 200 mg waste and There is a problem of occurrence of side reactions.
또한, 상기 무수 용매가 상기 화학식 4로 표시되는 리간드 부착 실리카 모세관 1 .0 m에 대하쪄 0.5 mg 미만으로 사용하는 경우 불완 전 반웅완결의 문제가 있고, 10.0 mL를 초과하는 경우 물질 희석에 따 른 반웅속도 감소의 문제가 있다.  In addition, when the anhydrous solvent is used in less than 0.5 mg for the ligand-attached silica capillary 1.0 m represented by the formula (4) there is a problem of incomplete semi-finished, if the excess exceeds 10.0 mL depending on the material dilution There is a problem of decrease in reaction speed.
나아가, 상기 반응온도가 25 °C 미만인 경우에는 반웅속도가 너무 느린 문제가 있고, 80 °C를 초과하는 경우에는 화합물의 열분해가 발생할 수 있는 문제가 있다. Furthermore, if the reaction temperature is less than 25 ° C there is a problem that the reaction rate is too slow, if the reaction temperature exceeds 80 ° C there is a problem that the thermal decomposition of the compound may occur.
또한, 상기 반웅시간이 4시간 미만인 경우 불완전 반응완결의 문제가 있고, 24시간 초과인 경우 부반웅 발생의 문제가 있다. 상기 화학식 5로 표시되는 중합 개시제는 디티오카바메이트 그 룹이 있으면 어느 것이나 사용할 수 있고, 구체적으로는 나트륨 디에 틸디티오카바메이트, 나트륨 디프로필디티오카바메이트, 나트륨 디부 틸디티오카바메이트, 나트륨 다메틸디티오카바메이트 등을 사용할 수 있으며, 상업적으로 용이하게 구할 수 있는 나트륨 디에틸디티오카바 메이트를 사용하는 것이 바람직하다. 상기 반웅 무수 용매는 상기 화학식 5로 표시되는 증합 개시제 를 용해시킬 수 있을 정도의 극성이 있고, 하이드록시기, 아미노기 또 는 카르복시기를 갖고 있지 않은 용매는 어느 것이나 사용할 수 있다. 이 중, 에테르기 , 케톤기 또는 에스테르기를 갖고 끓는점이 50 °C 이상 인 용매를 선택하는 것이 반웅온도를 어느 이상 유자하고 부 반웅을 방지하기 위하여 바람직하다. 구체적 '으로는, 무수 테트라하이드로퓨란, 디에틸케론, 에틸아세테이트 등을 사용할 수 있다. In addition, if the reaction time is less than 4 hours, there is a problem of incomplete reaction completion, if more than 24 hours there is a problem of occurrence of side reactions. The polymerization initiator represented by the formula (5) can be used as long as there is a dithio carbamate group, specifically, sodium dimethyldithiocarbamate, sodium dipropyldithiocarbamate, sodium dibutyldithiocarbamate , Sodium dimethyldithiocarbamate and the like can be used. It is preferable to use sodium diethyldithiocarbamate which is commercially available. The semi-anhydrous solvent is polar enough to dissolve the polymerization initiator represented by Formula 5, and has a hydroxyl group, an amino group, Any solvent which does not have a carboxy group can be used. Among these, it is preferable to select a solvent having an ether group, a ketone group or an ester group and having a boiling point of 50 ° C. or more in order to keep the reaction temperature any longer and prevent side reactions. Specifically, the, or the like can be used in anhydrous tetrahydrofuran, diethyl Kerron ethyl acetate.
상기 세척 용매는 테트라하이드로퓨란, 아.세톤, 메탄을 /물 혼합 용매, 아세토니트릴 등을 사용할 수 있다.  The washing solvent may be tetrahydrofuran, acecetone, methane / water mixed solvent, acetonitrile and the like.
본 발명에 따른 고분자 부착 실리카 모세관의 제조방법에 있어 서, 상기 단계 3은 상기 단계 2에서 제조한 화학식 6으로 표시되는 중 합 개시제 부착 실리카 모세관 내부에 모노머를 용매에 녹여 채우고, 가역 부가-파편화 사슬전달 (Reversible Addition -Fragmentation Chain Transfer, RAFT) 중합 반옹을 수행하여 화학식 1로 표시되는 고분자 부착 실리카 모세관을 제조하는 단계이다. 여기서, 상기 단계 2에서 제조한 화학식 6으로 표시되는 중합 개시제 부착 실리카 모세관 1 .0 m에 대하여 , 비극성 모노머 0.2 - 1 .5 mL, 전기삼투흐름 유발 모노머 30—150 mg , 극성 모노머 30- 250 mg, 비극성용매 0.5 - 5.5 mL 및 극성 용매 0.3— 2.5 mL로 이루어진 반웅용 액을 70- 15C C로 6 - 36시간 홀려주어 RAFT 중합반웅을 진행시키고, 비극성 및 극성 용매로 세척하고 아세론으로 세척한 후, 질소 기류에 서 건조하는 것이 바람직하다. 여기서, 상기 비극성 모노머를 상기 단계 2에서 제조한 화학식 6으로 표시되는 중합 개시제 부착 실리카 모세관 1 .0 m에 대하여 0.2 mL 미만으로 사용하는 경우 불완전 반웅완결의 문제가 있고, 1 .5 mL 를 초과하여 사용하는 경우 중합통제 불가의 문제가 있다. In the method of preparing a silica capillary tube with a polymer according to the present invention, the step 3 is a monomer dissolved in a solvent in a silica capillary tube with a polymerization initiator represented by Formula 6 prepared in step 2, and the reversible addition-fragmentation chain Reversible Addition-Fragmentation Chain Transfer (RAFT) is a step of preparing a polymer attached silica capillary represented by Chemical Formula 1 by performing polymerization reaction. Here, with respect to 1.0 m of the silica capillary tube with a polymerization initiator represented by Chemical Formula 6 prepared in Step 2, 0.2-1 .5 mL of a nonpolar monomer, 30—150 mg of an electroosmotic flow-induced monomer, 30-250 mg of a polar monomer. A semi-aqueous solution consisting of 0.5-5.5 mL of a nonpolar solvent and 0.3-2.5 mL of a polar solvent was poured into 70-15 C C for 6-36 hours to proceed with RAFT polymerization reaction, washed with a non-polar and polar solvent, and washed with acelon. After that, drying in a nitrogen stream is preferable. Herein, when the nonpolar monomer is used in an amount less than 0.2 mL with respect to 1.0 m of the silica capillary with the polymerization initiator represented by Chemical Formula 6 prepared in Step 2, there is a problem of incomplete semi-finished, and in excess of 1.5 mL When used, there is a problem of impossibility of polymerization control.
또한, 상기 전기삼투흐름유발 모노머를 상기 단계 2에서 제조한 화학식 6으로 표시되는 증합 개시제 부착 실리카 모세관 1 .0 m에 대 하여 30 mg 미만으로 사용하는 경우 제조된 CEC 컬럼의 전기삼투흐 름이 너무 약한 문제가 있고, 150 mg 초과하여 사용하면 물질 낭비의 문제가 있다. In addition, the electroosmotic flow-induced monomer to the silica capillary tube with a polymerization initiator represented by the formula (6) prepared in step 2 to 1.0 m In case of using less than 30 mg, the electroosmotic flow of the manufactured CEC column is too weak, and when used in excess of 150 mg, there is a problem of waste of material.
, 나아가, 상기 극성 모노머가 상기 단계 2에서 제조한 화학식 6 으로 표시되는 중합 개시제 부착 실리카 모세관 1 .0 m에 대하여 30 mg 미만으로 사용하는 경우 극성 분석물의 머무름 시간이 충분하지 못한 문제가 있고, 250 mg 초과로 사용하는 경우 극성 분석물의 띠나 비가 너무 넓어지는 문제가 있다.  Furthermore, when the polar monomer is used in an amount less than 30 mg with respect to the polymerization initiator-attached silica capillary 1.0 m represented by Chemical Formula 6 prepared in Step 2, the retention time of the polar analyte is insufficient. 250 When used in excess of mg, the band or ratio of the polar analyte is too wide.
또한, 비극성 반웅용매가 상기 단계 2에서 제조한 화학식 6으로 표시되는 중합 개시제 부착 실리카 모세관 1 .0 m에 대하여 0.5 mL 미 만으로 사용하는 경우 불균질 반웅의 문제가 있고, 5.5 mL를 초과하여 사용하는 경우 물질회석에 의한 반응속도 감소의 문제가 있다.  In addition, when the nonpolar semi-aqueous solvent is used in less than 0.5 mL with respect to 1.0 m of the silica capillary tube with the polymerization initiator represented by Chemical Formula 6 prepared in Step 2, there is a problem of heterogeneous reaction, and more than 5.5 mL is used. In this case, there is a problem of reducing the reaction rate due to mass lime.
나아가, 극성 반응용매가 상기 단계 2에서 제조한 화학식 6으로 표시되는 증합 개시제 부착 실리카 모세관 1 .0 m에 대하여 0.3 mL 미 만으로 사용하는 경우 극성 모노머의 용해에 문제가 있을 뿐만 아니라, 생성정지상의 자체 친화성이 제한될 수 있고, 2.5 mL를 초과하여 사용 하는 경우 물질희석에 의한 반웅속도 감소의 문제가 있다.  Furthermore, when the polar reaction solvent is used in less than 0.3 mL with respect to 1.0 m of the polymerization initiator-attached silica capillary represented by Chemical Formula 6, there is a problem in dissolving the polar monomers, Affinity may be limited, and when used in excess of 2.5 mL, there is a problem of decrease in reaction speed due to dilution of material.
또한, 상기 반응은도가 70 °C 미만인 경우 불완전 반웅의 문제가 있고, 150 °C 초과인 경우 반응통제 불가의 문제가 있다. In addition, the reaction has a problem of incomplete reaction when the degree is less than 70 ° C, there is a problem of the reaction control impossible if it is more than 150 ° C.
나아가, 상기 반웅시간이 6시간 미만인 경우 불완전 반응의 문제가 있 고, 36시간을 초과하는 경우 시간낭비 및 부반응 발생의 문제가 있다.  Furthermore, when the reaction time is less than 6 hours, there is a problem of incomplete reaction, and when more than 36 hours, there is a problem of time wastage and side reactions.
. 상기 비극성 모노머는 벤젠 고리를 가지고 있고 1 이상의 이중 결합을 갖는 화합물이면 제한 없이 사용할 수 있으나, 분자량이 500 이하인 것이 바람직하다. 구체적으로는, 스티렌, 4 -메틸스티렌, 2 -클로 로스티렌, 3-클로로스티렌, 4ᅳ클로로스티렌, 4 -브로모스티렌, 4 -비닐벤 질클로라이드, 4 -비닐나프탈렌 등을 사용할 수 있으며, 저렴하고, 분리 효율이 우수한 정지상올 얻을 수 있다는 점에서 스티렌을 사용하는 것 이 가장 바람직하다. 상기 극성 모노머는 벤젠 고리를 가지고 있고 극성반응기를 가 지고 있으며 1이상의 이중결합을 지닌 화합물이면 제한 없이 사용할 수 있으나, 분자량이 500 이하인 것이 바람직하다. 구체적으로는, N- 페닐아크릴아미드, 4—아미노스티렌, 4-{N- (메틸아미노에틸)아미노메 틸}스티렌 , 4-비닐벤조산, 3,4-디메특시스티렌 등을 사용할 수 있다. 상기 전기삼투흐름 유발 모노머는 카르복실기나 아미노기를 가 지고 있고, 1 이상의 이중결합을 지닌 화합물이면 제한 없이 사용할 수 있으나, 분자량이 500 이하인 것이 바람직하다. 구체적으로는, 아 크릴산, 메타크릴산, 메틸메타크릴산, 이타코닌산, 알릴아민, 4-아미노 스티렌 , 4-비닐피리딘, 2-비닐피리딘 등을 사용할 수 있다. 상기 비극성 반용용매는 모노머를 잘 용해할 수 있으면 어느 것 이나 사용할 수 있으나 벤젠고리를 갖고 있는 것이 바람직하다. 구체 적으로는, 틀루엔, 자일렌, 에틸벤젠 등을 사용할 수 있다. 상기 극성 반응용매는 극성 모노머를 잘 용해할 수 있고, 히드 록시기, 아미노기, 카르복시기를 갖고 있지 않으면 어느 것이나 사용 할 수 있으나. 끓는점이 80°C 이상인 것이 바람직하다. 구체적으로는, 싸이클로펜탄온, 사이클로핵산온, 메틸이소부틸케톤, 4-메틸 -2-펜탄온 등을 사용할 수 있다. . The nonpolar monomer may be used without limitation as long as it is a compound having a benzene ring and having at least one double bond, but preferably has a molecular weight of 500 or less. Specifically, styrene, 4-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4'chlorostyrene, 4-bromostyrene, 4-vinylbenzyl chloride, 4-vinylnaphthalene, etc. can be used. It is most preferable to use styrene because it is possible to obtain a stationary phase which is inexpensive and has excellent separation efficiency. The polar monomer may be used without limitation as long as it has a benzene ring, a polar reactive group, and a compound having one or more double bonds, but preferably has a molecular weight of 500 or less. Specifically, N-phenylacrylamide, 4-amino styrene, 4- {N- (methylaminoethyl) amino methyl} styrene, 4-vinyl benzoic acid, 3, 4- dimethic styrene, etc. can be used. The electroosmotic flow-inducing monomer has a carboxyl group or an amino group and can be used without limitation as long as it has a compound having one or more double bonds, but preferably has a molecular weight of 500 or less. Specifically, acrylic acid, methacrylic acid, methylmethacrylic acid, itaconic acid, allylamine, 4-amino styrene, 4-vinylpyridine, 2-vinylpyridine and the like can be used. The nonpolar antisolvent can be used as long as it can dissolve the monomer well, but preferably has a benzene ring. Specifically, toluene, xylene, ethylbenzene and the like can be used. The polar reaction solvent can dissolve the polar monomer well, and can be used as long as it does not have a hydroxyl group, amino group, carboxyl group. It is preferable that the boiling point is at least 80 ° C. Specifically, cyclopentanone, cyclonucleic acid temperature, methyl isobutyl ketone, 4-methyl-2-pentanone, or the like can be used.
상기 세척시 용매는 를루엔, 2-프로판올, 아세토니트릴, 아세톤 등을 사용할 수 있다. 또한, 본 발명은 상기 제조방법으로 제조되는 것을 특징으로 하 는 올리고당류 또는 펩티드류 분리용 실리카 모세관을 제공한다. 여기 서, 상기 실리카 모세관의 내경은 25-200 um이고; 길이는 0.5-5 m이 고; 생성되는 고분자막의 두께는 건조한 상태에서 1-10 인 것이 바 람직하다. 나아가, 본 발명은 을리고당류를 유도체화 시약과 반웅시켜, 올 리고당류의 구조 이성질체를 준비하는 단계 (단계 1 ) ; 및 In the washing, a solvent such as toluene, 2-propanol, acetonitrile, acetone may be used. In addition, the present invention provides a silica capillary for separation of oligosaccharides or peptides, characterized in that prepared by the above production method. Wherein the inner diameter of the silica capillary is 25-200 um; The length is 0.5-5 m; The thickness of the resulting polymer film is 1-10 in dry state. It is good. Furthermore, the present invention comprises the steps of reacting the oligosaccharides with the derivatization reagent to prepare the structural isomers of the oligosaccharides (step 1); And
상기 단계 1에서 준비한 을리고당류의 구조 이성질체를, 상기 실리카 모세관을 통해 분리하는 단계 (단계 2) ;를 포함하는 을리고당류 의 분리방법을 제공한다. 이하, 본 발명에 따른 올리고당류의 분리방법을 단계별로 상세 히 설명한다. 본 발명에 따른 올리고당류의 분리방법에 있어서, 상기 단계 1 은 올리고당류를 유도체화 시약과 반응시켜, 올리고당류의 구조 이성 질체를 준비하는 단계이다.  It provides a separation method of the oligosaccharide comprising the; step (step 2) of separating the structural isomer of the oligosaccharide prepared in step 1 through the silica capillary. Hereinafter, the step of separating the oligosaccharides according to the present invention will be described in detail. In the separation method of the oligosaccharide according to the present invention, step 1 is a step of preparing a structural isomer of the oligosaccharide by reacting the oligosaccharide with a derivatization reagent.
이때, 상기 을리고당류는 글루코오스 또는 말토트리오스인 것이 바람직하지만, 이에 제한하지 않는다.  At this time, the ligosaccharide is preferably glucose or maltotriose, but is not limited thereto.
또한, 상기 유도체화 시약은 파라-아미노벤조익 에틸 에스테르 -aminobenzoic ethyl e ster) # 사용하는 것이 바람직하다. 여기서, 상기 분리방법은 상기 단계 2를 수행하기 이전에, 상기 단계 1에서 준비한 올리고당류의 구조 이성질체를 수소환원.시약과 반 웅시켜, 2차아민을 포함하는 올리고당류의 구조 이성질체를 준비하는 단계를 더 포함할 수 있으며, 상기 수소환원시약은 소듬 시아노보로하 이드라이드 (sodium cyanoborohydride , NaBH3CN) - 사용하는 것이 바람직하다. 본 발명에 따른 올리고당류의 분리방법에 있어서 , 상기 단계 2 는 상기 단계 1에서 준비한 올리고당류의 구조 이성질체를, 상기 실리 카 모세관을 통해 분리하는 단계이다. 상기 올리고당류의 분리를 수행 한 후, 분리결과는 전기크로마토그램을 통해 확인할 수 있다. 나아가, 본 발명은 단백질을 가수분해하여, 펩티드류를 준비하는 단계 (단계 1 ) ; 및 In addition, the derivatization reagent is preferably used para-aminobenzoic ethyl ester (aminobenzoic ethyl ester) #. Here, in the separation method, the structural isomer of the oligosaccharide prepared in Step 1 is reacted with a hydrogen reduction reagent to prepare the structural isomer of the oligosaccharide including the secondary amine before performing the step 2. It may further include, and the hydrogen reduction reagent is preferably used cyanoborohydride (Nadium cyanoborohydride, NaBH 3 CN)-. In the method for separating oligosaccharides according to the present invention, step 2 is a step of separating the structural isomers of the oligosaccharides prepared in step 1 through the silica capillary. Separation of the Oligosaccharides After that, the separation result can be confirmed by electrochromatogram. Further, the present invention is to hydrolyze the protein to prepare peptides (step 1); And
상기 단계 1에서 준비한 펩티드류를, 상기 실리카 모세관을 통 해 분리하는 단계 (단계 2) ;를 포함하는 펩티드류의 분리방법을 제공한 다. 이하, 본 발명에 따른 올리고당류의 분리방법을 단계별로 상세 히 설명한다. 본 발명에 따른 을리고당류의 분리방법에 있어서, 상기 단계 1 은 단백질을 가수분해하여, 펩티드류를 준비하는 단계이다.  Peptides prepared in the step 1, the step of separating through the silica capillary (step 2) provides a separation method of the peptide comprising a. Hereinafter, the step of separating the oligosaccharides according to the present invention will be described in detail. In the method for isolating saccharides according to the present invention, step 1 is a step of preparing a peptide by hydrolyzing the protein.
이때, 상기 단백질은 시토크틈 C(Cytochrome C)인 것이 바람직 하지만, 이에 제한하지 않는다.  In this case, the protein is preferably Cytochrome C, but is not limited thereto.
또한, 상기 단백질의 가수분해는 트립신 (Trypsin)을 사용하는 것이 바람직하지만, 이에 제한하지 않는다. 본 발명에 따른 올리고당류의 분리방법에 있어서, 상기 단계 2 는 상기 단계 1에서 준비한 펩티드류를, 상기 실리카 모세관을 통해 분리하는 단계이다. 상기 올리고당류의 분리를 수행한 후, 분리결과는. 전기크로마토그램을 통해 확인할 수 있다. 본 발명에 따른 고분자 부착 실리카 모세관은 일상적인 CEC 이 동상 특히 유기용매 (아세토니트릴)의 함량이 높은 용매에서, 정지상을 이루고 있는 고른 길이의 고분자 사슬이 활짝 펼쳐지면서 물질전달속 도가 가속화되면서 분석물의 봉우리 띠나비가 감소되고 분라효율이 증 대되는 효과가 있다. 이에, 실시예 1에서 제조한 고분자 부착 실리카 모세관을 사용 한 모세관 전기크로마토그래피법 (Capillary Electro chromatography, CEC)을 통해 이동상 중 아세토니트릴 함량에 따라 말토트리오스 구 조이성체 및 D 글루코오스 아노머의 분리가능 여부를 평가하기 위하 여 실험을 수행한 결과, 아세토니트릴의 부피 함량이 90%일 때 , 말토 트리오스 (도 3의 B)와 D -글루코오스 (도 3의 X) 모두 최적의 분리를 나타내는 것올 확인하였다 (실험예 1의 도 3 참조) . 또한, 실시예 1에서 제조한 고분자 부착 실리카 모세관을 사용 한 모세관 전기크로마토그래피법 (Capillary Electrochro matography, CEC)을 통해 이동상의 pH에 따라, 말토트라오스 구조이성체 및 D-글 루코오스 아노머의 분리가능 여부를 평가하기 위하여 실험을 수행한 결과, 이동상 버퍼의 pH 값이 6.6일 때 말토트리오스와 (도 4의 B) , D-글루코오스 (도 4의 X) 모두 최적의 분리를 나타내는 것을 확인하 였다 (실험예 2의 도 4 참조) . 나아가, 실시예 2에서 제조한 고분자 부착 실리카 모세관을 사용하여 프로테오믹 시료를 분리분석하기 위하여 실험을 수행한 결과, 프로테오믹 시료에 대하여 20개 이상의 봉우리 (펩티드)가 분리되었으며 각 봉우리의 이론단수는 수십만에서 백만에 이르는 좋은 결과를 나타내는 것을 확인하였다 (실험예 3의 도 5 참조) . In addition, the hydrolysis of the protein is preferably trypsin (Trypsin), but is not limited thereto. In the method for separating oligosaccharides according to the present invention, step 2 is a step of separating the peptides prepared in step 1 through the silica capillary. After the separation of the oligosaccharides, the separation result is . This can be confirmed by electrochromatogram. The silica capillary with polymer according to the present invention is characterized in that the peaks of analyte are accelerated as the mass transfer rate is accelerated as the CEC is in frostbite, especially in a solvent with a high content of organic solvent (acetonitrile). There is an effect that the band width is reduced and the separation efficiency is increased. Therefore, the capillary electro chromatography (CEC) using the silica-attached silica capillary prepared in Example 1 enables the separation of maltotriose co-isomers and D-glucose anomers according to acetonitrile content in the mobile phase. Experiments were conducted to evaluate whether the volume content of acetonitrile was 90%, indicating that both malto triose (B in FIG. 3) and D-glucose (X in FIG. 3) showed optimal separation. (See FIG. 3 of Experimental Example 1). In addition, the separation of maltotraose structural isomers and D-glucose anomers according to the pH of the mobile phase through capillary electrochromatography (CEC) using the polymer-attached silica capillary prepared in Example 1 Experiments were conducted to evaluate the feasibility of the experiments, indicating that both maltotriose (D in Fig. 4) and D-glucose (X in Fig. 4) showed optimal separation when the pH of the mobile phase buffer was 6.6. (See FIG. 4 of Experimental Example 2). Furthermore, as a result of the experiment for separating and analyzing the proteomic sample using the polymer-attached silica capillary prepared in Example 2, more than 20 peaks (peptides) were separated from the proteomic sample and the theory of each peak It was confirmed that the singular shows good results ranging from several hundred thousand to one million (see FIG. 5 of Experimental Example 3).
[발명의 실시를 위한 형태】 [Mode for carrying out the invention]
이하, 본 발명을 실시예 및 실험예에 의하여 더욱 상세히 설명 한다.  Hereinafter, the present invention will be described in more detail with reference to Examples and Experimental Examples.
단, 하기 실시예 및 실험예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 이에 의하여 제한되는 것은 아니다. 〈실시예 1 > 고분자 부착 실리카 모세관의 제조 1 However, the following Examples and Experimental Examples are merely illustrative of the present invention, but the content of the present invention is not limited thereto. Example 1 Preparation of Silica Capillary Tube with Polymer 1
단계 1 : 촉매화된 이소시아네이트-히드록시 반응에 의한 중합 개시제 부착 실리카모세관의 제조  Step 1: Preparation of Silica Capillary Tube with Polymerization Initiator by Catalyzed Isocyanate-hydroxy Reaction
4 -클로로메틸 페닐이소시아네이트 25 mg과 이염화 이부틸주석 (dibutyltin dichlo ride) 20 mg을 무수 를루엔 2.5 mL에 용해시킨 용액 을 제조하고, 이를 내경 50 μηι, 길이 584 mm인 실리카 모세관에 85 °C로 20시간에 걸쳐 홀려주었다 (도 1의 A 과정 ) . 이후. 모세관을 상 온에서 를루엔으로 10시간 동안 세척하고, 아세론으로 하루 동안 세척 한 후, 질소 환경하에 건조시켰다. 건조한 모세관에는, 소듐 디에틸 디 티오까바메이트 100 mg을 무수 테트라히드로퓨란 3.0mL에 녹인 용액 을 55 °C에서 12시간 동안 홀려주었다 (도 1의 B 과정 ) . 반응 후, 모세 관은 즉시 상온에서 테트라하이드로퓨란을 6시간, 이어서 메탄올을 2 시간 홀려서 세척하였다. 마지막으로, 아세톤으로 2시간 세척하고, 질 소 환경 하 30분 동안 건조하여 중합개시제 부착 실리카모세관을 제 조하였다. 단계 2 : 증합개시제 부착 실리카 모세관을 이용하여 RAFT 중 합을 거쳐 고분자 부착 실리카모세관의 제조  A solution was prepared in which 25 mg of 4-chloromethyl phenyl isocyanate and 20 mg of dibutyltin dichlo ride were dissolved in 2.5 mL of anhydrous toluene, which was prepared in a silica capillary with an internal diameter of 50 μηι and a length of 584 mm at 85 ° C. Over 20 hours (A process in FIG. 1). after. The capillary was washed with toluene for 10 hours at room temperature, washed for one day with aceron and then dried under nitrogen. In the dry capillary, a solution of 100 mg of sodium diethyl dithiocarbamate dissolved in 3.0 mL of anhydrous tetrahydrofuran was poured at 55 ° C. for 12 hours (B process in FIG. 1). After the reaction, the capillary was immediately washed with tetrahydrofuran at room temperature for 6 hours, followed by methanol for 2 hours. Finally, the mixture was washed with acetone for 2 hours and dried for 30 minutes in a nitrogen environment to prepare a silica capillary tube with a polymerization initiator. Step 2: Preparation of Polymer Capillary Silica Tube by RAFT Polymerization Using Silica Capillary Tube with Initiator
상기 단계 1에서 제조한 중합개시제 부착 실리카 모세관에, 0.6 mL 스티렌, 50 uL 메타크릴산, 80 mg N _페닐아크릴아미드를, 2 mL 무수 를루엔과 0.8 mL 4 -메틸 - 2 -펜탄온으로 이루어진 흔합용매에 용 해시킨 용액을 10C C에서 15사간 동안 홀려주었다 (도 1의 C 과정) . 반웅 용액은 초음파 진동과 질소 퍼지를 각 10분간 거치고, 0.2 μιη 동 공의 시린지 필터로 걸러서 사용하였다. 반응 후, 즉시 다음의 세척과 정을 수행하였다. 구체적으로, 를루엔으로 상온에서 5시간, 50 °C에서 5시간 홀려주고, 다시 상은에서 4 -메틸 - 2 -펜탄온으로 5시간, 마지막 으로 아세톤으로 2시간 홀려주었다. 이후, 질소 환경 하 건조하여 고 분자 부착 실리카모세관을 제조하였다. 실리카 모세관의 한 쪽 끝으로부터 84 mm 지점에 자외선 흡광 창을 제조하기 위하여 블꽃으로 지져 모세관 외피 고분자를 태워 없앴 다. 따라서, 상기 실리카 모세관 컬럼의 유효길이는 500 mm가 된다. 도 2에는 고분자부착 실리카 모세관 단면의 한 부분에 대하여 전자현미경의 넓은 범위 (A) 및 좁은 범위 (B) 사진을 나타내었다. 도 2 에 나타난 바와 같이, 실리카 모세관 내벽에 견고한 고분자 피막이 형 성된 것을 알 수 있다. 상기 피막은 긴 고분자 사슬들로 구성되어 있 어 유기 용매 (아세토니트릴)를 많이 함유한 이동상과 접할 경우, 사슬 들이 활짝 펼쳐질 것으로 예상된다. In the silica capillary with the polymerization initiator prepared in step 1, 0.6 mL styrene, 50 uL methacrylic acid, 80 mg N _ phenylacrylamide, 2 mL anhydrous and 0.8 mL 4 -methyl-2 -pentanone The solution dissolved in the mixed solvent was held at 10C C for 15 hours (C process of FIG. 1). Banung solution to ultrasonic vibration with a nitrogen purge go through each 10 minutes, and filtering using a syringe filter of 0.2 μι η pupil. Immediately after the reaction, the following washing process was performed. Specifically, 5 hours at room temperature with toluene, 5 hours at 50 ° C, and 5 hours at 4-methyl-2-pentanone at Sangeun and finally 2 hours at acetone. Thereafter, the mixture was dried in a nitrogen environment to prepare a silica-attached silica capillary tube. The capillary shell polymer was burned off to produce a UV absorbing window 84 mm from one end of the silica capillary. Thus, the effective length of the silica capillary column is 500 mm. FIG. 2 shows a wide range (A) and a narrow range (B) photograph of an electron microscope with respect to a portion of the cross section of the polymer-capsulated silica capillary. As shown in Figure 2, it can be seen that a solid polymer film is formed on the inner wall of the silica capillary. The coating is composed of long polymer chains, which are expected to unfold when contacted with a mobile phase containing a large amount of organic solvent (acetonitrile).
〈실시예 2> 고분자 부착 실리카 모세관의 제조 2 Example 2 Preparation of Silica Capillary Tube with Polymer 2
단계 1 : 촉매화된 이소시아네이트-히드록시 반옹에 의한 중합 개시제 부착 실리카모세 ¾의 제조  Step 1: Preparation of Silica Moses ¾ Attached to Polymerization Initiator by Catalyzed Isocyanate-hydroxy Reaction
4 -클로로메틸 페닐이소시아네이트 30 mg과 이염화 이부틸주석 30 mg of 4-chloromethyl phenyl isocyanate and dibutyl dichloride
(dib utyltin dichloride) 40 mg을 무수 틀루엔 2.5 mL에 녹인 용액을 만들고, 이를 내경 50 μιη, 길이 800 mm인 실리카 모세관에 85 °C로 6 시간에 걸쳐 흘려주었다. 다음 모세관을 상온에서 를루엔으로 하루 동 안 세척하고, 아세톤으로 한 시간 세척한 후 , 질소 환경하에서 건조시 켰다. 상기 건조한 모세관에는, 소듐 디에틸 디티오카바메이트 100 mg을 무수 테트라히드로퓨란 3.0 mL에 용해 시킨 용액을 55 °C에서 6.5 시간 동안 홀려주었다. 반웅 후 모세관은 즉시 상온에서 테트라히 드로퓨란으로 하루 동안 홀려주고, 이어서 메탄올로 5시간 홀려서 세 척해준 후, 마지막으로 아세톤으로 2시간 세척하고, 질소 환경하에서 30분 동안 건조시켜 중합개시제 부착 실리카모세관을 제조하였다. 단계 2 : 증합개시제 부착 실리카 모세관을 이용하여 RAFT 중 합을 거쳐 고분자 부착 실리카모세관의 제조 (dib utyltin dichloride) 40 mg was dissolved in 2.5 mL of anhydrous toluene to make a solution, which was poured into a silica capillary tube having an internal diameter of 50 μιη and a length of 800 mm at 85 ° C. over 6 hours. The capillary was then washed with toluene at room temperature for one day, with acetone for one hour, and then dried under nitrogen. In the dry capillary, a solution of 100 mg of sodium diethyl dithiocarbamate dissolved in 3.0 mL of anhydrous tetrahydrofuran was poured at 55 ° C. for 6.5 hours. After the reaction, the capillaries were immediately poured into tetrahydrofuran at room temperature for one day, washed with methanol for 5 hours, finally washed with acetone for 2 hours, dried under nitrogen environment for 30 minutes, and then subjected to polymerization initiator-attached silica. Capillary tubes were prepared. Step 2: Preparation of Polymer Capillary Silica Tube by RAFT Polymerization Using Silica Capillary Tube with Initiator
상기 단계 1에서 제조한 중합개시제 부착 실리카 모세관에, 0.6 mL 스티렌, 70 uL 메타크릴산, 70 mg N-페닐아크릴아미드를, 2 mL 무수 틀루엔과 0.7 mL 4 -메틸 - 2 -펜탄온으로 이루어진 흔합용매에 용 해시킨 용액을 100 °C에서 14시간 동안 홀려주었다. 이후, 상은에서 를 루엔으로 15시간, 2 -프로판을로 5시간, 5Ό/50 (부피비) 2 -프로판올 /물 혼합용매로 5시간, 마지막으로 아세톤으로 1시간 홀려주었다. 다음 질 소 환경하에서 건조하여 고분자 부착 실리카 모세관올 제조하였다. 실 리카 모세관의 한쪽 끝으로부터 84 mm 지점에 자외선 흡광창을 만들 기 위하여 불꽃으로 지져 모세관 외피 고분자를 태워 없앴다. 따라서, 상기 제조한 실리카 모세관 컬럼의 유효길이는 71 6 mm가 된다. In the silica capillary tube with a polymerization initiator prepared in step 1, 0.6 mL of styrene, 70 uL methacrylic acid, 70 mg N-phenylacrylamide, dissolved in a mixed solvent of 2 mL toluene and 0.7 mL 4 -methyl-2 -pentanone at 14 ° C for 14 hours. I let go. Afterwards, Sangeun was transferred from to Ruen for 15 hours, 2-propane to 5 hours, 5 Ό / 50 (volume ratio) 2-propanol / water mixed solvent for 5 hours, and acetone for 1 hour. It was then dried under a nitrogen environment to prepare a silica attached capillary polymer. The capillary shell polymer was burned off to produce an ultraviolet light absorbing window 84 mm from one end of the silica capillary. Thus, the effective length of the prepared silica capillary column is 71 6 mm.
〈실험예 1 > 말토트리오스 구조이성체 및 D-글루코오스 아노머의 분리능력 평가 (이동상 중 아세토니트릴 함량의 효과) Experimental Example 1 Evaluation of Separation Ability of Maltotriose Structural Isomers and D-glucose Anomers (Effect of Acetonitrile Content in Mobile Phase)
상기 실시예 1에서 제조한 고분자 부착 실리카 모세관을 사용한 모세관 전기크로마토그리!피법 (Capillary Electrochromatography , CEC)을 통해 이동상 중 아세토니트릴 함량에 따라, 말토트리오스 구 조이성체 및 D-글투코오스 아노머의 분리가능 여부를 평가하기 위하 여 실험을 수행하였으며, 그 결과를 도 3에 나타내었다. 이때, 당 시료는 자외선 흡광검출기로 검출하기 위하여 유도체 화 하였다. 유도체화 시약은 파라-아미노벤조산 에틸에스터를 사용하 여 아민화 (amination) 반응을 시켰다. 아 반응은 을리고당의 한쪽 끝 에 있는 말단 당의 알데히드 그룹하고 반응하여 시프 염기 (Schiff base)를 이루고, 이것을 수소 환원시키면 2차 아민이 된다. 수소 환원 까지 시키면 이것을 환원 아민화 (reductive amination)라고 한다. 수소 환원 시약으로는 소듐 시아노보로하이드라이드 (sodium cyanob orohydride , NaBH3CN)를 사용하였다. D -글루코오스는 아민화 하면 2개의 아노머가 관찰되고, 환원 아민화하면 1개의 물질만이 관찰 된다. 따라서 D -글루코오스는 아민화 하였고, 말토트리오스는 환원 아 민화하였다. 여기서, 말토트리오스는 D-글루코오스가 3단위로 연결된 당이다. 도 3은 본 발명에 따라 제조된 고분자 부착 실리카 모세관으로 말토트리오스 이성체들 (A,B , C)과, D -글루코오스 아노머들 (W, X,Y)에 대한 모세관 전기크로마토그래피법 (Capillary Electrochromatography , CEC) 용리에서, 용리액의 아세토니트릴 조성에 대한 최적화 과정을 보여주는 이미지이다 (아세토니트릴 함량은 A와 W에 대하여 95 % , B와 X에 대하여 90%, C와 Y에 대하여 80%이며, CE 전압은 30kV, 시료용 액 주입은 12 kV, 5초의 조건으로 시행되었으며 , 최적화 조건은 B와 X를 얻은 90/10 아세토니트릴 /30 mM 소듐 아세테이트 pH 6.6이었고, D와 Z는 최적화조건에서 얻은 아세톤의 전기크로마토그램고, ^과 )d 은 각각 B와 X의 확대 전기크로마토그램이다) . 도 3에 나타난 바와 같이 , 아세토니트릴의 부피 함량이 90%일 때, 말토트리오스 (도 3의 B)와 D-글루코오스 (도 3의 X) 모두 최적 의 분리를 나타내는 것을 확인하였다. Separation of maltotriose sphere isomers and D-glycose anomers according to acetonitrile content in the mobile phase through capillary electrochromatography (CEC) using the polymer-attached silica capillary prepared in Example 1 An experiment was performed to evaluate the possibility, and the results are shown in FIG. 3. At this time, the sugar sample was derivatized in order to be detected by an ultraviolet absorbance detector. The derivatization reagent was subjected to an amination reaction using para-aminobenzoic acid ethyl ester. Subsequently, the reaction is carried out by reacting with an aldehyde group of a terminal sugar at one end of the sugar liposaccharide to form a Schiff base, which is reduced to become a secondary amine. When hydrogen reduction is done, this is called reductive amination. As a hydrogen reduction reagent, sodium cyanob orohydride (NaBH 3 CN) was used. In the case of D-glucose, two anomers are observed when aminated, and only one substance is observed when reductively aminated. Thus D-glucose was aminated and maltotriose was reduced amine. Here, maltotriose is D-glucose linked in 3 units It is a party. Figure 3 is a capillary electrochromatography (Capillary) for the maltotriose isomers (A, B, C) and D-glucose anomers (W, X, Y) as a silica capillary with a polymer prepared according to the present invention Electrochromatography (CEC) is an image showing the optimization of the acetonitrile composition of the eluent in elution (the acetonitrile content is 95% for A and W, 90% for B and X, 80% for C and Y, The CE voltage was 30 kV, the sample solution was injected at 12 kV, 5 seconds, and the optimum conditions were 90/10 acetonitrile / 30 mM sodium acetate pH 6.6 obtained with B and X, and D and Z were obtained under the optimized conditions. Acetone electrochromatogram, ^ and) d are magnified electrochromograms of B and X, respectively). As shown in FIG. 3, when the volume content of acetonitrile was 90%, it was confirmed that maltotriose (B in FIG. 3) and D-glucose (X in FIG. 3) showed optimal separation.
〈실험예 2> 말토트라오스 구조이성체 및 D-글루코오스 아노머의 분리능력 평가 (이동상의 pH 효과) Experimental Example 2 Evaluation of Separation Capability of Maltotraose Structural Isomer and D-Glucose Anomer (Phase Effect of Mobile Phase)
상기 실시예 1에서 제조한 고분자 부착 실리카 모세관을 사용한 모세관 전기크로마토그래피법 (Capillary Ele ctrochro matography, CEC)을 통해 이동상의 pH에 따라, 말토트리오스 구조이성체 및 D -글 루코오스 아노머의 분리가능 여부를 평가하기 위하여 실험을 수행하였 으며, 그 결과를 도 4에 나타내었다. 이때, 이동상에서 아세토니트릴 부피 함량을 90%로 고정하였고, 여러 pH에서의 이동상을 사용하는 것을 제외하고, 상기 실험예 1과 동일한 방법으로 수행하였다. 도 4는 본 발명에 따라 제조된 고분자 부착 실리카 모세관으로 말토트리오스 이성체들 (A,B,C)과, D-글루코오스 아노머들 (W,X,Y)에 대한 CEC 모세관 전기크로마토그래피법 (CapillaryCapillary electrochro matography (CEC) using the silica-attached silica capillary prepared in Example 1, the separation of maltotriose structural isomers and D-glucose anomer according to the pH of the mobile phase An experiment was conducted to evaluate whether the result was shown in FIG. 4. At this time, the acetonitrile volume content was fixed at 90% in the mobile phase, except that the mobile phase at various pHs was used, and was carried out in the same manner as in Experimental Example 1. 4 is a CEC capillary electrochromatography method for maltotriose isomers (A, B, C) and D-glucose anomers (W, X, Y) with a silica-attached silica capillary prepared according to the present invention. Capillary
Electrochromatography, CEC) 용리에서, 용리액의 pH에 대한 최적화 과정을 보여주는 이미지이다 (pH는 A와 W에 대하여 5.5, B와 X에 대 하여 6.6, C와 Y에 대하여 7.3이며, CE .전압은 30kV, 시료용액 주입 은 8 kV, 5초의 조건으로 시행되었으며, 최적화 조건은 B와 X를 얻은 90/10 아세토니트릴 /30 mM 소듐 아세테이트 pH 6.6이었고, D와 Z는 최적화조건에서 얻은 아세톤의 전기크로마토그램이다). 도 4에 나타난 바와 같이 , 이동상 버퍼의 pH 값이 6.6일 때 말 토트리오스와 (도 4의 B), D-글루코오스 (도 4의 X) 모두 최적의 분리 를 나타내는 것을 확인하였다. 따라서, 말토트리오스 구조이성체 및 D-글루코오스 아노머를 분 리하기 위한 최적의 이동상은 90/10 (부피비 ) 아세토니트릴 /30mM 소 듐 아세테이트 pH 6.6이다. 최적 조건에서의 컬럼 성능과 재현성을 하 기 표 1에 나타내었다 (구체적으로, 하기 표 1은 최적 이동상에서 관찰 한 컬럼분리효을 및 머무름 시간의 컬럼 대 컬럼 및 날 대 날 자료 및 재현성 3을 나타내는 표이다). In Electrochromatography, CEC) elution, the image showing the optimization process for the pH of the eluting solution (pH is 7.3 with respect to 5.5, and for the B and X 6.6, C and Y, with respect to A and W, CE. Voltage is 30kV, Sample solution injection was performed at 8 kV and 5 seconds, and the optimization conditions were 90/10 acetonitrile / 30 mM sodium acetate pH 6.6 obtained with B and X, and D and Z are the electrochromograms of acetone obtained under the optimized conditions. ). As shown in FIG. 4, when the pH value of the mobile phase buffer was 6.6, it was confirmed that maltotriose (B in FIG. 4) and D-glucose (X in FIG. 4) showed optimal separation. Thus, the optimal mobile phase for the separation of maltotriose isomers and D-glucose anomers is 90/10 (volume ratio) acetonitrile / 30 mM sodium acetate pH 6.6. The column performance and reproducibility at the optimum conditions are shown in Table 1 (specifically, Table 1 below shows the column-to-column and day-to-day data and reproducibility 3 of the column separation effect and retention time observed in the optimum mobile phase). to be).
a. 컬럼 대 컬럼 재현성 조사를 위하여 3 배치의 모세관 컬럼이 제조되었고, 날 대 날 재현성 조사를 위하여 그 중 1개의 컬럼으로 3 일 연속 측정하였다. 【표 1】  a. Three batches of capillary columns were prepared for column-to-column reproducibility investigations and three consecutive days were measured with one of them for day-to-day reproducibility investigation. Table 1
물질 컬럼 대 컬럼 날 대 날  Substance column vs column blade vs blade
이 이론단수 머무름시간 이론단수 머무름시간 토 성 /미터 (분) /미터 (분) 체 평균 % 평균 % 평균 % 평균 % . 리 RSD RSD RSD RSD 오 1,364,000 4.6% 15.11 2.3% 1,337,000 1.4% 15.02 1.1% 스 1 Theoretical singular retention time Theoretical singular retention time Saturn / meter (minutes) / meter (minutes) Sieve average% average% average% average%. Lee RSD RSD RSD RSD Oh 1,364,000 4.6% 15.11 2.3% 1,337,000 1.4% 15.02 1.1% Switch 1
Μ 1,473,000 4.9% 15.40 2.4% 1,490,000 1.7% 15.39 1.2% Μ 1,473,000 4.9% 15.40 2.4% 1,490,000 1.7% 15.39 1.2%
2 2
Μ 1,358,000 4.5% 15.80 2.5% 1,381,000 1.1% 15.77 0.8% Μ 1,358,000 4.5% 15.80 2.5% 1,381,000 1.1% 15.77 0.8%
3 3
Μ 1,280,000 3.8% 16.20 2.6% 1,305,000 1.5% 16.13 0.5% Μ 1,280,000 3.8% 16.20 2.6% 1,305,000 1.5% 16.13 0.5%
4 4
Μ 1,264,000 4.0% 16.5 2.8% 1,240,000 0.9% 16.44 0.9% Μ 1,264,000 4.0% 16.5 2.8% 1,240,000 0.9% 16.44 0.9%
5 5
D Gi 1,008,000 3.9% 12.85 1 6% 1,023,000 1.0% 12.93 1.2% D Gi 1,008,000 3.9% 12.85 1 6% 1,023,000 1.0% 12.93 1.2%
G2 976,000 4.3% 13.13 1.7% 965,000 1.2% 13.19 0.8% 그 G 2 976,000 4.3% 13.13 1.7% 965,000 1.2% 13.19 0.8%
τ τ
nose
Five
S
상기 표 1에서, In Table 1 above,
%RSD는 %> 단위로 표기된 상대표준편차 (relative standard deviation)이다.  % RSD is the relative standard deviation in%>.
. 상기 표 1에 나타난 바와 같이, 컬럼 이론단수가 미터 당 백만 을 넘고 있고, 컬럼의 재현성도 매우 우수함을 알 수 있다. D 글루코 오스의 두 아노머가 완전하게 분리되었고, 말토트리오스에 대해서는 무려 5개의 이성체가 관찰되었다. 컬럼 분리효율이 우수하고 봉우리 띠나비가 좁은 만큼, 인접 두 봉우리 간 크로마토그래피 분리능도 우 수하여, 하기 표 2에 나타난 바와 같이 그 값이 6.2 - 7.5 정도의 높은 수치를 보여준다. . As shown in Table 1, the theoretical number of columns exceeds one million per meter, and it can be seen that the reproducibility of the column is very excellent. Two anomers of D glucose were completely separated, and five isomers were observed for maltotriose. Excellent column separation efficiency and peaks As the bandana is narrow, the chromatographic resolution between two adjacent peaks is excellent, and as shown in Table 2, the value is about 6.2-7.5.
【표 2】 Table 2
Figure imgf000029_0001
상기 결과는 종래 문헌에 보고된 어떠한 당의 이성체 분리결과 보다도 현저히 우수한 결과이다. 본 발명 "에 따른 열린 구조형 고분자 부착 실리카 모세관 컬럼의 우수한 점으로는 본 발명의 제조 조건에 형성되는 고분자 피막이 자체 친화성이 우수하게 제조되어, 길고 균일 한 고분자 사술 형태로 모세관 내부에 붙게 되고, 마른 상태에 Aᅧ는 견 고한 피막의 형상을 띄지만, 아세토니트릴의 함량이 높은 이동상에서 활짝 펼쳐지며 분석물의 머무름과 물질전달 양면에서 봉우리 띠나비를 좁히는 방향으로 작용한다는 것이다.
Figure imgf000029_0001
This result is remarkably superior to any isomeric separation of sugars reported in the prior art. The strengths of the present invention, "structured polymer attachment silica capillary column open according to is stick to the capillary inside to be prepared in excellent polymer film itself affinity formed in the manufacturing conditions, a long and uniform polymer principalities aspect of the present invention, dry In the state of A ', it shows the shape of a solid film, but it spreads widely in the mobile phase with high acetonitrile and acts in the direction of narrowing peak band butterfly on both analyte retention and mass transfer.
〈실험예 3> 프로테오믹 시료의 분리분석 평가 Experimental Example 3 Evaluation of Separation Analysis of Proteomic Samples
상기 실시예 2에서 제조한 고분자 부착 실리카 모세관을 사용하 여 프로테오믹 시료를 분리분석하기 위하여 하기와 같은 실험을 수행 하였다. 먼저, 프로테오믹 시료는 씨토크름 씨 (Cytochrome C)를 트립신 으로 가수분해한 산물로서 다음과 같이 준비했다. 씨토크름 씨 5 mg, 트립신 4 mg , 4 M 요소수용액 2 mL, 0.2 M 암모늄 비카보네이트 (ammonium bic arbonate) 2 mL를 함께 용기에 넣고 격렬하게 흔들어 주어 용액으로 만들고, 37 °C 온도의 수조에 넣어 48시간 동안 가수분 해 시켰다. 이후, 0.2 urn의 시린지 필터를 이용하여 거른 후, 4 °C의 넁 장고에 보관하였다. 상기 준비한 프로테오믹 시료를, 실시예 2에서 제조한 고분자부 착 실리카모세관으로 모세관 전기크로마토그래피법 (Capillary Electrochromatography, CEC) 분리분석을 수행하였으며 , 그 결과를 도 5에 나타내었다. 용리 조건은 30 kV의 전압을 걸고 78/22 (부피비) 아세토니트릴 /12.5 mM 소듬 포스페이트 (pH 6.8 ) 이동상에서 10분 용 리하고, 그 다음 65/35 (부피비) 아세토니트릴 / 12.5 mM 소듐 포스페 이트 (pH 6.8) 이동상으로 용리하는 조건으로 하였다. 시료 주입은 8 mbar의 압력으로 5초 동안 주입하였다. · 도 5는 실시예 2에서 제조한 고분자 부착 실리카 모세관으로 프 로테오믹 가수분해 시료를 모세관 전기크로마토그래피법 (Capillary Electrochromatography, CEC) 분리분석을 수행한 전기크로마토그램 이다 (용리조건은 30 kV의 전압을 걸고 78/22 아세토니트릴 / 1 2.5 mM 소듐 포스페이트 pH 6.8 이동상에서 10분 용리하고, 그 다음 65/35 아세토니트릴 / 12.5 mM 소듬 포스페이트 pH 6.8 이동상으로 용리하는 조건으로 하였고, 도 5의 상부는 프로테오믹 시료에 대한 분리 전기크 로마토그램고, 하부는 전기삼투흐름 마커인 아세톤의 전기크로마토그 램이다) . 도 5에 나타난 바와 같이, 프로테오믹 시료에 대하여 20개 이상 의 봉우리 (펩티드)가 분리되었으며 각 봉우리의 이론단수는 수십만에 서 백만에 이르는 좋은 결과를 나타내는 것을 확인하였다. 따라서, 본 발명에 따른 제조방법으로 인하여 제조되는 고분자 부착 실리카 모세관은 고분자 피막 자체 친화성이 우수하게 제조되어 길고 균일한 고분자 사슬 형태로 모세관 내부에 붙게 되고, 마른 상태 에서는 견고한 피막의 형상을 띄지만, 아세토니트릴의 함량이 높은 이 동상에서 활짝 펼쳐지며 분석물의 머무름과 물질전달 양면에서 봉우라 띠나비를 좁히는 방향으로 작용하는 효과가 있으므로, 다양한 종류의 당 이성체 분리에 유용하게 사용할 수 있다. In order to separate and analyze a proteomic sample using the silica-attached silica capillary prepared in Example 2, the following experiment was performed. First, a proteomic sample was prepared as follows as a product of hydrolyzing cytochrome C with trypsin. Mr. torque name seed 5 mg, trypsin 4 mg, 4 M urea aqueous solution 2 mL, 0.2 M ammonium bicarbonate (ammonium bic arbonate) 2 mL given a vigorous shake into a container together to create the solution, 37 ° water bath C Temperature Put in water for 48 hours Do it. After that, the filter was filtered using a 0.2 urn syringe filter, and stored in a 4 ° C. vault. The prepared proteomic sample was subjected to capillary electrochromatography (CEC) separation analysis using the polymer-bonded silica capillary prepared in Example 2, and the results are shown in FIG. 5. Elution conditions elute 10 min in a 78/22 (volume ratio) acetonitrile /12.5 mM clear phosphate (pH 6.8) mobile phase under a voltage of 30 kV and then 65/35 (volume ratio) acetonitrile / 12.5 mM sodium phosphate It was set as conditions eluting with the nitrate (pH 6.8) mobile phase. Sample injection was injected for 5 seconds at a pressure of 8 mbar. FIG. 5 is an electrochromatogram of capillary electrochromatography (CEC) separation analysis of proteomic hydrolysis samples using a silica-capillary capillary with polymer prepared in Example 2 (elution condition is a voltage of 30 kV) Eluted with 78/22 acetonitrile / 1 2.5 mM sodium phosphate pH 6.8 mobile phase for 10 minutes and then eluted with 65/35 acetonitrile / 12.5 mM digested phosphate pH 6.8 mobile phase, the top of FIG. The separation electrochromogram for the theomic sample, the lower part of which is the electrochromatogram of acetone, an electroosmotic flow marker. As shown in FIG. 5, more than 20 peaks (peptides) were separated from the proteomic sample, and the theoretical number of peaks of each peak showed good results ranging from several hundred thousand to one million. Therefore, the silica-capillary tube with the polymer prepared by the manufacturing method according to the present invention is prepared with excellent affinity for the polymer film itself, and thus adheres to the inside of the capillary tube in the form of a long, uniform polymer chain, and is dry. Although it has a solid film shape, it spreads widely in this frostbite with high acetonitrile content and acts to narrow the Bon-Ra-na-bavi on both sides of the analyte retention and mass transfer, which is useful for separating various kinds of sugar isomers. Can be used.
[산업상 이용가능^】 [Available industrially]
본 발명에 따른 제조방법으로 인하여 제조되는 고분자 부착 실리카 모세관은 고분자 피막 자체 친화성이 우수하게 제조되어 길고 균일한 고분자 사슬 형태로 모세관 내부에 붙게 되고, 마른 상태에서는 견고한 피막의 형상을 띄지만, 아세토니트릴의 함량이 높은 이동상에서 활짝 펼쳐지며 분석물의 머무름과 물질전달 양면에서 봉우리 띠나바를 좁히는 방향으로 작용하는 효과가 있으므로, 글루코오스나 말토트리오스 등의 을리고당류 또는 시토크름 Silica capillary with polymer prepared by the manufacturing method according to the present invention has excellent affinity for the polymer film itself and is attached to the inside of the capillary tube in the form of a long, uniform polymer chain, while in a dry state, it shows a solid film shape, but aceto As it spreads wide in the mobile phase with high nitrile content and acts in the direction of narrowing peak bands on both sides of the analyte retention and mass transfer, it is possible to obtain sugars such as glucose and maltotriose.
CCCytochrome C) 등 단백질의 가수분해 산물 내 많은 펩티드류 분리분석에 유용할 수 있다. It may be useful for the separation and analysis of many peptides in the hydrolysis products of proteins such as CCCytochrome C).

Claims

【청구의 범위】 [Range of request]
【청구항 1】 .  【Claim 1】.
하기 반웅식 1에 나타난 바와 같이, 촉매 존재하에 화학식 2로 표시되는 실리카 모세관 내부 표면에 존재하는 하이드록시기와 화학식 3으로 표시되는 리간드를 반웅시켜, 화학식 4로 표시되는 리간드 부착 실리카 모세관을 제조하는 단계 (단계 1 ) ;  As shown in Reaction Formula 1 below, reacting the hydroxyl group present on the inner surface of the silica capillary tube represented by Formula 2 with the ligand represented by Formula 3 in the presence of a catalyst to prepare a ligand-attached silica capillary represented by Formula 4 (Step 1);
상기 단계 1에서 제조한 화학식 4로 표시되는 리간드 부착 실리 카 모세관을 화학식 5로 표시되는 중합 개시제와 반웅시켜 화학식 6 으ᅳ로 표시되는 중합 개시게 부착 실리카 모세관을 제조하는 단계 (단계 2) ; 및 .  Preparing a silica capillary tube with a polymerization initiator represented by Chemical Formula 6 by reacting the ligand-attached silica capillary tube represented by Chemical Formula 4 with the polymerization initiator represented by Chemical Formula 5 (Step 2); And.
상기 단계 2에서 제조한 화학식 6으로 표시되는 중합 개시제 부 착 실리카 모세관 내부에 모노머를 용매에 녹여 채우고, 가역 부가-파 편화 시"슬전달 (Reversible Addition-Fragmentation Chain Transfer, RAFT) 중합 반웅을 수행하여 화학식 1로 표시되는 공증합 고분자 부 착 실리카 모세관을 제조하는 단계 (단계 3) ;를 포함하는 실리카 모세 관의 제조방법:  The monomer was dissolved in a solvent in a silica capillary tube with a polymerization initiator represented by Chemical Formula 6 prepared in step 2, and a reversible addition-fragmentation "Reversible Addition-Fragmentation Chain Transfer (RAFT) polymerization reaction was performed. A method for preparing a silica capillary tube comprising the step (step 3) of preparing a silica capillary tube with a co-condensation polymer represented by Formula 1:
[반응식 1  [Scheme 1
Figure imgf000032_0001
Figure imgf000032_0001
(상기 반웅식 l에서,
Figure imgf000032_0002
실리카 모세관 내부 표면에 위치한 실리카이고;
Figure imgf000033_0001
06-10의 방향족 고리이고;
(In the above reaction l,
Figure imgf000032_0002
Silica located on the inner surface of the silica capillary;
Figure imgf000033_0001
0 6-ring of the 10;
R1 및 R2는 독립적으로 수소 또는 Ci-4의 알킬이고; R 1 and R 2 are independently hydrogen or alkyl of Ci- 4 ;
M은 상기 단계 3에서 형성되는 공증합 고분자 사슬을 구성하는 모노머이고;  M is a monomer constituting the co-polymer chain formed in Step 3;
n은 1-10의 정수이고;  n is an integer from 1-10;
m은 1-1000의 정수이다).  m is an integer from 1-1000).
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 단계 1의 촉매는 끓는점이 60 °C 이상인 비극성 무수 용매에 용해되고, 전이금속을 포함하며, 유기 치환기를 갖는 유기금속 화합물인 것을 특징으로 하는 제조방법 . _ The catalyst of step 1 is a manufacturing method characterized in that the boiling point is dissolved in a nonpolar anhydrous solvent of 60 ° C or more, including a transition metal, an organic metal compound having an organic substituent. _
Γ청구항 3】 Γclaim 3
제 2항에 있어서  The method of claim 2
상기 무수 용매는 무수 를루엔, 무수 자일렌, 무수 메틸이소부틸케론, 무수 메틸이소프로필케톤, 싸이클로펜탄온 및 부티로락톤으로 이루어지는 군으로부터 선택돠는 1종 이상인 것을 특징으로 하는 제조방법 .  And said anhydrous solvent is at least one selected from the group consisting of anhydrous leuene, anhydrous xylene, anhydrous methyl isobutyl keron, anhydrous methyl isopropyl ketone, cyclopentanone and butyrolactone.
【청구항 4】 [Claim 4]
제 1항에 있어서 ,  The method of claim 1,
상기 단계 1의 촉매는 이염화이부틸주석 (dibutyltindichloride), 디부틸틴디아세테이트 (clibutyltindiacetate), 디부틸틴디라우레이트 (di_ butyltindilaurate), 트리페닐틴아세테이트 (triphenyltinacetate), 트리부 틸틴아세테이트 (tributyltinacetate), 아연 아세트산 (zinc diacetate), 티타늄 테트라 아세테이트 (titanium tetra-acetate), 코발트 트리스 (2- 에틸핵사노에이트) (cobalt tris(2-ethylhexanoate)), 비스무트 트리스 (2-에틸핵사노에이트) (bismuth tris(2— ethylhexanoate)), 아연 디 (2- 에틸핵사노에이트) (zinc di(2-ethylhexanoate)), 코발트 트리스 (2,4一 펜타디오네이트) (cobalt tris(2,4-pentadionate)), 티타늄 테트라 (2,4- 펜타디오네이트) (titanium tetra (2,4-pentadionate)), 망간 디 (2,4- 펜타디오네이트) (manganese di(2,4-pentadionate)), 니켈 디 (2,4- 펜타디오네이트) (nickel di(2,4-pentadionate) 및 지르코늄 테트라 (2,4-펜타디오네이트) (zirconium tetra(2,4-pentadionate))로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법. The catalyst of step 1 is dibutyltindichloride (dibutyltindichloride), dibutyltin diacetate (clibutyltindiacetate), dibutyltindilaurate (di_butyltindilaurate), triphenyltinacetate (triphenyltinacetate), tributyltinacetate (tributyltinacetate), zinc acetate (zinc diacetate), titanium tetra-acetate, cobalt tris (2-ethylhexanoate), bismuth tris (2-ethylnucleonoate) (bismuth tris (2-ethylhexanoate)), zinc di (2-ethylnucleonoate) (zinc di (2-ethylhexanoate)), cobalt tris (2,4 pentadionate) ( cobalt tris (2,4-pentadionate)), titanium tetra (2,4-pentadionate), manganese di (2,4-pentadionate) , 4-pentadionate), nickel di (2,4-pentadionate) (nickel di (2,4-pentadionate) and zirconium tetra (2,4-pentadiionate) (zirconium tetra (2,4-pentadionate) 1) at least one member selected from the group consisting of
【청구항 5】 [Claim 5]
제 1항에 있어서,  The method of claim 1,
상기 단계 3의 모노머는 비극성 모노머, 전기삼투흐름 유발 모노머 및 극성 모노머를 모두 포함하는 것을 특징으로 하는 제조방법 .  The monomer of step 3 is characterized in that it comprises a non-polar monomer, an electroosmotic flow induced monomer and a polar monomer.
【청구항 6】 [Claim 6]
제 5항에 있어서,  The method of claim 5,
상기 비극성 모노머는 스티렌, 4-메틸스티렌, 2-클로로스티렌, 3-클로로스티렌, 4-클로로스티렌, 4—브로모스티렌, 4—비닐벤질클로라 이드 및 4-비닐나프탈렌으로 이루어지는, 벤젠 고리와 이중결합을 갖 는 화합물 군으로부터 선택되는 1종 이상이고;  The non-polar monomer is a benzene ring, consisting of styrene, 4-methylstyrene, 2-chlorostyrene, 3-chlorostyrene, 4-chlorostyrene, 4—bromostyrene, 4—vinylbenzyl chloride and 4-vinylnaphthalene; At least one selected from the group of compounds having a double bond;
상기 전기삼투흐름 유발 모노머는 아크릴산, 메타크릴산, 메틸메 타크릴산, 이타코닌산, 알릴아민, 4-아미노스티렌, 4-비닐피리딘 및 2- 비닐피리딘으로 이루어지는, 카르복시나 아미노 작용기 및 이중결합을 갖는 화합물 군으로부터 선택되는 1종 이상이고; 및  The electroosmotic flow-inducing monomer is composed of acrylic acid, methacrylic acid, methyl methacrylate, itaconic acid, allylamine, 4-aminostyrene, 4-vinylpyridine and 2-vinylpyridine, carboxyna amino functional group and double bond At least one selected from the group of compounds having; And
상기 극성 모노머는 N-페닐아크릴아미드, 4-아미노스티렌, 4- {N- (메틸아미노에틸)아미노메틸 }스티렌, 4-비닐벤조산 및' 3,4- 디메록시스티렌으로 이루어지는, 벤젠 고리와 극성 작용기 및 이중결합을 갖는 화합물 군으로부터 선택되는 1종 이상인 것을 징으로 하는 제조방법 The polar monomer is composed of N-phenylacrylamide, 4-aminostyrene, 4- {N- (methylaminoethyl) aminomethyl} styrene, 4-vinylbenzoic acid and ' 3,4-dimethoxystyrene, polar with benzene ring At least one member selected from the group of compounds having a functional group and a double bond Manufacturing method
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 단계 3의 용매는 극성 용매 및 비극성 용매로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.  The solvent of step 3 is at least one member selected from the group consisting of a polar solvent and a non-polar solvent.
【청구항 8】 [Claim 8]
제 7항에 았어서,  In accordance with paragraph 7,
상기 극성 용매는 싸이클로펜탄은,' 싸이클로핵산온, 메틸이소부 틸케론 및 4 메틸 -2-펜탄온으로 이루어지는 군으로부터 선택되는 1종 이상이고; 및 ' Wherein the polar solvent is cyclo pentane, the "cycle on the nucleic acid, methyl isobutoxy butyl Kerron and 4, and one or more selected from the group consisting of methyl-2-pentanone; and"
상기 비극성 용매는 톨루엔, 자일렌 및 에틸벤젠으로 이루어지는 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 제조방법.  The nonpolar solvent is at least one selected from the group consisting of toluene, xylene and ethylbenzene.
[청구항 9】 [Claim 9]
쎄 1항의 제조방법으로 제조되는 것을 특징으로 하는 을리고당류 또는 펩티드류 분리용 실리카 모세관.  Silica capillary for separation of oligosaccharides or peptides, characterized in that prepared by the method of claim 1.
[청구항 10】 [Claim 10]
올리고당류를 유도체화 시약과 반웅시켜 , 올리고당류의 구조 이 성질체를 준비하는 단계 (단계 1); 및  Reacting the oligosaccharide with the derivatization reagent to prepare a structural isomer of the oligosaccharide (step 1); And
상기 단계 1에서 준비한 올리고당류의 구조 이성질체를, 제 9항의 실리카 모세관을 통해 분리하는 단계 (단계 2);를 포함하는 올리고당류의 분리방법 .  Separating the structural isomers of the oligosaccharides prepared in step 1, through the silica capillary tube of claim 9 (step 2); Separation method of oligosaccharides comprising a.
[청구항 11】 [Claim 11]
단백질을 가수분해하여, 펩티드류를 준비하는 단계 (단계 1); 및 상기 단계 1에서 준비한 펩티드류를, 제 9항의 실리카 모세관을 리하는 단계 (단계 2);를 포함하는 펩티드류의 분리방법 . Hydrolyzing the protein to prepare peptides (step 1); And Peptides prepared in step 1, the step of separating the silica capillary of claim 9 (step 2); separation method of the peptides comprising a.
PCT/KR2015/003669 2015-04-13 2015-04-13 Polymer-attached silica capillary for separating oligosaccharides or peptides and method for manufacturing same WO2016167379A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/003669 WO2016167379A2 (en) 2015-04-13 2015-04-13 Polymer-attached silica capillary for separating oligosaccharides or peptides and method for manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/003669 WO2016167379A2 (en) 2015-04-13 2015-04-13 Polymer-attached silica capillary for separating oligosaccharides or peptides and method for manufacturing same

Publications (2)

Publication Number Publication Date
WO2016167379A2 true WO2016167379A2 (en) 2016-10-20
WO2016167379A3 WO2016167379A3 (en) 2017-05-18

Family

ID=57126644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/003669 WO2016167379A2 (en) 2015-04-13 2015-04-13 Polymer-attached silica capillary for separating oligosaccharides or peptides and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016167379A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226506A (en) * 2018-12-19 2021-08-06 格礼卡姆股份公司 Isolation of oligosaccharides

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6375846B1 (en) * 2001-11-01 2002-04-23 Harry Wellington Jarrett Cyanogen bromide-activation of hydroxyls on silica for high pressure affinity chromatography
US6645378B1 (en) * 2002-03-05 2003-11-11 Dionex Corporation Polar silanes and their use on silica supports
KR101116566B1 (en) * 2009-12-15 2012-02-28 인하대학교 산학협력단 New liquid chromatographic stationary phases with polymer ligand and preparation method thereof
KR101542908B1 (en) * 2013-07-09 2015-08-07 인하대학교 산학협력단 The manufacturing method of polymer bound silica particles and chromatographic stationary phases comprising the polymer bound silica particles manufactured by the method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113226506A (en) * 2018-12-19 2021-08-06 格礼卡姆股份公司 Isolation of oligosaccharides

Also Published As

Publication number Publication date
WO2016167379A3 (en) 2017-05-18

Similar Documents

Publication Publication Date Title
Shen et al. Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography
CN107469653B (en) Synthesis method of molecular imprinting composite membrane for enriching and separating norfloxacin
CN107970788B (en) Preparation method of selective recognition and separation enoxacin molecular imprinting composite membrane material
Srivastava et al. Boronate affinity chromatography of cells and biomacromolecules using cryogel matrices
Ke et al. Controllable construction of carbohydrate microarrays by site-directed grafting on self-organized porous films
Gao et al. Efficient preparation of glycoclusters from silsesquioxanes
Tan et al. Defining the interactions between proteins and surfactants for nanoparticle surface imprinting through miniemulsion polymerization
Gao et al. Preparation of surface imprinted material of single enantiomer of mandelic acid with a new surface imprinting technique and study on its chiral recognition and resolution properties
EP1881009B1 (en) Chitosan derivative and method for producing same
Seto et al. Selective protein separation using siliceous materials with a trimethoxysilane-containing glycopolymer
CN104861130B (en) A kind of polymer brush grafting boric acid affinity separation polymer and preparation method and application
CN105561960B (en) Changeable efficient liquid phase chromatographic stuffing of a kind of chiral selectivity and preparation method thereof
CN102133519B (en) Limiting chiral chromatography stationary phase material and preparation method thereof
CN108201795A (en) A kind of preparation method of Selective Separation Enoxacin molecularly imprinted composite membrane material
CN112608404B (en) Amino-functionalized heterostructure porous microsphere and preparation method and application thereof
CN105732916B (en) A kind of organic inorganic hybridization microsphere particle and its preparation and application
Ince et al. One-dimensional surface-imprinted polymeric nanotubes for specific biorecognition by initiated chemical vapor deposition (iCVD)
CA3109058C (en) Benzeneboronic acid solid-phase extraction column packing and preparation method thereof
WO2015118294A1 (en) Molecular sensor preparations and uses thereof
CN106046254B (en) It is enriched with the hydrophilic molecular engram polymer and preparation method and application of geniposide
WO2016167379A2 (en) Polymer-attached silica capillary for separating oligosaccharides or peptides and method for manufacturing same
TWI643875B (en) Filler for liquid chromatography and column for liquid chromatography
KR101711458B1 (en) Polymer bound silica capillaries for separation of oligosaccharides or peptides and manufacturing method thereof
JP2006523831A (en) Method for selective binding of a substrate to a sorbent by at least divalent bonding
Wei et al. Imprinted polymer beads featuring both predefined multiple-point interaction and accessible binding sites for precise recognition of 2′-deoxyadenosine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15889259

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15889259

Country of ref document: EP

Kind code of ref document: A2