WO2016167297A1 - Linear vibration motor - Google Patents

Linear vibration motor Download PDF

Info

Publication number
WO2016167297A1
WO2016167297A1 PCT/JP2016/061943 JP2016061943W WO2016167297A1 WO 2016167297 A1 WO2016167297 A1 WO 2016167297A1 JP 2016061943 W JP2016061943 W JP 2016061943W WO 2016167297 A1 WO2016167297 A1 WO 2016167297A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
guide shaft
vibration motor
linear vibration
movable element
Prior art date
Application number
PCT/JP2016/061943
Other languages
French (fr)
Japanese (ja)
Inventor
慎 小田島
昇 生川
片田 好紀
栞 石井
Original Assignee
日本電産コパル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産コパル株式会社 filed Critical 日本電産コパル株式会社
Priority to CN201680022133.6A priority Critical patent/CN107534375B/en
Publication of WO2016167297A1 publication Critical patent/WO2016167297A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/12Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moving in alternate directions by alternate energisation of two coil systems

Definitions

  • the present invention relates to a linear vibration motor that generates reciprocal vibration by an input signal.
  • Vibration motors are widely used as devices that are built in portable electronic devices and transmit signal generation such as incoming calls and alarms to mobile users by vibration.
  • vibration motors have attracted attention as devices for realizing haptics (skin sensation feedback) in human interfaces such as touch panels.
  • a linear vibration motor that can generate a relatively large vibration by linear reciprocating vibration of the mover is known.
  • a conventional linear vibration motor is provided with a weight and a magnet on the mover side, and a Lorentz force acting on the magnet by energizing a coil provided on the stator side serves as a driving force, which is elastically supported along the vibration direction.
  • the child is reciprocally vibrated (see Patent Document 1 below).
  • vibration motors equipped with them are required to be further reduced in size and thickness.
  • an electronic device equipped with a flat panel display unit such as a smartphone
  • the space in the device in the thickness direction orthogonal to the display surface is limited. is there.
  • the magnet and the weight are The mover provided is made flat, and the thickness is reduced while ensuring the magnet volume and the gravity of the weight.
  • the flat shaped mover is shaped so that the side part is easy to come into contact with the surrounding frame body by the rotation, so that a contact sound is generated.
  • stable operation cannot be obtained.
  • the prior art provides two guide shafts to suppress rotation of the movable element around the vibration axis, and realizes stable linear vibration.
  • two guide shafts it is necessary to ensure the parallelism of the two guide shafts, and high accuracy is required for assembly, and there is a problem that high productivity is difficult to obtain.
  • the present invention is an example of a problem to deal with such a problem.
  • the linear vibration motor can be made thin, and even when the mover is flattened, the rotation of the mover is suppressed, the generation of contact noise is suppressed, and stable vibration is obtained. It is an object of the present invention to ensure high productivity by not using simple parts.
  • the linear vibration motor of the present invention has the following configuration.
  • a mover including a magnetic pole part and a weight part, a frame body that supports the mover in a freely reciprocating manner, a coil that is fixed to the frame body and applies a driving force to the magnetic pole part, and a vibration of the mover
  • a guide shaft that regulates in a single axial direction, and an elastic member that is provided between the frame and the movable element and elastically deforms by reciprocating vibration of the movable element, and the movable element is an axis of the guide shaft.
  • the width in the direction intersecting the direction is a rectangular shape equal to or greater than the thickness in the direction intersecting the axial direction of the guide shaft, and the elastic member is a plate width along the thickness direction of the mover
  • a linear vibration motor comprising: a leaf spring having:
  • plate spring has the rigidity with respect to the displacement along the thickness direction by having the plate
  • the mover can be prevented from rotating around the guide shaft and coming into contact with the frame or the like, and stable reciprocating vibration without contact sound can be obtained. it can.
  • stable vibration can be obtained without using highly accurate parts.
  • high-precision assembly is not required, high productivity can be obtained.
  • FIG. 1 is an explanatory diagram showing an overall configuration of a linear vibration motor according to a first embodiment of the present invention (FIG. It is explanatory drawing (plan view of the state except a cover) which shows the internal structure of the linear vibration motor which concerns on 1st Embodiment of this invention.
  • FIG. 6 is an explanatory diagram (a is a plan view and (b) is a cross-sectional view taken along line AA) showing a modification of the first embodiment of the present invention. It is explanatory drawing (plan view of the state which removed the cover body) which shows the internal structure of the modification of 1st Embodiment of this invention.
  • FIG. 1 is an explanatory diagram showing an overall configuration of a linear vibration motor according to a first embodiment of the present invention (FIG. It is explanatory drawing (plan view of the state except a cover) which shows the internal structure of the linear vibration motor which concerns on 1st Embodiment of this invention.
  • FIG. 6 is an explanatory diagram (a is a plan
  • FIG. 6 is an explanatory diagram ((a) is a plan view and (b) is an AA cross-sectional view) illustrating an overall configuration of a linear vibration motor according to a second embodiment of the present invention.
  • It is explanatory drawing (plan view of the state except a cover body) which shows the internal structure of the linear vibration motor which concerns on 2nd Embodiment of this invention.
  • It is explanatory drawing ((a) is a top view, (b) is AA sectional drawing) which shows the whole structure of the linear vibration motor which concerns on 3rd Embodiment of this invention.
  • It is explanatory drawing (plan view of the state except a cover body) which shows the internal structure of the linear vibration motor which concerns on 3rd Embodiment of this invention.
  • the X direction indicates the vibration direction of the mover
  • the Y direction indicates the width direction of the mover perpendicular to the X direction
  • the Z direction indicates the thickness direction of the mover perpendicular to the X direction.
  • the linear vibration motor 1 includes a movable element 10 including a magnetic pole part 2 and a weight part 3 as a common part in the following embodiments, a frame body 4 that supports the movable element 10 so as to freely reciprocate, and a frame body 4.
  • the coil 5 is fixed to the magnetic pole part 2 and applies a driving force to the magnetic pole part 2.
  • the guide shaft 6 restricts the vibration of the movable element 10 in one axis direction.
  • an elastic member 7 that is elastically deformed by reciprocating vibration.
  • the mover 10 includes a movable frame 11 that also serves as the weight portion 3, and a pair of magnets 2 ⁇ / b> A and 2 ⁇ / b> B are fixed to the movable frame 11.
  • the mover 10 has a rectangular shape whose width in the Y direction in the figure is greater than or equal to the thickness in the Z direction in the figure. Specifically, it has a flat shape in which the width in the Y direction in the figure is larger than the thickness in the Z direction in the figure.
  • the magnetic pole portion 2 includes a pair of magnets 2A, 2B and a back yoke 2S, and the pair of magnets 2A, 2B are magnetized in opposite directions along the Z direction (thickness direction of the mover 10).
  • the rear surface is connected to the rear yoke 2S.
  • the frame body 4 includes a case frame 40 in which the mover 10 is accommodated and a lid frame 41 that covers the case frame 40. Both ends of one guide shaft 6 are supported in the case frame 40, and the mover 10 has an insertion portion 10 ⁇ / b> A through which the guide shaft 6 is inserted and a bearing 12. It is slidably supported along.
  • the coil 5 is fixed to the cover frame 41 of the frame body 4 via a flexible substrate 50 on the surface facing the case frame 40.
  • the coil 5 is wound along a surface defined by the width direction of the mover 10 (Y direction in the drawing) and the axial direction of the guide shaft 6 (X direction in the drawing), and a pair of the cover 5 and the lid frame 41 along the surface. Between the magnets 2A and 2B.
  • the elastic member 7 disposed between the mover 10 and the frame 4 includes a pair of coil springs 70A and 70B and a pair of leaf springs 71A and 71B.
  • the pair of coil springs 70A and 70B are arranged coaxially with the guide shaft 6, and the pair of plate springs 71A and 71B have a plate width along the thickness direction (Z direction in the drawing) of the mover 10, and have one end portion. Is attached to the side surface of the frame 4 (case frame 40), and the other end is attached to the side surface of the mover 10 (movable frame 11).
  • Such a linear vibration motor 1 supplies the coil 5 with a drive current having a resonance frequency determined by the weight of the mover 10 and the spring constant of the elastic member 7, so that the mover 10 is uniaxially along the guide shaft 6. Vibrates back and forth. At this time, the leaf springs 71A and 71B are elastically deformed with respect to the vibration along the X direction of the movable element 10, but are rigid with respect to the movement of the movable element 10 in the Z direction. Even if the child 10 tries to rotate around the guide shaft 6, the rotation is restrained by the rigidity of the leaf springs 71A and 71B. Accordingly, it is possible to avoid a problem that the movable element 10 contacts the frame body 4 or the coil 5 and generates a contact sound during the reciprocating vibration of the movable element 10.
  • the linear vibration motor 1 is arranged at a position where the guide shaft 6 is shifted from the center of gravity of the mover 10 to one side, and the leaf springs 71A, 71B are arranged at a position shifted from the center of gravity to the other side.
  • rotation around the center of gravity of the mover 10 is suppressed by both the guide shaft 6 and the leaf springs 71A and 71B, and a stable planar reciprocating vibration can be realized.
  • a linear vibration motor 1A shown in FIGS. 3 and 4 is a modification of the linear vibration motor 1 shown in FIGS.
  • the pair of magnets 2A and 2B in which the magnetic pole portion 2 is magnetized in the opposite directions along the thickness direction (Z direction in the figure) of the mover 10 and the pair of magnets 2A and 2B are the mover.
  • the counter yoke 2 ⁇ / b> R is arranged with an interval in the thickness direction (Z direction in the figure).
  • the coil 5 is wound along a surface defined in the width direction of the mover 10 (Y direction in the drawing) and the axial direction of the guide shaft 6 (X direction in the drawing), and the opposing yoke 2R and the pair of magnets 2A, It is arrange
  • the coil 5 here is held by a coil holding body 51 and fixed to the frame body 4.
  • such a linear vibration motor 1A is also in contact with the frame 4 and the coil 5 during the reciprocal vibration of the mover 10 due to the rigidity of the leaf springs 71A and 71B. Problems that generate sound can be avoided.
  • the frame 4 is elongated in the X direction (vibration direction), and the mover 10 has a larger width in the Y direction than the thickness in the Z direction. It has a flat shape.
  • the guide shaft 6 has one end fixed to the end of the mover 10 and is disposed so as to protrude in opposite directions from both ends of the mover 10.
  • the frame 4 is provided with a bearing 12 that slidably supports the guide shaft 6, and coil springs 70 ⁇ / b> A and 70 ⁇ / b> B arranged coaxially with the guide shaft 6 are arranged between the movable frame 11 and the frame 4.
  • the magnets 2A and 2B can be arranged in the entire width direction (Y direction) of the mover 10, and the narrow width Even when the movable element 10 is used, a sufficient driving force can be obtained.
  • the linear vibration motor 1C shown in FIGS. 7 and 8 includes a pair of magnets 2C and 2D in which the magnetic pole portion 2 is magnetized in opposite directions along the guide shaft 6, and a spacer yoke 2P disposed therebetween. It has.
  • the coil 5 is wound around the spacer yoke 2P and is fixed to the frame 4 around it.
  • This linear vibration motor 1C also has a single guide shaft 6 but the rigidity of the leaf springs 71A and 71B prevents the mover 10 from rotating around the guide shift 6 so that the mover 10 can be used as the frame 4 or the coil 5. It is possible to avoid a problem that a contact sound is generated by touching the contact.
  • a linear vibration motor 1D shown in FIGS. 9 and 10 is a modification of the linear vibration motor 1C, and the movable element 10 and the frame body 4 are elongated along the vibration direction (X direction in the drawing). According to this, even when the width (Y direction) of the linear vibration motor 1D is reduced to improve the installation space efficiency in the width direction, effective reciprocating vibration can be obtained.
  • FIG. 11 shows a portable information terminal 100 as an example of an electronic device equipped with the linear vibration motor 1 (1A to 1D) according to the embodiment of the present invention.
  • the portable information terminal 100 having the linear vibration motor 1 (1A to 1D) that can obtain a stable vibration and can be thinned and made compact in the width direction is different at the start and end of operations such as an incoming call and an alarm function in a communication function. It can be transmitted to the user with stable vibration that is less likely to generate sound.
  • the portable information terminal 100 pursuing high portability or design can be obtained by making the linear vibration motor 1 (1A to 1D) thin and compact in the width direction.
  • the linear vibration motor 1 (1A to 1D) has a compact shape in which each part is housed in a rectangular parallelepiped frame 4 with a reduced thickness, the space-efficient mobile information terminal 100 has a space efficient. Can be equipped.

Abstract

The present invention minimizes the generation of a contact sound by minimizing the rotation of a movable element and obtains stable vibration even when the movable element is configured to have a flat shape. A linear vibration motor 1 is provided with: a movable element 10 provided with a magnetic pole 2 and a weight section 3; a frame 4 that supports the movable element 10 so as to be capable of reciprocating vibration; a coil 5 that is fixed with respect to the frame 4 and that applies driving force to the magnetic pole 2; a guide shaft 6 that limits vibration of the movable element 10 to one axial direction; and an elastic member 6 that is provided between the frame 4 and the movable element 10 and that elastically deforms as a result of reciprocating vibration of the movable element 10. The movable element 10 has a flat shape in which the width in a direction intersecting the axial direction of the guide shaft 6 is larger than the thickness in a direction intersecting the axial direction of the guide shaft 6. The elastic member 7 is provided with plate springs 71A, 71B having plate widths that follow the thickness direction of the movable element 10.

Description

リニア振動モータLinear vibration motor
 本発明は、入力信号によって往復振動を発生するリニア振動モータに関する。 The present invention relates to a linear vibration motor that generates reciprocal vibration by an input signal.
 振動モータ(或いは振動アクチュエータ)は、携帯電子機器に内蔵され、着信やアラームなどの信号発生を振動によって携帯者に伝える装置として広く普及している。また、振動モータは、タッチパネルなどのヒューマン・インターフェースにおけるハプティクス(皮膚感覚フィードバック)を実現する装置として、近年注目されている。 Vibration motors (or vibration actuators) are widely used as devices that are built in portable electronic devices and transmit signal generation such as incoming calls and alarms to mobile users by vibration. In recent years, vibration motors have attracted attention as devices for realizing haptics (skin sensation feedback) in human interfaces such as touch panels.
 振動モータは、各種の形態が開発されている中で、可動子の直線的な往復振動によって比較的大きな振動を発生させることができるリニア振動モータが知られている。従来のリニア振動モータは、可動子側に錘とマグネットを設け、固定子側に設けたコイルに通電することでマグネットに作用するローレンツ力が駆動力となり、振動方向に沿って弾性支持される可動子を往復振動させるものである(下記特許文献1参照)。 As the vibration motor has been developed in various forms, a linear vibration motor that can generate a relatively large vibration by linear reciprocating vibration of the mover is known. A conventional linear vibration motor is provided with a weight and a magnet on the mover side, and a Lorentz force acting on the magnet by energizing a coil provided on the stator side serves as a driving force, which is elastically supported along the vibration direction. The child is reciprocally vibrated (see Patent Document 1 below).
特開2011-97747号公報JP 2011-97747 A
 携帯電子機器の小型化・薄型化に伴い、それに装備される振動モータには一層の小型化・薄型化の要求がなされている。特に、スマートフォンなどのフラットパネル表示部を備える電子機器においては、表示面と直交する厚さ方向の機器内スペースが限られているので、そこに配備される振動モータには薄型化の高い要求がある。 As mobile electronic devices become smaller and thinner, vibration motors equipped with them are required to be further reduced in size and thickness. In particular, in an electronic device equipped with a flat panel display unit such as a smartphone, the space in the device in the thickness direction orthogonal to the display surface is limited. is there.
 リニア振動モータの薄型化を実現する際に、マグネット体積を十分に確保して所望の駆動力を得ると共に錘の重量を十分に確保して所望の慣性力を得ようとすると、マグネットと錘を備える可動子を扁平形状にして、マグネット体積と錘の重力を確保しながら薄厚化を図ることになる。この場合、仮に、直線的な振動軸周りに可動子が回転すると、扁平形状の可動子は、回転によって側部が周囲の枠体に接触しやすい形状になっているので、接触音が発生するなどして安定した動作が得られない。このため、従来技術は、2本のガイドシャフトを設けて可動子の振動軸周りの回転を抑え、安定した直線振動を実現している。しかしながら、2本のガイドシャフトを設けると、2本のガイドシャフトの平行を確保する必要があり、組み付けに高い精度が求められるので、高い生産性が得られ難い問題がある。 When thinning the linear vibration motor, if the magnet volume is sufficiently secured to obtain a desired driving force and the weight of the weight is sufficiently secured to obtain a desired inertial force, the magnet and the weight are The mover provided is made flat, and the thickness is reduced while ensuring the magnet volume and the gravity of the weight. In this case, if the mover rotates around the linear vibration axis, the flat shaped mover is shaped so that the side part is easy to come into contact with the surrounding frame body by the rotation, so that a contact sound is generated. For example, stable operation cannot be obtained. For this reason, the prior art provides two guide shafts to suppress rotation of the movable element around the vibration axis, and realizes stable linear vibration. However, if two guide shafts are provided, it is necessary to ensure the parallelism of the two guide shafts, and high accuracy is required for assembly, and there is a problem that high productivity is difficult to obtain.
 本発明は、このような問題に対処することを課題の一例とするものである。すなわち、リニア振動モータの薄型化を可能にすること、可動子を扁平形状にした場合にも、可動子の回転を抑えて接触音の発生を抑え、安定した振動を得ること、組み付け時に高精度な部品を使用しないことで、高い生産性を確保すること、などが本発明の目的である。 The present invention is an example of a problem to deal with such a problem. In other words, the linear vibration motor can be made thin, and even when the mover is flattened, the rotation of the mover is suppressed, the generation of contact noise is suppressed, and stable vibration is obtained. It is an object of the present invention to ensure high productivity by not using simple parts.
 このような目的を達成するために、本発明のリニア振動モータは、以下の構成を具備するものである。
 磁極部と錘部を備える可動子と、前記可動子を往復振動自在に支持する枠体と、前記枠体に対して固定され前記磁極部に駆動力を付与するコイルと、前記可動子の振動を一軸方向に規制するガイドシャフトと、前記枠体と前記可動子との間に設けられ、前記可動子の往復振動によって弾性変形する弾性部材とを備え、前記可動子は、前記ガイドシャフトの軸方向に対して交差する方向の幅が、前記ガイドシャフトの軸方向に対して交差する方向の厚さ以上の方形状であり、前記弾性部材は、前記可動子の厚さ方向に沿った板幅を有する板バネを備えることを特徴とするリニア振動モータ。
In order to achieve such an object, the linear vibration motor of the present invention has the following configuration.
A mover including a magnetic pole part and a weight part, a frame body that supports the mover in a freely reciprocating manner, a coil that is fixed to the frame body and applies a driving force to the magnetic pole part, and a vibration of the mover A guide shaft that regulates in a single axial direction, and an elastic member that is provided between the frame and the movable element and elastically deforms by reciprocating vibration of the movable element, and the movable element is an axis of the guide shaft. The width in the direction intersecting the direction is a rectangular shape equal to or greater than the thickness in the direction intersecting the axial direction of the guide shaft, and the elastic member is a plate width along the thickness direction of the mover A linear vibration motor comprising: a leaf spring having:
 このような特徴を有する本発明のリニア振動モータは、可動子がガイドシャフトに沿って振動するが、ガイドシャフトに対する可動子の回転が板バネの剛性によって抑止される。板バネは、可動子の厚さ方向に沿った板幅を有することで、その厚さ方向に沿った変位に対する剛性を有する。 In the linear vibration motor of the present invention having such characteristics, the mover vibrates along the guide shaft, but the rotation of the mover relative to the guide shaft is suppressed by the rigidity of the leaf spring. A leaf | plate spring has the rigidity with respect to the displacement along the thickness direction by having the plate | board width along the thickness direction of a needle | mover.
 これによって、可動子を方形状にした場合にも、可動子がガイドシャフト回りに回転して枠体などに接触するのを抑止することができ、接触音の無い安定した往復振動を得ることができる。この際、ガイドシャフトを2本用いる必要が無いので、高精度の部品を用いること無く安定した振動を得ることができる。また、高精度の組み付けを必要としないので、高い生産性を得ることができる。 As a result, even when the mover has a square shape, the mover can be prevented from rotating around the guide shaft and coming into contact with the frame or the like, and stable reciprocating vibration without contact sound can be obtained. it can. At this time, since it is not necessary to use two guide shafts, stable vibration can be obtained without using highly accurate parts. In addition, since high-precision assembly is not required, high productivity can be obtained.
本発明の第1実施形態に係るリニア振動モータの全体構成を示す説明図((a)が平面図、(b)がA-A断面図)である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory diagram showing an overall configuration of a linear vibration motor according to a first embodiment of the present invention (FIG. 本発明の第1実施形態に係るリニア振動モータの内部構造を示す説明図(蓋体を除いた状態の平面図)である。It is explanatory drawing (plan view of the state except a cover) which shows the internal structure of the linear vibration motor which concerns on 1st Embodiment of this invention. 本発明の第1実施形態の変形例を示す説明図((a)が平面図、(b)がA-A断面図)である。FIG. 6 is an explanatory diagram (a is a plan view and (b) is a cross-sectional view taken along line AA) showing a modification of the first embodiment of the present invention. 本発明の第1実施形態の変形例の内部構造を示す説明図(蓋体を除いた状態の平面図)である。It is explanatory drawing (plan view of the state which removed the cover body) which shows the internal structure of the modification of 1st Embodiment of this invention. 本発明の第2実施形態に係るリニア振動モータの全体構成を示す説明図((a)が平面図、(b)がA-A断面図)である。FIG. 6 is an explanatory diagram ((a) is a plan view and (b) is an AA cross-sectional view) illustrating an overall configuration of a linear vibration motor according to a second embodiment of the present invention. 本発明の第2実施形態に係るリニア振動モータの内部構造を示す説明図(蓋体を除いた状態の平面図)である。It is explanatory drawing (plan view of the state except a cover body) which shows the internal structure of the linear vibration motor which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係るリニア振動モータの全体構成を示す説明図((a)が平面図、(b)がA-A断面図)である。It is explanatory drawing ((a) is a top view, (b) is AA sectional drawing) which shows the whole structure of the linear vibration motor which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態に係るリニア振動モータの内部構造を示す説明図(蓋体を除いた状態の平面図)である。It is explanatory drawing (plan view of the state except a cover body) which shows the internal structure of the linear vibration motor which concerns on 3rd Embodiment of this invention. 本発明の第3実施形態の変形例を示す説明図((a)が平面図、(b)がA-A断面図)である。FIG. 10 is an explanatory view (a is a plan view and (b) is an AA cross-sectional view) showing a modification of the third embodiment of the present invention. 本発明の第3実施形態の変形例を示す説明図(蓋体を除いた状態の平面図)である。It is explanatory drawing (plan view of the state except a cover body) which shows the modification of 3rd Embodiment of this invention. 本発明の実施形態に係るリニア振動モータを装備した携帯電子機器(携帯情報端末)を示した説明図である。It is explanatory drawing which showed the portable electronic device (mobile information terminal) equipped with the linear vibration motor which concerns on embodiment of this invention.
 以下、図面を参照して本発明の実施形態を説明する。各図において、X方向が可動子の振動方向を示し、Y方向がX方向に垂直な可動子の幅方向を示し、Z方向がX方向に垂直な可動子の厚さ方向を示している。各図における共通部位には同一符号を付して重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In each figure, the X direction indicates the vibration direction of the mover, the Y direction indicates the width direction of the mover perpendicular to the X direction, and the Z direction indicates the thickness direction of the mover perpendicular to the X direction. Common parts in the drawings are denoted by the same reference numerals, and redundant description is omitted.
 図1及び図2は、本発明の第1実施形態に係るリニア振動モータ1を示している。リニア振動モータ1は、以下に示す各実施形態における共通の部位として、磁極部2と錘部3を備える可動子10と、可動子10を往復振動自在に支持する枠体4と、枠体4に固定され磁極部2に駆動力を付与するコイル5と、可動子10の振動を一軸方向に規制するガイドシャフト6と、枠体4と可動子10との間に設けられ、可動子10の往復振動によって弾性変形する弾性部材7とを備える。 1 and 2 show a linear vibration motor 1 according to a first embodiment of the present invention. The linear vibration motor 1 includes a movable element 10 including a magnetic pole part 2 and a weight part 3 as a common part in the following embodiments, a frame body 4 that supports the movable element 10 so as to freely reciprocate, and a frame body 4. Are provided between the frame 4 and the movable element 10. The coil 5 is fixed to the magnetic pole part 2 and applies a driving force to the magnetic pole part 2. The guide shaft 6 restricts the vibration of the movable element 10 in one axis direction. And an elastic member 7 that is elastically deformed by reciprocating vibration.
 可動子10は、錘部3を兼ねる可動枠11を備えており、その可動枠11に一対のマグネット2A,2Bが固定されている。可動子10は、図示Y方向の幅が図示Z方向の厚さ以上の方形状を有している。具体的には、図示Y方向の幅が図示Z方向の厚さより大きい扁平形状を有している。磁極部2は、一対のマグネット2A,2Bと背面ヨーク2Sを備え、一対のマグネット2A,2Bは、Z方向(可動子10の厚さ方向)に沿って互いに逆向きに着磁されており、その背面にて背面ヨーク2Sに接続されている。 The mover 10 includes a movable frame 11 that also serves as the weight portion 3, and a pair of magnets 2 </ b> A and 2 </ b> B are fixed to the movable frame 11. The mover 10 has a rectangular shape whose width in the Y direction in the figure is greater than or equal to the thickness in the Z direction in the figure. Specifically, it has a flat shape in which the width in the Y direction in the figure is larger than the thickness in the Z direction in the figure. The magnetic pole portion 2 includes a pair of magnets 2A, 2B and a back yoke 2S, and the pair of magnets 2A, 2B are magnetized in opposite directions along the Z direction (thickness direction of the mover 10). The rear surface is connected to the rear yoke 2S.
 枠体4は、可動子10が収容されるケース枠40とケース枠40を被う蓋枠41とを備えている。ケース枠40内には、一本のガイドシャフト6の両端が支持され、可動子10は、ガイドシャフト6が挿通する挿通部10Aと軸受12を有し、ケース枠40内で、ガイドシャフト6に沿って摺動自在に支持されている。 The frame body 4 includes a case frame 40 in which the mover 10 is accommodated and a lid frame 41 that covers the case frame 40. Both ends of one guide shaft 6 are supported in the case frame 40, and the mover 10 has an insertion portion 10 </ b> A through which the guide shaft 6 is inserted and a bearing 12. It is slidably supported along.
 枠体4の蓋枠41には、ケース枠40に向いた面にフレキシブル基板50を介してコイル5が固定されている。コイル5は、可動子10の幅方向(図示Y方向)とガイドシャフト6の軸方向(図示X方向)で規定された面に沿って巻き回れており、その面に沿った蓋枠41と一対のマグネット2A,2Bとの間に配置されている。 The coil 5 is fixed to the cover frame 41 of the frame body 4 via a flexible substrate 50 on the surface facing the case frame 40. The coil 5 is wound along a surface defined by the width direction of the mover 10 (Y direction in the drawing) and the axial direction of the guide shaft 6 (X direction in the drawing), and a pair of the cover 5 and the lid frame 41 along the surface. Between the magnets 2A and 2B.
 可動子10と枠体4との間に配置される弾性部材7は、一対のコイルバネ70A,70Bと一対の板バネ71A,71Bとを備えている。一対のコイルバネ70A,70Bは、ガイドシャフト6と同軸上に配置され、一対の板バネ71A,71Bは、可動子10の厚さ方向(図示Z方向)に沿った板幅を有し、一端部が枠体4(ケース枠40)の側面に取り付けられ、他端が可動子10(可動枠11)の側面に取り付けられている。 The elastic member 7 disposed between the mover 10 and the frame 4 includes a pair of coil springs 70A and 70B and a pair of leaf springs 71A and 71B. The pair of coil springs 70A and 70B are arranged coaxially with the guide shaft 6, and the pair of plate springs 71A and 71B have a plate width along the thickness direction (Z direction in the drawing) of the mover 10, and have one end portion. Is attached to the side surface of the frame 4 (case frame 40), and the other end is attached to the side surface of the mover 10 (movable frame 11).
 このようなリニア振動モータ1は、コイル5に可動子10の重量と弾性部材7のバネ定数で決まる共振周波数の駆動電流を供給することで、可動子10がガイドシャフト6に沿った一軸方向に往復振動する。この際、板バネ71A,71Bは、可動子10のX方向に沿った振動に対しては弾性変形するが、可動子10のZ方向の動きに対しては剛性を有しているので、可動子10がガイドシャフト6回りに回転しようとしても、板バネ71A,71Bの剛性によってその回転が抑止される。これによって、可動子10の往復振動中に、可動子10が枠体4やコイル5などに接触して接触音を発生する不具合を回避することができる。 Such a linear vibration motor 1 supplies the coil 5 with a drive current having a resonance frequency determined by the weight of the mover 10 and the spring constant of the elastic member 7, so that the mover 10 is uniaxially along the guide shaft 6. Vibrates back and forth. At this time, the leaf springs 71A and 71B are elastically deformed with respect to the vibration along the X direction of the movable element 10, but are rigid with respect to the movement of the movable element 10 in the Z direction. Even if the child 10 tries to rotate around the guide shaft 6, the rotation is restrained by the rigidity of the leaf springs 71A and 71B. Accordingly, it is possible to avoid a problem that the movable element 10 contacts the frame body 4 or the coil 5 and generates a contact sound during the reciprocating vibration of the movable element 10.
 リニア振動モータ1は、ガイドシャフト6が可動子10の重心から一方側にシフトした位置に配置され、板バネ71A,71Bが重心から他方側にシフトした位置に配置されている。これによって、可動子10の重心周りの回転が、ガイドシャフト6と板バネ71A,71Bの両方で抑えられることになり、安定した平面往復振動を実現することができる。 The linear vibration motor 1 is arranged at a position where the guide shaft 6 is shifted from the center of gravity of the mover 10 to one side, and the leaf springs 71A, 71B are arranged at a position shifted from the center of gravity to the other side. As a result, rotation around the center of gravity of the mover 10 is suppressed by both the guide shaft 6 and the leaf springs 71A and 71B, and a stable planar reciprocating vibration can be realized.
 図3及び図4に示したリニア振動モータ1Aは、図1及び図2に示したリニア振動モータ1の変形例である。この例は、磁極部2が、可動子10の厚さ方向(図示Z方向)に沿って互いに逆向きに着磁された一対のマグネット2A,2Bと、一対のマグネット2A,2Bとは可動子10の厚さ方向(図示Z方向)に間隔を空けて配置される対向ヨーク2Rとを備えている。そして、コイル5が、可動子10の幅方向(図示Y方向)とガイドシャフト6の軸方向(図示X方向)で規定された面に沿って巻き回れて、対向ヨーク2Rと一対のマグネット2A,2Bとの間隔内に配置されている。ここでのコイル5はコイル保持体51に保持されて枠体4に固定されている。 A linear vibration motor 1A shown in FIGS. 3 and 4 is a modification of the linear vibration motor 1 shown in FIGS. In this example, the pair of magnets 2A and 2B in which the magnetic pole portion 2 is magnetized in the opposite directions along the thickness direction (Z direction in the figure) of the mover 10 and the pair of magnets 2A and 2B are the mover. The counter yoke 2 </ b> R is arranged with an interval in the thickness direction (Z direction in the figure). Then, the coil 5 is wound along a surface defined in the width direction of the mover 10 (Y direction in the drawing) and the axial direction of the guide shaft 6 (X direction in the drawing), and the opposing yoke 2R and the pair of magnets 2A, It is arrange | positioned in the space | interval with 2B. The coil 5 here is held by a coil holding body 51 and fixed to the frame body 4.
 このようなリニア振動モータ1Aもリニア振動モータ1と同様に、板バネ71A,71Bの剛性によって、可動子10の往復振動中に、可動子10が枠体4やコイル5などに接触して接触音を発生する不具合を回避することができる。 Similar to the linear vibration motor 1, such a linear vibration motor 1A is also in contact with the frame 4 and the coil 5 during the reciprocal vibration of the mover 10 due to the rigidity of the leaf springs 71A and 71B. Problems that generate sound can be avoided.
 図5及び図6に示したリニア振動モータ1Bは、枠体4をX方向(振動方向)に細長形状にし、且つ、可動子10を、Z方向の厚さに対してY方向の幅を大きくした扁平形状にしている。 In the linear vibration motor 1B shown in FIGS. 5 and 6, the frame 4 is elongated in the X direction (vibration direction), and the mover 10 has a larger width in the Y direction than the thickness in the Z direction. It has a flat shape.
 また、リニア振動モータ1Bは、ガイドシャフト6が、可動子10の端部に一端側が固定され、可動子10の両端部から互いに逆向きに突出して配置されている。そして、枠体4には、ガイドシャフト6を摺動自在に支持する軸受12が設けられ、ガイドシャフト6と同軸に配置されるコイルバネ70A,70Bが可動枠11と枠体4との間に配置されている。このようなリニア振動モータ1Bによると、ガイドシャフト6が可動子10を貫通しなくてよいので、可動子10の幅方向(Y方向)全体にマグネット2A,2Bを配備することができ、細幅の可動子10にした場合であっても十分な駆動力を得ることができる。 Further, in the linear vibration motor 1B, the guide shaft 6 has one end fixed to the end of the mover 10 and is disposed so as to protrude in opposite directions from both ends of the mover 10. The frame 4 is provided with a bearing 12 that slidably supports the guide shaft 6, and coil springs 70 </ b> A and 70 </ b> B arranged coaxially with the guide shaft 6 are arranged between the movable frame 11 and the frame 4. Has been. According to such a linear vibration motor 1B, since the guide shaft 6 does not have to penetrate the mover 10, the magnets 2A and 2B can be arranged in the entire width direction (Y direction) of the mover 10, and the narrow width Even when the movable element 10 is used, a sufficient driving force can be obtained.
 図7及び図8に示したリニア振動モータ1Cは、磁極部2が、ガイドシャフト6に沿って互いに逆向きに着磁された一対のマグネット2C,2Dと、その間に配置されたスペーサヨーク2Pとを備えている。また、コイル5は、スペーサヨーク2Pの周囲に巻き回されて、その周囲の枠体4に固定されている。 The linear vibration motor 1C shown in FIGS. 7 and 8 includes a pair of magnets 2C and 2D in which the magnetic pole portion 2 is magnetized in opposite directions along the guide shaft 6, and a spacer yoke 2P disposed therebetween. It has. The coil 5 is wound around the spacer yoke 2P and is fixed to the frame 4 around it.
 このリニア振動モータ1Cも、ガイドシャフト6は一本であるが、板バネ71A,71Bの剛性によって、可動子10のガイドシフト6回りの回転が抑止され、可動子10が枠体4やコイル5などに接触して接触音を発生する不具合を回避することができる。 This linear vibration motor 1C also has a single guide shaft 6 but the rigidity of the leaf springs 71A and 71B prevents the mover 10 from rotating around the guide shift 6 so that the mover 10 can be used as the frame 4 or the coil 5. It is possible to avoid a problem that a contact sound is generated by touching the contact.
 図9及び図10に示したリニア振動モータ1Dは、リニア振動モータ1Cの変形例であり、可動子10と枠体4が振動方向(図示X方向)に沿って細長になっている。これによると、リニア振動モータ1Dの幅(Y方向)を小さくして、幅方向の設置スペース効率を良くした場合にも、効果的な往復振動を得ることができる。 A linear vibration motor 1D shown in FIGS. 9 and 10 is a modification of the linear vibration motor 1C, and the movable element 10 and the frame body 4 are elongated along the vibration direction (X direction in the drawing). According to this, even when the width (Y direction) of the linear vibration motor 1D is reduced to improve the installation space efficiency in the width direction, effective reciprocating vibration can be obtained.
 以上説明したリニア振動モータ1~1Dの可動子10は、一軸のガイドシャフト6に沿って摺動自在に支持されているので、板バネ71A,71Bが無い状態では、ガイドシャフト6の回りに回転する自由度を有しているが、板バネ71A,71Bの剛性によって、その回転が抑止されている。 Since the mover 10 of the linear vibration motors 1 to 1D described above is slidably supported along the uniaxial guide shaft 6, it rotates around the guide shaft 6 without the leaf springs 71A and 71B. However, the rotation is restrained by the rigidity of the leaf springs 71A and 71B.
 このようなリニア振動モータ1~1Dの組み立ては、従来技術のように2本の軸の平行度を高精度に調整する必要が無いので、比較的簡単な組み付けが可能になる。そのため、高精度の部品を使用しなくても、機械的な雑音の少ない高効率な扁平型リニア振動モータを実現することができる。 Since the assembly of such linear vibration motors 1 to 1D does not require the parallelism of the two axes to be adjusted with high accuracy as in the prior art, it can be assembled relatively easily. Therefore, a high-efficiency flat linear vibration motor with less mechanical noise can be realized without using high-precision parts.
 図11は、本発明の実施形態に係るリニア振動モータ1(1A~1D)を装備した電子機器の一例として、携帯情報端末100を示している。安定した振動が得られ薄型化や幅方向のコンパクト化が可能なリニア振動モータ1(1A~1D)を備える携帯情報端末100は、通信機能における着信やアラーム機能などの動作開始・終了時を異音が発生しにくい安定した振動で使用者に伝えることができる。また、リニア振動モータ1(1A~1D)の薄型化・幅方向のコンパクト化によって高い携帯性或いはデザイン性を追求した携帯情報端末100を得ることができる。更に、リニア振動モータ1(1A~1D)は、厚さを抑えた直方体形状の枠体4内に各部を収容したコンパクト形状であるから、薄型化された携帯情報端末100の内部にスペース効率よく装備することができる。 FIG. 11 shows a portable information terminal 100 as an example of an electronic device equipped with the linear vibration motor 1 (1A to 1D) according to the embodiment of the present invention. The portable information terminal 100 having the linear vibration motor 1 (1A to 1D) that can obtain a stable vibration and can be thinned and made compact in the width direction is different at the start and end of operations such as an incoming call and an alarm function in a communication function. It can be transmitted to the user with stable vibration that is less likely to generate sound. In addition, the portable information terminal 100 pursuing high portability or design can be obtained by making the linear vibration motor 1 (1A to 1D) thin and compact in the width direction. Furthermore, since the linear vibration motor 1 (1A to 1D) has a compact shape in which each part is housed in a rectangular parallelepiped frame 4 with a reduced thickness, the space-efficient mobile information terminal 100 has a space efficient. Can be equipped.
 以上、本発明の実施の形態について図面を参照して詳述してきたが、具体的な構成はこれらの実施の形態に限られるものではなく、本発明の要旨を逸脱しない範囲の設計の変更等があっても本発明に含まれる。特に、前述したコイルとマグネットの個数や配列は、前述した例に限らず、リニア往復振動が得られる形態であれば、適宜の形態を選択することができる。また、上述の各実施の形態は、その目的及び構成等に特に矛盾や問題がない限り、互いの技術を流用して組み合わせることが可能である。 As described above, the embodiments of the present invention have been described in detail with reference to the drawings. However, the specific configuration is not limited to these embodiments, and the design can be changed without departing from the scope of the present invention. Is included in the present invention. In particular, the number and arrangement of the coils and magnets described above are not limited to the examples described above, and any appropriate form can be selected as long as linear reciprocal vibration can be obtained. In addition, the above-described embodiments can be combined by utilizing each other's technology as long as there is no particular contradiction or problem in the purpose and configuration.
1,1A,1B,1C,1D:リニア振動モータ,
2:磁極部,2A,2B,2C,2D:マグネット,
2S:背面ヨーク,2P:スペーサヨーク,2R:対向ヨーク,
3:錘部,4:枠体,40:ケース枠,41:蓋枠,
5:コイル,50:フレキシブル基板,51:コイル保持体,
6:ガイドシャフト,
7:弾性部材,70A,70B:コイルバネ,71A,71B:板バネ,
10:可動子,10A:挿通部,
11:可動枠,12:軸受,100:携帯電子機器(携帯情報端末)
1, 1A, 1B, 1C, 1D: linear vibration motor,
2: Magnetic pole part, 2A, 2B, 2C, 2D: Magnet,
2S: Back yoke, 2P: Spacer yoke, 2R: Opposing yoke,
3: weight part, 4: frame, 40: case frame, 41: lid frame,
5: Coil, 50: Flexible substrate, 51: Coil holder
6: Guide shaft,
7: elastic member, 70A, 70B: coil spring, 71A, 71B: leaf spring,
10: mover, 10A: insertion part,
11: movable frame, 12: bearing, 100: portable electronic device (portable information terminal)

Claims (9)

  1.  磁極部と錘部を備える可動子と、
     前記可動子を往復振動自在に支持する枠体と、
     前記枠体に対して固定され前記磁極部に駆動力を付与するコイルと、
     前記可動子の振動を一軸方向に規制するガイドシャフトと、
     前記枠体と前記可動子との間に設けられ、前記可動子の往復振動によって弾性変形する弾性部材とを備え、
     前記可動子は、前記ガイドシャフトの軸方向に対して交差する方向の幅が、前記ガイドシャフトの軸方向に対して交差する方向の厚さ以上の方形状であり、
     前記弾性部材は、前記可動子の厚さ方向に沿った板幅を有する板バネを備えることを特徴とするリニア振動モータ。
    A mover including a magnetic pole part and a weight part;
    A frame that supports the mover in a freely reciprocating manner;
    A coil that is fixed to the frame and applies a driving force to the magnetic pole part;
    A guide shaft that regulates vibration of the mover in a uniaxial direction;
    An elastic member provided between the frame and the mover and elastically deformed by reciprocating vibration of the mover;
    The movable element has a rectangular shape whose width in the direction intersecting the axial direction of the guide shaft is equal to or greater than the thickness in the direction intersecting the axial direction of the guide shaft,
    The linear vibration motor, wherein the elastic member includes a leaf spring having a leaf width along the thickness direction of the mover.
  2.  前記ガイドシャフトは、前記可動子の重心から一方側にシフトした位置に配置され、前記板バネは、前記重心から他方側にシフトした位置に配置されることを特徴とする請求項1記載のリニア振動モータ。 2. The linear device according to claim 1, wherein the guide shaft is disposed at a position shifted to one side from the center of gravity of the mover, and the leaf spring is disposed at a position shifted from the center of gravity to the other side. Vibration motor.
  3.  前記磁極部は、前記可動子の厚さ方向に沿って互いに逆向きに着持された一対のマグネット部を備え、
     前記コイルは、前記可動子の幅方向と前記ガイドシャフトの軸方向で規定された面に沿って巻き回されていることを特徴とする請求項1又は2に記載のリニア振動モータ。
    The magnetic pole portion includes a pair of magnet portions that are held in opposite directions along the thickness direction of the mover,
    The linear vibration motor according to claim 1, wherein the coil is wound along a surface defined by a width direction of the mover and an axial direction of the guide shaft.
  4.  前記磁極部は、前記可動子の厚さ方向に沿って互いに逆向きに着磁された一対のマグネット部と、該一対のマグネット部とは前記可動子の厚さ方向に間隔を空けて配置されるヨークとを備え、
     前記コイルは、前記可動子の幅方向と前記ガイドシャフトの軸方向で規定された面に沿って巻き回されて、前記間隔内に配置されることを特徴とする請求項1又は2に記載のリニア振動モータ。
    The magnetic pole portions are arranged in a pair of magnet portions magnetized in opposite directions along the thickness direction of the mover, and the pair of magnet portions are spaced apart from each other in the thickness direction of the mover. With a yoke,
    3. The coil according to claim 1, wherein the coil is wound along a plane defined by a width direction of the mover and an axial direction of the guide shaft, and is disposed within the interval. Linear vibration motor.
  5.  前記磁極部は、前記ガイドシャフトに沿って着磁されたマグネットを備え、
     前記コイルは、前記磁極部の周囲に巻き回されていることを特徴とする請求項1又は2に記載のリニア振動モータ。
    The magnetic pole part includes a magnet magnetized along the guide shaft,
    The linear vibration motor according to claim 1, wherein the coil is wound around the magnetic pole portion.
  6.  前記ガイドシャフトは、その両端が前記枠体に支持されており、
     前記ガイドシャフトに沿って前記可動子が摺動自在に支持されることを特徴とする請求項1~5のいずれか1項に記載のリニア振動モータ。
    Both ends of the guide shaft are supported by the frame body,
    6. The linear vibration motor according to claim 1, wherein the movable element is slidably supported along the guide shaft.
  7.  前記ガイドシャフトは、前記可動子の端部に一端側が固定され、前記可動子の両端部から互いに逆向きに突出して配置され、
     前記枠体には、前記ガイドシャフトを摺動自在に支持する軸受が設けられることを特徴とする請求項1~5のいずれか1項に記載のリニア振動モータ。
    The guide shaft has one end fixed to the end of the mover, and is arranged to protrude in opposite directions from both ends of the mover.
    6. The linear vibration motor according to claim 1, wherein the frame body is provided with a bearing that slidably supports the guide shaft.
  8.  前記弾性部材は、前記ガイドシャフトと同軸に配置される圧縮コイルバネを備えることを特徴とする請求項1~7のいずれか1項に記載のリニア振動モータ。 The linear vibration motor according to any one of claims 1 to 7, wherein the elastic member includes a compression coil spring disposed coaxially with the guide shaft.
  9.  請求項1~8のいずれか1項に記載のリニア振動モータを備えた携帯電子機器。 A portable electronic device comprising the linear vibration motor according to any one of claims 1 to 8.
PCT/JP2016/061943 2015-04-17 2016-04-13 Linear vibration motor WO2016167297A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680022133.6A CN107534375B (en) 2015-04-17 2016-04-13 Linear vibration motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-085459 2015-04-17
JP2015085459A JP2016208607A (en) 2015-04-17 2015-04-17 Linear vibration motor

Publications (1)

Publication Number Publication Date
WO2016167297A1 true WO2016167297A1 (en) 2016-10-20

Family

ID=57125841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061943 WO2016167297A1 (en) 2015-04-17 2016-04-13 Linear vibration motor

Country Status (3)

Country Link
JP (1) JP2016208607A (en)
CN (1) CN107534375B (en)
WO (1) WO2016167297A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180946A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180949A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180947A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180945A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180948A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
US20230086204A1 (en) * 2021-09-22 2023-03-23 Apple Inc. Haptic Engine Based on an Angular Resonant Actuator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209805644U (en) * 2017-04-27 2019-12-17 株式会社村田制作所 Actuator
JP6982486B2 (en) * 2017-12-14 2021-12-17 日本電産コパル株式会社 Linear vibration motor
CN109905007B (en) * 2019-03-11 2020-11-13 浙江省东阳市东磁诚基电子有限公司 Columnar vibration motor
JP7261699B2 (en) * 2019-08-28 2023-04-20 アルプスアルパイン株式会社 vibration generator
CN113708590A (en) * 2020-05-22 2021-11-26 北京小米移动软件有限公司 Linear vibration motor, tactile feedback vibration module, control method and device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011097747A (en) * 2009-10-29 2011-05-12 Nidec Copal Corp Vibration actuator
US20110133577A1 (en) * 2008-08-18 2011-06-09 In Ho Lee Horizontal linear vibration device
JP2011205870A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Vibrating motor

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011078151A (en) * 2009-09-29 2011-04-14 Nidec Sankyo Corp Linear drive device and optical element drive device
JP5815264B2 (en) * 2011-03-31 2015-11-17 日本電産コパル株式会社 Vibration actuator
CN202840898U (en) * 2012-11-23 2013-03-27 宝龙电子集团有限公司 Linear vibrating motor
JP6038747B2 (en) * 2013-08-29 2016-12-07 日本電産コパル株式会社 Vibration actuator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110133577A1 (en) * 2008-08-18 2011-06-09 In Ho Lee Horizontal linear vibration device
JP2011097747A (en) * 2009-10-29 2011-05-12 Nidec Copal Corp Vibration actuator
JP2011205870A (en) * 2010-03-26 2011-10-13 Sanyo Electric Co Ltd Vibrating motor

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018180946A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180949A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180947A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180945A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
WO2018180948A1 (en) * 2017-03-30 2018-10-04 日本電産サンキョー株式会社 Actuator
CN110495081A (en) * 2017-03-30 2019-11-22 日本电产三协株式会社 Actuator
JPWO2018180945A1 (en) * 2017-03-30 2020-02-06 日本電産サンキョー株式会社 Actuator
JPWO2018180946A1 (en) * 2017-03-30 2020-02-06 日本電産サンキョー株式会社 Actuator
JPWO2018180947A1 (en) * 2017-03-30 2020-02-06 日本電産サンキョー株式会社 Actuator
JPWO2018180949A1 (en) * 2017-03-30 2020-02-06 日本電産サンキョー株式会社 Actuator
JPWO2018180948A1 (en) * 2017-03-30 2020-02-06 日本電産サンキョー株式会社 Actuator
CN110495081B (en) * 2017-03-30 2021-06-25 日本电产三协株式会社 Actuator
US11070120B2 (en) 2017-03-30 2021-07-20 Nidec Sankyo Corporation Actuator
US11095200B2 (en) 2017-03-30 2021-08-17 Nidec Sankyo Corporation Actuator
JP7039462B2 (en) 2017-03-30 2022-03-22 日本電産サンキョー株式会社 Actuator
JP7039464B2 (en) 2017-03-30 2022-03-22 日本電産サンキョー株式会社 Actuator
US11283338B2 (en) 2017-03-30 2022-03-22 Nidec Sankyo Corporation Actuator
JP7039465B2 (en) 2017-03-30 2022-03-22 日本電産サンキョー株式会社 Actuator
JP7039463B2 (en) 2017-03-30 2022-03-22 日本電産サンキョー株式会社 Actuator
US11323015B2 (en) 2017-03-30 2022-05-03 Nidec Sankyo Corporation Actuator
JP7072502B2 (en) 2017-03-30 2022-05-20 日本電産サンキョー株式会社 Actuator
US11411482B2 (en) 2017-03-30 2022-08-09 Nidec Sankyo Corporation Actuator with two magnetic drive circuits to vibrate a body in two directions
US20230086204A1 (en) * 2021-09-22 2023-03-23 Apple Inc. Haptic Engine Based on an Angular Resonant Actuator
US11936269B2 (en) * 2021-09-22 2024-03-19 Apple Inc. Haptic engine based on angular resonant actuator with pivot axis and mass center that differ

Also Published As

Publication number Publication date
CN107534375A (en) 2018-01-02
CN107534375B (en) 2020-04-03
JP2016208607A (en) 2016-12-08

Similar Documents

Publication Publication Date Title
WO2016167297A1 (en) Linear vibration motor
JP6421089B2 (en) Linear vibration motor and portable electronic device including the linear vibration motor
WO2016017584A1 (en) Linear vibration motor
WO2016114384A1 (en) Vibrating actuator
JP6517649B2 (en) Linear vibration motor
CN107107112B (en) Linear vibration motor
WO2017057315A1 (en) Linear vibration motor
JP2017200399A (en) Linear vibration motor
JP2017175761A (en) Linear vibration motor
CN107847976B (en) Linear vibration motor and mobile electronic device including the same
WO2017051843A1 (en) Linear vibration motor
JP2017221905A (en) Linear vibration motor
CN107534376B (en) Linear vibration motor
JP6378127B2 (en) Linear vibration motor
JP6396261B2 (en) Linear vibration motor
WO2016084807A1 (en) Linear vibration motor
JP2017212793A (en) Linear vibration motor
WO2018008280A1 (en) Linear vibration motor
JP6378125B2 (en) Linear vibration motor
WO2017057193A1 (en) Linear vibration motor
JP6333194B2 (en) Vibration actuator
JP6479557B2 (en) Linear vibration motor
JP2017175838A (en) Linear vibration motor
JP6453182B2 (en) Linear vibration motor and portable electronic device including the linear vibration motor
JP2016131916A (en) Linear vibration motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16780088

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16780088

Country of ref document: EP

Kind code of ref document: A1