WO2016166965A1 - Method for discharging liquid droplets, and liquid droplet discharging device and program - Google Patents

Method for discharging liquid droplets, and liquid droplet discharging device and program Download PDF

Info

Publication number
WO2016166965A1
WO2016166965A1 PCT/JP2016/001979 JP2016001979W WO2016166965A1 WO 2016166965 A1 WO2016166965 A1 WO 2016166965A1 JP 2016001979 W JP2016001979 W JP 2016001979W WO 2016166965 A1 WO2016166965 A1 WO 2016166965A1
Authority
WO
WIPO (PCT)
Prior art keywords
discharge
droplet
nozzles
droplets
nozzle
Prior art date
Application number
PCT/JP2016/001979
Other languages
French (fr)
Japanese (ja)
Inventor
純一 佐野
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Publication of WO2016166965A1 publication Critical patent/WO2016166965A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet

Definitions

  • the present invention relates to a droplet discharge method, a droplet discharge device, and a program.
  • a method of drawing a target drawing image by ejecting droplets containing a functional material from a plurality of micro nozzles onto a substrate and solidifying the droplets disposed on the substrate to form a thin film.
  • the thin film include a color filter film and a light emitting layer of an organic EL panel.
  • the conventional vapor deposition process has a problem that the use efficiency of the material is low and the cost is high, and the fine metal mask is displaced due to the high temperature during vapor deposition, and the accuracy of the film formation pattern is reduced. Attention has been focused on printing methods using the above-described ink jet technology.
  • Patent Document 1 proposes a method of correcting fluctuations in the discharge amount caused by the number of used nozzles and the combination of nozzles.
  • An object of the present invention is to provide a droplet discharge method, a droplet discharge device, and a program that can suppress variations in the discharge amount of droplets and can further prevent the occurrence of coating unevenness.
  • a plurality of liquids are ejected from the plurality of nozzles into the droplet landing area while relatively moving the droplet discharge head having the plurality of nozzles and the substrate having the droplet landing area.
  • a droplet discharge method for discharging droplets wherein, when discharging the plurality of droplets from at least one of the plurality of nozzles, based on discharge amount information regarding the discharge order of each of the plurality of droplets
  • a droplet discharge method for correcting the discharge amount of each of the plurality of droplets is provided. According to this method, it is possible to correct variations in droplet discharge amount due to residual vibration of the nozzle meniscus when a plurality of droplets are continuously discharged, and it is possible to discharge droplets in a uniform amount. .
  • the discharge amount information related to the discharge order of the plurality of droplets includes a step of continuously discharging droplets from the droplet discharge head to the medium, measuring a total weight of the droplets on the medium for each discharge, and a discharge From the difference of the total weight for each, the step of calculating the droplet discharge amount for each discharge order is compared with the droplet discharge amount for each discharge order, and a function of the discharge amount with respect to the discharge order is derived. And a method that is a function of the discharge amount defined by the process including the process.
  • the liquid droplet ejection head having a plurality of nozzles and the substrate having the droplet landing area are relatively moved, and the liquid is discharged from each of the plurality of nozzles into the droplet landing area.
  • a liquid droplet ejection method for ejecting liquid droplets wherein when the liquid droplets are ejected from each of the plurality of nozzles, the liquid based on ejection amount information relating to the ejection state of the adjacent nozzles of the plurality of nozzles
  • a droplet discharge method for correcting the droplet discharge amount is provided. According to this method, it is possible to correct variations in droplet discharge amount caused by structural crosstalk such as a change in capacity caused by operation between adjacent nozzles, and it is possible to discharge droplets in a uniform amount. .
  • the plurality of nozzles include a first nozzle, a second nozzle that is a nozzle on both sides of the first nozzle, and a third nozzle.
  • Discharge amount information regarding the discharge state of the adjacent nozzles is A step of discharging droplets from the first nozzle in a state where droplets are not discharged from both the second nozzle and the third nozzle adjacent to one nozzle, and measuring a discharge amount at the time of single discharge; Measuring the discharge amount of the first nozzle by simultaneously discharging droplets from the nozzle and the second nozzle, and comparing the measured discharge amount of the first nozzle with the discharge amount at the time of the single discharge.
  • the step of obtaining the function of the discharge amount at the time of one-side simultaneous discharge with respect to the discharge amount at the time of single discharge, and the discharge amount of the first nozzle by simultaneously discharging droplets from the first to third nozzles are measured.
  • the measured discharge amount of the first nozzle and the simple As a method that is a function of the discharge amount defined by the process including the step of obtaining the function of the discharge amount at the time of both-side simultaneous discharge with respect to the discharge amount at the time of single discharge by comparing the discharge amount at the time of discharge Good.
  • the droplet discharge head includes a driving element provided in each of the plurality of nozzles, a plurality of driving circuits that supply a driving voltage to the driving element, and a selection circuit that selectively connects the driving element and the driving circuit. And, when ejecting the droplets from each of the plurality of nozzles, correcting the ejection amount of the droplets based on ejection information relating to the drive circuit connected to the drive element It is good. According to this method, it is possible to correct variations in the ejection amount due to individual differences in the drive circuit.
  • the droplet discharge head includes a driving element provided in each of the plurality of nozzles, a plurality of driving circuits that supply a driving voltage to the driving element, and a selection circuit that selectively connects the driving element and the driving circuit.
  • the ejection amount of the droplets is corrected based on ejection information regarding the number of connection of the drive elements for each of the drive circuits. It is good also as a method. According to this method, it is possible to correct the variation in the ejection amount due to the difference in the number of drive nozzles for each drive circuit.
  • a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, a drive device that relatively moves the droplet discharge head and the stage, and When discharging a plurality of droplets from at least one of the plurality of nozzles, the discharge amount of each of the plurality of droplets is corrected based on the discharge amount information regarding the discharge order of each of the plurality of droplets.
  • a droplet discharge device having a control device. According to this configuration, it is possible to correct a variation in droplet ejection amount due to residual vibration of the nozzle meniscus during continuous ejection, and to provide a droplet ejection device that can eject droplets in a uniform amount. .
  • a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, a drive device that relatively moves the droplet discharge head and the stage, and And a control device that corrects a discharge amount of a droplet discharged from each of the plurality of nozzles based on discharge amount information regarding a discharge state of the adjacent nozzle among each of the plurality of droplets.
  • An apparatus is provided. According to this configuration, it is possible to correct a variation in droplet discharge amount caused by structural crosstalk such as a change in capacity caused by operation between adjacent nozzles, and to discharge droplets in a uniform amount.
  • a droplet discharge device is provided.
  • a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, a drive device that relatively moves the droplet discharge head and the stage, and
  • the ejection amount of droplets ejected from each of the plurality of nozzles is corrected based on ejection amount information relating to the number of nozzles that simultaneously eject droplets out of each of the plurality of droplets.
  • a droplet ejection device having a control device. According to this configuration, it is possible to correct the variation in the ejection amount accompanying the change in the number of nozzles used.
  • a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, and a drive device that relatively moves the droplet discharge head and the stage.
  • the droplet discharge head includes a drive element provided in each of the nozzles, a plurality of drive circuits that supply a drive voltage to the drive element, and a selection circuit that selectively connects the drive element and the drive circuit
  • a dispensing device is provided. According to this configuration, it is possible to correct variations in the ejection amount due to individual differences in the drive circuit.
  • a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, and a drive device that relatively moves the droplet discharge head and the stage.
  • the droplet discharge head includes a drive element provided in each of the nozzles, a plurality of drive circuits that supply a drive signal to the drive element, and a drive signal that selectively connects the drive element and the drive circuit And a control circuit that corrects the ejection amount of the droplet based on ejection information relating to the number of connections of the drive elements for each of the drive circuits when the droplet is ejected from the nozzle.
  • a droplet discharge device is provided. According to this configuration, it is possible to correct the variation in the ejection amount due to the difference in the number of drive nozzles for each drive circuit.
  • a droplet is discharged from the nozzle into the droplet landing region while relatively moving a droplet discharge head having a plurality of nozzles and a substrate having a droplet landing region.
  • a program for causing a computer to execute an operation which includes a step of executing the above-described discharge amount correction operation. According to this configuration, it is possible to effectively correct the discharge amount variation in the droplet discharge device.
  • FIG. 3 is a plan view showing an arrangement configuration of droplet discharge heads in the head unit.
  • FIG. 3 is a diagram showing an electrical configuration of a droplet discharge device related to driving of a droplet discharge head.
  • 5 is a flowchart illustrating a droplet discharge method according to the embodiment. Explanatory drawing of the process which prescribes
  • FIG. 1 is a plan view of a substrate onto which droplets are discharged.
  • FIG. 2 is a cross-sectional view of a substrate onto which droplets are discharged.
  • a substrate 1 and 2 is used for a color display device.
  • a substrate 1 includes a bank 3 formed in a region between a plurality of droplet landing regions (for example, pixels) 2 constituting R (red), G (green), and B (blue) and a droplet landing region 2. And have.
  • the droplet landing area 2 has a so-called stripe arrangement, but may have a delta arrangement or a mosaic arrangement.
  • the droplet landing area 2 is not limited to a rectangle, but may be a triangle or a honeycomb.
  • the substrate 1 has a substrate body 4 made of glass, for example.
  • a plurality of partitioned areas 6 partitioned by the banks 3 are formed on the substrate body 4.
  • a colored film or a light emitting layer is formed in each droplet landing region 2 by discharging droplets into the partition region 6 surrounded by these banks 3.
  • a light shielding portion 5 made of a light shielding material may be formed in the lower portion of the bank 3.
  • the plurality of partitioned areas 6 have the same shape and size.
  • the exposed surface of the droplet landing area 2 may be subjected to a lyophilic process.
  • the surface of the bank 3 may be subjected to a liquid repellency treatment.
  • the liquid repellent treatment of the bank 3 can be realized by, for example, plasma surface treatment of oxygen or fluorocarbon.
  • FIG. 3 is a perspective view showing a main part of the droplet discharge device.
  • FIG. 4 is a plan view showing the arrangement of the droplet discharge heads in the head unit.
  • the droplet discharge device 200 includes a pair of guide rails 202 linearly provided so as to be orthogonal to the guide rails 201 above the guide rails 201, an air slider and a linear motor provided inside the guide rails 202. (Not shown) and a sub-scanning moving base 204 that moves along the sub-scanning direction.
  • a stage 205 for placing the substrate 1 is provided on the main scanning moving table 203.
  • the stage 205 has a mechanism for sucking and fixing the substrate 1 described above.
  • the stage 205 aligns the reference axis in the substrate 1 with the rotation mechanism 207 in the main scanning direction and the sub-scanning direction.
  • the sub-scanning moving table 204 includes a carriage 209 that is attached in a suspended manner via a rotation mechanism 208.
  • the carriage 209 includes a head unit 10 including a plurality of droplet discharge heads 11 and 12 (see FIG. 4), and a droplet supply mechanism (not shown) for supplying droplets to the droplet discharge heads 11 and 12. And a control circuit board 30 (see FIG. 5) for performing electrical drive control of the droplet discharge heads 11 and 12.
  • the head unit 10 includes droplet discharge heads 11 and 12 that discharge droplets corresponding to R, G, and B from the nozzle 20.
  • the nozzle 20 constitutes a nozzle group 21A, 21B.
  • the nozzle groups 21A and 21B each have a line arrangement with a predetermined pitch (for example, 180 DPI), and are further arranged in a staggered arrangement.
  • the direction of arrangement of the nozzle groups 21A and 21B coincides with the sub-scanning direction.
  • the droplet discharge head 11 and the droplet discharge head 12 are arranged with their positions shifted in the sub-scanning direction, and each nozzle group 21A, 21B complements the dischargeable range and has a continuous constant pitch scanning locus. Draw. Further, several nozzles 20 at the ends of the nozzle groups 21A and 21B are dummy nozzles that are not used in view of the peculiarities of the characteristics.
  • the volume of the liquid chamber (cavity) communicating with the nozzle 20 in the droplet discharge heads 11 and 12 is variable by driving the piezoelectric element 16 (see FIG. 5).
  • the piezoelectric element 16 By supplying a drive signal to the piezoelectric element 16 to control the volume in the cavity, the liquid pressure in the cavity is controlled and droplets are ejected from the nozzle 20.
  • the nozzle groups 21A and 21B are scanned in the main scanning direction with respect to the substrate 1 by the movement of the main scanning moving table 203, and the discharge ON / OFF control for each nozzle 20 (hereinafter, referred to as the nozzle 20).
  • the discharge control it is possible to dispose droplets at positions along the scanning locus of the nozzle 20 on the substrate 1.
  • the configuration of the droplet discharge device is not limited to the above-described embodiment.
  • the arrangement direction of the nozzle groups 21A and 21B can be inclined from the sub-scanning direction so that the pitch of the scanning locus of the nozzles 20 is narrower than the pitch between the nozzles 20 in the nozzle groups 21A and 21B.
  • the number of the droplet discharge heads 11 and 12 in the head unit 10 and the arrangement configuration thereof can be appropriately changed.
  • a so-called thermal method in which a heating element is provided in a cavity can be adopted as a driving method of the droplet discharge heads 11 and 12, for example.
  • FIG. 5 is a diagram showing an electrical configuration of a droplet discharge device related to driving of the droplet discharge head.
  • FIG. 6 is a timing diagram of the drive signal and the control signal.
  • the droplet discharge head 11 (12) includes a piezoelectric element 16 provided for each nozzle 20 (see FIG. 4) of the nozzle group 21 ⁇ / b> A (21 ⁇ / b> B) and a drive signal COM to each piezoelectric element 16.
  • a switching circuit 17 for switching between supply / non-supply of these and a drive signal selection circuit 18 for selecting signal lines COM1 to COM4 for supplying drive signals to the piezoelectric elements 16.
  • the droplet discharge head 11 (12) is electrically connected to the control circuit board 30.
  • the control circuit board 30 includes drive circuits 31A to 31D including D / A converters (DACs) that generate independent drive signals COM, and slew rate data (waveform data WD1) of the drive signals COM generated by the drive circuits 31A to 31D.
  • a waveform data selection circuit 32 having a storage memory for waveform data WD4) and a data memory 33 for storing discharge control data received from the outside.
  • the drive signals generated by the drive circuits 31A to 31D are output to the signal lines COM1 to COM4 in the control circuit board 30, respectively.
  • one electrode 16c of the piezoelectric element 16 is connected to a ground line (GND) of the drive circuits 31A to 31D.
  • the other electrode (hereinafter referred to as segment electrode 16s) of the piezoelectric element 16 is connected to the signal lines COM1 to COM4 via the switching circuit 17 and the drive signal selection circuit 18.
  • a clock signal (CLK) and a latch signal (LAT) corresponding to each ejection timing are input to the switching circuit 17, the drive signal selection circuit 18, and the waveform data selection circuit 32.
  • the data memory 33 stores the following data for each ejection timing that is periodically set according to the scanning position of the droplet ejection head 11 (12).
  • Discharge data (SIA) that defines switching of supply / non-supply (ON / OFF) of the drive signal COM to the piezoelectric element 16
  • Drive signal selection data (SIB) that defines the signal lines COM1 to COM4 corresponding to each piezoelectric element 16
  • Waveform number data defining the type of waveform data WD1 to WD4 input to the drive circuits 31A to 31D
  • ejection data is 1 bit (0, 1) per nozzle
  • drive signal selection data SIB
  • SIB is 2 bits (0, 1, 2, 3) per nozzle
  • waveform number Data is composed of 7 bits (0 to 127) per 1D / A converter.
  • drive control related to each ejection timing is performed as follows.
  • the ejection data (SIA), the drive signal selection data (SIB), and the waveform number data (WN) are converted into serial signals, respectively, and the switching circuit 17 and the drive signal selection circuit 18 are converted. Is transmitted to the waveform data selection circuit 32.
  • Each data is latched at timing t2, so that the segment electrode 16s of each piezoelectric element 16 related to ejection (ON) is connected to each signal line COM1 to COM4 designated by the drive signal selection data (SIB). It becomes. For example, when the drive signal selection data (SIB) is 0, 1, 2, 3, the segment electrodes 16s of the corresponding piezoelectric element 16 are connected to the signal line COM1, the signal line COM2, the signal line COM3, and the signal line COM4, respectively.
  • waveform data WD1 to WD4 of drive signals related to generation of the drive circuits 31A to 31D are set.
  • the drive signal COM is generated in a series of steps of increasing potential, maintaining potential, and decreasing potential according to the waveform data set at timing t2. Then, the generated drive signal is supplied to the piezoelectric element 16 connected to the signal lines COM1 to COM4, and volume (pressure) control of the cavity communicating with the nozzle is performed.
  • the potential increasing component at the timings t3 to t4 expands the cavity and draws ink into the nozzle.
  • the potential drop component at timings t5 to t6 plays a role of causing the cavity to contract and ejecting ink by pushing it out of the nozzle.
  • the time component and the voltage component related to the potential increase, potential retention, and potential decrease in the drive signal COM closely depend on the discharge amount of the droplets discharged by the supply.
  • the voltage difference at timings t3 to t6 is defined as the drive voltage Vh, and this is used as the discharge amount control condition. can do.
  • the drive signal COM is not limited to a simple trapezoidal wave as shown in the present embodiment, and various known shapes can be adopted as appropriate. Further, when a different driving method (for example, a thermal method) is adopted, the pulse width (time component) of the driving signal can be used as a condition for controlling the ejection amount.
  • a different driving method for example, a thermal method
  • the pulse width (time component) of the driving signal can be used as a condition for controlling the ejection amount.
  • a plurality of types of waveform data having different drive voltages Vh are prepared, and independent waveform data WD1 to WD4 are input to the drive circuits 31A to 31D, respectively, so that each signal line COM1 to COM4 is input. It is possible to output drive signals COM having different drive voltages Vh.
  • the types of waveform data that can be prepared are 128 types corresponding to the information amount (7 bits) of the waveform number data (WN), for example, corresponding to the drive voltage Vh in increments of 0.1V.
  • the droplet discharge device 200 of the present embodiment includes drive signal selection data (SIB) that defines the correspondence between the piezoelectric elements 16 provided corresponding to the nozzles and the signal lines COM1 to COM4, and the signal lines COM1 to COM4.
  • SIB drive signal selection data
  • WN waveform number data
  • the drive signal selection data (SIB) and the waveform number data (WN) can be updated at each discharge timing, so that the change in the discharge data (SIA) is made to correspond. It is also possible to set the drive signal finely.
  • FIG. 7 is a block diagram showing an apparatus configuration for setting a drive signal.
  • FIG. 8 is a flowchart showing the droplet discharge method of this embodiment.
  • FIG. 9 is an explanatory diagram of a process for defining the reference discharge amount.
  • FIG. 10 is a graph showing the distribution of the discharge amount for each nozzle.
  • FIG. 11 is an explanatory diagram regarding the influence of adjacent nozzles on the droplet discharge amount.
  • FIG. 12 is an explanatory diagram relating to the discharge amount variation when continuous discharge is performed.
  • a setting device 300 for setting a drive signal includes an ink supply device 301 that supplies ink to the droplet discharge head 11 (12), and a control circuit board 302 that drives the droplet discharge head 11.
  • the setting device 300 includes an ink receiving container 303 that receives and stores ink discharged from the droplet discharge head 11, and a weight measuring device 304 that measures the weight of the ink receiving container 303.
  • the setting device 300 includes an ink receiving substrate 305 that receives ink ejected from the droplet ejection head 11, a substrate moving device 306 that moves the ink receiving substrate 305 in the substrate surface direction, and ink disposed on the ink receiving substrate 305. And a volume measuring device 307 for measuring the volume of.
  • the setting device 300 controls the driving of the droplet discharge head 11 via the control circuit substrate 302, controls the driving of the substrate moving device 306, controls the weighing operations of the weight measuring device 304 and the volume measuring device 307, and measures the weighing.
  • a computer 308 is provided for performing calculations based on the results.
  • the control circuit board 302 corresponds to the control circuit board 30 shown in FIG.
  • the ink receiving container 303 may be made of any material that does not erode by ink, but preferably has a configuration that suppresses volatilization of ink by disposing a porous member such as a sponge in the opening.
  • a general electronic balance can be used for the weight weighing device 304.
  • As the volume measuring device 307 a three-dimensional shape measuring device using a white interference method can be used.
  • the setting device 300 can measure the discharge amount as a weight or a volume by using two types of measuring devices, a weight measuring device 304 and a volume measuring device 307.
  • the weight weighing device 304 is suitable for measuring an average discharge amount in the entire nozzle group at high speed and with high accuracy.
  • the volume measuring device 307 is suitable for measuring the discharge amount of each nozzle.
  • the droplet discharge method of this embodiment discharges based on the discharge information measurement step ST1 for measuring discharge information of each nozzle in the droplet discharge device and the discharge information measured in the discharge information measurement step.
  • the ejection information measurement step ST1 is a so-called initial setting step, and may be performed when the droplet ejection head is replaced or when the ink type is changed. That is, in the operation of discharging droplets onto the product substrate, only the discharge amount setting step ST2 has to be executed based on the discharge information measured in the discharge information measurement step ST1.
  • ⁇ Discharge information measurement process> In the discharge information measurement step ST1, the measurement step ST11 of the discharge information D1 related to the number of used nozzles, the measurement step ST12 of the discharge information D2 related to the discharge state of the adjacent nozzles, and the measurement step ST13 of the discharge information D3 related to the discharge order during continuous discharge. And a measurement process ST14 of the discharge information D4 related to the individual difference of the drive circuit, and a measurement process ST15 of the discharge information D5 related to the load state of the drive circuit.
  • the measurement step ST11 of the discharge information D1 related to the number of used nozzles the distribution of the discharge amount of each nozzle corresponding to the number of used nozzles is measured.
  • the average discharge amount of each nozzle is also calculated.
  • the measurement step S11 is a step S1 of measuring the average discharge amount of the entire droplet discharge head, a step S2 of calculating the reference drive voltage Vs, a step S3 of calculating the correlation coefficient ⁇ , and measuring the discharge amount of each nozzle.
  • step S1 of measuring the average discharge amount the average discharge amount of all nozzles 20 (excluding dummy nozzles) in the nozzle group 21A is measured in a state where the droplet discharge head 11 is attached to the setting device 300. Specifically, ejection is performed a number of times (for example, 100,000 times) for each nozzle 20, the total weight is measured by the weight measuring device 304, and the measurement result is divided and measured. This measurement is performed under two conditions of driving voltage Vh (for example, 20 V and 30 V).
  • Vh driving voltage
  • step S2 for calculating the reference drive voltage Vs the relationship between the drive voltage Vh and the average discharge amount under the two conditions measured in step S1 is linearly complemented to obtain a reference discharge amount q0 (design value according to the specification).
  • the reference drive voltage Vs for obtaining the average discharge amount is calculated.
  • step S3 for calculating the correlation coefficient ⁇ the rate of change of the average discharge amount with respect to the drive voltage Vh is calculated as the correlation coefficient ⁇ when the discharge amount is corrected by the drive voltage Vh.
  • step S4 of measuring the discharge amount of each nozzle a plurality of driving signals are supplied to all the piezoelectric elements of the nozzle group 21A, and ink is discharged to the ink receiving substrate 305. Measure the discharge amount. For example, ink is ejected using the six ejection patterns shown in FIG.
  • (a) is a discharge pattern (1/2 Duty, 1 Shot) for discharging droplets from every other nozzle 20 once, and (b) is a liquid from each other nozzle 20 once.
  • a discharge pattern (1/3 Duty, 1 Shot) for discharging droplets is a discharge pattern (1/2 Duty, 2 Shot) for discharging two droplets continuously from every other nozzle 20, and every two (d).
  • (E) is a discharge pattern (1/2 duty, 2shot) in which droplets are continuously discharged from every other nozzle 20, and (e) is a discharge pattern (1/2 duty, 3shot), in which droplets are discharged from every other nozzle 20 three times.
  • f) is an ejection pattern (1/3 Duty, 3 Shot) for ejecting three droplets from every second nozzle 20 continuously.
  • the ink ejected from each nozzle forms independent hemispherical droplets on the substrate.
  • the three-dimensional shape of the droplet is measured by the volume measuring device 307, and the measurement data is analyzed by the computer 308, whereby the discharge amount can be obtained.
  • step S5 for calculating the average value of the discharge amount of each nozzle the average value or median value of the discharge amount of each nozzle 20 is calculated from the discharge amount data of each nozzle measured in step S4.
  • the average value or the median value of the discharge amount is calculated for each number of nozzles used (1/2 duty, 1/3 duty).
  • the case where the average value of the discharge amount of each nozzle 20 is calculated will be described as an example, but the same applies to the case where the median value of the discharge amount of each nozzle is calculated.
  • FIG. 10 shows, for example, an average value of the discharge amount of each nozzle calculated in step S5 as a spatial distribution in the nozzle row arrangement direction.
  • the discharge amount is relatively large near the end of the nozzle row, and the discharge amount is relatively small near the center of the nozzle row.
  • the ejection amount is relatively larger than the condition in which the number of used nozzles is small (for example, 1/3 Duty in FIG. 9).
  • FIG. 10 shows an example of the discharge amount distribution, and the distribution of the discharge amount may have a shape other than that illustrated.
  • the discharge information D1 regarding the number of used nozzles can be acquired.
  • ink is ejected from a nozzle of a droplet ejection head onto an object to be ejected, as with the substrate 1 shown in FIG. 1, a single droplet is applied to a droplet landing area 2 partitioned by a bank 3 and arranged at a predetermined interval. Droplets are ejected from a plurality of nozzles arranged in the direction. Since the pitch of the droplet landing area 2 varies depending on the product, a nozzle (discharge nozzle) used for discharging ink and a nozzle (non-discharge nozzle) not used for discharge are inevitably generated.
  • the ejection nozzles and the non-ejection nozzles change every scan, and all the nozzles are not used at the same time.
  • the discharge nozzle and the non-discharge nozzle are changed for each scan.
  • the discharge amount from the nozzles changes as shown in FIG. 10. Therefore, in order to always discharge a constant amount of ink to the droplet landing region 2, the discharge of each nozzle is performed every scan. The amount needs to be corrected. Based on the discharge information D1 acquired in the measurement step ST11, the discharge amount according to the number of used nozzles can be corrected, and the variation in the discharge amount for each nozzle position can also be corrected.
  • the measurement process ST12 of the discharge information D2 regarding the discharge state of adjacent nozzles will be described with reference to FIG.
  • the measurement step ST12 when the droplet is ejected, a change in the ejection amount when the adjacent nozzles in the nozzle row are ejecting at the same time is measured.
  • Adjacent nozzles in the nozzle array cause structural crosstalk due to vibrations of the piezoelectric elements 16 and the cavities communicating with the nozzles. Therefore, when droplets are simultaneously ejected from two or more nozzles that are continuous in the nozzle row direction, the ejection amount changes due to the influence of the crosstalk.
  • FIG. 11A is a schematic diagram showing the size of a droplet during single ejection in which droplets are ejected from only the nozzle 20a.
  • FIG. 11B is a schematic diagram showing the size of droplets at the time of one-side simultaneous ejection in which droplets are ejected from the nozzle 20a and the nozzle 20b adjacent to the nozzle 20a.
  • FIG. 11C is a schematic diagram showing the size of droplets at the time of simultaneous ejection on both sides in which droplets are ejected from the nozzle 20a and its adjacent nozzles 20b and 20c.
  • FIG. 11D is a schematic diagram showing the size of droplets when droplets are simultaneously ejected from the four nozzles 20a to 20d including the nozzle 20d further outside the nozzle 20b.
  • the droplet 120B when ejected simultaneously from the nozzle 20a and the adjacent nozzle 20b is a droplet when the droplet is ejected only from the nozzle 20a shown in FIG. It becomes smaller than 120A.
  • the sizes of the droplets ejected from the nozzles 20a and 20b are substantially the same.
  • the droplets discharged simultaneously from the three consecutive nozzles 20a, 20b, and 20c differ depending on the position of the nozzle.
  • the droplets ejected from the nozzles 20b and 20c at both ends are droplets 120B having the same size as that in FIG.
  • the droplet 120C discharged from the nozzle 20a sandwiched between the two nozzles 20b and 20c is smaller than the droplet 120B discharged from the nozzles 20b and 20c.
  • the droplet discharged from the nozzle 20a is the largest droplet 120A during single discharge, slightly smaller droplet 120B during one-side simultaneous discharge, and the smallest droplet 120C during both-side simultaneous discharge.
  • the above relationship is also applied when discharging simultaneously from four or more nozzles continuous in the nozzle row direction. That is, as shown in FIG. 11D, the smallest droplet 120C is ejected from the nozzles 20a and 20b at the time of both-side simultaneous ejection, and the slightly smaller droplet 120B is ejected from the nozzles 20c and 20d at the time of one-side simultaneous ejection. Is done. The same applies to the case where five or more nozzles are continuous.
  • the discharge operation from each nozzle of the droplet discharge head 11 to the ink receiving substrate 305 is performed for at least the three discharge patterns of FIGS. 11 (a) to 11 (c).
  • the ejection amounts of the droplets 120A, 120B, and 120C are measured.
  • the discharge information D2 regarding the discharge state of the adjacent nozzles can be acquired.
  • the discharge information D2 is acquired as the volume ratio (discharge amount ratio) of the droplets 120A, 120B, and 120C. For example, when the droplet 120A is 100%, the droplet 120B is acquired as 95%, and the droplet 120C is acquired as 92%. Based on the discharge information D2 acquired in the measurement process ST12, it is possible to correct the discharge amount from the nozzle that varies depending on the discharge state of the adjacent nozzle. In the present embodiment, the case has been described where the size of the liquid droplet decreases as the number of adjacent nozzles that simultaneously perform the discharge operation increases. Sometimes.
  • the measurement process ST13 of the discharge information D3 related to the discharge order at the time of continuous discharge will be described with reference to FIG.
  • the measurement step ST13 when droplets are continuously ejected from one nozzle, a change in the ejection amount of the second or third ejected droplet is measured.
  • a high frequency for example, about 30 kHz
  • an attempt is made to discharge the next droplet before the vibration of the nozzle meniscus after discharge is settled. Therefore, the droplet discharge amount changes due to the influence of the vibration of the nozzle meniscus.
  • FIG. 12A is a schematic diagram showing a state where a droplet is ejected from the nozzle 20 only once.
  • FIG. 12B is a schematic diagram illustrating a state in which droplets are ejected from the nozzle 20 in a continuous manner.
  • FIG. 12C is a schematic diagram showing a state in which liquid droplets are ejected from the nozzle 20 in a continuous manner.
  • the frequency of the nozzle meniscus in each nozzle is substantially constant, and the maximum frequency for discharging the droplets of the droplet discharge head 11 is also fixed. It becomes a certain tendency with the nozzle. For example, when the size of the droplet 120a when ejected only once as shown in FIG. 12A is 100%, the size of the second droplet 120b shown in FIG. 12B is 90%. The size of the third droplet 120c shown in 12 (c) is 95%.
  • the weight of the ink stored in the ink receiving container 303 is measured every time the liquid droplet is discharged once while the liquid droplets are continuously discharged to the ink receiving container 303. By calculating the difference in weight each time a droplet is discharged, the weight of the droplet for each time can be acquired.
  • the ejection information D3 can be acquired as the weight ratio (ejection amount ratio) of the second droplet and the third droplet with respect to the first droplet based on the weight of each droplet measured by the above procedure. it can. Furthermore, if necessary, the fourth and fifth droplets of continuous ejection can be similarly measured, and the weight ratio with respect to the first droplet can be acquired as ejection information D3.
  • the piezoelectric element 16 provided corresponding to the nozzle 20 is driven based on the drive signal COM input from any of the four drive circuits 31A to 31D.
  • the four drive circuits 31A to 31D are equivalent to each other, but it is inevitable that individual differences occur. Therefore, even if the same waveform data is supplied from the waveform data selection circuit 32 to the drive circuits 31A to 31D, the drive voltage Vh output from the drive circuits 31A to 31D may not have the same voltage value.
  • the drive voltage Vh input to the piezoelectric element 16 varies, the discharge amount of the droplet also varies.
  • the drive circuits 31A to 31D are operated one by one to execute the droplet discharge operation.
  • the ejected droplets are landed on the ink receiving substrate 305, and the volume of the droplets corresponding to each nozzle is measured using the volume measuring device 307.
  • the volume of the droplet obtained by the above measurement is compared between the drive circuits 31A to 31D for the same nozzle, and is calculated as a volume ratio (discharge amount ratio).
  • the volume ratio is 99% for the drive circuit 31B, 101% for the drive circuit 31C, and 99.5% for the drive circuit 31D. Is obtained.
  • the obtained volume ratio for each nozzle is the discharge information D4.
  • the discharge amount that varies due to individual differences of the drive circuits can be corrected. .
  • the piezoelectric element 16 provided corresponding to the nozzle 20 is driven based on the drive signal COM input from any of the four drive circuits 31A to 31D. Since the four drive circuits 31A to 31D can be connected to an arbitrary piezoelectric element 16, and the number of nozzles may not be divisible by 4, the number of piezoelectric elements 16 connected to the drive circuits 31A to 31D is not necessarily the same. .
  • the drive circuit 31A may drive 18 nozzles, and the other drive circuits 31B to 31D may drive 17 nozzles.
  • Drive circuit 31A Number of drive nozzles: 18 Ratio of discharge amount: 100.15% Drive circuit 31B Number of drive nozzles: 17 Ratio of discharge amount: 99.95% Drive circuit 31C Number of drive nozzles: 17 Ratio of discharge amount: 99.95% Drive circuit 31D Number of drive nozzles: 17 Ratio of discharge amount: 99.95%
  • various numbers of nozzles are assigned to the drive circuits 31A to 31D to discharge droplets.
  • the discharged droplets are accommodated in the ink receiving container 303, and the weight of the ink corresponding to each of the drive circuits 31A to 31D is measured using the weight measuring device 304.
  • the change in the ejection amount when the number of nozzles driven in the drive circuits 31A to 31D changes.
  • a change ratio such as “the discharge amount increases by 0.2% when the number of nozzles to be driven increases by one”.
  • the obtained change ratio is the discharge information D5.
  • the discharge amount setting step ST2 includes a step ST21 for performing correction based on the number of used nozzles, a step ST22 for performing correction based on the discharge state of adjacent nozzles, a step ST23 for performing correction based on the discharge order at the time of continuous discharge, and a step. It includes a step ST24 of selecting a drive circuit connected to the piezoelectric element based on the drive voltage corrected in ST21 to ST23, and a step ST25 of performing correction based on the drive circuit connected to the piezoelectric element.
  • the ejection amount is corrected using the ejection information D1 regarding the number of used nozzles.
  • the discharge pattern of the droplet discharge head 11 (nozzle group 21A) defined for each scan when the ratio of discharge nozzles is, for example, 2/5, the used nozzles shown in FIG.
  • An average discharge amount of the corresponding nozzle is acquired by interpolating two discharge amount graphs for each number (1/2 duty, 1/3 duty). Further, a drive voltage Vh1 for correcting the obtained discharge amount to the reference discharge amount q0 is calculated.
  • step ST22 the discharge amount is corrected using the discharge information D2 relating to the discharge state of the adjacent nozzles.
  • the discharge state of each nozzle is set to “single discharge”, “single-side simultaneous discharge”, or “both-side simultaneous discharge”. Classify either.
  • the discharge amount is not corrected.
  • the drive voltage Vh1 set in step ST21 is set based on the discharge information D2 so that the discharge amount is equivalent to “single discharge”. Further, the driving voltage is corrected to Vh2.
  • step ST23 the ejection amount is corrected using the ejection information D3 relating to the ejection order during continuous ejection.
  • the discharge pattern of the droplet discharge head 11 (nozzle group 21A) defined for each scan is compared with the discharge pattern corresponding to the preceding and following scans, and the presence or absence of continuous discharge is classified for each nozzle. For example, in each discharge pattern, a “continuous discharge number” is assigned to each nozzle. If the “continuous discharge number” is “1”, it is the first droplet at the time of continuous discharge. Similarly, if “continuous discharge number” is “2”, it is the second droplet for continuous discharge, and if “continuous discharge number” is “3”, it is the third droplet for continuous discharge.
  • step ST24 the drive circuits 31A to 31D connected to each nozzle are selected based on the drive voltage Vh3 that is the result of the sequential correction in steps ST21 to ST23.
  • the drive voltage Vh3 for each nozzle is classified into four levels for each voltage value, and waveform data corresponding to each level is selected. Then, the selected four waveform data are determined as drive waveforms to be supplied to the drive circuits 31A to 31D. Accordingly, the drive circuits 31A to 31D are assigned to the nozzles used for ejection.
  • step ST25 the ejection amount is corrected using the ejection information D4 and the ejection information D5 regarding the drive circuit to be connected. Specifically, based on the ejection information D4, the change in drive voltage due to the individual difference between the drive circuits 31A to 31D is corrected. The change in the drive voltage is corrected by reselecting the waveform data supplied to each of the drive circuits 31A to 31D.
  • the ejection amount due to the difference in the number of drive nozzles of the drive circuits 31A to 31D is corrected. For example, if the difference is a discharge amount of 0.2% per nozzle, the value obtained by multiplying the difference in the number of nozzles by 0.2% is the discharge amount to be corrected, and this is the drive voltage for correcting this discharge amount.
  • the waveform data supplied to the drive circuits 31A to 31D is reselected.
  • the number of used nozzles that cause variation in the discharge amount of each nozzle, the discharge state of adjacent nozzles, the discharge order during continuous discharge, individual differences in the drive circuit, and the drive circuit Appropriate correction can be performed for each of the five elements of the load state. As a result, it is possible to suppress variations in droplet discharge amount with extremely high accuracy.
  • the discharge amount is corrected for all of the five elements: the number of used nozzles, the discharge state of adjacent nozzles, the discharge order during continuous discharge, individual differences in the drive circuit, and the load state of the drive circuit.
  • each element is independent and can be implemented by one or more combinations.
  • the droplet discharge method of the present embodiment can also be provided as a control program for the droplet discharge device.
  • This program executes the droplet discharge method described above. That is, the droplet discharge device 200 is caused to execute the droplet discharge method via the computer 308 shown in FIG.
  • the program may be stored (stored) in a memory of a computer, for example, or may be recorded in an external recording device or recording medium. By using this program, it is possible to stably apply ink to the pixel area even when there is a restriction on nozzle allocation to the pixel area.
  • FIG. 13 shows a state in which a three-shot droplet discharge operation is performed with different discharge patterns from the droplet discharge head 11 having 15 nozzles.
  • each correction operation is executed according to the following procedure. By executing each correction operation, it is possible to suppress variation in the ejection amount of each nozzle and apply ink to the substrate in an accurate amount.
  • Step ST21 Since the number of used nozzles is 9/15 Duty, the discharge amount distribution is obtained by extrapolating the discharge amount distribution of 1/2 Duty, 1 Shot and the discharge amount distribution of 1/3 Duty, 1 Shot. Thereby, the variation in the ejection amount for each nozzle position is corrected. Since 9/15 Duty is larger than 1/2 Duty, the 9/15 Duty discharge amount is corrected by extrapolating the relationship between the 1/2 Duty average discharge amount and the 1/3 Duty average discharge amount.
  • Step ST22 For each one-side simultaneous discharge nozzle and both-side simultaneous discharge nozzle, the respective discharge amounts are corrected based on the discharge information D2.
  • Step ST23 Since it is the first shot, there is no influence of continuous ejection. Therefore, no correction is performed.
  • Step ST25 Correct each discharge amount based on the individual difference (discharge information D4) of the drive circuit connected to each nozzle and the load state (discharge information D5).
  • Step ST21 Since the number of nozzles used is 6/15 Duty, the ejection amount distribution is obtained by interpolating the ejection amount distribution of 1/2 Duty, 1 Shot and the ejection amount distribution of 1/3 Duty, 1 Shot. Thereby, the variation in the ejection amount for each nozzle position is corrected. Further, the 6/15 duty discharge amount is corrected by interpolating the relationship between the average discharge amount of 1/2 duty and the average discharge amount of 1/3 duty.
  • Step ST22 For each one-side simultaneous discharge nozzle and both-side simultaneous discharge nozzle, the respective discharge amounts are corrected based on the discharge information D2.
  • Step ST23 Since this is the second shot, the nozzle No. 2, 3, 7, 8, 11, and 14 are affected by continuous discharge. These nozzles are corrected based on the discharge information D3.
  • Step ST25 Correct each discharge amount based on the individual difference (discharge information D4) of the drive circuit connected to each nozzle and the load state (discharge information D5).
  • Step ST21 Since the number of used nozzles is 2/15 Duty, the discharge amount distribution is obtained by extrapolating the discharge amount distribution of 1/2 Duty, 1 Shot and the discharge amount distribution of 1/3 Duty, 1 Shot. Thereby, the variation in the ejection amount for each nozzle position is corrected. Since 2/15 Duty is less than 1/3 Duty, the 2/15 Duty ejection amount is corrected by extrapolating the relationship between the 1/2 Duty average ejection amount and the 1/3 Duty average ejection amount.
  • Step ST22 Since there is no one-side simultaneous discharge nozzle and both-side simultaneous discharge nozzle, the discharge amount is not corrected.
  • Step ST23 Since this is the third shot, the nozzle No. 2 and 8 have the effect of continuous discharge. These nozzles are corrected based on the discharge information D3.
  • Step ST25 Correct each discharge amount based on the individual difference (discharge information D4) of the drive circuit connected to each nozzle and the load state (discharge information D5).

Abstract

Provided is a method for discharging liquid droplets, the method being capable of reducing non-uniformity in the discharged amount of liquid droplets and suppressing the occurrence of uneven coatings. According to the method for discharging liquid droplets, liquid droplets are discharged from a plurality of nozzles into a plurality of liquid droplet impact regions while a liquid droplet discharging head including the nozzles and a substrate including the liquid droplet impact regions are moved relative to each other, wherein, when continuously discharging the liquid droplets from the nozzles, the discharged amount of the liquid droplets is calibrated on the basis of discharged amount information regarding the discharged order of the liquid droplets.

Description

液滴吐出方法、液滴吐出装置、プログラムDroplet ejection method, droplet ejection apparatus, and program
 本発明は、液滴吐出方法、液滴吐出装置、プログラムに関する。 The present invention relates to a droplet discharge method, a droplet discharge device, and a program.
 近年、機能性材料を含む液滴を複数の微小ノズルから基板に対して吐出し、基板上に配置された液滴を固化して薄膜を形成することで、目的の描画像を描画する方法が提案されている。この薄膜の代表的な例として、カラーフィルター膜や、有機ELパネルの発光層等を挙げることができる。 In recent years, there has been a method of drawing a target drawing image by ejecting droplets containing a functional material from a plurality of micro nozzles onto a substrate and solidifying the droplets disposed on the substrate to form a thin film. Proposed. Typical examples of the thin film include a color filter film and a light emitting layer of an organic EL panel.
 特に有機ELパネル等の有機半導体の分野では、従来の蒸着プロセスでは、材料の使用効率が悪くコストがかかるという課題や、蒸着時の高温によりファインメタルマスクがずれ、成膜パターンの精度が低下するという課題を有しており、上述のようなインクジェット技術を利用した印刷方法に注目が集まっている。 In particular, in the field of organic semiconductors such as organic EL panels, the conventional vapor deposition process has a problem that the use efficiency of the material is low and the cost is high, and the fine metal mask is displaced due to the high temperature during vapor deposition, and the accuracy of the film formation pattern is reduced. Attention has been focused on printing methods using the above-described ink jet technology.
 インクジェット方式では、液滴着弾領域内に配置された液滴を乾燥固化することで、着色膜や発光層等の機能膜を形成するが、ノズル自体や使用状況による特性のばらつきによって液滴の吐出量が変化し、機能膜にムラが生じることがあった。例えば、特許文献1では、使用ノズル数やノズルの組み合わせによって生じる吐出量の変動を補正する方法が提案されている。 In the inkjet method, the droplets placed in the droplet landing area are dried and solidified to form a functional film such as a colored film or a light-emitting layer. The amount changed, and the functional film was sometimes uneven. For example, Patent Document 1 proposes a method of correcting fluctuations in the discharge amount caused by the number of used nozzles and the combination of nozzles.
特開2008-3586号公報JP 2008-3586 A
 しかし、近年のより高精細な描画品位に対する要求に伴い、わずかなムラも問題となってきた。そのため、よりムラの発生を抑制できる液滴の吐出量制御が求められている。特に、一つの液滴着弾領域内に配置される総着弾数が10滴程度の有機半導体素子等では、1滴ごとの機能膜への寄与がより大きい。そのため、有機半導体素子等では、スジ状のムラがより発生しやすい。 However, with the recent demand for higher definition drawing quality, slight unevenness has also become a problem. Therefore, there is a demand for droplet discharge amount control that can suppress the occurrence of unevenness. In particular, in an organic semiconductor element or the like having a total landing number of about 10 drops arranged in one droplet landing area, the contribution to the functional film for each drop is greater. Therefore, streaky unevenness is more likely to occur in an organic semiconductor element or the like.
 本発明は、液滴の吐出量のばらつきを抑え、塗布ムラの発生をより抑制できる液滴吐出方法、液滴吐出装置、及びプログラムを提供することを目的の一つとする。 An object of the present invention is to provide a droplet discharge method, a droplet discharge device, and a program that can suppress variations in the discharge amount of droplets and can further prevent the occurrence of coating unevenness.
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体とを相対的に移動させながら、前記複数のノズルから前記液滴着弾領域内に複数の液滴を吐出する液滴吐出方法であって、前記複数のノズルのうち少なくとも一つのノズルから前記複数の液滴を吐出する際に、前記複数の液滴の各々の吐出順番に関する吐出量情報に基づいて、前記複数の液滴の各々の吐出量を補正する、液滴吐出方法が提供される。
 この方法によれば、複数の液滴を連続して吐出する際のノズルメニスカスの残留振動による液滴の吐出量のばらつきを補正することができ、均一な量で液滴を吐出することができる。
According to the aspect of the present invention, a plurality of liquids are ejected from the plurality of nozzles into the droplet landing area while relatively moving the droplet discharge head having the plurality of nozzles and the substrate having the droplet landing area. A droplet discharge method for discharging droplets, wherein, when discharging the plurality of droplets from at least one of the plurality of nozzles, based on discharge amount information regarding the discharge order of each of the plurality of droplets Thus, a droplet discharge method for correcting the discharge amount of each of the plurality of droplets is provided.
According to this method, it is possible to correct variations in droplet discharge amount due to residual vibration of the nozzle meniscus when a plurality of droplets are continuously discharged, and it is possible to discharge droplets in a uniform amount. .
 前記複数の液滴の吐出順番に関する吐出量情報は、前記液滴吐出ヘッドから媒体に対して液滴を連続吐出し、吐出ごとに前記媒体上の液滴の合計重量を測定する工程と、吐出ごとの前記合計重量の差分から、吐出順番ごとの液滴の吐出量を算出する工程と、前記吐出順番ごとの前記液滴の吐出量を比較し、前記吐出順番に対する吐出量の関数を導出する工程と、を含む工程により規定される吐出量の関数である方法としてもよい。 The discharge amount information related to the discharge order of the plurality of droplets includes a step of continuously discharging droplets from the droplet discharge head to the medium, measuring a total weight of the droplets on the medium for each discharge, and a discharge From the difference of the total weight for each, the step of calculating the droplet discharge amount for each discharge order is compared with the droplet discharge amount for each discharge order, and a function of the discharge amount with respect to the discharge order is derived. And a method that is a function of the discharge amount defined by the process including the process.
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体とを相対的に移動させながら、前記複数のノズルの各々から前記液滴着弾領域内に液滴を吐出する液滴吐出方法であって、前記複数のノズルの各々から前記液滴を吐出する際に、前記複数のノズルのうち隣り合う前記ノズルの吐出状態に関する吐出量情報に基づいて前記液滴の吐出量を補正する、液滴吐出方法が提供される。
 この方法によれば、隣り合うノズル同士の動作に伴う容量変化などの構造的クロストークによって生じる液滴の吐出量のばらつきを補正することができ、均一な量で液滴を吐出することができる。
According to the aspect of the present invention, the liquid droplet ejection head having a plurality of nozzles and the substrate having the droplet landing area are relatively moved, and the liquid is discharged from each of the plurality of nozzles into the droplet landing area. A liquid droplet ejection method for ejecting liquid droplets, wherein when the liquid droplets are ejected from each of the plurality of nozzles, the liquid based on ejection amount information relating to the ejection state of the adjacent nozzles of the plurality of nozzles A droplet discharge method for correcting the droplet discharge amount is provided.
According to this method, it is possible to correct variations in droplet discharge amount caused by structural crosstalk such as a change in capacity caused by operation between adjacent nozzles, and it is possible to discharge droplets in a uniform amount. .
 前記複数のノズルは、第1のノズルと、前記第1のノズルの両隣のノズルである第2のノズル、及び第3のノズルを含み、前記隣り合うノズルの吐出状態に関する吐出量情報は、第1のノズルの両隣の第2のノズル及び第3のノズルから液滴を吐出させない状態で前記第1のノズルから液滴を吐出して単独吐出時の吐出量を測定する工程と、第1のノズルと前記第2のノズルから同時に液滴を吐出して前記第1のノズルの吐出量を測定し、測定した前記第1のノズルの吐出量と前記単独吐出時の吐出量とを比較することで、単独吐出時の吐出量に対する片側同時吐出時の吐出量の関数を取得する工程と、前記第1から第3のノズルから同時に液滴を吐出して前記第1のノズルの吐出量を測定し、測定した前記第1のノズルの吐出量と前記単独吐出時の吐出量とを比較することで、単独吐出時の吐出量に対する両側同時吐出時の吐出量の関数を取得する工程と、を含む工程により規定される吐出量の関数である方法としてもよい。 The plurality of nozzles include a first nozzle, a second nozzle that is a nozzle on both sides of the first nozzle, and a third nozzle. Discharge amount information regarding the discharge state of the adjacent nozzles is A step of discharging droplets from the first nozzle in a state where droplets are not discharged from both the second nozzle and the third nozzle adjacent to one nozzle, and measuring a discharge amount at the time of single discharge; Measuring the discharge amount of the first nozzle by simultaneously discharging droplets from the nozzle and the second nozzle, and comparing the measured discharge amount of the first nozzle with the discharge amount at the time of the single discharge. The step of obtaining the function of the discharge amount at the time of one-side simultaneous discharge with respect to the discharge amount at the time of single discharge, and the discharge amount of the first nozzle by simultaneously discharging droplets from the first to third nozzles are measured. The measured discharge amount of the first nozzle and the simple As a method that is a function of the discharge amount defined by the process including the step of obtaining the function of the discharge amount at the time of both-side simultaneous discharge with respect to the discharge amount at the time of single discharge by comparing the discharge amount at the time of discharge Good.
 前記複数のノズルの各々から前記液滴を吐出する際に、前記複数のノズルのうち同時に液滴を吐出する前記ノズルの数に関する吐出量情報に基づいて前記液滴の吐出量を補正する方法としてもよい。
 この方法によれば、使用ノズル数の変化に伴う吐出量のばらつきを補正することができる。
As a method of correcting the droplet discharge amount based on discharge amount information regarding the number of the nozzles that simultaneously discharge droplets among the plurality of nozzles when discharging the droplets from each of the plurality of nozzles. Also good.
According to this method, it is possible to correct the variation in the ejection amount accompanying the change in the number of nozzles used.
 前記液滴吐出ヘッドは、前記複数のノズルの各々に設けられた駆動素子と、前記駆動素子に駆動電圧を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する選択回路と、を有しており、前記複数のノズルの各々から前記液滴を吐出する際に、前記駆動素子に接続される前記駆動回路に関する吐出情報に基づいて前記液滴の吐出量を補正する方法としてもよい。
 この方法によれば、駆動回路の個体差に起因する吐出量のばらつきを補正することができる。
The droplet discharge head includes a driving element provided in each of the plurality of nozzles, a plurality of driving circuits that supply a driving voltage to the driving element, and a selection circuit that selectively connects the driving element and the driving circuit. And, when ejecting the droplets from each of the plurality of nozzles, correcting the ejection amount of the droplets based on ejection information relating to the drive circuit connected to the drive element It is good.
According to this method, it is possible to correct variations in the ejection amount due to individual differences in the drive circuit.
 前記液滴吐出ヘッドは、前記複数のノズルの各々に設けられた駆動素子と、前記駆動素子に駆動電圧を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する選択回路と、を有しており、前記複数のノズルの各々から前記液滴を吐出する際に、前記駆動回路ごとの前記駆動素子の接続数に関する吐出情報に基づいて前記液滴の吐出量を補正する方法としてもよい。
 この方法によれば、駆動回路ごとの駆動ノズル数の差に伴う吐出量のばらつきを補正することができる。
The droplet discharge head includes a driving element provided in each of the plurality of nozzles, a plurality of driving circuits that supply a driving voltage to the driving element, and a selection circuit that selectively connects the driving element and the driving circuit. When the droplets are ejected from each of the plurality of nozzles, the ejection amount of the droplets is corrected based on ejection information regarding the number of connection of the drive elements for each of the drive circuits. It is good also as a method.
According to this method, it is possible to correct the variation in the ejection amount due to the difference in the number of drive nozzles for each drive circuit.
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体を支持するステージと、前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、前記複数のノズルのうち少なくとも一つのノズルから複数の液滴を吐出する際に、前記複数の液滴の各々の吐出順番に関する吐出量情報に基づいて、前記複数の液滴の各々の吐出量を補正する制御装置と、を有する、液滴吐出装置が提供される。
 この構成によれば、連続吐出時のノズルメニスカスの残留振動による液滴の吐出量のばらつきを補正することができ、均一な量で液滴を吐出することができる液滴吐出装置が提供される。
According to an aspect of the present invention, a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, a drive device that relatively moves the droplet discharge head and the stage, and When discharging a plurality of droplets from at least one of the plurality of nozzles, the discharge amount of each of the plurality of droplets is corrected based on the discharge amount information regarding the discharge order of each of the plurality of droplets. There is provided a droplet discharge device having a control device.
According to this configuration, it is possible to correct a variation in droplet ejection amount due to residual vibration of the nozzle meniscus during continuous ejection, and to provide a droplet ejection device that can eject droplets in a uniform amount. .
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体を支持するステージと、前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、前記複数のノズルの各々から吐出する液滴の吐出量を、前記複数の液滴の各々のうち隣り合う前記ノズルの吐出状態に関する吐出量情報に基づいて補正する制御装置と、を有する、液滴吐出装置が提供される。
 この構成によれば、隣り合うノズル同士の動作に伴う容量変化などの構造的クロストークによって生じる液滴の吐出量のばらつきを補正することができ、均一な量で液滴を吐出することができる液滴吐出装置が提供される。
According to an aspect of the present invention, a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, a drive device that relatively moves the droplet discharge head and the stage, and And a control device that corrects a discharge amount of a droplet discharged from each of the plurality of nozzles based on discharge amount information regarding a discharge state of the adjacent nozzle among each of the plurality of droplets. An apparatus is provided.
According to this configuration, it is possible to correct a variation in droplet discharge amount caused by structural crosstalk such as a change in capacity caused by operation between adjacent nozzles, and to discharge droplets in a uniform amount. A droplet discharge device is provided.
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体を支持するステージと、前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、前記複数のノズルの各々から吐出する液滴の吐出量を、前記複数の液滴の各々のうち同時に液滴を吐出する前記ノズルの数に関する吐出量情報に基づいて前記液滴の吐出量を補正する制御装置と、を有する、液滴吐出装置が提供される。
 この構成によれば、使用ノズル数の変化に伴う吐出量のばらつきを補正することができる。
According to an aspect of the present invention, a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, a drive device that relatively moves the droplet discharge head and the stage, and The ejection amount of droplets ejected from each of the plurality of nozzles is corrected based on ejection amount information relating to the number of nozzles that simultaneously eject droplets out of each of the plurality of droplets. A droplet ejection device having a control device.
According to this configuration, it is possible to correct the variation in the ejection amount accompanying the change in the number of nozzles used.
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体を支持するステージと、前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、を備え、前記液滴吐出ヘッドは、前記ノズルの各々に設けられた駆動素子と、前記駆動素子に駆動電圧を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する選択回路と、を有し、前記ノズルから前記液滴を吐出する際に、前記駆動素子に接続される前記駆動回路に関する吐出情報に基づいて前記液滴の吐出量を補正する制御装置を有する、液滴吐出装置が提供される。
 この構成によれば、駆動回路の個体差に起因する吐出量のばらつきを補正することができる。
According to an aspect of the present invention, a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, and a drive device that relatively moves the droplet discharge head and the stage. The droplet discharge head includes a drive element provided in each of the nozzles, a plurality of drive circuits that supply a drive voltage to the drive element, and a selection circuit that selectively connects the drive element and the drive circuit A droplet having a control device that corrects the ejection amount of the droplet based on ejection information related to the drive circuit connected to the drive element when the droplet is ejected from the nozzle. A dispensing device is provided.
According to this configuration, it is possible to correct variations in the ejection amount due to individual differences in the drive circuit.
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体を支持するステージと、前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、を備え、前記液滴吐出ヘッドは、前記ノズルの各々に設けられた駆動素子と、前記駆動素子に駆動信号を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する駆動信号選択回路と、を有し、前記ノズルから前記液滴を吐出する際に、前記駆動回路ごとの前記駆動素子の接続数に関する吐出情報に基づいて前記液滴の吐出量を補正する制御装置を有する、液滴吐出装置が提供される。
 この構成によれば、駆動回路ごとの駆動ノズル数の差に伴う吐出量のばらつきを補正することができる。
According to an aspect of the present invention, a droplet discharge head having a plurality of nozzles, a stage that supports a substrate having a droplet landing area, and a drive device that relatively moves the droplet discharge head and the stage. The droplet discharge head includes a drive element provided in each of the nozzles, a plurality of drive circuits that supply a drive signal to the drive element, and a drive signal that selectively connects the drive element and the drive circuit And a control circuit that corrects the ejection amount of the droplet based on ejection information relating to the number of connections of the drive elements for each of the drive circuits when the droplet is ejected from the nozzle. A droplet discharge device is provided.
According to this configuration, it is possible to correct the variation in the ejection amount due to the difference in the number of drive nozzles for each drive circuit.
 本発明の態様によれば、複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体とを相対的に移動させながら、前記ノズルから前記液滴着弾領域内に液滴を吐出する動作をコンピューターに実行させるプログラムであって、上記の吐出量の補正動作を実行するステップを有する、プログラムが提供される。
 この構成によれば、液滴吐出装置における吐出量ばらつきを効果的に補正することができる。
According to the aspect of the present invention, a droplet is discharged from the nozzle into the droplet landing region while relatively moving a droplet discharge head having a plurality of nozzles and a substrate having a droplet landing region. There is provided a program for causing a computer to execute an operation, which includes a step of executing the above-described discharge amount correction operation.
According to this configuration, it is possible to effectively correct the discharge amount variation in the droplet discharge device.
液滴が吐出される基板の平面図。The top view of the board | substrate where a droplet is discharged. 液滴が吐出される基板の断面図。Sectional drawing of the board | substrate from which a droplet is discharged. 液滴吐出装置の要部を示す斜視図。The perspective view which shows the principal part of a droplet discharge apparatus. ヘッドユニットにおける液滴吐出ヘッドの配置構成を示す平面図。FIG. 3 is a plan view showing an arrangement configuration of droplet discharge heads in the head unit. 液滴吐出ヘッドの駆動に係る液滴吐出装置の電気的構成を示す図。FIG. 3 is a diagram showing an electrical configuration of a droplet discharge device related to driving of a droplet discharge head. 駆動信号および制御信号のタイミング図。The timing diagram of a drive signal and a control signal. 駆動信号の設定を行うための装置構成を示すブロック図。The block diagram which shows the apparatus structure for performing the setting of a drive signal. 実施形態の液滴吐出方法を示すフローチャート。5 is a flowchart illustrating a droplet discharge method according to the embodiment. 基準吐出量を規定する工程の説明図。Explanatory drawing of the process which prescribes | regulates a reference | standard discharge amount. ノズル毎の吐出量の分布を示すグラフ。The graph which shows distribution of the discharge amount for every nozzle. 液滴の吐出量に対する隣り合うノズルの影響に関する説明図。Explanatory drawing regarding the influence of the adjacent nozzle with respect to the discharge amount of a droplet. 連続吐出したときの吐出量変動に関する説明図。Explanatory drawing regarding the discharge amount fluctuation | variation when discharging continuously. 実施例における吐出パターンを示す図。The figure which shows the discharge pattern in an Example.
 以下、図面を用いて本発明の実施の形態について説明する。
 なお、本発明の範囲は、以下の実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で任意に変更可能である。また、以下の図面においては、各構成をわかりやすくするために、実際の構造と各構造における縮尺や数等を異ならせる場合がある。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The scope of the present invention is not limited to the following embodiment, and can be arbitrarily changed within the scope of the technical idea of the present invention. Moreover, in the following drawings, in order to make each structure easy to understand, the actual structure may be different from the scale, number, or the like in each structure.
 (基板(基体))
 本実施形態の液滴吐出方法において使用される基板(基体)について、図1および図2を参照して説明する。図1は液滴が吐出される基板の平面図である。図2は、液滴が吐出される基板の断面図である。
(Substrate (base))
A substrate (base) used in the droplet discharge method of this embodiment will be described with reference to FIGS. FIG. 1 is a plan view of a substrate onto which droplets are discharged. FIG. 2 is a cross-sectional view of a substrate onto which droplets are discharged.
 図1、図2に示す基板1はカラー表示装置に用いられる。基板1は、R(赤)、G(緑)、B(青)を構成する複数の液滴着弾領域(例えば、画素)2と、液滴着弾領域2の間の領域に形成されたバンク3とを有する。図1に示す例では、液滴着弾領域2は、いわゆるストライプ配列であるが、デルタ配列やモザイク配列であってもよい。液滴着弾領域2は矩形に限られず、三角形状、ハニカム形状等でもよい。 1 and 2 is used for a color display device. A substrate 1 includes a bank 3 formed in a region between a plurality of droplet landing regions (for example, pixels) 2 constituting R (red), G (green), and B (blue) and a droplet landing region 2. And have. In the example shown in FIG. 1, the droplet landing area 2 has a so-called stripe arrangement, but may have a delta arrangement or a mosaic arrangement. The droplet landing area 2 is not limited to a rectangle, but may be a triangle or a honeycomb.
 基板1は、例えばガラスからなる基板本体4を有する。基板本体4上にバンク3によって区画された複数の区画領域6が形成されている。これらのバンク3により囲まれた区画領域6内に、液滴を吐出することで、各液滴着弾領域2内に着色膜や発光層を形成する。バンク3の下部には、遮光材料からなる遮光部5が形成されていてもよい。本実施形態の場合、複数の区画領域6は、全て同じ形状、大きさである。 The substrate 1 has a substrate body 4 made of glass, for example. A plurality of partitioned areas 6 partitioned by the banks 3 are formed on the substrate body 4. A colored film or a light emitting layer is formed in each droplet landing region 2 by discharging droplets into the partition region 6 surrounded by these banks 3. A light shielding portion 5 made of a light shielding material may be formed in the lower portion of the bank 3. In the case of the present embodiment, the plurality of partitioned areas 6 have the same shape and size.
 基板1において、液滴着弾領域2の露出面に親液化処理を施してもよい。またバンク3の表面に撥液化処理を施してもよい。バンク3の撥液化処理は、例えば、酸素やフッ化炭素のプラズマ表面処理により実現できる。このように選択的に親液化領域(液滴着弾領域2の露出面)と撥液化領域(バンク3の表面)を形成することで、基板1に着弾した液滴が液滴着弾領域2の外に溢れるのを抑制することができる。 In the substrate 1, the exposed surface of the droplet landing area 2 may be subjected to a lyophilic process. Further, the surface of the bank 3 may be subjected to a liquid repellency treatment. The liquid repellent treatment of the bank 3 can be realized by, for example, plasma surface treatment of oxygen or fluorocarbon. By selectively forming the lyophilic region (exposed surface of the droplet landing region 2) and the lyophobic region (the surface of the bank 3) in this manner, the droplets that have landed on the substrate 1 are outside the droplet landing region 2. Can be prevented from overflowing.
 (液滴吐出装置)
 次に、液滴吐出装置の構成について図3及び図4を参照して説明する。図3は、液滴吐出装置の要部を示す斜視図である。図4は、ヘッドユニットにおける液滴吐出ヘッドの配置構成を示す平面図である。
(Droplet discharge device)
Next, the configuration of the droplet discharge device will be described with reference to FIGS. FIG. 3 is a perspective view showing a main part of the droplet discharge device. FIG. 4 is a plan view showing the arrangement of the droplet discharge heads in the head unit.
 図3に示す液滴吐出装置200は、直線的に設けられた1対のガイドレール201と、ガイドレール201の内部に設けられたエアスライダーとリニアモーター(図示せず)により主走査方向に移動する主走査移動台203とを備えている。また液滴吐出装置200は、ガイドレール201の上方においてガイドレール201に直交するように直線的に設けられた1対のガイドレール202と、ガイドレール202の内部に設けられたエアスライダとリニアモーター(図示せず)により副走査方向に沿って移動する副走査移動台204とを備えている。 3 is moved in the main scanning direction by a pair of linearly provided guide rails 201, an air slider provided inside the guide rail 201, and a linear motor (not shown). Main scanning moving table 203. Further, the droplet discharge device 200 includes a pair of guide rails 202 linearly provided so as to be orthogonal to the guide rails 201 above the guide rails 201, an air slider and a linear motor provided inside the guide rails 202. (Not shown) and a sub-scanning moving base 204 that moves along the sub-scanning direction.
 主走査移動台203上には、基板1を載置するためのステージ205が設けられている。ステージ205は前述の基板1を吸着固定する機構を有する。ステージ205は、回転機構207によって基板1内の基準軸を主走査方向、副走査方向に位置合わせする。 A stage 205 for placing the substrate 1 is provided on the main scanning moving table 203. The stage 205 has a mechanism for sucking and fixing the substrate 1 described above. The stage 205 aligns the reference axis in the substrate 1 with the rotation mechanism 207 in the main scanning direction and the sub-scanning direction.
 副走査移動台204は、回転機構208を介して吊り下げ式に取り付けられたキャリッジ209を備えている。キャリッジ209は、複数の液滴吐出ヘッド11,12(図4参照)を備えるヘッドユニット10と、液滴吐出ヘッド11,12に液滴を供給するための液滴供給機構(図示せず)と、液滴吐出ヘッド11,12の電気的な駆動制御を行うための制御回路基板30(図5参照)とを備えている。 The sub-scanning moving table 204 includes a carriage 209 that is attached in a suspended manner via a rotation mechanism 208. The carriage 209 includes a head unit 10 including a plurality of droplet discharge heads 11 and 12 (see FIG. 4), and a droplet supply mechanism (not shown) for supplying droplets to the droplet discharge heads 11 and 12. And a control circuit board 30 (see FIG. 5) for performing electrical drive control of the droplet discharge heads 11 and 12.
 図4に示すように、ヘッドユニット10は、R,G,Bに対応した液滴をノズル20から吐出する液滴吐出ヘッド11,12を備えており、液滴吐出ヘッド11,12における複数のノズル20はノズル群21A,21Bを構成している。ノズル群21A,21Bは、それぞれ所定のピッチ(例えば180DPI)のライン配列をなしており、さらに合わせて千鳥配列をなす配置とされる。また、ノズル群21A,21Bの配列の方向は副走査方向に一致する。 As shown in FIG. 4, the head unit 10 includes droplet discharge heads 11 and 12 that discharge droplets corresponding to R, G, and B from the nozzle 20. The nozzle 20 constitutes a nozzle group 21A, 21B. The nozzle groups 21A and 21B each have a line arrangement with a predetermined pitch (for example, 180 DPI), and are further arranged in a staggered arrangement. In addition, the direction of arrangement of the nozzle groups 21A and 21B coincides with the sub-scanning direction.
 液滴吐出ヘッド11と液滴吐出ヘッド12とは互いに副走査方向に位置をずらして配置され、それぞれのノズル群21A,21Bが、互いに吐出可能範囲を補完して連続した定ピッチの走査軌跡を描く。また、ノズル群21A,21Bの端部の数個分のノズル20は、その特性の特異性に鑑みて使用されないダミーノズルである。 The droplet discharge head 11 and the droplet discharge head 12 are arranged with their positions shifted in the sub-scanning direction, and each nozzle group 21A, 21B complements the dischargeable range and has a continuous constant pitch scanning locus. Draw. Further, several nozzles 20 at the ends of the nozzle groups 21A and 21B are dummy nozzles that are not used in view of the peculiarities of the characteristics.
 液滴吐出ヘッド11,12内におけるノズル20に連通する液室(キャビティ)は、圧電素子16(図5参照)の駆動によって容積が可変する。圧電素子16に駆動信号を供給してキャビティ内の容積を制御することで、キャビティ内の液圧を制御し、ノズル20から液滴を吐出させる。 The volume of the liquid chamber (cavity) communicating with the nozzle 20 in the droplet discharge heads 11 and 12 is variable by driving the piezoelectric element 16 (see FIG. 5). By supplying a drive signal to the piezoelectric element 16 to control the volume in the cavity, the liquid pressure in the cavity is controlled and droplets are ejected from the nozzle 20.
 このように液滴吐出装置200では、主走査移動台203の移動によりノズル群21A,21Bを基板1に対して主走査方向に走査させると共に、ノズル20毎の吐出のON/OFF制御(以下、吐出制御とする)を行うことにより、基板1上におけるノズル20の走査軌跡に沿った位置に液滴を配置することができる。 As described above, in the droplet discharge device 200, the nozzle groups 21A and 21B are scanned in the main scanning direction with respect to the substrate 1 by the movement of the main scanning moving table 203, and the discharge ON / OFF control for each nozzle 20 (hereinafter, referred to as the nozzle 20). By performing the discharge control, it is possible to dispose droplets at positions along the scanning locus of the nozzle 20 on the substrate 1.
 なお、液滴吐出装置の構成は上述の態様に限定されるものではない。例えば、ノズル群21A,21Bの配列方向を副走査方向から傾けて、ノズル20の走査軌跡のピッチがノズル群21A,21B内におけるノズル20間のピッチに対して狭くなるように構成することもできる。また、ヘッドユニット10における液滴吐出ヘッド11,12の数やその配置構成なども適宜変更することができる。また、液滴吐出ヘッド11,12の駆動方式として、例えば、キャビティに加熱素子を備えたいわゆるサーマル方式などを採用することもできる。 Note that the configuration of the droplet discharge device is not limited to the above-described embodiment. For example, the arrangement direction of the nozzle groups 21A and 21B can be inclined from the sub-scanning direction so that the pitch of the scanning locus of the nozzles 20 is narrower than the pitch between the nozzles 20 in the nozzle groups 21A and 21B. . Further, the number of the droplet discharge heads 11 and 12 in the head unit 10 and the arrangement configuration thereof can be appropriately changed. Further, as a driving method of the droplet discharge heads 11 and 12, for example, a so-called thermal method in which a heating element is provided in a cavity can be adopted.
 (液滴吐出装置の電気的構成および電気的動作)
 次に、図5、図6を参照して、本発明に係る液滴吐出装置の電気的な構成および動作について説明する。
 図5は、液滴吐出ヘッドの駆動に係る液滴吐出装置の電気的構成を示す図である。図6は、駆動信号および制御信号のタイミング図である。
(Electric configuration and electrical operation of droplet discharge device)
Next, with reference to FIGS. 5 and 6, the electrical configuration and operation of the liquid droplet ejection apparatus according to the present invention will be described.
FIG. 5 is a diagram showing an electrical configuration of a droplet discharge device related to driving of the droplet discharge head. FIG. 6 is a timing diagram of the drive signal and the control signal.
 図5に示すように、液滴吐出ヘッド11(12)は、ノズル群21A(21B)のノズル20(図4参照)毎に設けられた圧電素子16と、各圧電素子16への駆動信号COMの供給/非供給の切り替えを行うためのスイッチング回路17と、各圧電素子16へ駆動信号を供給する信号ラインCOM1~COM4を選択するための駆動信号選択回路18と、を備えている。液滴吐出ヘッド11(12)は、制御回路基板30と電気的に接続されている。 As shown in FIG. 5, the droplet discharge head 11 (12) includes a piezoelectric element 16 provided for each nozzle 20 (see FIG. 4) of the nozzle group 21 </ b> A (21 </ b> B) and a drive signal COM to each piezoelectric element 16. A switching circuit 17 for switching between supply / non-supply of these and a drive signal selection circuit 18 for selecting signal lines COM1 to COM4 for supplying drive signals to the piezoelectric elements 16. The droplet discharge head 11 (12) is electrically connected to the control circuit board 30.
 制御回路基板30は、それぞれ独立した駆動信号COMを生成するD/Aコンバーター(DAC)からなる駆動回路31A~31Dと、駆動回路31A~31Dが生成する駆動信号COMのスルーレートデータ(波形データWD1~波形データWD4)の格納メモリーを内部に有する波形データ選択回路32と、外部から受信される吐出制御データを格納するためのデータメモリー33と、を備えている。制御回路基板30における信号ラインCOM1~COM4には、駆動回路31A~31Dで生成された駆動信号がそれぞれ出力される。 The control circuit board 30 includes drive circuits 31A to 31D including D / A converters (DACs) that generate independent drive signals COM, and slew rate data (waveform data WD1) of the drive signals COM generated by the drive circuits 31A to 31D. A waveform data selection circuit 32 having a storage memory for waveform data WD4) and a data memory 33 for storing discharge control data received from the outside. The drive signals generated by the drive circuits 31A to 31D are output to the signal lines COM1 to COM4 in the control circuit board 30, respectively.
 ノズル群21A(21B)において、圧電素子16の一方の電極16cは、駆動回路31A~31Dのグランドライン(GND)に接続されている。また、圧電素子16の他方の電極(以下、セグメント電極16sとする)は、スイッチング回路17、駆動信号選択回路18を介して、信号ラインCOM1~COM4に接続されている。スイッチング回路17、駆動信号選択回路18、波形データ選択回路32には、クロック信号(CLK)や各吐出タイミングに対応したラッチ信号(LAT)が入力される。 In the nozzle group 21A (21B), one electrode 16c of the piezoelectric element 16 is connected to a ground line (GND) of the drive circuits 31A to 31D. The other electrode (hereinafter referred to as segment electrode 16s) of the piezoelectric element 16 is connected to the signal lines COM1 to COM4 via the switching circuit 17 and the drive signal selection circuit 18. A clock signal (CLK) and a latch signal (LAT) corresponding to each ejection timing are input to the switching circuit 17, the drive signal selection circuit 18, and the waveform data selection circuit 32.
 データメモリー33には、液滴吐出ヘッド11(12)の走査位置に応じて周期的に設定される吐出タイミング毎に、以下のデータが格納されている。
 (1)圧電素子16への駆動信号COMの供給/非供給(ON/OFF)の切り替えを規定する吐出データ(SIA)
 (2)各圧電素子16に対応した信号ラインCOM1~COM4を規定する駆動信号選択データ(SIB)
 (3)駆動回路31A~31Dに入力される波形データWD1~WD4の種別を規定する波形番号データ(WN)
The data memory 33 stores the following data for each ejection timing that is periodically set according to the scanning position of the droplet ejection head 11 (12).
(1) Discharge data (SIA) that defines switching of supply / non-supply (ON / OFF) of the drive signal COM to the piezoelectric element 16
(2) Drive signal selection data (SIB) that defines the signal lines COM1 to COM4 corresponding to each piezoelectric element 16
(3) Waveform number data (WN) defining the type of waveform data WD1 to WD4 input to the drive circuits 31A to 31D
 本実施形態においては、吐出データ(SIA)は、1ノズルあたり1ビット(0,1)、駆動信号選択データ(SIB)は、1ノズルあたり2ビット(0,1,2,3)、波形番号データ(WN)は、1D/Aコンバーターあたり7ビット(0~127)で構成されている。これらのデータ構造については適宜変更が可能である。 In the present embodiment, ejection data (SIA) is 1 bit (0, 1) per nozzle, drive signal selection data (SIB) is 2 bits (0, 1, 2, 3) per nozzle, waveform number Data (WN) is composed of 7 bits (0 to 127) per 1D / A converter. These data structures can be changed as appropriate.
 上述の構成において、各吐出タイミングに係る駆動制御は次のように行われる。
 図6に示すタイミングt1~t2の期間において、吐出データ(SIA)、駆動信号選択データ(SIB)、波形番号データ(WN)が、それぞれシリアル信号化されて、スイッチング回路17、駆動信号選択回路18、波形データ選択回路32に送信される。
In the above-described configuration, drive control related to each ejection timing is performed as follows.
In the period from the timing t1 to t2 shown in FIG. 6, the ejection data (SIA), the drive signal selection data (SIB), and the waveform number data (WN) are converted into serial signals, respectively, and the switching circuit 17 and the drive signal selection circuit 18 are converted. Is transmitted to the waveform data selection circuit 32.
 タイミングt2において各データがラッチされることで、吐出(ON)に係る各圧電素子16のセグメント電極16sが、駆動信号選択データ(SIB)で指定された各信号ラインCOM1~COM4に接続された状態となる。例えば、駆動信号選択データ(SIB)が0,1,2,3である場合、対応する圧電素子16のセグメント電極16sはそれぞれ信号ラインCOM1、信号ラインCOM2、信号ラインCOM3、信号ラインCOM4に接続される。また、駆動回路31A~31Dの生成に係る駆動信号の波形データWD1~WD4が設定される。 Each data is latched at timing t2, so that the segment electrode 16s of each piezoelectric element 16 related to ejection (ON) is connected to each signal line COM1 to COM4 designated by the drive signal selection data (SIB). It becomes. For example, when the drive signal selection data (SIB) is 0, 1, 2, 3, the segment electrodes 16s of the corresponding piezoelectric element 16 are connected to the signal line COM1, the signal line COM2, the signal line COM3, and the signal line COM4, respectively. The In addition, waveform data WD1 to WD4 of drive signals related to generation of the drive circuits 31A to 31D are set.
 タイミングt3~t4、t4~t5、t5~t6の各期間においては、タイミングt2で設定された波形データに従い、それぞれ電位上昇、電位保持、電位降下の一連のステップで駆動信号COMが生成される。そして、信号ラインCOM1~COM4とそれぞれ接続された状態にある圧電素子16に、生成された駆動信号が供給され、ノズルに連通するキャビティの容積(圧力)制御が行われる。 In each period of timing t3 to t4, t4 to t5, and t5 to t6, the drive signal COM is generated in a series of steps of increasing potential, maintaining potential, and decreasing potential according to the waveform data set at timing t2. Then, the generated drive signal is supplied to the piezoelectric element 16 connected to the signal lines COM1 to COM4, and volume (pressure) control of the cavity communicating with the nozzle is performed.
 ここで、タイミングt3~t4における電位上昇成分はキャビティを膨張させ、インクをノズル内方に引き込む役割を果たす。また、タイミングt5~t6における電位降下成分は、キャビティを収縮させ、インクをノズル外に押し出して吐出させる役割を果たす。 Here, the potential increasing component at the timings t3 to t4 expands the cavity and draws ink into the nozzle. The potential drop component at timings t5 to t6 plays a role of causing the cavity to contract and ejecting ink by pushing it out of the nozzle.
 駆動信号COMにおける電位上昇、電位保持、電位降下に係る時間成分、電圧成分は、その供給によって吐出される液滴の吐出量に密接に依存している。とりわけ、圧電方式のヘッドでは、電圧成分の変化に対して吐出量が良好な線形性を示すため、タイミングt3~t6における電圧差を駆動電圧Vhとして規定し、これを吐出量制御の条件として利用することができる。 The time component and the voltage component related to the potential increase, potential retention, and potential decrease in the drive signal COM closely depend on the discharge amount of the droplets discharged by the supply. In particular, in the piezoelectric head, since the discharge amount exhibits a good linearity with respect to the change of the voltage component, the voltage difference at timings t3 to t6 is defined as the drive voltage Vh, and this is used as the discharge amount control condition. can do.
 なお、駆動信号COMは、本実施形態で示すような単純な台形波に限られるものではなく、公知の様々な形状のものを適宜採用することができる。また、異なる駆動方式(例えばサーマル方式)を採用する場合などにおいて、駆動信号のパルス幅(時間成分)を吐出量制御の条件として利用することも可能である。 The drive signal COM is not limited to a simple trapezoidal wave as shown in the present embodiment, and various known shapes can be adopted as appropriate. Further, when a different driving method (for example, a thermal method) is adopted, the pulse width (time component) of the driving signal can be used as a condition for controlling the ejection amount.
 本実施形態では、駆動電圧Vhを段階的に違えた複数種の波形データを用意し、駆動回路31A~31Dにそれぞれ独立した波形データWD1~WD4を入力することにより、各信号ラインCOM1~COM4にそれぞれ異なる駆動電圧Vhの駆動信号COMを出力することが可能である。用意できる波形データの種類は、波形番号データ(WN)の情報量(7ビット)に相当する128種類であり、例えばこれを0.1V刻みの駆動電圧Vhに対応させている。 In the present embodiment, a plurality of types of waveform data having different drive voltages Vh are prepared, and independent waveform data WD1 to WD4 are input to the drive circuits 31A to 31D, respectively, so that each signal line COM1 to COM4 is input. It is possible to output drive signals COM having different drive voltages Vh. The types of waveform data that can be prepared are 128 types corresponding to the information amount (7 bits) of the waveform number data (WN), for example, corresponding to the drive voltage Vh in increments of 0.1V.
 本実施形態の液滴吐出装置200は、ノズルに対応して設けられる圧電素子16と信号ラインCOM1~COM4との対応関係を規定する駆動信号選択データ(SIB)と、各信号ラインCOM1~COM4と駆動信号の種類(駆動電圧Vh)との対応関係を規定する波形番号データ(WN)とを適宜に設定することにより、ノズルから吐出する液滴の吐出量を制御することができる。
 なお、本実施形態の液滴吐出装置200では、吐出タイミングごとに駆動信号選択データ(SIB)と波形番号データ(WN)を更新可能な構成であるから、吐出データ(SIA)の変化に対応させて駆動信号を精細に設定することも可能である。
The droplet discharge device 200 of the present embodiment includes drive signal selection data (SIB) that defines the correspondence between the piezoelectric elements 16 provided corresponding to the nozzles and the signal lines COM1 to COM4, and the signal lines COM1 to COM4. By appropriately setting the waveform number data (WN) that defines the correspondence with the type of drive signal (drive voltage Vh), the discharge amount of the liquid droplets discharged from the nozzle can be controlled.
In the droplet discharge device 200 of the present embodiment, the drive signal selection data (SIB) and the waveform number data (WN) can be updated at each discharge timing, so that the change in the discharge data (SIA) is made to correspond. It is also possible to set the drive signal finely.
 (液滴吐出方法)
 次に、図7~図12を参照して、本実施形態の液滴吐出方法について説明する。
 図7は、駆動信号の設定を行うための装置構成を示すブロック図である。図8は、本実施形態の液滴吐出方法を示すフローチャートである。図9は、基準吐出量を規定する工程の説明図である。図10は、ノズル毎の吐出量の分布を示すグラフである。図11は、液滴の吐出量に対する隣り合うノズルの影響に関する説明図である。図12は、連続吐出したときの吐出量変動に関する説明図である。
(Droplet ejection method)
Next, the droplet discharge method of the present embodiment will be described with reference to FIGS.
FIG. 7 is a block diagram showing an apparatus configuration for setting a drive signal. FIG. 8 is a flowchart showing the droplet discharge method of this embodiment. FIG. 9 is an explanatory diagram of a process for defining the reference discharge amount. FIG. 10 is a graph showing the distribution of the discharge amount for each nozzle. FIG. 11 is an explanatory diagram regarding the influence of adjacent nozzles on the droplet discharge amount. FIG. 12 is an explanatory diagram relating to the discharge amount variation when continuous discharge is performed.
 [駆動信号の設定装置]
 図7において、駆動信号の設定を行うための設定装置300は、液滴吐出ヘッド11(12)にインクを供給するインク供給装置301と、液滴吐出ヘッド11を駆動する制御回路基板302とを備える。設定装置300は、液滴吐出ヘッド11から吐出されたインクを受けてこれを収容するインク受容容器303と、インク受容容器303の重量を計量する重量計量装置304とを備える。設定装置300は、液滴吐出ヘッド11から吐出されたインクを受けるインク受容基板305と、インク受容基板305を基板面方向に移動させる基板移動装置306と、インク受容基板305上に配置されたインクの体積を測定する体積測定装置307とを備える。設定装置300は、制御回路基板302を介して液滴吐出ヘッド11の駆動を制御し、基板移動装置306の駆動を制御し、重量計量装置304および体積測定装置307の計量動作を制御し、計量結果を基に演算を行うコンピューター308を備えている。
[Drive signal setting device]
In FIG. 7, a setting device 300 for setting a drive signal includes an ink supply device 301 that supplies ink to the droplet discharge head 11 (12), and a control circuit board 302 that drives the droplet discharge head 11. Prepare. The setting device 300 includes an ink receiving container 303 that receives and stores ink discharged from the droplet discharge head 11, and a weight measuring device 304 that measures the weight of the ink receiving container 303. The setting device 300 includes an ink receiving substrate 305 that receives ink ejected from the droplet ejection head 11, a substrate moving device 306 that moves the ink receiving substrate 305 in the substrate surface direction, and ink disposed on the ink receiving substrate 305. And a volume measuring device 307 for measuring the volume of. The setting device 300 controls the driving of the droplet discharge head 11 via the control circuit substrate 302, controls the driving of the substrate moving device 306, controls the weighing operations of the weight measuring device 304 and the volume measuring device 307, and measures the weighing. A computer 308 is provided for performing calculations based on the results.
 制御回路基板302は、図4に示した制御回路基板30に対応する。インク受容容器303は、インクに侵食されない材質のものであれば何でも良いが、開口部にスポンジ等の多孔質部材を配設するなどして、インクの揮発を抑える構成となっていることが好ましい。重量計量装置304には、一般的な電子天秤を用いることができる。また、体積測定装置307には、白色干渉法を用いた三次元形状測定装置などを用いることができる。 The control circuit board 302 corresponds to the control circuit board 30 shown in FIG. The ink receiving container 303 may be made of any material that does not erode by ink, but preferably has a configuration that suppresses volatilization of ink by disposing a porous member such as a sponge in the opening. . A general electronic balance can be used for the weight weighing device 304. As the volume measuring device 307, a three-dimensional shape measuring device using a white interference method can be used.
 設定装置300は、重量計量装置304と体積測定装置307の二種類の計測装置を用い、吐出量を重量または体積として測定することができる。重量計量装置304は、ノズル群全体における平均的な吐出量を高速かつ高精度に測定するのに適している。体積測定装置307は、ノズル個々の吐出量を測定するのに適している。 The setting device 300 can measure the discharge amount as a weight or a volume by using two types of measuring devices, a weight measuring device 304 and a volume measuring device 307. The weight weighing device 304 is suitable for measuring an average discharge amount in the entire nozzle group at high speed and with high accuracy. The volume measuring device 307 is suitable for measuring the discharge amount of each nozzle.
 [液滴吐出方法の詳細]
 次に、本実施形態の液滴吐出方法について具体的に説明する。
 図8に示すように、本実施形態の液滴吐出方法は、液滴吐出装置における各ノズルの吐出情報を測定する吐出情報測定工程ST1と、吐出情報測定工程で測定した吐出情報に基づいて吐出量を設定する吐出量設定工程ST2とを含む。吐出情報測定工程ST1は、いわゆる初期設定の工程であり、液滴吐出ヘッドの交換時やインクの種類を変更したときに実行すればよい。すなわち、製品用の基板への液滴の吐出動作に際しては、吐出情報測定工程ST1で測定された吐出情報に基づいて、吐出量設定工程ST2のみを実行すればよい。
[Details of droplet discharge method]
Next, the droplet discharge method of this embodiment will be specifically described.
As shown in FIG. 8, the droplet discharge method of the present embodiment discharges based on the discharge information measurement step ST1 for measuring discharge information of each nozzle in the droplet discharge device and the discharge information measured in the discharge information measurement step. A discharge amount setting step ST2 for setting the amount. The ejection information measurement step ST1 is a so-called initial setting step, and may be performed when the droplet ejection head is replaced or when the ink type is changed. That is, in the operation of discharging droplets onto the product substrate, only the discharge amount setting step ST2 has to be executed based on the discharge information measured in the discharge information measurement step ST1.
 <吐出情報測定工程>
 吐出情報測定工程ST1は、使用ノズル数に関する吐出情報D1の測定工程ST11と、隣り合うノズルの吐出状態に関する吐出情報D2の測定工程ST12と、連続吐出時の吐出順番に関する吐出情報D3の測定工程ST13と、駆動回路の個体差に関する吐出情報D4の測定工程ST14と、駆動回路の負荷状態に関する吐出情報D5の測定工程ST15と、を含む。
<Discharge information measurement process>
In the discharge information measurement step ST1, the measurement step ST11 of the discharge information D1 related to the number of used nozzles, the measurement step ST12 of the discharge information D2 related to the discharge state of the adjacent nozzles, and the measurement step ST13 of the discharge information D3 related to the discharge order during continuous discharge. And a measurement process ST14 of the discharge information D4 related to the individual difference of the drive circuit, and a measurement process ST15 of the discharge information D5 related to the load state of the drive circuit.
 <使用ノズル数に関する吐出情報D1>
 使用ノズル数に関する吐出情報D1の測定工程ST11では、使用ノズル数に応じた各ノズルの吐出量の分布を測定する。また、測定工程ST11では、各ノズルの平均的な吐出量も算出する。測定工程S11は、液滴吐出ヘッド全体の吐出量平均を測定する工程S1と、基準駆動電圧Vsを算出する工程S2と、相関係数αを算出する工程S3と、各ノズルの吐出量を測定する工程S4と、各ノズルの吐出量の平均値を算出する工程S5と、を含む。
<Discharge information D1 regarding the number of nozzles used>
In the measurement step ST11 of the discharge information D1 related to the number of used nozzles, the distribution of the discharge amount of each nozzle corresponding to the number of used nozzles is measured. In the measurement process ST11, the average discharge amount of each nozzle is also calculated. The measurement step S11 is a step S1 of measuring the average discharge amount of the entire droplet discharge head, a step S2 of calculating the reference drive voltage Vs, a step S3 of calculating the correlation coefficient α, and measuring the discharge amount of each nozzle. Step S4, and step S5 for calculating an average value of the discharge amount of each nozzle.
 まず、吐出量平均を測定する工程S1では、液滴吐出ヘッド11を設定装置300に取り付けた状態において、ノズル群21A内の全てのノズル20(ダミーノズルを除く)における吐出量平均を測定する。具体的には、各ノズル20についてまとまった回数(例えば10万回)の吐出を行い、その総重量を重量計量装置304で計量し、計量結果を除算して測定する。この測定は、2条件の駆動電圧Vh(例えば、20Vと30V)の下でそれぞれ行う。 First, in step S1 of measuring the average discharge amount, the average discharge amount of all nozzles 20 (excluding dummy nozzles) in the nozzle group 21A is measured in a state where the droplet discharge head 11 is attached to the setting device 300. Specifically, ejection is performed a number of times (for example, 100,000 times) for each nozzle 20, the total weight is measured by the weight measuring device 304, and the measurement result is divided and measured. This measurement is performed under two conditions of driving voltage Vh (for example, 20 V and 30 V).
 次に、基準駆動電圧Vsを算出する工程S2では、工程S1で測定した2条件における駆動電圧Vhと吐出量平均との関係を線形補完して、基準吐出量q0(仕様に応じた設計値)の吐出量平均を得るための基準駆動電圧Vsを算出する。相関係数αを算出する工程S3では、駆動電圧Vhに対する吐出量平均の変化率を、吐出量を駆動電圧Vhによって補正する際の相関係数αとして算出する。 Next, in step S2 for calculating the reference drive voltage Vs, the relationship between the drive voltage Vh and the average discharge amount under the two conditions measured in step S1 is linearly complemented to obtain a reference discharge amount q0 (design value according to the specification). The reference drive voltage Vs for obtaining the average discharge amount is calculated. In step S3 for calculating the correlation coefficient α, the rate of change of the average discharge amount with respect to the drive voltage Vh is calculated as the correlation coefficient α when the discharge amount is corrected by the drive voltage Vh.
 次に、各ノズルの吐出量を測定する工程S4では、ノズル群21Aの全圧電素子に対して複数条件の駆動信号を供給して、インク受容基板305に対しインクの吐出を行い、各ノズル20の吐出量を測定する。例えば、図9に示す6つの吐出パターンでインクの吐出を行う。 Next, in step S4 of measuring the discharge amount of each nozzle, a plurality of driving signals are supplied to all the piezoelectric elements of the nozzle group 21A, and ink is discharged to the ink receiving substrate 305. Measure the discharge amount. For example, ink is ejected using the six ejection patterns shown in FIG.
 図9において、(a)は、1つおきのノズル20から1回ずつ液滴を吐出する吐出パターン(1/2Duty,1Shot)、(b)は、2つおきのノズル20から1回ずつ液滴を吐出する吐出パターン(1/3Duty,1Shot)、(c)は、1つおきのノズル20から液滴を2連続吐出する吐出パターン(1/2Duty,2Shot)、(d)は2つおきのノズル20から液滴を2連続吐出する吐出パターン(1/3Duty,2Shot)、(e)は1つおきのノズル20から液滴を3連続吐出する吐出パターン(1/2Duty,3Shot)、(f)は2つおきのノズル20から液滴を3連続吐出する吐出パターン(1/3Duty,3Shot)である。 In FIG. 9, (a) is a discharge pattern (1/2 Duty, 1 Shot) for discharging droplets from every other nozzle 20 once, and (b) is a liquid from each other nozzle 20 once. A discharge pattern (1/3 Duty, 1 Shot) for discharging droplets, (c) is a discharge pattern (1/2 Duty, 2 Shot) for discharging two droplets continuously from every other nozzle 20, and every two (d). (E) is a discharge pattern (1/2 duty, 2shot) in which droplets are continuously discharged from every other nozzle 20, and (e) is a discharge pattern (1/2 duty, 3shot), in which droplets are discharged from every other nozzle 20 three times. f) is an ejection pattern (1/3 Duty, 3 Shot) for ejecting three droplets from every second nozzle 20 continuously.
 インク受容基板305の表面には撥液処理がされているため、各ノズルから吐出されたインクは、それぞれ基板上において独立した半球状の液滴を形成する。そして、この液滴の三次元形状を体積測定装置307で測定し、コンピューター308で測定データを解析することで、吐出量が得られる。 Since the surface of the ink receiving substrate 305 is liquid-repellent, the ink ejected from each nozzle forms independent hemispherical droplets on the substrate. The three-dimensional shape of the droplet is measured by the volume measuring device 307, and the measurement data is analyzed by the computer 308, whereby the discharge amount can be obtained.
 次に、各ノズルの吐出量の平均値を算出する工程S5では、工程S4で測定した各ノズルの吐出量のデータから、各ノズル20の吐出量の平均値又は中央値を算出する。図9に示した6つの吐出パターンでは、使用ノズル数ごと(1/2Duty、1/3Duty)に吐出量の平均値又は中央値を算出する。なお、以下の説明では、各ノズル20の吐出量の平均値を算出した場合を例に挙げて説明するが、各ノズルの吐出量の中央値を算出した場合も同様である。 Next, in step S5 for calculating the average value of the discharge amount of each nozzle, the average value or median value of the discharge amount of each nozzle 20 is calculated from the discharge amount data of each nozzle measured in step S4. In the six discharge patterns shown in FIG. 9, the average value or the median value of the discharge amount is calculated for each number of nozzles used (1/2 duty, 1/3 duty). In the following description, the case where the average value of the discharge amount of each nozzle 20 is calculated will be described as an example, but the same applies to the case where the median value of the discharge amount of each nozzle is calculated.
 工程S5で算出された各ノズルの吐出量の平均値をノズル列の並び方向での空間分布として示すと例えば図10のようになる。図10に示す例の場合、ノズル列の端部付近で吐出量が相対的に多く、ノズル列の中央付近で吐出量が相対的に少ない分布である。また、吐出時の使用ノズル数が多い条件(例えば図9の1/2Duty)では、使用ノズル数が少ない条件(例えば図9の1/3Duty)と比較して吐出量が相対的に多くなる。なお、図10は吐出量分布の一例であり、吐出量の分布は図示以外の形状であってもよい。 FIG. 10 shows, for example, an average value of the discharge amount of each nozzle calculated in step S5 as a spatial distribution in the nozzle row arrangement direction. In the example shown in FIG. 10, the discharge amount is relatively large near the end of the nozzle row, and the discharge amount is relatively small near the center of the nozzle row. Further, in the condition where the number of used nozzles at the time of ejection is large (for example, 1/2 Duty in FIG. 9), the ejection amount is relatively larger than the condition in which the number of used nozzles is small (for example, 1/3 Duty in FIG. 9). FIG. 10 shows an example of the discharge amount distribution, and the distribution of the discharge amount may have a shape other than that illustrated.
 以上により、使用ノズル数に関する吐出情報D1を取得することができる。
 液滴吐出ヘッドのノズルから被吐出物にインクを吐出する場合、図1に示した基板1のように、バンク3で区画され所定の間隔で配列された液滴着弾領域2に対して、一方向に配列された複数のノズルから液滴を吐出する。液滴着弾領域2のピッチは製品によって異なるため、インクの吐出に使用されるノズル(吐出ノズル)と、吐出に使用されないノズル(非吐出ノズル)が必然的に発生する。この場合、走査ごとに吐出ノズルと非吐出ノズルとが変わることになり、全てのノズルが同時に使用されることはない。また、製品の種類が変わった場合にも走査ごとに吐出ノズルと非吐出ノズルが変わることになる。
As described above, the discharge information D1 regarding the number of used nozzles can be acquired.
When ink is ejected from a nozzle of a droplet ejection head onto an object to be ejected, as with the substrate 1 shown in FIG. 1, a single droplet is applied to a droplet landing area 2 partitioned by a bank 3 and arranged at a predetermined interval. Droplets are ejected from a plurality of nozzles arranged in the direction. Since the pitch of the droplet landing area 2 varies depending on the product, a nozzle (discharge nozzle) used for discharging ink and a nozzle (non-discharge nozzle) not used for discharge are inevitably generated. In this case, the ejection nozzles and the non-ejection nozzles change every scan, and all the nozzles are not used at the same time. In addition, when the type of product is changed, the discharge nozzle and the non-discharge nozzle are changed for each scan.
 したがって、ノズルから基板1上にインクを吐出する際には、走査ごとに使用ノズル数が変化する。使用ノズル数が変化すると、図10に示したようにノズルからの吐出量が変化するため、液滴着弾領域2に対して常に一定量のインクを吐出するには、走査ごとに各ノズルの吐出量を補正する必要が生じる。測定工程ST11で取得した吐出情報D1に基づけば、使用ノズル数に応じた吐出量を補正することができ、またノズル位置ごとの吐出量のばらつきも補正することができる。 Therefore, when ink is ejected from the nozzles onto the substrate 1, the number of nozzles used changes for each scan. When the number of nozzles used changes, the discharge amount from the nozzles changes as shown in FIG. 10. Therefore, in order to always discharge a constant amount of ink to the droplet landing region 2, the discharge of each nozzle is performed every scan. The amount needs to be corrected. Based on the discharge information D1 acquired in the measurement step ST11, the discharge amount according to the number of used nozzles can be corrected, and the variation in the discharge amount for each nozzle position can also be corrected.
 <隣り合うノズルの吐出状態に関する吐出情報D2>
 次に、隣り合うノズルの吐出状態に関する吐出情報D2の測定工程ST12について、図11を参照しつつ説明する。測定工程ST12では、液滴を吐出する際に、ノズル列内の隣のノズルが同時に吐出している場合における吐出量の変化を測定する。
 ノズル列内の隣り合うノズルには、圧電素子16やノズルに連通するキャビティの振動に起因して構造的なクロストークが生じる。そのため、ノズル列方向に連続する2つ以上のノズルから同時に液滴が吐出されると、上記クロストークの影響により吐出量が変化する。
<Discharge information D2 regarding the discharge state of adjacent nozzles>
Next, the measurement process ST12 of the discharge information D2 regarding the discharge state of adjacent nozzles will be described with reference to FIG. In the measurement step ST12, when the droplet is ejected, a change in the ejection amount when the adjacent nozzles in the nozzle row are ejecting at the same time is measured.
Adjacent nozzles in the nozzle array cause structural crosstalk due to vibrations of the piezoelectric elements 16 and the cavities communicating with the nozzles. Therefore, when droplets are simultaneously ejected from two or more nozzles that are continuous in the nozzle row direction, the ejection amount changes due to the influence of the crosstalk.
 図11(a)は、ノズル20aのみから液滴を吐出する単独吐出時の液滴の大きさを示す模式図である。図11(b)は、ノズル20aとその右隣のノズル20bから液滴を吐出する片側同時吐出時の液滴の大きさを示す模式図である。図11(c)は、ノズル20aとその両隣のノズル20b、ノズル20cから液滴を吐出する両側同時吐出時の液滴の大きさを示す模式図である。図11(d)は、ノズル20bのさらに外側のノズル20dを含む4つのノズル20a~20dから同時に液滴を吐出するときの液滴の大きさを示す模式図である。 FIG. 11A is a schematic diagram showing the size of a droplet during single ejection in which droplets are ejected from only the nozzle 20a. FIG. 11B is a schematic diagram showing the size of droplets at the time of one-side simultaneous ejection in which droplets are ejected from the nozzle 20a and the nozzle 20b adjacent to the nozzle 20a. FIG. 11C is a schematic diagram showing the size of droplets at the time of simultaneous ejection on both sides in which droplets are ejected from the nozzle 20a and its adjacent nozzles 20b and 20c. FIG. 11D is a schematic diagram showing the size of droplets when droplets are simultaneously ejected from the four nozzles 20a to 20d including the nozzle 20d further outside the nozzle 20b.
 図11(b)に示すように、ノズル20aとその隣のノズル20bから同時に吐出したときの液滴120Bは、図11(a)に示すノズル20aのみから液滴を吐出させた場合の液滴120Aよりも小さくなる。図11(b)において、ノズル20a、20bから吐出される液滴の大きさはほぼ同等である。 As shown in FIG. 11B, the droplet 120B when ejected simultaneously from the nozzle 20a and the adjacent nozzle 20b is a droplet when the droplet is ejected only from the nozzle 20a shown in FIG. It becomes smaller than 120A. In FIG. 11B, the sizes of the droplets ejected from the nozzles 20a and 20b are substantially the same.
 さらに図11(c)に示すように連続する3つのノズル20a、20b、20cから同時に吐出したときの液滴は、ノズルの位置により異なる。両端のノズル20b、20cから吐出される液滴は、図11(b)と同様の大きさの液滴120Bである。一方、2つのノズル20b、20cに挟まれたノズル20aから吐出される液滴120Cは、ノズル20b、20cから吐出される液滴120Bよりも小さい。 Further, as shown in FIG. 11 (c), the droplets discharged simultaneously from the three consecutive nozzles 20a, 20b, and 20c differ depending on the position of the nozzle. The droplets ejected from the nozzles 20b and 20c at both ends are droplets 120B having the same size as that in FIG. On the other hand, the droplet 120C discharged from the nozzle 20a sandwiched between the two nozzles 20b and 20c is smaller than the droplet 120B discharged from the nozzles 20b and 20c.
 すなわち、ノズル20aから吐出される液滴は、単独吐出時に最も大きい液滴120Aとなり、片側同時吐出時にはやや小さい液滴120Bとなり、両側同時吐出時に最も小さい液滴120Cとなる。ノズル列方向に連続する4つ以上のノズルから同時に吐出する場合にも上記の関係が適用される。すなわち、図11(d)に示すように、両側同時吐出時のノズル20a、20bからは最も小さい液滴120Cが吐出され、片側同時吐出時のノズル20c、20dからはやや小さい液滴120Bが吐出される。5つ以上のノズルが連続する場合にも同様である。 That is, the droplet discharged from the nozzle 20a is the largest droplet 120A during single discharge, slightly smaller droplet 120B during one-side simultaneous discharge, and the smallest droplet 120C during both-side simultaneous discharge. The above relationship is also applied when discharging simultaneously from four or more nozzles continuous in the nozzle row direction. That is, as shown in FIG. 11D, the smallest droplet 120C is ejected from the nozzles 20a and 20b at the time of both-side simultaneous ejection, and the slightly smaller droplet 120B is ejected from the nozzles 20c and 20d at the time of one-side simultaneous ejection. Is done. The same applies to the case where five or more nozzles are continuous.
 測定工程ST12では、少なくとも図11(a)~(c)の3つの吐出パターンについて、液滴吐出ヘッド11の各ノズルからインク受容基板305への吐出動作を実施する。インク受容基板305に着弾した液滴を体積測定装置307で測定することにより、液滴120A、120B、120Cの各吐出量を計測する。以上により、隣り合うノズルの吐出状態に関する吐出情報D2を取得することができる。 In the measurement step ST12, the discharge operation from each nozzle of the droplet discharge head 11 to the ink receiving substrate 305 is performed for at least the three discharge patterns of FIGS. 11 (a) to 11 (c). By measuring the droplets landed on the ink receiving substrate 305 with the volume measuring device 307, the ejection amounts of the droplets 120A, 120B, and 120C are measured. As described above, the discharge information D2 regarding the discharge state of the adjacent nozzles can be acquired.
 吐出情報D2は、液滴120A、120B、120Cの体積比率(吐出量比率)として取得される。例えば、液滴120Aを100%としたとき、液滴120Bが95%、液滴120Cが92%、のように取得される。測定工程ST12で取得した吐出情報D2に基づけば、隣り合うノズルの吐出状態に応じて変動するノズルからの吐出量を補正することができる。
 なお、本実施形態では、同時に吐出動作を行う隣のノズルが増えるほど液滴の大きさが小さくなる場合について説明したが、液滴吐出ヘッド11の構造や駆動波形の形状によっては逆の傾向となることもある。
The discharge information D2 is acquired as the volume ratio (discharge amount ratio) of the droplets 120A, 120B, and 120C. For example, when the droplet 120A is 100%, the droplet 120B is acquired as 95%, and the droplet 120C is acquired as 92%. Based on the discharge information D2 acquired in the measurement process ST12, it is possible to correct the discharge amount from the nozzle that varies depending on the discharge state of the adjacent nozzle.
In the present embodiment, the case has been described where the size of the liquid droplet decreases as the number of adjacent nozzles that simultaneously perform the discharge operation increases. Sometimes.
 <連続吐出時の吐出順番に関する吐出情報D3>
 次に、連続吐出時の吐出順番に関する吐出情報D3の測定工程ST13について、図12を参照しつつ説明する。測定工程ST13では、1つのノズルから液滴を連続吐出する際に、2番目や3番目に吐出される液滴の吐出量の変化を測定する。
 1つのノズルから高い周波数(例えば30kHz程度)で液滴を連続吐出する場合、吐出後のノズルメニスカスの振動が収まりきる前に次の液滴を吐出しようとする。そのため、ノズルメニスカスの振動の影響によって液滴の吐出量が変化する。
<Discharge information D3 regarding the discharge order during continuous discharge>
Next, the measurement process ST13 of the discharge information D3 related to the discharge order at the time of continuous discharge will be described with reference to FIG. In the measurement step ST13, when droplets are continuously ejected from one nozzle, a change in the ejection amount of the second or third ejected droplet is measured.
In the case where droplets are continuously discharged from one nozzle at a high frequency (for example, about 30 kHz), an attempt is made to discharge the next droplet before the vibration of the nozzle meniscus after discharge is settled. Therefore, the droplet discharge amount changes due to the influence of the vibration of the nozzle meniscus.
 図12(a)は、ノズル20から液滴を1回のみ吐出する様子を示す模式図である。図12(b)は、ノズル20から2連続で液滴を吐出する様子を示す模式図である。図12(c)は、ノズル20から3連続で液滴を吐出する様子を示す模式図である。 FIG. 12A is a schematic diagram showing a state where a droplet is ejected from the nozzle 20 only once. FIG. 12B is a schematic diagram illustrating a state in which droplets are ejected from the nozzle 20 in a continuous manner. FIG. 12C is a schematic diagram showing a state in which liquid droplets are ejected from the nozzle 20 in a continuous manner.
 各ノズルにおけるノズルメニスカスの振動数はほぼ一定であり、液滴吐出ヘッド11の液滴を吐出する最大周波数も固定されているため、連続吐出したときの液滴の吐出量の変化傾向は、各ノズルで一定の傾向となる。例えば、図12(a)に示す1回のみ吐出したときの液滴120aの大きさを100%としたとき、図12(b)に示す2番目の液滴120bの大きさは90%、図12(c)に示す3番目の液滴120cの大きさは95%、となる。 The frequency of the nozzle meniscus in each nozzle is substantially constant, and the maximum frequency for discharging the droplets of the droplet discharge head 11 is also fixed. It becomes a certain tendency with the nozzle. For example, when the size of the droplet 120a when ejected only once as shown in FIG. 12A is 100%, the size of the second droplet 120b shown in FIG. 12B is 90%. The size of the third droplet 120c shown in 12 (c) is 95%.
 測定工程ST13では、インク受容容器303に液滴を連続吐出しながら、液滴を1回吐出するごとにインク受容容器303に収容されたインクの重量を測定する。液滴を1回吐出するごとの重量の差分を算出することで、1回ごとの液滴の重量を取得することができる。 In the measurement step ST13, the weight of the ink stored in the ink receiving container 303 is measured every time the liquid droplet is discharged once while the liquid droplets are continuously discharged to the ink receiving container 303. By calculating the difference in weight each time a droplet is discharged, the weight of the droplet for each time can be acquired.
 吐出情報D3は、上記の手順により測定した各液滴の重量に基づいて、1番目の液滴に対する2番目の液滴、3番目の液滴の重量比率(吐出量比率)として取得することができる。さらに、必要に応じて、連続吐出の4番目や5番目の液滴についても同様に測定し、1番目の液滴に対する重量比率を吐出情報D3として取得することができる。 The ejection information D3 can be acquired as the weight ratio (ejection amount ratio) of the second droplet and the third droplet with respect to the first droplet based on the weight of each droplet measured by the above procedure. it can. Furthermore, if necessary, the fourth and fifth droplets of continuous ejection can be similarly measured, and the weight ratio with respect to the first droplet can be acquired as ejection information D3.
 測定工程ST13で取得した吐出情報D3に基づけば、1つのノズルから液滴を連続吐出する場合の吐出順番に応じて変動する吐出量を補正することができる。 Based on the discharge information D3 acquired in the measurement step ST13, it is possible to correct the discharge amount that varies according to the discharge order when droplets are continuously discharged from one nozzle.
 <駆動回路の個体差に関する吐出情報D4>
 次に、駆動回路の個体差に関する吐出情報D4の測定工程ST14について、図5を参照しつつ説明する。測定工程ST14では、制御回路基板30に設けられた4つの駆動回路31A~31D(D/Aコンバーター)の個体差に起因する液滴の吐出量の変化を測定する。
<Discharge information D4 regarding individual differences of drive circuits>
Next, the measurement process ST14 of the ejection information D4 related to individual differences in the drive circuit will be described with reference to FIG. In the measurement step ST14, a change in droplet discharge amount due to individual differences between the four drive circuits 31A to 31D (D / A converters) provided on the control circuit board 30 is measured.
 先に説明したように、ノズル20に対応して設けられた圧電素子16は、4つの駆動回路31A~31Dのいずれかから入力される駆動信号COMに基づいて駆動される。4つの駆動回路31A~31Dは、互いに等価な回路であるが、個体差が生じることは避けられない。そのため、波形データ選択回路32から同一の波形データが駆動回路31A~31Dに供給されたとしても、駆動回路31A~31Dから出力される駆動電圧Vhが同じ電圧値にならない場合がある。圧電素子16に入力される駆動電圧Vhがばらつくと、液滴の吐出量もばらつくことになる。 As described above, the piezoelectric element 16 provided corresponding to the nozzle 20 is driven based on the drive signal COM input from any of the four drive circuits 31A to 31D. The four drive circuits 31A to 31D are equivalent to each other, but it is inevitable that individual differences occur. Therefore, even if the same waveform data is supplied from the waveform data selection circuit 32 to the drive circuits 31A to 31D, the drive voltage Vh output from the drive circuits 31A to 31D may not have the same voltage value. When the drive voltage Vh input to the piezoelectric element 16 varies, the discharge amount of the droplet also varies.
 測定工程ST14では、例えば、駆動回路31A~31Dに同一の波形データを入力した状態で、駆動回路31A~31Dを1つずつ動作させて液滴の吐出動作を実行する。吐出した液滴はインク受容基板305に着弾させ、体積測定装置307を用いて各ノズルに対応する液滴の体積を測定する。
 上記の測定により得られた液滴の体積を、同一ノズルについて駆動回路31A~31D間で対比し、体積比率(吐出量比率)として算出する。例えば、1つのノズルについて、駆動回路31Aで駆動したときの吐出量を100%とした場合に、駆動回路31Bは99%、駆動回路31Cは101%、駆動回路31Dは99.5%といった体積比率が得られる。得られたノズルごとの体積比率が吐出情報D4である。
In the measurement step ST14, for example, in the state where the same waveform data is input to the drive circuits 31A to 31D, the drive circuits 31A to 31D are operated one by one to execute the droplet discharge operation. The ejected droplets are landed on the ink receiving substrate 305, and the volume of the droplets corresponding to each nozzle is measured using the volume measuring device 307.
The volume of the droplet obtained by the above measurement is compared between the drive circuits 31A to 31D for the same nozzle, and is calculated as a volume ratio (discharge amount ratio). For example, when the ejection amount when driven by the drive circuit 31A is 100% for one nozzle, the volume ratio is 99% for the drive circuit 31B, 101% for the drive circuit 31C, and 99.5% for the drive circuit 31D. Is obtained. The obtained volume ratio for each nozzle is the discharge information D4.
 測定工程ST14で取得した吐出情報D4に基づけば、各ノズルに接続される駆動回路31A~31Dが選択されたときに、駆動回路の個体差に起因して変動する吐出量を補正することができる。 Based on the discharge information D4 acquired in the measurement step ST14, when the drive circuits 31A to 31D connected to the nozzles are selected, the discharge amount that varies due to individual differences of the drive circuits can be corrected. .
 <駆動回路の負荷状態に関する吐出情報D5>
 次に、駆動回路の負荷状態に関する吐出情報D5の測定工程ST15について説明する。測定工程ST15では、制御回路基板30に設けられた4つの駆動回路31A~31Dにおいて駆動する圧電素子16の数の差(負荷状態の差)に起因する液滴の吐出量の変化を測定する。
<Discharge information D5 regarding the load state of the drive circuit>
Next, the measurement process ST15 of the discharge information D5 regarding the load state of the drive circuit will be described. In the measurement step ST15, a change in droplet discharge amount due to the difference in the number of piezoelectric elements 16 driven in the four drive circuits 31A to 31D provided on the control circuit board 30 (difference in load state) is measured.
 先に説明したように、ノズル20に対応して設けられた圧電素子16は、4つの駆動回路31A~31Dのいずれかから入力される駆動信号COMに基づいて駆動される。4つの駆動回路31A~31Dは任意の圧電素子16に接続可能であり、ノズル数が4で割り切れない場合もあるため、駆動回路31A~31Dに接続される圧電素子16の数は必ずしも同じにならない。例えば、下記に示すように、駆動回路31Aは18個のノズルを駆動し、他の駆動回路31B~31Dは17個のノズルを駆動する場合がある。このように駆動するノズル数が駆動回路31A~31Dで異なる場合、信号ラインCOM1~COM4に流れる電流量に差が生じ(電気的クロストーク)、その結果として液滴の吐出量が変化する場合がある。 As described above, the piezoelectric element 16 provided corresponding to the nozzle 20 is driven based on the drive signal COM input from any of the four drive circuits 31A to 31D. Since the four drive circuits 31A to 31D can be connected to an arbitrary piezoelectric element 16, and the number of nozzles may not be divisible by 4, the number of piezoelectric elements 16 connected to the drive circuits 31A to 31D is not necessarily the same. . For example, as shown below, the drive circuit 31A may drive 18 nozzles, and the other drive circuits 31B to 31D may drive 17 nozzles. When the number of nozzles to be driven differs in the drive circuits 31A to 31D in this way, a difference occurs in the amount of current flowing through the signal lines COM1 to COM4 (electrical crosstalk), and as a result, the droplet discharge amount may change. is there.
 駆動回路31A  駆動ノズル数:18  吐出量の比:100.15%
 駆動回路31B  駆動ノズル数:17  吐出量の比:99.95%
 駆動回路31C  駆動ノズル数:17  吐出量の比:99.95%
 駆動回路31D  駆動ノズル数:17  吐出量の比:99.95%
Drive circuit 31A Number of drive nozzles: 18 Ratio of discharge amount: 100.15%
Drive circuit 31B Number of drive nozzles: 17 Ratio of discharge amount: 99.95%
Drive circuit 31C Number of drive nozzles: 17 Ratio of discharge amount: 99.95%
Drive circuit 31D Number of drive nozzles: 17 Ratio of discharge amount: 99.95%
 測定工程ST15では、駆動回路31A~31Dに種々の数のノズルを割り当てて液滴を吐出させる。吐出した液滴はインク受容容器303に収容させ、重量計量装置304を用いて各駆動回路31A~31Dに対応するインクの重量を測定する。これにより、駆動回路31A~31Dにおいて駆動するノズル数が変化したときの吐出量の変化を取得することができる。測定結果から、例えば、「駆動するノズルが1つ増えると吐出量が0.2%増加する」といった変化割合を得ることができる。得られた変化割合が吐出情報D5である。 In the measurement step ST15, various numbers of nozzles are assigned to the drive circuits 31A to 31D to discharge droplets. The discharged droplets are accommodated in the ink receiving container 303, and the weight of the ink corresponding to each of the drive circuits 31A to 31D is measured using the weight measuring device 304. Thereby, it is possible to acquire the change in the ejection amount when the number of nozzles driven in the drive circuits 31A to 31D changes. From the measurement result, for example, it is possible to obtain a change ratio such as “the discharge amount increases by 0.2% when the number of nozzles to be driven increases by one”. The obtained change ratio is the discharge information D5.
 測定工程ST15で取得した吐出情報D5に基づけば、駆動回路31A~31Dの負荷状態(駆動するノズル数)が変化したときの電気的クロストークに起因して変動する吐出量を補正することができる。 Based on the discharge information D5 acquired in the measurement step ST15, it is possible to correct the discharge amount that fluctuates due to electrical crosstalk when the load state (number of nozzles to be driven) of the drive circuits 31A to 31D changes. .
 <吐出量設定工程>
 次に、吐出情報D1~D5を利用した吐出量設定工程ST2について説明する。
 吐出量設定工程ST2は、使用ノズル数に基づく補正を行う工程ST21と、隣り合うノズルの吐出状態に基づく補正を行う工程ST22と、連続吐出時の吐出順番に基づく補正を行う工程ST23と、工程ST21~ST23で補正された駆動電圧に基づき圧電素子に接続する駆動回路を選択する工程ST24と、圧電素子に接続される駆動回路に基づく補正を行う工程ST25と、を含む。
<Discharge amount setting process>
Next, the discharge amount setting step ST2 using the discharge information D1 to D5 will be described.
The discharge amount setting step ST2 includes a step ST21 for performing correction based on the number of used nozzles, a step ST22 for performing correction based on the discharge state of adjacent nozzles, a step ST23 for performing correction based on the discharge order at the time of continuous discharge, and a step. It includes a step ST24 of selecting a drive circuit connected to the piezoelectric element based on the drive voltage corrected in ST21 to ST23, and a step ST25 of performing correction based on the drive circuit connected to the piezoelectric element.
 まず、工程ST21では、使用ノズル数に関する吐出情報D1を用いた吐出量の補正が行われる。具体的には、走査ごとに規定される液滴吐出ヘッド11(ノズル群21A)の吐出パターンにおいて、吐出ノズルの割合が例えば全体の2/5である場合には、図10に示した使用ノズル数(1/2Duty、1/3Duty)ごとの2つの吐出量のグラフを内挿して、対応するノズルの平均的な吐出量を取得する。さらに、得られた吐出量を基準吐出量q0に補正するための駆動電圧Vh1が算出される。 First, in step ST21, the ejection amount is corrected using the ejection information D1 regarding the number of used nozzles. Specifically, in the discharge pattern of the droplet discharge head 11 (nozzle group 21A) defined for each scan, when the ratio of discharge nozzles is, for example, 2/5, the used nozzles shown in FIG. An average discharge amount of the corresponding nozzle is acquired by interpolating two discharge amount graphs for each number (1/2 duty, 1/3 duty). Further, a drive voltage Vh1 for correcting the obtained discharge amount to the reference discharge amount q0 is calculated.
 次に、工程ST22では、隣り合うノズルの吐出状態に関する吐出情報D2を用いた吐出量の補正が行われる。具体的には、走査ごとに規定される液滴吐出ヘッド11(ノズル群21A)の吐出パターンにおいて、各ノズルの吐出状態を、「単独吐出」、「片側同時吐出」、「両側同時吐出」のいずれかに分類する。「単独吐出」に分類されたノズルについては吐出量の補正は行わない。「片側同時吐出」又は「両側同時吐出」に分類されたノズルについては、吐出情報D2に基づいて、「単独吐出」と同等の吐出量となるように、工程ST21で設定された駆動電圧Vh1がさらに駆動電圧Vh2に補正される。 Next, in step ST22, the discharge amount is corrected using the discharge information D2 relating to the discharge state of the adjacent nozzles. Specifically, in the discharge pattern of the droplet discharge head 11 (nozzle group 21A) defined for each scan, the discharge state of each nozzle is set to “single discharge”, “single-side simultaneous discharge”, or “both-side simultaneous discharge”. Classify either. For the nozzles classified as “single discharge”, the discharge amount is not corrected. For nozzles classified as “one-sided simultaneous discharge” or “both-side simultaneous discharge”, the drive voltage Vh1 set in step ST21 is set based on the discharge information D2 so that the discharge amount is equivalent to “single discharge”. Further, the driving voltage is corrected to Vh2.
 次に、工程ST23では、連続吐出時の吐出順番に関する吐出情報D3を用いた吐出量の補正が行われる。具体的には、走査ごとに規定される液滴吐出ヘッド11(ノズル群21A)の吐出パターンを、前後の走査に対応する吐出パターンと比較し、各ノズルごとに連続吐出の有無を分類する。例えば、各吐出パターンにおいて、各ノズルに「連続吐出番号」を振る。「連続吐出番号」が「1」であれば、連続吐出時の先頭の液滴である。同様に「連続吐出番号」が「2」であれば連続吐出の2番目の液滴、「連続吐出番号」が「3」であれば連続吐出の3番目の液滴である。 Next, in step ST23, the ejection amount is corrected using the ejection information D3 relating to the ejection order during continuous ejection. Specifically, the discharge pattern of the droplet discharge head 11 (nozzle group 21A) defined for each scan is compared with the discharge pattern corresponding to the preceding and following scans, and the presence or absence of continuous discharge is classified for each nozzle. For example, in each discharge pattern, a “continuous discharge number” is assigned to each nozzle. If the “continuous discharge number” is “1”, it is the first droplet at the time of continuous discharge. Similarly, if “continuous discharge number” is “2”, it is the second droplet for continuous discharge, and if “continuous discharge number” is “3”, it is the third droplet for continuous discharge.
 「連続吐出番号」が「1」であるノズルについては吐出量の補正は行わない。「連続吐出番号」が「2」又は「3」である場合には、吐出情報D3に基づいて、「連続吐出番号」が「1」である液滴と同等の吐出量となるように、工程ST22で設定された駆動電圧Vh2がさらに駆動電圧Vh3に補正される。 吐出 No correction of the discharge amount is performed for the nozzle whose “continuous discharge number” is “1”. When the “continuous discharge number” is “2” or “3”, based on the discharge information D3, a process is performed so that the discharge amount is equivalent to that of the droplet having the “continuous discharge number” “1”. The drive voltage Vh2 set in ST22 is further corrected to the drive voltage Vh3.
 次に、工程ST24では、工程ST21~ST23で順次補正された結果である駆動電圧Vh3に基づいて、各ノズルごとに接続される駆動回路31A~31Dが選択される。本実施形態では、4つの駆動回路31A~31Dが設けられているから、ノズルごとの駆動電圧Vh3を電圧値ごとに4水準に分類し、各水準に対応する波形データを選択する。そして、選択した4つの波形データを駆動回路31A~31Dに供給する駆動波形として決定する。これにより、吐出に使用されるノズルについて、駆動回路31A~31Dが割り当てられる。 Next, in step ST24, the drive circuits 31A to 31D connected to each nozzle are selected based on the drive voltage Vh3 that is the result of the sequential correction in steps ST21 to ST23. In this embodiment, since four drive circuits 31A to 31D are provided, the drive voltage Vh3 for each nozzle is classified into four levels for each voltage value, and waveform data corresponding to each level is selected. Then, the selected four waveform data are determined as drive waveforms to be supplied to the drive circuits 31A to 31D. Accordingly, the drive circuits 31A to 31D are assigned to the nozzles used for ejection.
 次に、工程ST25では、接続する駆動回路に関する吐出情報D4及び吐出情報D5を用いた吐出量の補正が行われる。具体的には、吐出情報D4に基づいて、駆動回路31A~31Dの個体差に起因する駆動電圧の変化が補正される。駆動電圧の変化の補正は、各駆動回路31A~31Dに供給する波形データの再選択によって行う。 Next, in step ST25, the ejection amount is corrected using the ejection information D4 and the ejection information D5 regarding the drive circuit to be connected. Specifically, based on the ejection information D4, the change in drive voltage due to the individual difference between the drive circuits 31A to 31D is corrected. The change in the drive voltage is corrected by reselecting the waveform data supplied to each of the drive circuits 31A to 31D.
 また、吐出情報D5に基づいて、駆動回路31A~31Dの駆動ノズル数の差に起因する吐出量の補正が成される。例えば、1ノズル当たり吐出量0.2%の差であれば、ノズル数の差に0.2%を乗じた値が補正すべき吐出量であり、この吐出量を補正する駆動電圧となるように駆動回路31A~31Dに供給する波形データを再選択する。 Also, based on the ejection information D5, the ejection amount due to the difference in the number of drive nozzles of the drive circuits 31A to 31D is corrected. For example, if the difference is a discharge amount of 0.2% per nozzle, the value obtained by multiplying the difference in the number of nozzles by 0.2% is the discharge amount to be corrected, and this is the drive voltage for correcting this discharge amount. The waveform data supplied to the drive circuits 31A to 31D is reselected.
 以上の工程ST21~ST25により、ノズルごとの吐出量の設定が完了する。 Through the above steps ST21 to ST25, the setting of the discharge amount for each nozzle is completed.
 以上のように、本実施形態によれば、ノズルごとの吐出量のばらつきの原因となる使用ノズル数、隣り合うノズルの吐出状態、連続吐出時の吐出順番、駆動回路の個体差、及び駆動回路の負荷状態の5つの要素について、それぞれ適切な補正を行うことができる。これにより、極めて高精度に液滴の吐出量のばらつきを抑えることができる。 As described above, according to the present embodiment, the number of used nozzles that cause variation in the discharge amount of each nozzle, the discharge state of adjacent nozzles, the discharge order during continuous discharge, individual differences in the drive circuit, and the drive circuit Appropriate correction can be performed for each of the five elements of the load state. As a result, it is possible to suppress variations in droplet discharge amount with extremely high accuracy.
 なお、本実施形態では、使用ノズル数、隣り合うノズルの吐出状態、連続吐出時の吐出順番、駆動回路の個体差、及び駆動回路の負荷状態の5つの要素のすべてについて吐出量の補正を行うこととしたが、各要素は独立しており、1つ又は複数の組み合わせにより実施することができる。 In this embodiment, the discharge amount is corrected for all of the five elements: the number of used nozzles, the discharge state of adjacent nozzles, the discharge order during continuous discharge, individual differences in the drive circuit, and the load state of the drive circuit. However, each element is independent and can be implemented by one or more combinations.
 また本実施形態の液滴吐出方法は、液滴吐出装置の制御プログラムとして提供することもできる。このプログラムは、上述の液滴吐出方法を実行する。すなわち、図7に示すコンピューター308を介して、液滴吐出装置200に液滴吐出方法を実行させる。
 上記プログラムは、例えばコンピューターのメモリーに記憶(格納)されていてもよく、外部の記録装置や記録媒体に記録したものでもよい。このプログラムを用いることで、画素領域へのノズル割り当てに制限がある場合でも安定して画素領域内にインクを塗布することができる。
The droplet discharge method of the present embodiment can also be provided as a control program for the droplet discharge device. This program executes the droplet discharge method described above. That is, the droplet discharge device 200 is caused to execute the droplet discharge method via the computer 308 shown in FIG.
The program may be stored (stored) in a memory of a computer, for example, or may be recorded in an external recording device or recording medium. By using this program, it is possible to stably apply ink to the pixel area even when there is a restriction on nozzle allocation to the pixel area.
 (液滴吐出方法の実施例)
 次に、上述した液滴吐出方法の実施例について、図13を参照して説明する。
 図13には、15個のノズルを備えた液滴吐出ヘッド11から、異なる吐出パターンで3ショットの液滴吐出動作を行う様子が示されている。
 図13に示す液滴吐出動作に、上記実施形態の吐出量設定動作を適用する場合、以下の手順で各補正動作が実行される。各補正動作を実行することにより、各ノズルの吐出量の変動を抑え、正確な量で基板にインクを塗布することができる。
(Example of droplet discharge method)
Next, an embodiment of the above-described droplet discharge method will be described with reference to FIG.
FIG. 13 shows a state in which a three-shot droplet discharge operation is performed with different discharge patterns from the droplet discharge head 11 having 15 nozzles.
When the discharge amount setting operation of the above embodiment is applied to the droplet discharge operation shown in FIG. 13, each correction operation is executed according to the following procedure. By executing each correction operation, it is possible to suppress variation in the ejection amount of each nozzle and apply ink to the substrate in an accurate amount.
 <1ショット目>
 使用ノズル数:9ノズル(15ノズル中)
 片側同時吐出ノズル:No.2,3,7,9,13,14
 両側同時吐出ノズル:No.8
<First shot>
Number of nozzles used: 9 nozzles (15 nozzles)
One side simultaneous discharge nozzle: No. 2, 3, 7, 9, 13, 14
Simultaneous discharge nozzles on both sides: No. 8
 (1)工程ST21:使用ノズル数は9/15Dutyであるから、1/2Duty,1Shotの吐出量分布と、1/3Duty,1Shotの吐出量分布を外挿して吐出量分布を取得する。これにより、ノズル位置ごとの吐出量のばらつきを補正する。また、9/15Dutyは1/2Dutyよりも多いので、1/2Dutyの平均吐出量と1/3Dutyの平均吐出量との関係を外挿して9/15Dutyの吐出量を補正する。
 (2)工程ST22:片側同時吐出ノズル、両側同時吐出ノズルについて、吐出情報D2に基づいてそれぞれの吐出量を補正する。
 (3)工程ST23:1ショット目であるから連続吐出の影響はない。したがって補正は行わない。
 (4)工程ST25:ノズルごとに接続される駆動回路の個体差(吐出情報D4)、負荷状態(吐出情報D5)に基づいてそれぞれの吐出量を補正する。
(1) Step ST21: Since the number of used nozzles is 9/15 Duty, the discharge amount distribution is obtained by extrapolating the discharge amount distribution of 1/2 Duty, 1 Shot and the discharge amount distribution of 1/3 Duty, 1 Shot. Thereby, the variation in the ejection amount for each nozzle position is corrected. Since 9/15 Duty is larger than 1/2 Duty, the 9/15 Duty discharge amount is corrected by extrapolating the relationship between the 1/2 Duty average discharge amount and the 1/3 Duty average discharge amount.
(2) Step ST22: For each one-side simultaneous discharge nozzle and both-side simultaneous discharge nozzle, the respective discharge amounts are corrected based on the discharge information D2.
(3) Step ST23: Since it is the first shot, there is no influence of continuous ejection. Therefore, no correction is performed.
(4) Step ST25: Correct each discharge amount based on the individual difference (discharge information D4) of the drive circuit connected to each nozzle and the load state (discharge information D5).
 <2ショット目>
 使用ノズル数:6ノズル(15ノズル中)
 片側同時吐出ノズル:No.2,3,7,8
 両側同時吐出ノズル:なし
<Second shot>
Number of nozzles used: 6 nozzles (15 nozzles)
One side simultaneous discharge nozzle: No. 2, 3, 7, 8
Both sides simultaneous discharge nozzle: None
 (1)工程ST21:使用ノズル数は6/15Dutyであるから、1/2Duty,1Shotの吐出量分布と、1/3Duty,1Shotの吐出量分布を内挿して吐出量分布を取得する。これにより、ノズル位置ごとの吐出量のばらつきを補正する。また、1/2Dutyの平均吐出量と1/3Dutyの平均吐出量との関係を内挿して6/15Dutyの吐出量を補正する。
 (2)工程ST22:片側同時吐出ノズル、両側同時吐出ノズルについて、吐出情報D2に基づいてそれぞれの吐出量を補正する。
 (3)工程ST23:2ショット目であるから、ノズルNo.2,3,7,8,11,14について連続吐出の影響がある。これらのノズルについて吐出情報D3に基づく補正を行う。
 (4)工程ST25:ノズルごとに接続される駆動回路の個体差(吐出情報D4)、負荷状態(吐出情報D5)に基づいてそれぞれの吐出量を補正する。
(1) Step ST21: Since the number of nozzles used is 6/15 Duty, the ejection amount distribution is obtained by interpolating the ejection amount distribution of 1/2 Duty, 1 Shot and the ejection amount distribution of 1/3 Duty, 1 Shot. Thereby, the variation in the ejection amount for each nozzle position is corrected. Further, the 6/15 duty discharge amount is corrected by interpolating the relationship between the average discharge amount of 1/2 duty and the average discharge amount of 1/3 duty.
(2) Step ST22: For each one-side simultaneous discharge nozzle and both-side simultaneous discharge nozzle, the respective discharge amounts are corrected based on the discharge information D2.
(3) Step ST23: Since this is the second shot, the nozzle No. 2, 3, 7, 8, 11, and 14 are affected by continuous discharge. These nozzles are corrected based on the discharge information D3.
(4) Step ST25: Correct each discharge amount based on the individual difference (discharge information D4) of the drive circuit connected to each nozzle and the load state (discharge information D5).
 <3ショット目>
 使用ノズル数:2ノズル(15ノズル中)
 片側同時吐出ノズル:なし
 両側同時吐出ノズル:なし
<3rd shot>
Number of nozzles used: 2 nozzles (15 nozzles)
One side simultaneous discharge nozzle: None Both sides simultaneous discharge nozzle: None
 (1)工程ST21:使用ノズル数は2/15Dutyであるから、1/2Duty,1Shotの吐出量分布と、1/3Duty,1Shotの吐出量分布を外挿して吐出量分布を取得する。これにより、ノズル位置ごとの吐出量のばらつきを補正する。また、2/15Dutyは1/3Dutyよりも少ないので、1/2Dutyの平均吐出量と1/3Dutyの平均吐出量との関係を外挿して2/15Dutyの吐出量を補正する。
 (2)工程ST22:片側同時吐出ノズル、両側同時吐出ノズルはないから、吐出量の補正は行わない。
 (3)工程ST23:3ショット目であるから、ノズルNo.2,8について連続吐出の影響がある。これらのノズルについて吐出情報D3に基づく補正を行う。
 (4)工程ST25:ノズルごとに接続される駆動回路の個体差(吐出情報D4)、負荷状態(吐出情報D5)に基づいてそれぞれの吐出量を補正する。
(1) Step ST21: Since the number of used nozzles is 2/15 Duty, the discharge amount distribution is obtained by extrapolating the discharge amount distribution of 1/2 Duty, 1 Shot and the discharge amount distribution of 1/3 Duty, 1 Shot. Thereby, the variation in the ejection amount for each nozzle position is corrected. Since 2/15 Duty is less than 1/3 Duty, the 2/15 Duty ejection amount is corrected by extrapolating the relationship between the 1/2 Duty average ejection amount and the 1/3 Duty average ejection amount.
(2) Step ST22: Since there is no one-side simultaneous discharge nozzle and both-side simultaneous discharge nozzle, the discharge amount is not corrected.
(3) Step ST23: Since this is the third shot, the nozzle No. 2 and 8 have the effect of continuous discharge. These nozzles are corrected based on the discharge information D3.
(4) Step ST25: Correct each discharge amount based on the individual difference (discharge information D4) of the drive circuit connected to each nozzle and the load state (discharge information D5).
 1…基板、2…液滴着弾領域、11,12…液滴吐出ヘッド、18…駆動信号選択回路、20,20a,20b,20c,20d…ノズル、31A,31B,31C,31D…駆動回路、120A,120B,120C…液滴、200…液滴吐出装置、205…ステージ、308…コンピューター、Vh,Vh1,Vh2,Vh3…駆動電圧、COM…駆動信号、D1,D2,D3,D4,D5…吐出情報、S1,S2,S3,S4,S5,ST21,ST22,ST23,ST24,ST25…工程 DESCRIPTION OF SYMBOLS 1 ... Board | substrate, 2 ... Droplet landing area | region, 11, 12 ... Droplet discharge head, 18 ... Drive signal selection circuit, 20, 20a, 20b, 20c, 20d ... Nozzle, 31A, 31B, 31C, 31D ... Drive circuit, 120A, 120B, 120C ... droplet, 200 ... droplet discharge device, 205 ... stage, 308 ... computer, Vh, Vh1, Vh2, Vh3 ... drive voltage, COM ... drive signal, D1, D2, D3, D4, D5 ... Discharge information, S1, S2, S3, S4, S5, ST21, ST22, ST23, ST24, ST25 ... process

Claims (13)

  1.  複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体とを相対的に移動させながら、前記複数のノズルの各々から前記液滴着弾領域内に複数の液滴を吐出する液滴吐出方法であって、
     前記複数のノズルのうち少なくとも一つのノズルから前記複数の液滴を吐出する際に、前記複数の液滴の各々の吐出順番に関する吐出量情報に基づいて、前記複数の液滴の各々の吐出量を補正する、
     液滴吐出方法。
    A droplet that discharges a plurality of droplets from each of the plurality of nozzles into the droplet landing region while relatively moving a droplet discharge head having a plurality of nozzles and a substrate having a droplet landing region. A discharge method,
    When discharging the plurality of droplets from at least one of the plurality of nozzles, the discharge amount of each of the plurality of droplets based on discharge amount information regarding the discharge order of each of the plurality of droplets Correct,
    Droplet ejection method.
  2.  前記複数の液滴の吐出順番に関する吐出量情報は、
     前記液滴吐出ヘッドから媒体に対して液滴を連続吐出し、吐出ごとに前記媒体上の液滴の合計重量を測定する工程と、
     吐出ごとの前記合計重量の差分から、吐出順番ごとの液滴の吐出量を算出する工程と、
     前記吐出順番ごとの前記液滴の吐出量を比較し、前記吐出順番に対する吐出量の関数を導出する工程と、
     を含む工程により規定される吐出量の関数である、
     請求項1に記載の液滴吐出方法。
    The discharge amount information regarding the discharge order of the plurality of droplets is:
    Continuously discharging droplets from the droplet discharge head to the medium, and measuring the total weight of the droplets on the medium for each discharge;
    Calculating a droplet discharge amount for each discharge order from the difference in the total weight for each discharge;
    Comparing the discharge amount of the droplets for each discharge order and deriving a function of the discharge amount with respect to the discharge order;
    Is a function of the discharge rate defined by the process including
    The droplet discharge method according to claim 1.
  3.  複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体とを相対的に移動させながら、前記複数のノズルの各々から前記液滴着弾領域内に液滴を吐出する液滴吐出方法であって、
     前記複数のノズルの各々から前記液滴を吐出する際に、前記複数のノズルのうち隣り合う前記ノズルの吐出状態に関する吐出量情報に基づいて前記液滴の吐出量を補正する、
     液滴吐出方法。
    A droplet discharge method for discharging droplets from each of the plurality of nozzles into the droplet landing area while relatively moving a droplet discharge head having a plurality of nozzles and a substrate having a droplet landing area Because
    When ejecting the droplets from each of the plurality of nozzles, the ejection amount of the droplets is corrected based on ejection amount information regarding the ejection state of the adjacent nozzles of the plurality of nozzles.
    Droplet ejection method.
  4.  前記複数のノズルは、第1のノズルと、前記第1のノズルの両隣のノズルである第2のノズル、及び第3のノズルを含み、
     前記隣り合うノズルの吐出状態に関する吐出量情報は、
     第2のノズル及び第3のノズルから液滴を吐出させない状態で前記第1のノズルから液滴を吐出して単独吐出時の吐出量を測定する工程と、
     第1のノズルと前記第2のノズルから同時に液滴を吐出して前記第1のノズルの吐出量を測定し、測定した前記第1のノズルの吐出量と前記単独吐出時の吐出量とを比較することで、単独吐出時の吐出量に対する片側同時吐出時の吐出量の関数を取得する工程と、
     前記第1から第3のノズルから同時に液滴を吐出して前記第1のノズルの吐出量を測定し、測定した前記第1のノズルの吐出量と前記単独吐出時の吐出量とを比較することで、単独吐出時の吐出量に対する両側同時吐出時の吐出量の関数を取得する工程と、
     を含む工程により規定される吐出量の関数である、
     請求項3に記載の液滴吐出方法。
    The plurality of nozzles includes a first nozzle, a second nozzle that is a nozzle on both sides of the first nozzle, and a third nozzle,
    The discharge amount information related to the discharge state of the adjacent nozzles is
    A step of discharging droplets from the first nozzle in a state where droplets are not discharged from the second nozzle and the third nozzle and measuring a discharge amount at the time of single discharge;
    The first nozzle and the second nozzle are simultaneously discharged to measure the discharge amount of the first nozzle, and the measured discharge amount of the first nozzle and the discharge amount at the time of the single discharge are determined. By comparing, obtaining a function of the discharge amount at the time of single-sided simultaneous discharge with respect to the discharge amount at the time of single discharge;
    The droplets are simultaneously discharged from the first to third nozzles to measure the discharge amount of the first nozzle, and the measured discharge amount of the first nozzle is compared with the discharge amount at the time of the single discharge. The process of obtaining a function of the discharge amount at the time of simultaneous discharge on both sides with respect to the discharge amount at the time of single discharge,
    Is a function of the discharge rate defined by the process including
    The droplet discharge method according to claim 3.
  5.  前記複数のノズルの各々から前記液滴を吐出する際に、前記複数のノズルのうち同時に液滴を吐出する前記ノズルの数に関する吐出量情報に基づいて前記液滴の吐出量を補正する、
     請求項1から4のいずれか1項に記載の液滴吐出方法。
    When ejecting the droplets from each of the plurality of nozzles, the ejection amount of the droplets is corrected based on ejection amount information regarding the number of the nozzles that simultaneously eject droplets among the plurality of nozzles.
    The droplet discharge method according to claim 1.
  6.  前記液滴吐出ヘッドは、前記複数のノズルの各々に設けられた駆動素子と、前記駆動素子に駆動電圧を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する選択回路と、を有しており、
     前記複数のノズルの各々から前記液滴を吐出する際に、前記駆動素子に接続される前記駆動回路に関する吐出情報に基づいて前記液滴の吐出量を補正する、
     請求項1から5のいずれか1項に記載の液滴吐出方法。
    The droplet discharge head includes a driving element provided in each of the plurality of nozzles, a plurality of driving circuits that supply a driving voltage to the driving element, and a selection circuit that selectively connects the driving element and the driving circuit. And
    When ejecting the droplets from each of the plurality of nozzles, the ejection amount of the droplets is corrected based on ejection information related to the drive circuit connected to the drive element.
    The droplet discharge method according to any one of claims 1 to 5.
  7.  前記液滴吐出ヘッドは、前記複数のノズルの各々に設けられた駆動素子と、前記駆動素子に駆動電圧を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する選択回路と、を有しており、
     前記複数のノズルの各々から前記液滴を吐出する際に、前記駆動回路ごとの前記駆動素子の接続数に関する吐出情報に基づいて前記液滴の吐出量を補正する、
     請求項1から6のいずれか1項に記載の液滴吐出方法。
    The droplet discharge head includes a driving element provided in each of the plurality of nozzles, a plurality of driving circuits that supply a driving voltage to the driving element, and a selection circuit that selectively connects the driving element and the driving circuit. And
    When ejecting the droplets from each of the plurality of nozzles, the ejection amount of the droplets is corrected based on ejection information related to the number of connection of the drive elements for each of the drive circuits.
    The droplet discharge method according to claim 1.
  8.  複数のノズルを有する液滴吐出ヘッドと、
     液滴着弾領域が形成された基体を支持するステージと、
     前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、
     前記複数のノズルのうち少なくとも一つのノズルから複数の液滴を吐出する際に、前記複数の液滴の各々の吐出順番に関する吐出量情報に基づいて、前記複数の液滴の各々の吐出量を補正する制御装置と、
     を有する、液滴吐出装置。
    A droplet discharge head having a plurality of nozzles;
    A stage for supporting a substrate on which a droplet landing area is formed;
    A driving device for relatively moving the droplet discharge head and the stage;
    When discharging a plurality of droplets from at least one of the plurality of nozzles, the discharge amount of each of the plurality of droplets is determined based on discharge amount information regarding the discharge order of each of the plurality of droplets. A control device to correct,
    A droplet discharge device.
  9.  複数のノズルを有する液滴吐出ヘッドと、
     液滴着弾領域を有する基体を支持するステージと、
     前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、
     前記複数のノズルの各々から吐出する液滴の吐出量を、前記複数のノズルのうち隣り合う前記ノズルの吐出状態に関する吐出量情報に基づいて補正する制御装置と、
     を有する、液滴吐出装置。
    A droplet discharge head having a plurality of nozzles;
    A stage for supporting a substrate having a droplet landing area;
    A driving device for relatively moving the droplet discharge head and the stage;
    A control device that corrects the ejection amount of droplets ejected from each of the plurality of nozzles based on ejection amount information regarding the ejection state of the adjacent nozzles of the plurality of nozzles;
    A droplet discharge device.
  10.  複数のノズルを有する液滴吐出ヘッドと、
     液滴着弾領域を有する基体を支持するステージと、
     前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、
     前記複数のノズルの各々から吐出する液滴の吐出量を、前記複数の液滴の各々のうち同時に液滴を吐出する前記ノズルの数に関する吐出量情報に基づいて前記液滴の吐出量を補正する制御装置と、
     を有する、液滴吐出装置。
    A droplet discharge head having a plurality of nozzles;
    A stage for supporting a substrate having a droplet landing area;
    A driving device for relatively moving the droplet discharge head and the stage;
    Correcting the droplet discharge amount from each of the plurality of nozzles based on discharge amount information relating to the number of nozzles that simultaneously discharge droplets of each of the plurality of droplets A control device,
    A droplet discharge device.
  11.  複数のノズルを有する液滴吐出ヘッドと、
     液滴着弾領域を有する基体を支持するステージと、
     前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、
     を備え、
     前記液滴吐出ヘッドは、前記ノズルの各々に設けられた駆動素子と、前記駆動素子に駆動電圧を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する選択回路と、を有し、
     前記ノズルから前記液滴を吐出する際に、前記駆動素子に接続される前記駆動回路に関する吐出情報に基づいて前記液滴の吐出量を補正する制御装置を有する、
     液滴吐出装置。
    A droplet discharge head having a plurality of nozzles;
    A stage for supporting a substrate having a droplet landing area;
    A driving device for relatively moving the droplet discharge head and the stage;
    With
    The droplet discharge head includes a driving element provided in each of the nozzles, a plurality of driving circuits that supply a driving voltage to the driving element, a selection circuit that selectively connects the driving element and the driving circuit, Have
    A controller that corrects the ejection amount of the droplet based on ejection information related to the drive circuit connected to the drive element when ejecting the droplet from the nozzle;
    Droplet discharge device.
  12.  複数のノズルを有する液滴吐出ヘッドと、
     液滴着弾領域を有する基体を支持するステージと、
     前記液滴吐出ヘッドと前記ステージとを相対移動する駆動装置と、
     を備え、
     前記液滴吐出ヘッドは、前記ノズルの各々に設けられた駆動素子と、前記駆動素子に駆動信号を供給する複数の駆動回路と、前記駆動素子と前記駆動回路とを選択接続する駆動信号選択回路と、を有し、
     前記ノズルから前記液滴を吐出する際に、前記駆動回路ごとの前記駆動素子の接続数に関する吐出情報に基づいて前記液滴の吐出量を補正する制御装置を有する、液滴吐出装置。
    A droplet discharge head having a plurality of nozzles;
    A stage for supporting a substrate having a droplet landing area;
    A driving device for relatively moving the droplet discharge head and the stage;
    With
    The droplet discharge head includes a driving element provided in each of the nozzles, a plurality of driving circuits that supply a driving signal to the driving element, and a driving signal selection circuit that selectively connects the driving element and the driving circuit. And having
    A droplet discharge device comprising: a control device that corrects the droplet discharge amount based on discharge information related to the number of connected drive elements for each of the drive circuits when discharging the droplets from the nozzle.
  13.  複数のノズルを有する液滴吐出ヘッドと、液滴着弾領域を有する基体とを相対的に移動させながら、前記複数のノズルから前記液滴着弾領域内に複数の液滴を吐出する動作をコンピューターに実行させるプログラムであって、
     請求項1から7のいずれか1項に記載の吐出量の補正動作を実行するステップを有する、プログラム。
    An operation of ejecting a plurality of droplets from the plurality of nozzles into the droplet landing area while relatively moving a droplet discharge head having a plurality of nozzles and a substrate having a droplet landing area on a computer. A program to be executed,
    The program which has a step which performs the correction | amendment operation | movement of the discharge amount of any one of Claim 1 to 7.
PCT/JP2016/001979 2015-04-13 2016-04-12 Method for discharging liquid droplets, and liquid droplet discharging device and program WO2016166965A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-081650 2015-04-13
JP2015081650A JP2016198738A (en) 2015-04-13 2015-04-13 Droplet discharge method, droplet discharge device and program

Publications (1)

Publication Number Publication Date
WO2016166965A1 true WO2016166965A1 (en) 2016-10-20

Family

ID=57127038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001979 WO2016166965A1 (en) 2015-04-13 2016-04-12 Method for discharging liquid droplets, and liquid droplet discharging device and program

Country Status (2)

Country Link
JP (1) JP2016198738A (en)
WO (1) WO2016166965A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7166018B2 (en) * 2018-08-31 2022-11-07 兵神装備株式会社 Coating device
JP7400415B2 (en) 2019-11-29 2023-12-19 株式会社リコー Device for discharging liquid, head drive control method, head drive control device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089019A (en) * 1998-09-10 2000-03-31 Canon Inc Color filter and production thereof, liquid crystal element using the filter
JP2007152154A (en) * 2005-11-30 2007-06-21 Sharp Corp Ink ejection apparatus and ink ejection method
JP2009195868A (en) * 2008-02-25 2009-09-03 Seiko Epson Corp Inspection method for discharge head, discharge head inspection apparatus and portraying method
JP2011011146A (en) * 2009-07-02 2011-01-20 Seiko Epson Corp Droplet-discharging method and method for manufacturing color filter
JP2011101870A (en) * 2009-11-12 2011-05-26 Seiko Epson Corp Method for obtaining ejection amount from droplet ejection head, method for determining appropriate voltage, and droplet ejection device
JP2012209108A (en) * 2011-03-29 2012-10-25 Toppan Printing Co Ltd Ink jet pattern forming device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000089019A (en) * 1998-09-10 2000-03-31 Canon Inc Color filter and production thereof, liquid crystal element using the filter
JP2007152154A (en) * 2005-11-30 2007-06-21 Sharp Corp Ink ejection apparatus and ink ejection method
JP2009195868A (en) * 2008-02-25 2009-09-03 Seiko Epson Corp Inspection method for discharge head, discharge head inspection apparatus and portraying method
JP2011011146A (en) * 2009-07-02 2011-01-20 Seiko Epson Corp Droplet-discharging method and method for manufacturing color filter
JP2011101870A (en) * 2009-11-12 2011-05-26 Seiko Epson Corp Method for obtaining ejection amount from droplet ejection head, method for determining appropriate voltage, and droplet ejection device
JP2012209108A (en) * 2011-03-29 2012-10-25 Toppan Printing Co Ltd Ink jet pattern forming device

Also Published As

Publication number Publication date
JP2016198738A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP4888346B2 (en) Liquid coating method, organic EL device manufacturing method
JP5115281B2 (en) Droplet discharge device, liquid discharge method, color filter manufacturing method, organic EL device manufacturing method
US8123324B2 (en) Method for setting up drive signal
JP3770252B2 (en) Liquid ejection apparatus and liquid ejection method
US8066345B2 (en) Method for setting up drive signal
JP2017056402A (en) Droplet discharge method, droplet discharge program, and droplet discharge device
JP5211649B2 (en) Discharge head drive method, liquid material discharge method, and organic EL element manufacturing method
JP2007229958A (en) Droplet ejector and its control method
WO2016166965A1 (en) Method for discharging liquid droplets, and liquid droplet discharging device and program
JP2006061795A (en) Drop discharge method and drop discharger
JP2008276088A (en) Driving signal setting method
JP2009157035A (en) Inkjet discharge device
JP2008197513A (en) Method for setting drive signal
JP2008194644A (en) Method for setting driving-signal
JP2005001346A (en) Liquid injection device and liquid injection method
JP2007054759A (en) Droplet discharge method and droplet discharger
JP2008268558A (en) Discharge controlling method of liquid drop discharge head, liquid discharging method, color filter manufacturing method, organic el element manufacturing method, and alignment layer manufacturing method
JP2008197514A (en) Method for setting drive signal
JP2009202044A (en) Discharge characteristics acquisition apparatus, liquid material discharger, and discharge characteristics acquisition method
JP2009183859A (en) Droplet discharge device and thin film forming method
JP2008276086A (en) Driving signal setting method
JP2016190379A (en) Drive setting method of liquid body discharge device and drive setting program
JP2012238479A (en) Ink jet device
JP2009183857A (en) Droplet discharge device and thin film forming method
JP5387590B2 (en) Drive signal setting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16779761

Country of ref document: EP

Kind code of ref document: A1