WO2016165130A1 - 一种自动增益控制方法、m2m终端及基站 - Google Patents

一种自动增益控制方法、m2m终端及基站 Download PDF

Info

Publication number
WO2016165130A1
WO2016165130A1 PCT/CN2015/076884 CN2015076884W WO2016165130A1 WO 2016165130 A1 WO2016165130 A1 WO 2016165130A1 CN 2015076884 W CN2015076884 W CN 2015076884W WO 2016165130 A1 WO2016165130 A1 WO 2016165130A1
Authority
WO
WIPO (PCT)
Prior art keywords
load
scheduling
terminal
time slot
base station
Prior art date
Application number
PCT/CN2015/076884
Other languages
English (en)
French (fr)
Inventor
余西西
杨晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/076884 priority Critical patent/WO2016165130A1/zh
Publication of WO2016165130A1 publication Critical patent/WO2016165130A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to an automatic gain control method, a terminal, and a base station.
  • the LTE M2M system is designed based on the system architecture of LTE (Chinese: Long Term Evolution) to implement M2M (Chinese: Machine to Machine; English: Machine-To-Machine).
  • the LTE M2M system has the characteristics of single-carrier ultra-narrowband. This feature is embodied in the system bandwidth design: one RB (Chinese: Resource Block; English: Resource Block) occupies 180KHz bandwidth, and each RB is subdivided into 12 physical channels, each Each physical channel occupies 15Khz bandwidth.
  • the occupied resource in the frequency domain is one physical channel (bandwidth 15Khz), and the occupied resource in the time domain is a multiple of the scheduling slot, and one scheduling slot is 10 ms.
  • the LTE M2M system supports a large number of users, when users conduct services through one physical channel, there are other users performing downlink services at the same time, and the receiving bandwidth of the terminal receiver is the bandwidth occupied by one RB, that is, 180 KHz, so the terminal receiver is not only
  • the signal transmitted by the physical channel allocated by the base station can be received, and the signal transmitted by other physical channels belonging to the same RB as the physical channel allocated by the base station can also be received.
  • each scheduling slot may start with a new user-initiated service or a user ends the service at the end of the scheduling slot. Therefore, the number of interfering users in each scheduling slot may be different. A large change causes the signal received by the terminal receiver to be abruptly changed in each scheduling time slot.
  • the terminal receiver ensures that the high probability of the received signal is maintained in the normal working range of the terminal receiver through AGC (Chinese: Automatic Gain Control; English)
  • AGC Choinese: Automatic Gain Control; English
  • the barrier terminal receiver circuit works normally.
  • the starting time constant of the existing AGC algorithm is millisecond, that is, the receiver needs to spend milliseconds.
  • the prior art will have a sudden change in the signal, but the gain is too late to adjust, causing some of the received signal to overflow.
  • the prior art has the drawback that the AGC takes too long to control, causing some of the received signals to overflow.
  • the embodiments of the present invention provide an automatic gain control method, an M2M terminal, and a base station, which are used to shorten the AGC control time and reduce signal overflow when the downlink RF signal received by the M2M terminal is abrupt.
  • the first aspect of the present invention provides an automatic gain control method, which is applied to a machine-to-machine M2M terminal, and the bandwidth occupied by the downlink radio frequency signal that the M2M terminal can receive is a downlink resource block RB, and the M2M terminal
  • the bandwidth occupied by the downlink service is a downlink physical channel in the RB, including:
  • the M2M terminal receives the downlink control information DCI sent by the base station to occupy the system bandwidth of the Long Term Evolution (LTE) system, the downlink physical channel allocated by the base station to the M2M terminal, and the scheduling duration, where the DCI includes a load indication field;
  • LTE Long Term Evolution
  • the M2M terminal adjusts automatic gain control according to the received load indication field, before the scheduling time slot in the scheduling duration arrives, so that the M2M terminal occupies the downlink physical channel receiving in the scheduling time slot.
  • gain control adapted to the load strength of the scheduling slot is employed.
  • the load indication field is a load strength of each of the two scheduled time slots, or
  • the load strength of one of the two adjacent scheduling slots is compared to the previous scheduling slot.
  • the load strength becomes stronger, weaker, and unchanged.
  • the M2M terminal according to the received load indication field, in the scheduling duration Adjust the automatic gain control before the scheduled time slot comes, including:
  • the M2M terminal determines, according to the received load indication field, that a load strength of the second scheduling time slot is changed compared to a load strength of the first scheduling time slot that is adjacent to the second scheduling time slot.
  • the scheduling duration includes the first scheduling time slot and the second scheduling time slot;
  • the M2M terminal determines, in the M2M terminal, a load strength of the second scheduling time slot as compared to the foregoing When the load strength of a scheduled time slot does not change, the gain control used by the M2M terminal to receive the downlink RF signal in the first scheduling time slot is maintained.
  • a second aspect of the embodiments of the present invention provides an automatic gain control method, which is applied to a base station, and includes:
  • the base station allocates a downlink physical channel and a scheduling duration to the machine-to-machine M2M terminal, where the downlink physical channel is a physical channel in a downlink resource block RB, and the RB is a downlink radio frequency signal that the M2M terminal can receive. Occupied bandwidth;
  • the base station generates a load indication field according to the load strength
  • the base station occupies a system bandwidth of the Long Term Evolution (LTE) system, and sends downlink control information DCI including the load indication field to the M2M terminal.
  • LTE Long Term Evolution
  • the base station determines, according to an allocation situation of all downlink physical channels in the RB, each scheduling within a scheduling duration allocated by the M2M terminal
  • the load strength of the time slot includes:
  • the ratio is greater than the first threshold, determining that the load strength of the scheduling slot is a high load, otherwise determining that the load strength of the scheduling slot is a low load.
  • the performing, by the base station, the load indication field, according to the load strength specifically includes:
  • the base station sets the high load or the low load as a load indication, or
  • the base station determines that the load strength of one of the two scheduled time slots is stronger, weaker, and unchanged than the load time of the previous scheduling time slot, and the load indication is sequentially set to be a load, The load is weak and the load is unchanged.
  • the base station sends the load indication to the DL Allocation unit of the DCI and sends the load indication to the M2M terminal.
  • the third aspect of the embodiments of the present invention provides a machine-to-machine M2M terminal, wherein the bandwidth occupied by the downlink radio frequency signal that the M2M terminal can receive is a downlink resource block RB, and the bandwidth occupied by the M2M terminal for the downlink service is A downlink physical channel in the RB, including:
  • a receiving unit configured to receive downlink control information DCI sent by a base station to occupy a system bandwidth of a long-term evolution LTE system, a downlink physical channel allocated by the base station to the M2M terminal, and a scheduling duration, where the DCI includes a load indication field;
  • a processing unit configured to adjust, according to the received load indication field, automatic gain control before a scheduling time slot within the scheduling time period, so that the M2M terminal occupies the downlink physical channel in the scheduling time slot
  • gain control adapted to the load strength of the scheduling slot is employed.
  • the load indication field is a load strength of each of the two scheduled time slots, or
  • the load strength of one of the two scheduled time slots is stronger, weaker, and unchanged than the load strength of the previous scheduled time slot.
  • the processing unit is configured to:
  • the automatic gain control is adjusted before the second scheduling slot comes.
  • the processing unit is further configured to: determine a load strength of the second scheduling time slot And maintaining, when the load strength of the first scheduling time slot does not change, the gain control used by the M2M terminal to receive the downlink radio frequency signal in the first scheduling time slot.
  • a fourth aspect of the embodiments of the present invention provides a base station, including:
  • a processing unit configured to allocate a downlink physical channel and a scheduling duration to the machine-to-machine M2M terminal, where the downlink physical channel is a physical channel in a downlink resource block RB, and the RB is a downlink that the M2M terminal can receive a bandwidth occupied by the radio frequency signal; determining, according to the allocation of all the downlink physical channels in the RB, a load strength of each scheduling time slot in the scheduling duration allocated to the M2M terminal; and generating a load indication field according to the load strength;
  • a sending unit configured to send the downlink control information DCI including the load indication field to the M2M terminal, by occupying a system bandwidth of the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the processing unit is configured to:
  • the processing unit is configured to:
  • the base station sends the load indication to the DL Allocation unit of the DCI and sends the load indication to the M2M terminal.
  • the base station collects the allocation status of all downlink physical channels (including the downlink physical channel allocated by the base station for the M2M) in the RB that can be received by the M2M terminal, and then generates a load indication field according to the allocation situation, and the load indication is performed.
  • the field is added to the M2M terminal in the DCI, and the M2M terminal adjusts the automatic gain control according to the load indication field included in the downlink control information DCI sent by the base station, before the scheduling time slot within the scheduling time allocated by the base station for the M2M terminal comes.
  • the M2M terminal adopts the gain control that is adapted to the load strength of the scheduling time slot.
  • the M2M terminal can determine in advance the load strength of the scheduling time slot compared to the load strength of the previous and adjacent scheduling time slots according to the load indication field in the DCI before the scheduling time slot comes, compared to the existing The technology, the terminal can determine in advance whether the downlink radio frequency signal received in the scheduling time slot will be abrupt before the scheduling time slot comes, and if a mutation occurs, start the load strength with the scheduling time slot before the scheduling time slot comes.
  • Adaptive gain control reduces AGC control time and reduces signal overflow.
  • FIG. 2 is a schematic structural diagram of an M2M terminal including an AGC according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a downlink physical channel in an RB
  • FIG. 5 is a schematic structural diagram of a DL Allocation message unit in a DCI
  • FIG. 6 is a schematic diagram of interaction of an AGC control method based on a load indication according to an embodiment of the present invention
  • FIG. 7 is a first schematic diagram of adding a Load Ind field in a DL Allocation message unit according to an embodiment of the present invention.
  • FIG. 8 is a second schematic diagram of adding a Load Ind field in a DL Allocation message unit according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a base station side automatic gain control method according to an embodiment of the present invention.
  • FIG. 10 is a first schematic diagram of a Load Ind field according to an embodiment of the present invention.
  • FIG. 11 is a second schematic diagram of a Load Ind field according to an embodiment of the present invention.
  • FIG. 12 is a third schematic diagram of a Load Ind field according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a terminal side automatic gain control method according to an embodiment of the present invention.
  • FIG. 14 is a detailed flowchart of step 202 in the embodiment of the present invention.
  • FIG. 15 is a functional block diagram of an M2M terminal according to an embodiment of the present invention.
  • FIG. 16 is a hardware structural diagram of an M2M terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a functional block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 18 is a functional block diagram of a base station according to an embodiment of the present invention.
  • the embodiments of the present invention provide an automatic gain control method, an M2M terminal, and a base station, which are used to shorten the AGC control time and reduce signal overflow when the downlink RF signal received by the M2M terminal is abrupt.
  • the base station calculates the allocation of all downlink physical channels (including the downlink physical channel allocated by the base station for the M2M) in the RB that can be received by the M2M terminal, and then the root.
  • the load indication field is generated according to the allocation situation, and the load indication field is added to the M2M terminal in the DCI, and the M2M terminal schedules the scheduling time allocated by the base station to the M2M terminal according to the load indication field included in the downlink control information DCI sent by the base station.
  • the automatic gain control is adjusted before the time slot comes, so that the M2M terminal adopts the gain control that is adapted to the load strength of the scheduling time slot when the scheduling time slot occupies the downlink physical channel allocated by the base station for the M2M terminal to receive the downlink RF signal.
  • the M2M terminal can determine in advance the load strength of the scheduling time slot compared to the load strength of the previous and adjacent scheduling time slots according to the load indication field in the DCI before the scheduling time slot comes, compared to the existing The technology, the terminal can determine in advance whether the downlink radio frequency signal received in the scheduling time slot will be abrupt before the scheduling time slot comes, and if a mutation occurs, start the load strength with the scheduling time slot before the scheduling time slot comes.
  • Adaptive gain control reduces AGC control time and reduces signal overflow.
  • FIG. 1 is a possible communication system architecture suitable for the automatic gain control method in the embodiment of the present invention.
  • the communication system architecture includes: a base station and a plurality of M2M terminals.
  • the communication system having the communication system architecture as shown in FIG. 1 may be: Global System of Mobile Communication (GSM), General Packet Radio Service (GPRS) system, code division multiple access (CDMA) , Code Division Multiple Access system, Wideband Code Division Multiple Access (WCDMA) system, Long Term Evolution (LTE) system, and Various types of wireless communication systems that have evolved and evolved include, but are not limited to, fifth-generation mobile communication systems (5G, 5th Generation) and the like.
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • CDMA code division multiple access
  • CDMA Code Division Multiple Access system
  • WCDMA Wideband Code Division Multiple Access
  • LTE Long Term Evolution
  • 5G, 5th Generation fifth-generation mobile communication systems
  • the base station in FIG. 1 may be: a base station (BTS, Base Transceiver Station) in GSM or CDMA, or a base station (NodeB) in WCDMA, or an evolved base station (eNB or e-NodeB, evolutional in LTE).
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • Node B network devices that implement similar functions in the subsequent evolution system, are not limited in the present invention. It should be noted that, according to actual network deployment requirements, it is also within the scope of the present invention to make corresponding changes to the form of the network device, such as using a distributed base station.
  • the M2M terminal in FIG. 1 may be: User Equipment (UE), which may also be called a mobile terminal (Mobile Terminal), a mobile user equipment, etc., and may be connected to a radio access network (RAN, Radio Access Network).
  • UE User Equipment
  • RAN Radio Access Network
  • the communication may be performed by a plurality of core networks (CN, Core Network), such as a mobile phone or a computer having a mobile terminal, such as a portable, pocket, handheld, computer built-in or vehicle-mounted mobile device.
  • CN Core Network
  • the ADC needs to be converted into a digital signal by using an ADC (English: Analog to Digital Converter), and then the digital signal is processed for transmission.
  • ADC American: Analog to Digital Converter
  • a common solution is to use the AGC dynamic adjustment amplifier to amplify the analog signal of the input ADC according to the power of the digital signal output by the ADC.
  • FIG. 2 is a schematic structural diagram of an M2M terminal including an AGC according to an embodiment of the present invention.
  • the M2M terminal includes at least one radio frequency receiver 200 including an amplifier 210, an ADC 220, a digital signal receiver 230, a power estimator 240, and an AGC 250.
  • the RF receiver 200 receives the downlink RF signal sent by the base station, and the downlink RF signal is amplified by the amplifier 210 and input to the ADC 220.
  • the ADC 220 converts the analog signal into a digital signal and outputs it to the digital signal receiver 230.
  • the power estimator 240 pairs the digital receiver. 230 the power of the received digital signal is estimated, Based on the estimation results, the AGC 250 controls the amplification amplifier 210 to multiply the downlink RF signal received by the RF receiver 200.
  • the bandwidth occupied by the downlink radio frequency signal that the M2M terminal can receive is one downlink resource block RB, and the bandwidth occupied by the M2M terminal for the downlink service is one downlink physical channel in the RB.
  • FIG. 3 is a schematic diagram of a downlink physical channel in an RB.
  • the bandwidth occupied by the downlink radio frequency signal received by the M2M is one RB
  • the downlink service of the M2M terminal only occupies one downlink physical channel in the RB, and other downlink physical channels in the RB may be idle, and may also be allocated to other M2M by the base station.
  • the terminal is used by other M2M terminals to receive downlink radio signals. Therefore, the power of the downlink radio frequency signal that the M2M can receive depends on: the allocation of all downlink physical channels in the RB that the M2M can receive. Therefore, the embodiment of the present invention provides that automatic gain control is performed according to the allocation of all downlink physical channels in the RB that the M2M can receive.
  • an M2M terminal although it knows the scheduling duration and the downlink physical channel allocated to it by the base station, the M2M terminal does not know whether other downlink physical channels in the RB it can receive are allocated by the base station to other M2M terminals.
  • the scheduling duration of the base station allocated to other M2M terminals is not known. Therefore, the M2M terminal cannot predict the allocation of all downlink physical channels in the RB that it can receive within the scheduling duration allocated by the base station.
  • the base station is configured to perform the allocation of the downlink physical channel and the scheduling duration for each M2M terminal, so the base station can calculate the allocation of all the downlink physical channels in each RB in each scheduling slot, so the base station in the embodiment of the present invention After allocating the scheduling duration and the downlink physical channel for an M2M terminal, the allocation of all downlink physical channels (including the downlink physical channel allocated by the base station for the M2M) in the RB that the M2M terminal can receive is also counted, and then allocated according to the allocation.
  • FIG. 4 is a schematic structural diagram of DCI according to an embodiment of the present invention. Figure.
  • the DCI includes multiple message units: reserved R; correctly receives the signaling domain ACK field; correctly receives the signaling duplicate ACK Repetition; the downlink resource allocation unit number DL number; the downlink resource allocation unit DL Alloction; the uplink resource allocation unit number UL number; Uplink resource allocation unit UL Alloction; random access configuration number RACH number; random access configuration information RACH config; padding Padding.
  • FIG. 5 is a schematic structural diagram of a DL Allocation message unit in a DCI.
  • the DL Allocation message unit includes multiple fields: a user identifier C-RNTI; a channel number ChannelID indicating a channel number of a physical channel allocated by the base station for the M2M terminal; a modulation and coding mechanism MCS; a start time slot startIndication, Indicates the time slot position of the scheduling time allocated by the base station for the M2M terminal; the duration of the downlink resource duration, which indicates the amount of service data carried by the base station for the downlink resource allocated by the M2M terminal, in bytes; the downlink packet number DLPN; Leave R.
  • the base station can determine the scheduling duration allocated for the M2M terminal, the channel number of the downlink physical channel, and the RB including the channel number, that is, the RB that the M2M terminal can receive, and can further calculate the scheduling duration.
  • the allocation of all physical channels in the RBs by the base station is known to the M2M terminal to know whether the downlink radio signals to be received in each scheduling slot will be abruptly changed.
  • the value can direct the M2M terminal to adjust the automatic gain control before the scheduled time slot comes, so that the M2M terminal adopts adaptive automatic gain control when receiving the abrupt downlink RF signal in the scheduled time slot.
  • the embodiment of the present invention proposes an automatic gain control method based on a load indication: the base station adds a load indication field in the DCI, and notifies the M2M terminal together with the downlink resource allocated for the terminal.
  • the terminal can determine in advance whether the downlink RF signal will be abrupt in each scheduling time slot during the downlink service duration, and control the AGC before the sudden change of the downlink RF signal, and adjust the receiving gain accordingly to reduce the signal loss.
  • FIG. 6 is a schematic diagram of interaction of an AGC control method based on a load indication according to an embodiment of the present invention.
  • the AGC control method based on the load indication in the embodiment of the present invention includes the following steps:
  • Step 1 The base station allocates the scheduling duration and the downlink physical channel for performing the downlink service to the M2M terminal, and the statistics of the scheduling duration allocated to the M2M terminal, and all the downlink physical channels in the RB that the M2M terminal can receive are in each scheduling slot. Distribution situation;
  • Step 2 The base station notifies the M2M terminal of the scheduling duration and the downlink physical channel allocated to the M2M terminal, and the load indication within the scheduling duration by using the DCI.
  • Step 3 The M2M terminal receives the DCI, and according to the load indication, determines whether the downlink radio signal to be received in each scheduling time slot is abruptly changed. If it is determined that a downlink radio frequency signal to be received in a certain scheduling time slot is abrupt, the scheduling is performed.
  • the AGC is controlled to adjust the gain before the time slot arrives.
  • a load indication field Load Ind (Load Indication) is added in the DL Allocation unit of the DCI, and the Load Ind includes a load indication of each scheduling time slot (10 ms) in the scheduling duration of the M2M terminal. Since the Load Ind field is added to the DL Allocation unit of the DCI, the reserved bit R field in the DL Allocation unit is no longer fixed to 8 bits, but is variable length to ensure that the length of the entire DL Allocation is an integer multiple of 16 bits. . Please refer to FIG. 7 and FIG. 8. FIG. 7 and FIG. 8 are respectively schematic diagrams of adding two Load Ind fields in the DL Allocation unit.
  • the Load Ind field has a different location in the DL Allocation unit.
  • FIG. 7 and FIG. 8 are only examples. In the actual implementation process, as long as the Load Ind field is included in the DL Allocation unit, the positions of the Load Ind fields shown in FIG. 7 and FIG. 8 are not limited.
  • FIG. 9 is a flowchart of a base station side automatic gain control method according to an embodiment of the present invention. The method includes:
  • Step 101 The base station allocates a downlink physical channel and a scheduling duration to the machine-to-machine M2M terminal, where the downlink physical channel is a physical channel in a downlink resource block RB, and the RB is received by the M2M terminal.
  • Step 102 The base station determines, according to an allocation situation of all downlink physical channels in the RB, a load strength of each scheduling time slot in a scheduling duration allocated to the M2M terminal.
  • Step 103 The base station generates a load indication field according to the load strength.
  • Step 104 The base station occupies the system bandwidth of the Long Term Evolution (LTE) system to the M2M terminal. Sending downlink control information DCI including the load indication field.
  • LTE Long Term Evolution
  • the base station allocates a scheduling duration and a physical channel to the M2M terminal, and determines a channel number of the downlink physical channel allocated to the M2M terminal and an RB including the channel number.
  • the reason why the base station needs to determine the RB of the downlink physical channel occupied by the M2M terminal is because the bandwidth occupied by the downlink radio frequency signal that the M2M terminal can receive is one RB, that is, 180 kHz, so the M2M terminal can not only receive the downlink allocated by the base station.
  • the downlink radio frequency signal transmitted by the physical channel also receives the downlink radio frequency signal transmitted by other downlink physical channels that belong to the same RB as the downlink physical channel allocated by the base station. To this end, the base station needs to count the allocation of all downlink physical channels in the RBs including the downlink physical channels occupied by the M2M terminals.
  • step 102 is performed to determine the load strength of each scheduling time slot within the scheduling duration allocated for the M2M terminal.
  • the base station determines the allocation of all downlink physical channels in the RBs of the downlink physical channel occupied by the M2M terminal, and determines the load strength according to the allocation of all downlink physical channels in the RB.
  • Step 102 specifically includes:
  • the ratio is greater than the first threshold, determining that the load strength of the scheduling slot is a high load, otherwise determining that the load strength of the scheduling slot is a low load.
  • the base station statistics in the scheduling duration allocated to the M2M terminal, for each scheduling slot in the scheduling duration, the base station statistics the allocation of all downlink physical channels in the RB to which the downlink physical channel allocated by the M2M terminal belongs.
  • the load strength of the scheduling time slot is determined to be a high load, and vice versa.
  • the first threshold is not a limit value, and the optimal value of the applicable terminal-controlled AGC algorithm can be selected according to the actual measurement. It is not limited to the method of determining the load level in this example, and other methods in the prior art can be used to determine the load level.
  • step 103 is performed, where step 103 specifically includes:
  • the base station sets the high load or the low load as a load indication, or
  • the base station determines that the load strength of one of the two scheduled time slots is stronger, weaker, and unchanged than the load time of the previous scheduling time slot, and the load indication is sequentially set to load and load. It becomes weak and the load does not change.
  • the first possible implementation manner of step 103 is: the base station statistics, within the scheduling duration allocated to the M2M terminal, for each scheduling time slot, the base station determines the load strength of the scheduling time slot, when the scheduling time slot is used. When the load strength is high load, the load indicating the scheduling time slot is indicated as a high load; when the load strength of the scheduling time slot is low load, the load indicating the scheduled time slot is indicated as a low load.
  • the second possible implementation manner of the step 103 is: the base station statistics, within the scheduling duration allocated to the M2M terminal, for each scheduling time slot, the base station determines the load strength of the scheduling time slot and the adjacent and adjacent to the scheduling time slot. Scheduling the load strength of the time slot. When the load strength of the scheduling time slot is low load and the load strength of the adjacent scheduling time slot is high before the scheduling time slot, the load indication of the scheduling time slot is set as the load. If the load strength of the scheduling time slot is high load and the load strength of the adjacent scheduling time slot is low load, the load indication of the scheduling time slot is set as the load. Strongening or load change; when the load strength of the scheduling time slot and the scheduling time slot of the scheduling time slot are both low load or high load, the load of the scheduling time slot is The indication is set to no change in load.
  • the scheduling time allocated by the base station to the terminal is the first scheduling time slot to the fifth scheduling time slot
  • the physical channel allocated by the base station to the terminal has a frequency range of 15 kHz to 30 kHz, and belongs to the RB in the frequency range of 0 to 180 kHz.
  • the load strength of the second scheduling slot in the RB of the base station statistical frequency range is 0 to 180 kHz is a low load
  • the load strength of the first scheduling slot in the RB is a high load
  • the load indication of the second scheduling slot is determined to be a load. Weak or load changes.
  • the load strength of the second scheduling slot in the RB is high, and the load strength of the first scheduling slot in the RB is a low load, it is determined that the load indication of the second scheduling slot is that the load becomes strong or the load changes. .
  • the load strength of the second scheduling slot in the RB is counted, and the first scheduling slot in the RB is high load or low load, it is determined that the load indication of the second scheduling slot is no change in load.
  • step 104 is performed.
  • the base station sends the load indication to the DL Allocation unit of the DCI and sends the load indication to the M2M terminal.
  • the base station adds a Load Ind field to the DL Allocation message unit in the DCI.
  • the Load Ind field indicates the load strength of each scheduled time slot in the scheduling duration, and the load indication of each scheduling time slot is represented by 1 bit, 0 means low load and 1 means high load. If the scheduling duration allocated to the terminal is N 10 ms, the length of the Load Ind field is N bits. In FIG. 10 and FIG. 11 and FIG. 12 below, the scheduling slot is filled with black, indicating that the load strength of the scheduling slot is High load, on the other hand, indicates that the load strength of the scheduling slot is a low load.
  • the Load Ind field indicates whether the load strength of each scheduled time slot within the scheduling time period is different from the load strength of the previous and adjacent scheduling time slots.
  • the load indication for each scheduling slot is represented by 1 bit, 0 means no change and 1 means change. If the scheduling duration allocated to the terminal is N 10 ms, the length of the Load Ind field is N bits.
  • the Load Ind field indicates a change in the load strength of each scheduled slot within the scheduling duration compared to the load strength of the previous and adjacent scheduled slots.
  • the load indication of each scheduling time slot is represented by 2 bits, 00 indicates that the load indication is no change of load, 01 indicates that the load indication is that the load becomes strong, 10 indicates that the load indication is that the load becomes weak, and 11 indicates that the load is reserved. If the scheduling duration allocated to the terminal is N 10 ms, the length of the Load Ind field is 2 times N bits.
  • the length of the Load Ind field is related to the scheduling duration and the number of bits indicating the load indication of each scheduling slot. If the scheduling duration allocated to the M2M terminal is N 10 ms, and the load of each scheduling slot is The indication is represented by M bits, and the bit length of the Load Ind field is N times M bits.
  • the MCS field indicates that the number of bytes that can be transmitted in each scheduling slot is A.
  • the load indication of each scheduling slot is represented by M bits
  • the M2M terminal can determine that the length of the Load Ind field is N times M bits, where When it is an integer, when When not an integer,
  • the bandwidth occupied by the base station to send the downlink radio frequency signal to the M2M terminal is the system bandwidth of the LTE, which is usually the bandwidth occupied by multiple RBs, and the downlink radio frequency that can be received by one M2M terminal.
  • the bandwidth occupied by the signal is only one RB, and the bandwidth occupied by the downlink service of the M2M terminal is only the bandwidth occupied by one downlink physical channel in the RB, that is, the M2M terminal has the characteristics of single carrier ultra narrow band.
  • the bandwidth occupied by the uplink radio frequency signal and the downlink radio frequency signal transmitted between the base station and the M2M terminal is different, and the bandwidth occupied by the base station to the M2M terminal for transmitting the downlink radio frequency signal is much larger than the downlink radio frequency signal that the M2M terminal can receive.
  • FIG. 13 is a flowchart of a terminal side automatic gain control method according to an embodiment of the present invention. The method includes:
  • Step 201 The M2M terminal receives the downlink control information DCI sent by the base station to occupy the system bandwidth of the long-term evolution LTE system, the downlink physical channel allocated by the base station to the M2M terminal, and the scheduling duration, where the DCI includes a load indication field;
  • Step 202 The M2M terminal adjusts automatic gain control according to the received load indication field, before the scheduling time slot in the scheduling duration arrives, so that the M2M terminal occupies the downlink in the scheduling time slot.
  • the gain control is adapted to the load strength of the scheduling slot.
  • the base station adds the load indication of each scheduling time slot in the scheduling time allocated for the M2M terminal to the M2M terminal in the DCI. Therefore, the M2M terminal receives the DCI sent by the base station, and adds a Load Ind field in the DL Allocation unit of the DCI to obtain a load indication of each scheduling time slot in the scheduling time allocated by the base station to the M2M terminal.
  • the load indication field in step 201 is the load strength of each of the two scheduled scheduling slots, or the load strength of one of the two adjacent scheduling slots is compared to the previous scheduling time.
  • the load strength of the gap becomes stronger, weaker, and unchanged.
  • step 202 includes:
  • Step 2021 The M2M terminal determines, according to the received load indication field, that a load strength of the second scheduling time slot occurs compared to a load strength of the first scheduling time slot that is adjacent to the second scheduling time slot. And changing, the scheduling duration includes the first scheduling time slot and the second scheduling time slot, that is, determining whether a load strength of one scheduling time slot changes compared to a previous and adjacent scheduling time slot load strength. ;
  • Step 2022 When the M2M terminal determines that the load strength of the second scheduling slot changes compared to the load strength of the first scheduling slot, adjust the automatic gain before the second scheduling slot comes. control.
  • the M2M terminal determines that the load strength of the second scheduling time slot changes compared with the load strength of the first scheduling time slot before the second scheduling time slot, and includes:
  • the M2M terminal determines that the load indication of the second scheduling time slot indicates that the load strength of the second scheduling time slot is weaker, stronger, or changed than the load strength of the first scheduling time slot.
  • the load indication characterizes the load strength of the scheduling time slot, that is, the load indication is a high load or a low load, or the load indication represents a load of a scheduling time slot.
  • the strength is compared with the change of the load strength of the scheduling slot before the scheduling slot and adjacent, that is, the load indication is: the load changes, the load does not change, the load becomes strong, and the load becomes weak.
  • the M2M terminal determines that the load indication changes from the low load of the first scheduling time slot to the high of the second scheduling time slot.
  • the load or the high load from the first scheduling time slot to the low load of the second scheduling time slot, determines that the load strength of the second scheduling time slot changes compared to the load strength of the first scheduling time slot; when the M2M terminal changes Determining that the load indication always maintains a high load from the first scheduling time slot to the second scheduling time slot, or keeps a low load from the first scheduling time slot to the second scheduling time slot, determining to determine the second scheduling time slot
  • the load strength does not change compared to the load strength of the first scheduled time slot.
  • the M2M terminal determines that the load indication of the second scheduling time slot is weakened or the load changes, : the load strength of the second scheduling time slot is low load and the load strength of the first scheduling time slot is high load, determining that the load strength of the second scheduling time slot changes compared to the load strength of the first scheduling time slot; or
  • the M2M terminal determines that the load indication of the second scheduling time slot is that the load becomes strong or the load changes, it indicates that the load strength of the second scheduling time slot is high load and the load strength of the first scheduling time slot is low load, and then determining The load strength of the second scheduling time slot is changed compared to the load strength of the first scheduling time slot; when the M2M terminal determines that the load indication of the second scheduling time slot is no change in the load, it indicates: the load strength of the second scheduling time slot If the load strength of the first scheduling time slot is high load or low load, it is determined that the load
  • the M2M terminal determines that the load indication of the second scheduling slot in the load indication field is changed from 1 to 0 or from 0 to 1 compared to the load indication of the first scheduling slot, Determining that the load strength of the second scheduling slot changes compared to the load strength of the first scheduling slot. If the load indication of the second scheduling slot and the load indication of the first scheduling slot are both 1 or both, then It is determined that the load strength of the second scheduling slot does not change compared to the load strength of the first scheduling slot.
  • the M2M terminal determines that the load indication of the second scheduling time slot in the load indication field is 01 or 10
  • determining that the load strength of the second scheduling time slot is compared to the first scheduling time slot The load strength changes. If the load indication of the second scheduling slot is 00, it is determined that the load strength of the second scheduling slot is not changed compared to the load strength of the first scheduling slot.
  • step 2021 According to the result of step 2021, step 2022 or the following steps are performed:
  • the gain control is related to the load strength.
  • the gain control range When the load strength of the scheduling time slot is high load, the gain control range is large.
  • the gain When the load strength of the scheduling time slot changes from a high load to a low load, the gain is according to the load indication.
  • the control range will be reduced accordingly; when the load strength of the scheduling time slot is low load, the gain control range is small.
  • the gain control range When the load strength of the scheduling time slot changes from low load to high load, according to the load indication, the gain control range will be Expand accordingly.
  • the automatic gain control is adjusted before the second scheduling slot comes, and the second scheduling slot is adopted.
  • the load strength is adapted to the automatic gain control such that when the M2M terminal receives the downlink RF signal in the second scheduling time slot, the gain control range matches the second scheduling time slot load strength.
  • the M2M terminal determines that the load strength of the second scheduling slot does not change compared to the load strength of the first scheduling slot, that is, when the load strength of the second scheduling slot is the same as the load strength of the first scheduling slot There is no need to adjust the automatic gain control, and the automatic gain control corresponding to the load strength of the first scheduled time slot can be maintained.
  • FIG. 15 is a functional block diagram of an M2M terminal according to an embodiment of the present invention.
  • FIG. 15 is a functional block diagram of an M2M terminal according to an embodiment of the present invention.
  • the M2M terminal includes:
  • the receiving unit 301 is configured to receive downlink control information DCI sent by the base station to occupy the system bandwidth of the Long Term Evolution (LTE) system, a downlink physical channel allocated by the base station to the M2M terminal, and a scheduling duration, where the DCI includes a load indication field;
  • LTE Long Term Evolution
  • the processing unit 302 is configured to adjust, according to the received load indication field, automatic gain control before the scheduled time slot within the scheduling time period, so that the M2M terminal is in the scheduling time slot.
  • the gain control adapted to the load strength of the scheduling slot is adopted.
  • the load indication field is a load strength of each of the two scheduled scheduling slots, or
  • the load strength of one of the two scheduled time slots is stronger, weaker, and unchanged than the load strength of the previous scheduled time slot.
  • processing unit 302 is configured to:
  • processing unit 302 is configured to:
  • FIG. 16 is a hardware structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal includes:
  • the receiver 402 is configured to receive downlink control information DCI sent by the base station to occupy the system bandwidth of the long-term evolution LTE system, a downlink physical channel allocated by the base station to the M2M terminal, and a scheduling duration, where the DCI includes a load indication field;
  • the processor 401 is configured to adjust the automatic gain control according to the received load indication field, before the scheduling time slot in the scheduling duration arrives, so that the M2M terminal occupies the downlink physical medium in the scheduling time slot.
  • the load strength with the scheduling slot is adopted. Compatible gain control.
  • the load indication field is a load strength of each of the two scheduled scheduling slots, or
  • the load strength of one of the two scheduled time slots is stronger, weaker, and unchanged than the load strength of the previous scheduled time slot.
  • the processor 401 is configured to:
  • the processor 401 is configured to:
  • bus 400 can include any number of interconnected buses and bridges, and bus 400 will include one or more processors and memory 404 represented by processor 401. The various circuits of the memory are connected together.
  • the bus 400 can also connect various other circuits, such as peripherals, voltage regulators, and power management circuits, as is well known in the art, and therefore, will not be further described herein.
  • Bus interface 405 provides an interface between bus 400 and receiver 402.
  • Receiver 402 can be a transceiver that provides means for communicating with various other devices on a transmission medium.
  • a user interface 403, such as a keypad, display, speaker, microphone, joystick, etc., may also be provided depending on the nature of the user device.
  • Processor 401 is responsible for managing bus 400 and normal processing, while memory 404 can be used to store data used by processor 401 in performing operations.
  • FIG. 17 is a functional block diagram of a base station according to an embodiment of the present invention.
  • FIG. 17 is a functional block diagram of a base station according to an embodiment of the present invention.
  • FIG. 17 For the meaning and specific implementation of the terminology involved in the base station shown in FIG. 17, reference may be made to the foregoing descriptions of FIG. 1 to FIG. 14 and the related embodiments.
  • the base station includes:
  • the processing unit 501 is configured to allocate a downlink physical channel and a scheduling duration to the machine-to-machine M2M terminal, where the downlink physical channel is one physical channel in one downlink resource block RB, and the RB is received by the M2M terminal. a bandwidth occupied by the downlink radio frequency signal; determining, according to an allocation situation of all downlink physical channels in the RB, a load strength of each scheduling time slot in a scheduling duration allocated to the M2M terminal; generating a load indication field according to the load strength ;
  • the sending unit 502 is configured to send the downlink control information DCI including the load indication field to the M2M terminal by occupying a system bandwidth of the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • processing unit 501 is configured to:
  • processing unit 501 is configured to:
  • the processing unit 501 sets the load indication in a DL Allocation unit of the DCI.
  • FIG. 18 is a hardware structural diagram of a base station according to an embodiment of the present invention.
  • the base station includes:
  • the processor 601 is configured to allocate a downlink physical channel and a scheduling duration to the machine-to-machine M2M terminal, where the downlink physical channel is one physical channel in a downlink resource block RB, and the RB is received by the M2M terminal. a bandwidth occupied by the downlink radio frequency signal; determining, according to an allocation situation of all downlink physical channels in the RB, a load strength of each scheduling time slot in a scheduling duration allocated to the M2M terminal; generating a load indication field according to the load strength ;
  • the transmitter 602 is configured to send the downlink control information DCI including the load indication field to the M2M terminal by occupying a system bandwidth of the Long Term Evolution (LTE) system.
  • LTE Long Term Evolution
  • the processor 601 is configured to:
  • the processor 601 is configured to:
  • the processor 601 sets the load indication in a DL Allocation unit of the DCI.
  • bus 600 can include any number of interconnected buses and bridges, and bus 600 will include one or more processors and memory 604 represented by processor 601. The various circuits of the memory are connected together.
  • the bus 600 can also connect various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 605 provides an interface between bus 600 and transmitter 602.
  • Transmitter 602 can be a transceiver that provides means for communicating with various other devices on a transmission medium.
  • a user interface 603 can also be provided, such as a keypad, display, speaker, microphone, joystick, and the like.
  • the processor 601 is responsible for managing the bus 600 and the usual processing, and the memory 604 can be used to store data used by the processor 601 in performing operations.
  • the base station collects the allocation status of all downlink physical channels (including the downlink physical channel allocated by the base station for the M2M) in the RB that can be received by the M2M terminal, and then generates a load indication field according to the allocation situation, and the load indication is performed.
  • the field is added to the M2M terminal in the DCI, and the M2M terminal adjusts the automatic gain control according to the load indication field included in the downlink control information DCI sent by the base station, before the scheduling time slot within the scheduling time allocated by the base station for the M2M terminal comes.
  • the M2M terminal adopts the gain control that is adapted to the load strength of the scheduling time slot.
  • the M2M terminal can determine in advance the load strength of the scheduling time slot compared to the load strength of the previous and adjacent scheduling time slots according to the load indication field in the DCI before the scheduling time slot comes, compared to the existing The technology, the terminal can determine in advance whether the downlink radio frequency signal received in the scheduling time slot will be abrupt before the scheduling time slot comes, and if a mutation occurs, start the load strength with the scheduling time slot before the scheduling time slot comes.
  • Adaptive gain control reduces AGC control time and reduces signal overflow.
  • embodiments of the present invention can be provided as a method, system, or computer program product. Accordingly, the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种自动增益控制方法、M2M终端及基站,所述方法应用于机器对机器M2M终端,所述方法包括:所述M2M终端接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;所述M2M终端根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度相适应的增益控制。

Description

一种自动增益控制方法、M2M终端及基站 技术领域
本发明涉及通信技术领域,尤其涉及一种自动增益控制方法、终端及基站。
背景技术
LTE M2M系统是基于LTE(中文:长期演进;英文:Long Term Evolution)的系统架构进行设计,以实现M2M(中文:机器对机器;英文:Machine-To-Machine)的应用。
LTE M2M系统具有单载波超窄带的特点,该特点具体体现在系统带宽设计中:一个RB(中文:资源块;英文:Resource Block)占用180KHz带宽,每个RB细分为12个物理信道,每个物理信道占用15Khz带宽。用户进行下行业务时频域上占用资源为一个物理信道(带宽15Khz),时域上占用资源为调度时隙的倍数,其中一个调度时隙为10ms。
因LTE M2M系统支持海量用户,在用户通过一个物理信道进行业务时,还会存在其他用户同时进行下行业务,而终端接收机的接收带宽为一个RB占用的带宽,即180KHz,所以终端接收机不仅能接收到基站所分配的物理信道所传输的信号,还会接收到与基站所分配的物理信道属于同一RB的其他物理信道所传输的信号。
由于用户持续业务时长不同,每个调度时隙起始都可能有新增的用户发起业务或在调度时隙结束时有用户结束业务,所以每个调度时隙内的干扰用户数量都可能存在较大变化,导致终端接收机接收的信号在每个调度时隙都可能发生突变。
现有技术中,终端接收机通过AGC(中文:自动增益控制;英文:Automatic Gain Control)保证接收信号高概率维持在终端接收机正常工作范围,进而保 障终端接收机电路正常工作。
由于终端接收机的接收信号在每个调度时隙起始或结束时都可能发生突变,而现有的AGC算法的起控时间常量为毫秒级,也就是说,接收机需要花费毫秒级的时间才能确定接收到的信号发生突变,进而开始进行AGC,所以现有技术会存在信号已经发生突变,而增益却来不及调整,导致部分接收信号溢出。
综上,现有技术存在的缺陷是:AGC起控的时间过长,导致部分接收信号溢出。
发明内容
本发明实施例提供一种自动增益控制方法、M2M终端及基站,用于在M2M终端接收到的下行射频信号发生突变时缩短AGC起控的时间,减少信号溢出。
本发明实施例第一方面提供了一种自动增益控制方法,应用于机器对机器M2M终端,所述M2M终端能够接收到的下行射频信号占用的带宽为一个下行资源块RB,且所述M2M终端进行下行业务占用的带宽为所述RB内的一个下行物理信道,包括:
所述M2M终端接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;
所述M2M终端根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度相适应的增益控制。
结合第一方面,在第一方面的第一种可能的实现方式中,所述负载指示字段为相邻两个调度时隙中每个调度时隙的负载强度,或
相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的 负载强度变强、变弱、无变化。
结合第一方面或第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现方式中,所述M2M终端根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,包括:
所述M2M终端根据接收到的所述负载指示字段,确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,所述调度时长包含所述第一调度时隙和所述第二调度时隙;
在所述M2M终端确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度发生变化时,在所述第二调度时隙来临之前调整自动增益控制。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现方式中,在所述M2M终端确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度未发生变化时,保持所述M2M终端在所述第一调度时隙接收下行射频信号时所采用的增益控制。
本发明实施例第二方面提供了一种自动增益控制方法,应用于基站,包括:
所述基站为机器对机器M2M终端分配下行物理信道和调度时长,所述下行物理信道为一个下行资源块RB内的一个物理信道,且所述RB为所述M2M终端能够接收到的下行射频信号占用的带宽;
所述基站根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度;
所述基站根据所述负载强度生成负载指示字段;
所述基站占用长期演进LTE系统的系统带宽向所述M2M终端发送包含所述负载指示字段的下行控制信息DCI。
结合第二方面,在第二方面的第一种可能的实现方式中,所述基站根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度,具体包括:
所述基站确定每个调度时隙所述RB内已分配的下行物理信道数,与所述RB中可用的下行物理信道总数的比值;
当所述比值大于第一阈值时,确定所述调度时隙的负载强度为高负载,否则确定所述调度时隙的负载强度为低负载。
结合第二方面或第二方面的第一种可能的实现方式,在第二方面的第二种可能的实现方式中,所述基站根据所述负载强度生成负载指示字段,具体包括:
所述基站将所述高负载或所述低负载设置为负载指示,或
所述基站确定相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化时,将负载指示依次设置为负载变强、负载变弱、负载无变化。
结合第二方面或第二方面的第一种可能的实现方式至第二方面的第二种可能的实现方式中的任意一种,在第一方面的第三种可能的实现方式中,所述基站将所述负载指示设置于所述DCI的DL Allocation单元中发送给所述M2M终端。
本发明实施例第三方面提供了一种机器对机器M2M终端,所述M2M终端能够接收到的下行射频信号占用的带宽为一个下行资源块RB,且所述M2M终端进行下行业务占用的带宽为所述RB内的一个下行物理信道,包括:
接收单元,用于接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;
处理单元,用于根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度相适应的增益控制。
结合第三方面,在第三方面的第一种可能的实现方式中,所述负载指示字段为相邻两个调度时隙中每个调度时隙的负载强度,或
相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化。
结合第三方面或第三方面的第一种可能的实现方式,在第三方面的第二种可能的实现方式中,所述处理单元用于:
根据接收到的所述负载指示字段,确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,所述调度时长包含所述第一调度时隙和所述第二调度时隙;
在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度发生变化时,在所述第二调度时隙来临之前调整自动增益控制。
结合第三方面的第二种可能的实现方式,在第三方面的第三种可能的实现方式中,所述处理单元还用于:在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度未发生变化时,保持所述M2M终端在所述第一调度时隙接收下行射频信号时所采用的增益控制。
本发明实施例第四方面提供了一种基站,包括:
处理单元,用于为机器对机器M2M终端分配下行物理信道和调度时长,所述下行物理信道为一个下行资源块RB内的一个物理信道,且所述RB为所述M2M终端能够接收到的下行射频信号占用的带宽;根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度;根据所述负载强度生成负载指示字段;
发送单元,用于占用长期演进LTE系统的系统带宽向所述M2M终端发送包含所述负载指示字段的下行控制信息DCI。
结合第四方面,在第四方面的第一种可能的实现方式中,所述处理单元用于:
确定每个调度时隙所述RB内已分配的下行物理信道数,与所述RB中可用的下行物理信道总数的比值;当所述比值大于第一阈值时,确定所述调度时隙的负载强度为高负载,否则确定所述调度时隙的负载强度为低负载。
结合第四方面或第四方面的第一种可能的实现方式,在第四方面的第二 种可能的实现方式中,所述处理单元用于:
将所述高负载或所述低负载设置为负载指示,或
确定相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化时,将负载指示依次设置为负载变强、负载变弱、负载无变化。
结合第四方面或第四方面的第一种可能的实现方式至第四方面的第二种可能的实现方式中的任意一种,在第四方面的第三种可能的实现方式中,所述基站将所述负载指示设置于所述DCI的DL Allocation单元中发送给所述M2M终端。
本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本发明实施例中,基站统计一个M2M终端能够接收到的RB内的所有下行物理信道(包含基站为该M2M分配的下行物理信道)的分配情况,然后根据分配情况生成负载指示字段,将负载指示字段添加在DCI中发送给M2M终端,M2M终端根据基站发送的下行控制信息DCI中包含的负载指示字段,在基站为M2M终端分配的调度时长内的调度时隙来临之前调整自动增益控制,以使M2M终端在调度时隙占用基站为M2M终端分配的下行物理信道接收下行射频信号时,采用与调度时隙的负载强度相适应的增益控制。
由于在调度时隙来临之前,M2M终端根据DCI中的负载指示字段能够提前确定调度时隙的负载强度相比于之前且相邻的调度时隙的负载强度的变化情况,所以相比于现有技术,终端能够在调度时隙来临之前提前确定在该调度时隙接收到的下行射频信号是否会发生突变,如果发生突变,则在该调度时隙来临之前启动与该调度时隙的负载强度相适应的增益控制,缩短了AGC起控时间,减少了信号溢出。
附图说明
图1为适用于本发明实施例中自动增益控制方法的一种可能的通信系统 架构;
图2为本发明实施例中包含AGC的M2M终端的结构示意图;
图3为一个RB内的下行物理信道的示意图;
图4为LTE M2M系统中DCI的结构示意图;
图5为DCI中的DL Allocation消息单元的结构示意图;
图6为本发明实施例中基于负载指示的AGC控制方法的交互示意图;
图7为本发明实施例中在DL Allocation消息单元中增加Load Ind字段的第一种示意图;
图8为本发明实施例中在DL Allocation消息单元中增加Load Ind字段的第二种示意图;
图9为本发明实施例提供的基站侧自动增益控制方法的流程图;
图10为本发明实施例中Load Ind字段的第一种示意图;
图11为本发明实施例中Load Ind字段的第二种示意图;
图12为本发明实施例中Load Ind字段的第三种示意图;
图13为本发明实施例提供的终端侧自动增益控制方法的流程图;
图14为本发明实施例中步骤202的详细流程图;
图15为本发明实施例提供的M2M终端的功能模块图;
图16为本发明实施例提供的M2M终端的硬件结构图;
图17为本发明实施例提供的基站的功能模块图;
图18为本发明实施例提供的基站的功能模块图。
具体实施方式
本发明实施例提供一种自动增益控制方法、M2M终端及基站,用于在M2M终端接收到的下行射频信号发生突变时缩短AGC起控的时间,减少信号溢出。
本发明实施例中,基站统计一个M2M终端能够接收到的RB内的所有下行物理信道(包含基站为该M2M分配的下行物理信道)的分配情况,然后根 据分配情况生成负载指示字段,将负载指示字段添加在DCI中发送给M2M终端,M2M终端根据基站发送的下行控制信息DCI中包含的负载指示字段,在基站为M2M终端分配的调度时长内的调度时隙来临之前调整自动增益控制,以使M2M终端在调度时隙占用基站为M2M终端分配的下行物理信道接收下行射频信号时,采用与调度时隙的负载强度相适应的增益控制。
由于在调度时隙来临之前,M2M终端根据DCI中的负载指示字段能够提前确定调度时隙的负载强度相比于之前且相邻的调度时隙的负载强度的变化情况,所以相比于现有技术,终端能够在调度时隙来临之前提前确定在该调度时隙接收到的下行射频信号是否会发生突变,如果发生突变,则在该调度时隙来临之前启动与该调度时隙的负载强度相适应的增益控制,缩短了AGC起控时间,减少了信号溢出。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
请参考图1,图1为适用于本发明实施例中自动增益控制方法的一种可能的通信系统架构。该通信系统架构包括:基站和多个M2M终端。
具有如图1所示的通信系统架构的通信系统可以是:全球移动通讯系统(GSM,Global System of Mobile communication),通用分组无线业务(GPRS,General Packet Radio Service)系统,码分多址(CDMA,Code Division Multiple Access)系统,宽带码分多址(WCDMA,Wideband Code Division Multiple Access Wireless)系统,长期演进(LTE,Long Term Evolution)系统,以及后 续演进发展的各类无线通信系统,包括但不限于第五代移动通信系统(5G,5th Generation)等。
图1中的基站可以是:GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(eNB或e-NodeB,evolutional Node B),以及后续演进系统中实现类似功能的网络设备,本发明并不限定。需要注意的是,根据实际网络部署需要,对网络设备的形态进行相应的改变,如采用分布式基站等方式,亦在本发明的保护范围之内。
图1中的M2M终端可以是:用户设备(UE,User Equipment),也可称之为移动终端(Mobile Terminal)、移动用户设备等,可以经无线接入网(RAN,Radio Access Network)与一个或多个核心网(CN,Core Network)进行通信,用户设备可以是如移动电话或具有移动终端的计算机,例如,便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
由于M2M终端接收到的下行射频信号为模拟信号,需要利用ADC(中文:模数转换器;英文:Analog to Digital Converter)将模拟信号需要转换为数字信号,然后对数字信号进行处理,以便于传输基站向M2M终端发送的有用信息。如果输入ADC的模拟信号的功率过大或过小,M2M终端利用接收到的数字信号恢复出的有用信息可能会丢失。因此,需要控制输入ADC的模拟信号的功率保持在预定范围内,常用的解决方案是:根据ADC输出的数字信号的功率,使用AGC动态调整放大器对输入ADC的模拟信号进行放大的倍数。
请参考图2,图2为本发明实施例中包含AGC的M2M终端的结构示意图。M2M终端包含至少一个射频接收机200,射频接收机200包括:放大器210、ADC 220、数字信号接收器230、功率估测器240、AGC 250。射频接收机200接收基站发送的下行射频信号,下行射频信号经放大器210放大后输入ADC 220,ADC 220将模拟信号转换为数字信号输出至数字信号接收器230,功率估测器240对数字接收器230接收到的数字信号的功率进行估测, 根据估测结果,AGC 250控制放大器210对射频接收机200接收到的下行射频信号进行放大的倍数。
本发明实施例中,所述M2M终端能够接收到的下行射频信号占用的带宽为一个下行资源块RB,且所述M2M终端进行下行业务占用的带宽为所述RB内的一个下行物理信道。
请参考图3,图3为一个RB内的下行物理信道的示意图。从图3可以看出,一个RB内有多个下行物理信道。尽管M2M能够接收到的下行射频信号占用的带宽为一个RB,但是M2M终端进行下行业务仅占用RB内的一个下行物理信道,RB内的其他下行物理信道可能空闲,也可能被基站分配给其他M2M终端,供其他M2M终端接收下行射频信号。因此,M2M能够接收到的下行射频信号的功率取决于:M2M能够接收到的RB内所有下行物理信道的分配情况。因此,本发明实施例提出:根据M2M能够接收到的RB内所有下行物理信道的分配情况,进行自动增益控制。
然而对一个M2M终端来说,尽管它知道基站分配给它的调度时长和下行物理信道是什么,但是该M2M终端不知道它能够接收到的RB内其他下行物理信道是否被基站分配给其他M2M终端,且不知道基站分配给其他M2M终端的调度时长是多少,因此,M2M终端不能预测基站为其分配的调度时长内,对于它能够接收到的RB内的所有下行物理信道的分配情况。
由于基站是执行为各个M2M终端分配下行物理信道和调度时长的主体,所以基站能够统计出每个RB内的所有下行物理信道在每个调度时隙的分配情况,所以本发明实施例中的基站在为一个M2M终端分配调度时长和下行物理信道之后,还要统计该M2M终端能够接收到的RB内的所有下行物理信道(包含基站为该M2M分配的下行物理信道)的分配情况,然后根据分配情况生成负载指示字段,将负载指示字段添加在DCI中通过在PDSCH(中文:物理下行共享信道;英文:Physical Downlink Share Channel)上承载的DCI(中文:下行控制信息,英文:downlink control information)中的DL Allocation消息单元通知给终端。请参考图4,图4为本发明实施例中DCI的结构示意 图。DCI包含多个消息单元:预留R;正确接收信令域ACK field;正确接收信令重复ACK Repetition;下行资源分配单元数DL number;下行资源分配单元DL Alloction;上行资源分配单元数UL number;上行资源分配单元UL Alloction;随机接入配置数RACH number;随机接入配置信息RACH config;填充Padding。
请参考图5,图5为DCI中的DL Allocation消息单元的结构示意图。从图5可以看出,DL Allocation消息单元包含多个字段:用户标识C-RNTI;信道号ChannelID,表示基站为M2M终端分配的物理信道的信道号;调制编码机制MCS;起始时隙startIndication,表示基站为M2M终端分配的调度时长起始的时隙位置;下行资源持续时长Duration,表示基站为M2M终端分配的下行资源上承载的业务数据量,以字节为单位;下行包号DLPN;预留R。
从图5可以看出,基站能确知为M2M终端分配的调度时长、下行物理信道的信道号和包含该信道号的RB,也即M2M终端能够接收到的RB,进而能够统计出调度时长内的每个调度时隙该RB内的所有下行物理信道的分配情况。
由于已分配的下行物理信道都用于传输下行射频信号,所以基站统计出的RB内所有物理信道的分配情况,对M2M终端获知每个调度时隙将要接收的下行射频信号是否会发生突变具有参考价值,进而能够指导M2M终端在调度时隙来临之前,调整自动增益控制,以使得M2M终端在该调度时隙接收发生突变的下行射频信号时,采用相适应的自动增益控制。
因此,本发明实施例提出基于负载指示的自动增益控制方法:基站在DCI中增加负载指示字段,与为终端分配的下行资源一起通知M2M终端。终端根据负载指示,可以提前判断在下行业务持续过程中每个调度时隙内下行射频信号是否会发生突变,在下行射频信号突变来临前提前起控AGC,相应调整接收增益,减少信号损失。
请参考图6,图6为本发明实施例中基于负载指示的AGC控制方法的交互示意图。本发明实施例中基于负载指示的AGC控制方法包括以下步骤:
步骤1:基站为M2M终端分配进行下行业务的调度时长和下行物理信道,以及统计为M2M终端分配的调度时长内,M2M终端能够接收到的RB内的所有下行物理信道在每个调度时隙的分配情况;
步骤2:基站通过DCI将分配给M2M终端的调度时长和下行物理信道,以及调度时长内的负载指示,通知给M2M终端;
步骤3:M2M终端接收DCI,根据负载指示,判断每个调度时隙将要接收的下行射频信号是否会发生突变,若判断某个调度时隙将要接收的下行射频信号会发生突变,则在该调度时隙到来前提前起控AGC进行增益调整。
本发明实施例中,在DCI的DL Allocation单元中新增负载指示字段Load Ind(Load Indication),Load Ind包含了M2M终端的调度时长内每个调度时隙(10ms)的负载指示。由于在DCI的DL Allocation单元中新增Load Ind字段,所以DL Allocation单元中的预留比特R字段不再固定为8bit,而是可变长,以保证整个DL Allocation的长度为16比特的整数倍。请参考图7和图8,图7和图8分别是两种在DL Allocation单元中新增Load Ind字段的示意图。从图7和图8可以看出,Load Ind字段在DL Allocation单元中的位置不同。图7和图8仅是举例说明,实际实施过程中,只要DL Allocation单元中包含Load Ind字段即可,不局限图7和图8所示的Load Ind字段的位置。
接下来从基站侧介绍本发明实施例提供的自动增益控制方法。请参考图9,图9为本发明实施例提供的基站侧自动增益控制方法的流程图。该方法包括:
步骤101:所述基站为机器对机器M2M终端分配下行物理信道和调度时长,所述下行物理信道为一个下行资源块RB内的一个物理信道,且所述RB为所述M2M终端能够接收到的下行射频信号占用的带宽;
步骤102:所述基站根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度;
步骤103:所述基站根据所述负载强度生成负载指示字段;
步骤104:所述基站占用长期演进LTE系统的系统带宽向所述M2M终端 发送包含所述负载指示字段的下行控制信息DCI。
在步骤101中,基站为M2M终端分配调度时长和物理信道,确定为M2M终端分配的下行物理信道的信道号和包含该信道号的RB。基站之所以要确定包含M2M终端所占用的下行物理信道的RB,是因为M2M终端能够接收到的下行射频信号占用的带宽为一个RB,即180KHz,所以M2M终端不仅能接收到基站所分配的下行物理信道所传输的下行射频信号,还会接收到与基站所分配的下行物理信道属于同一RB的其他下行物理信道所传输的下行射频信号。为此,基站需要统计包含M2M终端所占用的下行物理信道的RB内的所有下行物理信道的分配情况。
然后执行步骤102,确定为M2M终端分配的调度时长内每个调度时隙的负载强度。具体来讲,基站要确定包含M2M终端所占用的下行物理信道的RB内所有下行物理信道的分配情况,根据该RB内所有下行物理信道的分配情况确定负载强度。
步骤102具体包括:
所述基站确定每个调度时隙所述RB内已分配的物理信道数,与所述RB中可用的物理信道总数的比值;
当所述比值大于第一阈值时,确定所述调度时隙的负载强度为高负载,否则确定所述调度时隙的负载强度为低负载。
具体来讲,基站统计在分配给M2M终端的调度时长内,针对调度时长内的每个调度时隙,基站统计为M2M终端分配的下行物理信道所属的RB中所有下行物理信道的分配情况。
举例来讲,一个调度时隙已分配的下行物理信道数占可用的下行物理信道数大于第一阈值,就确定该调度时隙的负载强度为高负载,反之,为低负载。通常来讲,第一阈值不是限定值,可以根据实测选取适用终端起控AGC算法的最佳值。也不局限于此例中的确定负载高低的方法,可采用现有技术中其他方法确定负载高低。
接下来执行步骤103,步骤103具体包括:
所述基站将所述高负载或所述低负载设置为负载指示,或
所述基站确定相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化,将负载指示依次设置为负载变强、负载变弱、负载无变化。
具体来讲,步骤103的第一种可能的实现方式为:基站统计在分配给M2M终端的调度时长内,针对每个调度时隙,基站确定该调度时隙的负载强度,当该调度时隙的负载强度为高负载时,设置该调度时隙的负载指示为高负载;当该调度时隙的负载强度为低负载时,设置该调度时隙的负载指示为低负载。
步骤103的第二种可能的实现方式为:基站统计在分配给M2M终端的调度时长内,针对每个调度时隙,基站确定该调度时隙的负载强度以及该调度时隙之前且相邻的调度时隙的负载强度,当该调度时隙的负载强度为低负载且该调度时隙之前且相邻的调度时隙的负载强度为高负载,则将该调度时隙的负载指示设置为负载变弱或者负载有变化;当该调度时隙的负载强度为高负载且该调度时隙之前且相邻的调度时隙的负载强度为低负载,则将该调度时隙的负载指示设置为负载变强或者负载有变化;当该调度时隙的负载强度、以及该调度时隙之前且相邻的调度时隙的负载强度均为低负载或者均为高负载,则将该调度时隙的负载指示设置为负载无变化。
举例来讲,基站分配给终端的调度时长为第1调度时隙至第5调度时隙,基站分配给终端的物理信道的频率范围是15kHz至30kHz,属于频率范围是0至180kHz的RB内的一个物理信道。基站统计频率范围是0至180kHz的RB内第2调度时隙的负载强度为低负载,该RB内第1调度时隙的负载强度为高负载,就确定第2调度时隙的负载指示为负载变弱或负载有变化。
如果统计该RB内第2调度时隙的负载强度为高负载,该RB内第1调度时隙的负载强度为低负载,就确定第2调度时隙的负载指示为负载变强或负载有变化。
如果统计该RB内第2调度时隙的负载强度、该RB内第1调度时隙均为高负载或均为低负载,就确定第2调度时隙的负载指示为负载无变化。
最后执行步骤104。本发明实施例中,所述基站将所述负载指示设置于所述DCI的DL Allocation单元中发送给所述M2M终端。
具体来讲,基站在DCI中的DL Allocation消息单元里新增Load Ind字段。
请参考图10,Load Ind字段指示调度时长内每个调度时隙的负载强度,每个调度时隙的负载指示采用1比特表示,0表示低负载且1表示高负载。如果分配给终端的调度时长为N个10ms,则Load Ind字段的长度为N比特,图10及下述图11和图12中,调度时隙填充为黑色,表示该调度时隙的负载强度为高负载,反之,表示调度时隙的负载强度为低负载。
请参考图11,Load Ind字段指示调度时长内每个调度时隙的负载强度相比于之前且相邻的调度时隙的负载强度有无变化。每个调度时隙的负载指示采用1比特表示,0表示无变化且1表示有变化。如果分配给终端的调度时长为N个10ms,则Load Ind字段的长度为N比特。
请参考图12,Load Ind字段指示调度时长内每个调度时隙的负载强度相比于之前且相邻的调度时隙的负载强度的变化情况。每个调度时隙的负载指示采用2比特表示,00表示负载指示为负载无变化,01表示负载指示为负载变强,10表示负载指示为负载变弱,11表示预留。如果分配给终端的调度时长为N个10ms,则Load Ind字段的长度为2乘以N比特。
本发明实施例中,Load Ind字段的长度与调度时长以及表示每个调度时隙的负载指示的比特数有关,如果分配给M2M终端的调度时长为N个10ms,且每个调度时隙的负载指示用M比特表示,则Load Ind字段的比特长度为N乘以M比特。
具体来讲,由于DCI的DL Allocation消息单元中的Duration字段表示基站为M2M终端分配的调度时长内可传输的字节数为P,MCS字段表示每个调度时隙可传输的字节数为A,所以如果每个调度时隙的负载指示用M比特表示,则M2M终端可以确定Load Ind字段的长度为N乘以M比特,其中,当
Figure PCTCN2015076884-appb-000001
为整数时,
Figure PCTCN2015076884-appb-000002
Figure PCTCN2015076884-appb-000003
不为整数时,
Figure PCTCN2015076884-appb-000004
需要特别说明的是,本发明实施例中,基站向M2M终端发送下行射频信号所占用的带宽为LTE的系统带宽,通常为多个RB所占用的带宽,而一个M2M终端能够接收到的下行射频信号占用的带宽仅为一个RB,且M2M终端进行下行业务占用的带宽仅为RB内的一个下行物理信道所占用的带宽,即:M2M终端具有单载波超窄带的特点。换句话说,基站与M2M终端之间传输的上行射频信号与下行射频信号所占用的带宽是不同的,基站向M2M终端发送下行射频信号所占的带宽远大于M2M终端能够接收到的下行射频信号所占的带宽。
接下来从M2M终端侧介绍本发明实施例提供的自动增益控制方法。请参考图13,图13为本发明实施例提供的终端侧自动增益控制方法的流程图。该方法包括:
步骤201:所述M2M终端接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;
步骤202:所述M2M终端根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度相适应的增益控制。
在前述对基站侧的自动增益控制方法的介绍中,已经说明基站将为M2M终端分配的调度时长内每个调度时隙的负载指示增加在DCI中发送给M2M终端。所以M2M终端接收基站发送的DCI,通过DCI的DL Allocation单元中新增Load Ind字段即可获知基站为M2M终端分配的调度时长内每个调度时隙的负载指示。
其中,步骤201中的负载指示字段为相邻两个调度时隙中每个调度时隙的负载强度,或相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化。
请参考图14,步骤202包括:
步骤2021:所述M2M终端根据接收到的所述负载指示字段,确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,所述调度时长包含所述第一调度时隙和所述第二调度时隙,即:确定一个调度时隙的负载强度相比于之前且相邻的调度时隙的负载强度是否发生变化;
步骤2022:在所述M2M终端确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度发生变化时,在所述第二调度时隙来临之前调整自动增益控制。
本发明实施例中,M2M终端确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,包括:
所述M2M终端确定所述第二调度时隙的负载指示为高负载,且所述第一调度时隙的负载指示为低负载;或者
所述M2M终端确定所述第二调度时隙的负载指示为低负载,且所述第一调度时隙的负载指示为高负载;或者
所述M2M终端确定所述第二调度时隙的负载指示表征所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度变弱、变强或者有变化。
具体来讲,在前述对基站侧的自动增益控制方法的介绍中,已经说明负载指示表征调度时隙的负载强度,即负载指示为高负载或低负载,或者负载指示表征一个调度时隙的负载强度相比于所述调度时隙之前且相邻的调度时隙的负载强度的变化情况,即负载指示为:负载有变化、负载无变化、负载变强、负载变弱。
在第一调度时隙与第二调度时隙相邻且在第二调度时隙之前的前提下,当M2M终端确定负载指示从第一调度时隙的低负载变为第二调度时隙的高负载,或者从第一调度时隙的高负载变为第二调度时隙的低负载,就确定第二调度时隙的负载强度相比于第一调度时隙的负载强度发生变化;当M2M终端确定负载指示从第一调度时隙至第二调度时隙始终保持高负载,或者从第一调度时隙至第二调度时隙始终保持低负载,就确定就确定第二调度时隙的 负载强度相比于第一调度时隙的负载强度未发生变化。
或者在第一调度时隙与第二调度时隙相邻且在第二调度时隙之前的前提下,当M2M终端确定第二调度时隙的负载指示为负载变弱或负载有变化,则表明:第二调度时隙的负载强度为低负载且第一调度时隙的负载强度为高负载,就确定第二调度时隙的负载强度相比于第一调度时隙的负载强度发生变化;或者当M2M终端确定第二调度时隙的负载指示为负载变强或负载有变化,则表明:第二调度时隙的负载强度为高负载且第一调度时隙的负载强度为低负载,就确定第二调度时隙的负载强度相比于第一调度时隙的负载强度发生变化;当M2M终端确定第二调度时隙的负载指示为负载无变化,则表明:第二调度时隙的负载强度、第一调度时隙的负载强度均为高负载或者均为低负载,就确定第二调度时隙的负载强度相比于第一调度时隙的负载强度未发生变化。
对应图10所示的Load Ind字段,当M2M终端确定负载指示字段中第二调度时隙的负载指示相比于第一调度时隙的负载指示从1变成0或者从0变成1,则确定第二调度时隙的负载强度相比于第一调度时隙的负载强度发生变化,如果第二调度时隙的负载指示和第一调度时隙的负载指示均为1或者均为0,则确定第二调度时隙的负载强度相比于第一调度时隙的负载强度未发生变化。
对应图11所示的Load Ind字段,当M2M终端确定负载指示字段中第二调度时隙的负载指示为1,则确定第二调度时隙的负载强度相比于第一调度时隙的负载强度发生变化,如果第二调度时隙的负载指示为0,则确定第二调度时隙的负载强度相比于第一调度时隙的负载强度未发生变化。
对应图12所示的Load Ind字段,当M2M终端确定负载指示字段中第二调度时隙的负载指示为01或10,则确定第二调度时隙的负载强度相比于第一调度时隙的负载强度发生变化,如果第二调度时隙的负载指示为00,则确定确定第二调度时隙的负载强度相比于第一调度时隙的负载强度未发生变化。
根据步骤2021的结果,执行步骤2022或以下步骤:
在所述M2M终端确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度未发生变化时,保持所述M2M终端在所述第一调度时隙接收下行射频信号时所采用的增益控制。
具体来讲,增益控制与负载强度有关,当调度时隙的负载强度为高负载时,增益控制范围较大,当调度时隙的负载强度由高负载变为低负载时,根据负载指示,增益控制范围就会相应缩小;当调度时隙的负载强度为低负载时,增益控制范围较小,当调度时隙的负载强度由低负载变为高负载时,根据负载指示,增益控制范围就会相应扩大。
在M2M终端确定出第二调度时隙的负载强度相比于第一调度时隙的负载强度发生变化时,会在第二调度时隙来临之前,调整自动增益控制,采用与第二调度时隙的负载强度相适应的自动增益控制,以使得M2M终端在第二调度时隙接收下行射频信号时,增益控制范围与第二调度时隙负载强度相匹配。
在M2M终端确定出第二调度时隙的负载强度相比于第一调度时隙的负载强度未发生变化时,也即第二调度时隙的负载强度与第一调度时隙的负载强度相同时,无需调整自动增益控制,保持与第一调度时隙的负载强度相应的自动增益控制即可。
基于同一发明构思,本发明实施例提供一种M2M终端,请参考图15,图15为本发明实施例提供的M2M终端的功能模块图。图15所示的终端涉及到的术语的含义以及具体实现,可以参考前述图1至图14以及实施例的相关描述。
如图15所示,M2M终端包括:
接收单元301,用于接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;
处理单元302,用于根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙 占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度相适应的增益控制。
可选的,所述负载指示字段为相邻两个调度时隙中每个调度时隙的负载强度,或
相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化。
可选的,所述处理单元302用于:
根据接收到的所述负载指示字段,确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,所述调度时长包含所述第一调度时隙和所述第二调度时隙;在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度发生变化时,在所述第二调度时隙来临之前调整自动增益控制。
可选的,所述处理单元302用于:
在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度未发生变化时,保持所述M2M终端在所述第一调度时隙接收下行射频信号时所采用的增益控制。
前述图13实施例中的自动增益控制方法中的各种变化方式和具体实例同样适用于本实施例的M2M终端,通过前述对自动增益控制方法的详细描述,本领域技术人员可以清楚的知道本实施例中M2M终端的实施方法,所以为了说明书的简洁,在此不再详述。
请参考图16,图16为本发明实施例提供的终端的硬件结构图。终端包括:
接收器402,用于接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;
处理器401,用于根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度 相适应的增益控制。
可选的,所述负载指示字段为相邻两个调度时隙中每个调度时隙的负载强度,或
相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化。
可选的,所述处理器401用于:
根据接收到的所述负载指示字段,确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,所述调度时长包含所述第一调度时隙和所述第二调度时隙;在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度发生变化时,在所述第二调度时隙来临之前调整自动增益控制。
可选的,所述处理器401用于:
在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度未发生变化时,保持所述M2M终端在所述第一调度时隙接收下行射频信号时所采用的增益控制。
其中,在图16中,总线架构(用总线400来代表),总线400可以包括任意数量的互联的总线和桥,总线400将包括由处理器401代表的一个或多个处理器和存储器404代表的存储器的各种电路连接在一起。总线400还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口405在总线400和接收器402之间提供接口。接收器402可以是收发机,提供用于在传输介质上与各种其他装置通信的单元。取决于用户设备的性质,还可以提供用户接口403,例如小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器401负责管理总线400和通常的处理,而存储器404可以被用于存储处理器401在执行操作时所使用的数据。
前述图13实施例中的自动增益控制方法中的各种变化方式和具体实例同样适用于本实施例的M2M终端,通过前述对自动增益控制方法的详细描述, 本领域技术人员可以清楚的知道本实施例中M2M终端的实施方法,所以为了说明书的简洁,在此不再详述。
基于同一发明构思,本发明实施例提供一种基站,请参考图17,图17为本发明实施例提供的基站的功能模块图。图17所示的基站涉及到的术语的含义以及具体实现,可以参考前述图1至图14以及实施例的相关描述。
如图17所示,基站包括:
处理单元501,用于为机器对机器M2M终端分配下行物理信道和调度时长,所述下行物理信道为一个下行资源块RB内的一个物理信道,且所述RB为所述M2M终端能够接收到的下行射频信号占用的带宽;根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度;根据所述负载强度生成负载指示字段;
发送单元502,用于占用长期演进LTE系统的系统带宽向所述M2M终端发送包含所述负载指示字段的下行控制信息DCI。
可选的,所述处理单元501用于:
确定每个调度时隙所述RB内已分配的下行物理信道数,与所述RB中可用的下行物理信道总数的比值;当所述比值大于第一阈值时,确定所述调度时隙的负载强度为高负载,否则确定所述调度时隙的负载强度为低负载。
可选的,所述处理单元501用于:
将所述高负载或所述低负载设置为负载指示,或
确定相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化时,将负载指示依次设置为负载变强、负载变弱、负载无变化。
可选的,所述处理单元501将所述负载指示设置于所述DCI的DL Allocation单元中。
前述图9实施例中的自动增益控制方法中的各种变化方式和具体实例同样适用于本实施例的基站,通过前述对自动增益控制方法的详细描述,本领域技术人员可以清楚的知道本实施例中基站的实施方法,所以为了说明书的 简洁,在此不再详述。
请参考图18,图18为本发明实施例提供的基站的硬件结构图。基站包括:
处理器601,用于为机器对机器M2M终端分配下行物理信道和调度时长,所述下行物理信道为一个下行资源块RB内的一个物理信道,且所述RB为所述M2M终端能够接收到的下行射频信号占用的带宽;根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度;根据所述负载强度生成负载指示字段;
发送器602,用于占用长期演进LTE系统的系统带宽向所述M2M终端发送包含所述负载指示字段的下行控制信息DCI。
可选的,所述处理器601用于:
确定每个调度时隙所述RB内已分配的下行物理信道数,与所述RB中可用的下行物理信道总数的比值;当所述比值大于第一阈值时,确定所述调度时隙的负载强度为高负载,否则确定所述调度时隙的负载强度为低负载。
可选的,所述处理器601用于:
将所述高负载或所述低负载设置为负载指示,或
确定相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化时,将负载指示依次设置为负载变强、负载变弱、负载无变化。
可选的,所述处理器601将所述负载指示设置于所述DCI的DL Allocation单元中。
其中,在图18中,总线架构(用总线600来代表),总线600可以包括任意数量的互联的总线和桥,总线600将包括由处理器601代表的一个或多个处理器和存储器604代表的存储器的各种电路连接在一起。总线600还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路连接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口605在总线600和发送器602之间提供接口。发送器602可以是收发机,提供用于在传输介质上与各种其他装置通信的单元。取决于用户设备的性质, 还可以提供用户接口603,例如小键盘、显示器、扬声器、麦克风、操纵杆等。
处理器601负责管理总线600和通常的处理,而存储器604可以被用于存储处理器601在执行操作时所使用的数据。
前述图9实施例中的自动增益控制方法中的各种变化方式和具体实例同样适用于本实施例的基站,通过前述对自动增益控制方法的详细描述,本领域技术人员可以清楚的知道本实施例中基站的实施方法,所以为了说明书的简洁,在此不再详述。
本发明实施例中提供的一个或多个技术方案,至少具有如下技术效果或优点:
本发明实施例中,基站统计一个M2M终端能够接收到的RB内的所有下行物理信道(包含基站为该M2M分配的下行物理信道)的分配情况,然后根据分配情况生成负载指示字段,将负载指示字段添加在DCI中发送给M2M终端,M2M终端根据基站发送的下行控制信息DCI中包含的负载指示字段,在基站为M2M终端分配的调度时长内的调度时隙来临之前调整自动增益控制,以使M2M终端在调度时隙占用基站为M2M终端分配的下行物理信道接收下行射频信号时,采用与调度时隙的负载强度相适应的增益控制。
由于在调度时隙来临之前,M2M终端根据DCI中的负载指示字段能够提前确定调度时隙的负载强度相比于之前且相邻的调度时隙的负载强度的变化情况,所以相比于现有技术,终端能够在调度时隙来临之前提前确定在该调度时隙接收到的下行射频信号是否会发生突变,如果发生突变,则在该调度时隙来临之前启动与该调度时隙的负载强度相适应的增益控制,缩短了AGC起控时间,减少了信号溢出。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (16)

  1. 一种一种自动增益控制方法,应用于机器对机器M2M终端,所述M2M终端能够接收到的下行射频信号占用的带宽为一个下行资源块RB,且所述M2M终端进行下行业务占用的带宽为所述RB内的一个下行物理信道,其特征在于,包括:
    所述M2M终端接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;
    所述M2M终端根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度相适应的增益控制。
  2. 如权利要求1所述的方法,其特征在于,所述负载指示字段为相邻两个调度时隙中每个调度时隙的负载强度,或
    相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化。
  3. 如权利要求1或2所述的方法,其特征在于,所述M2M终端根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,包括:
    所述M2M终端根据接收到的所述负载指示字段,确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,所述调度时长包含所述第一调度时隙和所述第二调度时隙;
    在所述M2M终端确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度发生变化时,在所述第二调度时隙来临之前调整自动增益控制。
  4. 如权利要求3所述的方法,其特征在于,在所述M2M终端确定出所 述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度未发生变化时,保持所述M2M终端在所述第一调度时隙接收下行射频信号时所采用的增益控制。
  5. 一种自动增益控制方法,应用于基站,其特征在于,包括:
    所述基站为机器对机器M2M终端分配下行物理信道和调度时长,所述下行物理信道为一个下行资源块RB内的一个物理信道,且所述RB为所述M2M终端能够接收到的下行射频信号占用的带宽;
    所述基站根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度;
    所述基站根据所述负载强度生成负载指示字段;
    所述基站占用长期演进LTE系统的系统带宽向所述M2M终端发送包含所述负载指示字段的下行控制信息DCI。
  6. 如权利要求5所述的方法,其特征在于,所述基站根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度,具体包括:
    所述基站确定每个调度时隙所述RB内已分配的下行物理信道数,与所述RB中可用的下行物理信道总数的比值;
    当所述比值大于第一阈值时,确定所述调度时隙的负载强度为高负载,否则确定所述调度时隙的负载强度为低负载。
  7. 如权利要求5或6所述的方法,其特征在于,所述基站根据所述负载强度生成负载指示字段,具体包括:
    所述基站将所述高负载或所述低负载设置为负载指示,或
    所述基站确定相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化时,将负载指示依次设置为负载变强、负载变弱、负载无变化。
  8. 如权利要求5-7中任一权项所述的方法,其特征在于,所述基站将所述负载指示设置于所述DCI的DL Allocation单元中发送给所述M2M终端。
  9. 一种机器对机器M2M终端,所述M2M终端能够接收到的下行射频信号占用的带宽为一个下行资源块RB,且所述M2M终端进行下行业务占用的带宽为所述RB内的一个下行物理信道,其特征在于,包括:
    接收单元,用于接收基站占用长期演进LTE系统的系统带宽发送的下行控制信息DCI、所述基站为所述M2M终端分配的下行物理信道和调度时长,所述DCI包含负载指示字段;
    处理单元,用于根据接收到的所述负载指示字段,在所述调度时长内的调度时隙来临之前调整自动增益控制,以使所述M2M终端在所述调度时隙占用所述下行物理信道接收下行射频信号时,采用与所述调度时隙的负载强度相适应的增益控制。
  10. 如权利要求9所述的M2M终端,其特征在于,所述负载指示字段为相邻两个调度时隙中每个调度时隙的负载强度,或
    相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化。
  11. 如权利要求9或10所述的M2M终端,其特征在于,所述处理单元用于:
    根据接收到的所述负载指示字段,确定第二调度时隙的负载强度相比于所述第二调度时隙之前且相邻的第一调度时隙的负载强度发生变化,所述调度时长包含所述第一调度时隙和所述第二调度时隙;在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度发生变化时,在所述第二调度时隙来临之前调整自动增益控制。
  12. 如权利要求11所述的M2M终端,其特征在于,所述处理单元还用于:
    在确定出所述第二调度时隙的负载强度相比于所述第一调度时隙的负载强度未发生变化时,保持所述M2M终端在所述第一调度时隙接收下行射频信号时所采用的增益控制。
  13. 一种基站,其特征在于,包括:
    处理单元,用于为机器对机器M2M终端分配下行物理信道和调度时长,所述下行物理信道为一个下行资源块RB内的一个物理信道,且所述RB为所述M2M终端能够接收到的下行射频信号占用的带宽;根据所述RB内的所有下行物理信道的分配情况,确定为所述M2M终端分配的调度时长内每个调度时隙的负载强度;根据所述负载强度生成负载指示字段;
    发送单元,用于占用长期演进LTE系统的系统带宽向所述M2M终端发送包含所述负载指示字段的下行控制信息DCI。
  14. 如权利要求13所述的基站,其特征在于,所述处理单元用于:
    确定每个调度时隙所述RB内已分配的下行物理信道数,与所述RB中可用的下行物理信道总数的比值;当所述比值大于第一阈值时,确定所述调度时隙的负载强度为高负载,否则确定所述调度时隙的负载强度为低负载。
  15. 如权利要求13或14所述的基站,其特征在于,所述处理单元用于:
    将所述高负载或所述低负载设置为负载指示,或
    确定相邻两个调度时隙中一个调度时隙的负载强度相比于之前的调度时隙的负载强度变强、变弱、无变化时,将负载指示依次设置为负载变强、负载变弱、负载无变化。
  16. 如权利要求13-15中任一权项所述的基站,其特征在于,所述基站将所述负载指示设置于所述DCI的DL Allocation单元中发送给所述M2M终端。
PCT/CN2015/076884 2015-04-17 2015-04-17 一种自动增益控制方法、m2m终端及基站 WO2016165130A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076884 WO2016165130A1 (zh) 2015-04-17 2015-04-17 一种自动增益控制方法、m2m终端及基站

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076884 WO2016165130A1 (zh) 2015-04-17 2015-04-17 一种自动增益控制方法、m2m终端及基站

Publications (1)

Publication Number Publication Date
WO2016165130A1 true WO2016165130A1 (zh) 2016-10-20

Family

ID=57125609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076884 WO2016165130A1 (zh) 2015-04-17 2015-04-17 一种自动增益控制方法、m2m终端及基站

Country Status (1)

Country Link
WO (1) WO2016165130A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368350B2 (en) 2017-05-26 2019-07-30 At&T Intellectual Property I, L.P. Concurrent mini-slot based and slot based transmissions to a single device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104175A1 (en) * 2011-02-03 2012-08-09 Nec Europe Ltd. Method for providing a random access channel in wireless network for communication and a corresponding system
CN103200683A (zh) * 2012-01-04 2013-07-10 中国移动通信集团公司 一种机器终端通信方法、装置和系统
WO2014045016A1 (en) * 2012-09-21 2014-03-27 Sony Corporation Telecommunications systems and methods

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012104175A1 (en) * 2011-02-03 2012-08-09 Nec Europe Ltd. Method for providing a random access channel in wireless network for communication and a corresponding system
CN103200683A (zh) * 2012-01-04 2013-07-10 中国移动通信集团公司 一种机器终端通信方法、装置和系统
WO2014045016A1 (en) * 2012-09-21 2014-03-27 Sony Corporation Telecommunications systems and methods

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "PHY-Layer Options to Support RRM, Time-Frequency Tracking and AGC for LAA", 3GPP TSG RAN WG1 MEETING #80 R1-150582, 13 February 2015 (2015-02-13), XP050933790 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10368350B2 (en) 2017-05-26 2019-07-30 At&T Intellectual Property I, L.P. Concurrent mini-slot based and slot based transmissions to a single device
US11006411B2 (en) 2017-05-26 2021-05-11 At&T Intellectual Property I, L.P. Concurrent mini-slot based and slot based transmissions to a single device

Similar Documents

Publication Publication Date Title
US12021663B2 (en) Measurement and report for cross-link interference management based on reference signals
US10945222B2 (en) Power control method and terminal device
US10390306B2 (en) Terminal requested base station controlled terminal transmission throttling
CN108632968B (zh) 用于上行功率控制的方法和装置
US20200068502A1 (en) Power control method and apparatus
US9794936B2 (en) Multireceiver timing advance provisioning
US10880906B2 (en) Apparatuses, methods and computer programs for implementing fairness and complexity-constrained a non-orthogonal multiple access (NOMA) scheme
US10798660B1 (en) Techniques for device-to-device frequency reuse in cellular networks
TW201830908A (zh) 通信方法及終端
US11750349B2 (en) Telecommunications apparatus and methods
JP2008092545A (ja) 無線通信システム、端末及び基地局
US20180213594A1 (en) Measurement result reporting method, method for counting by timer, apparatus, and user equipment
US9125223B2 (en) Methods providing buffer estimation and related network nodes and wireless terminals
CN109155921B (zh) 用于设备到设备通信的方法和装置
US9030954B2 (en) Reducing load in a communications network
US11997611B2 (en) Power control method and apparatus
US10645723B2 (en) Signal transmission method, signal transmission control method, user equipment, and base station
EP2397013B1 (en) Method and system for managing communication in wireless communication network
WO2016165130A1 (zh) 一种自动增益控制方法、m2m终端及基站
EP3456110A1 (en) Network node and method for ue specific power handling
US10925073B2 (en) Radio communication method, terminal device, and network device
TWI687115B (zh) 通信方法和裝置
WO2022208490A1 (en) Ul power control for transport block transmission over multiple slots

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888835

Country of ref document: EP

Kind code of ref document: A1