WO2016165072A1 - 无线接入点的有线回程链路部署的方法和装置 - Google Patents
无线接入点的有线回程链路部署的方法和装置 Download PDFInfo
- Publication number
- WO2016165072A1 WO2016165072A1 PCT/CN2015/076548 CN2015076548W WO2016165072A1 WO 2016165072 A1 WO2016165072 A1 WO 2016165072A1 CN 2015076548 W CN2015076548 W CN 2015076548W WO 2016165072 A1 WO2016165072 A1 WO 2016165072A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless access
- access point
- candidate
- link
- matrix
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W84/00—Network topologies
Definitions
- the present invention relates to the field of wireless communications, and in particular, to a method and apparatus for wired backhaul link deployment of a wireless access point.
- the dense radio access network is based on the shortest possible access of users, improving the capability of single stations and the area of the system. Throughput.
- the effective backhaul is one of the important issues of the dense wireless network.
- the backhaul is based on cable, but after the wireless access point is densified, not every wireless access point can have a wired backhaul. In addition, considering the cost, only some wireless access points are based on wired backhaul; other wireless access points A wireless backhaul is required to connect to a wireless access point with a wired backhaul via wireless single or multiple hops.
- the present invention provides a method and apparatus for deploying a wired backhaul link of a wireless access point, which can save deployment cost while ensuring the backhaul requirement of the wireless access point.
- a method for deploying a wired backhaul link of a wireless access point comprising: according to a wired backhaul capability of each of the L wireless access points in the network, from the L Determining at least one target wireless access point among the plurality of wireless access points; deploying a wired backhaul link for communicating with the core network for each of the at least one target wireless access point, the L wireless accesses The other wireless access point except the at least one target wireless access point communicates with the at least one target wireless access point through the wireless communication link, and passes the at least one target wireless The wired backhaul link of the access point communicates with the core network.
- the at least one of the L wireless access points is determined according to a wired backhaul capability of each of the L wireless access points in the network.
- a target wireless access point comprising: determining, according to a wired backhaul capability of each of the L wireless access points, a set of at least one candidate wireless access point, the at least one candidate wireless access point set Each candidate wireless access point set includes N candidate wireless access points of the L wireless access points, and a total wired backhaul capability of each candidate wireless access point set satisfies a backhaul requirement; determining the at least one candidate wireless At least one of a scheduling length, a capacity, and a wired backhaul cost value corresponding to each candidate wireless access point set in the set of access points; corresponding to each candidate wireless access point set in the at least one candidate wireless access point set Determining at least one of a length, a capacity, and a wired backhaul cost value, determining a target wireless access point set from the at
- determining, by the set of each candidate wireless access point set in the at least one candidate wireless access point set, a scheduling length, a capacity, and a cable At least one of the backhaul cost values includes: determining a radio link access point set corresponding to each candidate radio access point in the at least one candidate radio access point set, where the first candidate radio access point corresponds to
- the wireless link access point set includes at least one of the LN wireless access points, wherein the LN wireless access points are other than the N candidate wireless access points among the L wireless access points a wireless access point having a wireless communication link between the at least one wireless access point and the first candidate wireless access point, and communicating with the core network through a wired backhaul link of the first candidate wireless access point
- the at least one candidate wireless access point set includes the first candidate wireless access point; and the wireless link corresponding to each of the at least one candidate wireless access point included in each candidate wireless access point set Point set, the at least one candidate set is determined for
- the determining, by the wireless link access point corresponding to each candidate wireless access point in the at least one candidate wireless access point set And the determining includes: determining at least one first neighbor wireless access point corresponding to the N candidate wireless access points in the second candidate wireless access point set, where the at least one candidate wireless access point set includes the second candidate a set of wireless access points, the at least one first neighbor wireless access point does not belong to the second candidate wireless access point set, and the at least one first neighbor wireless access point and the second candidate wireless access point set At least one second candidate wireless access point is adjacent to each other; according to a transmission rate between each of the at least one first neighbor wireless access point and the at least one second candidate wireless access point Determining, in the at least one second candidate wireless access point, a second candidate wireless access point having a maximum transmission rate with each of the first neighbor wireless access points, wherein the at least one second a candidate wireless access point is adjacent to the first neighbor wireless access point; adding each first neighbor
- the wireless link access point corresponding to the at least one candidate wireless access point included in each candidate wireless access point set respectively And determining, determining each candidate wireless in the at least one candidate wireless access point set At least one of a scheduling length, a capacity, and a wired backhaul cost value corresponding to the set of access points includes: determining a wireless link access point corresponding to each of the at least one candidate wireless access point included in each set of candidate wireless access points The time slot value of the wireless access point is included; determining a scheduling length, a capacity, and a wired backhaul cost of the wireless link access point set according to the time slot value of the wireless access point included in the wireless link access point set At least one of the values; according to at least one of a scheduling length, a capacity, and a wired backhaul cost value of the set of wireless link access points respectively corresponding to the at least one candidate wireless access point included in each set of candidate wireless access points, Determining at least
- the time slot value of the wireless access point included in the point set includes: determining an initial time slot demand matrix of each wireless link access point set corresponding to each candidate wireless access point, the initial time slot demand matrix is n* An n-dimensional matrix, where n is the number of wireless access points in each set of wireless link access points, each row and each column of the initial time slot demand matrix being associated with each of the wireless link access point sets
- the initial time slot demand matrix includes an uplink initial time slot demand matrix and a downlink initial time slot demand matrix, and a primary diagonal element of the uplink initial time slot demand matrix is equal to a corresponding wireless access point
- the uplink time slot demand value, the other elements of the uplink initial time slot demand matrix are zero, and the elements of the row of the downlink initial time slot demand matrix are equal to the downlink time slot
- the number of slots, the element (i, j) in the scheduling matrix is set to x, and x indicates that the data transmitted by the i-th wireless access point in each radio link access point set in the
- the initial time slot requirement matrix is modified according to the scheduling matrix, and the set of each wireless link access point is obtained.
- the time slot requirement matrix includes: according to the scheduling matrix, when the wireless access point i transmits the data of the wireless access point j to the wireless access point k, the value of the element (i, j) in the initial time slot demand matrix Decrement by 1 and add ⁇ to the value of the element (k,j) in the initial time slot requirement matrix:
- r i,k represents the transmission rate between the wireless access point i and the wireless access point k
- r k,k-1 represents the next hop of the wireless access point k and the wireless access point k
- the downlink time slot demand value of the wireless access point is changed, the initial time slot requirement matrix is stopped to be modified, and the time slot demand matrix of each wireless link access point set is obtained.
- determining, according to the link interference matrix, the scheduling matrix of each radio link access point set includes: according to the link Selecting a policy, determining a scheduling matrix of each wireless link access point set, where the scheduling matrix includes an uplink scheduling matrix and a downlink scheduling matrix, where the link selection policy includes a priority sending link selection policy and a parallel sending link selection policy,
- the priority transmission link selection policy includes: for the uplink scheduling matrix, the candidate wireless access point of the wireless link access point set corresponding to the uplink scheduling matrix is preferentially transmitted from the nearest wireless access point, and each The data of the wireless access point is transmitted hop by hop on the transmission path.
- the candidate wireless access point of the wireless link access point set corresponding to the downlink scheduling matrix is farthest from the wireless access point.
- the data is preferentially transmitted, and the data of each wireless access point is transmitted hop by hop on the transmission path, and the parallel transmission link selection strategy includes: The link interference matrix, when any two transmission links interfere with each other, the two transmission links cannot transmit data in parallel, and if there is no interference between the two transmission links, the arbitrary two The transmission link can transmit data in parallel.
- Determining at least one of a scheduling length, a capacity, and a wired backhaul cost value of the set of the wireless link access points according to a time slot value of the wireless access point included in the set of wireless link access points including: according to each The scheduling matrix of the wireless link access point set determines the maximum slot number corresponding to the last slot to be sent in the scheduling matrix as the scheduling length of each radio link access point set.
- determining the radio link access according to a time slot value of a wireless access point included in the radio link access point set At least one of a scheduling length, a capacity, and a wired backhaul cost value of the set of points includes: determining, according to the time slot demand matrix of each set of wireless link access points, the set of each wireless link access point a wireless access point corresponding to a non-zero slot value in the wireless access point; determining a sum of link transmission rates between the wireless access points corresponding to the non-zero slot value as each of the wireless link access points The capacity of the collection.
- the scheduling length, capacity, and cable corresponding to each candidate wireless access point set in the at least one candidate wireless access point set Determining, by the at least one of the backhaul cost values, the target wireless access point set from the at least one candidate wireless access point set, comprising: corresponding to each candidate wireless access point set in the at least one candidate wireless access point set a scheduling length, determining, from the at least one candidate wireless access point set, at least one candidate wireless access point set having the smallest scheduling length; and corresponding to each candidate wireless access point set in the at least one candidate wireless access point set a capacity, determining, from the at least one candidate wireless access point set having the smallest scheduling length, at least one candidate wireless access point set having the largest capacity; and corresponding to each candidate wireless access point set according to the at least one candidate wireless access point set Wired backhaul cost value, determining the cable from the set of at least one candidate wireless access point having the largest capacity Cheng cost values of a minimum set of
- a wired backhaul cost of each of the L wireless access points is less than or equal to a wired backhaul cost threshold.
- a wired backhaul capability of each of the L wireless access points is greater than or equal to the each wireless access Point access capability.
- a second aspect provides an apparatus for deploying a wired backhaul link of a wireless access point, the apparatus comprising: a determining module, configured to: according to each of the L wireless access points in the network a line backhaul capability, determining at least one target wireless access point from the L wireless access points; and a processing module, configured to deploy each target wireless access point of the at least one target wireless access point determined by the determining module a wired backhaul link communicating with the core network, the other wireless access points of the L wireless access points except the at least one target wireless access point communicating with the at least one target wireless access point via a wireless communication link And communicating with the core network through a wired backhaul link of the at least one target wireless access point.
- the determining module is specifically configured to: determine, according to a wired backhaul capability of each of the L wireless access points, at least one candidate wireless access a set of points, each of the at least one candidate set of wireless access points includes N candidate wireless access points of the L wireless access points, and each set of candidate wireless access points The total wired backhaul capability satisfies a backhaul requirement; determining at least one of a scheduling length, a capacity, and a wired backhaul cost value corresponding to each candidate wireless access point set in the at least one candidate wireless access point set; according to the at least one candidate wireless connection Determining at least one of a scheduling length, a capacity, and a wired backhaul cost value corresponding to each candidate wireless access point set in the in-point set, determining a target wireless access point set from the at least one candidate wireless access point set; Determining the at least one target wireless access point by at least one of a scheduling length, a capacity, and a
- the determining module is specifically configured to: determine, corresponding to each candidate wireless access point in the at least one candidate wireless access point set a set of wireless link access points, where the set of wireless link access points corresponding to the first candidate wireless access point includes at least one of the LN wireless access points, and the LN wireless access points are a wireless access point other than the N candidate wireless access points among the L wireless access points, the wireless communication link between the at least one wireless access point and the first candidate wireless access point, and passing The wired backhaul link of the first candidate wireless access point is in communication with the core network, the at least one candidate wireless access point set includes the first candidate wireless access point; and the at least one candidate wireless access point set includes at least Determining a set of radio link access points corresponding to a candidate radio access point, determining a scheduling length, a capacity, and a wired back corresponding to each candidate radio access point set in the at least one candidate radio access point set At least one cost value.
- the determining module is specifically configured to: when each candidate wireless access point included in the target wireless access point set corresponds to each When the scheduling length of the wireless link access point set is less than or equal to a preset threshold, the destination is N candidate wireless access points included in the set of standard access points are determined as the at least one target wireless access point; or N wireless chains corresponding to N candidate wireless access points included in the target set of wireless access points Determining at least one new candidate wireless wireless access point set, each of the at least one new candidate wireless access point set, when a scheduling length of the at least one wireless link access point set in the set of access points is greater than the preset threshold
- the set of new candidate wireless access points includes N+1 new candidate wireless access points of the L wireless access points, and determining the at least one target wireless connection according to the at least one new candidate wireless wireless access point set Entry point.
- the determining module is specifically configured to: determine at least N candidate wireless access points in the second candidate wireless access point set corresponding to at least a first neighbor wireless access point, wherein the at least one candidate wireless access point set includes the second candidate wireless access point set, the at least one first neighbor wireless access point does not belong to the second candidate wireless access point a set of points, and the at least one first neighbor wireless access point is adjacent to at least one second candidate wireless access point of the second set of candidate wireless access points; according to the at least one first neighbor wireless access point Determining a transmission rate between each of the first neighbor wireless access points and the at least one second candidate wireless access point, determining that the at least one second candidate wireless access point has a presence with each of the first neighbor wireless access points a second candidate wireless access point having a maximum transmission rate, wherein the at least one second candidate wireless access point is adjacent to the first neighbor wireless access point; the first neighbor wireless access point is Adding to the set of radio link access points corresponding to
- the determining module is specifically configured to: determine that the at least one candidate wireless access point included in each set of candidate wireless access points respectively corresponds to The set of wireless link access points includes the time slot value of the wireless access point; Determining, by the radio link access point set, a slot value of the wireless access point, determining at least one of a scheduling length, a capacity, and a wired backhaul cost value of the set of radio link access points; Determining, according to at least one of a scheduling length, a capacity, and a wired backhaul cost value of the set of radio link access points corresponding to the at least one candidate radio access point included in the in-point set, determining a scheduling corresponding to each set of candidate radio access points At least one of length, capacity, and wired backhaul cost values.
- the determining module is specifically configured to: determine an initial of each wireless link access point set corresponding to each candidate wireless access point a time slot requirement matrix, the initial time slot demand matrix is an n*n dimensional matrix, n is the number of wireless access points in each set of wireless link access points, and each row and each column of the initial time slot demand matrix Corresponding to each of the wireless access points in each set of wireless link access points, the initial time slot demand matrix includes an uplink initial time slot demand matrix and a downlink initial time slot demand matrix, and the uplink initial time slot requirement matrix The main diagonal element of the matrix is equal to the uplink time slot demand value of the corresponding wireless access point, and the other elements of the uplink initial time slot demand matrix are zero, and the elements of the row of the downlink initial time slot demand matrix are equal to each column corresponding The downlink time slot demand value of the wireless access point, the other elements of the downlink initial time slot demand matrix are zero; according to whether there is interference
- the time slot demand matrix includes an uplink time slot demand matrix and a downlink time slot demand matrix, and an element of the row of the uplink time slot demand matrix is equal to a row of uplink time slot demand values of the corresponding wireless access point, the primary diagonal element of the downlink time slot demand matrix being equal to the downlink time slot value of the corresponding wireless access point; determining according to the time slot demand matrix The time slot value of the wireless access point included in each set of wireless link access points.
- the determining module is specifically configured to: when the wireless access point i sends to the wireless access point k according to the scheduling matrix
- the value of the element (i, j) in the initial slot requirement matrix is decremented by 1
- the value of the element (k, j) in the initial slot requirement matrix is added by ⁇ :
- r i,k represents the transmission rate between the wireless access point i and the wireless access point k
- r k,k-1 represents the next hop of the wireless access point k and the wireless access point k
- the downlink time slot demand value of the wireless access point is changed, the initial time slot requirement matrix is stopped to be modified, and the time slot demand matrix of each wireless link access point set is obtained.
- the determining module is specifically configured to: determine, according to a link selection policy, a scheduling matrix of each radio link access point set,
- the scheduling matrix includes an uplink scheduling matrix and a downlink scheduling matrix
- the link selection policy includes a priority transmission link selection policy and a parallel transmission link selection policy
- the priority transmission link selection policy includes: for the uplink scheduling matrix, the distance
- the candidate wireless access point of the wireless link access point set corresponding to the uplink scheduling matrix is preferentially transmitted from the data of the nearest wireless access point, and the data of each wireless access point is transmitted hop by hop on the transmission path, for the downlink a scheduling matrix, where the candidate wireless access point of the wireless link access point set corresponding to the downlink scheduling matrix is preferentially transmitted from the farthest wireless access point, and the data of each wireless access point is hopped on the transmission path.
- the parallel transmit link selection policy includes: according to the link interference matrix, when any two transmission links interfere with each other Any two of the
- the determining module is specifically configured to: according to the scheduling matrix of each radio link access point set, in the scheduling matrix The maximum slot number corresponding to the last slot to be transmitted is determined as the scheduling length of the set of each radio link access point.
- the determining module is specifically configured to: determine, according to the time slot requirement matrix of each wireless link access point set, determine the Wireless pairs of wireless access points include wireless access points corresponding to non-zero slot values An access point; determining a sum of link transmission rates between the wireless access points corresponding to the non-zero slot value as a capacity of the set of each radio link access point.
- the determining module is specifically configured to: according to each candidate wireless access point set in the at least one candidate wireless access point set a scheduling length, determining, from the at least one candidate wireless access point set, at least one candidate wireless access point set having the smallest scheduling length; and corresponding to each candidate wireless access point set in the at least one candidate wireless access point set a capacity, determining, from the at least one candidate wireless access point set having the smallest scheduling length, at least one candidate wireless access point set having the largest capacity; and corresponding to each candidate wireless access point set according to the at least one candidate wireless access point set a wired backhaul cost value, determining, from the set of at least one candidate wireless access point having the largest capacity, a candidate wireless access point set having the smallest wired backhaul cost value; and a candidate wireless access point set having the smallest wired backhaul cost value Determined as the target wireless access point set.
- a wired backhaul cost of each of the L wireless access points is less than or equal to a wired backhaul cost threshold.
- the wired backhaul capability of each of the L wireless access points is greater than or equal to the each wireless access Point access capability.
- a method and apparatus for deploying a wired backhaul link of a wireless access point according to an embodiment of the present invention, according to a wired backhaul capability of each of the L wireless access points in the network, from the L Determining at least one target wireless access point among the wireless access points, and deploying a wired backhaul link for communicating with the core network for the target wireless access points, wherein the at least one target wireless connection of the L wireless access points
- the other wireless access point outside the ingress point communicates with the at least one target wireless access point through the wireless backhaul link, and communicates with the core network through the at least one target wireless access point, thereby realizing automatic deployment of the wired backhaul and avoiding The unreasonable deployment of the wired backhaul link results in limited backhaul capability, which can save deployment costs while ensuring the backhaul requirements of the wireless access point.
- FIG. 1 is a schematic flowchart of a method for wired backhaul link deployment of a wireless access point according to an embodiment of the present invention.
- FIG. 2 is a schematic diagram of a set of wireless link access points in accordance with an embodiment of the present invention.
- FIG. 3 is a schematic diagram of an uplink initial slot demand matrix of a set of radio link access points according to an embodiment of the present invention.
- FIG. 4 is a schematic diagram of a downlink initial slot demand matrix of a set of radio link access points according to an embodiment of the present invention.
- FIG. 5 is a schematic diagram of an uplink scheduling matrix of a set of wireless link access points according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of a downlink scheduling matrix of a set of radio link access points according to an embodiment of the present invention.
- FIG. 7 is a schematic block diagram of an apparatus for wired backhaul link deployment of a wireless access point in accordance with an embodiment of the present invention.
- FIG. 8 is another schematic block diagram of an apparatus for wired backhaul link deployment of a wireless access point in accordance with an embodiment of the present invention.
- FIG. 1 shows a schematic flow diagram of a method 100 of wired backhaul link deployment for a wireless access point, which may be performed by a controller, or by a network management system, in accordance with an embodiment of the present invention. As shown in FIG. 1, the method 100 includes:
- S110 Determine, according to a wired backhaul capability of each of the L wireless access points in the network, at least one target wireless access point from the L wireless access points.
- S120 Deploy a wired backhaul link that communicates with the core network for each target wireless access point of the at least one target wireless access point, where the L wireless access points are other than the at least one target wireless access point.
- the other wireless access point communicates with the at least one target wireless access point over a wireless communication link and communicates with the core network over a wired backhaul link of the at least one target wireless access point.
- the wireless access point that cannot be deployed with the wired backhaul by the location restriction may be excluded; or the wired backhaul cost value may be used. Excluding wireless access points with excessive wired backhaul cost values; wireless access points with less wired backhaul capability than backhaul requirements can be excluded according to wired backhaul capability, thereby determining L wireless access points, and the L wireless access points
- the wireless access point to be deployed may be deployed in all or part of the network.
- the wireless access point deploys a wired backhaul link that communicates with the core network, and the other wireless access points of the L wireless access points except the at least one target wireless access point pass the wireless backhaul link with the at least one target
- the wireless access point communicates and communicates with the core network through the at least one target wireless access point.
- the method for deploying a wired backhaul link of a wireless access point according to the wired backhaul capability of each of the L wireless access points in the network, from the L wireless access points Determining at least one target wireless access point, and deploying a wired backhaul link for communicating with the core network for the target wireless access points, the other of the L wireless access points except the at least one target wireless access point
- the wireless access point communicates with the at least one target wireless access point through the wireless backhaul link, and communicates with the core network through the at least one target wireless access point, thereby automatically deploying the wired backhaul and avoiding the wired backhaul link.
- Unreasonable deployment results in limited backhaul, which can save deployment costs while ensuring the backhaul requirements of wireless access points.
- At least one target wireless access point is determined from the L wireless access points according to a wired backhaul capability of each of the L wireless access points in the network.
- the L wireless access points may be determined according to at least one of location information, a wired backhaul cost value, and a wired backhaul capability of each of the plurality of to-be-deployed wireless access points in the network.
- the L wireless access points may be wireless access points to be deployed in all or part of the network.
- the location information of multiple to-be-deployed wireless access points in the network may be determined, and the wireless access point that cannot be deployed by the wired backhaul is excluded from the physical limitation or the location area limitation, that is, each of the L wireless access points
- the access point deploys the wired backhaul it can be independent of the physical location. It can also determine the wired backhaul capability of each wireless access point to be deployed.
- the wired backhaul capability is less than the access capability of the wireless access point and the wired backhaul cannot be deployed.
- the wireless access point that is, the wired backhaul capability of each of the L wireless access points is greater than its own access capability; the return cost value of each wireless access point to be deployed may also be determined, and the value is excluded.
- the preset threshold According to the actual preset, the total cost value of the wireless access point deploying the wired backhaul is not too high, that is, the wired backhaul cost value of each of the L wireless access points is smaller than the preset gate. Limit.
- determining at least one target wireless access point from the L wireless access points may be specifically determined by the following method.
- at least one candidate wireless access point set may be determined from the L wireless access points according to a wired backhaul capability of each of the L wireless access points, where each candidate wireless The total wired backhaul capability of the set of access points is greater than or equal to the total backhaul demand value, and each of the candidate wireless access point sets includes N candidate wireless access points of the L wireless access points.
- each of the candidate wireless access point sets includes N candidate wireless access points respectively
- the corresponding set of N radio link access points includes L radio access points in the network
- each candidate radio access point belongs to a corresponding radio link access point set
- each candidate radio access point corresponds to
- the wireless link access point set further includes at least one of the L wireless access points of the L wireless access points except the N candidate wireless access points included in the candidate wireless access point set,
- the at least one wireless access point communicates with the core network, is a wireless communication link between each candidate access point and the at least one wireless access point, and a wired backhaul link of each candidate access point .
- At least one candidate wireless access point set may be determined from the L wireless access points according to a wired backhaul capability of each of the L wireless access points.
- the wired backhaul capability of the wireless access point included in each candidate wireless access point set satisfies the backhaul requirement, and each of the candidate wireless access point sets includes N candidate wireless access points among the L wireless access points.
- all the wireless access points included in the L wireless access points may be sorted according to the size of the wired backhaul capability, and the N wireless access points with the largest wired backhaul capability are selected to form the candidate wireless access.
- a set of points, optionally, the number of Ns may be a minimum value, that is, the wired backhaul capability of the N-1 wireless access points does not satisfy the backhaul requirement.
- the N wireless access points with the largest wired backhaul capability are determined from the L wireless access points, that is, the wireless access included in each of the N wireless access points
- the wired backhaul capability of the point is greater than or equal to other wireless access points, and the other wireless access points refer to other wireless access points except the N wireless access points among the L wireless access points.
- the wired backhaul capability may be a peak of the backhaul rate, and the present invention is not limited thereto.
- the network backhaul requirement value may be a total maximum access capability of the wireless access point in the corresponding network, such as an access peak rate, etc., and correspondingly, the wired backhaul capability may also be a peak rate or the like.
- the N wireless access points satisfy the following formula (1):
- Thr wired is the sum of N wired backhaul capability values of N wireless access points
- W k is the wired backhaul capability value of the kth wireless access point among N wireless access points
- Thr req is N wireless backhaul network access point corresponding demand values
- k is a maximum access capability of Cap wireless access points L k th wireless access points, such as access to the peak rate and the like.
- a radio link access point set corresponding to each candidate radio access point included in each candidate radio access point set is determined, where each candidate radio access point set includes N
- the set of N radio link access points corresponding to the candidate wireless access points respectively includes L wireless access points in the network, and each candidate wireless access point belongs to a corresponding set of wireless link access points, and each The set of radio link access points corresponding to the candidate radio access point further includes LN of the L radio access points except the N candidate radio access points included in the candidate radio access point set. At least one wireless access point.
- the at least one first neighboring wireless access point corresponding to the N candidate wireless access points in the second candidate wireless access point set is determined, wherein the second candidate wireless access point set may be at least one candidate Any one of the set of candidate wireless access points in the set of wireless access points, the at least one first neighbor wireless access point does not belong to the second set of candidate wireless access points, and the at least one first neighbor wireless access point and the At least one candidate wireless access point in the second set of candidate wireless access points is adjacent.
- the wireless access point has a second candidate wireless access point with a maximum transmission rate. Adding the first neighbor wireless access point to the set of wireless link access points corresponding to the second candidate wireless access point having the largest transmission rate.
- the at least one first neighbor wireless access point corresponding to the N candidate wireless access points in the second candidate wireless access point set is determined, wherein the at least one first neighbor wireless access point does not belong to the a second set of candidate wireless access points, and the at least one first neighbor wireless access point is adjacent to at least one l-1th neighbor wireless access point, wherein l is an integer greater than one; and wireless for the at least one first neighbor Determining, by the first neighbor wireless access point, the transmission rate between the first neighbor wireless access point and the adjacent at least one l-1 neighbor wireless access point, determining the adjacent The l-1th neighboring wireless access point of the at least one l-1th neighbor wireless access point having the maximum transmission rate with the first neighbor wireless access point, adding the first neighbor wireless access point to the largest In the set of radio link access points corresponding to the l-1th neighboring radio access point of the transmission rate, each of the lth neighbor radio access points of the at least one lth neighbor radio access point is allocated by the same method. .
- the set of radio link access points may also be configured as a backhaul tree composed of multiple radio access points, that is, each radio link access point set corresponds to one backhaul tree, and each The candidate wireless access points correspond to the root node of each backhaul tree.
- Each set of candidate wireless access points includes N candidate wireless access points, and each corresponding set of candidate wireless access points includes N sets of wireless link access points, that is, corresponding ones may include N backhaul trees, The root nodes of the N backhaul trees respectively correspond to the N candidate wireless access points in the set of candidate wireless access points.
- the wireless access point to be deployed in the network is determined as the N of the root node.
- the wireless access point to be deployed in the network is determined as the N of the root node.
- the wireless access point to be deployed in the network is determined as the N of the root node.
- the wireless access point adjacent to the at least one root node determining a link transmission rate between the first wireless access point and each adjacent root node, Determining, by the at least one link transmission rate, a root node corresponding to the maximum value, the first wireless access point being the first layer child node of the backhaul tree where the root node is located, and the first layer child node is a root node Child node.
- the first wireless access point is the at least one root node, in addition to the wireless access point determined to be the root node among the wireless access points to be deployed Any one of the adjacent wireless access points.
- the transmission rate of the link between the two wireless access points can be determined by the following formula (2):
- r i,j represents the link transmission rate between the wireless access point i and the wireless access point j
- l frame is the frame length of the wireless backhaul transmission
- n symbol is the number of symbols included in each frame, and the number of symbols
- n bit, ij is the number of bits per symbol, the number of bits depends on the modulation and coding scheme
- the modulation and coding mode of the link may be determined by the signal to noise ratio of the link, and each wireless access point acquires the received power of its neighbor wireless access point, and the transmission power is divided by the sum of the received power and the noise power to obtain a signal.
- the noise ratio is selected according to the signal to noise ratio.
- the wireless access point to be deployed is determined to be at least one first layer for the other wireless access points.
- a second wireless access point adjacent to the node determining a link transmission rate between the second wireless access point and each adjacent first layer child node, and determining a maximum from the obtained at least one link transmission rate a first layer child node corresponding to the value, the second wireless access point is used as a second layer child node of the backhaul tree where the first layer child node is located, and the second layer child node is a child of the first layer child node node.
- a wireless access point adjacent to at least one first child node Traversing a wireless access point adjacent to at least one first child node, a second wireless access, in addition to the wireless access point determined to be the root node and the first layer child node among the wireless access points to be deployed
- the point is any one of the wireless access points adjacent to the at least one first layer child node.
- the first wireless connection adjacent to the at least one layer-1 node is determined.
- the first wireless access point is a layer 1 child node of a backhaul tree where the layer 1 - 1 child node is located, and the first layer child node is a child node of the 1st - 1st child node .
- the first wireless access point is any one of the wireless access points adjacent to the at least one layer-1st child node, and l is a positive integer greater than one.
- the configuration of the wireless link access point set for the candidate wireless access point in any one of the candidate wireless access point sets that is, the configuration of the backhaul tree, traversing the wireless access to be deployed
- the candidate wireless When traversing the wireless access to be deployed After the point, if there is at least one wireless access point that does not belong to any one of the N sets of wireless link access points included in the set of candidate wireless access points, then the candidate wireless is re-determined
- the set of access points increases the number of candidate wireless access points included in the original candidate wireless node set by 1, that is, the candidate wireless access point set includes N+1 candidate wireless access points, and continues to determine by using the same method. At least one target wireless access point.
- determining, according to the determined plurality of radio link access point sets, at least one of a scheduling length, a capacity, and a total wired backhaul cost value of each radio link access point set, and according to the scheduling At least one of a length, a capacity, and a total wired backhaul cost value determines at least one of a scheduling length, a capacity, and a total wired backhaul cost value for each candidate wireless access point set in the corresponding at least one candidate wireless access point set, thereby Identify at least one target wireless access point.
- time slot allocation may be performed for each radio link access point set to determine a radio access point included in the radio link access point set.
- the number of time slots required for data of all the wireless access points included in the set of wireless link access points may be determined, for example, by the maximum slot number occupied by the wireless access point included in the set of wireless link access points.
- the scheduling length of the set of wireless link access points; the capacity of the set of wireless link access points represents the link between all the wireless access points scheduled in the set of wireless link access points within one scheduling period
- the sum of the transmission rates; the wired backhaul cost value of the set of the wireless link access points indicates the wired backhaul cost value of the candidate wireless access point corresponding to the set of the wireless link access points, that is, the wired backhaul needs to be deployed. Wired backhaul cost value of the access points.
- time slot allocation may be performed on each radio link access point set by the following method.
- a radio link access point set that is, an initial slot demand matrix, a link interference matrix, and a scheduling matrix of a backhaul tree are constructed.
- the backhaul tree includes 21 wireless access points.
- each circle represents a node, and the number in the circle is the number of each node.
- the root node is a wireless access point numbered 1, and the remaining 20 wireless access points are child nodes.
- Each node selects the neighbor with the closest distance and the smallest hop count as the relay node; assuming that the hop count of the root node is 0, the hop count of all the neighbors of the root node is 1, and the hop count of other nodes is the hop count of its relay node. plus 1.
- the number of each node in the backhaul tree in Figure 2 is numbered according to the number of hops from small to large, where the root node number is 1, located in the center of the area, and the other child nodes are at 50*50.
- the areas are randomly distributed, numbered 2, 3, 4, ..., 21.
- the arrows in the figure represent wireless links.
- the link from the node to its parent node is called the uplink
- the link from its parent node to the node is called the downlink.
- the label next to each arrow is the number of the link, denoted as L1, L2, ..., L40.
- the link number is generated according to the number of the node.
- the uplink number is 2* (node number-1)-1
- the downlink number is 2* (node number-1).
- the uplink number of 2 is odd and the downlink number is even.
- 20 child nodes have a total of 40 links.
- the initial time slot requirement matrix of the backhaul tree is constructed.
- the initial time slot requirement matrix is an n*n-dimensional matrix, and n is the number of all wireless access points in the backhaul tree. Therefore, taking the backhaul tree of FIG. 2 as an example, the initial time slot requirement matrix created is 21*21.
- the initial time slot requirement matrix includes an uplink initial time slot demand matrix as shown in FIG. 3 and a downlink initial time slot demand matrix as shown in FIG. 4.
- the elements on the main diagonal of the uplink initial slot requirement matrix correspond to the uplink slot demand values of the respective nodes, and all other elements are zero.
- the uplink time slot demand value of each node can be determined by the following formula (3):
- the uplink time slot demand value of node i may correspond to its maximum uplink radio access capacity, such as the uplink access peak capability value; r i,j represents the transmission rate of the node i to its parent node j, and may pass the formula (2) It is determined that l frame is the frame length of the wireless backhaul transmission.
- the calculation result of the uplink initial time slot requirement matrix may be as shown in FIG. 3. As shown in FIG. 4, since the downlink transmission starts from the root node, the elements of the first row of the downlink initial slot requirement matrix are equal to the downlink slot requirement value of each node corresponding to each column, and other elements are zero.
- the downlink time slot demand value of each node can be determined by the following formula (4):
- the downlink maximum backhaul rate requirement of node i may correspond to its maximum downlink radio access capacity, such as downlink access peak capability value;
- r j, l represents the transmission rate of node j to node 1, and node j is the parent of node l Node, since the downlink data is transmitted by the root node, node j is the root node, and node l is the first hop node when the root node transmits data to node i, and r j, l can be determined by formula (2) , l frame is the frame length of the wireless backhaul transmission.
- the calculation result of the downlink initial time slot requirement matrix may be as shown in FIG. 4 .
- the link interference matrix may be constructed according to whether there is interference on the link between the backhaul trees, the link interference matrix is an m*m-dimensional matrix, and m is an uplink or downlink in the backhaul tree.
- the number of links For example, the backhaul tree of Figure 2, which includes 20 uplinks and 20 downlinks, can respectively construct a 20*20-dimensional uplink link interference matrix and a 20*20-dimensional downlink link interference.
- any one element (i, j) in the link interference matrix indicates whether there is interference between link i and link j, if there is interference, Then the element (i, j) is set to 1, and if there is no interference, the element (i, j) is set to 0.
- it can be determined whether there is interference between two links according to the following principles: (1) any node cannot transmit and receive at the same time, and any node cannot send information to multiple nodes at the same time, and cannot simultaneously receive multiple nodes.
- a scheduling matrix of the backhaul tree is constructed according to the link interference matrix.
- the scheduling matrix is an n*p-dimensional matrix, n is the number of nodes in the backhaul tree, and p is the number of slots available for allocation in a scheduling period, and any element in the scheduling matrix (i , j) is set to x, x indicates that the data transmitted by the i-th node in the backhaul tree in the jth time slot belongs to the xth node, for example, in FIG. 2, if node 1 is in the third time slot to node 2 When the data belonging to the node 21 is transmitted, the (1, 3) position of the scheduling matrix is set to 21.
- the scheduling matrix may include an uplink scheduling matrix and a downlink scheduling matrix, and the scheduling matrix of each backhaul tree may be determined according to a link selection policy.
- the link selection policy may include a priority transmission link selection policy and a parallel transmission link selection policy.
- the priority transmission link selection policy means that, for the uplink, the data of the smallest hop node is preferentially transmitted, and is transmitted according to the hop-by-hop policy on the data transmission path, for any backhaul tree as shown in FIG.
- the data of the node closest to the root node is sent preferentially, and the data of each wireless access point is transmitted hop by hop on the transmission path, and the data of the node 2 is preferentially transmitted in the first time slot.
- the time slot of the node 2 is transmitted in the first time slot, and the uplink scheduling matrix is determined as shown in FIG. 5.
- the data of the node with the largest hop count is transmitted preferentially, and is transmitted according to the hop-by-hop policy on the data transmission link.
- the hop count is the largest, that is, the node farthest from the root node.
- the data is sent preferentially, and the data of each wireless access point is transmitted hop by hop on the transmission path. Since the downlink data is sent by the root node, the data of the node 21 is preferentially transmitted in the first time slot, that is, the node 1 sends the data to the node 2.
- the parallel transmission link selection policy means that for the uplink or the downlink, according to the link interference matrix, if there is no interference between any two links, the two links can simultaneously receive or simultaneously transmit data. Specifically, for the uplink data transmission process, a search is started from the determined next link of the link to be transmitted, and a possible parallel transmission link is selected, wherein the possible parallel transmission link refers to the determined transmission chain. The next link on the upstream transmission path from the data source node to the destination node where the path is located.
- the first link on the transmission path of the next data source node whose node number is increased by 1 is its next link.
- node 2 transmits data through uplink L1.
- uplinks L3, L5, L7, and L9 of nodes 3, 4, 5, 6, and 7 are known.
- L11 and link L1 will interfere with each other. Therefore, these links cannot be transmitted in parallel with link L1, and continue to search.
- the uplink L13 and link L1 of node 8 do not interfere with each other, so in the first time slot, Node 8 can transmit data in parallel via link L13.
- nodes 10, 14, 17, 21 can be found to transmit data in parallel with link L2 via uplinks L17, L25, L31, L39, respectively. Therefore, the last obtained uplink scheduling matrix is as shown in FIG. 5, in the first time slot, the first time slot corresponding to the first column, and the second, eighth, ten, 14, 17, and 21 lines respectively corresponding nodes. 2, 8, 10, 14, 17, and 21 can simultaneously transmit uplink data in parallel.
- the search is started from the determined next link of the link to be sent, and a possible parallel transmission link is selected, where the possible parallel transmission link refers to The next link on the downlink transmission path from the data source node to the destination node where the link is to be transmitted is determined. If the determined link to be transmitted is the last link of the path, the first link on the transmission path of the next data destination node with the target node number minus 1 to which the data belongs is its next link. However, since all data is sent by the root node at the initial stage of the downlink data, the data cannot be sent in parallel. For example, as shown in FIG.
- the root node needs to be
- the data belonging to the node 21 is first transmitted to the node 2 through the path L2, and the data of the three slots of the node 21 needs to be transmitted, so the root node 1 of the first three slots transmits data to the node 2.
- the search is performed from The link from the root node to the transmission path of the node 20, the first link on the path, that is, the downlink L4 and L12 from the root node to the node 3 do not interfere with each other, so in the fourth time slot, the node 1
- the data of the node 20 can be sent to the node 3 through the downlink L4 at the same time. Therefore, the finally obtained downlink scheduling matrix is as shown in FIG. 6, in the fourth time slot corresponding to the fourth column, the first row and the second row. Node 1 and node 2 corresponding to the row simultaneously transmit data in parallel.
- the initial time slot demand matrix is modified according to the determined scheduling matrix, thereby obtaining a time slot demand matrix, where the time slot demand matrix corresponds to the time slot allocation result of each node.
- the scheduling of data transmission for each time slot of the scheduling matrix when the node i sends the data of the node j to the node k, the value of the element (i, j) in the initial time slot requirement matrix is decremented by one, The value of the element (k, j) in the matrix is added to ⁇ , and ⁇ can be determined by the following formula (5):
- r i,k represents the transmission rate between node i and node k
- r k,k-1 represents the transmission rate between node k and the next hop node of node k
- the next hop node of k belongs to The next hop node on the path where node i sends the data of node j to node k.
- the transmission rate between any two nodes can be determined by equation (2).
- the uplink initial time slot requirement matrix when the elements in the first row of the modified uplink initial time slot demand matrix are respectively equal to the uplink time slot demand values of the corresponding nodes, Then, the uplink data on all nodes has been transmitted to the root node, and the uplink time slot allocation ends, and the final upper time slot demand matrix is obtained, which corresponds to the time slot value allocated by each node in the backhaul tree.
- the downlink initial slot requirement matrix when the elements on the main diagonal of the modified downlink initial slot requirement matrix are equal to the downlink slot demand values of the corresponding nodes, it indicates that the root node has all After the downlink data is transmitted to the corresponding node, the downlink time slot allocation ends, and the final downlink time slot requirement matrix is obtained, which corresponds to the time slot value allocated by each node in the backhaul tree.
- the uplink time slot demand value and the downlink time slot demand value of each node may be determined by formulas (3) and (4), respectively.
- the time slot of each node in the backhaul tree needs to send data, and the maximum slot number in the scheduling matrix corresponding to the backhaul tree is determined as the scheduling length of the backhaul tree.
- the maximum slot number in the slot occupied by all nodes is 39, and the slot is the node 2 transmitting data belonging to the node 21 to the root node 1, and the scheduling of the backhaul tree is performed.
- the length is 39.
- the maximum slot number in the slot occupied by all nodes is 25, and the slot is that node 1, node 6, and node 7 both transmit downlink data in the slot.
- the schedule length of the backhaul tree is 25.
- the number of time slots allocated to each node in the backhaul tree is determined according to the determined time slot requirement matrix, and the sum of the transmission rates of all the links allocated to the time slots is the backhaul tree.
- the capacity of the backhaul tree can be determined by the following formula (6):
- T k is the set of links to which the time slot is allocated in the backhaul tree k
- N slot, ij is the number of slots allocated to the link ij of the backhaul tree k.
- the scheduling length, capacity, and wired backhaul cost value of each backhaul tree are determined, that is, the scheduling length, capacity, and wired backhaul cost value of each wireless link access point set are determined. Determining at least one of a scheduling length, a capacity, and a wired backhaul cost value of the corresponding at least one candidate wireless access point set according to at least one of a scheduling length, a capacity, and a wired backhaul cost value of each wireless link access point set And selecting an optimal one of the candidate wireless access point sets as the target wireless access point set, and determining the wireless access point included in the target wireless access point set as the at least one target wireless access point.
- each set of wireless link access points included in each set of candidate wireless access points first calculate a scheduling length, a capacity, and a wired backhaul cost value of each wireless link access point set, and then select the candidate wireless
- the scheduling length, capacity, and wired backhaul cost values of the set of wireless link access points included in the set of access points are respectively added, and the scheduling length, capacity, and wired backhaul cost value of the set of candidate wireless access points are obtained.
- the scheduling lengths of the set of wireless link access points included in the set of candidate wireless access points are added, that is, the scheduling length of the set of candidate wireless access points; and the wireless links included in the set of candidate wireless access points are connected.
- the wired backhaul cost values of the ingress point set are added, that is, the wired backhaul cost values of the N candidate wireless access points included in the candidate wireless access point set are added, that is, the wired backhaul cost value of the candidate wireless access point set. .
- determining, according to at least one of a scheduling length, a capacity, and a wired backhaul cost value of the at least one candidate wireless access point set determining an optimal one of the candidate wireless access point sets is A set of target wireless access points, the total scheduling length of the target wireless access point set is small, the total capacity is large, and the total wired backhaul cost value is small.
- at least one candidate wireless access point set with the smallest total scheduling length may be determined from the at least one candidate wireless access point set, and at least one set is determined in the at least one candidate wireless access point set with the smallest total scheduling length.
- a set of at least one candidate wireless access point having the largest total capacity and determining, in the set of at least one candidate wireless access point having the largest total capacity, a candidate wireless access point set having the smallest total backhaul cost, the candidate wireless access point set That is, the last optimal set of candidate wireless access points, that is, the set of target wireless access points.
- the N candidate wireless access points may be directly determined as the at least one target wireless access point.
- the scheduling length of the at least one radio link access point set in the N radio link access point sets corresponding to the N candidate radio access points in the target radio access point set is greater than a preset threshold.
- the new candidate wireless access point set includes N+1 new candidate wireless access points, that is, the wireless access points in the original candidate wireless access point set The number plus one is constructed as a new set of candidate wireless access points, and at least one target wireless access point is determined according to the same method.
- the preset threshold may be set according to an application.
- the scheduling length of the radio link access point set corresponding to each radio access point in the set of target radio access points may be set to satisfy the following formula (7):
- L sch,k represents the scheduling length of the kth radio link access point set
- l frame is the frame length of the wireless backhaul transmission
- the target radio If the set of access points does not meet the requirement, determining at least one new candidate wireless access point set, where the new candidate wireless access point set includes N+1 new candidate wireless access points, that is, the original candidate wireless access point set
- the number of wireless access points plus one is constructed as a new set of candidate wireless access points, and at least one target wireless access point is determined according to the same method.
- a wired backhaul is deployed for the determined at least one target wireless access point.
- a wired backhaul link that communicates with the core network is deployed for each of the at least one target wireless access point, and the L wireless access points are other than the at least one target wireless access point.
- Other wireless access points communicate with the at least one target wireless access point over a wireless communication link, And communicating with the core network through the at least one target wireless access point.
- the wireless access point may communicate with the core network through the target wireless access point according to the wireless communication link of each wireless access point in the set of wireless link access points.
- the size of the sequence numbers of the above processes does not mean the order of execution, and the order of execution of each process should be determined by its function and internal logic, and should not be taken to the embodiments of the present invention.
- the implementation process constitutes any limitation.
- the method for deploying a wired backhaul link of a wireless access point according to the wired backhaul capability of each of the L wireless access points in the network, from the L wireless access points Determining at least one target wireless access point, and deploying a wired backhaul link for communicating with the core network for the target wireless access points, the other of the L wireless access points except the at least one target wireless access point
- the wireless access point communicates with the at least one target wireless access point through the wireless backhaul link, and communicates with the core network through the at least one target wireless access point, thereby automatically deploying the wired backhaul and avoiding the wired backhaul link.
- Unreasonable deployment results in limited backhaul, which can save deployment costs while ensuring the backhaul requirements of wireless access points.
- a method for deploying a wired backhaul link of a wireless access point according to an embodiment of the present invention is described in detail above with reference to FIG. 1 to FIG. 6.
- a cable of a wireless access point according to an embodiment of the present invention will be described.
- the apparatus 200 for deploying a wired backhaul link of a wireless access point includes:
- the determining module 210 is configured to determine, according to a wired backhaul capability of each of the L wireless access points in the network, at least one target wireless access point from the L wireless access points;
- the processing module 220 is configured to deploy, for each target wireless access point of the at least one target wireless access point determined by the determining module 210, a wired backhaul link that communicates with the core network, where the L wireless access points are And the other wireless access points outside the at least one target wireless access point communicate with the at least one target wireless access point through the wireless communication link, and through the wired backhaul link of the at least one target wireless access point and the core network Communication.
- the device for deploying the wired backhaul link of the wireless access point in the embodiment of the present invention according to the wired backhaul capability of each of the L wireless access points in the network, from the L wireless access points Determining at least one target wireless access point, and deploying a wired backhaul link for communicating with the core network for the target wireless access points, the other of the L wireless access points except the at least one target wireless access point
- the wireless access point communicates with the at least one target wireless access point via a wireless backhaul link Communicating and communicating with the core network through the at least one target wireless access point, so that the automatic deployment of the wired backhaul can be realized, and the backhaul capability caused by the unreasonable deployment of the wired backhaul link is limited, and the wireless access point can be guaranteed. Save back on deployment costs.
- the determining module 210 determines at least one target wireless access point from the L wireless access points according to the wired backhaul capability of each of the L wireless access points in the network.
- the L wireless access points may be determined according to at least one of location information, a wired backhaul cost value, and a wired backhaul capability of each of the plurality of to-be-deployed wireless access points in the network.
- the L wireless access points may be wireless access points to be deployed in all or part of the network.
- the location information of multiple to-be-deployed wireless access points in the network may be determined, and the wireless access point that cannot be deployed by the wired backhaul is excluded from the physical limitation or the location area limitation, that is, each of the L wireless access points
- the access point deploys the wired backhaul it can be independent of the physical location. It can also determine the wired backhaul capability of each wireless access point to be deployed.
- the wired backhaul capability is less than the access capability of the wireless access point and the wired backhaul cannot be deployed.
- the wireless access point that is, the wired backhaul capability of each of the L wireless access points is greater than its own access capability; the return cost value of each wireless access point to be deployed may also be determined, and the value is excluded.
- the wireless access point whose return cost value is greater than the preset threshold value may be preset according to an actual situation, so that the total cost value of the wireless access point deploying the wired backhaul is not too high, that is, the L
- the wired backhaul cost value of each wireless access point in the wireless access point is less than a preset threshold.
- determining, by the determining module 210, the at least one target wireless access point from the L wireless access points may be determined by the following method. Specifically, at least one candidate wireless access point set may be determined from the L wireless access points according to a wired backhaul capability of each of the L wireless access points, where each candidate wireless The total wired backhaul capability of the set of access points is greater than or equal to the total backhaul demand value, and each of the candidate wireless access point sets includes N candidate wireless access points of the L wireless access points.
- each of the candidate wireless access point sets includes N candidate wireless access points respectively
- the corresponding set of N radio link access points includes L radio access points in the network
- each candidate radio access point belongs to a corresponding radio link access point set
- each candidate radio access point corresponds to
- the wireless link access point set further includes at least one of the L wireless access points of the L wireless access points except the N candidate wireless access points included in the candidate wireless access point set,
- At least one candidate wireless access point set may be determined from the L wireless access points according to a wired backhaul capability of each of the L wireless access points.
- the wired backhaul capability of the wireless access point included in each candidate wireless access point set satisfies the backhaul requirement, and each of the candidate wireless access point sets includes N candidate wireless access points among the L wireless access points.
- all the wireless access points included in the L wireless access points may be sorted according to the size of the wired backhaul capability, and the N wireless access points with the largest wired backhaul capability are selected to form the candidate wireless access.
- a set of points, optionally, the number of Ns may be a minimum value, that is, the wired backhaul capability of the N-1 wireless access points does not satisfy the backhaul requirement.
- the wired backhaul capabilities of multiple wireless access points are equal, the plurality of N access points satisfying the backhaul capability may have multiple combinations, and each combination constitutes a candidate wireless access point set. That is, the L wireless access points may determine at least one candidate wireless access point set.
- N wireless access points with the highest wired backhaul capability that is, wireless access included in each of the N wireless access points, are determined from the L wireless access points.
- the wired backhaul capability of the point is greater than or equal to other wireless access points, and the other wireless access points refer to other wireless access points except the N wireless access points among the L wireless access points.
- the wired backhaul capability may be a peak of the backhaul rate, and the present invention is not limited thereto.
- the network backhaul requirement value may be a total maximum access capability of the wireless access point in the corresponding network, such as an access peak rate, etc., and correspondingly, the wired backhaul capability may also be a peak rate or the like.
- the N wireless access points satisfy the formula (1), wherein Thr wired is the sum of N wired backhaul capability values of N wireless access points, and W k is the kth of the N wireless access points wired backhaul capacity value of the wireless access point; Thr req to N backhaul network demand value corresponding to a wireless access point, k is L of Cap wireless access points in the k-th maximum access capability of the wireless access point, such as Access peak rate, etc.
- the determining module 210 further determines, respectively, a set of radio link access points corresponding to each candidate radio access point included in each candidate radio access point set, where each candidate has no
- the N sets of radio link access points corresponding to the N candidate radio access points included in the set of line access points respectively include L radio access points in the network, and each candidate radio access point belongs to a corresponding wireless link.
- a set of access points of the road access point, and the set of radio link access points corresponding to each candidate radio access point further includes: among the L radio access points, except for the N candidate radio access points included in the set of candidate radio access points At least one of the LN wireless access points.
- the at least one first neighboring wireless access point corresponding to the N candidate wireless access points in the second candidate wireless access point set is determined, wherein the second candidate wireless access point set may be at least one candidate Any one of the set of candidate wireless access points in the set of wireless access points, the at least one first neighbor wireless access point does not belong to the second set of candidate wireless access points, and the at least one first neighbor wireless access point and the At least one candidate wireless access point in the second set of candidate wireless access points is adjacent.
- the at least one first neighbor wireless access point corresponding to the N candidate wireless access points in the second candidate wireless access point set is determined, wherein the at least one first neighbor wireless access point does not belong to the a second set of candidate wireless access points, and the at least one first neighbor wireless access point is adjacent to at least one l-1th neighbor wireless access point, wherein l is an integer greater than one; and wireless for the at least one first neighbor Determining, by the first neighbor wireless access point, the transmission rate between the first neighbor wireless access point and the adjacent at least one l-1 neighbor wireless access point, determining the adjacent The l-1th neighboring wireless access point of the at least one l-1th neighbor wireless access point having the maximum transmission rate with the first neighbor wireless access point, adding the first neighbor wireless access point to the largest In the set of radio link access points corresponding to the l-1th neighboring radio access point of the transmission rate, each of the lth neighbor radio access points of the at least one lth neighbor radio access point is allocated by the same method. .
- the set of radio link access points may also be configured as a backhaul tree composed of multiple radio access points, that is, each radio link access point set corresponds to one backhaul tree, and each The candidate wireless access points correspond to the root node of each backhaul tree.
- Each set of candidate wireless access points includes N candidate wireless access points, and each corresponding set of candidate wireless access points includes N sets of wireless link access points, that is, corresponding ones may include N backhaul trees, Root of N backhaul trees
- the nodes respectively correspond to N candidate wireless access points belonging to the set of candidate wireless access points.
- the wireless access point to be deployed in the network is determined as the N of the root node.
- the wireless access point to be deployed in the network is determined as the N of the root node.
- the wireless access point to be deployed in the network is determined as the N of the root node.
- the wireless access point adjacent to the at least one root node determining a link transmission rate between the first wireless access point and each adjacent root node, Determining, by the at least one link transmission rate, a root node corresponding to the maximum value, the first wireless access point being the first layer child node of the backhaul tree where the root node is located, and the first layer child node is a root node Child node.
- the first wireless access point is the at least one root node, in addition to the wireless access point determined to be the root node among the wireless access points to be deployed Any one of the adjacent wireless access points.
- the transmission rate of the link between the two wireless access points may be determined by formula (2), where r i,j represents the link transmission between the wireless access point i and the wireless access point j Rate, l frame is the frame length of the wireless backhaul transmission, n symbol is the number of symbols contained in each frame, the number of symbols may depend on the system bandwidth, frame length and physical layer transmission parameters, n bit, ij is included in each symbol
- the number of bits, the number of bits depends on the modulation and coding mode, and the modulation and coding mode of the link between the wireless access point i and the wireless access point j can be determined by the signal to noise ratio of the link, and each wireless access The point acquires the received power of its neighbor wireless access point, and the transmission power is divided by the sum of
- the wireless access point to be deployed is determined to be at least one first layer for the other wireless access points.
- a second wireless access point adjacent to the node determining a link transmission rate between the second wireless access point and each adjacent first layer child node, and determining a maximum from the obtained at least one link transmission rate a first layer child node corresponding to the value, the second wireless access point is used as a second layer child node of the backhaul tree where the first layer child node is located, and the second layer child node is a child of the first layer child node node.
- a wireless access point adjacent to at least one first child node Traversing a wireless access point adjacent to at least one first child node, a second wireless access, in addition to the wireless access point determined to be the root node and the first layer child node among the wireless access points to be deployed
- the point is any one of the wireless access points adjacent to the at least one first layer child node.
- the first wireless connection adjacent to the at least one layer-1 node is determined.
- the first wireless access point is used as a first-level child node of the backhaul tree where the first-1st-level child node is located, and the first-layer child node is a child node of the first--1st child node.
- the first wireless access point is any one of the wireless access points adjacent to the at least one layer-1st child node, and l is a positive integer greater than one.
- the configuration of the wireless link access point set for the candidate wireless access point in any one of the candidate wireless access point sets that is, the configuration of the backhaul tree, traversing the wireless access to be deployed
- the wireless access point to be deployed After traversing the wireless access point to be deployed, if there is at least one wireless access point that does not belong to any one of the N wireless link access point sets included in the set of candidate wireless access points Re-determining the set of candidate wireless access points, adding 1 to the number of candidate wireless access points included in the original set of candidate wireless nodes, that is, the set of candidate wireless access points includes N+1 candidate wireless access points And use the same method to continue to determine at least one target wireless access point.
- the determining module 210 determines at least one of a scheduling length, a capacity, and a total wired backhaul cost value of each radio link access point set according to the determined plurality of radio link access point sets, and Determining at least one of a scheduling length, a capacity, and a total wired backhaul cost value for each candidate wireless access point set in the corresponding at least one candidate wireless access point set according to at least one of the scheduling length, the capacity, and the total wired backhaul cost value One to determine at least one target wireless access point. Specifically, when determining each radio link access point set, time slot allocation may be performed for each radio link access point set to determine a radio access point included in the radio link access point set.
- a slot value thereby determining at least one of a scheduling length, a capacity, and a total wired backhaul cost value for each set of wireless link access points, wherein the scheduled length of the set of wireless link access points indicates transmission within one scheduling period
- the number of time slots required for data backhaul transmission of all wireless access points included in the set of wireless link access points for example, the maximum time slot occupied by the wireless access point included in the set of wireless link access points
- the number is determined as the scheduling length of the set of wireless link access points;
- the capacity of the set of wireless link access points is represented within a scheduling period between all wireless access points scheduled in the set of wireless link access points
- the wired backhaul cost value of the set of wireless link access points represents the wired backhaul cost value of the candidate wireless access point corresponding to the set of wireless link access points, ie The wired backhaul cost value of the wireless access point that needs to deploy a wired backhaul.
- the determining module 210 may perform time slot allocation for each radio link access point set by the following method. Taking a backhaul tree corresponding to each radio link access point set as an example, firstly, a radio link access point set, that is, an initial slot demand matrix, a link interference matrix, and a scheduling matrix of a backhaul tree are constructed. Specifically, taking any backhaul tree as an example, as shown in FIG. 2, it is assumed that the backhaul tree includes 21 wireless access points. In FIG. 2, each circle represents a node, and the number in the circle is the number of each node. The root node is a wireless access point numbered 1, and the remaining 20 wireless access points are child nodes.
- Each node selects the neighbor with the closest distance and the smallest hop count as the relay node; assuming that the hop count of the root node is 0, the hop count of all the neighbors of the root node is 1, and the hop count of other nodes is the hop count of its relay node. plus 1.
- the number of each node in the backhaul tree in Figure 2 is numbered according to the number of hops from small to large, where the root node number is 1, located in the center of the area, and other child nodes are randomly distributed in the 50*50 area, numbered 2, 3, respectively. 4,...,21.
- the arrows in the figure represent wireless links.
- the link from the node to its parent node is called the uplink
- the link from its parent node to the node is called the downlink.
- the label next to each arrow is the number of the link, denoted as L1, L2, ..., L40.
- the link number is generated according to the number of the node.
- the uplink number is 2* (node number-1)-1
- the downlink number is 2* (node number-1).
- the uplink number of 2 is odd and the downlink number is even.
- 20 child nodes have a total of 40 links.
- the initial time slot requirement matrix of the backhaul tree is constructed.
- the initial time slot requirement matrix is an n*n-dimensional matrix, and n is the number of all wireless access points in the backhaul tree. Therefore, taking the backhaul tree of FIG. 2 as an example, the initial time slot requirement matrix created is 21*21.
- the initial time slot requirement matrix includes an uplink initial time slot demand matrix as shown in FIG. 3 and a downlink initial time slot demand matrix as shown in FIG. 4. As shown in FIG.
- the elements on the main diagonal of the uplink initial slot requirement matrix correspond to the uplink slot demand values of the respective nodes, and all other elements are zero.
- the uplink time slot demand value of each node may be determined by using formula (3), where Representing the uplink time slot demand value of node i;
- the maximum uplink backhaul rate requirement of the node i may correspond to its maximum uplink radio access capacity, such as the uplink access peak capability value;
- r i,j represents the transmission rate of the node i to its parent node j, and may pass the formula (2) It is determined that l frame is the frame length of the wireless backhaul transmission.
- the calculation result of the uplink initial time slot requirement matrix may be as shown in FIG. 3.
- the downlink time slot requirement value of each node may be determined by using formula (4), where Representing the downlink time slot demand value of node i;
- the downlink maximum backhaul rate requirement of node i may correspond to its maximum downlink radio access capacity, such as downlink access peak capability value;
- r j, l represents the transmission rate of node j to node 1, and node j is the parent of node l Node, since the downlink data is transmitted by the root node, node j is the root node, and node l is the first hop node when the root node transmits data to node i, and r j, l can be determined by formula (2) , l frame is the frame length of the wireless backhaul transmission.
- the calculation result may correspond to its maximum downlink radio access capacity, such as downlink access peak capability value
- r j, l represents the transmission rate of node j to node 1
- node j is the parent of node l
- l frame
- the determining module 210 may further construct a link interference matrix according to whether the link between the backhaul trees has interference, the link interference matrix is an m*m-dimensional matrix, and m is an uplink in the backhaul tree. Or the number of links in the downlink.
- the backhaul tree of Figure 2 which includes 20 uplinks and 20 downlinks, can respectively construct a 20*20-dimensional uplink link interference matrix and a 20*20-dimensional downlink link interference.
- any one element (i, j) in the link interference matrix indicates whether there is interference between link i and link j, if there is interference, Then the element (i, j) is set to 1, and if there is no interference, the element (i, j) is set to 0.
- it can be determined whether there is interference between two links according to the following principles: (1) any node cannot transmit and receive at the same time, and any node cannot send information to multiple nodes at the same time, and cannot simultaneously receive multiple nodes.
- the determining module 210 constructs a scheduling matrix of the backhaul tree according to the link interference matrix.
- the scheduling matrix is an n*p-dimensional matrix, n is the number of nodes in the backhaul tree, and p is the number of slots available for allocation in a scheduling period, and any element in the scheduling matrix (i , j) is set to x, x indicates that the data transmitted by the i-th node in the backhaul tree in the jth time slot belongs to the xth node, for example, in FIG. 2, if node 1 is in the third time slot to node 2 When the data belonging to the node 21 is transmitted, the (1, 3) position of the scheduling matrix is set to 21.
- the scheduling matrix may be The uplink scheduling matrix and the downlink scheduling matrix are included, and the scheduling matrix of each backhaul tree can be determined according to the link selection policy.
- the link selection policy may include a priority transmission link selection policy and a parallel transmission link selection policy.
- the priority transmission link selection policy means that, for the uplink, the data of the smallest hop node is preferentially transmitted, and is transmitted according to the hop-by-hop policy on the data transmission path, for any backhaul tree as shown in FIG.
- the data of the node closest to the root node is sent preferentially, and the data of each wireless access point is transmitted hop by hop on the transmission path, and the data of the node 2 is preferentially transmitted in the first time slot.
- the time slot of the node 2 is transmitted in the first time slot, and the uplink scheduling matrix is determined as shown in FIG. 5.
- the data of the node with the largest hop count is transmitted preferentially, and is transmitted according to the hop-by-hop policy on the data transmission link.
- the maximum hop count is the farthest from the root node.
- the data of the node is sent preferentially, and the data of each wireless access point is transmitted hop by hop on the transmission path. Since the downlink data is sent by the root node, the data of the node 21 is preferentially transmitted in the first time slot, that is, the node 1 direction
- the node 2 transmits the data belonging to the node 21. Since it can be seen from FIG. 4 that the data belonging to the node 21 occupies three time slots, the node 1 transmits the data of the node 21 to the node 2 in the first three time slots to determine the downlink scheduling matrix.
- Figure 6 shows.
- the determining module 210 further needs to determine a scheduling matrix according to the parallel transmission link selection policy.
- the parallel transmission link selection policy means that for the uplink or the downlink, according to the link interference matrix, if there is no interference between any two links, the two links can simultaneously receive or simultaneously transmit data. Specifically, for the uplink data transmission process, a search is started from the determined next link of the link to be transmitted, and a possible parallel transmission link is selected, wherein the possible parallel transmission link refers to the determined transmission chain. The next link on the upstream transmission path from the data source node to the destination node where the path is located.
- the first link on the transmission path of the next data source node whose node number is increased by 1 is its next link.
- node 2 transmits data through uplink L1.
- uplinks L3, L5, L7, and L9 of nodes 3, 4, 5, 6, and 7 are known.
- L11 and link L1 will interfere with each other. Therefore, these links cannot be transmitted in parallel with link L1, and continue to search.
- the uplink L13 and link L1 of node 8 do not interfere with each other, so in the first time slot, Node 8 can transmit data in parallel via link L13.
- nodes 10, 14, 17, 21 can be found to transmit data in parallel with link L2 via uplinks L17, L25, L31, L39, respectively. Therefore, the last obtained uplink scheduling matrix is as shown in FIG. 5, in the first time slot, the first time slot corresponding to the first column has the second, eighth, ten, 14, 17, and 21 lines. The corresponding nodes 2, 8, 10, 14, 17, and 21 can simultaneously transmit uplink data in parallel.
- the search is started from the determined next link of the link to be sent, and a possible parallel transmission link is selected, where the possible parallel transmission link refers to The next link on the downlink transmission path from the data source node to the destination node where the link is to be transmitted is determined. If the determined link to be transmitted is the last link of the path, the first link on the transmission path of the next data destination node with the target node number minus 1 to which the data belongs is its next link. However, since all data is sent by the root node at the initial time, the data cannot be transmitted in parallel. For example, as shown in FIG.
- the root node first sends the data belonging to the node 21 to the node 2 through the path L2.
- the node 21 has three slots of data to be transmitted, so the first three slots root node 1 sends data to the node 2. Therefore, in the fourth time slot, when the node 2 transmits the data of the node 21 to the node 7 through the downlink L12, since no other link on the transmission path from the root node to the node 21 can be transmitted in parallel with the L12, the search is performed from The link from the root node to the transmission path of the node 20, the first link on the path, that is, the downlink L4 and L12 from the root node to the node 3 do not interfere with each other, so in the fourth time slot, the node 1 The data of the node 20 can be sent to the node 3 through the downlink L4 at the same time. Therefore, the finally obtained downlink scheduling matrix is as shown in FIG. 6, in the fourth time slot corresponding to the fourth column, the first row and the second row. Node
- the determining module 210 modifies the initial time slot demand matrix according to the determined scheduling matrix, thereby obtaining a time slot demand matrix, where the time slot demand matrix corresponds to the time slot allocation result of each node.
- the value of the element (i, j) in the initial time slot requirement matrix is decremented by one
- ⁇ can be determined by equation (5), where r i,k represents the transmission rate between node i and node k, r k,k-1 Indicates the transmission rate between node k and the next hop node of node k, and the next hop node of k is the next hop node on the path where node i sends the data of node j to node k.
- the transmission rate between any time slot demand matrix is decremented by one
- r i,k represents the transmission rate between node i and node k
- r k,k-1 Indicates the transmission rate between node k and the next hop node of node k
- the uplink initial time slot requirement matrix when the elements in the first row of the modified uplink initial time slot demand matrix are respectively equal to the uplink time slot demand values of the corresponding nodes, Then, the uplink data on all nodes has been transmitted to the root node, and the uplink time slot allocation ends, and the final upper time slot demand matrix is obtained, which corresponds to the time slot value allocated by each node in the backhaul tree.
- the downlink initial slot demand matrix when the modified downlink initial When the elements on the main diagonal of the time slot demand matrix are equal to the downlink time slot demand values of the corresponding nodes, it indicates that the root node has transmitted all downlink data to the corresponding node, and then the downlink time The slot allocation ends, and a final downlink time slot requirement matrix is obtained, which corresponds to the time slot value assigned to each node in the backhaul tree.
- the uplink time slot demand value and the downlink time slot demand value of each node may be determined by formulas (3) and (4), respectively.
- the slot allocation of the determining module 210 determining, according to the determined scheduling matrix, a time slot in which each node in the backhaul tree needs to send data, and the slot number in the scheduling matrix corresponding to the backhaul tree is the largest.
- the value is determined as the scheduling length of the backhaul tree. For example, as shown in FIG. 5, according to the uplink scheduling matrix, the maximum slot number in the slot occupied by all nodes is 39, and the slot is the node 2 transmitting data belonging to the node 21 to the root node 1, and the scheduling of the backhaul tree is performed. The length is 39. For example, as shown in FIG. 6, according to the downlink scheduling matrix, the maximum slot number in the slot occupied by all nodes is 25, and the slot is that node 1, node 6, and node 7 both transmit downlink data in the slot.
- the schedule length of the backhaul tree is 25.
- the number of time slots allocated to each node in the backhaul tree is determined according to the determined time slot requirement matrix, and the sum of the transmission rates of all the links allocated to the time slots is the backhaul tree.
- capacity, the capacity of the tree may return (6) is determined by the equation, wherein, k T k backhaul tree is assigned a set of link slot, N slot, ij is allocated to the backhaul link ij k of the tree The number of slots.
- the determining module 210 determines the scheduling length, capacity, and wired backhaul cost value of each backhaul tree, that is, determines the scheduling length, capacity, and wired backhaul cost value of each wireless link access point set. Determining at least one of a scheduling length, a capacity, and a wired backhaul cost value of the corresponding at least one candidate wireless access point set according to at least one of a scheduling length, a capacity, and a wired backhaul cost value of each wireless link access point set And selecting an optimal one of the candidate wireless access point sets as the target wireless access point set, and determining the wireless access point included in the target wireless access point set as the at least one target wireless access point.
- each set of wireless link access points included in each set of candidate wireless access points first calculate a scheduling length, a capacity, and a wired backhaul cost value of each wireless link access point set, and then select the candidate wireless
- the scheduling length, capacity, and wired backhaul cost values of the set of wireless link access points included in the set of access points are respectively added, and the scheduling length, capacity, and wired backhaul cost value of the set of candidate wireless access points are obtained.
- the scheduling lengths of the set of wireless link access points included in the set of candidate wireless access points are added, that is, the scheduling length of the set of candidate wireless access points; and the wireless links included in the set of candidate wireless access points are connected.
- Wired backhaul of the set of points The value is added, that is, the wired backhaul cost values of the N candidate wireless access points included in the candidate wireless access point set are added, that is, the wired backhaul cost value of the candidate wireless access point set.
- determining, according to at least one of a scheduling length, a capacity, and a wired backhaul cost value of the at least one candidate wireless access point set determining an optimal one of the candidate wireless access point sets as the target wireless access point set, The total scheduling length of the target wireless access point set is small, the total capacity is large, and the total wired backhaul cost value is small.
- at least one candidate wireless access point set with the smallest total scheduling length may be determined from the at least one candidate wireless access point set, and at least one set is determined in the at least one candidate wireless access point set with the smallest total scheduling length.
- a set of at least one candidate wireless access point having the largest total capacity and determining, in the set of at least one candidate wireless access point having the largest total capacity, a candidate wireless access point set having the smallest total backhaul cost, the candidate wireless access point set That is, the last optimal set of candidate wireless access points, that is, the set of target wireless access points.
- the determining module 210 selects, for the selected target wireless access point set, a wireless link corresponding to each candidate wireless access point among the N wireless access points in the target wireless access point set.
- the N candidate wireless access points may be directly determined as the at least one target wireless access point.
- the scheduling length of the at least one radio link access point set in the N radio link access point sets corresponding to the N candidate radio access points in the target radio access point set is greater than a preset threshold.
- the new candidate wireless access point set includes N+1 new candidate wireless access points, that is, the wireless access points in the original candidate wireless access point set The number plus one is constructed as a new set of candidate wireless access points, and at least one target wireless access point is determined according to the same method.
- the preset threshold may be set according to an application.
- the scheduling length of the set of radio link access points corresponding to each radio access point in the set of target radio access points may be set to satisfy the formula (7), where L sch,k represents the kth radio
- the scheduling length of the set of link access points, l frame is the frame length of the wireless backhaul transmission.
- the new candidate wireless access point set includes N+1 new candidate wireless access points, that is, the number of wireless access points in the original candidate wireless access point set is increased by one to A new set of candidate wireless access points and determining at least one target wireless access point according to the same method.
- the processing module 220 deploys a wired backhaul for the at least one target wireless access point determined by the determining module 210. Specifically, the processing module 220 deploys, for each target wireless access point of the at least one target wireless access point, a wired backhaul link that communicates with the core network, where And other wireless access points other than the at least one target wireless access point of the L wireless access points communicate with the at least one target wireless access point through the wireless communication link, and pass the at least one target wireless access point with The core network communicates.
- the wireless access point may communicate with the core network through the target wireless access point according to the wireless communication link of each wireless access point in the set of wireless link access points.
- the apparatus 200 for wired backhaul link deployment of a wireless access point in accordance with an embodiment of the present invention may correspond to a method 100 of performing wired backhaul link deployment of a wireless access point in an embodiment of the present invention, and wireless access
- the foregoing and other operations and/or functions of the respective modules in the device 200 of the wired backhaul link of the point are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 1 to FIG. 6, and are not described herein again for brevity.
- the device for deploying the wired backhaul link of the wireless access point in the embodiment of the present invention according to the wired backhaul capability of each of the L wireless access points in the network, from the L wireless access points Determining at least one target wireless access point, and deploying a wired backhaul link for communicating with the core network for the target wireless access points, the other of the L wireless access points except the at least one target wireless access point
- the wireless access point communicates with the at least one target wireless access point through the wireless backhaul link, and communicates with the core network through the at least one target wireless access point, thereby automatically deploying the wired backhaul and avoiding the wired backhaul link.
- Unreasonable deployment results in limited backhaul, which can save deployment costs while ensuring the backhaul requirements of wireless access points.
- an embodiment of the present invention further provides an apparatus 300 for deploying a wired backhaul link of a wireless access point, including a processor 310, a memory 320, and a bus system 330.
- the processor 310 and the memory 320 are connected by a bus system 330 for storing instructions for executing instructions stored by the memory 320.
- the memory 320 stores the program code
- the processor 310 can call the program code stored in the memory 320 to perform the following operations: according to the wired backhaul capability of each of the L wireless access points in the network, from the L Determining at least one target wireless access point in the wireless access point; deploying a wired backhaul link communicating with the core network for each of the at least one target wireless access point, the L wireless access points And other wireless access points other than the at least one target wireless access point communicate with the at least one target wireless access point via a wireless communication link, and through the wired backhaul link of the at least one target wireless access point Core network communication.
- the device for deploying the wired backhaul link of the wireless access point in the embodiment of the present invention according to the wired backhaul capability of each of the L wireless access points in the network, from the L wireless connections Determining at least one target wireless access point in the ingress, and deploying a wired backhaul link for communicating with the core network for the target wireless access points, except the at least one target wireless access point of the L wireless access points
- the other wireless access point communicates with the at least one target wireless access point through the wireless backhaul link, and communicates with the core network through the at least one target wireless access point, thereby realizing automatic deployment of the wired backhaul and avoiding the wired backhaul chain
- the unreasonable deployment of the road results in limited backhaul capability, which can save deployment costs while ensuring the backhaul requirements of the wireless access point.
- the processor 310 may be a central processing unit ("CPU"), and the processor 310 may also be other general-purpose processors, digital signal processors (DSPs). , an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, and the like.
- the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
- the memory 320 can include read only memory and random access memory and provides instructions and data to the processor 310. A portion of the memory 320 may also include a non-volatile random access memory. For example, the memory 320 can also store information of the device type.
- the bus system 330 may include a power bus, a control bus, a status signal bus, and the like in addition to the data bus. However, for clarity of description, various buses are labeled as bus system 330 in the figure.
- each step of the foregoing method may be completed by an integrated logic circuit of hardware in the processor 310 or an instruction in a form of software.
- the steps of the method disclosed in the embodiments of the present invention may be directly implemented as a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
- the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
- the storage medium is located in the memory 320, and the processor 310 reads the information in the memory 320 and combines the hardware to perform the steps of the above method. To avoid repetition, it will not be described in detail here.
- the processor 310 may invoke the program code stored in the memory 320 to perform an operation of determining at least one candidate wireless according to a wired backhaul capability of each of the L wireless access points.
- a set of access points, each of the at least one candidate set of wireless access points includes N candidate wireless access points of the L wireless access points, and each candidate wireless access point The aggregated total backhaul capability of the set satisfies a backhaul requirement; determining at least one of a scheduling length, a capacity, and a wired backhaul cost value corresponding to each candidate wireless access point set in the at least one candidate wireless access point set; according to the at least one candidate Wireless access point Determining at least one of a scheduling length, a capacity, and a wired backhaul cost value corresponding to each candidate wireless access point set in the set, determining a target wireless access point set from the at least one candidate wireless access point set; and wirelessly selecting according to the target
- the at least one target wireless access point is determined by at least one of a scheduling length
- the processor 310 may invoke the program code stored in the memory 320 to perform the following operations: determining a wireless link corresponding to each candidate wireless access point in the at least one candidate wireless access point set. a set of ingress points, where the set of wireless link access points corresponding to the first candidate wireless access point includes at least one of the LN wireless access points, and the LN wireless access points are the L wireless a wireless access point other than the N candidate wireless access points in the access point, the at least one wireless access point and the first candidate wireless access point have a wireless communication link, and pass the first candidate a wired backhaul link of the wireless access point communicating with the core network, the at least one candidate wireless access point set including the first candidate wireless access point; and at least one candidate wireless connection included according to each candidate wireless access point set Determining a set of radio link access points corresponding to the ingress points, determining a scheduling length, a capacity, and a wired backhaul corresponding to each candidate radio access point set in the at least one candidate radio access point set.
- the processor 310 may invoke the program code stored in the memory 320 to perform the following operations: each wireless link corresponding to each candidate wireless access point included in the target wireless access point set When the scheduling length of the in-point set is less than or equal to the preset threshold, determining the N candidate wireless access points included in the target wireless access point set as the at least one target wireless access point; or when the target wireless access Determining at least one new candidate wireless wireless connection when the scheduling length of the at least one wireless link access point set of the N radio link access point sets corresponding to the N candidate wireless access points is greater than the preset threshold a set of in-point points, each of the at least one new candidate wireless access point set includes N+1 new candidate wireless access points of the L wireless access points, and according to the at least A new set of candidate wireless wireless access points that determine the at least one target wireless access point.
- the processor 310 may invoke the program code stored in the memory 320 to: determine at least one first neighbor corresponding to the N candidate wireless access points in the second candidate wireless access point set. a wireless access point, wherein the at least one candidate wireless access point set includes the second candidate wireless access point set, the at least one first neighbor wireless access point does not belong to the second candidate wireless access point set, and The at least one first neighbor wireless access point is adjacent to at least one second candidate wireless access point of the second set of candidate wireless access points; Determining a transmission rate between each of the first neighbor wireless access points and the at least one second candidate wireless access point, determining the at least one second candidate wireless access point and each of the at least one second candidate wireless access point a second candidate wireless access point having a maximum transmission rate, wherein the at least one second candidate wireless access point is adjacent to the first neighbor wireless access point; Adding a neighbor wireless access point to the set of wireless link access points corresponding to the second candidate wireless access point having the largest transmission rate; determining N candidate wireless accesses in the second set of
- the processor 310 may invoke the program code stored in the memory 320 to perform the following operations: determining a wireless link corresponding to the at least one candidate wireless access point included in each set of candidate wireless access points. a time slot value of the wireless access point included in the set of access points; determining a scheduling length, a capacity, and a set of the wireless link access point set according to a time slot value of the wireless access point included in the wireless link access point set At least one of a wired backhaul cost value; according to a scheduling length, a capacity, and a wired backhaul cost value of the set of the wireless link access points respectively corresponding to the at least one candidate wireless access point included in each set of candidate wireless access points And determining at least one of a scheduling length, a capacity, and a wired backhaul cost value corresponding to the set of each candidate wireless access point.
- the processor 310 may invoke the program code stored in the memory 320 to perform an operation of: determining an initial slot requirement matrix of each radio link access point set corresponding to each candidate radio access point.
- the initial time slot requirement matrix is an n*n-dimensional matrix, where n is the number of wireless access points in each set of wireless link access points, and each row and each column of the initial time slot requirement matrix are respectively associated with each
- the initial time slot demand matrix includes an uplink initial time slot demand matrix and a downlink initial time slot demand matrix, and the primary pair of the uplink initial time slot demand matrix
- the corner element is equal to the uplink time slot demand value of the corresponding wireless access point, and the other elements of the uplink initial time slot demand matrix are zero, and the downlink initial time slot demand matrix
- the elements of the row are equal to the downlink slot demand value of the corresponding radio access point of each column, and the other elements of the downlink initial slot demand matrix are zero; according to the link in the set of each
- the element (i, j) in the link interference matrix is 1, when the arbitrary two If there is no interference between the links i and j, the element (i, j) in the link interference matrix is 0; according to the link interference matrix, determining a scheduling matrix of each wireless link access point set,
- the scheduling matrix is an n*p matrix, and p represents the number of time slots available for allocation in a scheduling period.
- the elements (i, j) in the scheduling matrix are set to x, and x represents the set of each wireless link access point.
- the data transmitted by the i-th wireless access point in the jth time slot belongs to the wireless access point x; according to the scheduling matrix, the initial time The demand matrix is modified to obtain a time slot demand matrix of each wireless link access point set, where the time slot demand matrix includes an uplink time slot demand matrix and a downlink time slot demand matrix, and elements of the uplink time slot demand matrix Corresponding to the uplink time slot demand value of the corresponding wireless access point of each column, the primary diagonal element of the downlink time slot demand matrix is equal to the downlink time slot value of the corresponding wireless access point; according to the time slot demand matrix And determining a time slot value of the wireless access point included in each set of wireless link access points.
- the processor 310 may invoke the program code stored in the memory 320 to perform the following operations: according to the scheduling matrix, when the wireless access point i sends the data of the wireless access point j to the wireless access point k The value of the element (i, j) in the initial time slot requirement matrix is decremented by 1, and the value of the element (k, j) in the initial time slot demand matrix is increased by ⁇ :
- r i,k represents the transmission rate between the wireless access point i and the wireless access point k
- r k,k-1 represents the next hop of the wireless access point k and the wireless access point k
- the downlink time slot demand value of the wireless access point is changed, the initial time slot requirement matrix is stopped to be modified, and the time slot demand matrix of each wireless link access point set is obtained.
- the processor 310 may call the process stored in the memory 320.
- the sequence code performs the following operations: determining, according to a link selection policy, a scheduling matrix of each set of wireless link access points, the scheduling matrix including an uplink scheduling matrix and a downlink scheduling matrix, where the link selection policy includes a priority sending link selection The policy and the parallel transmission link selection policy, wherein the priority transmission link selection policy includes: for the uplink scheduling matrix, the nearest wireless access point from the candidate wireless access point of the wireless link access point set corresponding to the uplink scheduling matrix The data of the access point is preferentially transmitted, and the data of each wireless access point is transmitted hop by hop on the transmission path.
- the candidate wireless access point of the wireless link access point set corresponding to the downlink scheduling matrix The data of the farthest wireless access point is preferentially transmitted, and the data of each wireless access point is transmitted hop by hop on the transmission path, and the parallel transmission link selection strategy includes: according to the link interference matrix, when any two transmissions If the links interfere with each other, the two transmission links cannot transmit data in parallel, when any two transmission chains There is no interference between any two of the transmission link can transmit data in parallel.
- the processor 310 may invoke the program code stored in the memory 320 to perform the following operations: according to the scheduling matrix of each set of wireless link access points, the scheduling matrix needs to be sent. The maximum slot number corresponding to the last slot is determined as the scheduling length of each radio link access point set.
- the processor 310 may invoke the program code stored in the memory 320 to perform the following operations: determining each wireless link according to the time slot requirement matrix of each wireless link access point set. And determining, by the access point set, a wireless access point corresponding to a non-zero slot value in the wireless access point; determining, by the sum of the link transmission rates between the wireless access points corresponding to the non-zero slot value, each of the The capacity of the wireless link access point set.
- the processor 310 may invoke the program code stored in the memory 320 to perform an operation according to a scheduling length corresponding to each candidate wireless access point set in the at least one candidate wireless access point set. Determining at least one candidate wireless access point set having the smallest scheduling length among the at least one candidate wireless access point set; according to a capacity corresponding to each candidate wireless access point set in the at least one candidate wireless access point set, Configuring at least one candidate wireless access point set having the largest capacity among the at least one candidate wireless access point set having the smallest scheduling length; and determining a wired backhaul cost corresponding to each candidate wireless access point set in the at least one candidate wireless access point set And determining, from the set of at least one candidate wireless access point having the largest capacity, a candidate wireless access point set having the smallest wired backhaul cost value; and determining, by the set of one candidate wireless access point that minimizes the wired backhaul cost value, the target A collection of wireless access points.
- a device for wired backhaul link deployment of a wireless access point may correspond to apparatus 200 for wired backhaul link deployment of a wireless access point in embodiments of the present invention, and may correspond to performing a corresponding body in method 100 in accordance with an embodiment of the present invention, and a wired backhaul of the wireless access point
- the foregoing and other operations and/or functions of the modules in the device 300 of the link deployment are respectively implemented in order to implement the corresponding processes of the respective methods in FIG. 1 to FIG. 6 , and are not described herein again for brevity.
- the device for deploying the wired backhaul link of the wireless access point in the embodiment of the present invention according to the wired backhaul capability of each of the L wireless access points in the network, from the L wireless access points Determining at least one target wireless access point, and deploying a wired backhaul link for communicating with the core network for the target wireless access points, the other of the L wireless access points except the at least one target wireless access point
- the wireless access point communicates with the at least one target wireless access point through the wireless backhaul link, and communicates with the core network through the at least one target wireless access point, thereby automatically deploying the wired backhaul and avoiding the wired backhaul link.
- Unreasonable deployment results in limited backhaul, which can save deployment costs while ensuring the backhaul requirements of wireless access points.
- the disclosed systems, devices, and methods may be implemented in other manners.
- the device embodiments described above are merely illustrative.
- the division of the unit is only a logical function division.
- there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
- the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
- the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. You can choose some of them according to actual needs or All units are used to achieve the objectives of the solution of this embodiment.
- each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
- the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
- the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
- the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
- the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本发明实施例涉及无线接入点的有线回程链路部署的方法和装置。该方法包括:根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点;为该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信。本发明实施例的无线接入点的有线回程链路部署的方法和装置,可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
Description
本发明涉及无线通信领域,尤其涉及无线接入点的有线回程链路部署的方法和装置。
为提高网络容量,无线网络的接入点小型化和密集化是无线网络的发展趋势,密集无线接入网(UDN)基于尽可能短距离的用户接入,提升单站的能力和系统的区域吞吐量。
随着无线接入点的接入容量的提升,接入业务如何有效经过核心网,即有效回程是密集无线网络的重要问题之一。
传统上,回程基于有线,但无线接入点密集化后,并非每个无线接入点都能有线回程,另外;考虑到成本,只能部分无线接入点基于有线回程;其他无线接入点需要无线回程,通过无线单跳或多跳,与具有有线回程的无线接入点连接。
很明显,有线回程的部署,即位置和数量,对密集无线接入网络的性能影响很大。数量太多,成本很高;数量太少或位置规划不合理,回程能力有限。
因此,在密集无线网络下,如何有效进行有线回程的部署,以保证回程需求和节省成本是下一代无线网络的一个重要问题。
发明内容
本发明提供了一种无线接入点的有线回程链路部署的方法和装置,能够在保证无线接入点的回程需求下,节省部署成本。
第一方面,提供了一种无线接入点的有线回程链路部署的方法,该方法包括:根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点;为该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线通信链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线
接入点的有线回程链路与该核心网通信。
结合第一方面,在第一方面的一种实现方式中,该根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,包括:根据该L个无线接入点中每个无线接入点的有线回程能力,确定至少一个候选无线接入点集合,该至少一个候选无线接入点集合中的每个候选无线接入点集合包括该L个无线接入点中的N个候选无线接入点,并且每个候选无线接入点集合的总有线回程能力满足回程需求;确定该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,从该至少一个候选无线接入点集合中确定目标无线接入点集合;根据该目标无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,确定该至少一个目标无线接入点。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该确定该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,包括:确定该至少一个候选无线接入点集合中的每个候选无线接入点对应的无线链路接入点集合,其中,第一候选无线接入点对应的无线链路接入点集合包括L-N个无线接入点中的至少一个无线接入点,该L-N个无线接入点为该L个无线接入点中除了该N个候选无线接入点外的无线接入点,该至少一个无线接入点与该第一候选无线接入点之间具有无线通信链路,并通过该第一候选无线接入点的有线回程链路与该核心网通信,该至少一个候选无线接入点集合包括该第一候选无线接入点;根据每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合,确定该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该根据该目标无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,确定该至少一个目标无线接入点,包括:当该目标无线接入点集合包括的每个候选无线接入点对应的每个无线链路接入点集合的调度长度均小于或等于预设阈值时,将该目标无线接入点集合包括的N个候选无线接入
点确定为该至少一个目标无线接入点;或当该目标无线接入点集合包括的N个候选无线接入点对应的N个无线链路接入点集合中至少一个无线链路接入点集合的调度长度大于该预设阈值时,确定至少一个新候选无线无线接入点集合,该至少一个新候选无线接入点集合中的每个新候选无线接入点集合包括该L个无线接入点中的N+1个新候选无线接入点,并根据该至少一个新候选无线无线接入点集合,确定该至少一个目标无线接入点。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该确定该至少一个候选无线接入点集合中的每个候选无线接入点对应的无线链路接入点集合,包括:确定第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第一邻居无线接入点,其中,该至少一个候选无线接入点集合包括该第二候选无线接入点集合,该至少一个第一邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第一邻居无线接入点与该第二候选无线接入点集合中的至少一个第二候选无线接入点相邻;根据该至少一个第一邻居无线接入点中的每个第一邻居无线接入点与至少一个第二候选无线接入点之间的传输速率,确定该至少一个第二候选无线接入点中与该每个第一邻居无线接入点具有最大传输速率的第二候选无线接入点,其中,该至少一个第二候选无线接入点与该第一邻居无线接入点相邻;将该每个第一邻居无线接入点添加至该具有最大传输速率的第二候选无线接入点对应的无线链路接入点集合中;确定该第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第l邻居无线接入点,其中,该至少一个第l邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第l邻居无线接入点与至少一个第l-1邻居无线接入点相邻,l为大于1的整数;根据该至少一个第l邻居无线接入点中的每个第l邻居无线接入点与至少一个第l-1邻居无线接入点之间的传输速率,确定该至少一个第l-1邻居无线接入点中与该每个第l邻居无线接入点具有最大传输速率的第l-1邻居无线接入点,其中,该至少一个第l-1邻居无线接入点与该第l邻居无线接入点相邻;将该每个第l邻居无线接入点添加至该具有最大传输速率的第l-1邻居无线接入点对应的无线链路接入点集合中。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该根据每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合,确定该至少一个候选无线接入点集合中每个候选无线
接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,包括:确定该每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合包括的无线接入点的时隙值;根据该无线链路接入点集合包括的无线接入点的时隙值,确定该无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个;根据该每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定该每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该确定该每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合包括的无线接入点的时隙值,包括:确定每个候选无线接入点对应的每个无线链路接入点集合的初始时隙需求矩阵,该初始时隙需求矩阵为n*n维矩阵,n为该每个无线链路接入点集合中无线接入点的个数,该初始时隙需求矩阵每一行和每一列分别与该每个无线链路接入点集合中的每个无线接入点相对应,该初始时隙需求矩阵包括上行初始时隙需求矩阵和下行初始时隙需求矩阵,该上行初始时隙需求矩阵的主对角元素等于对应的无线接入点的上行链路时隙需求值,该上行初始时隙需求矩阵的其它元素为零,该下行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的下行链路时隙需求值,该下行初始时隙需求矩阵的其它元素为零;根据该每个无线链路接入点集合中的链路之间是否存在干扰,确定该每个无线链路接入点集合的链路干扰矩阵,该链路干扰矩阵为m*m维矩阵,m为该每个无线链路接入点集合中上行或下行的链路个数,m=2(n-1),当任意两条链路i和j之间相互干扰,则该链路干扰矩阵中元素(i,j)为1,当该任意两条链路i和j之间没有干扰,则该链路干扰矩阵中元素(i,j)为0;根据该链路干扰矩阵,确定该每个无线链路接入点集合的调度矩阵,该调度矩阵为n*p矩阵,p表示一个调度周期中可用于分配的时隙的个数,该调度矩阵中元素(i,j)设置为x,x表示该每个无线链路接入点集合中的第i个无线接入点在第j个时隙发送的数据属于无线接入点x;根据该调度矩阵,对该初始时隙需求矩阵进行修改,获得该每个无线链路接入点集合的时隙需求矩阵,该时隙需求矩阵包括上行时隙需求矩阵和下行时隙需求矩阵,该上行时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值,该下行时隙需求矩阵
的主对角元素等于对应的无线接入点的下行链路时隙值;根据该时隙需求矩阵,确定该每个无线链路接入点集合包括的无线接入点的时隙值。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该根据该调度矩阵,对该初始时隙需求矩阵进行修改,获得该每个无线链路接入点集合的时隙需求矩阵,包括:根据该调度矩阵,当无线接入点i向无线接入点k发送无线接入点j的数据时,将该初始时隙需求矩阵中元素(i,j)的数值减1,并将该初始时隙需求矩阵中元素(k,j)的数值加Δ:
其中,ri,k表示该无线接入点i和该无线接入点k之间的传输速率,rk,k-1表示该无线接入点k和该无线接入点k的下一跳无线接入点之间的传输速率,该无线接入点k的下一跳无线接入点属于该无线接入点i向该无线接入点k发送该无线接入点j的数据时所在的路径;当该上行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值时,或当该下行初始时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙需求值时,停止修改该初始时隙需求矩阵,获得该每个无线链路接入点集合的时隙需求矩阵。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该根据该链路干扰矩阵,确定该每个无线链路接入点集合的调度矩阵,包括:根据链路选择策略,确定该每个无线链路接入点集合的调度矩阵,该调度矩阵包括上行调度矩阵和下行调度矩阵,该链路选择策略包括优先发送链路选择策略和并行发送链路选择策略,其中,该优先发送链路选择策略包括:对于该上行调度矩阵,距离该上行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最近的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,对于该下行调度矩阵,距离该下行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最远的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,该并行发送链路选择策略包括:根据该链路干扰矩阵,当任意两条传输链路之间相互干扰,则该任意两条传输链路不可以并行传送数据,当该任意两条传输链路之间没有干扰,则该任意两条传输链路可以并行传送数据。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该
根据该无线链路接入点集合包括的无线接入点的时隙值,确定该无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,包括:根据该每个无线链路接入点集合的该调度矩阵,将该调度矩阵中的需要发送的最后一个时隙对应的最大时隙号确定为该每个无线链路接入点集合的调度长度。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该根据该无线链路接入点集合包括的无线接入点的时隙值,确定该无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,包括:根据该每个无线链路接入点集合的该时隙需求矩阵,确定该每个无线链路接入点集合包括的无线接入点中非零时隙值对应的无线接入点;将该非零时隙值对应的无线接入点之间的链路传输速率之和确定为该每个无线链路接入点集合的容量。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,从该至少一个候选无线接入点集合中确定目标无线接入点集合,包括:根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度,从该至少一个候选无线接入点集合中确定该调度长度最小的至少一个候选无线接入点集合;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的容量,从该调度长度最小的至少一个候选无线接入点集合中确定容量最大的至少一个候选无线接入点集合;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的有线回程成本值,从该容量最大的至少一个候选无线接入点集合中确定有线回程成本值最小的一个候选无线接入点集合;将该有线回程成本值最小的一个候选无线接入点集合确定为该目标无线接入点集合。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该L个无线接入点中的每个无线接入点的有线回程成本小于或等于有线回程成本门限值。
结合第一方面及其上述实现方式,在第一方面的另一种实现方式中,该L个无线接入点中的每个无线接入点的有线回程能力大于或等于该每个无线接入点的接入能力。
第二方面,提供了一种无线接入点的有线回程链路部署的装置,该装置包括:确定模块,用于根据网络中的L个无线接入点中每个无线接入点的有
线回程能力,从该L个无线接入点中确定至少一个目标无线接入点;处理模块,用于为该确定模块确定的该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线通信链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点的有线回程链路与该核心网通信。
结合第二方面,在第二方面的一种实现方式中,该确定模块具体用于:根据该L个无线接入点中每个无线接入点的有线回程能力,确定至少一个候选无线接入点集合,该至少一个候选无线接入点集合中的每个候选无线接入点集合包括该L个无线接入点中的N个候选无线接入点,并且每个候选无线接入点集合的总有线回程能力满足回程需求;确定该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,从该至少一个候选无线接入点集合中确定目标无线接入点集合;根据该目标无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,确定该至少一个目标无线接入点。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:确定该至少一个候选无线接入点集合中的每个候选无线接入点对应的无线链路接入点集合,其中,第一候选无线接入点对应的无线链路接入点集合包括L-N个无线接入点中的至少一个无线接入点,该L-N个无线接入点为该L个无线接入点中除了该N个候选无线接入点外的无线接入点,该至少一个无线接入点与该第一候选无线接入点之间具有无线通信链路,并通过该第一候选无线接入点的有线回程链路与该核心网通信,该至少一个候选无线接入点集合包括该第一候选无线接入点;根据每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合,确定该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:当该目标无线接入点集合包括的每个候选无线接入点对应的每个无线链路接入点集合的调度长度均小于或等于预设阈值时,将该目
标无线接入点集合包括的N个候选无线接入点确定为该至少一个目标无线接入点;或当该目标无线接入点集合包括的N个候选无线接入点对应的N个无线链路接入点集合中至少一个无线链路接入点集合的调度长度大于该预设阈值时,确定至少一个新候选无线无线接入点集合,该至少一个新候选无线接入点集合中的每个新候选无线接入点集合包括该L个无线接入点中的N+1个新候选无线接入点,并根据该至少一个新候选无线无线接入点集合,确定该至少一个目标无线接入点。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:确定第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第一邻居无线接入点,其中,该至少一个候选无线接入点集合包括该第二候选无线接入点集合,该至少一个第一邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第一邻居无线接入点与该第二候选无线接入点集合中的至少一个第二候选无线接入点相邻;根据该至少一个第一邻居无线接入点中的每个第一邻居无线接入点与至少一个第二候选无线接入点之间的传输速率,确定该至少一个第二候选无线接入点中与该每个第一邻居无线接入点具有最大传输速率的第二候选无线接入点,其中,该至少一个第二候选无线接入点与该第一邻居无线接入点相邻;将该每个第一邻居无线接入点添加至该具有最大传输速率的第二候选无线接入点对应的无线链路接入点集合中;确定该第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第l邻居无线接入点,其中,该至少一个第l邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第l邻居无线接入点与至少一个第l-1邻居无线接入点相邻,l为大于1的整数;根据该至少一个第l邻居无线接入点中的每个第l邻居无线接入点与至少一个第l-1邻居无线接入点之间的传输速率,确定该至少一个第l-1邻居无线接入点中与该每个第l邻居无线接入点具有最大传输速率的第l-1邻居无线接入点,其中,该至少一个第l-1邻居无线接入点与该第l邻居无线接入点相邻;将该每个第l邻居无线接入点添加至该具有最大传输速率的第l-1邻居无线接入点对应的无线链路接入点集合中。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:确定该每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合包括的无线接入点的时隙值;根据
该无线链路接入点集合包括的无线接入点的时隙值,确定该无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个;根据该每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定该每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:确定每个候选无线接入点对应的每个无线链路接入点集合的初始时隙需求矩阵,该初始时隙需求矩阵为n*n维矩阵,n为该每个无线链路接入点集合中无线接入点的个数,该初始时隙需求矩阵每一行和每一列分别与该每个无线链路接入点集合中的每个无线接入点相对应,该初始时隙需求矩阵包括上行初始时隙需求矩阵和下行初始时隙需求矩阵,该上行初始时隙需求矩阵的主对角元素等于对应的无线接入点的上行链路时隙需求值,该上行初始时隙需求矩阵的其它元素为零,该下行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的下行链路时隙需求值,该下行初始时隙需求矩阵的其它元素为零;根据该每个无线链路接入点集合中的链路之间是否存在干扰,确定该每个无线链路接入点集合的链路干扰矩阵,该链路干扰矩阵为m*m维矩阵,m为该每个无线链路接入点集合中上行或下行的链路个数,m=2(n-1),当任意两条链路i和j之间相互干扰,则该链路干扰矩阵中元素(i,j)为1,当该任意两条链路i和j之间没有干扰,则该链路干扰矩阵中元素(i,j)为0;根据该链路干扰矩阵,确定该每个无线链路接入点集合的调度矩阵,该调度矩阵为n*p矩阵,p表示一个调度周期中可用于分配的时隙的个数,该调度矩阵中元素(i,j)设置为x,x表示该每个无线链路接入点集合中的第i个无线接入点在第j个时隙发送的数据属于无线接入点x;根据该调度矩阵,对该初始时隙需求矩阵进行修改,获得该每个无线链路接入点集合的时隙需求矩阵,该时隙需求矩阵包括上行时隙需求矩阵和下行时隙需求矩阵,该上行时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值,该下行时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙值;根据该时隙需求矩阵,确定该每个无线链路接入点集合包括的无线接入点的时隙值。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:根据该调度矩阵,当无线接入点i向无线接入点k发送
无线接入点j的数据时,将该初始时隙需求矩阵中元素(i,j)的数值减1,并将该初始时隙需求矩阵中元素(k,j)的数值加Δ:
其中,ri,k表示该无线接入点i和该无线接入点k之间的传输速率,rk,k-1表示该无线接入点k和该无线接入点k的下一跳无线接入点之间的传输速率,该无线接入点k的下一跳无线接入点属于该无线接入点i向该无线接入点k发送该无线接入点j的数据时所在的路径;当该上行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值时,或当该下行初始时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙需求值时,停止修改该初始时隙需求矩阵,获得该每个无线链路接入点集合的时隙需求矩阵。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:根据链路选择策略,确定该每个无线链路接入点集合的调度矩阵,该调度矩阵包括上行调度矩阵和下行调度矩阵,该链路选择策略包括优先发送链路选择策略和并行发送链路选择策略,其中,该优先发送链路选择策略包括:对于该上行调度矩阵,距离该上行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最近的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,对于该下行调度矩阵,距离该下行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最远的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,该并行发送链路选择策略包括:根据该链路干扰矩阵,当任意两条传输链路之间相互干扰,则该任意两条传输链路不可以并行传送数据,当该任意两条传输链路之间没有干扰,则该任意两条传输链路可以并行传送数据。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:根据该每个无线链路接入点集合的该调度矩阵,将该调度矩阵中的需要发送的最后一个时隙对应的最大时隙号确定为该每个无线链路接入点集合的调度长度。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:根据该每个无线链路接入点集合的该时隙需求矩阵,确定该每个无线链路接入点集合包括的无线接入点中非零时隙值对应的无线
接入点;将该非零时隙值对应的无线接入点之间的链路传输速率之和确定为该每个无线链路接入点集合的容量。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该确定模块具体用于:根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度,从该至少一个候选无线接入点集合中确定该调度长度最小的至少一个候选无线接入点集合;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的容量,从该调度长度最小的至少一个候选无线接入点集合中确定容量最大的至少一个候选无线接入点集合;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的有线回程成本值,从该容量最大的至少一个候选无线接入点集合中确定有线回程成本值最小的一个候选无线接入点集合;将该有线回程成本值最小的一个候选无线接入点集合确定为该目标无线接入点集合。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该L个无线接入点中的每个无线接入点的有线回程成本小于或等于有线回程成本门限值。
结合第二方面及其上述实现方式,在第二方面的另一种实现方式中,该L个无线接入点中的每个无线接入点的有线回程能力大于或等于该每个无线接入点的接入能力。
基于上述技术方案,本发明实施例的无线接入点的有线回程链路部署的方法和装置,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,并为这些目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信,从而可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
为了更清楚地说明本发明实施例的技术方案,下面将对本发明实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的
前提下,还可以根据这些附图获得其他的附图。
图1是根据本发明实施例的无线接入点的有线回程链路部署的方法的示意性流程图。
图2是根据本发明实施例的无线链路接入点集合的示意图。
图3是根据本发明实施例的无线链路接入点集合的上行初始时隙需求矩阵的示意图。
图4是根据本发明实施例的无线链路接入点集合的下行初始时隙需求矩阵的示意图。
图5是根据本发明实施例的无线链路接入点集合的上行调度矩阵的示意图。
图6是根据本发明实施例的无线链路接入点集合的下行调度矩阵的示意图。
图7是根据本发明实施例的无线接入点的有线回程链路部署的装置的示意性框图。
图8是根据本发明实施例的无线接入点的有线回程链路部署的装置的另一示意性框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
图1示出了根据本发明实施例的无线接入点的有线回程链路部署的方法100的示意性流程图,该方法100可以由控制器执行,或网络管理系统执行。如图1所示,该方法100包括:
S110,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点;
S120,为该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线通信链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点的有线回程链路与该核心网通信。
具体地,对于网络中多个待部署有线回程的无线接入点,可以根据这些无线接入点的位置信息,排除受位置限制不能部署有线回程的无线接入点;也可以根据有线回程成本值排除有线回程成本值过大的无线接入点;还可以根据有线回程能力排除有线回程能力比回程需求小的无线接入点,从而确定出L个无线接入点,该L个无线接入点可以为全部或部分网络中待部署无线接入点。根据该L个无线接入点中的无线接入点有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,并为该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信。
因此,本发明实施例的无线接入点的有线回程链路部署的方法,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,并为这些目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信,从而可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
在S110中,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点。可以先根据网络中的多个待部署无线接入点中每个待部署无线接入点的位置信息、有线回程成本值和有线回程能力中的至少一个,确定该L个无线接入点,该L个无线接入点可以为全部或部分网络中的待部署无线接入点。具体地,可以确定网络中多个待部署无线接入点的位置信息,排除受物理限制或位置区域限制而不能部署有线回程的无线接入点,即该L个无线接入点中每个无线接入点部署有线回程时可以不受物理位置的限制;也可以确定每个待部署无线接入点的有线回程能力,排除有线回程能力小于该无线接入点的接入能力而不能部署有线回程的无线接入点,即该L个无线接入点中每个无线接入点的有线回程能力均大于自身的接入能力;还可以确定每个待部署无线接入点的回程成本值,排除回程成本值大于预设的门限值的无线接入点,该预设门限值
可以根据实际预先设定,使得部署有线回程的无线接入点的总成本值不会过高,即该L个无线接入点中每个无线接入点的有线回程成本值小于预设的门限值。
在本发明实施例中,从L个无线接入点中确定至少一个目标无线接入点具体可以通过下面的方法确定。具体地,可以根据该L个无线接入点中的每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个候选无线接入点集合,其中,每个候选无线接入点集合的总有线回程能力大于或等于总的回程需求值,且每个候选无线接入点集合中包括L个无线接入点中的N个候选无线接入点。确定每个候选无线接入点集合中包括的每个候选无线接入点对应的无线链路接入点集合,其中,每个候选无线接入点集合中包括的N个候选无线接入点分别对应的N个无线链路接入点集合包括网络中的L个无线接入点,每个候选无线接入点属于对应的无线链路接入点集合,且每个候选无线接入点对应的无线链路接入点集合还包括L个无线接入点中除了该候选无线接入点集合包括的N个候选无线接入点外的L-N个无线接入点中的至少一个无线接入点,该至少一个无线接入点和核心网通信时,是经由每个候选接入点与该至少一个无线接入点之间的无线通信链路,以及该每个候选接入点的有线回程链路。可以根据确定的每个无线链路接入点集合,确定该每个无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个值,并根据每个无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个值,确定每个候选无线接入点集合的调度长度、容量和有线回程成本值中的至少一个值,从而确定出目标无线接入点集合,并从该目标无线接入点集合中确定出需要部署有线回程的至少一个目标无线接入点。
具体地,在本发明实施例中,可以根据该L个无线接入点中的每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个候选无线接入点集合,每个候选无线接入点集合中包括的无线接入点的有线回程能力满足回程需求,且每个候选无线接入点集合中包括L个无线接入点中的N个候选无线接入点。具体地,可以将L个无线接入点中包括的全部无线接入点按照有线回程能力的大小进行从大到小的排序,选择有线回程能力最大的N个无线接入点组成候选无线接入点集合,可选地,N的数量可以为最小值,即N-1个无线接入点的有线回程能力不满足回程需求。当存在多个无线接入点的有线回程能力相等时,选择回程能力最大的N个满足回程需求的无线接入
点可以存在多种组合方式,则每种组合方式构成一个候选无线接入点集合,即该L个无线接入点可以确定出至少一个候选无线接入点集合。
在本发明实施例中,从该L个无线接入点中确定出有线回程能力最大的N个无线接入点,即该N个无线接入点中每个无线接入点包括的无线接入点的有线回程能力大于或等于其他的无线接入点,该其他的无线接入点是指L个无线接入点中除了该N个无线接入点外其他无线接入点。可选地,该有线回程能力可以为回程速率峰值,本发明并不限于此。可选地,该网络回程需求值可以为对应的网络中的无线接入点的总的最大接入能力,如接入峰值速率等,对应地,该有线回程能力也可以为峰值速率等。具体地,该N个无线接入点满足下面的公式(1):
其中,Thrwired为N个无线接入点的N个有线回程能力值之和,Wk为N个无线接入点中第k个无线接入点的有线回程能力值;Thrreq为N个无线接入点对应的网络回程需求值,Capk为L个无线接入点中第k个无线接入点的最大接入能力,如接入峰值速率等。
在本发明实施例中,分别确定每个候选无线接入点集合中包括的每个候选无线接入点对应的无线链路接入点集合,其中每个候选无线接入点集合中包括的N个候选无线接入点分别对应的N个无线链路接入点集合包括网络中的L个无线接入点,每个候选无线接入点属于对应的无线链路接入点集合,且每个候选无线接入点对应的无线链路接入点集合还包括L个无线接入点中除了该候选无线接入点集合包括的N个候选无线接入点外的L-N个无线接入点中的至少一个无线接入点。
具体地,先确定第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第一邻居无线接入点,其中,该第二候选无线接入点集合可以为至少一个候选无线接入点集合中任意一个候选无线接入点集合,该至少一个第一邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第一邻居无线接入点与该第二候选无线接入点集合中的至少一个候选无线接入点相邻。对于该至少一个第一邻居无线接入点中的任意一个第一邻居无线接入点,确定该第一邻居无线接入点与相邻的至少一个第二候选无线接入点之间的传输速率,确定相邻的至少一个第二候选无线接入点中与该第一邻居
无线接入点具有最大传输速率的第二候选无线接入点。将该第一邻居无线接入点添加至该具有最大传输速率的第二候选无线接入点对应的无线链路接入点集合中。同样地,再确定该第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第l邻居无线接入点,其中,该至少一个第l邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第l邻居无线接入点与至少一个第l-1邻居无线接入点相邻,l为大于1的整数;对于该至少一个第l邻居无线接入点中的任意一个第l邻居无线接入点,确定该第l邻居无线接入点与相邻的至少一个第l-1邻居无线接入点之间的传输速率,确定该相邻的至少一个第l-1邻居无线接入点中与该第l邻居无线接入点具有最大传输速率的第l-1邻居无线接入点,将该第l邻居无线接入点添加至该具有最大传输速率的第l-1邻居无线接入点对应的无线链路接入点集合中,对于至少一个第l邻居无线接入点中每个第l邻居无线接入点均通过同样的方法进行分配。
可选地,作为一个实施例,该无线链路接入点集合也可以构建为由多个无线接入点构成的回程树,即每个无线链路接入点集合对应一个回程树,每个候选无线接入点分别对应该每个回程树的根节点。每个候选无线接入点集合包括N个候选无线接入点,则对应的每个候选无线接入点集合包括N个无线链路接入点集合,即对应的可以包括N个回程树,该N个回程树的根节点分别对应属于候选无线接入点集合中的N个候选无线接入点。
具体地,对于构建回程树,当确定了候选无线接入点集合中N个回程树中每个回程树的根节点之后,网络中待部署的无线接入点中除了被确定为根节点的N个候选无线接入点外,对于与至少一个该根节点相邻的第一无线接入点,确定该第一无线接入点与每个相邻的根节点之间的链路传输速率,从得到的至少一个链路传输速率中确定最大值对应的根节点,将该第一无线接入点作为该根节点所在的回程树的第一层子节点,该第一层子节点为根节点的孩子节点。在除了待部署的无线接入点中被确定为根节点的无线接入点之外,遍历与至少一个根节点相邻的无线接入点,第一无线接入点为这些与至少一个根节点相邻的无线接入点中的任意一个无线接入点。可选地,可以通过下面的公式(2)确定两个无线接入点之间的链路的传输速率:
其中,ri,j表示无线接入点i与无线接入点j之间的链路传输速率,lframe为无线回程传输的帧长,nsymbol为每帧所含的符号数,该符号数可以取决于系统带宽、帧长和物理层传输参数,nbit,ij为每个符号所含的比特数,该比特数取决于调制编码方式,而该无线接入点i和无线接入点j之间链路的调制编码方式可以由该链路的信噪比决定,每个无线接入点获取其邻居无线接入点的接收功率,发送功率除以接收功率与噪声功率之和从而获得信噪比,根据该信噪比,选择相应的调制编码方式。
在本发明实施例中,待部署无线接入点中除了被确定为根据节点和第一层子节点的无线接入点之外,对于其它的无线接入点,确定与至少一个第一层子节点相邻的第二无线接入点,确定该第二无线接入点与每个相邻的第一层子节点之间的链路传输速率,从得到的至少一个链路传输速率中确定最大值对应的第一层子节点,将该第二无线接入点作为该第一层子节点所在的回程树的第二层子节点,该第二层子节点为该第一层子节点的孩子节点。在除了待部署的无线接入点中被确定为根节点和第一层子节点的无线接入点之外,遍历与至少一个第一子节点相邻的无线接入点,第二无线接入点为这些与至少一个第一层子节点相邻的无线接入点中的任意一个无线接入点。
同样地,在待部署无线接入点中没有被确定为属于回程树中的子节点或根节点的无线接入点中,确定与至少一个第l-1层子节点相邻的第l无线接入点,确定该第l无线接入点与每个相邻的第l-1层子节点之间的链路传输速率,从得到的至少一个链路传输速率中确定最大值对应的第l-1层子节点,将该第l无线接入点作为该第l-1层子节点所在的回程树的第l层子节点,该第l层子节点为第l-1层子节点的孩子节点。在待部署的无线接入点中除了被确定为属于回程树的某一层子节点或根据节点之外的无线接入点中,遍历与至少一个第l-1层子节点相邻的无线接入点,第l无线接入点为这些与至少一个第l-1层子节点相邻的无线接入点中的任意一个无线接入点,l为大于1的正整数。
在本发明实施例中,对于任意一个候选无线接入点集合中的候选无线接入点对于的无线链路接入点集合的构造,也即回程树的构造时,遍历待部署的无线接入点中每个无线接入点,使得每个无线接入点都属于候选无线接入点集合中包括的N个候选无线接入点对应的N个回程树中某一个回程树中,则回程树构建完成即确定了无线链路接入点集合。当遍历待部署的无线接入
点后,若存在至少一个无线接入点不属于该候选无线接入点集合中包括的N个无线链路接入点集合中任何一个无线链路接入点集合时,则重新确定该候选无线接入点集合,将原候选无线节点集合中包括的候选无线接入点个数加1,即该候选无线接入点集合包括N+1个候选无线接入点,并利用同样的方法继续确定至少一个目标无线接入点。
在本发明实施例中,根据确定的多个无线链路接入点集合,确定每个无线链路接入点集合的调度长度、容量和总有线回程成本值中的至少一个,并根据该调度长度、容量和总有线回程成本值中的至少一个确定对应的至少一个候选无线接入点集合中每个候选无线接入点集合的调度长度、容量和总有线回程成本值中的至少一个,从而确定至少一个目标无线接入点。具体地,确定每个无线链路接入点集合时,可以先对每个无线链路接入点集合进行时隙分配,确定该无线链路接入点集合中包括的无线接入点的时隙值,从而确定每个无线链路接入点集合的调度长度、容量和总有线回程成本值中的至少一个,其中,无线链路接入点集合的调度长度表示在一个调度周期内,传输该无线链路接入点集合中包括的所有无线接入点的数据所需要的时隙数,例如可以将该无线链路接入点集合中包括的无线接入点占用的最大时隙号确定为该无线链路接入点集合的调度长度;无线链路接入点集合的容量表示在一个调度周期内,该无线链路接入点集合中调度的所有无线接入点之间的链路传输速率之和;无线链路接入点集合的有线回程成本值表示该无线链路接入点集合对应的候选无线接入点的有线回程成本值,即需要部署有线回程的无线接入点的有线回程成本值。
具体地,在本发明实施例中,可以通过下面的方法对每个无线链路接入点集合进行时隙分配。以该每个无线链路接入点集合对应一个回程树为例说明,首先构建无线链路接入点集合也即回程树的初始时隙需求矩阵、链路干扰矩阵和调度矩阵。具体地,以任意一个回程树为例,如图2所示,假设该回程树包括21个无线接入点,在图2中每个圆圈表示一个节点,圆圈中的数字为各节点的编号,其中根节点为编号为1的无线接入点,其余20个无线接入点为子节点。每个节点选择距离最近且跳数最小的邻居作为中继节点;假设根节点的跳数为0,根节点的所有邻居的跳数便为1,其他节点的跳数为其中继节点的跳数加1。图2中的回程树各个节点的编号按照跳数从小到大依次编号,其中根节点编号为1,位于区域中心,其它子节点在50*50
的区域中随机分布,编号分别为2、3、4、…、21。图中的箭头表示无线链路,对于每个节点来说,从该节点到其父亲节点的链路称为上行链路,从其父亲节点到该节点的链路称为下行链路。每个箭头旁边的标号为链路的编号,分别表示为L1、L2、…、L40。该链路编号依据节点的编号产生,对于任一个节点,其上行链路编号为2*(节点编号-1)-1,其下行链路编号为2*(节点编号-1),因此,图2的上行链路编号为奇数,下行编号为偶数。在该回程树图中,因为每个节点对应一条上行链路和一条下行链路,因此,20个子节点总共有40条链路。
在本发明实施例中,确定了回程树中各个节点及各个节点之间的链路之后,构建该回程树的初始时隙需求矩阵。该初始时隙需求矩阵为n*n维矩阵,n为该回程树中所有无线接入点的个数,因此,以图2的回程树为例,创建的初始时隙需求矩阵为21*21维的矩阵,每一行和每一列分别对应回程树中的一个节点。具体地,该初始时隙需求矩阵包括如图3的上行初始时隙需求矩阵和如图4的下行初始时隙需求矩阵。如图3所示,上行初始时隙需求矩阵的主对角线上的元素对应各个节点的上行链路时隙需求值,其它元素均为零。可选地,可以通过下面的公式(3)确定每个节点的上行链路时隙需求值:
其中,表示节点i的上行链路时隙需求值;为节点i的上行最大回程速率需求,可以对应其最大的上行无线接入容量,比如上行接入峰值能力值;ri,j表示节点i到其父节点j的传输速率,可以通过公式(2)确定,lframe为无线回程传输的帧长。可选地,作为一个实施例,上行初始时隙需求矩阵的计算结果可以如图3所示。如图4所示,由于下行传输均由根节点开始,因此下行初始时隙需求矩阵的第一行的元素等于每一列对应的每个节点的下行链路时隙需求值,其它元素为零。可选地,可以通过下面的公式(4)确定每个节点的下行链路时隙需求值:
其中,表示节点i的下行链路时隙需求值;为节点i的下行最大回程速率需求,可以对应其最大的下行无线接入容量,比如下行接入峰值能力值;rj,l表示节点j到节点l的传输速率,节点j为节点l的父节点,
由于下行链路的数据均由根节点开始发送,则节点j为根节点,节点l为根节点向节点i传输数据时的第一跳节点,rj,l可以通过公式(2)确定,lframe为无线回程传输的帧长。可选地,作为一个实施例,下行初始时隙需求矩阵的计算结果可以如图4所示。
在本发明实施例中,还可以根据该回程树之间的链路是否存在干扰,构建链路干扰矩阵,该链路干扰矩阵为m*m维矩阵,m为该回程树中上行或下行的链路个数。例如图2的回程树,其中包括20个上行链路和20个下行链路,可以分别构建20*20维的上行链路的链路干扰矩阵和20*20维的下行链路的链路干扰矩阵,每个矩阵的每一行和每一列分别对应一个链路,该链路干扰矩阵中的任意一个元素(i,j)表示链路i和链路j之间是否存在干扰,如果存在干扰,则元素(i,j)设置为1,如果没有干扰,则元素(i,j)设置为0。具体地,可以根据下面的原则确定两个链路之间是否存在干扰:(1)任何节点不能同时发送与接收,且任何节点不能同时给多个节点发送信息,也不能同时接收多个节点的信息;(2)如果某个节点正在发送,则其所有邻居不能接收其它节点发送的信息,否则会受到该节点的干扰;(3)如果某个节点正在接收,则其所有邻居不能向其它节点发送信息,否则会对该节点产生干扰。
在本发明实施例中,根据该链路干扰矩阵,构建该回程树的调度矩阵。对于任意回程树,调度矩阵为n*p维矩阵,n为该回程树中节点个数,p表示一个调度周期中可用于分配的时隙的个数,该调度矩阵中的任意一个元素(i,j)设置为x,x表示该回程树中的第i个节点在第j个时隙发送的数据属于第x个节点的,例如图2中,若节点1在第3时隙向节点2发送属于节点21的数据,则调度矩阵的(1,3)位置设置为21。
具体地,在本发明实施例中,对于如图2所示的回程树,调度矩阵可以包括上行调度矩阵和下行调度矩阵,并且可以根据链路选择策略确定每个回程树的调度矩阵。具体地,该链路选择策略可以包括优先发送链路选择策略和并行发送链路选择策略。优先发送链路选择策略是指:对于上行链路来说,跳数最小节点的数据优先传输,并在数据传输路径上按照逐跳策略传输,对于如图2所示的任意回程树,即距离根节点最近的节点的数据优先发送,并且每个无线接入点的数据在传输路径上逐跳传送,则在第一时隙优先发送节点2的数据,对于图3而言,由于节点2只有一个时隙数据需要传输,因此在第一时隙传输节点2的时隙,确定上行调度矩阵如图5所示。对于下行链
路来说,跳数最大的节点的数据优先传输,并在数据传输链路上按照逐跳策略传输,对于如图2所示的任意回程树,跳数最大即距离根节点最远的节点的数据优先发送,并且每个无线接入点的数据在传输路径上逐跳传送,由于下行数据均由根节点发送,因此在第一时隙优先发送节点21的数据,即节点1向节点2发送属于节点21的数据,由于从图4可知,属于节点21的数据占用三个时隙,因此节点1在前三个时隙均向节点2发送节点21的数据,确定下行调度矩阵如图6所示。
在本发明实施例中,还需要根据并行发送链路选择策略,确定调度矩阵。并行发送链路选择策略是指对于上行链路或下行链路,根据链路干扰矩阵可知,若任意两个链路之间没有干扰时,这两个链路可以同时接收或同时发送数据。具体地,对于上行数据传输过程,从确定的将要发送链路的下一条链路开始搜索,选出一条可能的并行发送链路,其中可能的并行发送链路是指,在确定的将要发送链路所在的从数据源节点到目的节点的上行传输路径上的下一条链路。如果该确定的将要发送链路为该路径的最后一条链路,则节点编号增加1的下一个数据源节点的传输路径上的第一条链路为其下一条链路。比如,在第一个时隙,节点2通过上行链路L1发送数据,根据链路干扰矩阵或者干扰原则可知,节点3、4、5、6、7的上行链路L3、L5、L7、L9、L11与链路L1会相互干扰,因此这些链路不能与链路L1并行发送,而继续寻找,节点8的上行链路L13与链路L1不会相互干扰,因此在第一个时隙,节点8可以通过链路L13并行发送数据。同理可以找到节点10、14、17、21可以分别通过上行链路L17、L25、L31、L39与链路L2并行发送数据。因此,最后获得的上行调度矩阵如图5所示可知,在第一时隙中,第一列对应的第一时隙,同时有第2、8、10、14、17和21行分别对应节点2、8、10、14、17和21可以同时并行发送上行数据。
在本发明实施例中,对于下行数据,同样地,从确定的将要发送链路的下一条链路开始搜索,选出一条可能的并行发送链路,其中可能的并行发送链路是指,在确定的将要发送链路所在的从数据源节点到目的节点的下行传输路径上的下一条链路。如果该确定的将要发送链路为该路径的最后一条链路,则数据所属的目标节点编号减1的下一个数据目标节点的传输路径上的第一条链路为其下一条链路。但是由于下行数据在初始时所有数据均由根节点发送,因此不能并行发送数据,例如图4所示,根据跳数大小,根节点要
通过路径L2先向节点2发送属于节点21的数据,而节点21有三个时隙的数据需要发送,因此前三个时隙根节点1向节点2发送数据。因此,在第4时隙,当节点2通过下行链路L12向节点7发送节点21的数据时,由于从根节点到节点21的传输路径上没有其它链路可以同L12并行发送,因此搜索从根节点到节点20的传输路径上的链路,该路径上的第一条链路,即从根节点到节点3的下行链路L4与L12不相互干扰,因此在第4个时隙,节点1可以同时通过下行链路L4向节点3发送节点20的数据,因此,最后获得的下行调度矩阵如图6所示可知,在第四列对应的第4时隙中,第一行和第二行对应的节点1和节点2同时并行发送数据。
在本发明实施例中,根据确定的调度矩阵对初始时隙需求矩阵进行修改,从而获得时隙需求矩阵,该时隙需求矩阵对应于每个节点的时隙分配结果。具体地,根据调度矩阵每个时隙对数据传输的调度,当节点i向节点k发送了节点j的数据时,则将初始时隙需求矩阵中的元素(i,j)的数值减1,并将矩阵中的元素(k,j)的数值加Δ,而Δ可以通过下面的公式(5)确定:
其中,ri,k表示节点i和节点k之间的传输速率,rk,k-1表示节点k和节点k的下一跳节点之间的传输速率,而k的下一跳节点是属于节点i向节点k发送节点j的数据时所在的路径上的下一跳节点。可选地,可以通过公式(2)确定任意两个节点之间的传输速率。
在本发明实施例中,对于上行初始时隙需求矩阵,当修改后的上行初始时隙需求矩阵的第一行中个元素分别等于与之对应的各个节点的上行链路时隙需求值时,则说明所有节点上的上行数据已经传输到了根节点上,则上行链路时隙分配结束,获得最终的上时隙需求矩阵,该矩阵对应回程树中各个节点被分配的时隙值。对于下行初始时隙需求矩阵,当修改后的下行初始时隙需求矩阵的主对角线上的元素等于与之对应的各个节点的下行链路时隙需求值时,则说明根节点已经将所有下行数据传输到了对应的节点中,则下行链路时隙分配结束,获得最终的下行时隙需求矩阵,该矩阵对应回程树中各个节点被分配的时隙值。可选地,可以分别通过公式(3)和(4)确定各个节点的上行时隙需求值和下行时隙需求值。
在本发明实施例中,时隙分配结束后,根据确定的调度矩阵,分别确定
该回程树中每个节点需要发送数据的时隙,将回程树对应的调度矩阵中时隙号最大值确定为该回程树的调度长度。例如图5所示,根据该上行调度矩阵,所有节点占用的时隙中时隙号最大值为39,该时隙是节点2向根节点1发送属于节点21的数据,则该回程树的调度长度即为39。又例如图6所示,根据该下行调度矩阵,所有节点占用的时隙中时隙号最大值为25,该时隙是节点1、节点6和节点7均在该时隙发送下行数据,则该回程树的调度长度即为25。
在本发明实施例中,根据确定的时隙需求矩阵,分别确定该回程树中每个节点被分配的时隙数,所有分配到时隙的链路的传输速率的总和,即为该回程树的容量,该回程树的容量可以通过下面的公式(6)确定:
其中,Tk为回程树k中被分配了时隙的链路的集合,Nslot,ij为回程树k的链路ij分配到的时隙数。
在本发明实施例中,确定了每个回程树的调度长度、容量和有线回程成本值,即确定了每个无线链路接入点集合的调度长度、容量和有线回程成本值。根据每个无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定对应的至少一个候选无线接入点集合的调度长度、容量和有线回程成本值中的至少一个,并选出最优的一个候选无线接入点集合为目标无线接入点集合,可以将该目标无线接入点集合包括的无线接入点确定为至少一个目标无线接入点。具体地,对于每个候选无线接入点集合包括的无线链路接入点集合,先分别计算每个无线链路接入点集合的调度长度、容量和有线回程成本值,再将该候选无线接入点集合包括的无线链路接入点集合的调度长度、容量和有线回程成本值分别相加,获得该候选无线接入点集合的调度长度、容量和有线回程成本值。例如,将候选无线接入点集合包括的无线链路接入点集的调度长度相加,即为该候选无线接入点集合的调度长度;将候选无线接入点集合包括的无线链路接入点集的有线回程成本值相加,即将该候选无线接入点集合包括的N个候选无线接入点的有线回程成本值相加,即为该候选无线接入点集合的有线回程成本值。
在本发明实施例中,根据至少一个候选无线接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定最优的一个候选无线接入点集合为
目标无线接入点集合,该目标无线接入点集合的总调度长度较小,总容量较大,总有线回程成本值较小。具体地,可以先从至少一个候选无线接入点集合中确定总调度长度最小的至少一个候选无线接入点集合,在该总调度长度最小的至少一个候选无线接入点集合中确定至少一组总容量最大的至少一个候选无线接入点集合,再在该总容量最大的至少一个候选无线接入点集合中确定总回程成本最小的一个候选无线接入点集合,该候选无线接入点集合即为最后得到的最优的一个候选无线接入点集合,即目标无线接入点集合。
在本发明实施例中,对于选择出的目标无线接入点集合,当该目标无线接入点集合中的N个无线接入点中每个候选无线接入点对应的无线链路接入点集合的调度长度均小于等于预设阈值时,可以直接该N个候选无线接入点确定为至少一个目标无线接入点。可选地,当该目标无线接入点集合中的N个候选无线接入点对应的N个无线链路接入点集合中存在至少一个无线链路接入点集合的调度长度大于预设阈值时,则确定至少一个新候选无线接入点集合,该新候选无线接入点集合中包括N+1个新候选无线接入点,即将原候选无线接入点集合中的无线接入点个数加1构建为新候选无线接入点集合,并根据相同的方法确定至少一个目标无线接入点。
可选地,该预设阈值可以根据应用设定。例如,可以设置该目标无线接入点集合中的每个无线接入点对应的无线链路接入点集合的调度长度均要满足下面的公式(7):
Lsch,k*lframe≤1s (7)
其中,Lsch,k表示第k个无线链路接入点集合的调度长度,lframe为无线回程传输的帧长,当存在不满足该公式的无线链路接入点集合时,该目标无线接入点集合不满足要求,则确定至少一个新候选无线接入点集合,该新候选无线接入点集合中包括N+1个新候选无线接入点,即将原候选无线接入点集合中的无线接入点个数加1构建为新候选无线接入点集合,并根据相同的方法确定至少一个目标无线接入点。
在S120中,为确定出来的至少一个目标无线接入点部署有线回程。具体地,为该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线通信链路与该至少一个目标无线接入点通信,
并通过该至少一个目标无线接入点与该核心网通信。可选地,可以根据无线链路接入点集合中各个无线接入点的无线通信链路,使得无线接入点通过目标无线接入点与核心网通信。
应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
因此,本发明实施例的无线接入点的有线回程链路部署的方法,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,并为这些目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信,从而可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
上文中结合图1至图6,详细描述了根据本发明实施例的无线接入点的有线回程链路部署的方法,下面将结合图7,描述根据本发明实施例的无线接入点的有线回程链路部署的装置。
如图7所示,根据本发明实施例的无线接入点的有线回程链路部署的装置200包括:
确定模块210,用于根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点;
处理模块220,用于为该确定模块210确定的该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线通信链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点的有线回程链路与该核心网通信。
因此,本发明实施例的无线接入点的有线回程链路部署的装置,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,并为这些目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点
通信,并通过该至少一个目标无线接入点与该核心网通信,从而可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
在本发明实施例中,确定模块210根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点。可以先根据网络中的多个待部署无线接入点中每个待部署无线接入点的位置信息、有线回程成本值和有线回程能力中的至少一个,确定该L个无线接入点,该L个无线接入点可以为全部或部分网络中的待部署无线接入点。具体地,可以确定网络中多个待部署无线接入点的位置信息,排除受物理限制或位置区域限制而不能部署有线回程的无线接入点,即该L个无线接入点中每个无线接入点部署有线回程时可以不受物理位置的限制;也可以确定每个待部署无线接入点的有线回程能力,排除有线回程能力小于该无线接入点的接入能力而不能部署有线回程的无线接入点,即该L个无线接入点中每个无线接入点的有线回程能力均大于自身的接入能力;还可以确定每个待部署无线接入点的回程成本值,排除回程成本值大于预设门限值的无线接入点,该预设门限值可以根据实际预先设定,使得部署有线回程的无线接入点的总成本值不会过高,即该L个无线接入点中每个无线接入点的有线回程成本值小于预设的门限值。
在本发明实施例中,确定模块210从L个无线接入点中确定至少一个目标无线接入点具体可以通过下面的方法确定。具体地,可以根据该L个无线接入点中的每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个候选无线接入点集合,其中,每个候选无线接入点集合的总有线回程能力大于或等于总的回程需求值,且每个候选无线接入点集合中包括L个无线接入点中的N个候选无线接入点。确定每个候选无线接入点集合中包括的每个候选无线接入点对应的无线链路接入点集合,其中,每个候选无线接入点集合中包括的N个候选无线接入点分别对应的N个无线链路接入点集合包括网络中的L个无线接入点,每个候选无线接入点属于对应的无线链路接入点集合,且每个候选无线接入点对应的无线链路接入点集合还包括L个无线接入点中除了该候选无线接入点集合包括的N个候选无线接入点外的L-N个无线接入点中的至少一个无线接入点,该至少一个无线接入点和核心网通信时,是经由每个候选接入点与该至少一个无线接入点之间的无线通信链
路,以及该每个候选接入点的有线回程链路。可以根据确定的每个无线链路接入点集合,确定该每个无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个值,并根据每个无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个值,确定每个候选无线接入点集合的调度长度、容量和有线回程成本值中的至少一个值,从而确定出目标无线接入点集合,并从该目标无线接入点集合中确定出需要部署有线回程的至少一个目标无线接入点。
具体地,在本发明实施例中,可以根据该L个无线接入点中的每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个候选无线接入点集合,每个候选无线接入点集合中包括的无线接入点的有线回程能力满足回程需求,且每个候选无线接入点集合中包括L个无线接入点中的N个候选无线接入点。具体地,可以将L个无线接入点中包括的全部无线接入点按照有线回程能力的大小进行从大到小的排序,选择有线回程能力最大的N个无线接入点组成候选无线接入点集合,可选地,N的数量可以为最小值,即N-1个无线接入点的有线回程能力不满足回程需求。当存在多个无线接入点的有线回程能力相等时,选择回程能力最大的N个满足回程需求的无线接入点可以存在多种组合方式,则每种组合方式构成一个候选无线接入点集合,即该L个无线接入点可以确定出至少一个候选无线接入点集合。
在本发明实施例中,从该L个无线接入点中确定出有线回程能力最大的N个无线接入点,即该N个无线接入点中每个无线接入点包括的无线接入点的有线回程能力大于或等于其他的无线接入点,该其他的无线接入点是指L个无线接入点中除了该N个无线接入点外其他无线接入点。可选地,该有线回程能力可以为回程速率峰值,本发明并不限于此。可选地,该网络回程需求值可以为对应的网络中的无线接入点的总的最大接入能力,如接入峰值速率等,对应地,该有线回程能力也可以为峰值速率等。具体地,该N个无线接入点满足公式(1),其中,Thrwired为N个无线接入点的N个有线回程能力值之和,Wk为N个无线接入点中第k个无线接入点的有线回程能力值;Thrreq为N个无线接入点对应的网络回程需求值,Capk为L个无线接入点中第k个无线接入点的最大接入能力,如接入峰值速率等。
在本发明实施例中,确定模块210还分别确定每个候选无线接入点集合中包括的每个候选无线接入点对应的无线链路接入点集合,其中每个候选无
线接入点集合中包括的N个候选无线接入点分别对应的N个无线链路接入点集合包括网络中的L个无线接入点,每个候选无线接入点属于对应的无线链路接入点集合,且每个候选无线接入点对应的无线链路接入点集合还包括L个无线接入点中除了该候选无线接入点集合包括的N个候选无线接入点外的L-N个无线接入点中的至少一个无线接入点。
具体地,先确定第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第一邻居无线接入点,其中,该第二候选无线接入点集合可以为至少一个候选无线接入点集合中任意一个候选无线接入点集合,该至少一个第一邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第一邻居无线接入点与该第二候选无线接入点集合中的至少一个候选无线接入点相邻。对于该至少一个第一邻居无线接入点中的任意一个第一邻居无线接入点,确定该第一邻居无线接入点与相邻的至少一个第二候选无线接入点之间的传输速率,确定相邻的至少一个第二候选无线接入点中与该第一邻居无线接入点具有最大传输速率的第二候选无线接入点。将该第一邻居无线接入点添加至该具有最大传输速率的第二候选无线接入点对应的无线链路接入点集合中。同样地,再确定该第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第l邻居无线接入点,其中,该至少一个第l邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第l邻居无线接入点与至少一个第l-1邻居无线接入点相邻,l为大于1的整数;对于该至少一个第l邻居无线接入点中的任意一个第l邻居无线接入点,确定该第l邻居无线接入点与相邻的至少一个第l-1邻居无线接入点之间的传输速率,确定该相邻的至少一个第l-1邻居无线接入点中与该第l邻居无线接入点具有最大传输速率的第l-1邻居无线接入点,将该第l邻居无线接入点添加至该具有最大传输速率的第l-1邻居无线接入点对应的无线链路接入点集合中,对于至少一个第l邻居无线接入点中每个第l邻居无线接入点均通过同样的方法进行分配。
可选地,作为一个实施例,该无线链路接入点集合也可以构建为由多个无线接入点构成的回程树,即每个无线链路接入点集合对应一个回程树,每个候选无线接入点分别对应该每个回程树的根节点。每个候选无线接入点集合包括N个候选无线接入点,则对应的每个候选无线接入点集合包括N个无线链路接入点集合,即对应的可以包括N个回程树,该N个回程树的根
节点分别对应属于候选无线接入点集合中的N个候选无线接入点。
具体地,对于构建回程树,当确定了候选无线接入点集合中N个回程树中每个回程树的根节点之后,网络中待部署的无线接入点中除了被确定为根节点的N个候选无线接入点外,对于与至少一个该根节点相邻的第一无线接入点,确定该第一无线接入点与每个相邻的根节点之间的链路传输速率,从得到的至少一个链路传输速率中确定最大值对应的根节点,将该第一无线接入点作为该根节点所在的回程树的第一层子节点,该第一层子节点为根节点的孩子节点。在除了待部署的无线接入点中被确定为根节点的无线接入点之外,遍历与至少一个根节点相邻的无线接入点,第一无线接入点为这些与至少一个根节点相邻的无线接入点中的任意一个无线接入点。可选地,可以通过公式(2)确定两个无线接入点之间的链路的传输速率,其中,ri,j表示无线接入点i与无线接入点j之间的链路传输速率,lframe为无线回程传输的帧长,nsymbol为每帧所含的符号数,该符号数可以取决于系统带宽、帧长和物理层传输参数,nbit,ij为每个符号所含的比特数,该比特数取决于调制编码方式,而该无线接入点i和无线接入点j之间链路的调制编码方式可以由该链路的信噪比决定,每个无线接入点获取其邻居无线接入点的接收功率,发送功率除以接收功率与噪声功率之和从而获得信噪比,根据该信噪比,选择相应的调制编码方式。
在本发明实施例中,待部署无线接入点中除了被确定为根据节点和第一层子节点的无线接入点之外,对于其它的无线接入点,确定与至少一个第一层子节点相邻的第二无线接入点,确定该第二无线接入点与每个相邻的第一层子节点之间的链路传输速率,从得到的至少一个链路传输速率中确定最大值对应的第一层子节点,将该第二无线接入点作为该第一层子节点所在的回程树的第二层子节点,该第二层子节点为该第一层子节点的孩子节点。在除了待部署的无线接入点中被确定为根节点和第一层子节点的无线接入点之外,遍历与至少一个第一子节点相邻的无线接入点,第二无线接入点为这些与至少一个第一层子节点相邻的无线接入点中的任意一个无线接入点。
同样地,在待部署无线接入点中没有被确定为属于回程树中的子节点或根节点的无线接入点中,确定与至少一个第l-1层子节点相邻的第l无线接入点,确定该第l无线接入点与每个相邻的第l-1层子节点之间的链路传输速率,从得到的至少一个链路传输速率中确定最大值对应的第l-1层子节点,
将该第l无线接入点作为该第l-1层子节点所在的回程树的第l层子节点,该第l层子节点为第l-1层子节点的孩子节点。在待部署的无线接入点中除了被确定为属于回程树的某一层子节点或根据节点之外的无线接入点中,遍历与至少一个第l-1层子节点相邻的无线接入点,第l无线接入点为这些与至少一个第l-1层子节点相邻的无线接入点中的任意一个无线接入点,l为大于1的正整数。
在本发明实施例中,对于任意一个候选无线接入点集合中的候选无线接入点对于的无线链路接入点集合的构造,也即回程树的构造时,遍历待部署的无线接入点中每个无线接入点,使得每个无线接入点都属于候选无线接入点集合中包括的N个候选无线接入点对应的N个回程树中某一个回程树中,则回程树构建完成即确定了无线链路接入点集合。当遍历待部署的无线接入点后,若存在至少一个无线接入点不属于该候选无线接入点集合中包括的N个无线链路接入点集合中任何一个无线链路接入点集合时,则重新确定该候选无线接入点集合,将原候选无线节点集合中包括的候选无线接入点个数加1,即该候选无线接入点集合包括N+1个候选无线接入点,并利用同样的方法继续确定至少一个目标无线接入点。
在本发明实施例中,确定模块210根据确定的多个无线链路接入点集合,确定每个无线链路接入点集合的调度长度、容量和总有线回程成本值中的至少一个,并根据该调度长度、容量和总有线回程成本值中的至少一个确定对应的至少一个候选无线接入点集合中每个候选无线接入点集合的调度长度、容量和总有线回程成本值中的至少一个,从而确定至少一个目标无线接入点。具体地,确定每个无线链路接入点集合时,可以先对每个无线链路接入点集合进行时隙分配,确定该无线链路接入点集合中包括的无线接入点的时隙值,从而确定每个无线链路接入点集合的调度长度、容量和总有线回程成本值中的至少一个,其中,无线链路接入点集合的调度长度表示在一个调度周期内,传输该无线链路接入点集合中包括的所有无线接入点的数据回程传输所需要的时隙数,例如可以将该无线链路接入点集合中包括的无线接入点占用的最大时隙号确定为该无线链路接入点集合的调度长度;无线链路接入点集合的容量表示在一个调度周期内,该无线链路接入点集合中调度的所有无线接入点之间的链路传输速率之和;无线链路接入点集合的有线回程成本值表示该无线链路接入点集合对应的候选无线接入点的有线回程成本值,即
需要部署有线回程的无线接入点的有线回程成本值。
具体地,在本发明实施例中,确定模块210可以通过下面的方法对每个无线链路接入点集合进行时隙分配。以该每个无线链路接入点集合对应一个回程树为例说明,首先构建无线链路接入点集合也即回程树的初始时隙需求矩阵、链路干扰矩阵和调度矩阵。具体地,以任意一个回程树为例,如图2所示,假设该回程树包括21个无线接入点,在图2中每个圆圈表示一个节点,圆圈中的数字为各节点的编号,其中根节点为编号为1的无线接入点,其余20个无线接入点为子节点。每个节点选择距离最近且跳数最小的邻居作为中继节点;假设根节点的跳数为0,根节点的所有邻居的跳数便为1,其他节点的跳数为其中继节点的跳数加1。图2中的回程树各个节点的编号按照跳数从小到大依次编号,其中根节点编号为1,位于区域中心,其它子节点在50*50的区域中随机分布,编号分别为2、3、4、…、21。图中的箭头表示无线链路,对于每个节点来说,从该节点到其父亲节点的链路称为上行链路,从其父亲节点到该节点的链路称为下行链路。每个箭头旁边的标号为链路的编号,分别表示为L1、L2、…、L40。该链路编号依据节点的编号产生,对于任一个节点,其上行链路编号为2*(节点编号-1)-1,其下行链路编号为2*(节点编号-1),因此,图2的上行链路编号为奇数,下行编号为偶数。在该回程树图中,因为每个节点对应一条上行链路和一条下行链路,因此,20个子节点总共有40条链路。
在本发明实施例中,确定了回程树中各个节点及各个节点之间的链路之后,构建该回程树的初始时隙需求矩阵。该初始时隙需求矩阵为n*n维矩阵,n为该回程树中所有无线接入点的个数,因此,以图2的回程树为例,创建的初始时隙需求矩阵为21*21维的矩阵,每一行和每一列分别对应回程树中的一个节点。具体地,该初始时隙需求矩阵包括如图3的上行初始时隙需求矩阵和如图4的下行初始时隙需求矩阵。如图3所示,上行初始时隙需求矩阵的主对角线上的元素对应各个节点的上行链路时隙需求值,其它元素均为零。可选地,可以通过公式(3)确定每个节点的上行链路时隙需求值,其中,表示节点i的上行链路时隙需求值;为节点i的上行最大回程速率需求,可以对应其最大的上行无线接入容量,比如上行接入峰值能力值;ri,j表示节点i到其父节点j的传输速率,可以通过公式(2)确定,lframe为无线回程传输的帧长。可选地,作为一个实施例,上行初始时隙需求矩阵的计
算结果可以如图3所示。
如图4所示,由于下行传输均由根节点开始,因此下行初始时隙需求矩阵的第一行的元素等于每一列对应的每个节点的下行链路时隙需求值,其它元素为零。可选地,可以通过公式(4)确定每个节点的下行链路时隙需求值,其中,表示节点i的下行链路时隙需求值;为节点i的下行最大回程速率需求,可以对应其最大的下行无线接入容量,比如下行接入峰值能力值;rj,l表示节点j到节点l的传输速率,节点j为节点l的父节点,由于下行链路的数据均由根节点开始发送,则节点j为根节点,节点l为根节点向节点i传输数据时的第一跳节点,rj,l可以通过公式(2)确定,lframe为无线回程传输的帧长。可选地,作为一个实施例,下行初始时隙需求矩阵的计算结果可以如图4所示。
在本发明实施例中,确定模块210还可以根据该回程树之间的链路是否存在干扰,构建链路干扰矩阵,该链路干扰矩阵为m*m维矩阵,m为该回程树中上行或下行的链路个数。例如图2的回程树,其中包括20个上行链路和20个下行链路,可以分别构建20*20维的上行链路的链路干扰矩阵和20*20维的下行链路的链路干扰矩阵,每个矩阵的每一行和每一列分别对应一个链路,该链路干扰矩阵中的任意一个元素(i,j)表示链路i和链路j之间是否存在干扰,如果存在干扰,则元素(i,j)设置为1,如果没有干扰,则元素(i,j)设置为0。具体地,可以根据下面的原则确定两个链路之间是否存在干扰:(1)任何节点不能同时发送与接收,且任何节点不能同时给多个节点发送信息,也不能同时接收多个节点的信息;(2)如果某个节点正在发送,则其所有邻居不能接收其它节点发送的信息,否则会受到该节点的干扰;(3)如果某个节点正在接收,则其所有邻居不能向其它节点发送信息,否则会对该节点产生干扰。
在本发明实施例中,确定模块210根据该链路干扰矩阵,构建该回程树的调度矩阵。对于任意回程树,调度矩阵为n*p维矩阵,n为该回程树中节点个数,p表示一个调度周期中可用于分配的时隙的个数,该调度矩阵中的任意一个元素(i,j)设置为x,x表示该回程树中的第i个节点在第j个时隙发送的数据属于第x个节点的,例如图2中,若节点1在第3时隙向节点2发送属于节点21的数据,则调度矩阵的(1,3)位置设置为21。
具体地,在本发明实施例中,对于如图2所示的回程树,调度矩阵可以
包括上行调度矩阵和下行调度矩阵,并且可以根据链路选择策略确定每个回程树的调度矩阵。具体地,该链路选择策略可以包括优先发送链路选择策略和并行发送链路选择策略。优先发送链路选择策略是指:对于上行链路来说,跳数最小节点的数据优先传输,并在数据传输路径上按照逐跳策略传输,对于如图2所示的任意回程树,即距离根节点最近的节点的数据优先发送,并且每个无线接入点的数据在传输路径上逐跳传送,则在第一时隙优先发送节点2的数据,对于图3而言,由于节点2只有一个时隙数据需要传输,因此在第一时隙传输节点2的时隙,确定上行调度矩阵如图5所示。对于下行链路来说,跳数最大的节点的数据优先传输,并在数据传输链路上按照逐跳策略传输,对于如图2所示的任意回程树,跳数最大即距离根节点最远的节点的数据优先发送,并且每个无线接入点的数据在传输路径上逐跳传送,由于下行数据均由根节点发送,因此在第一时隙优先发送节点21的数据,即节点1向节点2发送属于节点21的数据,由于从图4可知,属于节点21的数据占用三个时隙,因此节点1在前三个时隙均向节点2发送节点21的数据,确定下行调度矩阵如图6所示。
在本发明实施例中,确定模块210还需要根据并行发送链路选择策略,确定调度矩阵。并行发送链路选择策略是指对于上行链路或下行链路,根据链路干扰矩阵可以,若任意两个链路之间没有干扰时,这两个链路可以同时接收或同时发送数据。具体地,对于上行数据传输过程,从确定的将要发送链路的下一条链路开始搜索,选出一条可能的并行发送链路,其中可能的并行发送链路是指,在确定的将要发送链路所在的从数据源节点到目的节点的上行传输路径上的下一条链路。如果该确定的将要发送链路为该路径的最后一条链路,则节点编号增加1的下一个数据源节点的传输路径上的第一条链路为其下一条链路。比如,在第一个时隙,节点2通过上行链路L1发送数据,根据链路干扰矩阵或者干扰原则可知,节点3、4、5、6、7的上行链路L3、L5、L7、L9、L11与链路L1会相互干扰,因此这些链路不能与链路L1并行发送,而继续寻找,节点8的上行链路L13与链路L1不会相互干扰,因此在第一个时隙,节点8可以通过链路L13并行发送数据。同理可以找到节点10、14、17、21可以分别通过上行链路L17、L25、L31、L39与链路L2并行发送数据。因此,最后获得的上行调度矩阵如图5所示可知,在第一时隙中,第一列对应的第一时隙,同时有第2、8、10、14、17和21行分
别对应节点2、8、10、14、17和21可以同时并行发送上行数据。
在本发明实施例中,对于下行数据,同样地,从确定的将要发送链路的下一条链路开始搜索,选出一条可能的并行发送链路,其中可能的并行发送链路是指,在确定的将要发送链路所在的从数据源节点到目的节点的下行传输路径上的下一条链路。如果该确定的将要发送链路为该路径的最后一条链路,则数据所属的目标节点编号减1的下一个数据目标节点的传输路径上的第一条链路为其下一条链路。但是由于下行数据在初始时所有数据均由根节点发送,因此不能并行发送数据,例如图4所示,根据跳数大小,根节点要通过路径L2先向节点2发送属于节点21的数据,而节点21有三个时隙的数据需要发送,因此前三个时隙根节点1向节点2发送数据。因此,在第4时隙,当节点2通过下行链路L12向节点7发送节点21的数据时,由于从根节点到节点21的传输路径上没有其它链路可以同L12并行发送,因此搜索从根节点到节点20的传输路径上的链路,该路径上的第一条链路,即从根节点到节点3的下行链路L4与L12不相互干扰,因此在第4个时隙,节点1可以同时通过下行链路L4向节点3发送节点20的数据,因此,最后获得的下行调度矩阵如图6所示可知,在第四列对应的第4时隙中,第一行和第二行对应的节点1和节点2同时并行发送数据。
在本发明实施例中,确定模块210根据确定的调度矩阵对初始时隙需求矩阵进行修改,从而获得时隙需求矩阵,该时隙需求矩阵对应于每个节点的时隙分配结果。具体地,根据调度矩阵每个时隙对数据传输的调度,当节点i向节点k发送了节点j的数据时,则将初始时隙需求矩阵中的元素(i,j)的数值减1,并将矩阵中的元素(k,j)的数值加Δ,而Δ可以通过公式(5)确定,其中,ri,k表示节点i和节点k之间的传输速率,rk,k-1表示节点k和节点k的下一跳节点之间的传输速率,而k的下一跳节点是属于节点i向节点k发送节点j的数据时所在的路径上的下一跳节点。可选地,可以通过公式(2)确定任意两个节点之间的传输速率。
在本发明实施例中,对于上行初始时隙需求矩阵,当修改后的上行初始时隙需求矩阵的第一行中个元素分别等于与之对应的各个节点的上行链路时隙需求值时,则说明所有节点上的上行数据已经传输到了根节点上,则上行链路时隙分配结束,获得最终的上时隙需求矩阵,该矩阵对应回程树中各个节点被分配的时隙值。对于下行初始时隙需求矩阵,当修改后的下行初始
时隙需求矩阵的主对角线上的元素等于与之对应的各个节点的下行链路时隙需求值时,则说明根节点已经将所有下行数据传输到了对应的节点中,则下行链路时隙分配结束,获得最终的下行时隙需求矩阵,该矩阵对应回程树中各个节点被分配的时隙值。可选地,可以分别通过公式(3)和(4)确定各个节点的上行时隙需求值和下行时隙需求值。
在本发明实施例中,确定模块210时隙分配结束后,根据确定的调度矩阵,分别确定该回程树中每个节点需要发送数据的时隙,将回程树对应的调度矩阵中时隙号最大值确定为该回程树的调度长度。例如图5所示,根据该上行调度矩阵,所有节点占用的时隙中时隙号最大值为39,该时隙是节点2向根节点1发送属于节点21的数据,则该回程树的调度长度即为39。又例如图6所示,根据该下行调度矩阵,所有节点占用的时隙中时隙号最大值为25,该时隙是节点1、节点6和节点7均在该时隙发送下行数据,则该回程树的调度长度即为25。
在本发明实施例中,根据确定的时隙需求矩阵,分别确定该回程树中每个节点被分配的时隙数,所有分配到时隙的链路的传输速率的总和,即为该回程树的容量,该回程树的容量可以通过公式(6)确定,其中,Tk为回程树k中被分配了时隙的链路的集合,Nslot,ij为回程树k的链路ij分配到的时隙数。
在本发明实施例中,确定模块210确定了每个回程树的调度长度、容量和有线回程成本值,即确定了每个无线链路接入点集合的调度长度、容量和有线回程成本值。根据每个无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定对应的至少一个候选无线接入点集合的调度长度、容量和有线回程成本值中的至少一个,并选出最优的一个候选无线接入点集合为目标无线接入点集合,可以将该目标无线接入点集合包括的无线接入点确定为至少一个目标无线接入点。具体地,对于每个候选无线接入点集合包括的无线链路接入点集合,先分别计算每个无线链路接入点集合的调度长度、容量和有线回程成本值,再将该候选无线接入点集合包括的无线链路接入点集合的调度长度、容量和有线回程成本值分别相加,获得该候选无线接入点集合的调度长度、容量和有线回程成本值。例如,将候选无线接入点集合包括的无线链路接入点集的调度长度相加,即为该候选无线接入点集合的调度长度;将候选无线接入点集合包括的无线链路接入点集的有线回程成
本值相加,即将该候选无线接入点集合包括的N个候选无线接入点的有线回程成本值相加,即为该候选无线接入点集合的有线回程成本值。
在本发明实施例中,根据至少一个候选无线接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定最优的一个候选无线接入点集合为目标无线接入点集合,该目标无线接入点集合的总调度长度较小,总容量较大,总有线回程成本值较小。具体地,可以先从至少一个候选无线接入点集合中确定总调度长度最小的至少一个候选无线接入点集合,在该总调度长度最小的至少一个候选无线接入点集合中确定至少一组总容量最大的至少一个候选无线接入点集合,再在该总容量最大的至少一个候选无线接入点集合中确定总回程成本最小的一个候选无线接入点集合,该候选无线接入点集合即为最后得到的最优的一个候选无线接入点集合,即目标无线接入点集合。
在本发明实施例中,确定模块210对于选择出的目标无线接入点集合,当该目标无线接入点集合中的N个无线接入点中每个候选无线接入点对应的无线链路接入点集合的调度长度均小于等于预设阈值时,可以直接该N个候选无线接入点确定为至少一个目标无线接入点。可选地,当该目标无线接入点集合中的N个候选无线接入点对应的N个无线链路接入点集合中存在至少一个无线链路接入点集合的调度长度大于预设阈值时,则确定至少一个新候选无线接入点集合,该新候选无线接入点集合中包括N+1个新候选无线接入点,即将原候选无线接入点集合中的无线接入点个数加1构建为新候选无线接入点集合,并根据相同的方法确定至少一个目标无线接入点。
可选地,该预设阈值可以根据应用设定。例如,可以设置该目标无线接入点集合中的每个无线接入点对应的无线链路接入点集合的调度长度均要满足公式(7),其中,Lsch,k表示第k个无线链路接入点集合的调度长度,lframe为无线回程传输的帧长,当存在不满足该公式的无线链路接入点集合时,该目标无线接入点集合不满足要求,则确定至少一个新候选无线接入点集合,该新候选无线接入点集合中包括N+1个新候选无线接入点,即将原候选无线接入点集合中的无线接入点个数加1构建为新候选无线接入点集合,并根据相同的方法确定至少一个目标无线接入点。
在本发明实施例中,处理模块220为确定模块210确定出来的至少一个目标无线接入点部署有线回程。具体地,处理模块220为该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该
L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线通信链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信。可选地,可以根据无线链路接入点集合中各个无线接入点的无线通信链路,使得无线接入点通过目标无线接入点与核心网通信。
应理解,根据本发明实施例的无线接入点的有线回程链路部署的装置200可对应于执行本发明实施例中的无线接入点的有线回程链路部署的方法100,并且无线接入点的有线回程链路部署的装置200中的各个模块的上述和其它操作和/或功能分别为了实现图1至图6中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的无线接入点的有线回程链路部署的装置,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,并为这些目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信,从而可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
如图8所示,本发明实施例还提供了一种无线接入点的有线回程链路部署的装置300,包括处理器310、存储器320和总线系统330。其中,处理器310和存储器320通过总线系统330相连,该存储器320用于存储指令,该处理器310用于执行该存储器320存储的指令。该存储器320存储程序代码,且处理器310可以调用存储器320中存储的程序代码执行以下操作:根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点;为该至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线通信链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点的有线回程链路与该核心网通信。
因此,本发明实施例的无线接入点的有线回程链路部署的装置,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接
入点中确定至少一个目标无线接入点,并为这些目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信,从而可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
应理解,在本发明实施例中,该处理器310可以是中央处理单元(Central Processing Unit,简称为“CPU”),该处理器310还可以是其他通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
该存储器320可以包括只读存储器和随机存取存储器,并向处理器310提供指令和数据。存储器320的一部分还可以包括非易失性随机存取存储器。例如,存储器320还可以存储设备类型的信息。
该总线系统330除包括数据总线之外,还可以包括电源总线、控制总线和状态信号总线等。但是为了清楚说明起见,在图中将各种总线都标为总线系统330。
在实现过程中,上述方法的各步骤可以通过处理器310中的硬件的集成逻辑电路或者软件形式的指令完成。结合本发明实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器320,处理器310读取存储器320中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:根据该L个无线接入点中每个无线接入点的有线回程能力,确定至少一个候选无线接入点集合,该至少一个候选无线接入点集合中的每个候选无线接入点集合包括该L个无线接入点中的N个候选无线接入点,并且每个候选无线接入点集合的总有线回程能力满足回程需求;确定该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个;根据该至少一个候选无线接入点
集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,从该至少一个候选无线接入点集合中确定目标无线接入点集合;根据该目标无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,确定该至少一个目标无线接入点。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:确定该至少一个候选无线接入点集合中的每个候选无线接入点对应的无线链路接入点集合,其中,第一候选无线接入点对应的无线链路接入点集合包括L-N个无线接入点中的至少一个无线接入点,该L-N个无线接入点为该L个无线接入点中除了该N个候选无线接入点外的无线接入点,该至少一个无线接入点与该第一候选无线接入点之间具有无线通信链路,并通过该第一候选无线接入点的有线回程链路与该核心网通信,该至少一个候选无线接入点集合包括该第一候选无线接入点;根据每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合,确定该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:当该目标无线接入点集合包括的每个候选无线接入点对应的每个无线链路接入点集合的调度长度均小于或等于预设阈值时,将该目标无线接入点集合包括的N个候选无线接入点确定为该至少一个目标无线接入点;或当该目标无线接入点集合包括的N个候选无线接入点对应的N个无线链路接入点集合中至少一个无线链路接入点集合的调度长度大于该预设阈值时,确定至少一个新候选无线无线接入点集合,该至少一个新候选无线接入点集合中的每个新候选无线接入点集合包括该L个无线接入点中的N+1个新候选无线接入点,并根据该至少一个新候选无线无线接入点集合,确定该至少一个目标无线接入点。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:确定第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第一邻居无线接入点,其中,该至少一个候选无线接入点集合包括该第二候选无线接入点集合,该至少一个第一邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第一邻居无线接入点与该第二候选无线接入点集合中的至少一个第二候选无线接入点相邻;根据该至少
一个第一邻居无线接入点中的每个第一邻居无线接入点与至少一个第二候选无线接入点之间的传输速率,确定该至少一个第二候选无线接入点中与该每个第一邻居无线接入点具有最大传输速率的第二候选无线接入点,其中,该至少一个第二候选无线接入点与该第一邻居无线接入点相邻;将该每个第一邻居无线接入点添加至该具有最大传输速率的第二候选无线接入点对应的无线链路接入点集合中;确定该第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第l邻居无线接入点,其中,该至少一个第l邻居无线接入点不属于该第二候选无线接入点集合,并且该至少一个第l邻居无线接入点与至少一个第l-1邻居无线接入点相邻,l为大于1的整数;根据该至少一个第l邻居无线接入点中的每个第l邻居无线接入点与至少一个第l-1邻居无线接入点之间的传输速率,确定该至少一个第l-1邻居无线接入点中与该每个第l邻居无线接入点具有最大传输速率的第l-1邻居无线接入点,其中,该至少一个第l-1邻居无线接入点与该第l邻居无线接入点相邻;将该每个第l邻居无线接入点添加至该具有最大传输速率的第l-1邻居无线接入点对应的无线链路接入点集合中。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:确定该每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合包括的无线接入点的时隙值;根据该无线链路接入点集合包括的无线接入点的时隙值,确定该无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个;根据该每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定该每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:确定每个候选无线接入点对应的每个无线链路接入点集合的初始时隙需求矩阵,该初始时隙需求矩阵为n*n维矩阵,n为该每个无线链路接入点集合中无线接入点的个数,该初始时隙需求矩阵每一行和每一列分别与该每个无线链路接入点集合中的每个无线接入点相对应,该初始时隙需求矩阵包括上行初始时隙需求矩阵和下行初始时隙需求矩阵,该上行初始时隙需求矩阵的主对角元素等于对应的无线接入点的上行链路时隙需求值,该上行初始时隙需求矩阵的其它元素为零,该下行初始时隙需求矩阵
的行的元素等于每一列对应的无线接入点的下行链路时隙需求值,该下行初始时隙需求矩阵的其它元素为零;根据该每个无线链路接入点集合中的链路之间是否存在干扰,确定该每个无线链路接入点集合的链路干扰矩阵,该链路干扰矩阵为m*m维矩阵,m为该每个无线链路接入点集合中上行或下行的链路个数,m=2(n-1),当任意两条链路i和j之间相互干扰,则该链路干扰矩阵中元素(i,j)为1,当该任意两条链路i和j之间没有干扰,则该链路干扰矩阵中元素(i,j)为0;根据该链路干扰矩阵,确定该每个无线链路接入点集合的调度矩阵,该调度矩阵为n*p矩阵,p表示一个调度周期中可用于分配的时隙的个数,该调度矩阵中元素(i,j)设置为x,x表示该每个无线链路接入点集合中的第i个无线接入点在第j个时隙发送的数据属于无线接入点x;根据该调度矩阵,对该初始时隙需求矩阵进行修改,获得该每个无线链路接入点集合的时隙需求矩阵,该时隙需求矩阵包括上行时隙需求矩阵和下行时隙需求矩阵,该上行时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值,该下行时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙值;根据该时隙需求矩阵,确定该每个无线链路接入点集合包括的无线接入点的时隙值。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:根据该调度矩阵,当无线接入点i向无线接入点k发送无线接入点j的数据时,将该初始时隙需求矩阵中元素(i,j)的数值减1,并将该初始时隙需求矩阵中元素(k,j)的数值加Δ:
其中,ri,k表示该无线接入点i和该无线接入点k之间的传输速率,rk,k-1表示该无线接入点k和该无线接入点k的下一跳无线接入点之间的传输速率,该无线接入点k的下一跳无线接入点属于该无线接入点i向该无线接入点k发送该无线接入点j的数据时所在的路径;当该上行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值时,或当该下行初始时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙需求值时,停止修改该初始时隙需求矩阵,获得该每个无线链路接入点集合的时隙需求矩阵。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程
序代码执行以下操作:根据链路选择策略,确定该每个无线链路接入点集合的调度矩阵,该调度矩阵包括上行调度矩阵和下行调度矩阵,该链路选择策略包括优先发送链路选择策略和并行发送链路选择策略,其中,该优先发送链路选择策略包括:对于该上行调度矩阵,距离该上行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最近的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,对于该下行调度矩阵,距离该下行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最远的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,该并行发送链路选择策略包括:根据该链路干扰矩阵,当任意两条传输链路之间相互干扰,则该任意两条传输链路不可以并行传送数据,当该任意两条传输链路之间没有干扰,则该任意两条传输链路可以并行传送数据。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:根据该每个无线链路接入点集合的该调度矩阵,将该调度矩阵中的需要发送的最后一个时隙对应的最大时隙号确定为该每个无线链路接入点集合的调度长度。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:根据该每个无线链路接入点集合的该时隙需求矩阵,确定该每个无线链路接入点集合包括的无线接入点中非零时隙值对应的无线接入点;将该非零时隙值对应的无线接入点之间的链路传输速率之和确定为该每个无线链路接入点集合的容量。
可选地,作为一个实施例,处理器310可以调用存储器320中存储的程序代码执行以下操作:根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度,从该至少一个候选无线接入点集合中确定该调度长度最小的至少一个候选无线接入点集合;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的容量,从该调度长度最小的至少一个候选无线接入点集合中确定容量最大的至少一个候选无线接入点集合;根据该至少一个候选无线接入点集合中每个候选无线接入点集合对应的有线回程成本值,从该容量最大的至少一个候选无线接入点集合中确定有线回程成本值最小的一个候选无线接入点集合;将该有线回程成本值最小的一个候选无线接入点集合确定为该目标无线接入点集合。
应理解,根据本发明实施例的无线接入点的有线回程链路部署的装置
300可对应于本发明实施例中的无线接入点的有线回程链路部署的装置200,并可以对应于执行根据本发明实施例的方法100中的相应主体,并且无线接入点的有线回程链路部署的装置300中的各个模块的上述和其它操作和/或功能分别为了实现图1至图6中的各个方法的相应流程,为了简洁,在此不再赘述。
因此,本发明实施例的无线接入点的有线回程链路部署的装置,根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从该L个无线接入点中确定至少一个目标无线接入点,并为这些目标无线接入点部署与核心网进行通信的有线回程链路,该L个无线接入点中除该至少一个目标无线接入点外的其它无线接入点通过无线回程链路与该至少一个目标无线接入点通信,并通过该至少一个目标无线接入点与该核心网通信,从而可以实现自动部署有线回程,避免有线回程链路的部署不合理导致的回程能力受限,可以在保证无线接入点的回程需求下,节省了部署成本。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或
者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。
Claims (28)
- 一种无线接入点的有线回程链路部署的方法,其特征在于,所述方法包括:根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从所述L个无线接入点中确定至少一个目标无线接入点;为所述至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,所述L个无线接入点中除所述至少一个目标无线接入点外的其它无线接入点通过无线通信链路与所述至少一个目标无线接入点通信,并通过所述至少一个目标无线接入点的有线回程链路与所述核心网通信。
- 根据权利要求1所述的方法,其特征在于,所述根据网络中的L个无线接入点中每个无线接入点的有线回程能力,从所述L个无线接入点中确定至少一个目标无线接入点,包括:根据所述L个无线接入点中每个无线接入点的有线回程能力,确定至少一个候选无线接入点集合,所述至少一个候选无线接入点集合中的每个候选无线接入点集合包括所述L个无线接入点中的N个候选无线接入点,并且每个候选无线接入点集合的总有线回程能力满足回程需求;确定所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个;根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,从所述至少一个候选无线接入点集合中确定目标无线接入点集合;根据所述目标无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,确定所述至少一个目标无线接入点。
- 根据权利要求2所述的方法,其特征在于,所述确定所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,包括:确定所述至少一个候选无线接入点集合中的每个候选无线接入点对应的无线链路接入点集合,其中,第一候选无线接入点对应的无线链路接入点集合包括L-N个无线接入点中的至少一个无线接入点,所述L-N个无线接入点为所述L个无线接入点中除了所述N个候选无线接入点外的无线接入 点,所述至少一个无线接入点与所述第一候选无线接入点之间具有无线通信链路,并通过所述第一候选无线接入点的有线回程链路与所述核心网通信,所述至少一个候选无线接入点集合包括所述第一候选无线接入点;根据每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合,确定所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
- 根据权利要求2或3所述的方法,其特征在于,所述根据所述目标无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,确定所述至少一个目标无线接入点,包括:当所述目标无线接入点集合包括的每个候选无线接入点对应的每个无线链路接入点集合的调度长度均小于或等于预设阈值时,将所述目标无线接入点集合包括的N个候选无线接入点确定为所述至少一个目标无线接入点;或当所述目标无线接入点集合包括的N个候选无线接入点对应的N个无线链路接入点集合中至少一个无线链路接入点集合的调度长度大于所述预设阈值时,确定至少一个新候选无线无线接入点集合,所述至少一个新候选无线接入点集合中的每个新候选无线接入点集合包括所述L个无线接入点中的N+1个新候选无线接入点,并根据所述至少一个新候选无线无线接入点集合,确定所述至少一个目标无线接入点。
- 根据权利要求2至4中任一项所述的方法,其特征在于,所述确定所述至少一个候选无线接入点集合中的每个候选无线接入点对应的无线链路接入点集合,包括:确定第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第一邻居无线接入点,其中,所述至少一个候选无线接入点集合包括所述第二候选无线接入点集合,所述至少一个第一邻居无线接入点不属于所述第二候选无线接入点集合,并且所述至少一个第一邻居无线接入点与所述第二候选无线接入点集合中的至少一个候选无线接入点相邻;根据所述至少一个第一邻居无线接入点中的每个第一邻居无线接入点与至少一个第二候选无线接入点之间的传输速率,确定所述至少一个第二候选无线接入点中与所述每个第一邻居无线接入点具有最大传输速率的第二候选无线接入点,其中,所述至少一个第二候选无线接入点与所述第一邻居 无线接入点相邻;将所述每个第一邻居无线接入点添加至所述具有最大传输速率的第二候选无线接入点对应的无线链路接入点集合中;确定所述第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第l邻居无线接入点,其中,所述至少一个第l邻居无线接入点不属于所述第二候选无线接入点集合,并且所述至少一个第l邻居无线接入点与至少一个第l-1邻居无线接入点相邻,l为大于1的整数;根据所述至少一个第l邻居无线接入点中的每个第l邻居无线接入点与至少一个第l-1邻居无线接入点之间的传输速率,确定所述至少一个第l-1邻居无线接入点中与所述每个第l邻居无线接入点具有最大传输速率的第l-1邻居无线接入点,其中,所述至少一个第l-1邻居无线接入点与所述第l邻居无线接入点相邻;将所述每个第l邻居无线接入点添加至所述具有最大传输速率的第l-1邻居无线接入点对应的无线链路接入点集合中。
- 根据权利要求2至5中任一项所述的方法,其特征在于,所述根据每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合,确定所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,包括:确定所述每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合包括的无线接入点的时隙值;根据所述无线链路接入点集合包括的无线接入点的时隙值,确定所述无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个;根据所述每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定所述每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
- 根据权利要求6所述的方法,其特征在于,所述确定所述每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合包括的无线接入点的时隙值,包括:确定每个候选无线接入点对应的每个无线链路接入点集合的初始时隙需求矩阵,所述初始时隙需求矩阵为n*n维矩阵,n为所述每个无线链路接 入点集合中无线接入点的个数,所述初始时隙需求矩阵每一行和每一列分别与所述每个无线链路接入点集合中的每个无线接入点相对应,所述初始时隙需求矩阵包括上行初始时隙需求矩阵和下行初始时隙需求矩阵,所述上行初始时隙需求矩阵的主对角元素等于对应的无线接入点的上行链路时隙需求值,所述上行初始时隙需求矩阵的其它元素为零,所述下行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的下行链路时隙需求值,所述下行初始时隙需求矩阵的其它元素为零;根据所述每个无线链路接入点集合中的链路之间是否存在干扰,确定所述每个无线链路接入点集合的链路干扰矩阵,所述链路干扰矩阵为m*m维矩阵,m为所述每个无线链路接入点集合中上行或下行的链路个数,m=2(n-1),当任意两条链路i和j之间相互干扰,则所述链路干扰矩阵中元素(i,j)为1,当所述任意两条链路i和j之间没有干扰,则所述链路干扰矩阵中元素(i,j)为0;根据所述链路干扰矩阵,确定所述每个无线链路接入点集合的调度矩阵,所述调度矩阵为n*p矩阵,p表示一个调度周期中可用于分配的时隙的个数,所述调度矩阵中元素(i,j)设置为x,x表示所述每个无线链路接入点集合中的第i个无线接入点在第j个时隙发送的数据属于无线接入点x;根据所述调度矩阵,对所述初始时隙需求矩阵进行修改,获得所述每个无线链路接入点集合的时隙需求矩阵,所述时隙需求矩阵包括上行时隙需求矩阵和下行时隙需求矩阵,所述上行时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值,所述下行时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙值;根据所述时隙需求矩阵,确定所述每个无线链路接入点集合包括的无线接入点的时隙值。
- 根据权利要求7所述的方法,其特征在于,所述根据所述调度矩阵,对所述初始时隙需求矩阵进行修改,获得所述每个无线链路接入点集合的时隙需求矩阵,包括:根据所述调度矩阵,当无线接入点i向无线接入点k发送无线接入点j的数据时,将所述初始时隙需求矩阵中元素(i,j)的数值减1,并将所述初始时隙需求矩阵中元素(k,j)的数值加Δ:其中,ri,k表示所述无线接入点i和所述无线接入点k之间的传输速率,rk,k-1表示所述无线接入点k和所述无线接入点k的下一跳无线接入点之间的传输速率,所述无线接入点k的下一跳无线接入点属于所述无线接入点i向所述无线接入点k发送所述无线接入点j的数据时所在的路径;当所述上行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值时,或当所述下行初始时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙需求值时,停止修改所述初始时隙需求矩阵,获得所述每个无线链路接入点集合的时隙需求矩阵。
- 根据权利要求7或8所述的方法,其特征在于,所述根据所述链路干扰矩阵,确定所述每个无线链路接入点集合的调度矩阵,包括:根据链路选择策略,确定所述每个无线链路接入点集合的调度矩阵,所述调度矩阵包括上行调度矩阵和下行调度矩阵,所述链路选择策略包括优先发送链路选择策略和并行发送链路选择策略,其中,所述优先发送链路选择策略包括:对于所述上行调度矩阵,距离所述上行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最近的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,对于所述下行调度矩阵,距离所述下行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最远的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,所述并行发送链路选择策略包括:根据所述链路干扰矩阵,当任意两条传输链路之间相互干扰,则所述任意两条传输链路不可以并行传送数据,当所述任意两条传输链路之间没有干扰,则所述任意两条传输链路可以并行传送数据。
- 根据权利要求6至9中任一项所述的方法,其特征在于,所述根据所述无线链路接入点集合包括的无线接入点的时隙值,确定所述无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,包括:根据所述每个无线链路接入点集合的所述调度矩阵,将所述调度矩阵中的需要发送的最后一个时隙对应的最大时隙号确定为所述每个无线链路接入点集合的调度长度。
- 根据权利要求6至10中任一项所述的方法,其特征在于,所述根据所述无线链路接入点集合包括的无线接入点的时隙值,确定所述无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,包括:根据所述每个无线链路接入点集合的所述时隙需求矩阵,确定所述每个无线链路接入点集合包括的无线接入点中非零时隙值对应的无线接入点;将所述非零时隙值对应的无线接入点之间的链路传输速率之和确定为所述每个无线链路接入点集合的容量。
- 根据权利要求2至11中任一项所述的方法,其特征在于,所述根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,从所述至少一个候选无线接入点集合中确定目标无线接入点集合,包括:根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度,从所述至少一个候选无线接入点集合中确定所述调度长度最小的至少一个候选无线接入点集合;根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的容量,从所述调度长度最小的至少一个候选无线接入点集合中确定容量最大的至少一个候选无线接入点集合;根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的有线回程成本值,从所述容量最大的至少一个候选无线接入点集合中确定有线回程成本值最小的一个候选无线接入点集合;将所述有线回程成本值最小的一个候选无线接入点集合确定为所述目标无线接入点集合。
- 根据权利要求1至12中任一项所述的方法,其特征在于,所述L个无线接入点中的每个无线接入点的有线回程成本小于或等于有线回程成本门限值。
- 根据权利要求1至13中任一项所述的方法,其特征在于,所述L个无线接入点中的每个无线接入点的有线回程能力大于或等于所述每个无线接入点的接入能力。
- 一种无线接入点的有线回程链路部署的装置,其特征在于,所述装置包括:确定模块,用于根据网络中的L个无线接入点中每个无线接入点的有线 回程能力,从所述L个无线接入点中确定至少一个目标无线接入点;处理模块,用于为所述确定模块确定的所述至少一个目标无线接入点中每个目标无线接入点部署与核心网进行通信的有线回程链路,所述L个无线接入点中除所述至少一个目标无线接入点外的其它无线接入点通过无线通信链路与所述至少一个目标无线接入点通信,并通过所述至少一个目标无线接入点的有线回程链路与所述核心网通信。
- 根据权利要求15所述的装置,其特征在于,所述确定模块具体用于:根据所述L个无线接入点中每个无线接入点的有线回程能力,确定至少一个候选无线接入点集合,所述至少一个候选无线接入点集合中的每个候选无线接入点集合包括所述L个无线接入点中的N个候选无线接入点,并且每个候选无线接入点集合的总有线回程能力满足回程需求;确定所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个;根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,从所述至少一个候选无线接入点集合中确定目标无线接入点集合;根据所述目标无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个,确定所述至少一个目标无线接入点。
- 根据权利要求16所述的装置,其特征在于,所述确定模块具体用于:确定所述至少一个候选无线接入点集合中的每个候选无线接入点对应的无线链路接入点集合,其中,第一候选无线接入点对应的无线链路接入点集合包括L-N个无线接入点中的至少一个无线接入点,所述L-N个无线接入点为所述L个无线接入点中除了所述N个候选无线接入点外的无线接入点,所述至少一个无线接入点与所述第一候选无线接入点之间具有无线通信链路,并通过所述第一候选无线接入点的有线回程链路与所述核心网通信,所述至少一个候选无线接入点集合包括所述第一候选无线接入点;根据每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合,确定所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
- 根据权利要求16或17所述的装置,其特征在于,所述确定模块具体用于:当所述目标无线接入点集合包括的每个候选无线接入点对应的每个无线链路接入点集合的调度长度均小于或等于预设阈值时,将所述目标无线接入点集合包括的N个候选无线接入点确定为所述至少一个目标无线接入点;或当所述目标无线接入点集合包括的N个候选无线接入点对应的N个无线链路接入点集合中至少一个无线链路接入点集合的调度长度大于所述预设阈值时,确定至少一个新候选无线无线接入点集合,所述至少一个新候选无线接入点集合中的每个新候选无线接入点集合包括所述L个无线接入点中的N+1个新候选无线接入点,并根据所述至少一个新候选无线无线接入点集合,确定所述至少一个目标无线接入点。
- 根据权利要求16至18中任一项所述的装置,其特征在于,所述确定模块具体用于:确定第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第一邻居无线接入点,其中,所述至少一个候选无线接入点集合包括所述第二候选无线接入点集合,所述至少一个第一邻居无线接入点不属于所述第二候选无线接入点集合,并且所述至少一个第一邻居无线接入点与所述第二候选无线接入点集合中的至少一个第二候选无线接入点相邻;根据所述至少一个第一邻居无线接入点中的每个第一邻居无线接入点与至少一个第二候选无线接入点之间的传输速率,确定所述至少一个第二候选无线接入点中与所述每个第一邻居无线接入点具有最大传输速率的第二候选无线接入点,其中,所述至少一个第二候选无线接入点与所述第一邻居无线接入点相邻;将所述每个第一邻居无线接入点添加至所述具有最大传输速率的第二候选无线接入点对应的无线链路接入点集合中;确定所述第二候选无线接入点集合中的N个候选无线接入点对应的至少一个第l邻居无线接入点,其中,所述至少一个第l邻居无线接入点不属于所述第二候选无线接入点集合,并且所述至少一个第l邻居无线接入点与至少一个第l-1邻居无线接入点相邻,l为大于1的整数;根据所述至少一个第l邻居无线接入点中的每个第l邻居无线接入点与 至少一个第l-1邻居无线接入点之间的传输速率,确定所述至少一个第l-1邻居无线接入点中与所述每个第l邻居无线接入点具有最大传输速率的第l-1邻居无线接入点,其中,所述至少一个第l-1邻居无线接入点与所述第l邻居无线接入点相邻;将所述每个第l邻居无线接入点添加至所述具有最大传输速率的第l-1邻居无线接入点对应的无线链路接入点集合中。
- 根据权利要求16至19中任一项所述的装置,其特征在于,所述确定模块具体用于:确定所述每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合包括的无线接入点的时隙值;根据所述无线链路接入点集合包括的无线接入点的时隙值,确定所述无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个;根据所述每个候选无线接入点集合包括的至少一个候选无线接入点分别对应的无线链路接入点集合的调度长度、容量和有线回程成本值中的至少一个,确定所述每个候选无线接入点集合对应的调度长度、容量和有线回程成本值中的至少一个。
- 根据权利要求20所述的装置,其特征在于,所述确定模块具体用于:确定每个候选无线接入点对应的每个无线链路接入点集合的初始时隙需求矩阵,所述初始时隙需求矩阵为n*n维矩阵,n为所述每个无线链路接入点集合中无线接入点的个数,所述初始时隙需求矩阵每一行和每一列分别与所述每个无线链路接入点集合中的每个无线接入点相对应,所述初始时隙需求矩阵包括上行初始时隙需求矩阵和下行初始时隙需求矩阵,所述上行初始时隙需求矩阵的主对角元素等于对应的无线接入点的上行链路时隙需求值,所述上行初始时隙需求矩阵的其它元素为零,所述下行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的下行链路时隙需求值,所述下行初始时隙需求矩阵的其它元素为零;根据所述每个无线链路接入点集合中的链路之间是否存在干扰,确定所述每个无线链路接入点集合的链路干扰矩阵,所述链路干扰矩阵为m*m维矩阵,m为所述每个无线链路接入点集合中上行或下行的链路个数,m=2(n-1),当任意两条链路i和j之间相互干扰,则所述链路干扰矩阵中元 素(i,j)为1,当所述任意两条链路i和j之间没有干扰,则所述链路干扰矩阵中元素(i,j)为0;根据所述链路干扰矩阵,确定所述每个无线链路接入点集合的调度矩阵,所述调度矩阵为n*p矩阵,p表示一个调度周期中可用于分配的时隙的个数,所述调度矩阵中元素(i,j)设置为x,x表示所述每个无线链路接入点集合中的第i个无线接入点在第j个时隙发送的数据属于无线接入点x;根据所述调度矩阵,对所述初始时隙需求矩阵进行修改,获得所述每个无线链路接入点集合的时隙需求矩阵,所述时隙需求矩阵包括上行时隙需求矩阵和下行时隙需求矩阵,所述上行时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值,所述下行时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙值;根据所述时隙需求矩阵,确定所述每个无线链路接入点集合包括的无线接入点的时隙值。
- 根据权利要求21所述的装置,其特征在于,所述确定模块具体用于:根据所述调度矩阵,当无线接入点i向无线接入点k发送无线接入点j的数据时,将所述初始时隙需求矩阵中元素(i,j)的数值减1,并将所述初始时隙需求矩阵中元素(k,j)的数值加Δ:其中,ri,k表示所述无线接入点i和所述无线接入点k之间的传输速率,rk,k-1表示所述无线接入点k和所述无线接入点k的下一跳无线接入点之间的传输速率,所述无线接入点k的下一跳无线接入点属于所述无线接入点i向所述无线接入点k发送所述无线接入点j的数据时所在的路径;当所述上行初始时隙需求矩阵的行的元素等于每一列对应的无线接入点的上行链路时隙需求值时,或当所述下行初始时隙需求矩阵的主对角元素等于对应的无线接入点的下行链路时隙需求值时,停止修改所述初始时隙需求矩阵,获得所述每个无线链路接入点集合的时隙需求矩阵。
- 根据权利要求21或22所述的装置,其特征在于,所述确定模块具体用于:根据链路选择策略,确定所述每个无线链路接入点集合的调度矩阵,所 述调度矩阵包括上行调度矩阵和下行调度矩阵,所述链路选择策略包括优先发送链路选择策略和并行发送链路选择策略,其中,所述优先发送链路选择策略包括:对于所述上行调度矩阵,距离所述上行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最近的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,对于所述下行调度矩阵,距离所述下行调度矩阵对应的无线链路接入点集合的候选无线接入点距离最远的无线接入点的数据优先传送,每个无线接入点的数据在传输路径上逐跳传送,所述并行发送链路选择策略包括:根据所述链路干扰矩阵,当任意两条传输链路之间相互干扰,则所述任意两条传输链路不可以并行传送数据,当所述任意两条传输链路之间没有干扰,则所述任意两条传输链路可以并行传送数据。
- 根据权利要求20至23中任一项所述的装置,其特征在于,所述确定模块具体用于:根据所述每个无线链路接入点集合的所述调度矩阵,将所述调度矩阵中的需要发送的最后一个时隙对应的最大时隙号确定为所述每个无线链路接入点集合的调度长度。
- 根据权利要求20至24中任一项所述的装置,其特征在于,所述确定模块具体用于:根据所述每个无线链路接入点集合的所述时隙需求矩阵,确定所述每个无线链路接入点集合包括的无线接入点中非零时隙值对应的无线接入点;将所述非零时隙值对应的无线接入点之间的链路传输速率之和确定为所述每个无线链路接入点集合的容量。
- 根据权利要求16至25中任一项所述的装置,其特征在于,所述确定模块具体用于:根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的调度长度,从所述至少一个候选无线接入点集合中确定所述调度长度最小的至少一个候选无线接入点集合;根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的容量,从所述调度长度最小的至少一个候选无线接入点集合中确定容量最大的至少一个候选无线接入点集合;根据所述至少一个候选无线接入点集合中每个候选无线接入点集合对应的有线回程成本值,从所述容量最大的至少一个候选无线接入点集合中确定有线回程成本值最小的一个候选无线接入点集合;将所述有线回程成本值最小的一个候选无线接入点集合确定为所述目标无线接入点集合。
- 根据权利要求15至26中任一项所述的装置,其特征在于,所述L个无线接入点中的每个无线接入点的有线回程成本小于或等于有线回程成本门限值。
- 根据权利要求15至27中任一项所述的装置,其特征在于,所述L个无线接入点中的每个无线接入点的有线回程能力大于或等于所述每个无线接入点的接入能力。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/076548 WO2016165072A1 (zh) | 2015-04-14 | 2015-04-14 | 无线接入点的有线回程链路部署的方法和装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2015/076548 WO2016165072A1 (zh) | 2015-04-14 | 2015-04-14 | 无线接入点的有线回程链路部署的方法和装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016165072A1 true WO2016165072A1 (zh) | 2016-10-20 |
Family
ID=57125474
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/076548 WO2016165072A1 (zh) | 2015-04-14 | 2015-04-14 | 无线接入点的有线回程链路部署的方法和装置 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016165072A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258992A (zh) * | 2021-05-17 | 2021-08-13 | 厦门大学 | 一种应用于线性多跳水声传感器网络的时隙分配方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070109962A1 (en) * | 2005-11-11 | 2007-05-17 | Alcatel | Method and apparatus for implementing relay |
CN101796869A (zh) * | 2007-09-06 | 2010-08-04 | 高通股份有限公司 | 在网格网络中路由 |
CN102571166A (zh) * | 2004-06-10 | 2012-07-11 | 美商内数位科技公司 | 使用智能天线建立回程网络的方法和系统及无线通信节点 |
US20140185496A1 (en) * | 2013-01-02 | 2014-07-03 | Qualcomm Incorported | Low latency arq/harq operating in carrier aggregation for backhaul link |
-
2015
- 2015-04-14 WO PCT/CN2015/076548 patent/WO2016165072A1/zh active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102571166A (zh) * | 2004-06-10 | 2012-07-11 | 美商内数位科技公司 | 使用智能天线建立回程网络的方法和系统及无线通信节点 |
US20070109962A1 (en) * | 2005-11-11 | 2007-05-17 | Alcatel | Method and apparatus for implementing relay |
CN101796869A (zh) * | 2007-09-06 | 2010-08-04 | 高通股份有限公司 | 在网格网络中路由 |
US20140185496A1 (en) * | 2013-01-02 | 2014-07-03 | Qualcomm Incorported | Low latency arq/harq operating in carrier aggregation for backhaul link |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113258992A (zh) * | 2021-05-17 | 2021-08-13 | 厦门大学 | 一种应用于线性多跳水声传感器网络的时隙分配方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI327016B (en) | Distributed channel allocation method and wireless mesh network therewith | |
US8451862B2 (en) | Systems and methods for resource allocation serving communication requirements and fairness | |
US8223728B2 (en) | Combined scheduling and network coding for wireless mesh networks | |
CN104012148A (zh) | 为无线中继网络的中继节点确定通信调度的系统和方法 | |
Soua et al. | DiSCA: A distributed scheduling for convergecast in multichannel wireless sensor networks | |
Usha et al. | An enhanced MPR OLSR protocol for efficient node selection process in cognitive radio based VANET | |
JP2004289836A (ja) | モバイルアドホックネットワークにおける移動端末機の媒体アクセス制御プロトコル階層モジュール及び媒体アクセス制御プロトコル階層モジュールのフレームを送受信する方法 | |
CN107005984A (zh) | 一种减少资源冲突的方法及ue | |
CN115396514B (zh) | 资源分配方法、装置及存储介质 | |
CN105554888A (zh) | 基于链路多速率的多射频多信道无线Mesh网络信道分配算法 | |
CN112291791B (zh) | 一种基于5g切片电力通信网带宽资源分配方法 | |
Aryafar et al. | Distance-1 constrained channel assignment in single radio wireless mesh networks | |
US20220225068A1 (en) | Wirelessly utilizable memory | |
CN109005593B (zh) | 一种用于频谱分配的优化的方法及设备 | |
CN116886591B (zh) | 计算机网络系统及路由方法 | |
US9876708B2 (en) | Network-on-chip computing systems with wireless interconnects | |
WO2016165072A1 (zh) | 无线接入点的有线回程链路部署的方法和装置 | |
Dehghani et al. | A novel approach to optimize fault-tolerant hybrid wireless network-on-chip architectures | |
CN115529675B (zh) | 基于混合的mac协议的数据传输方法及装置 | |
US8218565B2 (en) | Alternating scheduling method for use in a mesh network | |
KR102120435B1 (ko) | 무선 센서 네트워크의 스케줄링 방법 및 이를 수행하는 무선 센서 네트워크의 제어 장치 | |
Dutta et al. | Multi-armed Bandit Learning for TDMA Transmission Slot Scheduling and Defragmentation for Improved Bandwidth Usage | |
Zhou et al. | Exploring random access and handshaking techniques in underwater wireless acoustic networks | |
CN105900383A (zh) | 通信系统、控制节点和通信方法 | |
Ma et al. | Joint task allocation and scheduling for multi-hop distributed computing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15888777 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15888777 Country of ref document: EP Kind code of ref document: A1 |