WO2016163699A1 - 무선 전력 전송 방법 및 이를 위한 장치 - Google Patents

무선 전력 전송 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2016163699A1
WO2016163699A1 PCT/KR2016/003465 KR2016003465W WO2016163699A1 WO 2016163699 A1 WO2016163699 A1 WO 2016163699A1 KR 2016003465 W KR2016003465 W KR 2016003465W WO 2016163699 A1 WO2016163699 A1 WO 2016163699A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless power
power transmission
wireless
receiver
transmitter
Prior art date
Application number
PCT/KR2016/003465
Other languages
English (en)
French (fr)
Inventor
이종헌
박수빈
박수영
Original Assignee
엘지이노텍(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지이노텍(주) filed Critical 엘지이노텍(주)
Publication of WO2016163699A1 publication Critical patent/WO2016163699A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J5/00Circuit arrangements for transfer of electric power between ac networks and dc networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/02Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries for charging batteries from ac mains by converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems

Definitions

  • the present invention relates to a wireless power transmission technology, and more particularly, to a wireless power transmission method and apparatus therefor in a wireless power transmitter supporting a plurality of wireless power transmission scheme.
  • Wireless power transmission or wireless energy transfer is a technology that transmits electrical energy wirelessly from a transmitter to a receiver using the principle of induction of magnetic field, which is already used by electric motors or transformers using the electromagnetic induction principle in the 1800s. Since then, there have been attempts to transmit electrical energy by radiating electromagnetic waves such as radio waves and lasers. Electric toothbrushes and some wireless razors that we commonly use are actually charged with the principle of electromagnetic induction.
  • energy transmission using wireless may be classified into magnetic induction, electromagnetic resonance, and RF transmission using short wavelength radio frequency.
  • the magnetic induction method uses the phenomenon that magnetic flux generated at this time causes electromotive force to other coils when two coils are adjacent to each other and current flows to one coil, and is rapidly commercialized in small devices such as mobile phones. Is going on. Magnetic induction is capable of transmitting power of up to several hundred kilowatts (kW) and has high efficiency, but the maximum transmission distance is less than 1 centimeter (cm).
  • the magnetic resonance method is characterized by using an electric or magnetic field instead of using electromagnetic waves or current. Since the magnetic resonance method is hardly affected by the electromagnetic wave problem, it has the advantage of being safe for other electronic devices or the human body. On the other hand, it can be utilized only in limited distances and spaces, and has a disadvantage in that energy transmission efficiency is rather low.
  • the short wavelength wireless power transmission scheme implies, the RF transmission scheme— takes advantage of the fact that energy can be transmitted and received directly in the form of RadioWave.
  • This technology is a wireless power transmission method of the RF method using a rectenna, a compound word of an antenna and a rectifier (rectifier) refers to a device that converts RF power directly into direct current power.
  • the RF method is a technology that converts AC radio waves to DC and uses them. Recently, research on commercialization has been actively conducted as efficiency is improved.
  • Wireless power transfer technology can be used in various industries, such as the mobile, IT, railroad and consumer electronics industries.
  • the present invention has been devised to solve the above-mentioned problems of the prior art, and an object of the present invention is to provide a wireless power transmission method and apparatus therefor in a wireless power transmission apparatus supporting multi-mode.
  • Another object of the present invention is to provide a multi-mode wireless power transmission method and apparatus therefor that are capable of improving power transmission efficiency.
  • the present invention can provide a multi-mode wireless power transmission method and apparatus therefor.
  • the wireless power transmission method includes detecting a wireless power reception device, identifying a wireless power transmission scheme supported by the detected wireless power reception device, and identifying the wireless power transmission method.
  • the method may include performing wireless charging in a wireless power transmission scheme.
  • the wireless power receiver may be detected by cross-transmitting the first to n-th ping signals corresponding to the first to nth wireless power transmission schemes at predetermined intervals.
  • the wireless power transmission scheme supported by the wireless power receiver may be identified based on a response signal corresponding to the first to n-th ping signals.
  • the method may further include measuring power transmission efficiency of each of the wireless power transmission methods when the supported wireless power transmission methods are identified as plural.
  • the power transmission efficiency may be measured based on the transmission power intensity measured at the time when power control is stabilized during power transmission for each wireless power transmission method.
  • the wireless charging may be performed by a wireless power transmission method having the smallest transmission power intensity.
  • the wireless power transmission method may include at least one of an electromagnetic induction method defined in the WPC standard, an electromagnetic induction method defined in the PMA standard.
  • Another embodiment of the present invention may provide a computer-readable recording medium having recorded thereon a program for executing any one of the wireless power transfer methods.
  • an apparatus for transmitting wireless power includes means for detecting a wireless power receiver and means for identifying a wireless power transmission scheme supported by the sensed wireless power receiver and the identified wireless. Means for performing wireless charging in a power transmission scheme.
  • the wireless power receiver may be detected by cross-transmitting the first to n-th ping signals corresponding to the first to nth wireless power transmission schemes at predetermined intervals.
  • the wireless power transmission scheme supported by the wireless power receiver may be identified based on a response signal corresponding to the first to n-th ping signals.
  • the wireless power transfer scheme may further include means for measuring the power transmission efficiency.
  • the power transmission efficiency may be measured based on the transmission power intensity measured at the time when power control is stabilized during power transmission for each wireless power transmission method.
  • the wireless charging may be performed by a wireless power transmission method having the smallest transmission power intensity.
  • the wireless power transmission method may include at least one of an electromagnetic induction method defined in the WPC standard, an electromagnetic induction method defined in the PMA standard.
  • the present invention has the advantage of providing a multi-mode wireless power transmission method and apparatus and system therefor.
  • the present invention has the advantage of providing a multi-mode wireless power transmission method and apparatus and system therefor capable of improving power transmission efficiency.
  • the present invention has the advantage of enabling the wireless charging of high efficiency by comparing the charging efficiency for each wireless charging method through the out-of-band communication, and adaptively select the optimal wireless charging method based on this.
  • the wireless power transmission apparatus supporting a plurality of wireless power transmission method according to the present invention has the advantage that the charging time can be minimized by maintaining the optimal charging efficiency.
  • the wireless power transmission apparatus has an advantage of minimizing power waste by always maintaining an optimal charging efficiency.
  • FIG. 1 is a view for explaining a wireless power transmission system according to an embodiment of the present invention.
  • FIG. 2 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
  • 3 is a state transition diagram for explaining a wireless power transmission procedure defined in the PMA standard.
  • FIG. 4 is a block diagram illustrating an internal structure of a wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 5 is a flowchart illustrating a wireless power transmission method in a wireless power transmission apparatus according to an embodiment of the present invention.
  • FIG. 6 is a diagram for describing a wireless power transmission method in a wireless power transmission apparatus supporting dual mode according to an embodiment of the present invention.
  • FIG. 7 is a diagram for describing a wireless power transmission method in a wireless power transmission apparatus supporting dual mode according to another embodiment of the present invention.
  • FIG. 8 is a diagram for describing a wireless power transmission method in a wireless power transmission apparatus supporting dual mode according to another embodiment of the present invention.
  • the wireless power transmission method includes detecting a wireless power reception device, identifying a wireless power transmission scheme supported by the detected wireless power reception device, and identifying the wireless power transmission method.
  • the method may include performing wireless charging in a wireless power transmission scheme.
  • the top (bottom) or the bottom (bottom) is the two components are in direct contact with each other or One or more other components are all included disposed between the two components.
  • up (up) or down (down) may include the meaning of the down direction as well as the up direction based on one component.
  • the apparatus for transmitting wireless power on the wireless power system is a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a wireless power transmitter, a transmitter, a transmitter, a transmitter, a transmitter, a transmitter, A wireless power transmitter, a wireless power transmitter, and the like will be used interchangeably.
  • a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a wireless power receiver, a receiver terminal, a receiver, a receiver, a receiver Or the like can be used in combination.
  • the transmitter according to the present invention may be configured in a pad form, a cradle form, an access point (AP) form, a small base station form, a stand form, a ceiling buried form, a wall hanging form, and the like. You can also transfer power.
  • the transmitter may comprise at least one wireless power transmission means.
  • the wireless power transmission means may use various wireless power transmission standards based on an electromagnetic induction method that generates a magnetic field in the power transmitter coil and charges using the electromagnetic induction principle in which electricity is induced in the receiver coil under the influence of the magnetic field.
  • the wireless power transmission means may include a wireless charging technology of the electromagnetic induction method defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA) which is a wireless charging technology standard apparatus.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to an embodiment of the present invention may be provided with at least one wireless power receiving means, and may simultaneously receive wireless power from two or more transmitters.
  • the wireless power receiving means may include an electromagnetic induction wireless charging technology defined by the Wireless Power Consortium (WPC) and the Power Matters Alliance (PMA), which are wireless charging technology standard organizations.
  • WPC Wireless Power Consortium
  • PMA Power Matters Alliance
  • the receiver according to the present invention is a mobile phone, smart phone, laptop computer, digital broadcasting terminal, PDA (Personal Digital Assistants), PMP (Portable Multimedia Player), navigation, MP3 player, electric It may be used in small electronic devices such as a toothbrush, an electronic tag, a lighting device, a remote control, a fishing bobber, and the like, but is not limited thereto, and a device capable of charging a battery is provided with a wireless power receiver according to the present invention.
  • PDA Personal Digital Assistants
  • PMP Portable Multimedia Player
  • navigation MP3 player
  • FIG. 1 is a view for explaining a wireless power transmission system according to an embodiment of the present invention.
  • the wireless power transmission system may include a power source 100, a wireless power transmitter 200, a wireless power receiver 300, and a load stage 400.
  • the power source 100 may be included in the wireless power transmitter 200, but is not limited thereto.
  • the wireless power transmitter 200 and the wireless power receiver 300 may be provided with a plurality of wireless power transmitters.
  • the wireless power transmitter 200 and the wireless power receiver 300 may exchange control signals or information through in-band communication.
  • in-band communication may be performed in a pulse width modulation method.
  • the wireless power receiver 300 generates various types of control signals and information to the wireless power transmitter 200 by generating a feedback signal by switching ON / OFF the current induced through the receiving coil in a predetermined pattern. Can transmit
  • the information transmitted by the wireless power receiver 300 may include received power strength information.
  • the wireless power transmitter 200 may calculate the charging efficiency or the power transmission efficiency based on the received power strength information.
  • the wireless power transmitter 200 may not determine the received power strength at the receiving end. Therefore, in the PMA method, the wireless power transmitter 200 may not calculate the charging efficiency based on feedback information received from the wireless power receiver 300.
  • FIG. 2 is a state transition diagram for explaining a wireless power transmission procedure defined in the WPC standard.
  • power transmission from a transmitter to a receiver according to the WPC standard can be divided into a selection phase 210, a ping phase 220, an identification and configuration phase 230, It may be divided into a power transfer phase 240.
  • the selection step 210 may be a step of transitioning when a specific error or a specific event is detected while starting or maintaining power transmission.
  • specific errors and specific events will be apparent from the following description.
  • the transmitter may monitor whether an object exists on the interface surface. If the transmitter detects that an object is placed on the interface surface, it may transition to ping step 220. In the selection step 210, the transmitter transmits an analog ping of a very short pulse, and detects whether an object exists in an active area of the interface surface based on a change in current of the transmitting coil.
  • the transmitter transmits a digital ping. If the transmitter does not receive a response signal to the digital ping from the receiver in the ping step 220, it may transition to the selection step 210. In addition, in the ping step 220, when the transmitter receives a signal indicating that the power transmission is completed, that is, a charging completion signal, the transmitter may transition to the selection step 210.
  • the transmitter may transition to the identification and configuration step 230 for collecting receiver identification and receiver configuration and status information.
  • the transmitter receives an unexpected packet, a desired packet has not been received for a predefined time, a packet transmission error, or a power transmission contract. If this is not set (no power transfer contract) it may transition to selection step 210.
  • the transmitter may transition to a power transmission step 240 for transmitting wireless power.
  • the transmitter receives an unexpected packet, an outgoing desired packet for a predefined time, or a violation of a predetermined power transmission contract occurs. transfer contract violation), if the filling is complete, then transition to selection step 210.
  • the transmitter may transition to identification and configuration step 230 if it is necessary to reconfigure the power transmission agreement in accordance with a change in transmitter status.
  • the power transmission contract may be set based on state and characteristic information of the transmitter and the receiver.
  • the transmitter state information may include information about the maximum amount of power that can be transmitted, information about the maximum number of receivers that can be accommodated, and the receiver state information may include information about required power.
  • 3 is a state transition diagram for explaining a wireless power transmission procedure defined in the PMA standard.
  • power transmission from a transmitter to a receiver according to the PMA standard is divided into a standby phase (310), a digital ping phase (320), an identification phase (330), and a power transmission. It may be divided into a step (Power Transfer Phase, 340).
  • the waiting step 310 may be a step of transitioning when a specific error or a specific event is detected while performing a receiver identification procedure for power transmission or maintaining power transmission.
  • specific errors and specific events will be apparent from the following description.
  • the transmitter may monitor whether an object exists on a charging surface. If the transmitter detects that an object has been placed on the charging surface or if RXID retry is in progress, it may transition to digital ping step 320.
  • RXID is a unique identifier assigned to a PMA compatible receiver.
  • the transmitter transmits an analog ping of a very short pulse and detects whether an object exists in an active area of an interface surface based on a change in current of a transmitting coil.
  • the transmitter transitioned to the digital ping step 320 sends a digital ping signal to identify whether the detected object is a PMA compatible receiver.
  • the receiver may modulate the received digital ping signal according to the PMA communication protocol to transmit a predetermined response signal to the transmitter.
  • the receiver may transition to the identification step 330.
  • the transmitter may transition to the standby step 310.
  • the Foreign Object may be a metallic object including coins, keys, and the like.
  • the transmitter may transition to standby step 310 if the receiver identification procedure fails or the receiver identification procedure needs to be performed again and if the receiver identification procedure has not been completed for a predefined time.
  • the transmitter may transition from the identification step 330 to the power transmission step 340 to start charging.
  • the transmitter goes to standby step 310 if the desired signal is not received within a predetermined time (Time Out), or if the FO is detected or the voltage of the transmitting coil exceeds a predefined reference value. You can transition.
  • the transmitter may transition to the charging completion step 350 when the temperature sensed by the temperature sensor provided therein exceeds the reference value or the charging is completed.
  • the transmitter may transition to the standby state 310 when it is confirmed that the receiver has been removed from the charging surface.
  • the transmitter may transition from the charging completion step 350 to the digital ping step 320 when the measured temperature after a predetermined time elapses below the reference value in the over temperature state.
  • the transmitter may transition to the charge complete step 350 when an End Of Charge (EOC) request is received from the receiver.
  • EOC End Of Charge
  • FIG. 4 is a block diagram illustrating an internal structure of a wireless power transmission apparatus according to an embodiment of the present invention.
  • the wireless power transmitter 400 may include a first inductive power transmitter 410, a second inductive power transmitter 420, a power transmission calculator 430, a communication unit 440, and a controller 450. It may be configured to include).
  • the first inductive power transmitter 410 may perform ping signal transmission based on the WPC standard, hereinafter simply referred to as WPC ping, and business card wireless transmission.
  • the second inductive power transmitter 420 may perform a ping signal transmission based on the PMA standard, hereinafter simply referred to as a PMA ping, and a wireless power transmission.
  • the outgoing power calculator 420 may be configured to transmit the first inductive power transmitter 410 and / or the second inductive power transmitter in the power transmission stage when the outgoing wireless power is stabilized according to power control through in-band signaling.
  • a function of measuring the strength of power applied to the transmitting coil of 420 may be performed. For example, it may be determined whether stabilization of the transmission wireless power is stabilized when the change in the intensity of the transmission wireless power is equal to or less than a predetermined reference value. As another example, whether or not the transmission wireless power is stabilized may be determined to be stabilized when power control is performed within a predetermined range preset for a predetermined time.
  • the communication unit 440 may perform a function of transmitting or receiving a specific control signal and state information through in-band.
  • the controller 450 may control the overall operation of the wireless power transmitter 400.
  • the controller 450 may control the transmission timing of the WPC ping and the PMA ping to identify the wireless power transmission technology supported by the wireless power receiver.
  • control unit 450 may include the first inductive power transmitter 410 and the second induction so that the PMA ping and the WPC ping can be transmitted alternately at predetermined intervals in order to identify a wireless power transmission technology supported by the wireless power receiver.
  • the operation of the power transmitter 420 may be controlled.
  • the controller 450 controls the first inductive power transmitter 410 and / or the second inductive power transmitter 420 according to the identification result. Wireless power may be controlled to be transmitted. For example, if the detected wireless power receiver is identified as a PMA compatible terminal and not a WPC compatible terminal, the controller 450 may control the wireless power to be transmitted through the second inductive power transmitter 420.
  • the controller 450 may control the wireless power to be transmitted through the first inductive power transmitter 410.
  • the control unit 450 performs the first inductive power transmitter 410 according to a predefined order.
  • the second inductive power transmitter 420 may be sequentially activated to transmit wireless power.
  • the controller 420 activates the first inductive power transmitter 410 to ping 220, identify and configure 230, and power.
  • the transmission power calculator 430 is applied to the transmission coil of the first induction power transmitter 410. It can be controlled to measure the intensity of the power.
  • the transmission power intensity of the first induction power transmitter 410 measured at the time of power control stabilization will be referred to as the first transmission power intensity.
  • the controller 450 activates the second inductive power transmitter 420 to control the digital ping step 320, the identification step 330, and the power transmission step 340 to be sequentially performed.
  • the output power calculator 430 may control to measure the intensity of the power applied to the transmission coil of the second inductive power transmitter 420.
  • the transmission power intensity of the second inductive power transmitter 420 measured at the time of power control stabilization will be referred to as the second transmission power intensity.
  • the controller 450 may control the wireless power to be transmitted to the corresponding wireless power receiver through the inductive power transmitter corresponding to the small value by comparing the first and second power output strengths.
  • the controller 450 may control the wireless power to be transmitted by a wireless power transmission method that transmits less power in order to maintain the same charging efficiency among the plurality of wireless power transmission methods. Therefore, power consumption of the wireless power transmitter 400 may be minimized.
  • control unit 450 activates the first inductive power transmitter 410 and the second inductive power transmitter 420 in order to control the output power intensity to be measured.
  • FIG. 5 is a flowchart illustrating a wireless power transmission method in a wireless power transmission apparatus according to an embodiment of the present invention.
  • the apparatus for transmitting wireless power may transmit PMA pings and WPC pings at predetermined time intervals in a step S501.
  • the apparatus for transmitting power wirelessly may identify an electromagnetic induction scheme supported by the apparatus for receiving power wirelessly (S503).
  • the wireless power transmission apparatus may start charging by performing a wireless power transmission procedure in a WPC manner (S507).
  • the apparatus for transmitting power wirelessly may determine whether power control is stabilized in the power transmission step 240.
  • the wireless power transmitter may measure the transmission power intensity (a) for the WPC method (S511).
  • the wireless power transmission apparatus may deactivate WPC wireless power transmission, activate PMA wireless power transmission, and perform charging by performing a wireless power transmission procedure in a PMA manner (S513 to S515).
  • the wireless power transmitter may check whether the power control is stabilized in the power transmission step 340 (S517).
  • the wireless power transmission apparatus may measure the transmission power intensity b for the PMA method (S519).
  • the apparatus for transmitting power wirelessly may compare the transmission power strength (a) for the WPC method and the transmission power strength (b) for the PMA method (S512).
  • the wireless power transmitter may deactivate the activated PMA method and then perform wireless power transmission in the WPC method. It may be (S523).
  • the wireless power transmitter uses the PMA method that is already activated. Can be transmitted (S525).
  • step 505 If it is determined in step 505 that the dual mode is not, it may be checked whether the electromagnetic induction method supported by the wireless power transmitter is the WPC method (S527).
  • the wireless power transmitter may perform wireless power transfer in the WPC scheme.
  • the wireless power transmitter may perform wireless power transfer in the PMA scheme.
  • FIG. 6 is a diagram for describing a wireless power transmission method in a wireless power transmission apparatus supporting dual mode according to an embodiment of the present invention.
  • the apparatus for transmitting wireless power may cross-transmit a WPC ping and a PMA ping at a predetermined cycle.
  • the wireless power transmitter may deactivate the PMA scheme and perform wireless power transfer control in the WPC scheme.
  • the apparatus for transmitting wireless power may perform the wireless power transmission control by sequentially performing the WPC ping step 220, the identification and configuration step 230, and the power transmission step 240. .
  • FIG. 7 is a diagram for describing a wireless power transmission method in a wireless power transmission apparatus supporting dual mode according to another embodiment of the present invention.
  • the apparatus for transmitting wireless power may cross-transmit a WPC ping and a PMA ping at regular intervals.
  • the wireless power transmitter may deactivate the WPC scheme and perform wireless power transfer control in the PMA scheme.
  • the apparatus for transmitting wireless power may perform the wireless power transmission control by sequentially performing the PMA ping step 320, the identification step 330, and the power transmission step 340.
  • FIG. 8 is a diagram for describing a wireless power transmission method in a wireless power transmission apparatus supporting dual mode according to another embodiment of the present invention.
  • the apparatus for transmitting wireless power may cross-transmit a ping and a PMA ping at regular intervals.
  • the wireless power transmitter deactivates the PMA scheme and controls the wireless power transfer by the WPC scheme.
  • the output power intensity a for the WPC method may be measured.
  • the wireless power transmitter may deactivate the WPC scheme and control the wireless power transfer using the PMA scheme to measure the transmission power intensity b for the PMA scheme at the time of stabilization of the power control.
  • the wireless power transmitter determines a wireless power transmission method having good power transmission efficiency by comparing the WPC transmission power strength (a) and the PMA transmission power strength (b), and receives the corresponding wireless power according to the determined wireless power transmission method. It is possible to control the charging of the device to be performed.
  • the wireless power transmission apparatus may determine that the wireless power transmission method capable of transmitting less wireless power in order to maintain the same charging efficiency has good power transmission efficiency.
  • the method according to the embodiment described above may be stored in a computer-readable recording medium that is produced as a program for execution on a computer, and examples of the computer-readable recording medium include ROM, RAM, CD-ROM, magnetic tape , Floppy disks, optical data storage devices, and the like, and also include those implemented in the form of carrier waves (eg, transmission over the Internet).
  • the computer readable recording medium can be distributed over network coupled computer systems so that the computer readable code is stored and executed in a distributed fashion.
  • functional programs, codes, and code segments for implementing the above-described method may be easily inferred by programmers in the art to which the embodiments belong.
  • the present invention relates to a wireless power transmission technology, and can be applied to a wireless power transmission method using a plurality of wireless power transmission methods, and apparatus and system therefor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

본 발명은 멀티 모드 무선 전력 전송 방법 및 그를 위한 장치를 제공할 수 있다. 본 발명에 일 실시예에 따른 무선 전력 송신 장치에서의 무선 전력 전송 방법은 무선 전력 수신 장치를 감지하는 단계와 상기 감지된 무선 전력 수신 장치에 의해 지원되는 무선 전력 전송 방식을 식별하는 단계와 상기 식별된 무선 전력 전송 방식으로 무선 충전을 수행하는 단계를 포함할 수 있다. 따라서, 본 발명은 복수의 무선 전력 전송 방식을 지원하는 무선 전력 송신 장치와 무선 전력 수신 장치 사이의 충전 효율을 극대화시킬 수 있는 장점이 있다.

Description

무선 전력 전송 방법 및 이를 위한 장치
본 발명은 무선 전력 전송 기술에 관한 것으로서, 상세하게, 복수의 무선 전력 전송 방식을 지원하는 무선 전력 송신기에서의 무선 전력 전송 방법과 그를 위한 장치에 관한 것이다.
최근 정보 통신 기술이 급속도로 발전함에 따라, 정보 통신 기술을 기반으로 하는 유비쿼터스 사회가 이루어지고 있다.
언제 어디서나 정보통신 기기들이 접속되기 위해서는 사회 모든 시설에 통신 기능을 가진 컴퓨터 칩을 내장시킨 센서들이 설치되어야 한다. 따라서 이들 기기나 센서의 전원 공급 문제는 새로운 과제가 되고 있다. 또한 휴대폰뿐만 아니라 블루투스 핸드셋과 아이팟 같은 뮤직 플레이어 등의 휴대기기 종류가 급격히 늘어나면서 배터리를 충전하는 작업이 사용자에게 시간과 수고를 요구하고 됐다. 이러한 문제를 해결하는 방법으로 무선 전력 전송 기술이 최근 들어 관심을 받고 있다.
무선 전력 전송 기술(wireless power transmission 또는 wireless energy transfer)은 자기장의 유도 원리를 이용하여 무선으로 송신기에서 수신기로 전기 에너지를 전송하는 기술로서, 이미 1800년대에 전자기유도 원리를 이용한 전기 모터나 변압기가 사용되기 시작했고, 그 후로는 라디오파나 레이저와 같은 전자파를 방사해서 전기에너지를 전송하는 방법도 시도되었다. 우리가 흔히 사용하는 전동칫솔이나 일부 무선면도기도 실상은 전자기유도 원리로 충전된다.
현재까지 무선을 이용한 에너지 전달 방식은 크게 자기 유도 방식, 자기 공진(Electromagnetic Resonance) 방식 및 단파장 무선 주파수를 이용한 RF 전송 방식 등으로 구분될 수 있다.
자기 유도 방식은 두 개의 코일을 서로 인접시킨 후 한 개의 코일에 전류를 흘려보내면 이 때 발생한 자속(MagneticFlux)이 다른 코일에 기전력을 일으키는 현상을 사용한 기술로서, 휴대폰과 같은 소형기기를 중심으로 빠르게 상용화가 진행되고 있다. 자기 유도 방식은 최대 수백 키로와트(kW)의 전력을 전송할 수 있고 효율도 높지만 최대 전송 거리가 1센티미터(cm) 이하이므로 일반적으로 충전기나 바닥에 인접시켜야 하는 단점이 있다.
자기 공진 방식은 전자기파나 전류 등을 활용하는 대신 전기장이나 자기장을 이용하는 특징이 있다. 자기 공진 방식은 전자파 문제의 영향을 거의 받지 않으므로 다른 전자 기기나 인체에 안전하다는 장점이 있다. 반면, 한정된 거리와 공간에서만 활용할 수 있으며 에너지 전달 효율이 다소 낮다는 단점이 있다.
단파장 무선 전력 전송 방식-간단히, RF 전송 방식-은 에너지가 라디오 파(RadioWave)형태로 직접 송수신될 수 있다는 점을 활용한 것이다. 이 기술은 렉테나(rectenna)를 이용하는 RF 방식의 무선 전력 전송 방식으로서, 렉테나는 안테나(antenna)와 정류기(rectifier)의 합성어로서 RF 전력을 직접 직류 전력으로 변환하는 소자를 의미한다. 즉, RF 방식은 AC 라디오파를 DC로 변환하여 사용하는 기술로서, 최근 효율이 향상되면서 상용화에 대한 연구가 활발히 진행되고 있다.
무선 전력 전송 기술은 모바일 뿐만 아니라 IT, 철도, 가전 산업 등 산업 전반에 다양하게 활용될 수 있다.
하지만, 종래에는 복수의 무선 충전 방식을 지원하는 무선 전력 전송 방법이 제공되지 않았다.
본 발명은 상술한 종래 기술의 문제점을 해결하기 위해 고안된 것으로, 본 발명의 목적은 멀티 모드를 지원하는 무선 전력 송신 장치에서의 무선 전력 전송 방법과 그를 위한 장치를 제공하는 것이다.
본 발명의 다른 목적은 전력 전송 효율을 향상시키는 것이 가능한 멀티 모드 무선 전력 전송 방법 및 그를 위한 장치를 제공하는 것이다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명은 멀티 모드 무선 전력 전송 방법 및 그를 위한 장치를 제공할 수 있다.
본 발명에 일 실시예에 따른 무선 전력 송신 장치에서의 무선 전력 전송 방법은 무선 전력 수신 장치를 감지하는 단계와 상기 감지된 무선 전력 수신 장치에 의해 지원되는 무선 전력 전송 방식을 식별하는 단계와 상기 식별된 무선 전력 전송 방식으로 무선 충전을 수행하는 단계를 포함할 수 있다.
또한, 제1 내지 제n 무선 전력 전송 방식에 대응되는 제1 내지 제n 핑 신호를 소정 주기로 교차 전송하여 상기 무선 전력 수신 장치를 감지할 수 있다.
또한, 상기 제1 내지 제n 핑 신호에 대응되는 응답 시그널에 기반하여 상기 무선 전력 수신 장치에 의해 지원되는 상기 무선 전력 전송 방식을 식별할 수 있다.
또한, 상기 지원되는 무선 전력 전송 방식이 복수개인 것으로 식별되면, 상기 무선 전력 전송 방식 별 전력 전송 효율을 측정하는 단계를 더 포함할 수 있다.
여기서, 상기 전력 전송 효율은 상기 무선 전력 전송 방식 별 전력 전송 중, 전력 제어가 안정화된 시점에 측정된 송출 전력 세기에 기반하여 측정될 수 있다.
또한, 상기 송출 전력 세기가 가장 작은 무선 전력 전송 방식으로 상기 무선 충전을 수행할 수 있다.
또한, 상기 무선 전력 전송 방식은 WPC 표준에 정의된 전자기 유도 방식, PMA 표준에 정의된 전자기 유도 방식 중 적어도 어느 하나를 포함할 수 있다.
본 발명의 다른 일 실시예는 상기 무선 전력 전송 방법들 중 어느 하나의 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체를 제공할 수 있다.
본 발명의 또 다른 일 실시예에 따른 무선 전력을 송신하는 장치는 무선 전력 수신 장치를 감지하는 수단과 상기 감지된 무선 전력 수신 장치에 의해 지원되는 무선 전력 전송 방식을 식별하는 수단과 상기 식별된 무선 전력 전송 방식으로 무선 충전을 수행하는 수단을 포함할 수 있다.
또한, 제1 내지 제n 무선 전력 전송 방식에 대응되는 제1 내지 제n 핑 신호를 소정 주기로 교차 전송하여 상기 무선 전력 수신 장치를 감지할 수 있다.
또한, 상기 제1 내지 제n 핑 신호에 대응되는 응답 시그널에 기반하여 상기 무선 전력 수신 장치에 의해 지원되는 상기 무선 전력 전송 방식을 식별할 수 있다.
또한, 상기 지원되는 무선 전력 전송 방식이 복수개인 것으로 식별되면, 상기 무선 전력 전송 방식 별 전력 전송 효율을 측정하는 수단을 더 포함할 수 있다.
여기서, 상기 전력 전송 효율은 상기 무선 전력 전송 방식 별 전력 전송 중, 전력 제어가 안정화된 시점에 측정된 송출 전력 세기에 기반하여 측정될 수 있다.
또한, 상기 송출 전력 세기가 가장 작은 무선 전력 전송 방식으로 상기 무선 충전을 수행할 수 있다.
또한, 상기 무선 전력 전송 방식은 WPC 표준에 정의된 전자기 유도 방식, PMA 표준에 정의된 전자기 유도 방식 중 적어도 어느 하나를 포함할 수 있다.
상기 본 발명의 양태들은 본 발명의 바람직한 실시예들 중 일부에 불과하며, 본원 발명의 기술적 특징들이 반영된 다양한 실시예들이 당해 기술분야의 통상적인 지식을 가진 자에 의해 이하 상술할 본 발명의 상세한 설명을 기반으로 도출되고 이해될 수 있다.
본 발명에 따른 방법 및 장치에 대한 효과에 대해 설명하면 다음과 같다.
본 발명은 멀티 모드 무선 전력 전송 방법 및 그를 위한 장치 및 시스템을 제공하는 장점이 있다.
또한, 본 발명은 전력 전송 효율을 향상시키는 것이 가능한 멀티 모드 무선 전력 전송 방법 및 그를 위한 장치 및 시스템을 제공하는 장점이 있다.
또한, 본 발명은 대역외 통신을 통해 무선 충전 방식 별 충전 효율을 비교하고, 이를 기반으로 최적의 무선 충전 방식을 적응적으로 선택함으로써, 고효율의 무선 충전 가능하게 하는 장점이 있다.
또한, 본 발명에 따른 복수의 무선 전력 전송 방식을 지원하는 무선 전력 송신 장치는 최적의 충전 효율을 유지함으로써, 충전 시간을 최소화시킬 수 있는 장점이 있다.
또한, 본 발명에 따른 무선 전력 송신 장치는 항상 최적의 충전 효율을 유지함으로써, 전력 낭비를 최소화시킬 수 있는 장점이 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
이하에 첨부되는 도면들은 본 발명에 관한 이해를 돕기 위한 것으로, 상세한 설명과 함께 본 발명에 대한 실시예들을 제공한다. 다만, 본 발명의 기술적 특징이 특정 도면에 한정되는 것은 아니며, 각 도면에서 개시하는 특징들은 서로 조합되어 새로운 실시예로 구성될 수 있다.
도 1은 본 발명의 일 실시 예에 따른 무선 전력 전송 시스템을 설명하기 위한 도면이다.
도 2는 WPC 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 3은 PMA 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 4는 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 내부 구조를 설명하기 위한 블록도이다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 순서도이다.
도 6은 본 발명의 일 실시예에 따른 듀얼 모드를 지원하는 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 도면이다.
도 7은 본 발명의 다른 일 실시예에 따른 듀얼 모드를 지원하는 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 도면이다.
도 8은 본 발명의 또 다른 일 실시예에 따른 듀얼 모드를 지원하는 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 도면이다.
본 발명에 일 실시예에 따른 무선 전력 송신 장치에서의 무선 전력 전송 방법은 무선 전력 수신 장치를 감지하는 단계와 상기 감지된 무선 전력 수신 장치에 의해 지원되는 무선 전력 전송 방식을 식별하는 단계와 상기 식별된 무선 전력 전송 방식으로 무선 충전을 수행하는 단계를 포함할 수 있다.
이하, 본 발명의 실시예들이 적용되는 장치 및 다양한 방법들에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
실시예의 설명에 있어서, 각 구성 요소의 " 상(위) 또는 하(아래)"에 형성되는 것으로 기재되는 경우에 있어, 상(위) 또는 하(아래)는 두개의 구성 요소들이 서로 직접 접촉되거나 하나 이상의 또 다른 구성 요소가 두 개의 구성 요소들 사이에 배치되어 형성되는 것을 모두 포함한다. 또한 “상(위) 또는 하(아래)”으로 표현되는 경우 하나의 구성 요소를 기준으로 위쪽 방향뿐만 아니라 아래쪽 방향의 의미도 포함할 수 있다.
실시예의 설명에 있어서, 무선 전력 시스템상에서 무선 전력을 송신하는 장치는 설명의 편의를 위해 무선 파워 송신기, 무선 파워 송신 장치, 무선 전력 송신 장치, 무선 전력 송신기, 송신단, 송신기, 송신 장치, 송신측, 무선 파워 전송 장치, 무선 파워 전송기 등을 혼용하여 사용하기로 한다. 또한, 무선 전력 송신 장치로부터 무선 전력을 수신하는 장치에 대한 표현으로 설명의 편의를 위해 무선 전력 수신 장치, 무선 전력 수신기, 무선 파워 수신 장치, 무선 파워 수신기, 수신 단말기, 수신측, 수신 장치, 수신기 등이 혼용되어 사용될 수 있다.
본 발명에 따른 송신기는 패드 형태, 거치대 형태, AP(Access Point) 형태, 소형 기지국 형태, 스텐드 형태, 천장 매립 형태, 벽걸이 형태 등으로 구성될 수 있으며, 하나의 송신기는 복수의 무선 전력 수신 장치에 파워를 전송할 수도 있다. 이를 위해, 송신기는 적어도 하나의 무선 파워 전송 수단을 구비할 수도 있다. 여기서, 무선 파워 전송 수단은 전력 송신단 코일에서 자기장을 발생시켜 그 자기장의 영향으로 수신단 코일에서 전기가 유도되는 전자기유도 원리를 이용하여 충전하는 전자기 유도 방식에 기반한 다양한 무전 전력 전송 표준이 사용될 수 있다. 여기서, 무선파워 전송 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 수신기는 적어도 하나의 무선 전력 수신 수단이 구비될 수 있으며, 2개 이상의 송신기로부터 동시에 무선 파워를 수신할 수도 있다. 여기서, 무선 전력 수신 수단은 무선 충전 기술 표준 기구인 WPC(Wireless Power Consortium) 및 PMA(Power Matters Alliance)에서 정의된 전자기 유도 방식의 무선 충전 기술을 포함할 수 있다.
본 발명에 따른 수신기는 휴대폰(mobile phone), 스마트폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털방송용 단말기, PDA(Personal Digital Assistants), PMP(Portable Multimedia Player), 네비게이션, MP3 player, 전동 칫솔, 전자 태그, 조명 장치, 리모콘, 낚시찌 등의 소형 전자 기기 등에 사용될 수 있으나, 이에 국한되지는 아니하며 본 발명에 따른 무선 전력 수신 수단이 장착되어 배터리 충전이 가능한 기기라면 족하다.
도 1은 본 발명의 일 실시 예에 따른 무선 전력 전송 시스템을 설명하기 위한 도면이다.
도 1을 참고하면, 실시예에 따른 무선 전력 전송 시스템은 전력 소스(100), 무선 전력 송신 장치(200), 무선 전력 수신 장치(300) 및 부하단(400)를 포함할 수 있다.
실시예에서 전력 소스(100)는 무선 전력 송신 장치(200)에 포함될 수 있지만, 이에 대해서는 한정하지 않는다.
특히, 일 실시예에 따른 무선 전력 송신 장치(200)와 무선 전력 수신 장치(300)는 복수의 무선 전력 전송 수단이 구비될 수 있다.
또한, 일 실시예에 따른 무선 전력 송신 장치(200)와 무선 전력 수신 장치(300)는 인밴드 통신을 통해 제어 신호 또는 정보를 교환할 수도 있다. 여기서, 인밴드 통신은 펄스 폭 변조(Pulse Width Modulation) 방식으로 수행될 수 있다. 일 예로, 무선 전력 수신 장치(300)는 수신 코일을 통해 유도된 전류를 소정 패턴으로 ON/OFF 스위칭하여 궤환 신호(feedback signal)를 생성함으로써 무선 전력 송신 장치(200)에 각종 제어 신호 및 정보를 전송할 수 있다.
일 예로, WPC 표준의 경우, 무선 전력 수신 장치(300)에 의해 전송되는 정보는 수신 전력 세기 정보를 포함할 수 있다. 이때, 무선 전력 송신 장치(200)는 수신 전력 세기 정보에 기반하여 충전 효율 또는 전력 전송 효율을 산출할 수 있다.
하지만, 전자기 유도 방식을 지원하는 또 다른 표준인 PMA의 경우, 무선 전력 송신 장치(200)가 수신단에서의 수신 전력 세기를 확인할 수 없다. 따라서, PMA 방식에 있어서, 무선 전력 송신 장치(200)는 무선 전력 수신 장치(300)로부터 수신되는 피드백 정보에 기반하여 충전 효율을 산출할 수 없는 문제점이 있다.
이하에서는, 전자기 유도 방식을 지원하는 WPC 및 PMA 표준에 정의된 무선 전력 전송 절차를 후술할 도 2 내지 도 3을 참조하여 설명하기로 한다.
도 2는 WPC 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 2를 참조하면, WPC 표준에 따른 송신기로부터 수신기로의 파워 전송은 크게 선택 단계(Selection Phase, 210), 핑 단계(Ping Phase, 220), 식별 및 구성 단계(Identification and Configuration Phase, 230), 파워 전송 단계(Power Transfer Phase, 240) 단계로 구분될 수 있다.
선택 단계(210)는 파워 전송을 시작하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 선택 단계(210)에서 송신기는 인터페이스 표면에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 인터페이스 표면에 물체가 놓여진 것이 감지되면, 핑 단계(220)로 천이할 수 있다. 선택 단계(210)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping)을 전송하며, 송신 코일의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
핑 단계(220)에서 송신기는 물체가 감지되면, 디지털 핑(Digital Ping)을 전송한다. 핑 단계(220)에서 송신기는 디지털 핑에 대한 응답 시그널을 수신기로부터 수신하지 못하면, 선택 단계(210)로 천이할 수 있다. 또한, 핑 단계(220)에서 송신기는 수신기로부터 파워 전송이 완료되었음을 지시하는 신호-즉, 충전 완료 신호-를 수신하면, 선택 단계(210)로 천이할 수도 있다.
핑 단계(220)가 완료되면, 송신기는 수신기 식별 및 수신기 구성 및 상태 정보를 수집하기 위한 식별 및 구성 단계(230)로 천이할 수 있다.
식별 및 구성 단계(230)에서 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 패킷 전송 오류가 있거나(transmission error), 파워 전송 계약이 설정되지 않으면(no power transfer contract) 선택 단계(210)로 천이할 수 있다.
수신기에 대한 식별 및 구성이 완료되면, 송신기는 무선 전력을 전송하는 파워 전송 단계(240)로 천이할 수 있다.
파워 전송 단계(240)에서, 송신기는 원하지 않은 패킷이 수신되거나(unexpected packet), 미리 정의된 시간 동안 원하는 패킷이 수신되지 않거나(time out), 기 설정된 파워 전송 계약에 대한 위반이 발생되거나(power transfer contract violation), 충전이 완료된 경우, 선택 단계(210)로 천이할 수 있다.
또한, 파워 전송 단계(240)에서, 송신기는 송신기 상태 변화 등에 따라 파워 전송 계약을 재구성할 필요가 있는 경우, 식별 및 구성 단계(230)로 천이할 수 있다.
상기한 파워 전송 계약은 송신기와 수신기의 상태 및 특성 정보에 기반하여 설정될 수 있다. 일 예로, 송신기 상태 정보는 최대 전송 가능한 파워량에 대한 정보, 최대 수용 가능한 수신기 개수에 대한 정보 등을 포함할 수 있으며, 수신기 상태 정보는 요구 전력에 대한 정보 등을 포함할 수 있다.
도 3은 PMA 표준에 정의된 무선 전력 전송 절차를 설명하기 위한 상태 천이도이다.
도 3을 참조하면, PMA 표준에 따른 송신기로부터 수신기로의 파워 전송은 크게 대기 단계(Standby Phase, 310), 디지털 핑 단계(Digital Ping Phase, 320), 식별 단계(Identification Phase, 330), 파워 전송 단계(Power Transfer Phase, 340) 단계로 구분될 수 있다.
대기 단계(310)는 파워 전송을 위한 수신기 식별 절차를 수행하거나 파워 전송을 유지하는 동안 특정 오류 또는 특정 이벤트가 감지되면, 천이되는 단계일 수 있다. 여기서, 특정 오류 및 특정 이벤트는 이하의 설명을 통해 명확해질 것이다. 또한, 대기 단계(310)에서 송신기는 충전 표면(Charging Surface)에 물체가 존재하는지를 모니터링할 수 있다. 만약, 송신기가 충전 표면에 물체가 놓여진 것이 감지되거나 RXID 재시도가 진행중인 경우, 디지털 핑 단계(320)로 천이할 수 있다. 여기서, RXID는 PMA 호환 수신기에 할당되는 고유 식별자이다. 대기 단계(310)에서 송신기는 매우 짧은 펄스의 아날로그 핑(Analog Ping)을 전송하며, 송신 코일의 전류 변화에 기반하여 인터페이스 표면의 활성 영역(Active Area)에 물체가 존재하는지를 감지할 수 있다.
디지털 핑 단계(320)로 천이된 송신기는 감지된 물체가 PMA 호환 수신기인지를 식별하기 위한 디지털 핑 신호를 송출한다. 송신기가 전송한 디지털 핑 신호에 의해 수신단에 충분한 전력이 공급되는 경우, 수신기는 수신된 디지털 핑 신호를 PMA 통신 프로토콜에 따라 변조하여 소정 응답 시그널을 송신기에 전송할 수 있다.
디지털 핑 단계(320)에서 수신기는 유효한 응답 시그널이 수신되면, 식별 단계(330)로 천이할 수 있다.
만약, 디지털 핑 단계(320)에서, 응답 시그널이 수신되지 않거나, PMA 호환 수신기가 아닌 것으로 확인되면-즉, FOD(Foreign Object Detection)인 경우-, 송신기는 대기 단계(310)로 천이할 수 있다. 일 예로, FO(Foreign Object)는 동전, 키 등을 포함하는 금속성 물체일 수 있다.
식별 단계(330)에서, 송신기는 수신기 식별 절차가 실패하거나 수신기 식별 절차를 재수행하여야 하는 경우 및 미리 정의된 시간 동안 수신기 식별 절차를 완료하지 못한 경우에 대기 단계(310)로 천이할 수 있다.
송신기는 수신기 식별에 성공하면, 식별 단계(330)에서 파워 전송 단계(340)로 천이하여 충전을 개시할 수 있다.
파워 전송 단계(340)에서, 송신기는 원하는 신호가 미리 정해진 시간 이내에 수신되지 않거나(Time Out), FO가 감지되거나, 송신 코일의 전압이 미리 정의된 기준치를 초과하는 경우, 대기 단계(310)으로 천이할 수 있다.
또한, 파워 전송 단계(340)에서, 송신기는 내부 구비된 온도 센서에 의해 감지된 온도가 기준치를 초과하거나 충전이 완료된 경우, 충전 완료 단계(350)로 천이할 수 있다.
충전 완료 단계(350)에서, 송신기는 수신기가 충전 표면에서 제거된 것이 확인되면, 대기 상태(310)으로 천이할 수 있다.
또한, 송신기는 Over Temperature 상태에서, 일정 시간 경과 후 측정된 온도가 기준치 이하로 떨어진 경우, 충전 완료 단계(350)에서 디지털 핑 단계(320)로 천이할 수 있다.
디지털 핑 단계(350) 또는 파워 전송 단계(340)에서, 송신기는 수신기로부터 EOC(End Of Charge) 요청이 수신되면, 충전 완료 단계(350)로 천이할 수도 있다.
도 4는 본 발명의 일 실시예에 따른 무선 전력 송신 장치의 내부 구조를 설명하기 위한 블록도이다.
도 4를 참조하면, 무선 전력 송신 장치(400)는 제1 유도 파워 전송부(410), 제2 유도 파워 전송부(420), 송출 전력 계산부(430), 통신부(440)및 제어부(450)를 포함하여 구성될 수 있다.
제1 유도 파워 전송부(410)는 WPC 표준에 기반한 핑 신호 전송-이하, 간단히, WPC 핑이라 명함- 및 무선 전력 전송을 수행할 수 있다.
제2 유도 파워 전송부(420)는 PMA 표준에 기반한 핑 신호 전송-이하, 간단히, PMA 핑이라 명함- 및 무선 전력 전송을 수행할 수 있다.
송출 전력 계산부(420)는 파워 전송 단계에서 인밴드 시그널링을 통한 전력 제어에 따라 송출 무선 전력이 안정화된 경우, 상기 제1 유도 파워 전송부(410) 및/또는 상기 제2 유도 파워 전송부(420)의 송신 코일에 인가되는 전력의 세기를 측정하는 기능을 수행할 수 있다. 일 예로, 송출 무선 전력의 안정화 여부는 송출 무선 전력의 세기 변화가 소정 기준치 이하인 경우에 안정화된 것으로 판단할 수 있다. 다른 일예로, 송출 무선 전력의 안정화 여부는 소정 시간 동안 미리 설정된 소정 범위 이내에서 전력 제어가 이루어지고 있는 경우 안정화된 것으로 판단할 수도 있다.
통신부(440)는 인밴드를 통해 특정 제어 신호 및 상태 정보를 송출하거나 수신하는 기능을 수행할 수 있다.
제어부(450)는 무선 전력 송신 장치(400)의 전체적인 동작을 제어할 수 있다.
본 발명에 따른, 제어부(450)는 무선 전력 수신 장치에서 지원되는 무선 전력 전송 기술을 식별하기 위해, WPC 핑 및 PMA 핑의 전송 타이밍을 제어할 수 있다.
일 예로, 제어부(450)는 무선 전력 수신 장치에서 지원 가능한 무선 전력 전송 기술을 확인하기 위해 PMA 핑과 WPC 핑이 소정 주기로 교차하여 전송될 수 있도록 제1 유도 파워 전송부(410) 및 제2 유도 파워 전송부(420)의 동작을 제어할 수 있다.
또한, 제어부(450)는 무선 전력 수신 장치에서 지원되는 무선 전력 전송 기술이 식별되면, 식별 결과에 따라 제1 유도 파워 전송부(410) 및/또는 제2 유도 파워 전송부(420)를 제어하여 무선 전력이 전송되도록 제어할 수 있다. 일 예로, 감지된 무선 전력 수신 장치가 PMA 호환 단말이고 WPC 호환 단말이 아닌 것으로 식별되면, 제어부(450)는 제2 유도 파워 전송부(420)를 통해 무선 전력이 송신되도록 제어할 수 있다.
또한, 감지된 무선 전력 수신 장치가 WPC 호환 단말이고 PMA 호환 단말이 아닌 것으로 식별되면, 제어부(450)는 제1 유도 파워 전송부(410)를 통해 무선 전력이 송신되도록 제어할 수 있다.
특히, 감지된 무선 전력 수신 장치가 PMA 호환 단말일 뿐만 아니라 WPC 호환 단말인 경우-즉, 듀얼 모드 단말인 경우-, 제어부(450)는 미리 정의된 순서에 따라 제1 유도 파워 전송부(410)와 제2 유도 파워 전송부(420)를 순차적으로 활성화시켜 무선 전력을 전송할 수도 있다.
일 예로, 감지된 무선 전력 수신 장치가 듀얼 모드 단말인 것이 확인되면, 제어부(420)는 제1 유도 파워 전송부(410)를 활성화하여 핑 단계(220), 식별 및 구성 단계(230) 및 파워 전송 단계(240)가 순차적으로 수행되도록 제어하며, 파워 전송 단계(240) 동안 전력 제어가 안정되는 시점에서 송출 전력 계산부(430)가 제1 유도 파워 전송부(410)의 송신 코일에 인가되는 전력의 세기를 측정하도록 제어할 수 있다. 이하 설명의 편의를 위해, 전력 제어 안정화 시점에 측정된 제1 유도 파워 전송부(410)의 송출 전력 세기를 제1 송출 전력 세기라 명하기로 한다.
연이어, 제어부(450)는 제2 유도 파워 전송부(420)를 활성화하여 디지털 핑 단계(320), 식별 단계(330) 및 파워 전송 단계(340)가 순차적으로 수행되도록 제어하며, 파워 전송 단계(340) 동안 전력 제어가 안정되는 시점에서 송출 전력 계산부(430)가 제2 유도 파워 전송부(420)의 송신 코일에 인가되는 전력의 세기를 측정하도록 제어할 수 있다. 이하 설명의 편의를 위해, 전력 제어 안정화 시점에 측정된 제2 유도 파워 전송부(420)의 송출 전력 세기를 제2 송출 전력 세기라 명하기로 한다.
이 후, 제어부(450)는 제1 송출 전력 세기와 제2 송출 전력 세기를 비교하여 작은 값에 대응되는 유도 파워 전송부를 통해 해당 무선 전력 수신 장치에 무선 전력이 송신될 수 있도록 제어할 수 있다.
즉, 제어부(450)는 복수의 무선 전력 전송 방법 중 동일 충전 효율을 유지하기 위해 보다 적은 전력을 송출하는 무선 전력 전송 방식으로 무선 전력이 전송되도록 제어할 수 있다. 따라서, 무선 전력 송신 장치(400)의 소모 전력이 최소화될 수 있다.
이상의 실시예에서는, 듀얼 모드 단말인 경우, 제어부(450)가 제1 유도 파워 전송부(410), 제2 유도 파워 전송부(420) 순으로 활성화하여 송출 전력 세기가 측정되도록 제어하는 것으로 설명되어 있으나, 이는 하나의 실시예에 불과하며, 본 발명의 다른 일 실시예는 제2 유도 파워 전송부(420), 제1 유도 파워 전송부(410) 순으로 활성화하여 송출 전력 세기가 측정되도록 제어할 수도 있다.
도 5는 본 발명의 일 실시예에 따른 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 순서도이다.
도 5를 참조하면, 무선 전력 송신 장치는 PMA 핑과 WPC 핑을 소정 시간 간격을 두고 교차로 전송할 수 있다(S501).
무선 전력 송신 장치는 무선 전력 수신 장치에 의해 지원되는 전자기 유도 방식을 식별할 수 있다(S503).
식별 결과, 듀얼 모드인 경우, 무선 전력 송신 장치는 WPC 방식으로 무선 전력 전송 절차를 수행하여 충전을 시작 할 수 있다(S507).
무선 전력 송신 장치는 전력 전송 단계(240)에서 전력 제어가 안정화되었는지 여부를 확인할 수 있다(S509).
확인 결과, 전력 제어가 안정화된 경우, 무선 전력 송신 장치는 WPC 방식에 대한 송출 전력 세기(a)를 측정할 수 있다(S511).
이후, 무선 전력 송신 장치는 WPC 무선 전력 전송을 비활성화시키고, PMA 무선 전력 전송을 활성화하여 PMA 방식으로 무선 전력 전송 절차를 수행하여 충전을 시작할 수 있다(S513 내지 S515).
무선 전력 송신 장치는 전력 전송 단계(340)에서 전력 제어가 안정화되었는지 여부를 확인할 수 있다(S517).
확인 결과, 전력 제어가 안정화된 경우, 무선 전력 송신 장치는 PMA 방식에 대한 송출 전력 세기(b)를 측정할 수 있다(S519).
무선 전력 송신 장치는 WPC 방식에 대한 송출 전력 세기(a)와 PMA 방식에 대한 송출 전력 세기(b)를 비교할 수 있다(S512).
비교 결과, WPC 방식에 대한 송출 전력 세기(a)가 PMA 방식에 대한 송출 전력 세기(b)보다 작으면, 무선 전력 송신 장치는 활성화된 PMA 방식을 비활성화시킨 후 WPC 방식으로 무선 전력 전송을 수행할 수 있다(S523).
만약, 상기 512 단계에서의 비교 결과, WPC 방식에 대한 송출 전력 세기(a)가 PMA 방식에 대한 송출 전력 세기(b)보다 크면, 무선 전력 송신 장치는 이미 활성화된 PMA 방식을 이용하여 무선 전력을 전송할 수 있다(S525).
만약, 상기한 505 단계의 판단 결과, 듀얼 모드가 아닌 경우, 무선 전력 송신 장치에 의해 지원 가능한 전자기 유도 방식이 WPC 방식인지 확인할 수 있다(S527).
확인 결과, 무선 전력 수신 장치가 WPC 방식만을 지원하는 경우, 무선 전력 송신 장치는 WPC 방식으로 무선 전력 전송을 수행할 수 있다. 반면, 무선 전력 수신 장치가 PMA 방식만을 지원하는 경우, 무선 전력 송신 장치는 PMA 방식으로 무선 전력 전송을 수행할 수 있다.
도 6은 본 발명의 일 실시예에 따른 듀얼 모드를 지원하는 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 도면이다.
도 6을 참조하면, 무선 전력 송신 장치는 WPC 핑과 PMA 핑을 일정 주기로 교차 전송할 수 있다. 교차 전송 중, 무선 전력 송신 장치는 감지된 무선 전력 수신 장치가 WPC 방식만을 지원하는 것으로 판단되면, PMA 방식을 비활성화시키고 WPC 방식으로 무선 전력 전송 제어를 수행할 수 있다. 이때, 무선 전력 송신 장치는 도 6에 도시된 바와 같이, WPC 핑 단계(220), 식별 및 구성 단계(230) 및 파워 전송 단계(240)를 순차적으로 수행하여 무선 전력 전송 제어를 수행할 수 있다.
도 7은 본 발명의 다른 일 실시예에 따른 듀얼 모드를 지원하는 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 도면이다.
도 7을 참조하면, 무선 전력 송신 장치는 WPC 핑과 PMA 핑을 일정 주기로 교차 전송할 수 있다. 교차 전송 중, 무선 전력 송신 장치는 감지된 무선 전력 수신 장치가 PMA 방식만을 지원하는 것으로 판단되면, WPC 방식을 비활성화시키고 PMA 방식으로 무선 전력 전송 제어를 수행할 수 있다. 이때, 무선 전력 송신 장치는 PMA 핑 단계(320), 식별 단계(330) 및 파워 전송 단계(340)를 순차적으로 수행하여 무선 전력 전송 제어를 수행할 수 있다.
도 8은 본 발명의 또 다른 일 실시예에 따른 듀얼 모드를 지원하는 무선 전력 송신 장치에서의 무선 전력 전송 방법을 설명하기 위한 도면이다.
도 8을 참조하면, 무선 전력 송신 장치는 핑과 PMA 핑을 일정 주기로 교차 전송할 수 있다.
교차 전송 동안, 무선 전력 송신 장치는 감지된 무선 전력 수신 장치가 WPC 방식과 PMA 방식을 모두 지원하는 듀얼 모드 무선 전력 수신 장치인 것으로 판단되면, PMA 방식을 비활성화시키고 WPC 방식으로 무선 전력 전송을 제어하여 전력 제어 안정화 시점에서 WPC 방식에 대한 송출 전력 세기(a)를 측정할 수 있다.
연이어, 무선 전력 송신 장치는 WPC 방식을 비활성화시고, PMA 방식으로 무선 전력 전송을 제어하여 전력 제어 안정화 시점에서 PMA 방식에 대한 송출 전력 세기(b)를 측정할 수 있다.
이 후, 무선 전력 송신 장치는 WPC 송출 전력 세기(a)와 PMA 송출 전력 세기(b)를 비교하여 전력 전송 효율이 좋은 무선 전력 전송 방식을 결정하고, 결정된 무선 전력 전송 방식에 따라 해당 무선 전력 수신 장치에 대한 충전이 수행되도록 제어할 수 있다. 여기서, 무선 전력 송신 장치는 동일 충전 효율을 유지하기 위해 보다 적은 무선 전력을 송출할 수 있는 무선 전력 전송 방식이 전력 전송 효율이 좋은 것으로 판단할 수 있다.
상술한 실시예에 따른 방법은 컴퓨터에서 실행되기 위한 프로그램으로 제작되어 컴퓨터가 읽을 수 있는 기록 매체에 저장될 수 있으며, 컴퓨터가 읽을 수 있는 기록 매체의 예로는 ROM, RAM, CD-ROM, 자기 테이프, 플로피디스크, 광 데이터 저장장치 등이 있으며, 또한 캐리어 웨이브(예를 들어 인터넷을 통한 전송)의 형태로 구현되는 것도 포함한다.
컴퓨터가 읽을 수 있는 기록 매체는 네트워크로 연결된 컴퓨터 시스템에 분산되어, 분산방식으로 컴퓨터가 읽을 수 있는 코드가 저장되고 실행될 수 있다. 그리고, 상술한 방법을 구현하기 위한 기능적인(function) 프로그램, 코드 및 코드 세그먼트들은 실시예가 속하는 기술분야의 프로그래머들에 의해 용이하게 추론될 수 있다.
본 발명은 본 발명의 정신 및 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다.
따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 전력 전송 기술에 관한 것으로서, 복수의 무선 전력 전송 방식을 이용한 무선 전력 전송 방법 및 그를 위한 장치 및 시스템에 적용될 수 있다.

Claims (15)

  1. 무선 전력 송신 장치에서의 무선 전력 전송 방법에 있어서,
    무선 전력 수신 장치를 감지하는 단계;
    상기 감지된 무선 전력 수신 장치에 의해 지원되는 무선 전력 전송 방식을 식별하는 단계; 및
    상기 식별된 무선 전력 전송 방식으로 무선 충전을 수행하는 단계
    를 포함하는, 무선 전력 전송 방법.
  2. 제1항에 있어서,
    제1 내지 제n 무선 전력 전송 방식에 대응되는 제1 내지 제n 핑 신호를 소정 주기로 교차 전송하여 상기 무선 전력 수신 장치를 감지하는, 무선 전력 전송 방법.
  3. 제2항에 있어서,
    상기 제1 내지 제n 핑 신호에 대응되는 응답 시그널에 기반하여 상기 무선 전력 수신 장치에 의해 지원되는 상기 무선 전력 전송 방식을 식별하는, 무선 전력 전송 방법.
  4. 제1항에 있어서,
    상기 지원되는 무선 전력 전송 방식이 복수개인 것으로 식별되면, 상기 무선 전력 전송 방식 별 전력 전송 효율을 측정하는 단계를 더 포함하는, 무선 전력 전송 방법.
  5. 제4항에 있어서,
    상기 전력 전송 효율은 상기 무선 전력 전송 방식 별 전력 전송 중, 전력 제어가 안정화된 시점에 측정된 송출 전력 세기에 기반하여 측정되는, 무선 전력 전송 방법.
  6. 제5항에 있어서,
    상기 송출 전력 세기가 가장 작은 무선 전력 전송 방식으로 상기 무선 충전을 수행하는, 무선 전력 전송 방법.
  7. 제1항에 있어서,
    상기 무선 전력 전송 방식은 WPC 표준에 정의된 전자기 유도 방식, PMA 표준에 정의된 전자기 유도 방식 중 적어도 하나를 포함하는, 무선 전력 전송 방법.
  8. 상기 제1항 내지 7항 중 어느 하나의 방법을 실행시키기 위한 프로그램을 기록한 컴퓨터로 읽을 수 있는 기록매체.
  9. 무선 전력을 송신하는 장치에 있어서,
    무선 전력 수신 장치를 감지하는 수단;
    상기 감지된 무선 전력 수신 장치에 의해 지원되는 무선 전력 전송 방식을 식별하는 수단; 및
    상기 식별된 무선 전력 전송 방식으로 무선 충전을 수행하는 수단
    을 포함하는, 무선 전력 송신 장치.
  10. 제9항에 있어서,
    제1 내지 제n 무선 전력 전송 방식에 대응되는 제1 내지 제n 핑 신호를 소정 주기로 교차 전송하여 상기 무선 전력 수신 장치를 감지하는, 무선 전력 송신 장치.
  11. 제10항에 있어서,
    상기 제1 내지 제n 핑 신호에 대응되는 응답 시그널에 기반하여 상기 무선 전력 수신 장치에 의해 지원되는 상기 무선 전력 전송 방식을 식별하는, 무선 전력 송신 장치.
  12. 제9항에 있어서,
    상기 지원되는 무선 전력 전송 방식이 복수개인 것으로 식별되면, 상기 무선 전력 전송 방식 별 전력 전송 효율을 측정하는 수단을 더 포함하는, 무선 전력 송신 장치.
  13. 제12항에 있어서,
    상기 전력 전송 효율은 상기 무선 전력 전송 방식 별 전력 전송 중, 전력 제어가 안정화된 시점에 측정된 송출 전력 세기에 기반하여 측정되는, 무선 전력 송신 장치.
  14. 제13항에 있어서,
    상기 송출 전력 세기가 가장 작은 무선 전력 전송 방식으로 상기 무선 충전을 수행하는, 무선 전력 송신 장치.
  15. 제9항에 있어서,
    상기 무선 전력 전송 방식은 WPC 표준에 정의된 전자기 유도 방식, PMA 표준에 정의된 전자기 유도 방식 중 적어도 하나를 포함하는, 무선 전력 송신 장치.
PCT/KR2016/003465 2015-04-07 2016-04-04 무선 전력 전송 방법 및 이를 위한 장치 WO2016163699A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150048869A KR101773092B1 (ko) 2015-04-07 2015-04-07 무선 전력 전송 방법 및 이를 위한 장치
KR10-2015-0048869 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016163699A1 true WO2016163699A1 (ko) 2016-10-13

Family

ID=57072774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003465 WO2016163699A1 (ko) 2015-04-07 2016-04-04 무선 전력 전송 방법 및 이를 위한 장치

Country Status (2)

Country Link
KR (1) KR101773092B1 (ko)
WO (1) WO2016163699A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213086B1 (ko) * 2010-11-04 2012-12-18 유한회사 한림포스텍 무선 전력 전송 장치에서의 무선 전력 신호 제어 방법 및 이를 이용하는 무선 전력 전송 장치
KR20120137112A (ko) * 2011-06-10 2012-12-20 엘지전자 주식회사 무선 전력 전달 중 단말기의 오리엔테이션 변경을 취급하는 장치 및 그 방법
KR20140124708A (ko) * 2013-04-17 2014-10-27 인텔렉추얼디스커버리 주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
KR20140146530A (ko) * 2013-06-17 2014-12-26 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20150028042A (ko) * 2013-09-05 2015-03-13 전자부품연구원 멀티모드 무선전력 수신기기 및 그 무선전력 수신방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10320234B2 (en) * 2013-08-02 2019-06-11 Integrated Device Technology, Inc. Multimode wireless power receivers and related methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101213086B1 (ko) * 2010-11-04 2012-12-18 유한회사 한림포스텍 무선 전력 전송 장치에서의 무선 전력 신호 제어 방법 및 이를 이용하는 무선 전력 전송 장치
KR20120137112A (ko) * 2011-06-10 2012-12-20 엘지전자 주식회사 무선 전력 전달 중 단말기의 오리엔테이션 변경을 취급하는 장치 및 그 방법
KR20140124708A (ko) * 2013-04-17 2014-10-27 인텔렉추얼디스커버리 주식회사 무선 전력 전송 장치 및 무선 전력 전송 방법
KR20140146530A (ko) * 2013-06-17 2014-12-26 엘지전자 주식회사 무선 전력 전송방법, 무선 전력 전송장치 및 무선 충전 시스템
KR20150028042A (ko) * 2013-09-05 2015-03-13 전자부품연구원 멀티모드 무선전력 수신기기 및 그 무선전력 수신방법

Also Published As

Publication number Publication date
KR101773092B1 (ko) 2017-08-30
KR20160119992A (ko) 2016-10-17

Similar Documents

Publication Publication Date Title
WO2017065413A1 (ko) 멀티 코일 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2017061716A1 (ko) 무선 충전 디바이스 정렬 안내 방법 및 그를 위한 장치 및 시스템
WO2014038862A1 (en) Wireless power transmitter for excluding cross-connected wireless power receiver and method for controlling the same
WO2017094997A1 (ko) 무선 충전 장치, 그의 무선 전력 송신 방법, 및 이를 위한 기록 매체
WO2016133322A1 (ko) 무선 전력 송신 장치 및 무선 전력 송신 방법
WO2014137199A1 (en) Wireless power transmitter and method for controlling same
WO2013036067A2 (en) Wireless power receiver and control method thereof
JP6949985B2 (ja) 無線電力送信システムにおいて通信を行う装置及び方法
WO2017043841A1 (ko) 무선 전력 송신기 및 그 제어 방법
WO2014010951A1 (ko) 무선 전력 송신기, 무선 전력 수신기 및 각각의 제어 방법
WO2014010907A1 (en) Method and apparatus for providing wireless charging power to a wireless power receiver
WO2014178659A1 (en) Wireless power transmitter, wireless power receiver and control method thereof
WO2017078285A1 (ko) 무선 전력 송신기
WO2017138713A1 (ko) 복수의 송신 코일이 구비된 무선 전력 기기 및 그 구동 방법
WO2016140462A1 (ko) 무선 전력 전송 시스템에서 코일 위치 조절 방법 및 그 장치
WO2014010997A1 (en) Wireless power transmitter, wireless power receiver, and methods of controlling the same
WO2017078256A1 (ko) 멀티 코일 무선 충전 방법 및 그를 위한 장치 및 시스템
WO2015072777A1 (ko) 무선 전력 전송 시스템에서 전력 제어 방법 및 장치
WO2013109032A1 (en) Wireless power transmitter, wireless power receiver, and control methods thereof
WO2016098927A1 (ko) 멀티 모드 무선 전력 수신 장치 및 방법
WO2011112060A2 (en) Method for wireless charging using communication network
KR20140113147A (ko) 무선 전력 전송 시스템에서 이물질 감지 장치 및 방법
WO2016163697A1 (ko) 무선 전력 전송 방법 및 이를 위한 장치
JP2015531224A (ja) 無線電力伝送システムにおける互換性提供装置及び方法
WO2019045350A2 (ko) 무선 전력 송신 방법 및 그를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776802

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776802

Country of ref document: EP

Kind code of ref document: A1