WO2016163658A1 - Unlicensed band lte data interference signal detection and decoding method - Google Patents

Unlicensed band lte data interference signal detection and decoding method Download PDF

Info

Publication number
WO2016163658A1
WO2016163658A1 PCT/KR2016/002596 KR2016002596W WO2016163658A1 WO 2016163658 A1 WO2016163658 A1 WO 2016163658A1 KR 2016002596 W KR2016002596 W KR 2016002596W WO 2016163658 A1 WO2016163658 A1 WO 2016163658A1
Authority
WO
WIPO (PCT)
Prior art keywords
zpre
signal
res
allocated
unlicensed band
Prior art date
Application number
PCT/KR2016/002596
Other languages
French (fr)
Korean (ko)
Inventor
엄중선
유성진
정회윤
박승근
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160030070A external-priority patent/KR20160121390A/en
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Publication of WO2016163658A1 publication Critical patent/WO2016163658A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes

Definitions

  • the present invention relates to a frequency common use wireless communication system in which a licensed band (e.g., LTE) system coexists with an unlicensed band system in an unlicensed band (e.g., WiFi) and jointly uses the unlicensed band.
  • a licensed band e.g., LTE
  • an unlicensed band e.g., WiFi
  • unlicensed band LTE data used in the LTE system can detect interference signals by signals from the unlicensed band system, and can be decoded to improve reception performance in an interference environment. It is about a method.
  • LTE Long Term Evolution
  • 3GPP has evolved the standard technology to LTE-A, which aggregates up to five carriers (CA, Carrier Aggregation) in LTE systems that used to provide services to cells using up to 20MHz bandwidth.
  • CA Carrier Aggregation
  • LTE-based mobile communication system may be composed of a macro cell (macro cell) for accessing the core network through the base station (eNB), and a small cell using the relay of the small cell base station in the macro cell, the terminal (UE) can receive data from the eNB of each cell.
  • the link connected to the UE in each cell may be one channel or five channels may be CA.
  • FIG. 2 is a diagram illustrating a frame structure of a general LTE / LTE-A.
  • 10 subframes constitute one radio frame for 10 msec, and one subframe consists of two slots.
  • Each slot is composed of a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols. Seven slots are used per slot when N_CP (Normal Cyclic Prefix) is used and six slots are used when Extended Cyclic Prefix (CP) is used. 2 shows an example of N_CP, and 14 symbols constitute one subframe.
  • N_CP Normal Cyclic Prefix
  • CP Extended Cyclic Prefix
  • 2 shows an example of N_CP, and 14 symbols constitute one subframe.
  • 12 subcarriers constitute one resource block (RB), and the number of RBs uses a value defined in the standard by the system bandwidth.
  • 3GPP is developing a standard technology for utilizing the LTE system operating in the licensed band in the unlicensed band of 5GHz. Scenarios for aggregating and operating carriers in the licensed and unlicensed bands are considered first.
  • the duplex of the unlicensed band is a TDD (Frequency Division Duplex (FDD) mode in downlink or TDD considering both uplink and downlink links).
  • FDD Frequency Division Duplex
  • 3GPP names standard items Licensed Assisted Access (LAA) in terms of offloading licensed band data based on CA.
  • LAA Licensed Assisted Access
  • WiFi Wireless Fidelity
  • FIG. 3 is a diagram illustrating an example in which a general LTE and WiFi network operate by using the same channel in an adjacent location.
  • Channel access by WiFi accesses the channel after checking channel occupancy status using the conventional CSMA / CA (Carrier Sense Multiple Access) / (Collion Avoid) method, and the channel access by LTE does not have such a function.
  • Channels should be accessed in such a way as to ensure fair channel usage with WiFi, such as List-before-Talk (LBT).
  • LBT List-before-Talk
  • WiFi if a non-WiFi signal of -62dBm or less is detected, the WiFi wireless device transmits a signal, thereby interfering with an LTE-U (LTE in Unlicensed Band) signal.
  • LBT List-before-Talk
  • FIG. 4 is an exemplary diagram of a scenario for LTE signal interference by a general WiFi signal.
  • Carrier sensing / Back-off (CS / BO) result for downlink of LTE-U LTE NB (Node B) transmits data while there is no WiFi signal, and this signal is WiFi Access Point (AP)
  • AP WiFi Access Point
  • the WiFi AP also transmits data (Tx, Transmission).
  • the UE generates interference by the WiFi signal from the WiFi AP during the reception of the LTE signal (Rx, Reception) from the LTE NB.
  • Rx, Reception the strength of the interference signal becomes very large.
  • FIG. 5 is an exemplary diagram showing the location of an RE to which reference signals (RSs) can be transmitted in an RB in a typical LTE downlink.
  • the CRS Cell Specific Reference Signal, or Common Reference Signal
  • PDSCH Physical Downlink Shared Channel
  • DMRS demodulation reference signal
  • CSI-RS Channel State Information-Reference Signal
  • the CSI-RS is not transmitted in every subframe, but at a very low time / frequency density.
  • the control channel (CC) for the control signal transmission and the PDSCH for the shared channel transmission are arranged at the positions of the remaining REs.
  • a multimedia broadcast multicast service single frequency network (MBSFN) RS used before a multicast channel (MCH) and a positioning RS (PRS) used for position estimation may be configured in downlink.
  • MMSFN multimedia broadcast multicast service single frequency network
  • MCH multicast channel
  • PRS positioning RS
  • the UE of the LTE network measures downlink channel estimation or channel state based on the above signals and feeds them back to the NB, thereby enabling the NB to manage resources according to channel conditions.
  • the UE acquires channel quality indicator (CQI) information with a value such as RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality) using reference signals of CRS or CSI-RS that can be allocated as shown in FIG. 6.
  • CQI channel quality indicator
  • CRS or CSI-RS used for channel state estimation is not allocated to every symbol, it may not be detected when a WiFi signal exists as an interference source.
  • the existing channel state estimation method uses RSRP or RSRQ of average signal strength, making it difficult to detect the instantaneous WiFi signal.
  • CSI-IM Interference Measurement
  • CoMP Coordinatd Multi-Point
  • CSI-IM also has a limitation in measuring interference signals at every OFDM symbol since CSI-RS is transmitted with different periods within a range of at least 5ms to 80ms.
  • an object of the present invention is to use a licensed band (eg, using a license-free band (eg, WiFi) of the UEs belonging to the licensed band (eg, LTE) network
  • a licensed band eg, using a license-free band (eg, WiFi) of the UEs belonging to the licensed band (eg, LTE) network
  • ZPRE Zero-Powered Resource Element
  • identifying and processing the number of affected licensed band (e.g., LTE) symbols it minimizes the impact of high interference signals caused by short unlicensed (e.g., WiFi) signals transmitted by unlicensed band (e.g. WiFi) devices adjacent to the UE.
  • the present invention provides a signal processing method in a common frequency wireless communication system to enable decoding to improve reception performance in an interference environment.
  • a signal processing method for coexisting with the unlicensed band system in the wireless communication system using a licensed band for achieving the above object to use the unlicensed band as a secondary
  • some resource elements RE of at least one resource block RB constituting the data frame of the licensed band are allocated as zero power resource elements ZPRE, and the data frame including the ZPRE is unlicensed.
  • Transmitting using the band And receiving the data frame in a licensed band second system, measuring the strength of an unlicensed band interference signal in the ZPRE period, and performing channel decoding.
  • the ZPRE is a total of predetermined REs in which a downlink physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) of an uplink is disposed. Or some REs.
  • PDSCH downlink physical downlink shared channel
  • PDCCH physical downlink control channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the ZPRE may be allocated to an RE of all subcarrier regions of one of the predetermined REs.
  • the ZPRE may be assigned to one or more REs in each of two or more subcarrier regions of the predetermined REs.
  • the ZPRE may be allocated to all REs of a subcarrier region in which a reference signal exists among the predetermined REs, and may be allocated to an RE adjacent to an up or down relative to the RE in which the reference signal exists.
  • ZPRE may be assigned to the subcarrier position ZPRE_Index (i, k) of the z-th ZPRE, where G is a period in which ZPRE is assigned, and Q (i) is determined by a symbol index (i) or randomly determined in a random permutation.
  • the zero or positive integer, P (k) may be zero or a positive integer determined by the ZPRE position k at the symbol index i or arbitrarily determined in a random permutation.
  • the ZPRE may be allocated to one RE or a plurality of REs of the predetermined REs in each of a plurality of consecutive RBs.
  • the location on the subcarrier to which the ZPRE is allocated may be notified to the counterpart system by using downlink control information (DCI) of the PDCCH or by using another predetermined message or indication signal.
  • DCI downlink control information
  • Measuring the strength of the interference signal and performing channel decoding may include calculating the number of licensed band symbols affected by the interference signal and performing channel decoding based on the strength of the interference signal and the number of symbols. Determining a step.
  • Measuring the strength of the interference signal and performing channel decoding may include determining whether to perform channel decoding by receiving a hybrid automatic repeat and request (HARQ) response and combining a retransmitted signal with a signal received before the HARQ. It further comprises a step.
  • HARQ hybrid automatic repeat and request
  • licensed band (eg, LTE) data is transmitted using unlicensed band (eg, WiFi) among UEs belonging to a licensed band (eg, LTE) network.
  • unlicensed band eg, WiFi
  • ZPRE Zero-powered Resource Element
  • the number of affected licensed band (eg, LTE) symbols can be identified and processed.
  • decoding may be performed to improve reception performance in an interference environment. It is possible to improve decoding performance by combining the previously received signal with the retransmission signal via HARQ.
  • FIG. 1 is a diagram illustrating an access network of a network architecture of a general LTE / LTE-A.
  • FIG. 2 is a diagram illustrating a frame structure of a general LTE / LTE-A.
  • 3 is a diagram illustrating an example in which a general LTE and WiFi network operate by using the same channel in an adjacent location.
  • FIG. 4 is an exemplary diagram of a scenario for LTE signal interference by a general WiFi signal.
  • FIG. 5 is an exemplary diagram showing the location of an RE to which reference signals (RSs) can be transmitted in an RB in a typical LTE downlink.
  • RSs reference signals
  • FIG. 6 is an exemplary diagram of reference signals (CRS, CSI-RS) that can be allocated in a general LTE downlink.
  • CRS reference signals
  • FIG. 7 is a view for explaining an environment of a frequency shared wireless communication system according to an embodiment of the present invention.
  • FIG 8 illustrates an example in which all subcarrier regions of one of REs in which a PDSCH is arranged are allocated to ZPRE in the frequency coexistence wireless communication system according to the present invention.
  • FIG. 9 illustrates an example in which ZPRE is distributedly allocated to a plurality of subcarrier regions among REs in which PDSCHs are arranged in the frequency coexistence wireless communication system according to the present invention.
  • FIG. 10 illustrates an example in which ZPRE is allocated to two adjacent subcarrier regions while avoiding other reference signals RS among REs in which PDSCHs are arranged in the frequency coexistence wireless communication system according to the present invention.
  • FIG. 11 illustrates an example in which a ZPRE is allocated to one of the REs in which PDSCHs of one resource block (RB) are arranged in the frequency coexistence wireless communication system according to the present invention.
  • FIG. 12 illustrates an example in which a ZPRE is allocated to one RE in each of a plurality of consecutive resource blocks (RBs) in a frequency coexistence wireless communication system according to the present invention.
  • FIG. 13 shows an example in which ZPREs are allocated to two REs in each of a plurality of consecutive resource blocks (RBs) in the frequency coexistence wireless communication system according to the present invention.
  • FIG. 14 is a view for explaining a configuration example in which all PDSCHs are allocated to ZPRE and an example of DCI designation through a PDCCH in the frequency coexistence wireless communication system according to the present invention.
  • FIG. 7 is a view for explaining the environment of the frequency-shared wireless communication system 100 according to an embodiment of the present invention.
  • the common frequency use wireless communication system 100 is a base station (NB) as a licensed band wireless communication system interworking on a network, and user terminal (s) as another licensed band wireless communication system.
  • NB base station
  • UE User Equipments
  • WLAN wireless local area network
  • the NB may be in the form of a mobile communication base station Node B, an eNB, a home-eNB, a relay station, a remote radio head (RRH), an access point (AP), or the like.
  • the NB relays a UE in a macrocell to a mobile communication service through a backhaul in a licensed band according to a mobile communication protocol such as Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the WLAN system may be in the form of an access point (AP) that forms a small cell such as a pico cell, a femto cell, and the like.
  • the WLAN system relays a UE in a small cell to receive a WLAN communication service such as the Internet through a sidehaul by connecting to a UE in a small cell using an unlicensed band (eg, 5GHz band) such as WiFi according to a protocol such as WLAN.
  • a WLAN communication service such as the Internet
  • an unlicensed band eg, 5GHz band
  • a common frequency use wireless communication system 100 of the present invention that is, in a wireless communication licensed band (eg, LTE) system operating as a secondary in an unlicensed band (eg, WiFi), mutually with the unlicensed band wireless communication WLAN system
  • LTE-U service which coexists and jointly uses an unlicensed band to serve between licensed band (eg, LTE) systems
  • the licensed band (eg, LTE) systems use a licensed band (eg, WiFi) for a licensed band (eg, LTE).
  • the present invention proposes a method for recognizing an interference situation caused by an unlicensed band (eg, WiFi) signal of an adjacent WLAN system and not using a symbol that causes performance degradation in a reception decoding process.
  • LTE Log Likelihood Ratio
  • RSs downlink reference signals
  • ZPRE Zero Power (Punctured) Resource Element
  • a cell specific reference signal (CRS) or a common reference signal (CRS) transmitted by a base station (NB) may indicate a transmission mode (eg, LTE transmission mode) 7, 8, and 9. Used for channel estimation for coherent decoding of all downlink physical channels except the physical downlink shared channel (PDSCH).
  • a transmission mode eg, LTE transmission mode 7 8
  • PDSCH physical downlink shared channel
  • the DMRS (Demodulation Reference Signal) is used for channel estimation for PDSCH using transmission modes 7,8, 9, 10 as signals specific to each UE.
  • a control channel (CC) for transmitting control signals such as a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) for transmitting a shared channel are disposed at the remaining REs.
  • CC control channel
  • PDCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • a multimedia broadcast multicast service single frequency network (MBSFN) RS used before a multicast channel (MCH) and a positioning RS (PRS) used for position estimation may be configured in downlink.
  • MCSFN multimedia broadcast multicast service single frequency network
  • PRS positioning RS
  • the CSI-RS Channel State Information-Reference Signal
  • the CSI-RS may not be transmitted in every subframe but may be transmitted at a fairly low time / frequency density.
  • the user terminal UE measures downlink channel estimation or channel state based on the signals and feeds it back to the base station NB. This enables resource management appropriate to the channel situation.
  • the user terminal (UE) may obtain CQI information by using values such as RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality) using the above-described RSs and ZPRE. Can be.
  • the base station (NB) or the user terminal (UE) may utilize a Signal-to-Interference plus Noise Ratio (SINR) estimated by RS to confirm the existence of the WiFi interference signal.
  • SINR Signal-to-Interference plus Noise Ratio
  • all or some REs (refer to 810 of FIG. 8) among the resource elements (REs) in which the PDSCH is arranged in one or more resource blocks (RBs) are zero-powered.
  • ZP (or Puncturing) can be used to transmit the frame.
  • ZPRE Zero Power
  • ZP Zero Power
  • ZPRE ZPRE is allocated to an RE where a PDSCH is arranged
  • the ZPRE may also be allocated to an RE where a downlink PDCCH is arranged.
  • a control channel such as a physical uplink control channel (PUCCH) is arranged for use by the user terminal (UE) during uplink
  • a RE for a data channel such as a physical uplink shared channel (PUSCH)
  • ZPRE can be assigned as above.
  • the receiver of the user equipment (UE) estimates the interference strength by measuring the level of the unlicensed band (eg, WiFi) interference signal in the ZPRE period. can do. Accordingly, when the UE uses the unlicensed band, the UE may determine whether to decode the channel by checking the number of licensed band (eg, LTE) symbols affected by the interference, and determines whether to perform channel decoding.
  • the uplink data (eg, LTE signal) of the unlicensed band can be processed at the same time as the back signal.
  • the base station NB measures a level of an unlicensed band (eg, WiFi) interference signal of a ZPRE interval. The interference intensity can be estimated.
  • FIG. 8 illustrates an example in which all subcarrier regions 810 of one of REs in which PDSCHs are arranged are allocated to ZPRE in the frequency coexistence wireless communication system 100 of the present invention.
  • all REs in which PDSCHs are arranged in one subcarrier region among 12 subcarriers of a resource block RB may be selected and allocated to ZPRE.
  • FIG. 9 illustrates an example in which ZPRE is distributedly allocated to a plurality of subcarrier regions 910 among REs in which PDSCHs are arranged in the frequency-shared wireless communication system 100 of the present invention.
  • REs in which PDSCHs are arranged in at least two subcarrier regions among 12 subcarriers of a resource block RB may be selected, and ZPRE may be allocated to at least one RE in each selected subcarrier region.
  • FIG. 10 illustrates an example in which ZPRE is allocated to two adjacent subcarrier regions while avoiding other reference signals RS among REs in which PDSCHs are arranged in the frequency co-use wireless communication system 100 of the present invention.
  • the reference signal RS exists among the 12 subcarriers of the resource block RB
  • all REs in which the PDSCH is disposed may be selected and allocated to the ZPRE.
  • adjacent REs up or down (frequency direction) may be selected and allocated to ZPRE.
  • ZPRE can be configured for all resources used by all different UEs.
  • the ZPRE is allocated only to a predetermined specific resource block (RB) so that the channel environment is relatively good, and thus a user terminal (UE) capable of using higher performance modulation (UE) or a small amount of data to be transmitted (buffer)
  • UE user terminal
  • the ZPRE may be configured only in a resource used by a UE (UE) having a small amount of data to be transmitted waiting for the UE.
  • the ZPRE allocation to the RE where the PDSCH is arranged may be set by a specific equation or a predefined pattern.
  • the subcarrier position ZPRE_Index (i, k) of the kth ZPRE among the M (natural numbers) ZPREs predetermined in the symbol index (i) is calculated as shown in [Equation 1], and ZPRE is assigned to the corresponding position.
  • G is a period (eg, the number of resource blocks or subframes) in which ZPRE is allocated.
  • Q (i) may be determined numerically by the symbol index i, and is a zero or positive integer that may be arbitrarily determined in other random permutations.
  • P (k) may be determined mathematically by the ZPRE position k at symbol index i, and is a zero or positive integer that may be arbitrarily determined in a random permutation.
  • ZPRE_Index (i, k) (Q (i) mod G + P (k) mode G) + (G * k)
  • FIG. 11 illustrates an example in which a ZPRE is allocated to one of the REs in which PDSCHs of one resource block (RB) are arranged in the frequency common-use wireless communication system 100 of the present invention.
  • FIG. 12 illustrates an example in which ZPRE is allocated to one RE in each of a plurality of consecutive resource blocks (RBs) in the frequency shared wireless communication system 100 of the present invention.
  • FIG. 13 illustrates an example in which ZPREs are allocated to two REs in each of a plurality of consecutive resource blocks RBs in the frequency shared wireless communication system 100 of the present invention. This is exemplary, and ZPRE may be allocated to three or more REs in each of a plurality of consecutive resource blocks (RBs).
  • the ZPRE configuration as shown in FIGS. 11, 12, and 13 may be formed by Equation 1, or may be configured by a corresponding RE position predefined in advance. RE may not be configured in all RBs in each OFDM symbol according to G value or system characteristics of Equation (1).
  • ZPREs may be allocated to one or more REs among the REs in which PDSCHs are arranged in each of the plurality of resource blocks (RBs), and only one or more subcarriers in each of the plurality of resource blocks (RBs) are shown in FIGS. 8 and 9.
  • ZPRE may be allocated by combining the ZPRE allocation methods mentioned in 10.
  • FIG. 14 is a diagram for explaining a configuration example in which all PDSCHs are allocated to ZPRE and an example of DCI designation through a PDCCH in the frequency-shared wireless communication system 100 according to the present invention.
  • the ZPRE may be allocated only to a specific resource block (RB) set according to the resource block (RB) configuration allocated to each user terminal (UE), the number, or the transmission rate.
  • the ZPRE may be entirely assigned to the RE where the PDSCH of the block RB is arranged.
  • the location ZPRE_Index (i, k) of the ZPRE is a DCI (Downlink Control) of a physical downlink control channel (PDCCH) included in a section in which a control channel (CC) for transmitting a control signal is arranged in a resource block (RB).
  • a short unlicensed band eg, WiFi
  • the receiver of the user terminal (UE) according to the frame including the ZPRE transmitted from the base station (NB) is a ZPRE interval.
  • the interference intensity may be estimated by measuring the level of the unlicensed band (eg, WiFi) interference signal of the UE, and the transmitter of the UE may be assigned a ZPRE interval (ZPRE) with reference to DCI (or other message or signal).
  • BPSK Binary Phase Shift Keying
  • QPSK Quadrature Phase Shift Keying
  • a base station such as an eNB may notify the user equipments (UE) of the pattern of the ZPRE to be used through a system information block (SIB) such as downlink control information (DCI) of a physical downlink control channel (PDCCH).
  • SIB system information block
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the base station (NB) or the user terminal (UE) may notify each other of the presence and location of the ZPRE pattern by using another predetermined message or indication signal to allow the counterpart system to obtain the corresponding information. It may be.
  • the base station (NB) or the user terminal (UE) blind-decodes a signal received in an uplink or a downlink (for example, if a multiple demodulator is provided and demodulates without information of a modulation scheme) and includes ZPRE. You can also check.
  • the receiver of the base station (NB) or the user terminal (UE) may estimate the interference strength by measuring the level of the unlicensed band (eg, WiFi) interference signal of the ZPRE period from the ZPRE of the uplink or downlink frame. Accordingly, when the base station (NB) or the user terminal (UE) uses the unlicensed band, the base station (NB) or the user terminal (UE) may calculate the number of licensed band (eg, LTE) symbols affected by the interference signal (eg, the interference signal is larger than a threshold). .
  • the unlicensed band eg, WiFi
  • the base station (NB) or the user terminal (UE) will decode the corresponding channel in the channel decoder. It is possible to determine whether or not to transmit uplink / downlink data (eg, LTE signal) of the unlicensed band at the same time as the WiFi signal of the WLAN system. For example, when the interference signal is larger than the threshold, the reception error due to the interference is large and thus channel decoding may not be performed.
  • uplink / downlink data eg, LTE signal
  • the base station (NB) or the user terminal (UE) responds to a hybrid automatic repeat and request (HARQ) response based on the strength of the interference signal measured as described above and the number of licensed band (eg, LTE) symbols affected by the interference.
  • HARQ hybrid automatic repeat and request
  • licensed band (eg, LTE) data is obtained using an unlicensed band (eg, WiFi) among user equipments (UE) belonging to an LTE network.
  • an unlicensed band eg, WiFi
  • ZPRE Zero-powered Resource Element
  • the number of affected licensed band (eg, LTE) symbols can be identified and processed.
  • decoding may be performed to improve reception performance in an interference environment. It is possible to improve decoding performance by combining the previously received signal with the retransmission signal via HARQ.

Abstract

The present invention relates to a signal processing method in a spectrum sharing wireless communication system wherein, in an environment where, among UEs included in a licensed band (e.g., LTE) network, licensed band (e.g., LTE) data is transmitted/received by using an unlicensed band (e.g., WiFi), a zero powered resource element (ZPRE) pattern and an allocation method are proposed, and the existence or not of an unlicensed band (e.g., WiFi) interference signal is identified by using the ZPRE, and the interference strength, the number of licensed band (e.g., LTE) symbols affected by the interference are confirmed and processed, and thus a high interference signal impact by means of a short unlicensed band (e.g., WiFi) signal transmitted by an unlicensed band (e.g., WiFi) device adjacent to a UE is minimized, and decoding is made possible in order to enhance reception performance in an interference environment.

Description

비면허대역 LTE 데이터의 간섭신호 감지 및 디코딩 방법Interference signal detection and decoding method of unlicensed band data
본 발명은 면허대역(예, LTE) 시스템이 비면허대역(예, WiFi)에서 비면허대역 시스템과 상호공존하여 비면허대역을 공동으로 사용하는, 주파수 공동사용 무선통신시스템에 관한 것으로서, 특히, 면허대역(예, LTE) 시스템에서 사용하는 비면허대역 LTE 데이터 등에 대하여 비면허대역 시스템의 신호에 의한 간섭신호를 감지하며, 간섭환경에서 수신 성능을 향상시키도록 디코딩이 가능한, 주파수 공동사용 무선통신시스템에서의 신호 처리 방법에 관한 것이다.The present invention relates to a frequency common use wireless communication system in which a licensed band (e.g., LTE) system coexists with an unlicensed band system in an unlicensed band (e.g., WiFi) and jointly uses the unlicensed band. For example, unlicensed band LTE data used in the LTE system can detect interference signals by signals from the unlicensed band system, and can be decoded to improve reception performance in an interference environment. It is about a method.
LTE(Long Term Evolution) 기반의 이동통신시스템은 음성 위주의 서비스에서 벗어나 인터넷, 영상 스트림 등의 멀티미디어 서비스와 같은 데이터 서비스를 제공하기 위하여 고속의 패킷 데이터 통신으로 진화하였다. 이를 위하여 3GPP에서는 최대 20MHz 대역폭을 이용하여 셀에 서비스를 제공하던 LTE 시스템에 최대 5개의 캐리어를 집성(CA, Carrier Aggregation)하는 LTE-A로 표준기술을 발전시켰다. LTE (Long Term Evolution) based mobile communication system has evolved into high-speed packet data communication to provide data services such as multimedia services such as internet and video stream, away from voice-oriented services. To this end, 3GPP has evolved the standard technology to LTE-A, which aggregates up to five carriers (CA, Carrier Aggregation) in LTE systems that used to provide services to cells using up to 20MHz bandwidth.
도 1은 일반적인 LTE/LTE-A의 네트워크 아키텍처의 엑세스 네트워크를 예시한 도면이다. LTE 기반의 이동통신시스템은 기지국(eNB)을 거쳐 코어망 접속을 위한 매크로 셀(Macro cell)과, Macro cell 내에서 스몰셀 기지국의 중계를 이용하는 스몰셀(Small cell)로 구성될 수 있으며, 단말(UE)은 각 셀의 eNB로부터 데이터 수신이 가능하다. 각 셀에서 UE로 연결된 링크는 하나의 채널이거나 5개의 채널이 CA될 수 있다. 1 is a diagram illustrating an access network of a network architecture of a general LTE / LTE-A. LTE-based mobile communication system may be composed of a macro cell (macro cell) for accessing the core network through the base station (eNB), and a small cell using the relay of the small cell base station in the macro cell, the terminal (UE) can receive data from the eNB of each cell. The link connected to the UE in each cell may be one channel or five channels may be CA.
도 2는 일반적인 LTE/LTE-A의 프레임 구조를 예시한 도면이다. 시간 영역 관점으로 10msec 동안 10개의 서브프레임이 하나의 무선(radio) 프레임을 구성하게 되고, 하나의 서브프레임은 2개의 슬롯(slot)으로 구성된다. 각 slot은 다수의 OFDM(Othogonal Frequency Division Multiplexing) 심볼로 구성되는데, N_CP(Normal Cyclic Prefix)를 사용하는 경우 slot 당 7개, Extended CP(Cyclic Prefix)를 사용하는 경우 Slot 당 6개로 이루어진다. 도 2는 N_CP의 예시로써 14개의 심볼이 하나의 서브프레임(subframe)을 구성한다. 주파수 영역 관점에서 12개의 부반송파가 하나의 Resource Block(RB)을 구성하게 되고 RB의 수는 시스템 대역폭에 의하여 표준에 정의된 값을 사용한다.2 is a diagram illustrating a frame structure of a general LTE / LTE-A. In a time domain view, 10 subframes constitute one radio frame for 10 msec, and one subframe consists of two slots. Each slot is composed of a plurality of Orthogonal Frequency Division Multiplexing (OFDM) symbols. Seven slots are used per slot when N_CP (Normal Cyclic Prefix) is used and six slots are used when Extended Cyclic Prefix (CP) is used. 2 shows an example of N_CP, and 14 symbols constitute one subframe. In terms of frequency domain, 12 subcarriers constitute one resource block (RB), and the number of RBs uses a value defined in the standard by the system bandwidth.
최근 3GPP에서는 면허대역에서 동작하는 LTE 시스템을 5GHz의 비면허대역에서 활용하기 위한 표준 기술을 개발하고 있다. 면허대역과 비면허대역의 캐리어를 집성하여 운용하는 시나리오가 우선 검토되고 있으며, 비면허대역의 송수신방식(Duplex)는 하향링크에서의 FDD(Frequency Division Duplex) 모드, 또는 상/하향 링크를 모두 고려한 TDD(Time Division Duplex) 모드를 고려하고 있다. 3GPP에서는 CA를 기반으로 면허대역의 데이터를 오프로딩하는 관점에서 Licensed Assisted Access (LAA)로 표준 아이템을 명명하고 있다. 5GHz 비면허대역에서는 WiFi(Wireless Fidelity)가 상용 서비스를 하고 있으므로 WiFi와 상호공존하기 위한 기술이 요구된다. Recently, 3GPP is developing a standard technology for utilizing the LTE system operating in the licensed band in the unlicensed band of 5GHz. Scenarios for aggregating and operating carriers in the licensed and unlicensed bands are considered first. The duplex of the unlicensed band is a TDD (Frequency Division Duplex (FDD) mode in downlink or TDD considering both uplink and downlink links). Consider Time Division Duplex mode. 3GPP names standard items Licensed Assisted Access (LAA) in terms of offloading licensed band data based on CA. In the 5GHz unlicensed band, since WiFi (Wireless Fidelity) is a commercial service, technology for coexisting with WiFi is required.
도 3은 일반적인 LTE와 WiFi 네트워크가 인접한 위치에서 동일한 채널을 사용하며 동작하는 예의 도면이다. WiFi에 의한 채널 접속은 기존의 CSMA/CA(Carrier Sense Multiple Access)/(Collion Avoid) 방식으로 채널점유 상태를 확인한 후 채널에 접속하게 되고, LTE에 의한 채널 접속은 기존에 그와 같은 기능이 없으므로 LBT(Listen-before-Talk) 등과 같이 WiFi와의 공평한 채널 사용을 보장할 수 있는 방식으로 채널에 접속해야 한다. 다만, WiFi의 경우 -62dBm 이하의 비-WiFi 신호가 검출되면 WiFi 무선기기는 신호를 송신하게 되므로 LTE-U(LTE in Unlicensed Band, 비면허대역에서 LTE) 신호에 간섭을 줄 수 있다. 3 is a diagram illustrating an example in which a general LTE and WiFi network operate by using the same channel in an adjacent location. Channel access by WiFi accesses the channel after checking channel occupancy status using the conventional CSMA / CA (Carrier Sense Multiple Access) / (Collion Avoid) method, and the channel access by LTE does not have such a function. Channels should be accessed in such a way as to ensure fair channel usage with WiFi, such as List-before-Talk (LBT). However, in the case of WiFi, if a non-WiFi signal of -62dBm or less is detected, the WiFi wireless device transmits a signal, thereby interfering with an LTE-U (LTE in Unlicensed Band) signal.
도 4는 일반적인 WiFi 신호에 의한 LTE 신호 간섭에 대한 시나리오의 예시 도면이다. LTE-U의 하향링크에 대한 캐리어 센싱(Carrier sensing)/Back-off(CS/BO) 결과 WiFi 신호가 없는 동안 LTE NB(Node B)가 데이터를 전송하였는데, 이 신호가 WiFi AP(Access Point)에는 -62dBm 이하로 수신되면 WiFi AP도 데이터를 송신(Tx, Transmission) 하게 된다. 이 경우 UE는 LTE NB로부터의 LTE 신호 수신(Rx, Reception) 중에 WiFi AP로부터의 WiFi 신호에 의한 간섭이 발생된다. 특히 WiFi AP가 NB로부터는 멀리 떨어져 있지만 UE에는 가까이 있는 경우 간섭 신호의 세기가 매우 크게 된다.4 is an exemplary diagram of a scenario for LTE signal interference by a general WiFi signal. Carrier sensing / Back-off (CS / BO) result for downlink of LTE-U LTE NB (Node B) transmits data while there is no WiFi signal, and this signal is WiFi Access Point (AP) If the receiver receives less than -62dBm, the WiFi AP also transmits data (Tx, Transmission). In this case, the UE generates interference by the WiFi signal from the WiFi AP during the reception of the LTE signal (Rx, Reception) from the LTE NB. In particular, when the WiFi AP is far from the NB but close to the UE, the strength of the interference signal becomes very large.
LTE 규격에서는 하향링크 채널 추정 또는 채널 상태를 측정하기 위하여 여러 종류의 기준 신호(RS, Reference Signal)를 전송한다. 도 5는 일반적인 LTE 하향링크에서 기준 신호(RS)들이 전송될 수 있는 RE의 위치를 RB에 표시한 예시 도면이다. CRS(Cell specific Reference signal, 또는 Common Reference Signal)은 전송모드 7, 8, 9를 사용하는 PDSCH(Physical Downlink Shared Channel)를 제외한 모든 하향링크 물리채널의 Coherent 디코딩을 위한 채널 추정에 사용된다. DMRS(Demodulation Reference signal)는 각 단말에 특정적인 신호로서 전송모드 7,8,9,10을 사용하는 PDSCH를 위한 채널 추정에 사용된다. CSI-RS(Channel State Information- Reference Signal)는 DMRS가 채널 추정에 이용되는 경우에 있어서 단말이 Channel State Information(CSI)를 획득할 수 있도록 사용된다. CSI-RS는 모든 subframe에 전송되는 것이 아니고 상당히 낮은 시간/주파수 밀도로 전송된다. 나머지 RE의 위치에서 제어 신호의 전송을 위한 Control Channel(CC)와 공유 채널 전송을 위한 PDSCH가 배치된다. 이 외에 MCH(Multicast Channel) 전에 사용되는 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RS와, 위치 추정에 이용되는 positioning RS(PRS)도 하향링크에 구성될 수도 있다.In the LTE standard, various types of reference signals (RSs) are transmitted to estimate downlink channel estimation or channel state. FIG. 5 is an exemplary diagram showing the location of an RE to which reference signals (RSs) can be transmitted in an RB in a typical LTE downlink. The CRS (Cell Specific Reference Signal, or Common Reference Signal) is used for channel estimation for coherent decoding of all downlink physical channels except PDSCH (Physical Downlink Shared Channel) using transmission modes 7, 8, and 9. The demodulation reference signal (DMRS) is used for channel estimation for PDSCH using transmission modes 7,8, 9, and 10 as a signal specific to each terminal. Channel State Information-Reference Signal (CSI-RS) is used so that the UE can acquire Channel State Information (CSI) when DMRS is used for channel estimation. The CSI-RS is not transmitted in every subframe, but at a very low time / frequency density. The control channel (CC) for the control signal transmission and the PDSCH for the shared channel transmission are arranged at the positions of the remaining REs. In addition, a multimedia broadcast multicast service single frequency network (MBSFN) RS used before a multicast channel (MCH) and a positioning RS (PRS) used for position estimation may be configured in downlink.
LTE 네트워크의 UE는 위와 같은 신호들을 기초로 하향링크 채널 추정 또는 채널 상태를 측정하고 이를 NB에 피드백함으로써, NB가 채널 상황에 맞는 자원운용을 가능하게 한다. 이때 UE는 도 6과 같이 할당 가능한 CRS 또는 CSI-RS의 기준신호들을 이용하여 RSRP(Reference Signal Received Power) 또는 RSRQ(Reference Signal Received Quality) 등의 값으로 CQI(Channel Quality Indicator) 정보를 획득한다.The UE of the LTE network measures downlink channel estimation or channel state based on the above signals and feeds them back to the NB, thereby enabling the NB to manage resources according to channel conditions. In this case, the UE acquires channel quality indicator (CQI) information with a value such as RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality) using reference signals of CRS or CSI-RS that can be allocated as shown in FIG. 6.
그러나, 채널상태 추정에 활용되는 CRS나 CSI-RS는 모든 심볼에 할당되는 것이 아니므로 WiFi 신호가 간섭원으로 존재하는 경우 이를 감지하지 못할 수 있다. 더불어 기존의 채널상태 추정 방식은 평균적인 신호 세기의 RSRP나 RSRQ를 이용하므로 순간순간의 WiFi 신호 검출이 어렵다. However, since CRS or CSI-RS used for channel state estimation is not allocated to every symbol, it may not be detected when a WiFi signal exists as an interference source. In addition, the existing channel state estimation method uses RSRP or RSRQ of average signal strength, making it difficult to detect the instantaneous WiFi signal.
채널상태 추정을 위한 다른 방법으로는 CSI-IM을 활용하는 방법이 있다. LTE 규격에는, CoMP(Coordinated Multi-Point) 동작 및 인접 셀 간 간섭을 정확하게 추정하기 위하여 CSI-RS 중 하나 혹은 몇 개의 부분집합들을 Zero-power CSI-RS로 전송하는 CSI-IM(Interference Measurement)를 정의하고 있다. 그러나 CSI-IM 역시 CSI-RS가 최소 매 5ms 부터 최대 80ms 사이의 범위 내의 서로 다른 주기를 가지고 전송되므로 매 OFDM 심볼 순간의 간섭 신호를 측정하는데 한계가 존재한다.Another method for channel state estimation is to utilize CSI-IM. The LTE standard includes CSI-IM (Interference Measurement), which transmits one or several subsets of CSI-RS to Zero-power CSI-RS to accurately estimate CoMP (Coordinated Multi-Point) operation and inter-cell interference. It is defined. However, CSI-IM also has a limitation in measuring interference signals at every OFDM symbol since CSI-RS is transmitted with different periods within a range of at least 5ms to 80ms.
따라서, 본 발명은 상술한 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은, 면허대역(예, LTE) 네트워크에 속한 UE들 중 비면허대역(예, WiFi)을 이용하여 면허대역(예, LTE) 데이터를 송수신하는 환경에서, Zero powered Resource Element(ZPRE) 패턴 및 할당 방법을 제시하고, ZPRE를 이용하여 비면허대역(예, WiFi) 간섭신호의 존재 유무를 파악하고, 간섭세기, 간섭에 의해 영향받는 면허대역(예, LTE) 심볼의 수를 확인하여 처리함으로써, UE에 인접한 비면허대역(예, WiFi) 기기가 전송하는 짧은 비면허대역(예, WiFi) 신호에 의한 높은 간섭 신호영향을 최소화하고, 간섭환경에서 수신 성능을 향상시키도록 디코딩이 가능할 수 있도록 하기 위한, 주파수 공동사용 무선통신시스템에서의 신호 처리 방법을 제공하는 데 있다. Accordingly, the present invention has been made to solve the above-described problem, an object of the present invention is to use a licensed band (eg, using a license-free band (eg, WiFi) of the UEs belonging to the licensed band (eg, LTE) network In the environment of transmitting / receiving LTE data, we present a Zero-Powered Resource Element (ZPRE) pattern and an allocation method, and determine the presence or absence of an unlicensed band (eg WiFi) interference signal using ZPRE. By identifying and processing the number of affected licensed band (e.g., LTE) symbols, it minimizes the impact of high interference signals caused by short unlicensed (e.g., WiFi) signals transmitted by unlicensed band (e.g. WiFi) devices adjacent to the UE. In addition, the present invention provides a signal processing method in a common frequency wireless communication system to enable decoding to improve reception performance in an interference environment.
본 발명의 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재들로부터 당업자에게 명확하게 이해될 수 있을 것이다.Technical problems of the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned will be clearly understood by those skilled in the art from the following descriptions.
먼저, 본 발명의 특징을 요약하면, 상기의 목적을 달성하기 위한 본 발명의 일면에 따른 면허대역을 사용하는 무선통신시스템에서 비면허대역 시스템과 공존하여 비면허대역을 세컨더리로 사용하기 위한 신호처리 방법은, 면허대역 제1시스템에서 면허대역의 데이터 프레임을 구성하는 하나 이상의 리소스 블록(RB)의 일부 리소스 엘리먼트(RE)를 제로 파워 리소스 엘리먼트(ZPRE)로 할당하고, 상기 ZPRE가 포함된 데이터 프레임을 비면허대역을 이용하여 전송하는 단계; 및 면허대역 제2시스템에서 상기 데이터 프레임을 수신하고, 상기 ZPRE 구간의 비면허대역 간섭신호의 세기를 측정하고 채널 디코딩을 수행하는 단계를 포함한다.First, to summarize the features of the present invention, a signal processing method for coexisting with the unlicensed band system in the wireless communication system using a licensed band according to an aspect of the present invention for achieving the above object to use the unlicensed band as a secondary In the licensed band first system, some resource elements RE of at least one resource block RB constituting the data frame of the licensed band are allocated as zero power resource elements ZPRE, and the data frame including the ZPRE is unlicensed. Transmitting using the band; And receiving the data frame in a licensed band second system, measuring the strength of an unlicensed band interference signal in the ZPRE period, and performing channel decoding.
상기 ZPRE는 하향링크의 PDSCH(Physical Downlink Shared Channel)나 PDCCH(Physical Downlink Control Channel), 또는 상향링크의 PUCCH(Physical Uplink Control Channel) 또는 PUSCH(Physical Uplink Shared Channel)가 배치되는 소정의 RE들 중 전체 또는 일부 RE에 할당될 수 있다. The ZPRE is a total of predetermined REs in which a downlink physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) of an uplink is disposed. Or some REs.
여기서, 상기 ZPRE는 상기 소정의 RE들 중 하나의 부반송파 영역 모두의 RE에 할당될 수도 있다. 상기 ZPRE는 상기 소정의 RE들 중 2 이상 복수의 부반송파 영역의 각각에서 하나 이상의 RE에 할당될 수도 있다. 상기 ZPRE는 상기 소정의 RE들 중 기준신호가 존재하는 부반송파 영역의 모든 RE에 할당되고, 상기 기준신호가 존재하는 RE에 대해 위 또는 아래로 인접한 RE에 할당될 수도 있다.In this case, the ZPRE may be allocated to an RE of all subcarrier regions of one of the predetermined REs. The ZPRE may be assigned to one or more REs in each of two or more subcarrier regions of the predetermined REs. The ZPRE may be allocated to all REs of a subcarrier region in which a reference signal exists among the predetermined REs, and may be allocated to an RE adjacent to an up or down relative to the RE in which the reference signal exists.
상기 ZPRE는 수학식 "ZPRE_Index(i, k) = (Q(i) mod G + P(k) mode G ) + (G*k)"에 따라 심볼 인덱스(i)에서 미리 정해진 M(자연수)개의 ZPRE 중 k번째 ZPRE의 부반송파 위치 ZPRE_Index(i, k)에 할당될 수 있으며, 여기서, G는 ZPRE가 할당되는 주기, Q(i)는 심볼 인덱스(i)에 의해 결정되거나 랜덤한 순열에서 임의로 결정되는 0 또는 양의 정수, P(k)는 심볼 인덱스(i)에서의 ZPRE 위치(k)에 의해 결정되거나 랜덤한 순열에서 임의로 결정되는 0 또는 양의 정수일 수 있다.The ZPRE is a predetermined number of M (natural numbers) at the symbol index (i) according to the equation "ZPRE_Index (i, k) = (Q (i) mod G + P (k) mode G) + (G * k)" ZPRE may be assigned to the subcarrier position ZPRE_Index (i, k) of the z-th ZPRE, where G is a period in which ZPRE is assigned, and Q (i) is determined by a symbol index (i) or randomly determined in a random permutation. The zero or positive integer, P (k), may be zero or a positive integer determined by the ZPRE position k at the symbol index i or arbitrarily determined in a random permutation.
상기 ZPRE는 연속한 복수의 RB 각각에서 상기 소정의 RE들 중 하나의 RE씩 또는 복수의 RE씩에 할당될 수도 있다. The ZPRE may be allocated to one RE or a plurality of REs of the predetermined REs in each of a plurality of consecutive RBs.
상기 ZPRE가 할당되는 부반송파에서의 위치는 PDCCH의 DCI(Downlink Control Information)를 이용하거나, 다른 소정의 메시지 또는 인디케이션 신호를 이용하여 상대방 시스템으로 통보될 수 있다.The location on the subcarrier to which the ZPRE is allocated may be notified to the counterpart system by using downlink control information (DCI) of the PDCCH or by using another predetermined message or indication signal.
상기 면허대역 제2시스템에서 상기 ZPRE가 할당되는 부반송파에서의 위치를 제외하고 실제 데이터를 전송할 수 있는 RE의 수를 확인해 해당 변조 방식에 따라 전송 대상 데이터를 전송하는 단계Confirming the number of REs that can transmit the actual data except for the location on the subcarrier to which the ZPRE is allocated in the licensed band 2 system and transmitting data to be transmitted according to a corresponding modulation scheme
상기 간섭신호의 세기를 측정하고 채널 디코딩을 수행하는 단계는, 상기 간섭신호에 의해 영향받는 면허대역 심볼의 수를 계산하고, 상기 간섭신호의 세기와 상기 심볼의 수를 기초로 채널 디코딩의 수행 여부를 결정하는 단계를 포함한다.Measuring the strength of the interference signal and performing channel decoding may include calculating the number of licensed band symbols affected by the interference signal and performing channel decoding based on the strength of the interference signal and the number of symbols. Determining a step.
상기 간섭신호의 세기를 측정하고 채널 디코딩을 수행하는 단계는, HARQ(Hybrid Automatic Repeat and Request) 응답을 받고 재전송되는 신호와 상기 HARQ 이전에 수신된 신호를 결합하여 채널 디코딩을 수행할지 여부를 결정하는 단계를 더 포함한다.Measuring the strength of the interference signal and performing channel decoding may include determining whether to perform channel decoding by receiving a hybrid automatic repeat and request (HARQ) response and combining a retransmitted signal with a signal received before the HARQ. It further comprises a step.
본 발명에 따른 주파수 공동사용 무선통신시스템에서의 신호 처리 방법에 따르면, 면허대역(예, LTE) 네트워크에 속한 UE들 중 비면허대역(예, WiFi)을 이용하여 면허대역(예, LTE) 데이터를 송수신하는 환경에서, Zero powered Resource Element(ZPRE) 패턴 및 할당 방법에 따라, ZPRE를 이용하여 짧은 비면허대역(예, WiFi) 간섭신호의 검출을 통한 간섭 구간 확인이 가능하고, 간섭세기, 간섭에 의해 영향받는 면허대역(예, LTE) 심볼의 수를 확인하여 처리할 수 있다. According to a signal processing method in a common frequency wireless communication system according to the present invention, licensed band (eg, LTE) data is transmitted using unlicensed band (eg, WiFi) among UEs belonging to a licensed band (eg, LTE) network. In the environment of transmitting and receiving, according to the Zero-powered Resource Element (ZPRE) pattern and the allocation method, it is possible to check the interference section by detecting a short unlicensed band (eg WiFi) interference signal using ZPRE, The number of affected licensed band (eg, LTE) symbols can be identified and processed.
이에 따라, UE에 인접한 비면허대역(예, WiFi) 기기가 전송하는 짧은 비면허대역(예, WiFi) 신호에 의한 높은 간섭 신호영향을 최소화할 수 있으며, 간섭환경에서 수신 성능을 향상시키도록, 디코딩이 가능하고 이전에 수신된 신호와 HARQ를 통한 재전송 신호를 결합(combining)하여 디코딩 성능을 향상시킬 수도 있다.Accordingly, it is possible to minimize the effect of high interference signals caused by short unlicensed band (eg WiFi) signals transmitted by unlicensed band (eg WiFi) devices adjacent to the UE, and decoding may be performed to improve reception performance in an interference environment. It is possible to improve decoding performance by combining the previously received signal with the retransmission signal via HARQ.
도 1은 일반적인 LTE/LTE-A의 네트워크 아키텍처의 엑세스 네트워크를 예시한 도면이다. 1 is a diagram illustrating an access network of a network architecture of a general LTE / LTE-A.
도 2는 일반적인 LTE/LTE-A의 프레임 구조를 예시한 도면이다.2 is a diagram illustrating a frame structure of a general LTE / LTE-A.
도 3은 일반적인 LTE와 WiFi 네트워크가 인접한 위치에서 동일한 채널을 사용하며 동작하는 예의 도면이다.3 is a diagram illustrating an example in which a general LTE and WiFi network operate by using the same channel in an adjacent location.
도 4는 일반적인 WiFi 신호에 의한 LTE 신호 간섭에 대한 시나리오의 예시 도면이다.4 is an exemplary diagram of a scenario for LTE signal interference by a general WiFi signal.
도 5는 일반적인 LTE 하향링크에서 기준 신호(RS)들이 전송될 수 있는 RE의 위치를 RB에 표시한 예시 도면이다.FIG. 5 is an exemplary diagram showing the location of an RE to which reference signals (RSs) can be transmitted in an RB in a typical LTE downlink.
도 6은 일반적인 LTE 하향링크에서 할당 가능한 기준 신호들(CRS, CSI-RS)의 예시 도면이다.6 is an exemplary diagram of reference signals (CRS, CSI-RS) that can be allocated in a general LTE downlink.
도 7은 본 발명의 일시예에 따른 주파수 공동사용 무선통신시스템의 환경을 설명하기 위한 도면이다.7 is a view for explaining an environment of a frequency shared wireless communication system according to an embodiment of the present invention.
도 8은 본 발명의 주파수 공동사용 무선통신시스템에서, PDSCH가 배치되는 RE 중 하나의 부반송파 영역 모두를 ZPRE로 할당한 예이다. 8 illustrates an example in which all subcarrier regions of one of REs in which a PDSCH is arranged are allocated to ZPRE in the frequency coexistence wireless communication system according to the present invention.
도 9는 본 발명의 주파수 공동사용 무선통신시스템에서, PDSCH가 배치되는 RE 중 복수의 부반송파 영역에 ZPRE를 분산하여 할당한 예이다. FIG. 9 illustrates an example in which ZPRE is distributedly allocated to a plurality of subcarrier regions among REs in which PDSCHs are arranged in the frequency coexistence wireless communication system according to the present invention.
도 10은 본 발명의 주파수 공동사용 무선통신시스템에서, PDSCH가 배치되는 RE 중 다른 기준신호(RS)를 피하여 인접한 2개의 부반송파 영역에 ZPRE를 할당한 예이다. FIG. 10 illustrates an example in which ZPRE is allocated to two adjacent subcarrier regions while avoiding other reference signals RS among REs in which PDSCHs are arranged in the frequency coexistence wireless communication system according to the present invention.
도 11은 본 발명의 주파수 공동사용 무선통신시스템에서, 하나의 리소스 블록(RB)의 PDSCH가 배치되는 RE 중 하나의 RE에 ZPRE를 할당한 예이다.FIG. 11 illustrates an example in which a ZPRE is allocated to one of the REs in which PDSCHs of one resource block (RB) are arranged in the frequency coexistence wireless communication system according to the present invention.
도 12는 본 발명의 주파수 공동사용 무선통신시스템에서, 연속한 복수의 리소스 블록(RB) 각각에서 하나의 RE씩에 ZPRE를 할당한 예이다. 12 illustrates an example in which a ZPRE is allocated to one RE in each of a plurality of consecutive resource blocks (RBs) in a frequency coexistence wireless communication system according to the present invention.
도 13은 본 발명의 주파수 공동사용 무선통신시스템에서, 연속한 복수의 리소스 블록(RB) 각각에서 2개의 RE씩에 ZPRE를 할당한 예이다. FIG. 13 shows an example in which ZPREs are allocated to two REs in each of a plurality of consecutive resource blocks (RBs) in the frequency coexistence wireless communication system according to the present invention.
도 14는 본 발명의 주파수 공동사용 무선통신시스템에서, 전체 PDSCH를 ZPRE로 할당한 구성 예와 PDCCH를 통한 DCI 지정의 예를 설명하기 위한 도면이다.14 is a view for explaining a configuration example in which all PDSCHs are allocated to ZPRE and an example of DCI designation through a PDCCH in the frequency coexistence wireless communication system according to the present invention.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 실시예에 대한 이해를 방해한다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments of the present invention will be described in detail through exemplary drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are assigned to the same components as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present invention, if it is determined that the detailed description of the related well-known configuration or function interferes with the understanding of the embodiments of the present invention, the detailed description thereof will be omitted.
본 발명의 실시예의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 또한, 다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가진 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.In describing the components of the embodiments of the present invention, terms such as first, second, A, B, (a), and (b) may be used. These terms are only for distinguishing the components from other components, and the nature, order or order of the components are not limited by the terms. In addition, unless otherwise defined, all terms used herein, including technical or scientific terms, have the same meaning as commonly understood by one of ordinary skill in the art. Terms such as those defined in the commonly used dictionaries should be construed as having meanings consistent with the meanings in the context of the related art, and shall not be construed in ideal or excessively formal meanings unless expressly defined in this application. Do not.
도 7은 본 발명의 일시예에 따른 주파수 공동사용 무선통신시스템(100)의 환경을 설명하기 위한 도면이다.7 is a view for explaining the environment of the frequency-shared wireless communication system 100 according to an embodiment of the present invention.
도 7과 같이, 본 발명의 일시예에 따른 주파수 공동사용 무선통신시스템(100)은, 네트워크 상에서 연동하는, 면허대역 무선통신시스템으로서 기지국(NB), 다른 면허대역 무선통신시스템으로서 사용자 단말(들)(UE, User Equipments), 및 WiFi 등의 프로토콜에 따른 비면허대역 WLAN(Wireless Local Area Network) 시스템 등을 포함한다.As shown in FIG. 7, the common frequency use wireless communication system 100 according to an exemplary embodiment of the present invention is a base station (NB) as a licensed band wireless communication system interworking on a network, and user terminal (s) as another licensed band wireless communication system. (UE, User Equipments), and an unlicensed band wireless local area network (WLAN) system according to a protocol such as WiFi.
여기서, NB는, 이동 통신 기지국(Node B), eNB, home-eNB, 중계기(relay station), RRH(Remote Radio Head), AP(Access Point) 등의 형태가 될 수 있다. NB는 LTE(Long Term Evolution) 등 이동통신 프로토콜에 따라 매크로셀 내의 UE 가 면허대역에서 백홀(backhaul)을 통해 이동통신 서비스를 받을 수 있도록 중계한다.Here, the NB may be in the form of a mobile communication base station Node B, an eNB, a home-eNB, a relay station, a remote radio head (RRH), an access point (AP), or the like. The NB relays a UE in a macrocell to a mobile communication service through a backhaul in a licensed band according to a mobile communication protocol such as Long Term Evolution (LTE).
또한, WLAN 시스템은, 피코셀(pico cell), 펨토셀(femto cell) 등 소형셀(small cell)을 형성하는 AP(Access Point) 등의 형태가 될 수 있다. WLAN 시스템은, WLAN 등의 프로토콜에 따라 소형셀 내의 UE 가 WiFi 등의 비면허대역(예, 5GHz 대역)을 이용해 접속하여 사이드홀(sidehaul)을 통해 인터넷 등 WLAN 통신 서비스를 받을 수 있도록 중계한다.In addition, the WLAN system may be in the form of an access point (AP) that forms a small cell such as a pico cell, a femto cell, and the like. The WLAN system relays a UE in a small cell to receive a WLAN communication service such as the Internet through a sidehaul by connecting to a UE in a small cell using an unlicensed band (eg, 5GHz band) such as WiFi according to a protocol such as WLAN.
이와 같은 본 발명의 주파수 공동사용 무선통신시스템(100)에서, 즉, 비면허대역(예, WiFi)에서 세컨더리로 동작하는 무선통신 면허대역(예, LTE) 시스템에서, 비면허대역 무선통신 WLAN 시스템과 상호공존하여 비면허대역을 공동으로 사용하여 면허대역(예, LTE) 시스템 간에 서비스하는 LTE-U 서비스에서, 면허대역(예, LTE) 시스템들이 비면허대역(예, WiFi)을 이용한 면허대역(예, LTE) 데이터 송수신 시에, 인접한 WLAN 시스템의 비면허대역(예, WiFi) 신호에 의한 간섭상황을 인지하고 수신 디코딩 과정에서 성능 저하의 원인이 되는 심볼을 이용하지 않는 방법을 제안하고자 한다. In such a common frequency use wireless communication system 100 of the present invention, that is, in a wireless communication licensed band (eg, LTE) system operating as a secondary in an unlicensed band (eg, WiFi), mutually with the unlicensed band wireless communication WLAN system In LTE-U service, which coexists and jointly uses an unlicensed band to serve between licensed band (eg, LTE) systems, the licensed band (eg, LTE) systems use a licensed band (eg, WiFi) for a licensed band (eg, LTE). In the case of data transmission / reception, the present invention proposes a method for recognizing an interference situation caused by an unlicensed band (eg, WiFi) signal of an adjacent WLAN system and not using a symbol that causes performance degradation in a reception decoding process.
기지국(NB) 또는 사용자 단말(UE)이 비면허대역의 채널이 비어(Idle)있는 상태로 판단하면 데이터를 전송할 수 있으며, WiFi의 경우 -62dBm 이하의 비-WiFi 신호가 검출되면 데이터 전송을 시작할 수 있다. 만일 비면허대역에서 LTE와 WiFi가 동시에 신호를 전송하게 되는 경우 상호 간섭에 의한 수신 에러가 발생할 수 있다. WiFi와 다르게 LTE의 경우 HARQ(Hybrid Automatic Repeat and Request)를 통한 재전송이 가능하므로 이전에 수신된 신호와 재전송된 신호를 결합(combining)하여 디코딩 성능을 향상시킬 수 있다. 이 경우 효과적으로 디코딩을 하기 위해서는 채널 디코딩 성능에 문제를 주는 심볼의 LLR(Log Likelihood Ratio)을 제로(zero)로 하거나, 또는 포함시키지 않는 것이 좋다.When the base station (NB) or the user terminal (UE) determines that the channel of the unlicensed band is idle, data can be transmitted.In the case of WiFi, data transmission can be started when a non-WiFi signal of -62dBm or less is detected. have. If LTE and WiFi simultaneously transmit signals in the unlicensed band, reception errors due to mutual interference may occur. Unlike WiFi, LTE can retransmit through HARQ (Hybrid Automatic Repeat and Request), so that the decoding performance can be improved by combining the previously received signal with the retransmitted signal. In this case, in order to effectively decode, it is recommended that a Log Likelihood Ratio (LLR) of a symbol that causes a problem in channel decoding performance be zero or not included.
도 8 내지 도 13은 본 발명의 주파수 공동사용 무선통신시스템(100)에서, 하향링크 기준 신호(RS)들과 Zero Power (Punctured) Resource Element(ZPRE) 구성 예들이다. 여기서 도 2와 같은 면허대역(예, LTE) 데이터 프레임 구성에 기초하여, 기지국(NB)이 하향링크 리소스 블록(RB)에 기준 신호(RS)들과 ZPRE를 구성하는 예를 설명한다. 8 to 13 illustrate examples of downlink reference signals (RSs) and Zero Power (Punctured) Resource Element (ZPRE) in the frequency common wireless communication system 100 of the present invention. Here, an example in which a base station (NB) configures ZPRE with reference signals (RSs) in a downlink resource block (RB) will be described based on a licensed band (eg, LTE) data frame configuration as shown in FIG. 2.
도 8 내지 도 13을 참조하면, 위에서도 기술한 바와 같이, 기지국(NB)이 전송하는 CRS(Cell specific Reference signal, 또는 Common Reference Signal)은 전송모드(예, LTE 전송모드) 7, 8, 9를 사용하는 PDSCH(Physical Downlink Shared Channel)를 제외한 모든 하향링크 물리채널의 Coherent 디코딩을 위한 채널 추정에 사용된다. 8 to 13, as described above, a cell specific reference signal (CRS) or a common reference signal (CRS) transmitted by a base station (NB) may indicate a transmission mode (eg, LTE transmission mode) 7, 8, and 9. Used for channel estimation for coherent decoding of all downlink physical channels except the physical downlink shared channel (PDSCH).
DMRS(Demodulation Reference signal)는 각 사용자 단말(UE)에 특정적인 신호로서 전송모드 7,8,9,10을 사용하는 PDSCH를 위한 채널 추정에 사용된다. The DMRS (Demodulation Reference Signal) is used for channel estimation for PDSCH using transmission modes 7,8, 9, 10 as signals specific to each UE.
나머지 RE의 위치에서 PDCCH(Physical Downlink Control Channel) 등 제어 신호의 전송을 위한 Control Channel(CC)와 공유 채널 전송을 위한 PDSCH(Physical Downlink Shared Channel)가 배치된다. A control channel (CC) for transmitting control signals such as a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) for transmitting a shared channel are disposed at the remaining REs.
이 외에 MCH(Multicast Channel) 전에 사용되는 MBSFN(Multimedia Broadcast multicast service Single Frequency Network) RS와, 위치 추정에 이용되는 positioning RS(PRS)도 하향링크에 구성될 수도 있다. 또한, CSI-RS(Channel State Information- Reference Signal)는 DMRS가 채널 추정에 이용되는 경우에 있어서 사용자 단말(UE)이 Channel State Information(CSI)를 획득할 수 있도록 사용될 수 있다. CSI-RS는 모든 subframe에 전송되는 것이 아니고 상당히 낮은 시간/주파수 밀도로 전송될 수 있다. In addition, a multimedia broadcast multicast service single frequency network (MBSFN) RS used before a multicast channel (MCH) and a positioning RS (PRS) used for position estimation may be configured in downlink. In addition, the CSI-RS (Channel State Information-Reference Signal) may be used so that the UE can obtain Channel State Information (CSI) when the DMRS is used for channel estimation. The CSI-RS may not be transmitted in every subframe but may be transmitted at a fairly low time / frequency density.
도 7과 같은 주파수 공동사용 무선통신시스템(100)의 네트워크 상에서 사용자 단말(UE)은 위와 같은 신호들을 기초로 하향링크 채널 추정 또는 채널 상태를 측정하고 이를 기지국(NB)에 피드백함으로써, 기지국(NB)이 채널 상황에 맞는 자원운용을 가능하게 한다. 이때 사용자 단말(UE)은 위와 같은 기준 신호(RS)들과 ZPRE 등을 이용하여 RSRP(Reference Signal Received Power) 또는 RSRQ(Reference Signal Received Quality) 등의 값으로 CQI(Channel Quality Indicator) 정보를 획득할 수 있다.In the network of the common frequency wireless communication system 100 as shown in FIG. 7, the user terminal UE measures downlink channel estimation or channel state based on the signals and feeds it back to the base station NB. This enables resource management appropriate to the channel situation. In this case, the user terminal (UE) may obtain CQI information by using values such as RSRP (Reference Signal Received Power) or RSRQ (Reference Signal Received Quality) using the above-described RSs and ZPRE. Can be.
[Zero Power (Punctured) Resource Element (ZPRE)]Zero Power (Punctured) Resource Element (ZPRE)
기지국(NB) 또는 사용자 단말(UE)이 WiFi 간섭신호 존재를 확인하기 위하여 RS로 추정된 SINR(Signal-to-Interference plus Noise Ratio)을 활용할 수도 있다. 더 나아가, 본 발명에서는 기지국(NB)이 하향링크 시 하나 이상의 리소스 블록(RB) 에서 PDSCH가 배치되는 리소스 엘리먼트(RE, Resource Element) 중 전체 또는 일부 RE(도 8의 810 참조)를 Zero Power(ZP)(또는 Puncturing)로 설정하여 프레임을 전송할 수 있다. Zero Power(ZP)(또는 Puncturing)로 설정된 RE(ZPRE)에서 하향링크 신호가 제로 파워(Zero Power)이 되도록 함으로써, 사용자 단말(UE)에서 비면허대역(예, WiFi) 간섭신호의 검출을 용이하게 할 수 있다. The base station (NB) or the user terminal (UE) may utilize a Signal-to-Interference plus Noise Ratio (SINR) estimated by RS to confirm the existence of the WiFi interference signal. Furthermore, in the present invention, when the base station (NB) downlinks, all or some REs (refer to 810 of FIG. 8) among the resource elements (REs) in which the PDSCH is arranged in one or more resource blocks (RBs) are zero-powered. ZP) (or Puncturing) can be used to transmit the frame. By allowing the downlink signal to be zero power in RE (ZPRE) set to Zero Power (ZP) (or Puncturing), it is easy to detect an unlicensed band (eg WiFi) interference signal in the UE. can do.
이하, PDSCH가 배치되는 RE에 ZPRE를 할당한 경우를 예로들어 설명하지만, ZPRE는 하향 링크 PDCCH가 배치되는 RE에도 할당될 수 있다. 또한, 사용자 단말(UE)이 상향 링크 시에 사용하기 위한, PUCCH(Physical Uplink Control Channel)와 같은 제어 채널이 배치되는 RE, 또는 PUSCH(Physical Uplink Shared Channel)와 같은 데이터 채널이 배치되는 RE에도, 위와 같은 ZPRE가 할당될 수 있다.Hereinafter, a case in which ZPRE is allocated to an RE where a PDSCH is arranged will be described as an example. However, the ZPRE may also be allocated to an RE where a downlink PDCCH is arranged. In addition, in a RE for which a control channel such as a physical uplink control channel (PUCCH) is arranged for use by the user terminal (UE) during uplink, or a RE for a data channel such as a physical uplink shared channel (PUSCH), ZPRE can be assigned as above.
이와 같은 ZPRE의 할당과 기지국(NB)으로부터의 비면허대역을 이용한 프레임 전송에 따라, 사용자 단말(UE)의 수신기는 ZPRE 구간의 비면허대역(예, WiFi) 간섭신호의 레벨을 측정하여 간섭 세기를 추정할 수 있다. 이에 따라 사용자 단말(UE)은 비면허대역의 사용 시에, 간섭에 의해 영향받는 면허대역(예, LTE) 심볼의 수를 확인하여, 채널 디코딩을 할 것인지 여부를 판단할 수 있고, WLAN 시스템의 WiFi 등 신호와 동시에 비면허대역의 상향링크 데이터(예, LTE 신호)를 전송하지 않도록 처리할 수 있다. 따라서, 비면허대역에서 면허대역(예, LTE) 시스템(NB, UE)과 비면허대역(예, WiFi) WLAN 시스템이 동시에 신호를 전송하게 되는 경우 발생하는 상호 간섭에 의한 수신 에러를 방지할 수 있다. 마찬가지로, 사용자 단말(UE)의 송신기가 PUCCH 또는 PUSCH에 할당된 ZPRE를 이용하여 상향링크 신호를 전송하는 경우, 기지국(NB)은 ZPRE 구간의 비면허대역(예, WiFi) 간섭신호의 레벨을 측정하여 간섭 세기를 추정할 수 있다.According to the ZPRE allocation and the frame transmission using the unlicensed band from the base station (NB), the receiver of the user equipment (UE) estimates the interference strength by measuring the level of the unlicensed band (eg, WiFi) interference signal in the ZPRE period. can do. Accordingly, when the UE uses the unlicensed band, the UE may determine whether to decode the channel by checking the number of licensed band (eg, LTE) symbols affected by the interference, and determines whether to perform channel decoding. The uplink data (eg, LTE signal) of the unlicensed band can be processed at the same time as the back signal. Therefore, in the unlicensed band, reception errors due to mutual interference occurring when licensed band (eg, LTE) systems (NB, UE) and unlicensed band (eg, WiFi) WLAN systems simultaneously transmit signals can be prevented. Similarly, when a transmitter of a UE transmits an uplink signal using a ZPRE allocated to a PUCCH or a PUSCH, the base station NB measures a level of an unlicensed band (eg, WiFi) interference signal of a ZPRE interval. The interference intensity can be estimated.
도 8은 본 발명의 주파수 공동사용 무선통신시스템(100)에서, PDSCH가 배치되는 RE 중 하나의 부반송파 영역 모두(810)를 ZPRE로 할당한 예이다. 예를 들어,리소스 블록(RB)의 12개의 부반송파(subcarrier) 중 어느 하나의 부반송파 영역에서 PDSCH가 배치되는 모든 RE가 선택되어, ZPRE로 할당될 수 있다. FIG. 8 illustrates an example in which all subcarrier regions 810 of one of REs in which PDSCHs are arranged are allocated to ZPRE in the frequency coexistence wireless communication system 100 of the present invention. For example, all REs in which PDSCHs are arranged in one subcarrier region among 12 subcarriers of a resource block RB may be selected and allocated to ZPRE.
도 9는 본 발명의 주파수 공동사용 무선통신시스템(100)에서, PDSCH가 배치되는 RE 중 복수의 부반송파 영역(910)에 ZPRE를 분산하여 할당한 예이다. 예를 들어, 리소스 블록(RB)의 12개의 부반송파(subcarrier) 중 2 이상 복수의 부반송파 영역에서 PDSCH가 배치되는 RE들이 선택되고, 선택된 각 부반송파 영역에서 하나 이상의 RE에 ZPRE를 할당할 수 있다.FIG. 9 illustrates an example in which ZPRE is distributedly allocated to a plurality of subcarrier regions 910 among REs in which PDSCHs are arranged in the frequency-shared wireless communication system 100 of the present invention. For example, REs in which PDSCHs are arranged in at least two subcarrier regions among 12 subcarriers of a resource block RB may be selected, and ZPRE may be allocated to at least one RE in each selected subcarrier region.
도 10은 본 발명의 주파수 공동사용 무선통신시스템(100)에서, PDSCH가 배치되는 RE 중 다른 기준신호(RS)를 피하여 인접한 2개의 부반송파 영역에 ZPRE를 할당한 예이다. 예를 들어, 리소스 블록(RB)의 12개의 부반송파(subcarrier) 중 기준신호(RS)가 존재하는 부반송파 영역에서, PDSCH가 배치되는 모든 RE가 선택되어 ZPRE로 할당될 수 있으며, 또한, 기준신호(RS)가 존재하는 RE에 대해서는 위 또는 아래(주파수 방향)로 인접한 RE가 선택되어 ZPRE로 할당될 수 있다. FIG. 10 illustrates an example in which ZPRE is allocated to two adjacent subcarrier regions while avoiding other reference signals RS among REs in which PDSCHs are arranged in the frequency co-use wireless communication system 100 of the present invention. For example, in the subcarrier region in which the reference signal RS exists among the 12 subcarriers of the resource block RB, all REs in which the PDSCH is disposed may be selected and allocated to the ZPRE. For REs where RS) exists, adjacent REs up or down (frequency direction) may be selected and allocated to ZPRE.
전체 리소스 블록(RB)에 ZPRE를 할당하여, 서로 다른 모든 사용자 단말(UE)이 사용하는 자원에 모두 ZPRE가 구성되도록 할 수 있다. 또한, 소정의 특정 리소스 블록(RB)에만 ZPRE를 할당하여, 채널 환경이 상대적으로 좋아 더 높은 성능의 변조 방식(Higher modulation)을 사용할 수 있는 사용자 단말(UE)이나, 전송할 데이터 양이 적은(버퍼에 대기중인전송 대상 데이터 양이 적어 여유가 있는) 사용자 단말(UE)이 사용하는 자원에만 ZPRE가 구성되도록 할 수도 있다.By assigning ZPRE to all resource blocks (RB), ZPRE can be configured for all resources used by all different UEs. In addition, the ZPRE is allocated only to a predetermined specific resource block (RB) so that the channel environment is relatively good, and thus a user terminal (UE) capable of using higher performance modulation (UE) or a small amount of data to be transmitted (buffer) The ZPRE may be configured only in a resource used by a UE (UE) having a small amount of data to be transmitted waiting for the UE.
이때 PDSCH가 배치되는 RE에 ZPRE를 할당하는 것은, 특정 수식 또는 사전 정의된 패턴에 의해 설정될 수 있다. 예를 들어, 심볼 인덱스(i)에서 미리 정해진 M(자연수)개의 ZPRE 중 k번째 ZPRE의 부반송파 위치 ZPRE_Index(i, k)는, [수학식1]과 같이, 계산되어 해당 위치에 ZPRE가 할당될 수 있다. G는 ZPRE가 할당되는 주기(예, 리소스블록 수 또는 서브프레임 수)이다. Q(i)는 심볼 인덱스(i)에 의해 수식으로 결정될 수도 있고, 다른 랜덤한 순열에서 임의로 결정될 수 있는 0 또는 양의 정수이다. P(k)는 심볼 인덱스(i)에서의 ZPRE 위치(k)에 의해 수식으로 결정될 수도 있고, 랜덤한 순열에서 임의로 결정될 수 있는 0 또는 양의 정수이다. At this time, the ZPRE allocation to the RE where the PDSCH is arranged may be set by a specific equation or a predefined pattern. For example, the subcarrier position ZPRE_Index (i, k) of the kth ZPRE among the M (natural numbers) ZPREs predetermined in the symbol index (i) is calculated as shown in [Equation 1], and ZPRE is assigned to the corresponding position. Can be. G is a period (eg, the number of resource blocks or subframes) in which ZPRE is allocated. Q (i) may be determined numerically by the symbol index i, and is a zero or positive integer that may be arbitrarily determined in other random permutations. P (k) may be determined mathematically by the ZPRE position k at symbol index i, and is a zero or positive integer that may be arbitrarily determined in a random permutation.
[수학식1][Equation 1]
ZPRE_Index(i, k) = (Q(i) mod G + P(k) mode G ) + (G*k)ZPRE_Index (i, k) = (Q (i) mod G + P (k) mode G) + (G * k)
한편, 도 11은 본 발명의 주파수 공동사용 무선통신시스템(100)에서, 하나의 리소스 블록(RB)의 PDSCH가 배치되는 RE 중 하나의 RE에 ZPRE를 할당한 예이다.Meanwhile, FIG. 11 illustrates an example in which a ZPRE is allocated to one of the REs in which PDSCHs of one resource block (RB) are arranged in the frequency common-use wireless communication system 100 of the present invention.
도 12는 본 발명의 주파수 공동사용 무선통신시스템(100)에서, 연속한 복수의 리소스 블록(RB) 각각에서 하나의 RE씩에 ZPRE를 할당한 예이다.12 illustrates an example in which ZPRE is allocated to one RE in each of a plurality of consecutive resource blocks (RBs) in the frequency shared wireless communication system 100 of the present invention.
도 13은 본 발명의 주파수 공동사용 무선통신시스템(100)에서, 연속한 복수의 리소스 블록(RB) 각각에서 2개의 RE씩에 ZPRE를 할당한 예이다. 이는 예시적이며, 연속한 복수의 리소스 블록(RB) 각각에서 3개 이상의 RE씩에 ZPRE를 할당할 수도 있다.FIG. 13 illustrates an example in which ZPREs are allocated to two REs in each of a plurality of consecutive resource blocks RBs in the frequency shared wireless communication system 100 of the present invention. This is exemplary, and ZPRE may be allocated to three or more REs in each of a plurality of consecutive resource blocks (RBs).
도 11, 도 12, 도 13과 같은 ZPRE 구성은, [수학식1]에 의하여 이루어질 수도 있고, 또는 사전에 미리 정의된 해당 RE 위치에 의해 구성될 수도 있다. [수학식1]의 G 값이나 시스템 특성에 따라 각 OFDM 심볼에서 모든 RB에 RE가 구성되지 않을 수도 있다. The ZPRE configuration as shown in FIGS. 11, 12, and 13 may be formed by Equation 1, or may be configured by a corresponding RE position predefined in advance. RE may not be configured in all RBs in each OFDM symbol according to G value or system characteristics of Equation (1).
이와 같이, 복수의 리소스 블록(RB) 각각에서 PDSCH가 배치되는 RE 중 하나이상의 RE씩에 ZPRE를 할당할 수 있으며, 복수의 리소스 블록(RB) 각각에서 하나 이상 적은 수의 부반송파에만 도 8, 9, 10에서 언급한 ZPRE 할당 방식을 조합하여 ZPRE를 할당할 수도 있다.As described above, ZPREs may be allocated to one or more REs among the REs in which PDSCHs are arranged in each of the plurality of resource blocks (RBs), and only one or more subcarriers in each of the plurality of resource blocks (RBs) are shown in FIGS. 8 and 9. In addition, ZPRE may be allocated by combining the ZPRE allocation methods mentioned in 10.
도 14는 본 발명의 주파수 공동사용 무선통신시스템(100)에서, 전체 PDSCH를 ZPRE로 할당한 구성 예와 PDCCH를 통한 DCI 지정의 예를 설명하기 위한 도면이다.FIG. 14 is a diagram for explaining a configuration example in which all PDSCHs are allocated to ZPRE and an example of DCI designation through a PDCCH in the frequency-shared wireless communication system 100 according to the present invention.
위에서 기술한 바와 같이, ZPRE는 각 사용자 단말(UE)에 할당되는 리소스 블록(RB) 구성이나 그 개수 또는 전송률에 따라 특정 리소스 블록(RB) 집합에만 할당될 수도 있으며, 도 14와 같이, 전체 리소스 블록(RB)의 PDSCH가 배치되는 RE에 ZPRE가 전체적으로 할당될 수도 있다. As described above, the ZPRE may be allocated only to a specific resource block (RB) set according to the resource block (RB) configuration allocated to each user terminal (UE), the number, or the transmission rate. The ZPRE may be entirely assigned to the RE where the PDSCH of the block RB is arranged.
이와 같은 ZPRE의 위치 ZPRE_Index(i, k)는, 리소스 블록(RB)에서 제어 신호의 전송을 위한 Control Channel(CC)가 배치되는 구간에 포함되는, PDCCH(Physical Downlink Control Channel)의 DCI(Downlink Control Information)를 통해 전송될 수 있으며, 사용자 단말들(UE)은 이를 참조하여 DCI가 지정하는 해당 구간에 대한 짧은 비면허대역(예, WiFi) 간섭신호를 측정할 수 있다. The location ZPRE_Index (i, k) of the ZPRE is a DCI (Downlink Control) of a physical downlink control channel (PDCCH) included in a section in which a control channel (CC) for transmitting a control signal is arranged in a resource block (RB). Information), and the user equipment (UE) may measure a short unlicensed band (eg, WiFi) interference signal for a corresponding section designated by the DCI with reference thereto.
[Rate Matching][Rate Matching]
주파수 공동사용 무선통신시스템(100)에서, 세컨더리로 비면허대역(예, WiFi) 데이터 송수신 시에, 기지국(NB)에서 전송되는 ZPRE가 포함된 프레임에 따라, 사용자 단말(UE)의 수신기는 ZPRE 구간의 비면허대역(예, WiFi) 간섭신호의 레벨을 측정하여 간섭 세기를 추정할 수 있으며, 사용자 단말(UE)의 송신기는 DCI(또는 다른 메시지나 신호 등)를 참조하여 ZPRE 구간(ZPRE가 할당되는 부반송파에서의 위치)을 제외하고 실제 데이터를 전송할 수 있는 RE의 수를 확인해 소정의 전송율 매칭(Rate Matching)을 통하여 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying) 등 해당 변조 방식을 선택하고, 선택된 변조 방식으로 전송 대상 데이터를 인코딩하고 전송할 수 있다. In the common frequency wireless communication system 100, when a second license is transmitted / received from an unlicensed band (eg, WiFi) data, the receiver of the user terminal (UE) according to the frame including the ZPRE transmitted from the base station (NB) is a ZPRE interval. The interference intensity may be estimated by measuring the level of the unlicensed band (eg, WiFi) interference signal of the UE, and the transmitter of the UE may be assigned a ZPRE interval (ZPRE) with reference to DCI (or other message or signal). Check the number of REs that can actually transmit data, excluding the location on the subcarrier, and select the corresponding modulation scheme such as Binary Phase Shift Keying (BPSK) or Quadrature Phase Shift Keying (QPSK) through predetermined rate matching. The data to be transmitted can be encoded and transmitted using the selected modulation scheme.
[Pattern Acquisition][Pattern Acquisition]
eNB 등 기지국은 사용되는 ZPRE의 패턴을, PDCCH(Physical Downlink Control Channel)의 DCI(Downlink Control Information) 등 SIB(System Information Block)을 통하여 사용자 단말들(UE)에게 통보할 수 있다. 또한, 해당 하향링크 또는 상향링크 서브프레임에 ZPRE가 포함되어 있는지 없는지를 알려주기 위하여, PDCCH의 정보비트를 이용할 수 있다.A base station such as an eNB may notify the user equipments (UE) of the pattern of the ZPRE to be used through a system information block (SIB) such as downlink control information (DCI) of a physical downlink control channel (PDCCH). In addition, in order to inform whether a ZPRE is included in a corresponding downlink or uplink subframe, an information bit of a PDCCH may be used.
이외에도, 기지국(NB) 또는 사용자 단말(UE)은 다른 소정의 메시지 또는 인디케이션 신호(Indication Signal)을 이용하여 서로에게 ZPRE 패턴의 존재 여부와 위치를 통보함으로써, 상대방 시스템이 해당 정보를 획득하도록 할 수도 있다.In addition, the base station (NB) or the user terminal (UE) may notify each other of the presence and location of the ZPRE pattern by using another predetermined message or indication signal to allow the counterpart system to obtain the corresponding information. It may be.
또한, 기지국(NB) 또는 사용자 단말(UE)은 상향링크 또는 하향링크로 수신되는 신호를 블라인드(Blind) 디코딩(예, 다중 복조기를 갖춘 경우 변조방식의 정보 없이 복조함)하여 ZPRE가 포함되어 있는지 여부를 확인할 수도 있다. Also, the base station (NB) or the user terminal (UE) blind-decodes a signal received in an uplink or a downlink (for example, if a multiple demodulator is provided and demodulates without information of a modulation scheme) and includes ZPRE. You can also check.
[수신 디코딩][Incoming decoding]
기지국(NB) 또는 사용자 단말(UE)의 수신기는, 상향링크 또는 하향링크 프레임의 ZPRE로부터 ZPRE 구간의 비면허대역(예, WiFi) 간섭신호의 레벨을 측정하여 간섭 세기를 추정할 수 있다. 이에 따라 기지국(NB) 또는 사용자 단말(UE)은 비면허대역의 사용 시에, 간섭 신호에 의해 영향받는(예, 간섭신호가 임계치 보다 큰) 면허대역(예, LTE) 심볼의 수를 계산할 수 있다. The receiver of the base station (NB) or the user terminal (UE) may estimate the interference strength by measuring the level of the unlicensed band (eg, WiFi) interference signal of the ZPRE period from the ZPRE of the uplink or downlink frame. Accordingly, when the base station (NB) or the user terminal (UE) uses the unlicensed band, the base station (NB) or the user terminal (UE) may calculate the number of licensed band (eg, LTE) symbols affected by the interference signal (eg, the interference signal is larger than a threshold). .
또한, 위와 같이 측정한 간섭 신호의 세기와 간섭에 의해 영향받는 면허대역(예, LTE) 심볼의 수에 기초하여, 기지국(NB) 또는 사용자 단말(UE)은 채널 디코더에서 해당 채널 디코딩을 할 것인지 여부를 판단할 수 있고, WLAN 시스템의 WiFi 등 신호와 동시에 비면허대역의 상향링크/하향링크 데이터(예, LTE 신호)를 전송하지 않도록 처리할 수 있다. 예를 들어, 간섭신호가 임계치 보다 큰 경우 간섭에 의한 수신 에러가 크므로 채널 디코딩을 수행하지 않을 수 있다. In addition, based on the strength of the interference signal measured as described above and the number of licensed band (eg, LTE) symbols affected by the interference, whether the base station (NB) or the user terminal (UE) will decode the corresponding channel in the channel decoder. It is possible to determine whether or not to transmit uplink / downlink data (eg, LTE signal) of the unlicensed band at the same time as the WiFi signal of the WLAN system. For example, when the interference signal is larger than the threshold, the reception error due to the interference is large and thus channel decoding may not be performed.
그리고, 위와 같이 측정한 간섭 신호의 세기와 간섭에 의해 영향받는 면허대역(예, LTE) 심볼의 수에 기초하여, 기지국(NB) 또는 사용자 단말(UE)은 HARQ(Hybrid Automatic Repeat and Request) 응답을 받고 재전송되는 신호와 HARQ 이전에 수신된 신호를 결합(combining)할 것인지 여부를 결정하여, 재전송되는 신호와 이전에 수신된 신호를 소정의 방식으로 결합(combining)하여 채널 디코딩을 수행함으로써 수신 에러를 보정함으로써 디코딩 성능을 향상시킬 수 있다.The base station (NB) or the user terminal (UE) responds to a hybrid automatic repeat and request (HARQ) response based on the strength of the interference signal measured as described above and the number of licensed band (eg, LTE) symbols affected by the interference. Receive and determine whether to combine the retransmitted signal and the received signal prior to HARQ, and combine the retransmitted signal and the previously received signal in a predetermined manner to perform channel decoding. By correcting the decoding performance can be improved.
상술한 바와 같이, 본 발명에 따른 주파수 공동사용 무선통신시스템(100)에서는, LTE 네트워크에 속한 사용자 단말들(UE) 중 비면허대역(예, WiFi)을 이용하여 면허대역(예, LTE) 데이터를 송수신하는 환경에서, Zero powered Resource Element(ZPRE) 패턴 및 할당 방법에 따라, ZPRE를 이용하여 짧은 비면허대역(예, WiFi) 간섭신호의 검출을 통한 간섭 구간 확인이 가능하고, 간섭세기, 간섭에 의해 영향받는 면허대역(예, LTE) 심볼의 수를 확인하여 처리할 수 있다. 이에 따라, UE에 인접한 비면허대역(예, WiFi) 기기가 전송하는 짧은 비면허대역(예, WiFi) 신호에 의한 높은 간섭 신호영향을 최소화할 수 있으며, 간섭환경에서 수신 성능을 향상시키도록, 디코딩이 가능하고 이전에 수신된 신호와 HARQ를 통한 재전송 신호를 결합(combining)하여 디코딩 성능을 향상시킬 수도 있다.As described above, in the common frequency use wireless communication system 100 according to the present invention, licensed band (eg, LTE) data is obtained using an unlicensed band (eg, WiFi) among user equipments (UE) belonging to an LTE network. In the environment of transmitting and receiving, according to the Zero-powered Resource Element (ZPRE) pattern and the allocation method, it is possible to check the interference section by detecting a short unlicensed band (eg WiFi) interference signal using ZPRE, The number of affected licensed band (eg, LTE) symbols can be identified and processed. Accordingly, it is possible to minimize the effect of high interference signals caused by short unlicensed band (eg WiFi) signals transmitted by unlicensed band (eg WiFi) devices adjacent to the UE, and decoding may be performed to improve reception performance in an interference environment. It is possible to improve decoding performance by combining the previously received signal with the retransmission signal via HARQ.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention.
따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (11)

  1. 면허대역을 사용하는 무선통신시스템에서 비면허대역 시스템과 공존하여 비면허대역을 세컨더리로 사용하기 위한 신호처리 방법에 있어서, A signal processing method for coexisting with an unlicensed band system in a wireless communication system using a licensed band and using the unlicensed band as a secondary,
    면허대역 제1시스템에서 면허대역의 데이터 프레임을 구성하는 하나 이상의 리소스 블록(RB)의 일부 리소스 엘리먼트(RE)를 제로 파워 리소스 엘리먼트(ZPRE)로 할당하고, 상기 ZPRE가 포함된 데이터 프레임을 비면허대역을 이용하여 전송하는 단계; 및In the licensed first system, some resource elements RE of at least one resource block RB constituting the data frame of the licensed band are allocated as zero power resource elements ZPRE, and the data frame including the ZPRE is unlicensed band. Transmitting using; And
    면허대역 제2시스템에서 상기 데이터 프레임을 수신하고, 상기 ZPRE 구간의 비면허대역 간섭신호의 세기를 측정하고 채널 디코딩을 수행하는 단계Receiving the data frame in a licensed band 2 system, measuring the strength of an unlicensed band interference signal in the ZPRE interval, and performing channel decoding
    를 포함하는 것을 특징으로 하는 신호처리 방법.Signal processing method comprising a.
  2. 제1항에 있어서,The method of claim 1,
    상기 ZPRE는 하향링크의 PDSCH(Physical Downlink Shared Channel)나 PDCCH(Physical Downlink Control Channel), 또는 상향링크의 PUCCH(Physical Uplink Control Channel) 또는 PUSCH(Physical Uplink Shared Channel)가 배치되는 소정의 RE들 중 전체 또는 일부 RE에 할당되는 것을 특징으로 하는 신호처리 방법.The ZPRE is a total of predetermined REs in which a downlink physical downlink shared channel (PDSCH) or a physical downlink control channel (PDCCH) or a physical uplink control channel (PUCCH) or a physical uplink shared channel (PUSCH) of an uplink is disposed. Or some REs.
  3. 제2항에 있어서,The method of claim 2,
    상기 ZPRE는 상기 소정의 RE들 중 하나의 부반송파 영역 모두의 RE에 할당되는 것을 특징으로 하는 신호처리 방법.The ZPRE is allocated to the REs of all subcarrier regions of one of the predetermined REs.
  4. 제2항에 있어서,The method of claim 2,
    상기 ZPRE는 상기 소정의 RE들 중 2 이상 복수의 부반송파 영역의 각각에서 하나 이상의 RE에 할당되는 것을 특징으로 하는 신호처리 방법.And the ZPRE is assigned to one or more REs in each of two or more subcarrier regions of the predetermined REs.
  5. 제2항에 있어서,The method of claim 2,
    상기 ZPRE는 상기 소정의 RE들 중 기준신호가 존재하는 부반송파 영역의 모든 RE에 할당되고, 상기 기준신호가 존재하는 RE에 대해 위 또는 아래로 인접한 RE에 할당되는 것을 특징으로 하는 신호처리 방법.The ZPRE is allocated to all REs in a subcarrier region in which a reference signal exists among the predetermined REs, and is allocated to an RE adjacent to an up or down relative to the RE in which the reference signal exists.
  6. 제1항에 있어서,The method of claim 1,
    상기 ZPRE는 수학식 "ZPRE_Index(i, k) = (Q(i) mod G + P(k) mode G ) + (G*k)"에 따라 심볼 인덱스(i)에서 미리 정해진 M(자연수)개의 ZPRE 중 k번째 ZPRE의 부반송파 위치 ZPRE_Index(i, k)에 할당되며, The ZPRE is a predetermined number of M (natural numbers) at the symbol index (i) according to the equation "ZPRE_Index (i, k) = (Q (i) mod G + P (k) mode G) + (G * k)" Assigned to the subcarrier position ZPRE_Index (i, k) of the kth ZPRE of the ZPRE,
    여기서, G는 ZPRE가 할당되는 주기, Q(i)는 심볼 인덱스(i)에 의해 결정되거나 랜덤한 순열에서 임의로 결정되는 0 또는 양의 정수, P(k)는 심볼 인덱스(i)에서의 ZPRE 위치(k)에 의해 결정되거나 랜덤한 순열에서 임의로 결정되는 0 또는 양의 정수인 것을 특징으로 하는 신호처리 방법.Where G is the period in which ZPRE is assigned, Q (i) is a zero or positive integer determined by the symbol index i or randomly determined in a random permutation, and P (k) is the ZPRE at symbol index i. A zero or positive integer determined by position k or randomly determined in a random permutation.
  7. 제2항에 있어서,The method of claim 2,
    상기 ZPRE는 연속한 복수의 RB 각각에서 상기 소정의 RE들 중 하나의 RE씩 또는 복수의 RE씩에 할당되는 것을 특징으로 하는 신호처리 방법.And the ZPRE is allocated to one RE or one of a plurality of REs in each of a plurality of consecutive RBs.
  8. 제1항에 있어서,The method of claim 1,
    상기 ZPRE가 할당되는 부반송파에서의 위치는 PDCCH의 DCI(Downlink Control Information)를 이용하거나, 다른 소정의 메시지 또는 인디케이션 신호를 이용하여 상대방 시스템으로 통보되는 것을 특징으로 하는 신호처리 방법.The location on the subcarrier to which the ZPRE is allocated is signaled to the counterpart system using Downlink Control Information (DCI) of the PDCCH or another predetermined message or indication signal.
  9. 제8항에 있어서,The method of claim 8,
    상기 면허대역 제2시스템에서 상기 ZPRE가 할당되는 부반송파에서의 위치를 제외하고 실제 데이터를 전송할 수 있는 RE의 수를 확인해 해당 변조 방식에 따라 전송 대상 데이터를 전송하는 단계Confirming the number of REs that can transmit the actual data except for the location on the subcarrier to which the ZPRE is allocated in the licensed band 2 system and transmitting data to be transmitted according to a corresponding modulation scheme
    를 더 포함하는 것을 특징으로 하는 신호처리 방법.Signal processing method further comprising.
  10. 제1항에 있어서,The method of claim 1,
    상기 간섭신호의 세기를 측정하고 채널 디코딩을 수행하는 단계는,Measuring the strength of the interference signal and performing channel decoding,
    상기 간섭신호에 의해 영향받는 면허대역 심볼의 수를 계산하고, 상기 간섭신호의 세기와 상기 심볼의 수를 기초로 채널 디코딩의 수행 여부를 결정하는 단계Calculating the number of licensed band symbols affected by the interference signal, and determining whether to perform channel decoding based on the strength of the interference signal and the number of symbols;
    를 포함하는 것을 특징으로 하는 신호처리 방법.Signal processing method comprising a.
  11. 제10항에 있어서,The method of claim 10,
    상기 간섭신호의 세기를 측정하고 채널 디코딩을 수행하는 단계는,Measuring the strength of the interference signal and performing channel decoding,
    HARQ(Hybrid Automatic Repeat and Request) 응답을 받고 재전송되는 신호와 상기 HARQ 이전에 수신된 신호를 결합하여 채널 디코딩을 수행할지 여부를 결정하는 단계Determining whether to perform channel decoding by combining a signal that is retransmitted with a hybrid automatic repeat and request (HARQ) response and a signal received before the HARQ.
    를 더 포함하는 것을 특징으로 하는 신호처리 방법.Signal processing method further comprising.
PCT/KR2016/002596 2015-04-09 2016-03-15 Unlicensed band lte data interference signal detection and decoding method WO2016163658A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0050410 2015-04-09
KR20150050410 2015-04-09
KR1020160030070A KR20160121390A (en) 2015-04-09 2016-03-14 Method for Detecting Interference Signal and Decoding for LTE Data in Unlicensed Band
KR10-2016-0030070 2016-03-14

Publications (1)

Publication Number Publication Date
WO2016163658A1 true WO2016163658A1 (en) 2016-10-13

Family

ID=57072752

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002596 WO2016163658A1 (en) 2015-04-09 2016-03-15 Unlicensed band lte data interference signal detection and decoding method

Country Status (1)

Country Link
WO (1) WO2016163658A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337690A (en) * 2018-01-16 2018-07-27 浙江大学 A kind of multi-mode networks resource allocation methods applied to Distributed Integration access system
CN109041068A (en) * 2018-08-16 2018-12-18 温州大学苍南研究院 Method based on p-LAA and the optimization of WIFI co-existin networks performance
CN111148250A (en) * 2019-12-24 2020-05-12 深圳大学 Network resource allocation method and device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457079B2 (en) * 2009-10-05 2013-06-04 Motorola Mobility Llc Method and apparatus for mitigating downlink control channel interference
WO2013110220A1 (en) * 2012-01-29 2013-08-01 Nokia Corporation Interference measurement among multiple transmission points
WO2013179095A1 (en) * 2012-05-31 2013-12-05 Nokia Corporation Coexistence of lte operated in unlicensed band
KR20140047162A (en) * 2011-08-25 2014-04-21 퀄컴 인코포레이티드 User equipment enhancements for cooperative multi-point communication
US20150085684A1 (en) * 2013-09-24 2015-03-26 Qualcomm Incorporated Carrier sense adaptive transmission (csat) in unlicensed spectrum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8457079B2 (en) * 2009-10-05 2013-06-04 Motorola Mobility Llc Method and apparatus for mitigating downlink control channel interference
KR20140047162A (en) * 2011-08-25 2014-04-21 퀄컴 인코포레이티드 User equipment enhancements for cooperative multi-point communication
WO2013110220A1 (en) * 2012-01-29 2013-08-01 Nokia Corporation Interference measurement among multiple transmission points
WO2013179095A1 (en) * 2012-05-31 2013-12-05 Nokia Corporation Coexistence of lte operated in unlicensed band
US20150085684A1 (en) * 2013-09-24 2015-03-26 Qualcomm Incorporated Carrier sense adaptive transmission (csat) in unlicensed spectrum

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108337690A (en) * 2018-01-16 2018-07-27 浙江大学 A kind of multi-mode networks resource allocation methods applied to Distributed Integration access system
CN108337690B (en) * 2018-01-16 2020-04-28 浙江大学 Multi-standard network resource allocation method applied to distributed integrated access system
CN109041068A (en) * 2018-08-16 2018-12-18 温州大学苍南研究院 Method based on p-LAA and the optimization of WIFI co-existin networks performance
CN109041068B (en) * 2018-08-16 2022-11-15 温州大学苍南研究院 Method for optimizing performance of coexisting network based on p-LAA and WIFI
CN111148250A (en) * 2019-12-24 2020-05-12 深圳大学 Network resource allocation method and device
CN111148250B (en) * 2019-12-24 2023-04-07 深圳大学 Network resource allocation method and device

Similar Documents

Publication Publication Date Title
US11115829B2 (en) Method and apparatus for performing channel sensing in a wireless communication system
CN108476104B (en) Method for narrowband uplink single tone transmission
US9930559B2 (en) Terminal device and base station device
US10206130B2 (en) Terminal device and base station device
WO2014104627A1 (en) Apparatus and method for performing device-to-device communication in wireless communication system
US10117121B2 (en) Terminal device and base station device
US20180020479A1 (en) Radio base station, user terminal and radio communication method
WO2019035631A1 (en) Method and apparatus for managing radio link in unlicensed band
WO2015088276A1 (en) Method and device for performing measurement in wireless communication system
WO2013042883A1 (en) Method for measuring link quality in a wireless communication system and apparatus therefor
WO2011019168A2 (en) Method and apparatus for transmitting reference signals in communication systems
WO2016068653A1 (en) Method and apparatus for handling user equipment measurements in case of absence of discovery signals in wireless communication system
WO2016159673A1 (en) Method for receiving downlink signal by means of unlicensed band in wireless communication system and device for same
WO2015016567A1 (en) Method and device for performing link adaptation in wireless communication system
CN107925898B (en) Measurement and reporting of signal transmissions in LTE/LTE-A including contention-based shared spectrum
WO2014071638A1 (en) Channel state information reporting method, user equipment and base station thereof
WO2013019046A2 (en) Method of measuring channel quality in a wireless access system and apparatus for same
MX2013007617A (en) Wireless base station device, mobile terminal device, and wireless communication method.
US11026096B2 (en) User terminal, radio base station and radio communication method
WO2015174805A1 (en) Method and apparatus for transmitting and receiving signal by device-to-device terminal in wireless communication system
WO2016028116A1 (en) Method and apparatus for defining received signal strength indicator for discovery signals in wireless communication system
WO2013133607A1 (en) Signal transmission method and user equipment, and signal reception method and base station
EP3683976A1 (en) User terminal and radio communication method
WO2017176645A1 (en) Coexistence methods and apparatus for sharing channels
US9461789B2 (en) Method for controlling interference in wireless communication system and apparatus therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776761

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776761

Country of ref document: EP

Kind code of ref document: A1