WO2016163496A1 - Dispersion stabilizer for crude oil - Google Patents

Dispersion stabilizer for crude oil Download PDF

Info

Publication number
WO2016163496A1
WO2016163496A1 PCT/JP2016/061485 JP2016061485W WO2016163496A1 WO 2016163496 A1 WO2016163496 A1 WO 2016163496A1 JP 2016061485 W JP2016061485 W JP 2016061485W WO 2016163496 A1 WO2016163496 A1 WO 2016163496A1
Authority
WO
WIPO (PCT)
Prior art keywords
crude oil
mass
dispersion stabilizer
parts
vinyl
Prior art date
Application number
PCT/JP2016/061485
Other languages
French (fr)
Japanese (ja)
Inventor
琢真 金島
熊木 洋介
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Publication of WO2016163496A1 publication Critical patent/WO2016163496A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F16/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F16/02Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an alcohol radical
    • C08F16/04Acyclic compounds
    • C08F16/06Polyvinyl alcohol ; Vinyl alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L29/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical; Compositions of hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Compositions of derivatives of such polymers
    • C08L29/02Homopolymers or copolymers of unsaturated alcohols
    • C08L29/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions

Definitions

  • the present invention relates to a crude oil dispersion stabilizer containing a vinyl alcohol polymer.
  • Crude oil typified by heavy oil is unconventional oil with higher viscosity than conventional oil, and its rich reserves are expected to contribute to alleviating the problem of oil depletion.
  • heavy oil has high viscosity and poor fluidity, there is a problem that efficient recovery from the oil layer and pipeline transportation are difficult.
  • Patent Documents 1 and 2 As a method for improving, recovering and transporting the fluidity of such heavy oil, a technique for reducing the viscosity by emulsifying the heavy oil in an aqueous solution using polyvinyl alcohol (PVA) as a dispersion emulsifier is disclosed.
  • PVA polyvinyl alcohol
  • Patent Documents 1 and 2 The methods disclosed in Patent Document 1 and Patent Document 2 effectively emulsify from a heavy oil having an API specific gravity of 30 ° or less to a super heavy oil or bitumen having an API specific gravity of 10 ° or less and extremely high viscosity. It can be lowered.
  • the emulsion obtained by this method has a high viscosity in a short period of time, precipitates are formed, particles are aggregated and become large, and oil is separated. Such a phenomenon is often seen, and there is a problem that the stability is inferior.
  • the present invention has been made in order to solve the above-mentioned problems.
  • An object is to provide a dispersion stabilizer.
  • a crude oil having a high viscosity is emulsified by a crude oil dispersion stabilizer containing a vinyl alcohol polymer having a hydrophobic group at its terminal or side chain. And found that the state of the emulsion can exist stably over a long period of time, leading to the present invention.
  • An object of the present invention is to provide a crude oil dispersion stabilizer containing a vinyl alcohol polymer, wherein the vinyl alcohol polymer has a hydrophobic group at a terminal or a side chain. It is solved by.
  • the hydrophobic group is preferably a hydrocarbon group, and the hydrophobic group is preferably an alkyl group having 6 to 18 carbon atoms or an aryl group.
  • the vinyl alcohol polymer preferably has a hydrophobic group at the end, and is preferably used for crude oil having an API specific gravity of 30 ° or less.
  • the subject is a crude oil treating agent comprising the crude oil dispersion stabilizer and water, wherein the crude oil treating agent comprises 0.05 to 40 parts by mass of the crude oil dispersion stabilizer with respect to 100 parts by mass of the crude oil treating agent. It is also solved by providing.
  • the subject is a crude oil dispersion containing the crude oil treatment agent and crude oil, comprising 3 to 50 parts by mass of the crude oil treatment agent with respect to 100 parts by mass of the total amount of the crude oil dispersion,
  • the problem can also be solved by providing a crude oil dispersion containing 0.001 to 1 part by weight of polymer and 50 to 97 parts by weight of the crude oil.
  • the crude oil dispersion stabilizer of the present invention can disperse or emulsify high-viscosity crude oil to reduce the viscosity, and the obtained crude oil dispersion or emulsion can be stably present for a long time.
  • the crude oil dispersion stabilizer of the present invention is characterized by containing a vinyl alcohol polymer having a hydrophobic group at the terminal or side chain. It was revealed that a crude oil dispersion or emulsion having a low viscosity can be obtained by dispersing or emulsifying a crude oil having a high viscosity with the crude oil dispersion stabilizer of the present invention. The crude oil dispersion or emulsion thus obtained does not increase in viscosity in a short time and is excellent in stability. As can be seen from the comparison results of Examples and Comparative Examples described later, in Comparative Example 1 (heavy oil) using unmodified PVA, the viscosity of the crude oil dispersion increased after 6 hours.
  • the crude oil in the present invention includes crude oil such as heavy oil, bitumen (oil sand), tar, and pitch.
  • a crude oil having a high viscosity can be dispersed or emulsified by the crude oil dispersion stabilizer of the present invention.
  • the crude oil is preferably a crude oil having an API specific gravity of 30 ° or less. That is, a crude oil dispersion stabilizer used for crude oil having an API specific gravity of 30 ° or less is a preferred embodiment of the present invention.
  • the vinyl alcohol polymer used in the present invention has a hydrophobic group at the terminal or side chain (hereinafter sometimes abbreviated as “modified PVA”).
  • the hydrophobic group is not particularly limited, and a hydrocarbon group such as an alkyl group, a cycloalkyl group, or an aryl group is preferably used. These hydrocarbon groups may have a substituent. Of these, the hydrophobic group is more preferably an alkyl group having 6 to 18 carbon atoms or an aryl group.
  • alkyl group having 6 to 18 carbon atoms examples include n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group and the like. Can be mentioned.
  • aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, and an anthryl group.
  • terminal-modified PVA a vinyl alcohol polymer having a hydrophobic group at the terminal
  • terminal-modified PVA a vinyl alcohol polymer having a hydrophobic group at the terminal
  • a various method is employable. For example, (1) a method in which a vinyl ester is polymerized by coexisting a compound having a functional group such as an alcohol, aldehyde, or thiol having a hydrophobic group as a chain transfer agent, and (2) vinyl is obtained. Examples thereof include a method of introducing a hydrophobic group to the terminal of the alcohol polymer by a chemical reaction.
  • a vinyl ester such as vinyl acetate in the presence of a chain transfer agent having a hydrophobic group, particularly a thiol having a C 6-18 alkyl group or aryl group.
  • a chain transfer agent having a hydrophobic group particularly a thiol having a C 6-18 alkyl group or aryl group.
  • Preferred is a method of polymerizing the compounds and then saponifying them (see JP-A-59-166505, JP-A-1-240501, JP-B-61-41924 and JP-A-7-292025).
  • chain transfer agent having a hydrophobic group examples include n-hexyl aldehyde, n-octyl aldehyde, 2-ethyl-hexyl aldehyde, n-caprin aldehyde, n-decyl aldehyde, n-undecyl aldehyde, n-lauryl aldehyde, C6-C18 aldehydes such as n-tridecyl aldehyde, cetyl aldehyde, palmityl aldehyde, stearyl aldehyde; or n-hexyl mercaptan, n-octyl mercaptan, n-decyl mercaptan, n-dodecyl mercaptan, n-octadecyl mercaptan Further, mercaptans having a C 6-18 alkyl group or aryl group
  • terminal-modified PVAs are obtained by polymerizing vinyl ester monomers using a conventionally known method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, and the like. It can be produced by saponifying an ester polymer. From the industrial viewpoint, preferred polymerization methods are solution polymerization, emulsion polymerization and dispersion polymerization. In the polymerization operation, any one of a batch method, a semi-batch method, and a continuous method can be employed.
  • the vinyl ester monomer When the vinyl ester monomer is polymerized, the vinyl ester monomer may be copolymerized with other monomers as long as the gist of the present invention is not impaired. It is preferable to polymerize alone.
  • examples of other monomers that can be used include ⁇ -olefins such as propylene, n-butene, and isobutylene; acrylic acid and its salts, methyl acrylate, ethyl acrylate, n-propyl acrylate, and i-acrylate.
  • Acrylic acid esters such as propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and salts thereof; methyl methacrylate, Methacrylic acid such as ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate Acid esters Acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salt,
  • Vinylsilyl compounds polyoxyethylene (meth) acrylate, polyoxypropylene (meth) acrylate, polyoxyethylene (meth) acrylic acid amide, polyoxypropylene (meth) acrylic Acid amide, polyoxyethylene (1- (meth) acrylamide-1,1-dimethylpropyl) ester, polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether Oxyalkylene group-containing monomers such as isopropenyl acetate and the like.
  • modified PVA having a high 1,2-glycol bond content obtained by polymerizing a vinyl ester monomer under a temperature condition higher than usual can also be used.
  • the content of 1,2-glycol bond is preferably 1.9 mol% or more, more preferably 2.0 mol% or more, and further preferably 2.1 mol% or more.
  • the saponification reaction of vinyl ester polymers alcoholysis or hydrolysis using conventionally known basic catalysts such as sodium hydroxide, potassium hydroxide and sodium methoxide, or acidic catalysts such as p-toluenesulfonic acid.
  • Decomposition reaction can be applied.
  • the solvent used for the saponification reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene.
  • side chain-modified PVA a vinyl alcohol polymer having a hydrophobic group in a side chain
  • side chain-modified PVA a vinyl alcohol polymer having a hydrophobic group in a side chain
  • a various method is employable. For example, at least one monomer selected from ⁇ -olefins having 6 to 18 carbon atoms and N- (meth) acrylamide derivatives is copolymerized with a vinyl ester monomer, and the resulting copolymer is saponified. This method is preferably employed.
  • Examples of the ⁇ -olefin having 6 to 18 carbon atoms include 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene and the like.
  • Examples of N- (meth) acrylamide derivatives having 6 to 18 carbon atoms include N-octyl (meth) acrylamide, N-decyl (meth) acrylamide, N-dodecyl (meth) acrylamide and the like.
  • the number of carbon atoms is more preferably 8 or more.
  • vinyl ester monomer examples include vinyl acetate, vinyl formate, vinyl propionate, vinyl caprylate, vinyl versatate, and among these, vinyl acetate is preferable from an industrial viewpoint.
  • the saponification degree of the modified PVA is preferably 70 to 99.9 mol%, more preferably 80 to 99.5 mol%, and still more preferably 85 to 99 mol%. When the degree of saponification is less than 70 mol%, the solubility of PVA in water may be reduced.
  • the degree of saponification of the modified PVA can be measured according to JIS-K6726 (1994).
  • the upper limit of the viscosity average degree of polymerization (hereinafter sometimes simply referred to as the degree of polymerization) of the modified PVA is usually 4000 or less, preferably 2000 or less, and particularly preferably 1000 or less.
  • the productivity of the modified PVA may be lowered.
  • limiting in particular about the minimum of a viscosity average polymerization degree From a viewpoint from which dispersion stability becomes favorable, 100 or more are preferable, 150 or more are more preferable, and 200 or more are still more preferable.
  • the viscosity average degree of polymerization of the modified PVA is a value measured according to JIS-K6726 (1994).
  • the modified PVA is re-saponified to a degree of saponification of 99.5 mol% or more and purified, it can be obtained from the intrinsic viscosity [ ⁇ ] (liter / g) measured in water at 30 ° C. by the following formula.
  • P ([ ⁇ ] ⁇ 10000 / 8.29) (1 / 0.62)
  • the amount of modification of the modified PVA is preferably 0.01 to 10 mol%. When the modification amount is less than 0.01 mol%, it may be difficult to disperse the crude oil, and the crude oil dispersion may be separated in a short time.
  • the modified amount of the modified PVA is more preferably 0.05 mol% or more, and still more preferably 0.2 mol% or more. On the other hand, when the modification amount exceeds 10 mol%, the solubility of PVA may be lowered, more preferably 5 mol% or less, and still more preferably 2 mol% or less.
  • the modified amount of the modified PVA can be obtained by proton NMR measurement.
  • the vinyl alcohol polymer used in the present invention has a hydrophobic group at the terminal or side chain. From the viewpoint of further improving the dispersion stability of crude oil, the vinyl alcohol polymer is used. It is preferable that has a hydrophobic group at the terminal.
  • the crude oil dispersion stabilizer of the present invention may be added directly to the crude oil, but is preferably used as a crude oil treatment agent obtained by mixing with water. At this time, it is preferable that 0.05 to 40 parts by mass of the crude oil dispersion stabilizer is contained with respect to 100 parts by mass of the total amount of the crude oil treating agent. From the viewpoint of further improving the dispersion stability of the crude oil, the lower limit of the crude oil dispersion stabilizer is more preferably 0.1 parts by mass or more. On the other hand, the upper limit of the crude oil dispersion stabilizer is more preferably 30 parts by mass or less, and still more preferably 20 parts by mass or less.
  • a preferred embodiment of the crude oil treating agent comprises 0.05 to 40 parts by mass of the crude oil dispersion stabilizer and 60 to 99.95 parts by mass of water with respect to 100 parts by mass of the total amount of the crude oil treating agent. It is. From the viewpoint of further improving the dispersion stability of crude oil, a crude oil treatment agent containing 0.1 to 30 parts by mass of the crude oil dispersion stabilizer and 70 to 99.9 parts by mass of water is a more preferred embodiment. A crude oil treating agent containing 0.1 to 20 parts by mass of the crude oil dispersion stabilizer and 80 to 99.9 parts by mass of water is a more preferred embodiment.
  • the crude oil treating agent is preferably an aqueous solution containing a crude oil dispersion stabilizer.
  • the crude oil treating agent may contain a solvent other than water such as alcohol as long as it does not impair the effects of the present invention, and may contain stabilizers, surfactants and the like that are usually used.
  • the method for dispersing or emulsifying crude oil using the crude oil treating agent is not particularly limited.
  • a method of mixing the crude oil treatment agent and crude oil as a pretreatment for pipeline transportation is a preferred embodiment, and a method of injecting the crude oil treatment material into an oil layer to obtain a dispersed or emulsified crude oil dispersion is also preferred.
  • Embodiment. A crude oil reforming method using the crude oil treating agent is also a preferred embodiment.
  • the blending ratio when the crude oil is dispersed or emulsified using the crude oil treatment agent is not particularly limited, but the mass ratio of the crude oil treatment agent to the crude oil (crude treatment agent / crude oil) is 3/97 to Preferably it is 50/50. From the viewpoint of further improving the dispersion stability of the crude oil, the mass ratio is more preferably 5/95 to 40/60.
  • the crude oil dispersion containing the crude oil treatment agent comprises 3 to 50 parts by mass of the crude oil treatment agent with respect to 100 parts by mass of the total amount of the crude oil dispersion, and 0% of the vinyl alcohol polymer.
  • a crude oil dispersion containing 0.001 to 1 part by mass and 50 to 97 parts by mass of the crude oil is a preferred embodiment.
  • the content of the crude oil treating agent with respect to 100 parts by mass of the total amount of the crude oil dispersion is preferably 5 to 40 parts by mass from the viewpoint of further improving the dispersion stability of the crude oil.
  • the amount is preferably 60 to 95 parts by mass.
  • the content of the vinyl alcohol polymer is preferably 0.05 to 0.8 parts by mass from the viewpoint of further improving the dispersion stability of the crude oil.
  • the crude oil dispersion thus obtained is preferably used as an energy source.
  • ⁇ PVA-5> A vinyl alcohol polymer (PVA-5) having a phenyl group at the terminal was synthesized by the method described in Example 1 of JP-A-7-292025.
  • Table 1 shows the types of mercaptans used in the synthesis, vinyl alcohol unit content (degree of saponification) and viscosity average degree of polymerization measured according to JIS-K6726 (1994), and the amount of modification determined by 1 H-NMR measurement. Show.
  • the polymerization rate when the polymerization was stopped was 60%. Subsequently, unreacted monomers were removed while adding methanol occasionally at 30 ° C. under reduced pressure to obtain a methanol solution of polyvinyl acetate (concentration 55.6%) into which 1-dodecene was introduced.
  • Table 1 shows the content of 1-dodecene (modified amount) determined by 1 H-NMR measurement, the content of vinyl alcohol units (degree of saponification) and the viscosity average polymerization degree measured according to JIS-K6726 (1994). Show.
  • ⁇ PVA-7> Polymerization was started in the same manner as PVA-6 except that the amount of 1-dodecene charged was changed to 0.49 parts by mass and the amount of methanol charged was changed to 456 parts by mass. After polymerization at 60 ° C. for 2.4 hours, the polymerization was stopped by cooling. The polymerization rate when the polymerization was stopped was 50%. Subsequently, unreacted monomers were removed while adding methanol occasionally under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate (concentration: 45.3%) into which 1-dodecene was introduced.
  • Table 1 shows the content of 1-dodecene (modified amount) determined by 1 H-NMR measurement, the content of vinyl alcohol units (degree of saponification) and the viscosity average polymerization degree measured according to JIS-K6726 (1994). Show.
  • Example 1 To a glass screw tube, 6 parts by mass of a 0.5 mass% aqueous solution of PVA-1 and 14 parts by mass of heavy oil (35 ° C. viscosity 580 mPa ⁇ s, API specific gravity 11.6) were added, and a magnetic stirrer was used. The mixture was stirred at 1500 rpm for 15 minutes to prepare a crude oil dispersion. The viscosity (A) of the crude oil dispersion immediately after production and the viscosity (B) of the crude oil dispersion after 6 hours at 35 ° C. were measured at 35 ° C. using a B-type viscometer. The obtained results are shown in Table 2. Table 2 shows the value of (B / A) as an index of dispersion stability.
  • Examples 2 to 10 A crude oil dispersion was prepared and evaluated in the same manner as in Example 1 except that the type of PVA, the concentration of PVA, the type of crude oil, and the dispersion composition were changed as shown in Table 2.
  • the bitumen used in Examples 9 and 10 is from Canada (viscosity at 35 ° C. 66100 mPa ⁇ s, API specific gravity 7.6). The obtained results are shown in Table 2.
  • Comparative Example 1 A crude oil dispersion was prepared and evaluated in the same manner as in Example 1 except that unmodified PVA (polymerization degree 300, saponification degree 88 mol%) was used instead of PVA-1 used in Example 1. The obtained results are shown in Table 2.
  • Comparative Example 2 A crude oil dispersion was prepared and evaluated in the same manner as in Comparative Example 1 except that bitumen was used instead of the heavy oil used in Comparative Example 1. The obtained crude oil dispersion immediately formed a sediment, and its viscosity could not be measured. The obtained results are shown in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

A dispersion stabilizer for crude oils which comprises a vinyl-alcohol-based polymer, characterized in that the vinyl-alcohol-based polymer has a hydrophobic group at a terminal or as a side chain. Due to this, the dispersion stabilizer for crude oils makes it possible to disperse or emulsify a high-viscosity crude oil to reduce the viscosity and obtain a crude oil dispersion or emulsion which is stable for a long period.

Description

原油分散安定剤Crude oil dispersion stabilizer
 本発明は、ビニルアルコール系重合体を含有する原油分散安定剤に関する。 The present invention relates to a crude oil dispersion stabilizer containing a vinyl alcohol polymer.
 重質油に代表される原油は、在来型石油よりも高粘度の非在来型石油であり、豊富な埋蔵量から石油の枯渇問題緩和への貢献が期待されている。しかし、重質油は粘度が高く流動性に乏しいため、油層からの効率的な回収、およびパイプライン輸送が困難という問題があった。 Crude oil typified by heavy oil is unconventional oil with higher viscosity than conventional oil, and its rich reserves are expected to contribute to alleviating the problem of oil depletion. However, since heavy oil has high viscosity and poor fluidity, there is a problem that efficient recovery from the oil layer and pipeline transportation are difficult.
 このような重質油の流動性を改善し、回収、輸送する方法として、分散乳化剤としてポリビニルアルコール(PVA)を用い、重質油を水溶液中にエマルション化して低粘度化する技術が開示されている(特許文献1、2)。特許文献1および特許文献2に開示の方法は、API比重30°以下の重質油から、API比重10°以下の極めて粘度の高い超重質油やビチューメン類に至るまで有効にエマルション化し、粘度を低下させることができるとされている。しかしながら、本発明者らの検討によれば、この方法で得られたエマルションは、短時間に粘度が高くなったり、沈降物が生成したり、粒子が凝集して大きくなったり、油が分離するといった現象がしばしば見られ、安定性に劣るという問題があった。 As a method for improving, recovering and transporting the fluidity of such heavy oil, a technique for reducing the viscosity by emulsifying the heavy oil in an aqueous solution using polyvinyl alcohol (PVA) as a dispersion emulsifier is disclosed. (Patent Documents 1 and 2). The methods disclosed in Patent Document 1 and Patent Document 2 effectively emulsify from a heavy oil having an API specific gravity of 30 ° or less to a super heavy oil or bitumen having an API specific gravity of 10 ° or less and extremely high viscosity. It can be lowered. However, according to studies by the present inventors, the emulsion obtained by this method has a high viscosity in a short period of time, precipitates are formed, particles are aggregated and become large, and oil is separated. Such a phenomenon is often seen, and there is a problem that the stability is inferior.
WO2005/040669号WO2005 / 040669 WO2011/023990号WO2011 / 023990
 本発明は上記課題を解決するためになされたものであり、高粘度の原油を分散又はエマルション化して粘度を低減し、得られた原油分散液又はエマルションを長時間安定に存在させることができる原油分散安定剤を提供することを目的とする。 The present invention has been made in order to solve the above-mentioned problems. Crude oil that can be dispersed or emulsified in high-viscosity crude oil to reduce the viscosity, and the obtained crude oil dispersion or emulsion can be stably present for a long time. An object is to provide a dispersion stabilizer.
 本発明の発明者らは、上記目的を達成するために鋭意検討した結果、疎水性基を末端又は側鎖に有するビニルアルコール系重合体を含有する原油分散安定剤により、高粘度の原油をエマルション化することができ、そのエマルションの状態を長時間にわたって安定に存在させることができることを見出し、本発明に至った。 The inventors of the present invention have intensively studied to achieve the above object, and as a result, a crude oil having a high viscosity is emulsified by a crude oil dispersion stabilizer containing a vinyl alcohol polymer having a hydrophobic group at its terminal or side chain. And found that the state of the emulsion can exist stably over a long period of time, leading to the present invention.
 上記課題は、ビニルアルコール系重合体を含有する原油分散安定剤であって、前記ビニルアルコール系重合体が、末端又は側鎖に疎水性基を有することを特徴とする原油分散安定剤を提供することによって解決される。 An object of the present invention is to provide a crude oil dispersion stabilizer containing a vinyl alcohol polymer, wherein the vinyl alcohol polymer has a hydrophobic group at a terminal or a side chain. It is solved by.
 このとき、前記疎水性基が炭化水素基であることが好適であり、前記疎水性基が炭素数6~18のアルキル基又はアリール基であることが好適である。また、このとき、前記ビニルアルコール系重合体が末端に疎水性基を有することが好適であり、API比重30°以下の原油に使用することが好適である。 At this time, the hydrophobic group is preferably a hydrocarbon group, and the hydrophobic group is preferably an alkyl group having 6 to 18 carbon atoms or an aryl group. At this time, the vinyl alcohol polymer preferably has a hydrophobic group at the end, and is preferably used for crude oil having an API specific gravity of 30 ° or less.
 上記課題は、上記原油分散安定剤と水とを含む原油処理剤であって、原油処理剤の全量100質量部に対して、前記原油分散安定剤を0.05~40質量部含む原油処理剤を提供することによっても解決される。 The subject is a crude oil treating agent comprising the crude oil dispersion stabilizer and water, wherein the crude oil treating agent comprises 0.05 to 40 parts by mass of the crude oil dispersion stabilizer with respect to 100 parts by mass of the crude oil treating agent. It is also solved by providing.
 また、上記課題は、上記原油処理剤と原油とを含む原油分散液であって、原油分散液の全量100質量部に対して、前記原油処理剤を3~50質量部含み、前記ビニルアルコール系重合体を0.001~1質量部含み、かつ、前記原油を50~97質量部含む原油分散液を提供することによっても解決される。 The subject is a crude oil dispersion containing the crude oil treatment agent and crude oil, comprising 3 to 50 parts by mass of the crude oil treatment agent with respect to 100 parts by mass of the total amount of the crude oil dispersion, The problem can also be solved by providing a crude oil dispersion containing 0.001 to 1 part by weight of polymer and 50 to 97 parts by weight of the crude oil.
 本発明の原油分散安定剤により、高粘度の原油を分散又はエマルション化して粘度を低減し、得られた原油分散液又はエマルションを長時間安定に存在させることができる。 The crude oil dispersion stabilizer of the present invention can disperse or emulsify high-viscosity crude oil to reduce the viscosity, and the obtained crude oil dispersion or emulsion can be stably present for a long time.
 本発明の原油分散安定剤は、疎水性基を末端又は側鎖に有するビニルアルコール系重合体を含有することを特徴とする。本発明の原油分散安定剤により、高粘度の原油を分散又はエマルション化して、低粘度の原油分散液又はエマルションが得られることが明らかとなった。こうして得られた原油分散液又はエマルションは、短時間で粘度が高くなることがなく、安定性に優れている。後述する実施例と比較例との対比結果からも分かるように、無変性のPVAを用いた比較例1(重質油)では、原油分散液の粘度が6時間経過後に高くなっており、同様に無変性のPVAを用いた比較例2(ビチューメン)では、原油分散液において沈降物が生成してしまい粘度を測定することができなかった。これに対し、疎水性基を末端又は側鎖に有するビニルアルコール系重合体を含有する原油分散安定剤を用いた実施例1~8では、原油の分散安定性に優れていた。したがって、油層からの原油の回収を効率的に行うことが可能となる。また、パイプラインによる輸送も可能となる。 The crude oil dispersion stabilizer of the present invention is characterized by containing a vinyl alcohol polymer having a hydrophobic group at the terminal or side chain. It was revealed that a crude oil dispersion or emulsion having a low viscosity can be obtained by dispersing or emulsifying a crude oil having a high viscosity with the crude oil dispersion stabilizer of the present invention. The crude oil dispersion or emulsion thus obtained does not increase in viscosity in a short time and is excellent in stability. As can be seen from the comparison results of Examples and Comparative Examples described later, in Comparative Example 1 (heavy oil) using unmodified PVA, the viscosity of the crude oil dispersion increased after 6 hours. In Comparative Example 2 (bitumen) using unmodified PVA, sediment was formed in the crude oil dispersion, and the viscosity could not be measured. On the other hand, in Examples 1 to 8 using a crude oil dispersion stabilizer containing a vinyl alcohol polymer having a hydrophobic group at the terminal or side chain, the dispersion stability of the crude oil was excellent. Therefore, it is possible to efficiently recover the crude oil from the oil reservoir. In addition, transportation by pipeline is also possible.
 本発明における原油には、重質油、ビチューメン(オイルサンド)、タール、ピッチ等の原油が含まれる。本発明の原油分散安定剤により高粘度の原油を分散又はエマルション化することができる。前記原油がAPI比重30°以下の原油であることが好ましい。すなわち、API比重30°以下の原油に使用する原油分散安定剤が本発明の好適な実施態様である。 The crude oil in the present invention includes crude oil such as heavy oil, bitumen (oil sand), tar, and pitch. A crude oil having a high viscosity can be dispersed or emulsified by the crude oil dispersion stabilizer of the present invention. The crude oil is preferably a crude oil having an API specific gravity of 30 ° or less. That is, a crude oil dispersion stabilizer used for crude oil having an API specific gravity of 30 ° or less is a preferred embodiment of the present invention.
 本発明で用いられるビニルアルコール系重合体は、末端又は側鎖に疎水性基を有するものである(以下「変性PVA」と略記することがある)。疎水性基としては特に限定されず、アルキル基、シクロアルキル基、アリール基等の炭化水素基が好適に用いられる。これら炭化水素基は置換基を有していても構わない。中でも、疎水性基が炭素数6~18のアルキル基又はアリール基であることがより好適である。 The vinyl alcohol polymer used in the present invention has a hydrophobic group at the terminal or side chain (hereinafter sometimes abbreviated as “modified PVA”). The hydrophobic group is not particularly limited, and a hydrocarbon group such as an alkyl group, a cycloalkyl group, or an aryl group is preferably used. These hydrocarbon groups may have a substituent. Of these, the hydrophobic group is more preferably an alkyl group having 6 to 18 carbon atoms or an aryl group.
 炭素数6~18のアルキル基としては、n-ヘキシル基、イソヘキシル基、2-エチルヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ドデシル基等が挙げられる。炭素数6~18のアリール基としては、フェニル基、ナフチル基、アントリル基等が挙げられる。 Examples of the alkyl group having 6 to 18 carbon atoms include n-hexyl group, isohexyl group, 2-ethylhexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-dodecyl group and the like. Can be mentioned. Examples of the aryl group having 6 to 18 carbon atoms include a phenyl group, a naphthyl group, and an anthryl group.
 以下、疎水性基を末端に有するビニルアルコール系重合体(以下「末端変性PVA」と略記することがある)について説明する。末端変性PVAの製造方法について特に制限はなく、種々の方法を採用することができる。例えば、(1)疎水性基を有するアルコール、アルデヒド、チオール等の官能基を有する化合物を連鎖移動剤として共存させてビニルエステルを重合させ、得られる重合体をけん化する方法、または(2)ビニルアルコール系重合体の末端に疎水性基を化学反応により導入する方法等が挙げられる。末端変性PVAをより経済的かつ効率的に得る方法として、疎水性基を有する連鎖移動剤、特に炭素数6~18のアルキル基又はアリール基を有するチオールの存在下に、酢酸ビニル等のビニルエステル類を重合し、次いでけん化する方法が好ましい(特開昭59-166505号公報、特開平1-240501号公報、特公昭61-41924号公報及び特開平7-292025号公報参照)。 Hereinafter, a vinyl alcohol polymer having a hydrophobic group at the terminal (hereinafter sometimes abbreviated as “terminal-modified PVA”) will be described. There is no restriction | limiting in particular about the manufacturing method of terminal modified PVA, A various method is employable. For example, (1) a method in which a vinyl ester is polymerized by coexisting a compound having a functional group such as an alcohol, aldehyde, or thiol having a hydrophobic group as a chain transfer agent, and (2) vinyl is obtained. Examples thereof include a method of introducing a hydrophobic group to the terminal of the alcohol polymer by a chemical reaction. As a method for obtaining terminal-modified PVA more economically and efficiently, a vinyl ester such as vinyl acetate in the presence of a chain transfer agent having a hydrophobic group, particularly a thiol having a C 6-18 alkyl group or aryl group. Preferred is a method of polymerizing the compounds and then saponifying them (see JP-A-59-166505, JP-A-1-240501, JP-B-61-41924 and JP-A-7-292025).
 上記疎水性基を有する連鎖移動剤としては、n-ヘキシルアルデヒド、n-オクチルアルデヒド、2-エチル-ヘキシルアルデヒド、n-カプリンアルデヒド、n-デシルアルデヒド、n-ウンデシルアルデヒド、n-ラウリルアルデヒド、n-トリデシルアルデヒド、セチルアルデヒド、パルミチルアルデヒド、ステアリルアルデヒドなどの炭素数6~18のアルデヒド;またはn-ヘキシルメルカプタン、n-オクチルメルカプタン、n-デシルメルカプタン、n-ドデシルメルカプタン、n-オクタデシルメルカプタン、チオフェノールなどの炭素数6~18のアルキル基又はアリール基を有するメルカプタンを利用することができる。中でも、連鎖移動剤としては、炭素数6~18のアルキル基又はアリール基を有するメルカプタンが好適に使用される。炭素数は8以上がより好ましい。 Examples of the chain transfer agent having a hydrophobic group include n-hexyl aldehyde, n-octyl aldehyde, 2-ethyl-hexyl aldehyde, n-caprin aldehyde, n-decyl aldehyde, n-undecyl aldehyde, n-lauryl aldehyde, C6-C18 aldehydes such as n-tridecyl aldehyde, cetyl aldehyde, palmityl aldehyde, stearyl aldehyde; or n-hexyl mercaptan, n-octyl mercaptan, n-decyl mercaptan, n-dodecyl mercaptan, n-octadecyl mercaptan Further, mercaptans having a C 6-18 alkyl group or aryl group such as thiophenol can be used. Among these, as the chain transfer agent, a mercaptan having an alkyl group or aryl group having 6 to 18 carbon atoms is preferably used. The number of carbon atoms is more preferably 8 or more.
 これら末端変性PVAは、ビニルエステル系単量体を塊状重合法、溶液重合法、懸濁重合法、乳化重合法、分散重合法等の従来公知の方法を採用して重合させ、得られたビニルエステル系重合体をけん化することにより製造することができる。工業的観点から好ましい重合方法は、溶液重合法、乳化重合法および分散重合法である。重合操作にあたっては、回分法、半回分法および連続法のいずれの重合方式を採用することも可能である。 These terminal-modified PVAs are obtained by polymerizing vinyl ester monomers using a conventionally known method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, an emulsion polymerization method, a dispersion polymerization method, and the like. It can be produced by saponifying an ester polymer. From the industrial viewpoint, preferred polymerization methods are solution polymerization, emulsion polymerization and dispersion polymerization. In the polymerization operation, any one of a batch method, a semi-batch method, and a continuous method can be employed.
 重合に用いることができるビニルエステル系単量体としては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、カプリル酸ビニル、バーサチック酸ビニルなどを挙げることができ、これらの中でも酢酸ビニルが工業的観点から好ましい。 Examples of vinyl ester monomers that can be used for polymerization include vinyl acetate, vinyl formate, vinyl propionate, vinyl caprylate, vinyl versatate, and among these, vinyl acetate is an industrial viewpoint. To preferred.
 ビニルエステル系単量体の重合に際して、本発明の主旨を損なわない範囲であればビニルエステル系単量体を他の単量体を共重合させても差し支えないが、ビニルエステル系単量体を単独で重合することが好ましい。使用しうる他の単量体としては、例えば、プロピレン、n-ブテン、イソブチレンなどのα-オレフィン;アクリル酸およびその塩、アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸i-プロピル、アクリル酸n-ブチル、アクリル酸i-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、アクリル酸ドデシル、アクリル酸オクタデシルなどのアクリル酸エステル類;メタクリル酸およびその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸i-プロピル、メタクリル酸n-ブチル、メタクリル酸i-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ドデシル、メタクリル酸オクタデシルなどのメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド、N,N-ジメチルアクリルアミド、ジアセトンアクリルアミド、アクリルアミドプロパンスルホン酸およびその塩、アクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロールアクリルアミドおよびその誘導体などのアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド、メタクリルアミドプロパンスルホン酸およびその塩、メタクリルアミドプロピルジメチルアミンおよびその塩またはその4級塩、N-メチロールメタクリルアミドおよびその誘導体などのメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテルなどのビニルエーテル類;アクリロニトリル、メタクリロニトリルなどのニトリル類;塩化ビニル、フッ化ビニルなどのハロゲン化ビニル類;塩化ビニリデン、フッ化ビニリデンなどのハロゲン化ビニリデン類;酢酸アリル、塩化アリルなどのアリル化合物;マレイン酸、イタコン酸、フマル酸などの不飽和ジカルボン酸およびその塩またはそのエステル;ビニルトリメトキシシランなどのビニルシリル化合物;ポリオキシエチレン(メタ)アクリレート、ポリオキシプロピレン(メタ)アクリレート、ポリオキシエチレン(メタ)アクリル酸アミド、ポリオキシプロピレン(メタ)アクリル酸アミド、ポリオキシエチレン(1-(メタ)アクリルアミド-1,1-ジメチルプロピル)エステル、ポリオキシエチレン(メタ)アリルエーテル、ポリオキシプロピレン(メタ)アリルエーテル、ポリオキシエチレンビニルエーテル、ポリオキシプロピレンビニルエーテルなどのオキシアルキレン基含有単量体;酢酸イソプロペニルなどが挙げられる。 When the vinyl ester monomer is polymerized, the vinyl ester monomer may be copolymerized with other monomers as long as the gist of the present invention is not impaired. It is preferable to polymerize alone. Examples of other monomers that can be used include α-olefins such as propylene, n-butene, and isobutylene; acrylic acid and its salts, methyl acrylate, ethyl acrylate, n-propyl acrylate, and i-acrylate. Acrylic acid esters such as propyl, n-butyl acrylate, i-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, octadecyl acrylate; methacrylic acid and salts thereof; methyl methacrylate, Methacrylic acid such as ethyl methacrylate, n-propyl methacrylate, i-propyl methacrylate, n-butyl methacrylate, i-butyl methacrylate, t-butyl methacrylate, 2-ethylhexyl methacrylate, dodecyl methacrylate, octadecyl methacrylate Acid esters Acrylamide, N-methylacrylamide, N-ethylacrylamide, N, N-dimethylacrylamide, diacetoneacrylamide, acrylamidepropanesulfonic acid and its salt, acrylamidopropyldimethylamine and its salt or its quaternary salt, N-methylolacrylamide and its Acrylamide derivatives such as derivatives; methacrylamide, N-methylmethacrylamide, N-ethylmethacrylamide, methacrylamidepropanesulfonic acid and salts thereof, methacrylamidepropyldimethylamine and salts thereof or quaternary salts thereof, N-methylolmethacrylamide and Methacrylamide derivatives such as derivatives thereof; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl Vinyl ethers such as ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether; nitriles such as acrylonitrile and methacrylonitrile; vinyl halides such as vinyl chloride and vinyl fluoride; Vinylidene halides such as vinylidene chloride and vinylidene fluoride; allyl compounds such as allyl acetate and allyl chloride; unsaturated dicarboxylic acids such as maleic acid, itaconic acid and fumaric acid, and salts or esters thereof; vinyltrimethoxysilane, etc. Vinylsilyl compounds; polyoxyethylene (meth) acrylate, polyoxypropylene (meth) acrylate, polyoxyethylene (meth) acrylic acid amide, polyoxypropylene (meth) acrylic Acid amide, polyoxyethylene (1- (meth) acrylamide-1,1-dimethylpropyl) ester, polyoxyethylene (meth) allyl ether, polyoxypropylene (meth) allyl ether, polyoxyethylene vinyl ether, polyoxypropylene vinyl ether Oxyalkylene group-containing monomers such as isopropenyl acetate and the like.
 本発明では、ビニルエステル系単量体を通常よりも高い温度条件で重合して得られる1,2-グリコール結合の含有量の多い変性PVAを用いることもできる。この場合、1,2-グリコール結合の含有量は、好ましくは1.9モル%以上、より好ましくは2.0モル%以上、さらに好ましくは2.1モル%以上である。 In the present invention, modified PVA having a high 1,2-glycol bond content obtained by polymerizing a vinyl ester monomer under a temperature condition higher than usual can also be used. In this case, the content of 1,2-glycol bond is preferably 1.9 mol% or more, more preferably 2.0 mol% or more, and further preferably 2.1 mol% or more.
 ビニルエステル系重合体のけん化反応には、従来公知の水酸化ナトリウム、水酸化カリウム、ナトリウムメトキシドなどの塩基性触媒、またはp-トルエンスルホン酸などの酸性触媒を用いた、加アルコール分解ないし加水分解反応が適用できる。けん化反応に用いられる溶媒としては、メタノール、エタノールなどのアルコール類;酢酸メチル、酢酸エチルなどのエステル類;アセトン、メチルエチルケトンなどのケトン類;ベンゼン、トルエンなどの芳香族炭化水素などが挙げられ、これらは単独で、または2種以上を組合せて用いることができる。中でも、メタノールまたはメタノールと酢酸メチルとの混合溶液を溶媒として用い、塩基性触媒である水酸化ナトリウムの存在下にけん化反応を行うのが簡便であり好ましい。 For the saponification reaction of vinyl ester polymers, alcoholysis or hydrolysis using conventionally known basic catalysts such as sodium hydroxide, potassium hydroxide and sodium methoxide, or acidic catalysts such as p-toluenesulfonic acid. Decomposition reaction can be applied. Examples of the solvent used for the saponification reaction include alcohols such as methanol and ethanol; esters such as methyl acetate and ethyl acetate; ketones such as acetone and methyl ethyl ketone; aromatic hydrocarbons such as benzene and toluene. Can be used alone or in combination of two or more. Among them, it is convenient and preferable to perform the saponification reaction in the presence of sodium hydroxide, which is a basic catalyst, using methanol or a mixed solution of methanol and methyl acetate as a solvent.
 以下、疎水性基を側鎖に有するビニルアルコール系重合体(以下「側鎖変性PVA」と略記することがある)について説明する。側鎖変性PVAの製造方法について特に制限はなく、種々の方法を採用することができる。例えば、炭素数6~18のα-オレフィンやN-(メタ)アクリルアミド誘導体から選択される少なくとも1種の単量体とビニルエステル系単量体とを共重合させ、得られる共重合体をけん化する方法が好適に採用される。炭素数6~18のα-オレフィンとしては、1-ヘプテン、1-オクテン、1-ノネン、1-デセン、1-ドデセン等が挙げられる。炭素数6~18のN-(メタ)アクリルアミド誘導体としては、N-オクチル(メタ)アクリルアミド、N-デシル(メタ)アクリルアミド、N-ドデシル(メタ)アクリルアミド等が挙げられる。炭素数は8以上がより好ましい。 Hereinafter, a vinyl alcohol polymer having a hydrophobic group in a side chain (hereinafter sometimes abbreviated as “side chain-modified PVA”) will be described. There is no restriction | limiting in particular about the manufacturing method of side chain modified PVA, A various method is employable. For example, at least one monomer selected from α-olefins having 6 to 18 carbon atoms and N- (meth) acrylamide derivatives is copolymerized with a vinyl ester monomer, and the resulting copolymer is saponified. This method is preferably employed. Examples of the α-olefin having 6 to 18 carbon atoms include 1-heptene, 1-octene, 1-nonene, 1-decene, 1-dodecene and the like. Examples of N- (meth) acrylamide derivatives having 6 to 18 carbon atoms include N-octyl (meth) acrylamide, N-decyl (meth) acrylamide, N-dodecyl (meth) acrylamide and the like. The number of carbon atoms is more preferably 8 or more.
 ビニルエステル系単量体としては、例えば、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、カプリル酸ビニル、バーサチック酸ビニルなどを挙げることができ、これらの中でも酢酸ビニルが工業的観点から好ましい。 Examples of the vinyl ester monomer include vinyl acetate, vinyl formate, vinyl propionate, vinyl caprylate, vinyl versatate, and among these, vinyl acetate is preferable from an industrial viewpoint.
 得られる共重合体のけん化反応としては、上記末端変性PVAの説明のところに記載した方法と同様の方法を用いることができる。 As the saponification reaction of the obtained copolymer, a method similar to the method described in the explanation of the terminal-modified PVA can be used.
 上記変性PVAのけん化度は、好ましくは70~99.9モル%であり、より好ましくは80~99.5モル%であり、更に好ましくは85~99モル%である。けん化度が70モル%未満の場合、PVAの水への溶解性が低下するおそれがある。なお、変性PVAのけん化度は、JIS-K6726(1994)に従って測定することができる。 The saponification degree of the modified PVA is preferably 70 to 99.9 mol%, more preferably 80 to 99.5 mol%, and still more preferably 85 to 99 mol%. When the degree of saponification is less than 70 mol%, the solubility of PVA in water may be reduced. The degree of saponification of the modified PVA can be measured according to JIS-K6726 (1994).
 上記変性PVAの粘度平均重合度(以下単に重合度と言うことがある)の上限は、通常4000以下であり、好ましくは2000以下であり、特に好ましくは1000以下である。粘度平均重合度が4000より大きいと、変性PVAの生産性が低下するおそれがある。粘度平均重合度の下限については特に制限はないが、分散安定性が良好となる観点から、粘度平均重合度は100以上が好ましく、150以上がより好ましく、200以上が更に好ましい。なお、変性PVAの粘度平均重合度は、JIS-K6726(1994)に従って測定した値である。すなわち、変性PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η](リットル/g)から次式により求めることができる。
  P=([η]×10000/8.29)(1/0.62)
The upper limit of the viscosity average degree of polymerization (hereinafter sometimes simply referred to as the degree of polymerization) of the modified PVA is usually 4000 or less, preferably 2000 or less, and particularly preferably 1000 or less. When the viscosity average polymerization degree is larger than 4000, the productivity of the modified PVA may be lowered. Although there is no restriction | limiting in particular about the minimum of a viscosity average polymerization degree, From a viewpoint from which dispersion stability becomes favorable, 100 or more are preferable, 150 or more are more preferable, and 200 or more are still more preferable. The viscosity average degree of polymerization of the modified PVA is a value measured according to JIS-K6726 (1994). That is, after the modified PVA is re-saponified to a degree of saponification of 99.5 mol% or more and purified, it can be obtained from the intrinsic viscosity [η] (liter / g) measured in water at 30 ° C. by the following formula.
P = ([η] × 10000 / 8.29) (1 / 0.62)
 上記変性PVAの変性量は、好ましくは0.01~10モル%である。変性量が0.01モル%未満の場合、原油を分散することが困難となるおそれがあるとともに、原油分散液が短時間で分離してしまうおそれがある。上記変性PVAの変性量は、より好ましくは0.05モル%以上であり、更に好ましくは0.2モル%以上である。一方、変性量が10モル%を超える場合、PVAの溶解性が低下するおそれがあり、より好ましくは5モル%以下であり、更に好ましくは2モル%以下である。なお、変性PVAの変性量は、プロトンNMR測定により得ることができる。 The amount of modification of the modified PVA is preferably 0.01 to 10 mol%. When the modification amount is less than 0.01 mol%, it may be difficult to disperse the crude oil, and the crude oil dispersion may be separated in a short time. The modified amount of the modified PVA is more preferably 0.05 mol% or more, and still more preferably 0.2 mol% or more. On the other hand, when the modification amount exceeds 10 mol%, the solubility of PVA may be lowered, more preferably 5 mol% or less, and still more preferably 2 mol% or less. The modified amount of the modified PVA can be obtained by proton NMR measurement.
 上記説明したように、本発明で用いられるビニルアルコール系重合体は、末端又は側鎖に疎水性基を有するものであるが、原油の分散安定性をより向上させる観点から、ビニルアルコール系重合体が疎水性基を末端に有するものであることが好ましい。 As described above, the vinyl alcohol polymer used in the present invention has a hydrophobic group at the terminal or side chain. From the viewpoint of further improving the dispersion stability of crude oil, the vinyl alcohol polymer is used. It is preferable that has a hydrophobic group at the terminal.
 本発明の原油分散安定剤は、原油に対して直接添加してもよいが、好適には水と混合して得られる原油処理剤として使用される。このとき、原油処理剤の全量100質量部に対して、前記原油分散安定剤を0.05~40質量部含むことが好ましい。原油の分散安定性をより向上させる観点から、前記原油分散安定剤の下限としては、0.1質量部以上であることがより好ましい。一方、前記原油分散安定剤の上限としては、30質量部以下であることがより好ましく、20質量部以下であることが更に好ましい。本発明において、原油処理剤の全量100質量部に対して、前記原油分散安定剤を0.05~40質量部含み、かつ水を60~99.95質量部含む原油処理剤が好適な実施態様である。原油の分散安定性をより向上させる観点から、前記原油分散安定剤を0.1~30質量部含み、かつ水を70~99.9質量部含む原油処理剤がより好適な実施態様であり、前記原油分散安定剤を0.1~20質量部含み、かつ水を80~99.9質量部含む原油処理剤が更に好適な実施態様である。 The crude oil dispersion stabilizer of the present invention may be added directly to the crude oil, but is preferably used as a crude oil treatment agent obtained by mixing with water. At this time, it is preferable that 0.05 to 40 parts by mass of the crude oil dispersion stabilizer is contained with respect to 100 parts by mass of the total amount of the crude oil treating agent. From the viewpoint of further improving the dispersion stability of the crude oil, the lower limit of the crude oil dispersion stabilizer is more preferably 0.1 parts by mass or more. On the other hand, the upper limit of the crude oil dispersion stabilizer is more preferably 30 parts by mass or less, and still more preferably 20 parts by mass or less. In the present invention, a preferred embodiment of the crude oil treating agent comprises 0.05 to 40 parts by mass of the crude oil dispersion stabilizer and 60 to 99.95 parts by mass of water with respect to 100 parts by mass of the total amount of the crude oil treating agent. It is. From the viewpoint of further improving the dispersion stability of crude oil, a crude oil treatment agent containing 0.1 to 30 parts by mass of the crude oil dispersion stabilizer and 70 to 99.9 parts by mass of water is a more preferred embodiment. A crude oil treating agent containing 0.1 to 20 parts by mass of the crude oil dispersion stabilizer and 80 to 99.9 parts by mass of water is a more preferred embodiment.
 前記原油処理剤としては、原油分散安定剤を含む水溶液であることが好ましい。前記原油処理剤には、本発明の効果を阻害しない範囲で、アルコール等の水以外の溶媒が含まれていてもよく、通常用いられる安定剤、界面活性剤等が含まれていてもよい。 The crude oil treating agent is preferably an aqueous solution containing a crude oil dispersion stabilizer. The crude oil treating agent may contain a solvent other than water such as alcohol as long as it does not impair the effects of the present invention, and may contain stabilizers, surfactants and the like that are usually used.
 本発明において、前記原油処理剤を用いて原油を分散又はエマルション化する方法としては特に限定されない。パイプライン輸送の前処理として前記原油処理剤と原油とを混合する方法が好適な実施態様であり、油層中に前記原油処理材を注入し、分散又はエマルション化した原油分散液を得る方法も好適な実施態様である。また、前記原油処理剤を用いた原油の改質方法も好適な実施態様である。 In the present invention, the method for dispersing or emulsifying crude oil using the crude oil treating agent is not particularly limited. A method of mixing the crude oil treatment agent and crude oil as a pretreatment for pipeline transportation is a preferred embodiment, and a method of injecting the crude oil treatment material into an oil layer to obtain a dispersed or emulsified crude oil dispersion is also preferred. Embodiment. A crude oil reforming method using the crude oil treating agent is also a preferred embodiment.
 本発明において、前記原油処理剤を用いて原油を分散又はエマルション化する際の配合割合としては特に限定されないが、原油処理剤と原油との質量比(原油処理剤/原油)が3/97~50/50であることが好ましい。原油の分散安定性をより向上させる観点から、前記質量比が5/95~40/60であることがより好ましい。 In the present invention, the blending ratio when the crude oil is dispersed or emulsified using the crude oil treatment agent is not particularly limited, but the mass ratio of the crude oil treatment agent to the crude oil (crude treatment agent / crude oil) is 3/97 to Preferably it is 50/50. From the viewpoint of further improving the dispersion stability of the crude oil, the mass ratio is more preferably 5/95 to 40/60.
 また本発明において、前記原油処理剤を含む原油分散液であって、原油分散液の全量100質量部に対して、前記原油処理剤を3~50質量部含み、前記ビニルアルコール系重合体を0.001~1質量部含み、かつ、前記原油を50~97質量部含む原油分散液が好適な実施態様である。原油分散液の全量100質量部に対する前記原油処理剤の含有量としては、原油の分散安定性をより向上させる観点から、5~40質量部であることが好ましく、前記原油の含有量としては、60~95質量部であることが好ましい。また、前記ビニルアルコール系重合体の含有量としては、原油の分散安定性をより向上させる観点から、0.05~0.8質量部であることが好ましい。こうして得られた原油分散液は、エネルギー源として好適に使用される。 Further, in the present invention, the crude oil dispersion containing the crude oil treatment agent comprises 3 to 50 parts by mass of the crude oil treatment agent with respect to 100 parts by mass of the total amount of the crude oil dispersion, and 0% of the vinyl alcohol polymer. A crude oil dispersion containing 0.001 to 1 part by mass and 50 to 97 parts by mass of the crude oil is a preferred embodiment. The content of the crude oil treating agent with respect to 100 parts by mass of the total amount of the crude oil dispersion is preferably 5 to 40 parts by mass from the viewpoint of further improving the dispersion stability of the crude oil. The amount is preferably 60 to 95 parts by mass. In addition, the content of the vinyl alcohol polymer is preferably 0.05 to 0.8 parts by mass from the viewpoint of further improving the dispersion stability of the crude oil. The crude oil dispersion thus obtained is preferably used as an energy source.
 以下、実施例を用いて本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples.
[末端疎水性基含有PVAの合成]
<PVA-1~4>
 特公昭61-41924号公報の実施例1に記載の方法で、末端にアルキル基を有するビニルアルコール系重合体(PVA-1~4)を合成した。合成に用いたメルカプタンの種類、JIS-K6726(1994)に準拠して測定したビニルアルコール単位の含有量(けん化度)及び粘度平均重合度、H-NMR測定により求めた変性量を表1に示す。
[Synthesis of terminal hydrophobic group-containing PVA]
<PVA-1 to 4>
Vinyl alcohol polymers (PVA-1 to 4) having an alkyl group at the terminal were synthesized by the method described in Example 1 of Japanese Patent Publication No. 61-41924. Table 1 shows the types of mercaptans used in the synthesis, vinyl alcohol unit content (degree of saponification) and viscosity average degree of polymerization measured according to JIS-K6726 (1994), and the amount of modification determined by 1 H-NMR measurement. Show.
<PVA-5>
 特開平7-292025号公報の実施例1に記載の方法で、末端にフェニル基を有するビニルアルコール系重合体(PVA-5)を合成した。合成に用いたメルカプタンの種類、JIS-K6726(1994)に準拠して測定したビニルアルコール単位の含有量(けん化度)及び粘度平均重合度、H-NMR測定により求めた変性量を表1に示す。
<PVA-5>
A vinyl alcohol polymer (PVA-5) having a phenyl group at the terminal was synthesized by the method described in Example 1 of JP-A-7-292025. Table 1 shows the types of mercaptans used in the synthesis, vinyl alcohol unit content (degree of saponification) and viscosity average degree of polymerization measured according to JIS-K6726 (1994), and the amount of modification determined by 1 H-NMR measurement. Show.
[側鎖疎水性基含有PVAの合成]
<PVA-6>
(1)攪拌機、還流冷却管、アルゴン導入管、開始剤の添加口を備えた反応器に、酢酸ビニル630質量部、1-ドデセン6.2質量部、及びメタノール1766質量部を仕込み、アルゴンバブリングをしながら30分間系内をアルゴン置換した。反応器の昇温を開始し、内温が60℃となったところで、2,2’-アゾビスイソブチロニトリル1.0質量部を添加し重合を開始した。60℃で4.8時間重合した後、冷却して重合を停止した。重合停止時の重合率は60%であった。続いて、30℃、減圧下でメタノールを時々添加しながら未反応のモノマーの除去を行い、1-ドデセンが導入されたポリ酢酸ビニルのメタノール溶液(濃度55.6%)を得た。
[Synthesis of side chain hydrophobic group-containing PVA]
<PVA-6>
(1) A reactor equipped with a stirrer, reflux condenser, argon inlet, and initiator addition port was charged with 630 parts by mass of vinyl acetate, 6.2 parts by mass of 1-dodecene, and 1766 parts by mass of methanol, and argon bubbling was performed. The system was purged with argon for 30 minutes. The temperature of the reactor was increased, and when the internal temperature reached 60 ° C., 1.0 part by mass of 2,2′-azobisisobutyronitrile was added to initiate polymerization. After polymerization at 60 ° C. for 4.8 hours, the polymerization was stopped by cooling. The polymerization rate when the polymerization was stopped was 60%. Subsequently, unreacted monomers were removed while adding methanol occasionally at 30 ° C. under reduced pressure to obtain a methanol solution of polyvinyl acetate (concentration 55.6%) into which 1-dodecene was introduced.
(2)上記(1)で得られた1-ドデセンが導入されたポリ酢酸ビニルのメタノール溶液540質量部にイオン交換水3.75質量部、メタノール199質量部を加え(溶液中の1-ドデセンが導入されたポリ酢酸ビニルは300質量部)、さらに、水酸化ナトリウムメタノール溶液(濃度12.8%)を添加して、40℃でけん化を行った(けん化溶液の1-ドデセンが導入されたポリ酢酸ビニル濃度40%、水分率0.5質量%、1-ドデセンが導入されたポリ酢酸ビニル中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比0.0075)。水酸化ナトリウムメタノール溶液を添加後約15分でゲル化物が生成したので、これを粉砕機にて粉砕し、さらに40℃で45分間放置してけん化を進行させた。これに酢酸メチルを加えて残存するアルカリを中和した後、メタノールソックスレーでよく洗浄し、真空乾燥機中40℃で12時間乾燥することにより、側鎖疎水性基含有PVA(PVA-6)を得た。H-NMR測定により求めた1-ドデセンの含有量(変性量)、JIS-K6726(1994)に準拠して測定したビニルアルコール単位の含有量(けん化度)及び粘度平均重合度を表1に示す。 (2) 3.75 parts by mass of ion-exchanged water and 199 parts by mass of methanol were added to 540 parts by mass of a methanol solution of polyvinyl acetate into which 1-dodecene obtained in (1) above was introduced (1-dodecene in the solution). Was added to 300 parts by mass of polyvinyl acetate) and sodium hydroxide methanol solution (concentration 12.8%) was added, and saponification was carried out at 40 ° C. (saponified 1-dodecene was introduced) Polyvinyl acetate concentration 40%, moisture content 0.5% by weight, molar ratio of sodium hydroxide to vinyl acetate unit in polyvinyl acetate introduced with 1-dodecene 0.0075). Since a gelled product was formed in about 15 minutes after the addition of the sodium hydroxide methanol solution, this was pulverized by a pulverizer and further allowed to stand at 40 ° C. for 45 minutes to promote saponification. Methyl acetate was added to this to neutralize the remaining alkali, and then thoroughly washed with methanol soxhlet and dried in a vacuum dryer at 40 ° C. for 12 hours to obtain a side chain hydrophobic group-containing PVA (PVA-6). Obtained. Table 1 shows the content of 1-dodecene (modified amount) determined by 1 H-NMR measurement, the content of vinyl alcohol units (degree of saponification) and the viscosity average polymerization degree measured according to JIS-K6726 (1994). Show.
<PVA-7>
(1)1-ドデセンの仕込み量を0.49質量部、メタノールの仕込み量を456質量部に変更した以外はPVA-6と同様にして重合を開始した。60℃で2.4時間重合した後、冷却して重合を停止した。重合停止時の重合率は50%であった。続いて、30℃、減圧下でメタノールを時々添加しながら未反応のモノマーの除去を行い、1-ドデセンが導入されたポリ酢酸ビニルのメタノール溶液(濃度45.3%)を得た。
<PVA-7>
(1) Polymerization was started in the same manner as PVA-6 except that the amount of 1-dodecene charged was changed to 0.49 parts by mass and the amount of methanol charged was changed to 456 parts by mass. After polymerization at 60 ° C. for 2.4 hours, the polymerization was stopped by cooling. The polymerization rate when the polymerization was stopped was 50%. Subsequently, unreacted monomers were removed while adding methanol occasionally under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate (concentration: 45.3%) into which 1-dodecene was introduced.
(2)上記(1)で得られた1-ドデセンが導入されたポリ酢酸ビニルのメタノール溶液662質量部にイオン交換水5質量部、メタノール325質量部を加え(溶液中の1-ドデセンが導入されたポリ酢酸ビニルは300質量部)、さらに、水酸化ナトリウムメタノール溶液(濃度12.8%)を添加して、40℃でけん化を行った(けん化溶液の1-ドデセンが導入されたポリ酢酸ビニル濃度30%、水分率0.5質量%、1-ドデセンが導入されたポリ酢酸ビニル中の酢酸ビニルユニットに対する水酸化ナトリウムのモル比0.007)。水酸化ナトリウムメタノール溶液を添加後約25分でゲル化物が生成したので、これを粉砕機にて粉砕し、さらに40℃で35分間放置してけん化を進行させた。以下PVA-6と同様にして、側鎖疎水性基含有PVA(PVA-7)を得た。H-NMR測定により求めた1-ドデセンの含有量(変性量)、JIS-K6726(1994)に準拠して測定したビニルアルコール単位の含有量(けん化度)及び粘度平均重合度を表1に示す。 (2) 5 parts by mass of ion-exchanged water and 325 parts by mass of methanol were added to 662 parts by mass of the methanol solution of polyvinyl acetate into which 1-dodecene obtained in (1) was introduced (1-dodecene in the solution was introduced). The obtained polyvinyl acetate was 300 parts by mass), sodium hydroxide methanol solution (concentration 12.8%) was further added, and saponification was performed at 40 ° C. (polyacetic acid into which 1-dodecene of the saponification solution was introduced) Molar ratio of sodium hydroxide to vinyl acetate unit in polyvinyl acetate having a vinyl concentration of 30%, a moisture content of 0.5% by mass and 1-dodecene introduced therein (0.007). Since a gelled product was formed in about 25 minutes after the addition of the sodium hydroxide methanol solution, it was pulverized by a pulverizer and further allowed to stand at 40 ° C. for 35 minutes to allow saponification to proceed. Thereafter, a side chain hydrophobic group-containing PVA (PVA-7) was obtained in the same manner as PVA-6. Table 1 shows the content of 1-dodecene (modified amount) determined by 1 H-NMR measurement, the content of vinyl alcohol units (degree of saponification) and the viscosity average polymerization degree measured according to JIS-K6726 (1994). Show.
実施例1
 ガラス製スクリュー管に、PVA-1の0.5質量%水溶液6質量部、重質油(35℃粘度580mPa・s、API比重11.6)14質量部を添加し、マグネチックスターラーを用いて1500rpmで15分間撹拌し、原油分散液を作製した。作製直後の原油分散液の粘度(A)および35℃で6時間経過後の原油分散液の粘度(B)を、B型粘度計を用いて35℃で測定した。得られた結果を表2に示す。また、分散液安定性の指標として、(B/A)の値を表2に示す。
Example 1
To a glass screw tube, 6 parts by mass of a 0.5 mass% aqueous solution of PVA-1 and 14 parts by mass of heavy oil (35 ° C. viscosity 580 mPa · s, API specific gravity 11.6) were added, and a magnetic stirrer was used. The mixture was stirred at 1500 rpm for 15 minutes to prepare a crude oil dispersion. The viscosity (A) of the crude oil dispersion immediately after production and the viscosity (B) of the crude oil dispersion after 6 hours at 35 ° C. were measured at 35 ° C. using a B-type viscometer. The obtained results are shown in Table 2. Table 2 shows the value of (B / A) as an index of dispersion stability.
実施例2~10
 実施例1において、PVAの種類、PVAの濃度、原油の種類、分散液組成を表2に示すように変更した以外は実施例1と同様にして原油分散液を作製し、評価を行った。尚、実施例9および10で用いたビチューメンはカナダ産(35℃での粘度66100mPa・s、API比重7.6)である。得られた結果を表2に示す。
Examples 2 to 10
A crude oil dispersion was prepared and evaluated in the same manner as in Example 1 except that the type of PVA, the concentration of PVA, the type of crude oil, and the dispersion composition were changed as shown in Table 2. The bitumen used in Examples 9 and 10 is from Canada (viscosity at 35 ° C. 66100 mPa · s, API specific gravity 7.6). The obtained results are shown in Table 2.
比較例1
 実施例1で用いたPVA-1に代えて無変性PVA(重合度300、けん化度88モル%)を用いた以外は実施例1と同様にして原油分散液を作製し、評価を行った。得られた結果を表2に示す。
Comparative Example 1
A crude oil dispersion was prepared and evaluated in the same manner as in Example 1 except that unmodified PVA (polymerization degree 300, saponification degree 88 mol%) was used instead of PVA-1 used in Example 1. The obtained results are shown in Table 2.
比較例2
 比較例1で用いた重質油に代えてビチューメンを用いた以外は比較例1と同様にして原油分散液を作製し、評価を行った。得られた原油分散液は直ちに沈降物を生成し、粘度を測定することができなかった。得られた結果を表2に示す。
Comparative Example 2
A crude oil dispersion was prepared and evaluated in the same manner as in Comparative Example 1 except that bitumen was used instead of the heavy oil used in Comparative Example 1. The obtained crude oil dispersion immediately formed a sediment, and its viscosity could not be measured. The obtained results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002

Claims (7)

  1.  ビニルアルコール系重合体を含有する原油分散安定剤であって、前記ビニルアルコール系重合体が、末端又は側鎖に疎水性基を有することを特徴とする原油分散安定剤。 A crude oil dispersion stabilizer containing a vinyl alcohol polymer, wherein the vinyl alcohol polymer has a hydrophobic group at a terminal or a side chain.
  2.  前記疎水性基が炭化水素基である請求項1記載の原油分散安定剤。 The crude oil dispersion stabilizer according to claim 1, wherein the hydrophobic group is a hydrocarbon group.
  3.  前記疎水性基が炭素数6~18のアルキル基又はアリール基である請求項1又は2記載の原油分散安定剤。 The crude oil dispersion stabilizer according to claim 1 or 2, wherein the hydrophobic group is an alkyl group or aryl group having 6 to 18 carbon atoms.
  4.  前記ビニルアルコール系重合体が末端に疎水性基を有する請求項1~3のいずれか記載の原油分散安定剤。 The crude oil dispersion stabilizer according to any one of claims 1 to 3, wherein the vinyl alcohol polymer has a hydrophobic group at its terminal.
  5.  API比重30°以下の原油に使用する請求項1~4のいずれか記載の原油分散安定剤。 The crude oil dispersion stabilizer according to any one of claims 1 to 4, which is used for crude oil having an API specific gravity of 30 ° or less.
  6.  請求項1~5のいずれか記載の原油分散安定剤と水とを含む原油処理剤であって、原油処理剤の全量100質量部に対して、前記原油分散安定剤を0.05~40質量部含む原油処理剤。 A crude oil treatment agent comprising the crude oil dispersion stabilizer according to any one of claims 1 to 5 and water, wherein the crude oil dispersion stabilizer is added in an amount of 0.05 to 40 masses per 100 mass parts of the total amount of the crude oil treatment agent. Crude oil processing agent.
  7.  請求項6記載の原油処理剤と原油とを含む原油分散液であって、原油分散液の全量100質量部に対して、前記原油処理剤を3~50質量部含み、前記ビニルアルコール系重合体を0.001~1質量部含み、かつ、前記原油を50~97質量部含む原油分散液。 7. A crude oil dispersion comprising the crude oil treating agent according to claim 6 and crude oil, comprising 3 to 50 parts by mass of the crude oil treating agent with respect to 100 parts by mass of the total amount of the crude oil dispersion, and the vinyl alcohol polymer. A crude oil dispersion containing 0.001 to 1 part by mass of the crude oil and 50 to 97 parts by mass of the crude oil.
PCT/JP2016/061485 2015-04-09 2016-04-08 Dispersion stabilizer for crude oil WO2016163496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-080378 2015-04-09
JP2015080378A JP2018090652A (en) 2015-04-09 2015-04-09 Crude oil dispersion stabilizer

Publications (1)

Publication Number Publication Date
WO2016163496A1 true WO2016163496A1 (en) 2016-10-13

Family

ID=57073163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/061485 WO2016163496A1 (en) 2015-04-09 2016-04-08 Dispersion stabilizer for crude oil

Country Status (2)

Country Link
JP (1) JP2018090652A (en)
WO (1) WO2016163496A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047616A1 (en) * 2015-09-15 2017-03-23 株式会社クラレ Dispersion stabilizer for crude oil
CN114560883A (en) * 2022-03-07 2022-05-31 西安石油大学 Boron-containing spiro crude oil treating agent and preparation method thereof

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887610A (en) * 1971-12-09 1975-06-03 Exxon Research Engineering Co Emulsion polymerization of ethylene with chain transfer agents to form copolymers
JPS56166297A (en) * 1980-05-23 1981-12-21 Nippon Kemutetsuku Consulting Kk Fuel composition
JPS5956494A (en) * 1982-09-24 1984-03-31 Nippon Synthetic Chem Ind Co Ltd:The Fuel composition
JPS59108094A (en) * 1982-12-10 1984-06-22 Nippon Synthetic Chem Ind Co Ltd:The Fuel composition
JPS59108092A (en) * 1982-12-09 1984-06-22 Nippon Synthetic Chem Ind Co Ltd:The Fuel composition
JPS60166389A (en) * 1984-02-09 1985-08-29 Nippon Oil & Fats Co Ltd Fluidity improver for fuel oil
JPH03152190A (en) * 1989-11-08 1991-06-28 Nippon Oil & Fats Co Ltd Heavy fuel oil composition
JP2003286494A (en) * 2001-05-08 2003-10-10 Sanyo Chem Ind Ltd Flow-improving agent, fuel oil additive composition and fuel oil composition
JP2007509210A (en) * 2003-10-22 2007-04-12 ロイナ ポリマー ゲーエムベーハー Additive mixture as a component of mineral oil composition
JP2010530453A (en) * 2007-06-20 2010-09-09 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Mineral oil with improved low temperature fluidity containing cleaning additives

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3887610A (en) * 1971-12-09 1975-06-03 Exxon Research Engineering Co Emulsion polymerization of ethylene with chain transfer agents to form copolymers
JPS56166297A (en) * 1980-05-23 1981-12-21 Nippon Kemutetsuku Consulting Kk Fuel composition
JPS5956494A (en) * 1982-09-24 1984-03-31 Nippon Synthetic Chem Ind Co Ltd:The Fuel composition
JPS59108092A (en) * 1982-12-09 1984-06-22 Nippon Synthetic Chem Ind Co Ltd:The Fuel composition
JPS59108094A (en) * 1982-12-10 1984-06-22 Nippon Synthetic Chem Ind Co Ltd:The Fuel composition
JPS60166389A (en) * 1984-02-09 1985-08-29 Nippon Oil & Fats Co Ltd Fluidity improver for fuel oil
JPH03152190A (en) * 1989-11-08 1991-06-28 Nippon Oil & Fats Co Ltd Heavy fuel oil composition
JP2003286494A (en) * 2001-05-08 2003-10-10 Sanyo Chem Ind Ltd Flow-improving agent, fuel oil additive composition and fuel oil composition
JP2007509210A (en) * 2003-10-22 2007-04-12 ロイナ ポリマー ゲーエムベーハー Additive mixture as a component of mineral oil composition
JP2010530453A (en) * 2007-06-20 2010-09-09 クラリアント・ファイナンス・(ビーブイアイ)・リミテッド Mineral oil with improved low temperature fluidity containing cleaning additives

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017047616A1 (en) * 2015-09-15 2017-03-23 株式会社クラレ Dispersion stabilizer for crude oil
US10919012B2 (en) 2015-09-15 2021-02-16 Kuraray Co., Ltd. Crude oil dispersion stabilizer
CN114560883A (en) * 2022-03-07 2022-05-31 西安石油大学 Boron-containing spiro crude oil treating agent and preparation method thereof
CN114560883B (en) * 2022-03-07 2024-01-26 西安石油大学 Boron-containing spiro-type crude oil treating agent and preparation method thereof

Also Published As

Publication number Publication date
JP2018090652A (en) 2018-06-14

Similar Documents

Publication Publication Date Title
JP6734857B2 (en) Crude oil dispersion stabilizer
JP6257629B2 (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
TWI582115B (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
US9637563B2 (en) Surfactant composition
KR102178402B1 (en) Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin
TWI606067B (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
JPWO2010113569A1 (en) Dispersion stabilizer for suspension polymerization
JPWO2015156311A1 (en) Method for producing vinyl resin
WO2016163496A1 (en) Dispersion stabilizer for crude oil
JP6606387B2 (en) Dispersion aid for suspension polymerization, aqueous liquid thereof, and method for producing vinyl resin using them
JPWO2010113568A1 (en) Dispersion stabilizer for suspension polymerization
KR101927789B1 (en) Extended surfactant for emulsion polymerization
TWI772303B (en) Production method of vinyl alcohol polymer
JP2008138106A (en) Method for producing hydrophilic polymer suspension
WO2019181915A1 (en) Dispersion stabilizer for suspension polymerization
JP2014173067A (en) Stabilizer for emulsion polymerization
JP7172600B2 (en) Oil recovery agent, oil dispersion and oil recovery method
JP7321394B2 (en) Dispersant for suspension polymerization and method for producing vinyl polymer
JP7472383B2 (en) Dispersing aid for suspension polymerization and aqueous solution thereof, and method for producing vinyl resin using the same
JP5615634B2 (en) Aqueous emulsion
JP2020050779A (en) Aqueous emulsion
JP4781694B2 (en) Aqueous emulsion
JP2014065770A (en) Polymer dispersion using reactive emulsifier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP