WO2016162962A1 - Radiation imaging device - Google Patents

Radiation imaging device Download PDF

Info

Publication number
WO2016162962A1
WO2016162962A1 PCT/JP2015/060905 JP2015060905W WO2016162962A1 WO 2016162962 A1 WO2016162962 A1 WO 2016162962A1 JP 2015060905 W JP2015060905 W JP 2015060905W WO 2016162962 A1 WO2016162962 A1 WO 2016162962A1
Authority
WO
WIPO (PCT)
Prior art keywords
collimator
radiation imaging
imaging apparatus
pitch
modules
Prior art date
Application number
PCT/JP2015/060905
Other languages
French (fr)
Japanese (ja)
Inventor
敦郎 鈴木
崇章 石津
渉 竹内
上野 雄一郎
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/060905 priority Critical patent/WO2016162962A1/en
Publication of WO2016162962A1 publication Critical patent/WO2016162962A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/161Applications in the field of nuclear medicine, e.g. in vivo counting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T7/00Details of radiation-measuring instruments

Definitions

  • the present invention relates to a radiation imaging apparatus for imaging an incident radiation distribution and a nuclear medicine diagnosis apparatus using the radiation imaging apparatus.
  • SPECT single photon emission computed tomography
  • SPECT measures the distribution of compounds containing radioisotopes and provides an image of the tomographic plane.
  • SPECT apparatus a combination of a scintillator made of a single crystal and a plurality of photomultiplier tubes is the mainstream.
  • These SPECT devices obtain the position of radiation by the center of gravity calculation.
  • this method has a limit of about 10 mm resolution and is insufficient for use in clinical settings. Therefore, a SPECT apparatus with higher resolution is being sought.
  • Pixel-type detectors have been developed as having higher resolution.
  • Pixel type detectors include those composed of scintillators and those composed of semiconductors. In either case, the position signal is acquired in units of small detection elements, that is, in units of pixels. Therefore, the intrinsic resolution of the detector is determined by the pixel size and performs spatially discrete measurements. Pixels with a pixel size of 1 or 2 mm have also been developed, achieving a resolution of 10 mm or less, which has been greatly improved.
  • the reconstruction method of the fault plane has been developed and improved, greatly contributing to the improvement of resolution.
  • the filter-corrected back projection method filtered back-projection method: FBP method
  • the successive approximation method without resolution correction Maximum-likelihood-expectation-maximization: MLEM, -Ordered-subset-expectation-maximization: OSEM etc.
  • FBP method filter-corrected back projection method
  • MLEM Maximum-likelihood-expectation-maximization
  • Patent Document 1 discloses that the length of the detection element at the end of the module is shortened by reducing the lateral length of the detection element. A method for keeping the pitch the same is disclosed. However, it is necessary to make the detection element small, and the sensitivity is lowered at the end of the module.
  • An object of the present invention is to provide a high-resolution radiation imaging apparatus using a pixel type detector.
  • a radiation imaging apparatus of the present invention includes a collimator that limits incident radiation, a detector panel that includes a plurality of detection elements that detect radiation that has passed through the collimator, and the detector panel.
  • the thickness T2 of the septa located between the modules is thicker than the thickness T1 of the septa located in the module.
  • FIG. 2 is a diagram showing a module 210 and a collimator 206 of a detection element 201.
  • FIG. 5 is a diagram showing a state in which a positional deviation has occurred between a detection element 201 and a collimator 206.
  • 1 is a diagram showing a SPECT device 1 (gamma camera).
  • FIG. By setting a gap 211 between the modules 210 and setting the pitch of the through-holes 207 of the collimator 206 across the gap 211 to a length corresponding to the gap 211, the positional deviation between the detection element 201 and the through-holes 207 of the collimator 206 is reduced. It is the figure which showed a mode that there is no.
  • FIG. 5 is a diagram showing a state where gamma rays 202 pass through a scepter 208 that straddles a gap 211 between modules 210.
  • FIG. 6 is a diagram showing a state in which gamma rays 202 are generated from a point source 212 and a point response function.
  • FIG. 5 is a diagram showing a case where a gap 211 between modules 210 is set in the x direction and the y direction.
  • FIG. 6 is a diagram showing a case where a gap 211 between modules 210 is set in the y direction.
  • FIG. 5 is a diagram showing a case where four detection elements 201 are included in one through hole 207 of the collimator 206.
  • FIG. 3 is a diagram showing a detector panel 11 configured by arranging a plurality of collimator / detector modules 213.
  • a collimator is mounted in front of the detector in order to limit the incident direction of gamma rays.
  • the collimator 206 includes a septa 208 and a through hole 207.
  • the positions of the through hole 207 and the detection element 201 of the collimator 206 are a pair. It corresponds to one.
  • high accuracy is required for alignment of the through-hole 207 of the collimator 206 and the detection element 201.
  • SPECT devices There are two types of SPECT devices: a whole-body machine with a wide field of view capable of whole-body imaging, a heart / head combined machine for the heart and head, and a dedicated heart machine for only the heart.
  • a commercial SPECT apparatus using a pixel type semiconductor detector there is only a cardiac dedicated machine with a small imaging field of view, and there is no whole-body machine with a large field of view.
  • the reason is that it is difficult to create a large-area panel in which the detection elements are mounted at an equal pitch. This is because a panel using a semiconductor detector is generally mounted in units of modules in which a plurality of detection elements are arranged, and there is no need to eliminate gaps between modules, that is, gaps between detection elements at the end of the module.
  • FIG. 2 is an arrangement relation diagram of the collimator 206, the through hole 207, the septa 208, the detection element 201, the module 210, and the gap 211, showing the state of this positional deviation.
  • Patent Document 1 discloses that the detection element 201 is shortened in the lateral direction at the end of the module 210 by detecting A method of keeping the pitch of 201 the same is disclosed. However, a reduction in sensitivity at the end of the module 210 occurs by making the detection element 201 small.
  • the radiation imaging apparatus of the embodiment described below has a module 210 composed of a plurality of detection elements 201 as means for solving the above-mentioned problems, and one or a plurality of modules composed of a plurality of the modules 210 It has a detector panel 11, between the module 210 has a value G of the gap 211 between the module 210, the detecting element 201 are arranged at a pitch D 1 in said module 210, the gaps between the modules 210 the detecting element 201 across the 211 are arranged at a pitch D 2, the pitch D 2 is larger than the pitch D 1, has a collimator 206 having a plurality of through-holes 207 and septum 208, the collimator 206 radiation It is disposed on the front surface that is the direction of incidence on the detector panel 11, and one through hole 207 includes N detection elements 201 in a one-dimensional direction, and the through hole 207 is formed in the module 210.
  • the pitch of the through hole 207 across the gap 211 between the modules 210 are arranged in H 2, the pitch H 1 relationship N ⁇ D 1 It met, wherein the septum 208a in a region corresponding to the detecting element 201 in the module 210 are arranged at a pitch S 1, septa 208a of the septum 208b and its neighboring across the gap 211 between the module 210 pitch S 2
  • the pitch S 2 is longer than the pitch S 1
  • the thickness of the septa 208a in the region corresponding to the detection element 201 in the module 210 is a thickness T 1 , the thickness of the septum 208b across the gap 211 between the thickness T 2, the detector panel 11 detects the radiation while rotating around the subject, the as geometry of the sensing element 201 and the collimator 206 Mogi
  • a SPECT apparatus is used as a radiation imaging apparatus.
  • the configuration and image reconstruction of the SPECT apparatus 1 of the present embodiment will be described.
  • a method that enables high-resolution whole-body SPECT imaging using a pixel-type semiconductor detector by performing alignment of the through-hole 207 of the collimator 206 ⁇ and the detection element 201 with high accuracy will be described.
  • the SPECT apparatus 1 includes a gantry 10, detector panels 11a and 11b, a data processing device 12, a display device 13, and the like.
  • Subject 15 is administered a radioactive drug, for example, a drug containing 99m Tc with a half-life of 6 hours.
  • a gamma ray 202 emitted from 99m Tc in the body of the subject 15 placed on the bed 14 is detected by the detector panel 11 supported by the gantry 10 to capture a tomographic image.
  • the detector panel 11 includes a collimator 206 and a detection element 201.
  • the collimator 206 has a function of selecting gamma rays 202 emitted from the body of the subject 15 and allowing only gamma rays 202 in a certain direction to pass therethrough.
  • the gamma ray 202 that has passed through the collimator 206 is detected by the detection element 201.
  • the detector panel 11 includes an application specific integrated circuit (Application ASIC) 205 for measuring a detection signal of the gamma ray 202.
  • Application ASIC application specific integrated circuit
  • the ID of the detection element 201 that detected the gamma ray 202, the peak value of the detected gamma ray 202, and the detection time are input to the ASIC 205 via the detector substrate 203 and the ASIC substrate 204.
  • a light shielding / gamma ray / electromagnetic shield 209 made of iron, lead or the like surrounds the detection element 201, the detector substrate 203, the ASIC substrate 204, the ASIC 205, and the collimator 206, and blocks light, gamma ray 202, and electromagnetic waves.
  • the data processing device 12 includes a storage device and a tomogram information creation device (not shown).
  • the data processing device 12 captures packet data including the measured peak value of the gamma ray 202, detection time data, and detector (channel) ID, and generates a planar image or converts it into sinogram data to generate tomographic image information. Is displayed on the display device 13.
  • the detector panel 11 is movable in the radial direction, rotational direction, and tangential direction of the gantry 10. At the time of tomographic imaging, the detector panel 11 rotates around the gantry mounting portion and detects the gamma rays 202 generated from the radiopharmaceutical accumulated in the tumor in the body of the subject 15 to identify the position of the tumor.
  • the count number y i of the detection element i is ⁇ j as the count number of the reconstructed pixel j.
  • C ij represents the probability of being detected by the detection element i.
  • images are reconstructed using successive approximation reconstruction methods (MLEM, OSEM, etc.). It is possible to correct the spatial resolution by incorporating the point response function of the detection element 201 into the successive approximation image reconstruction.
  • the point response function is a probability that the detection element 201 detects the radiation generated from the point source 212, and is equal to the detection probability C ij in the equation (1). By using this point response function, a more accurate image can be reconstructed from a successive approximation reconstruction method such as MLEM or OSEM.
  • the through hole 207 of the collimator 206 and the detection element 201 can be aligned with high accuracy, and the sensitivity decreases.
  • a method for suppressing artifacts and providing a high-resolution image will be described.
  • the detector panel 11 is configured by mounting the module 210 unit, it is difficult to eliminate the gap 211 between the modules 210. Therefore, the position of the through hole 207 of the collimator 206 and the position of the detection element 201 as shown in FIG. Deviation occurs. Therefore, in this embodiment, as shown in FIG.
  • a distance G is set as a gap 211 between the detection elements 201 at the ends of the module 210 in the x direction.
  • the pitch of the detection elements 201 in the module 210 is set to D 1
  • the pitch between the detection elements 201 at the ends of the module 210 is set to D 2 .
  • Pitch septum 208a of module 210 is a S 1, the pitch of the septum 208b and septa 208a of the adjacent across the gap 211 between the module 210 and S 2.
  • the thickness of the septum 208a of module 210 is set to T 1, the thickness of the septum 208b across the gap 211 between the module 210 and T 2.
  • the pitch S 2 is longer than the pitch S 1, by setting the thickness of the septum 208b for the same as T 1, penetration of the gamma ray 202 is increased, which may affect the image quality. Therefore, it is desirable to set the thickness of the septa 208b so that the penetration of the gamma ray 202 does not affect the image. For example, as shown in FIG.
  • the hole length of the collimator 206 is L
  • the length of the gamma ray 202 passing through the apexes P 1 and P 2 of the septa 208a crossing the septa 208b is A
  • the attenuation coefficient of the gamma ray 202 with respect to the collimator is Assuming that ⁇ , the thickness T 2 of the septa 208b that satisfies the expressions (2) and (3) for which the penetration probability B is 5% or less is used.
  • the pitch of the through holes 207 in the area corresponding to the detection element 201 in the module 210 is H 1
  • the pitch of the through holes 207 across the gap 211 between the modules 210 is H 2 .
  • the pitch D 1 and the pitch H 1 is equal.
  • the pitch of the detection elements 201 in the modules 210 and the pitch of the through holes 207 of the collimator 206 are made equal.
  • the gap 211 is set between the modules 210, so The pitch of the detection elements 201 is different from the pitch of the detection elements 201 in the module 210. Therefore, if normal image reconstruction is executed, artifacts will occur in the image. Therefore, as shown in FIG.
  • the detection probability when the point source 212 is measured in the arrangement of the collimator 206 and the detection element 201 of the present embodiment that is, the point response function is obtained in the entire region
  • the successive approximation image reconstruction method By using the point response function obtained for the detection probability at, the value G of the gap 211 between the modules 210, the pitches D 1 and D 2 of the detection element 201, the pitches H 1 and H 2 of the through holes 207 of the collimator 206, and the septa
  • the thicknesses T 1 and T 2 of 208 and the hole length L of the collimator 206 can be modeled, and no artifact is generated in the acquired image.
  • the image reconstruction method can be applied to both SPECT imaging and planar imaging.
  • the projected image of the gamma ray 202 acquired in the present embodiment is expressed with a nonuniform pitch
  • the projected image is assigned to a coordinate system with a uniform pitch of the detected position using interpolation processing.
  • the detector panel in which the gap 211 between the modules 210 exists in both the x direction and the y direction may be applied to 11, or may be applied to the detector panel 11 in which the gap 211 between the modules 210 exists only in one direction as shown in FIG.
  • one detection element 201 corresponds to one through hole 207 of the collimator 206.
  • N x pieces in the x direction and N in the y direction correspond to one through hole 207.
  • y detection elements 201 may be included.
  • the number of N x and N y need not be the same, and may be different.
  • the collimator 206 of the present embodiment is an integral collimator 206, and the collimator 206 can be easily separated from the detector panel 11. Further, since the through holes 207 are arranged in consideration of the gap 211 between the modules 210, the collimator 206 and the detection element 201 can be easily aligned. Therefore, it is possible to provide an image with high diagnostic accuracy by replacing the collimator 206 with the optimum performance according to the imaging purpose.
  • the system of the present invention is used by using a detector panel 11 configured by arranging a plurality of collimator / detector modules 213 each having a collimator 206 mounted on a module 210 basis. May be configured. At this time, the thickness of the septa 208b across the gap 211 between the collimator / detector module 213 is set so that the influence of penetration can be reduced as described above.
  • the radiation imaging apparatus includes a collimator 206 that limits incident radiation, a detector panel 11 that includes a plurality of detection elements 201 that detect radiation that has passed through the collimator 206, and a detector panel 11.
  • the collimator 206 has a plurality of through-holes 207 separated by a septa 208, and the detector panel 11 includes a plurality of modules 210 each having a plurality of detection elements 201. is there.
  • the thickness T 2 of the septa 208 located between the modules 210 is thicker than the thickness T 1 of the septa located in the module 210, high-accuracy imaging can be performed while suppressing the influence of the gap between the modules 210. It is. Further, as in each embodiment, the pitch S 2 between the septa 208 corresponding to the end of the module 210 and the other septa 208 and the pitch S 1 between the septa 208 not corresponding to the end of the module 210 are more equal. preferable.
  • high-resolution whole-body SPECT imaging using a pixel type semiconductor detector can be performed by positioning the through hole 207 of the collimator 206 and the detection element 201 with high accuracy.
  • SPECT device (gamma camera) 10 Gantry 11a, 11b detector panel 12 Data processing equipment 13 Image display device 14 beds 15 Subject 16 axis of rotation 17 Protective material 201 sensing element 202 Gamma rays 203 Detector board 204 ASIC board 205 Integrated Circuit (ASIC) 206 Collimator 207 Through hole 208 Septa 208a Septa (area in the module) 208b Septa (module end) 209 Shading, gamma rays, electromagnetic shielding 210 modules 211 gap 212 Point source 213 Collimator / detector module

Landscapes

  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Biomedical Technology (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

Provided is a high-resolution radiation imaging device using a pixel-type detector. The present invention is a radiation imaging device having a collimator for limiting incident radiation, a detector panel provided with a plurality of detection elements for detecting the radiation having passed through the collimator, and a gantry for supporting the detector panel, wherein the collimator has a plurality of through holes delimited by septa, the detector panel is such that a plurality of modules are aligned that are each provided with a plurality of detection elements, and the thickness T2 of the septa positioned between the plurality of modules is thicker than the thickness T1 of the septa within the modules.

Description

放射線撮像装置Radiation imaging device
本発明は、入射放射線分布を画像化する放射線撮像装置およびそれを用いた核医学診断装置に関するものである。 The present invention relates to a radiation imaging apparatus for imaging an incident radiation distribution and a nuclear medicine diagnosis apparatus using the radiation imaging apparatus.
 放射線計測装置を核医学分野に応用した装置として、ガンマカメラを用いた単一光子放射型コンピュータ断層撮影(Single photon emission computed tomography:SPECT)がある。SPECTは、放射性同位体を含む化合物の分布を測定し、断層面のイメージを提供するものである。これまでのSPECT装置では、一枚の結晶からなるシンチレータと複数の光電子増倍管を組み合わせたものが主流である。これらのSPECT装置は、放射線の位置を重心演算で求める。しかしながら、この方法では、分解能10 mm程度が限界であり、臨床現場で用いるには不十分である。したがって、より高い分解能を持つSPECT装置がもとめられている。 There is a single photon emission computed tomography (SPECT) using a gamma camera as an application of radiation measurement equipment in the field of nuclear medicine. SPECT measures the distribution of compounds containing radioisotopes and provides an image of the tomographic plane. In the conventional SPECT apparatus, a combination of a scintillator made of a single crystal and a plurality of photomultiplier tubes is the mainstream. These SPECT devices obtain the position of radiation by the center of gravity calculation. However, this method has a limit of about 10 mm resolution and is insufficient for use in clinical settings. Therefore, a SPECT apparatus with higher resolution is being sought.
 近年、より高い分解能をもつものとして、ピクセル型検出器が開発されてきている。ピクセル型検出器には、シンチレータで構成されたものや、半導体で構成されたもの等がある。いずれも、小さな検出素子単位、すなわちピクセル単位で位置信号を取得する。したがって、検出器の固有分解能は、ピクセルサイズで決定され、空間的に離散した計測を行う。ピクセルサイズが1、2 mmのものも開発され、分解能は10 mm以下を達成し、大幅に改善されてきた。 In recent years, pixel-type detectors have been developed as having higher resolution. Pixel type detectors include those composed of scintillators and those composed of semiconductors. In either case, the position signal is acquired in units of small detection elements, that is, in units of pixels. Therefore, the intrinsic resolution of the detector is determined by the pixel size and performs spatially discrete measurements. Pixels with a pixel size of 1 or 2 mm have also been developed, achieving a resolution of 10 mm or less, which has been greatly improved.
 また、断層面の再構成方法も開発、改良され、分解能向上に大きく貢献している。これまでは、フィルタ補正逆投影法(filtered back-projection法:FBP法)、分解能補正なしの逐次近似法(Maximum likelihood expectation maximization:MLEM、 Ordered subset expectation maximization:OSEM等)が用いられていた。近年、分解能補正ありの逐次近似法が開発されている。この方法は、コリメータや検出器の幾何学的形状、被写体によるガンマ線の減弱、散乱線等の物理的要因を考慮して再構成できる。したがって、より正確な画像を提供することができる。 Also, the reconstruction method of the fault plane has been developed and improved, greatly contributing to the improvement of resolution. Until now, the filter-corrected back projection method (filtered back-projection method: FBP method) and the successive approximation method without resolution correction (Maximum-likelihood-expectation-maximization: MLEM, -Ordered-subset-expectation-maximization: OSEM etc.) have been used. In recent years, successive approximation methods with resolution correction have been developed. This method can be reconfigured taking into account physical factors such as the geometry of the collimator and detector, the attenuation of gamma rays by the subject, and scattered radiation. Therefore, a more accurate image can be provided.
特表2008-506945号公報Special table 2008-506945
 ピクセル型半導体検出器の高い固有空間分解能を活かして高解像度の画像を提供する例として、特許文献1に、モジュールの端部における検出素子の横方向の長さを短くすることで、検出素子のピッチを同一に保つ方法が開示されている。ただし、検出素子を小さくする必要があり、モジュール端部における感度低下が発生する。 As an example of providing a high-resolution image by taking advantage of the high intrinsic spatial resolution of the pixel-type semiconductor detector, Patent Document 1 discloses that the length of the detection element at the end of the module is shortened by reducing the lateral length of the detection element. A method for keeping the pitch the same is disclosed. However, it is necessary to make the detection element small, and the sensitivity is lowered at the end of the module.
 本発明は、ピクセル型検出器を用いた高解像度な放射線撮像装置を提供することを目的とする。 An object of the present invention is to provide a high-resolution radiation imaging apparatus using a pixel type detector.
 前記課題を解決するため、本発明の放射線撮像装置は、入射する放射線を制限するコリメータと、前記コリメータを通過した放射線を検出する複数の検出素子を備えた検出器パネルと、前記検出器パネルを支持するガントリを有し、前記コリメータはセプタによって区切られた複数の貫通穴を有し、前記検出器パネルは、それぞれ複数の検出素子を備えたモジュールが複数並べられたものであり、前記複数のモジュール間に位置するセプタの厚みT2が、前記モジュール内に位置するセプタの厚みT1よりも厚いものである。 In order to solve the above problems, a radiation imaging apparatus of the present invention includes a collimator that limits incident radiation, a detector panel that includes a plurality of detection elements that detect radiation that has passed through the collimator, and the detector panel. A gantry to support the collimator, the collimator having a plurality of through-holes separated by a septa, and the detector panel having a plurality of modules each having a plurality of detection elements, The thickness T2 of the septa located between the modules is thicker than the thickness T1 of the septa located in the module.
 本発明によれば、ピクセル型検出器を用いた高解像度な放射線撮像装置を提供することが可能となる。 According to the present invention, it is possible to provide a high-resolution radiation imaging apparatus using a pixel type detector.
検出素子201のモジュール210とコリメータ206を示した図である。FIG. 2 is a diagram showing a module 210 and a collimator 206 of a detection element 201. 検出素子201とコリメータ206の間に位置ずれが生じた様子を示した図である。FIG. 5 is a diagram showing a state in which a positional deviation has occurred between a detection element 201 and a collimator 206. SPECT装置1(ガンマカメラ)を示した図である。1 is a diagram showing a SPECT device 1 (gamma camera). FIG. モジュール210間に隙間211を設定し、隙間211をまたぐコリメータ206の貫通穴207のピッチをその隙間211に対応した長さにすることで、検出素子201とコリメータ206の貫通穴207の位置ずれが無い様子を示した図である。By setting a gap 211 between the modules 210 and setting the pitch of the through-holes 207 of the collimator 206 across the gap 211 to a length corresponding to the gap 211, the positional deviation between the detection element 201 and the through-holes 207 of the collimator 206 is reduced. It is the figure which showed a mode that there is no. モジュール210間の隙間211をまたぐセプタ208をガンマ線202が通過する様子を示した図である。FIG. 5 is a diagram showing a state where gamma rays 202 pass through a scepter 208 that straddles a gap 211 between modules 210. 点線源212からガンマ線202が発生する様子と点応答関数を示した図である。FIG. 6 is a diagram showing a state in which gamma rays 202 are generated from a point source 212 and a point response function. モジュール210間の隙間211をx方向、y方向に設定した場合を示した図である。FIG. 5 is a diagram showing a case where a gap 211 between modules 210 is set in the x direction and the y direction. モジュール210間の隙間211をy方向に設定した場合を示した図である。FIG. 6 is a diagram showing a case where a gap 211 between modules 210 is set in the y direction. コリメータ206の一つの貫通穴207に四つの検出素子201が含まれる場合を示した図である。FIG. 5 is a diagram showing a case where four detection elements 201 are included in one through hole 207 of the collimator 206. コリメータ・検出器モジュール213を複数個並べて構成された検出器パネル11を示した図である。FIG. 3 is a diagram showing a detector panel 11 configured by arranging a plurality of collimator / detector modules 213.
 SPECT装置では、ガンマ線の入射方向を制限するために、検出器の前面にコリメータが実装されている。図1に示す検出器の例では、コリメータ206はセプタ208と貫通穴207から構成されており、ピクセル型検出器を用いたSPECT装置では、コリメータ206の貫通穴207と検出素子201の位置が一対一に対応している。ピクセル型半導体検出器の高い固有空間分解能を活かして高解像度の画像を提供するには、コリメータ206の貫通穴207と検出素子201の位置合わせに高い精度が求められる。 
 SPECT装置の種類には、全身撮像が可能な広い撮像視野を有する全身機、心臓と頭部を対象とした心臓・頭部兼用機、心臓のみを対象とした心臓専用機がある。現在のところ、ピクセル型半導体検出器を用いた商用SPECT装置としては、撮像視野の小さな心臓専用機のみであり、大視野の全身機は存在しない。その理由としては、検出素子を等ピッチで実装した大面積のパネルを作成することが難しいことが挙げられる。これは、一般に半導体検出器を用いたパネルは、検出素子が複数個配置されたモジュールの単位で実装されており、モジュール間の隙間、つまりモジュールの端部の検出素子同士の隙間を無くすことは難しいためである。したがって、全身機のように、実装するモジュールの数が多くなるほど、モジュール間の隙間による検出素子とコリメータの貫通穴の位置ずれは顕著になり、感度低下やアーチファクトが生じる。図2は、この位置ズレの様子を示した、コリメータ206、貫通穴207、セプタ208、検出素子201、モジュール210、隙間211の配置関係図である。
In the SPECT apparatus, a collimator is mounted in front of the detector in order to limit the incident direction of gamma rays. In the example of the detector shown in FIG. 1, the collimator 206 includes a septa 208 and a through hole 207. In the SPECT apparatus using a pixel type detector, the positions of the through hole 207 and the detection element 201 of the collimator 206 are a pair. It corresponds to one. In order to provide a high-resolution image by taking advantage of the high intrinsic spatial resolution of the pixel type semiconductor detector, high accuracy is required for alignment of the through-hole 207 of the collimator 206 and the detection element 201.
There are two types of SPECT devices: a whole-body machine with a wide field of view capable of whole-body imaging, a heart / head combined machine for the heart and head, and a dedicated heart machine for only the heart. At present, as a commercial SPECT apparatus using a pixel type semiconductor detector, there is only a cardiac dedicated machine with a small imaging field of view, and there is no whole-body machine with a large field of view. The reason is that it is difficult to create a large-area panel in which the detection elements are mounted at an equal pitch. This is because a panel using a semiconductor detector is generally mounted in units of modules in which a plurality of detection elements are arranged, and there is no need to eliminate gaps between modules, that is, gaps between detection elements at the end of the module. This is because it is difficult. Therefore, as the number of modules to be mounted increases as in the whole body machine, the position shift between the detection element and the through hole of the collimator due to the gap between the modules becomes more significant, resulting in a decrease in sensitivity and artifacts. FIG. 2 is an arrangement relation diagram of the collimator 206, the through hole 207, the septa 208, the detection element 201, the module 210, and the gap 211, showing the state of this positional deviation.
 コリメータ206の貫通穴207のピッチと検出素子201のピッチを同一にする従来技術として、特許文献1に、モジュール210の端部における検出素子201の横方向の長さを短くすることで、検出素子201のピッチを同一に保つ方法が開示されている。ただし、検出素子201を小さくすることで、モジュール210端部における感度低下が発生する。 As a prior art in which the pitch of the through holes 207 of the collimator 206 and the pitch of the detection element 201 are the same, Patent Document 1 discloses that the detection element 201 is shortened in the lateral direction at the end of the module 210 by detecting A method of keeping the pitch of 201 the same is disclosed. However, a reduction in sensitivity at the end of the module 210 occurs by making the detection element 201 small.
 以下説明する実施例の放射線撮像装置は、前記課題を解決するための手段として、複数の検出素子201から構成されたモジュール210を有し、複数の前記モジュール210から構成された一枚もしくは複数の検出器パネル11を有し、前記モジュール210間にはモジュール210間の隙間211の値Gを有し、前記検出素子201は前記モジュール210内においてピッチD1で配置され、前記モジュール210間の隙間211をまたぐ前記検出素子201はピッチD2で配置され、前記ピッチD2は前記ピッチD1よりも長く、複数の貫通穴207およびセプタ208を有するコリメータ206を有し、前記コリメータ206は放射線が検出器パネル11に入射する方向である前面に配置され、一つの前記貫通穴207には一次元方向においてN個の検出素子201が含まれ、前記貫通穴207は前記モジュール210内における前記検出素子201に対応する領域内においてピッチH1で配置され、前記モジュール210間の隙間211をまたぐ前記貫通穴207のピッチはH2で配置され、前記ピッチH1はN×D1の関係を満たし、前記モジュール210内における前記検出素子201に対応する領域内において前記セプタ208aはピッチS1で配置され、前記モジュール210間の隙間211をまたぐ前記セプタ208bとその隣のセプタ208aはピッチS2で配置され、前記ピッチS2は前記ピッチS1よりも長く、前記モジュール210内における前記検出素子201に対応する領域内において前記セプタ208aの厚さは厚さT1とし、前記モジュール210間の隙間211をまたぐ前記セプタ208bの厚さは厚さT2とし、前記検出器パネル11が被写体の周囲を回転しながら放射線を検出し、前記検出素子201および前記コリメータ206の幾何配置として前記モジュール210間の隙間211の値G、前記検出素子201のピッチD1、D2、前記貫通穴207のピッチH1、H2、前記セプタ208のピッチS1、S2、前記セプタ208の厚さT1、T2を考慮した点応答関数を組み込んだ画像再構成法により放射線の発生位置および濃度を画像化する手段を有する放射線撮像装置としたものである。 The radiation imaging apparatus of the embodiment described below has a module 210 composed of a plurality of detection elements 201 as means for solving the above-mentioned problems, and one or a plurality of modules composed of a plurality of the modules 210 It has a detector panel 11, between the module 210 has a value G of the gap 211 between the module 210, the detecting element 201 are arranged at a pitch D 1 in said module 210, the gaps between the modules 210 the detecting element 201 across the 211 are arranged at a pitch D 2, the pitch D 2 is larger than the pitch D 1, has a collimator 206 having a plurality of through-holes 207 and septum 208, the collimator 206 radiation It is disposed on the front surface that is the direction of incidence on the detector panel 11, and one through hole 207 includes N detection elements 201 in a one-dimensional direction, and the through hole 207 is formed in the module 210. Are arranged at a pitch H 1 in the region corresponding to the detecting element 201, the pitch of the through hole 207 across the gap 211 between the modules 210 are arranged in H 2, the pitch H 1 relationship N × D 1 It met, wherein the septum 208a in a region corresponding to the detecting element 201 in the module 210 are arranged at a pitch S 1, septa 208a of the septum 208b and its neighboring across the gap 211 between the module 210 pitch S 2 The pitch S 2 is longer than the pitch S 1 , and the thickness of the septa 208a in the region corresponding to the detection element 201 in the module 210 is a thickness T 1 , the thickness of the septum 208b across the gap 211 between the thickness T 2, the detector panel 11 detects the radiation while rotating around the subject, the as geometry of the sensing element 201 and the collimator 206 Mogi The value G of the gap 211 between Lumpur 210, pitch D 1, D 2 of the detecting element 201, the pitch H 1, H 2 of the through hole 207, the pitch S 1, S 2 of the septa 208, the septum 208 The radiation imaging apparatus has means for imaging the radiation generation position and density by an image reconstruction method incorporating a point response function in consideration of the thicknesses T 1 and T 2 .
 以下、本発明を実施するための最良の形態を、図面を参照して詳細に説明する。以下実施例では、放射線撮像装置としてSPECT装置の例を用いる。はじめに、本実施例のSPECT装置1の構成および画像再構成について説明する。次に、コリメータ206 の貫通穴207と検出素子201の位置合わせを高い精度で実行することで、ピクセル型半導体検出器を用いた高解像度な全身SPECT撮像が可能となる方法について説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings. In the following examples, an example of a SPECT apparatus is used as a radiation imaging apparatus. First, the configuration and image reconstruction of the SPECT apparatus 1 of the present embodiment will be described. Next, a method that enables high-resolution whole-body SPECT imaging using a pixel-type semiconductor detector by performing alignment of the through-hole 207 of the collimator 206 と and the detection element 201 with high accuracy will be described.
  はじめに、SPECT装置1の構成について簡単に説明する。図3に示すように、SPECT装置1は、ガントリ10、検出器パネル11a、11b、データ処理装置12、表示装置13等を含んで構成される。被写体15は、放射性薬剤、例えば、半減期が6時間の99mTcを含んだ薬剤を投与される。ベッド14に載せられた被写体15の体内の99mTcから放出されるガンマ線202をガントリ10に支持された検出器パネル11で検出して断層画像を撮像する。 First, the configuration of the SPECT apparatus 1 will be briefly described. As shown in FIG. 3, the SPECT apparatus 1 includes a gantry 10, detector panels 11a and 11b, a data processing device 12, a display device 13, and the like. Subject 15 is administered a radioactive drug, for example, a drug containing 99m Tc with a half-life of 6 hours. A gamma ray 202 emitted from 99m Tc in the body of the subject 15 placed on the bed 14 is detected by the detector panel 11 supported by the gantry 10 to capture a tomographic image.
 検出器パネル11は、コリメータ206と検出素子201から構成される。コリメータ206は被写体15の体内から放出されるガンマ線202を選別し、一定方向のガンマ線202のみを通過させる役割を有する。コリメータ206を通過したガンマ線202を検出素子201で検出する。検出器パネル11は、ガンマ線202の検出信号を計測するための特定用途向け集積回路(Application Specific Integrated Circuit: ASIC)205を備える。ガンマ線202の検出信号は、検出器基板203、ASIC基板204を介して、ASIC205にガンマ線202を検出した検出素子201のID、検出したガンマ線202の波高値や検出時刻が入力される。鉄、鉛等でできた遮光・ガンマ線・電磁シールド209は、検出素子201、検出器基板203、ASIC基板204、ASIC205、コリメータ206を囲んでおり、光、ガンマ線202、電磁波を遮断する。データ処理装置12は、記憶装置及び断層像情報作成装置(図示せず)を有する。データ処理装置12は、計測したガンマ線202の波高値、検出時刻のデータ及び検出器(チャンネル)IDを含むパケットデータを取り込み、平面像を生成、もしくはサイノグラムデータに変換して断層像情報を生成し、表示装置13に表示する。 The detector panel 11 includes a collimator 206 and a detection element 201. The collimator 206 has a function of selecting gamma rays 202 emitted from the body of the subject 15 and allowing only gamma rays 202 in a certain direction to pass therethrough. The gamma ray 202 that has passed through the collimator 206 is detected by the detection element 201. The detector panel 11 includes an application specific integrated circuit (Application ASIC) 205 for measuring a detection signal of the gamma ray 202. As the detection signal of the gamma ray 202, the ID of the detection element 201 that detected the gamma ray 202, the peak value of the detected gamma ray 202, and the detection time are input to the ASIC 205 via the detector substrate 203 and the ASIC substrate 204. A light shielding / gamma ray / electromagnetic shield 209 made of iron, lead or the like surrounds the detection element 201, the detector substrate 203, the ASIC substrate 204, the ASIC 205, and the collimator 206, and blocks light, gamma ray 202, and electromagnetic waves. The data processing device 12 includes a storage device and a tomogram information creation device (not shown). The data processing device 12 captures packet data including the measured peak value of the gamma ray 202, detection time data, and detector (channel) ID, and generates a planar image or converts it into sinogram data to generate tomographic image information. Is displayed on the display device 13.
 検出器パネル11はガントリ10の半径方、回転方向、接線方向に可動する。断層像撮像時には、検出器パネル11はガントリ取り付け部を軸として回転し、被写体15の体内の腫瘍等に集積した放射性薬剤から発生するガンマ線202を検出して腫瘍の位置を同定する。 The detector panel 11 is movable in the radial direction, rotational direction, and tangential direction of the gantry 10. At the time of tomographic imaging, the detector panel 11 rotates around the gantry mounting portion and detects the gamma rays 202 generated from the radiopharmaceutical accumulated in the tumor in the body of the subject 15 to identify the position of the tumor.
 次に、データ処理装置で実行される画像再構成について説明する。検出器パネル11が測定対象に対してある角度をなしているとき、検出素子iのカウント数yiは、再構成画素jのカウント数をλjとして、 Next, image reconstruction executed by the data processing apparatus will be described. When the detector panel 11 is at an angle with respect to the measurement object, the count number y i of the detection element i is λ j as the count number of the reconstructed pixel j.
Figure JPOXMLDOC01-appb-M000002
となる。ここで、Cijは検出素子iに検出される確率を表す。上式から、逐次近似再構成法 (MLEM、 OSEM等)を用いて画像を再構成する。検出素子201の点応答関数を逐次近似画像再構成に組み込むことにより、空間分解能を補正することが可能である。点応答関数とは、点線源212から発生した放射線を検出素子201が検出する確率であり、式(1)の検出確率Cijに等しい。この点応答関数を用いることで、MLEM、OSEM等の逐次近似再構成法からより正確な画像を再構成することができる。
Figure JPOXMLDOC01-appb-M000002
It becomes. Here, C ij represents the probability of being detected by the detection element i. From the above equation, images are reconstructed using successive approximation reconstruction methods (MLEM, OSEM, etc.). It is possible to correct the spatial resolution by incorporating the point response function of the detection element 201 into the successive approximation image reconstruction. The point response function is a probability that the detection element 201 detects the radiation generated from the point source 212, and is equal to the detection probability C ij in the equation (1). By using this point response function, a more accurate image can be reconstructed from a successive approximation reconstruction method such as MLEM or OSEM.
 次に、ピクセル型半導体検出器をモジュール210単位で実装した検出器パネル11を用いたSPECT装置1において、コリメータ206の貫通穴207と検出素子201の位置合わせを高い精度で可能にし、感度の低下およびアーチファクトを抑制し、高解像度の画像を提供する方法について説明する。一般に、モジュール210単位の実装により検出器パネル11を構成した場合、モジュール210間の隙間211を無くすことは難しいため、図2に示すようにコリメータ206の貫通穴207の位置と検出素子201の位置ずれが発生してしまう。そこで、本実施例では図4に示すように、x方向におけるモジュール210端部の検出素子201同士の間に隙間211として距離Gを設定する。モジュール210内の検出素子201のピッチをD1、モジュール210端部の検出素子201同士のピッチをD2に設定する。ここで、モジュール210間の隙間211によってピッチD2はピッチD1よりも長く、D2=D1+Gの関係が成立する。 Next, in the SPECT device 1 using the detector panel 11 in which pixel type semiconductor detectors are mounted in units of modules 210, the through hole 207 of the collimator 206 and the detection element 201 can be aligned with high accuracy, and the sensitivity decreases. A method for suppressing artifacts and providing a high-resolution image will be described. In general, when the detector panel 11 is configured by mounting the module 210 unit, it is difficult to eliminate the gap 211 between the modules 210. Therefore, the position of the through hole 207 of the collimator 206 and the position of the detection element 201 as shown in FIG. Deviation occurs. Therefore, in this embodiment, as shown in FIG. 4, a distance G is set as a gap 211 between the detection elements 201 at the ends of the module 210 in the x direction. The pitch of the detection elements 201 in the module 210 is set to D 1 , and the pitch between the detection elements 201 at the ends of the module 210 is set to D 2 . Here, the pitch D 2 by the gap 211 between the module 210 is longer than the pitch D 1, D 2 = D 1 + relationship G is established.
 モジュール210内のセプタ208aのピッチはS1とし、モジュール210間の隙間211をまたぐセプタ208bとその隣のセプタ208aのピッチはS2とする。ここで、モジュール210間の隙間211によってピッチS2はピッチS1よりも長く、S2=S1+G/2の関係が成立する。このように、ピッチS2にモジュール210間の隙間211を考慮することで、コリメータ206の貫通穴207と検出素子201の位置合わせを高い精度で行うことが可能となる。モジュール210内のセプタ208aの厚さはT1とし、モジュール210間の隙間211をまたぐセプタ208bの厚さはT2とする。このとき、ピッチS2がピッチS1よりも長いため、セプタ208bの厚さをT1と同じの場合に設定すると、ガンマ線202のペネトレーションが大きくなり、画質に影響を及ぼす場合がある。そこで、セプタ208bの厚さは、ガンマ線202のペネトレーションが画像に影響を与えないような厚さに設定するのが望ましい。例えば図5に示すように、コリメータ206の穴長をL、セプタ208aの頂点P1、P2の近傍を通過するガンマ線202がセプタ208bを横切る長さをA、ガンマ線202のコリメータに対する減弱係数をμとすると、ペネトレーション確率Bが5%以下になる式(2)、(3)を満たすセプタ208bの厚さT2を用いる。 Pitch septum 208a of module 210 is a S 1, the pitch of the septum 208b and septa 208a of the adjacent across the gap 211 between the module 210 and S 2. Here, a pitch S 2 by the gap 211 between the module 210 is longer than the pitch S 1, S 2 = S 1 + G / 2 relationship is established. Thus, by considering the gap 211 between the module 210 to the pitch S 2, it is possible to align the through hole 207 of the collimator 206 detector elements 201 with high accuracy. The thickness of the septum 208a of module 210 is set to T 1, the thickness of the septum 208b across the gap 211 between the module 210 and T 2. In this case, the pitch S 2 is longer than the pitch S 1, by setting the thickness of the septum 208b for the same as T 1, penetration of the gamma ray 202 is increased, which may affect the image quality. Therefore, it is desirable to set the thickness of the septa 208b so that the penetration of the gamma ray 202 does not affect the image. For example, as shown in FIG. 5, the hole length of the collimator 206 is L, the length of the gamma ray 202 passing through the apexes P 1 and P 2 of the septa 208a crossing the septa 208b is A, and the attenuation coefficient of the gamma ray 202 with respect to the collimator is Assuming that μ, the thickness T 2 of the septa 208b that satisfies the expressions (2) and (3) for which the penetration probability B is 5% or less is used.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 モジュール210内の検出素子201に対応する領域の貫通穴207のピッチはH1とし、モジュール210間の隙間211をまたぐ貫通穴207のピッチはH2とする。本実施例では、検出素子201とコリメータ206の貫通穴207の位置を合わせるために、ピッチD1とピッチH1は等しい。また、ピッチH2は、H2=S1+G/2+T2/2-T1/2で表わされる。 The pitch of the through holes 207 in the area corresponding to the detection element 201 in the module 210 is H 1, and the pitch of the through holes 207 across the gap 211 between the modules 210 is H 2 . In this embodiment, in order to align the through hole 207 of the detecting element 201 and the collimator 206, the pitch D 1 and the pitch H 1 is equal. The pitch H 2 is expressed by H 2 = S 1 + G / 2 + T 2 / 2-T 1/2 .
 本実施例では、モジュール210内における検出素子201のピッチとコリメータ206の貫通穴207のピッチを等しくしているが、一方、モジュール210間に隙間211を設定していることで、モジュール210間をまたぐ検出素子201のピッチはモジュール210内の検出素子201のピッチとは異なる。したがって、通常の画像再構成を実行してしまうと画像にアーチファクトが発生してしまう。そこで、図6に示すように本実施例のコリメータ206と検出素子201の配置において点線源212を測定した場合の検出確率、つまり点応答関数を全領域において求めておき、逐次近似画像再構成法における検出確率に求めた点応答関数を用いることで、モジュール210間の隙間211の値G、検出素子201のピッチD1、D2、コリメータ206の貫通穴207のピッチH1、H2、セプタ208の厚さT1、T2、コリメータ206の穴長Lをモデル化することが可能であり、取得される画像にアーチファクトは発生しない。なお、画像再構成法は、SPECT撮像、プラナー撮像の両方に適用することが可能である。 In this embodiment, the pitch of the detection elements 201 in the modules 210 and the pitch of the through holes 207 of the collimator 206 are made equal. On the other hand, the gap 211 is set between the modules 210, so The pitch of the detection elements 201 is different from the pitch of the detection elements 201 in the module 210. Therefore, if normal image reconstruction is executed, artifacts will occur in the image. Therefore, as shown in FIG. 6, the detection probability when the point source 212 is measured in the arrangement of the collimator 206 and the detection element 201 of the present embodiment, that is, the point response function is obtained in the entire region, and the successive approximation image reconstruction method By using the point response function obtained for the detection probability at, the value G of the gap 211 between the modules 210, the pitches D 1 and D 2 of the detection element 201, the pitches H 1 and H 2 of the through holes 207 of the collimator 206, and the septa The thicknesses T 1 and T 2 of 208 and the hole length L of the collimator 206 can be modeled, and no artifact is generated in the acquired image. Note that the image reconstruction method can be applied to both SPECT imaging and planar imaging.
 あるいは、本実施例で取得されるガンマ線202の投影画像は、検出位置が不均一なピッチで表現されているため、検出位置が均一なピッチの座標系に補間処理を用いて投影画像を割り付けることで、検出素子201が均一なピッチ配置された場合の投影画像を作成することも可能である。 Alternatively, since the projected image of the gamma ray 202 acquired in the present embodiment is expressed with a nonuniform pitch, the projected image is assigned to a coordinate system with a uniform pitch of the detected position using interpolation processing. Thus, it is also possible to create a projection image when the detection elements 201 are arranged at a uniform pitch.
 ここまでは、x方向の検出素子201とコリメータ206の貫通穴207の配置について説明してきたが、図7に示すように、x方向、y方向ともにモジュール210間の隙間211が存在する検出器パネル11について本実施例の考え方を適用してもよいし、図8に示すように、一方向のみにモジュール210間の隙間211が存在する検出器パネル11に適用してもよい。 Up to this point, the arrangement of the detection element 201 in the x direction and the through hole 207 of the collimator 206 has been described. However, as shown in FIG. 7, the detector panel in which the gap 211 between the modules 210 exists in both the x direction and the y direction. The concept of the present embodiment may be applied to 11, or may be applied to the detector panel 11 in which the gap 211 between the modules 210 exists only in one direction as shown in FIG.
 また、本実施例ではコリメータ206の一つの貫通穴207に一つの検出素子201が対応していたが、図9に示すように一つの貫通穴207にx方向においてNx個、y方向においてNy個の検出素子201を含んでもよい。ここで、図9はNx=Ny=2の場合である。このとき、モジュール210内における検出素子201のピッチD1と貫通穴207のピッチH1の間には、H1=D1×Nx= D1×Nyの関係が成立する。さらに、NxとNyの数は同じである必要は無く、異なる数でもよい。 In this embodiment, one detection element 201 corresponds to one through hole 207 of the collimator 206. However, as shown in FIG. 9, N x pieces in the x direction and N in the y direction correspond to one through hole 207. y detection elements 201 may be included. Here, FIG. 9 shows a case where N x = N y = 2. At this time, a relationship of H 1 = D 1 × N x = D 1 × N y is established between the pitch D 1 of the detection elements 201 and the pitch H 1 of the through holes 207 in the module 210. Furthermore, the number of N x and N y need not be the same, and may be different.
 本実施例のコリメータ206は一体もののコリメータ206であり、コリメータ206は検出器パネル11から容易に分離可能である。また、モジュール210間の隙間211を考慮して貫通穴207が配置されているため、コリメータ206と検出素子201の位置合わせが容易に行うことが可能となる。したがって、撮像目的に合わせて最適な性能のコリメータ206に交換することで、診断精度の高い画像を提供することが可能となる。 The collimator 206 of the present embodiment is an integral collimator 206, and the collimator 206 can be easily separated from the detector panel 11. Further, since the through holes 207 are arranged in consideration of the gap 211 between the modules 210, the collimator 206 and the detection element 201 can be easily aligned. Therefore, it is possible to provide an image with high diagnostic accuracy by replacing the collimator 206 with the optimum performance according to the imaging purpose.
 変形例としては、図10に示すように、モジュール210単位でコリメータ206が実装されたコリメータ・検出器モジュール213を複数個並べることで構成された検出器パネル11を用いることで、本発明のシステムを構成してもよい。このとき、コリメータ・検出器モジュール213間の隙間211をまたぐセプタ208bのセプタの厚さは、先に述べたようにペネトレーションの影響を低減できるように設定する。 As a modification, as shown in FIG. 10, the system of the present invention is used by using a detector panel 11 configured by arranging a plurality of collimator / detector modules 213 each having a collimator 206 mounted on a module 210 basis. May be configured. At this time, the thickness of the septa 208b across the gap 211 between the collimator / detector module 213 is set so that the influence of penetration can be reduced as described above.
 以上説明した各実施例の放射線撮像装置は、入射する放射線を制限するコリメータ206と、コリメータ206を通過した放射線を検出する複数の検出素子201を備えた検出器パネル11と、検出器パネル11を支持するガントリ10を有し、コリメータ206はセプタ208によって区切られた複数の貫通穴207を有し、検出器パネル11は、それぞれ複数の検出素子201を備えたモジュール210が複数並べられたものである。 The radiation imaging apparatus according to each embodiment described above includes a collimator 206 that limits incident radiation, a detector panel 11 that includes a plurality of detection elements 201 that detect radiation that has passed through the collimator 206, and a detector panel 11. The collimator 206 has a plurality of through-holes 207 separated by a septa 208, and the detector panel 11 includes a plurality of modules 210 each having a plurality of detection elements 201. is there.
 複数のモジュール210の間に位置するセプタ208の厚みT2が、前記モジュール内に位置するセプタの厚みT1よりも厚いため、モジュール210の間の隙間による影響を抑えた高い精度の撮像が可能である。さらに各実施例のように、モジュール210の端に対応するセプタ208とそれ以外のセプタ208間のピッチS2と、モジュール210の端に対応しないセプタ208同士間のピッチS1が等しい方がより好ましい。 Since the thickness T 2 of the septa 208 located between the modules 210 is thicker than the thickness T 1 of the septa located in the module 210, high-accuracy imaging can be performed while suppressing the influence of the gap between the modules 210. It is. Further, as in each embodiment, the pitch S 2 between the septa 208 corresponding to the end of the module 210 and the other septa 208 and the pitch S 1 between the septa 208 not corresponding to the end of the module 210 are more equal. preferable.
 このような構成により、コリメータ206 の貫通穴207と検出素子201の位置合わせを高い精度で実行することで、ピクセル型半導体検出器を用いた高解像度な全身SPECT撮像が可能となる。
With such a configuration, high-resolution whole-body SPECT imaging using a pixel type semiconductor detector can be performed by positioning the through hole 207 of the collimator 206 and the detection element 201 with high accuracy.
1  SPECT装置(ガンマカメラ)
10 ガントリ
11a、11b 検出器パネル
12 データ処理装置
13 画像表示装置
14 ベッド
15 被写体
16 回転軸
17 保護材
201 検出素子
202 ガンマ線
203 検出器基板
204 ASIC基板
205 集積回路(ASIC)
206 コリメータ
207 貫通穴
208 セプタ
208a セプタ(モジュール内の領域)
208b セプタ(モジュール端部)
209 遮光・ガンマ線・電磁シールド
210 モジュール
211 隙間
212 点線源
213 コリメータ・検出器モジュール
1 SPECT device (gamma camera)
10 Gantry
11a, 11b detector panel
12 Data processing equipment
13 Image display device
14 beds
15 Subject
16 axis of rotation
17 Protective material
201 sensing element
202 Gamma rays
203 Detector board
204 ASIC board
205 Integrated Circuit (ASIC)
206 Collimator
207 Through hole
208 Septa
208a Septa (area in the module)
208b Septa (module end)
209 Shading, gamma rays, electromagnetic shielding
210 modules
211 gap
212 Point source
213 Collimator / detector module

Claims (9)

  1.  入射する放射線を制限するコリメータと、
     前記コリメータを通過した放射線を検出する複数の検出素子を備えた検出器パネルと、
     前記検出器パネルを支持するガントリを有し、
     前記コリメータはセプタによって区切られた複数の貫通穴を有し、
     前記検出器パネルは、それぞれ複数の検出素子を備えたモジュールが複数並べられたものであり、
     前記複数のモジュール間に位置するセプタの厚みT2が、前記モジュール内に位置するセプタの厚みT1よりも厚い放射線撮像装置。
    A collimator to limit the incident radiation;
    A detector panel comprising a plurality of detection elements for detecting radiation that has passed through the collimator;
    A gantry that supports the detector panel;
    The collimator has a plurality of through holes separated by a septa;
    The detector panel is a plurality of modules each having a plurality of detection elements,
    A radiation imaging apparatus in which a thickness T 2 of a septum located between the plurality of modules is thicker than a thickness T 1 of a septa located in the module.
  2.  請求項1の放射線撮像装置であって、
     前記モジュールの端に対応する前記セプタとそれ以外の前記セプタ間のピッチS2と、前記モジュールの端に対応しないセプタ同士間のピッチS1が等しい放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    The pitch S2 of between the septum and the other of said septa corresponding to the end of the module, the pitch S 1 is equal to a radiation imaging apparatus between septa each other do not correspond to the end of the module.
  3.  請求項1の放射線撮像装置であって、
     前記モジュール間の隙をG、前記セプタのピッチをS1、前記コリメータの穴長をL、前記コリメータに対する放射線の減弱係数をμとした場合に
    Figure JPOXMLDOC01-appb-I000001

    の関係を満たすことを特徴とする放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    When the gap between the modules is G, the pitch of the septa is S 1 , the hole length of the collimator is L, and the attenuation coefficient of radiation with respect to the collimator is μ
    Figure JPOXMLDOC01-appb-I000001

    The radiation imaging device characterized by satisfying the relationship:
  4.  請求項1の放射線撮像装置であって、
     幾何配置のパラメータとして、前記モジュール間の隙間、前記セプタのピッチ、前記貫通穴のピッチ、前記セプタの厚さ、前記コリメータの穴長を全て考慮した点応答関数を組み込んだ画像再構成法により放射線の発生位置および濃度を画像化する手段を有する放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    Radiation by an image reconstruction method incorporating a point response function that takes into account all the gaps between the modules, the pitch of the septa, the pitch of the through holes, the thickness of the septa, the hole length of the collimator as geometric parameters. A radiation imaging apparatus having means for imaging the generation position and density of the.
  5.  請求項1の放射線撮像装置であって、
     均一な検出素子ピッチの座標系に補間処理で割り付けることで作成された、均一な検出素子ピッチの投影画像を用いて放射線の発生位置および濃度を画像化する手段を有する放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    A radiation imaging apparatus having means for imaging a radiation generation position and density using a projection image having a uniform detection element pitch created by assigning to a coordinate system having a uniform detection element pitch by interpolation processing.
  6.  請求項1の放射線撮像装置であって、
     前記検出器パネルは、前記モジュールがx方向、y方向にそれぞれ複数ずつ2次元配置されたものである放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    The detector panel is a radiation imaging apparatus in which a plurality of the modules are two-dimensionally arranged in the x direction and the y direction.
  7.  請求項1の放射線撮像装置であって、
     前記検出器パネルは、前記モジュールがx方向に複数、y方向に単数2次元配置されたものである放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    The detector panel is a radiation imaging apparatus in which a plurality of modules are arranged in the x direction and a single two-dimensionally arranged in the y direction.
  8.  請求項1の放射線撮像装置であって、
     前記コリメータは前記モジュールと同数である放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    The number of the collimators is the same as that of the modules.
  9.  請求項1の放射線撮像装置であって、
     前記貫通穴のそれぞれに対し、複数の前記検出素子が位置する放射線撮像装置。
    The radiation imaging apparatus according to claim 1,
    A radiation imaging apparatus in which a plurality of the detection elements are positioned for each of the through holes.
PCT/JP2015/060905 2015-04-08 2015-04-08 Radiation imaging device WO2016162962A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060905 WO2016162962A1 (en) 2015-04-08 2015-04-08 Radiation imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060905 WO2016162962A1 (en) 2015-04-08 2015-04-08 Radiation imaging device

Publications (1)

Publication Number Publication Date
WO2016162962A1 true WO2016162962A1 (en) 2016-10-13

Family

ID=57072687

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060905 WO2016162962A1 (en) 2015-04-08 2015-04-08 Radiation imaging device

Country Status (1)

Country Link
WO (1) WO2016162962A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158259A (en) * 2010-01-29 2011-08-18 Hitachi Ltd Radiation imaging apparatus, and method for estimating position of collimator
JP2012045099A (en) * 2010-08-25 2012-03-08 Fujifilm Corp Grid for capturing radiation image, method for manufacturing the same, and radiation image capturing system
JP2012511699A (en) * 2008-12-09 2012-05-24 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ Collimator for low-dose breast molecular imaging
WO2013089154A1 (en) * 2011-12-12 2013-06-20 株式会社 日立メディコ X-ray ct device
JP2014006047A (en) * 2010-10-19 2014-01-16 Fujifilm Corp Grid for capturing radiation image, manufacturing method therefor, and radiation image capturing system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012511699A (en) * 2008-12-09 2012-05-24 メイヨ フォンデーシヨン フォー メディカル エジュケーション アンド リサーチ Collimator for low-dose breast molecular imaging
JP2011158259A (en) * 2010-01-29 2011-08-18 Hitachi Ltd Radiation imaging apparatus, and method for estimating position of collimator
JP2012045099A (en) * 2010-08-25 2012-03-08 Fujifilm Corp Grid for capturing radiation image, method for manufacturing the same, and radiation image capturing system
JP2014006047A (en) * 2010-10-19 2014-01-16 Fujifilm Corp Grid for capturing radiation image, manufacturing method therefor, and radiation image capturing system
WO2013089154A1 (en) * 2011-12-12 2013-06-20 株式会社 日立メディコ X-ray ct device

Similar Documents

Publication Publication Date Title
US7442937B2 (en) Radiation imaging apparatus and nuclear medicine diagnosis apparatus using the same
CN105473072B (en) PET system with crystal or detector cell spacing
JP5174813B2 (en) Method and system for improving TOFPET reconstruction
WO2011058891A1 (en) Radiation imaging device and nuclear medicine diagnostic device using same
US20100001190A1 (en) Multi-cap detectors for nuclear medicine
US20080230707A1 (en) High resolution near-field imaging method and apparatus
JP2011503535A (en) Indirect radiation detector
JP2005326406A (en) Method and system for normalizing positron emission tomography system
JP4902753B2 (en) Radiation imaging apparatus and collimator position estimation method
JP2012177555A (en) Radiation imaging apparatus
JP5852540B2 (en) Radiation imaging device
Huh et al. Evaluation of a variable‐aperture full‐ring SPECT system using large‐area pixelated CZT modules: A simulation study for brain SPECT applications
JP4479699B2 (en) Gamma camera
WO2016162962A1 (en) Radiation imaging device
JP5723256B2 (en) Tomographic image creation method and radiation imaging apparatus
JP4071765B2 (en) Nuclear medicine diagnostic equipment
JP2005049136A (en) gamma-RAY RADIOACTIVITY DISTRIBUTION PHOTOGRAPHING METHOD AND gamma-RAY RADIOACTIVITY DISTRIBUTION PHOTOGRAPHING DEVICE
CN1910475A (en) Asymmetric axial filter for pet imaging systems
JP6131043B2 (en) Radiation imaging device
JP4374983B2 (en) Nuclear medicine imaging equipment
JP2013053992A (en) Radiation imaging apparatus
JP2012137349A (en) Pixel type radiography device, image generation method and planar image depth position estimation method
JP2014137279A (en) Nuclear medicine diagnosis device
JP2015230194A (en) Radiation imaging device using location identification type detector
JP2014035208A (en) Nuclear medicine diagnostic device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888455

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP