WO2016161728A1 - 用于压水堆制备放射源的新型阻流塞组件及放射性棒 - Google Patents

用于压水堆制备放射源的新型阻流塞组件及放射性棒 Download PDF

Info

Publication number
WO2016161728A1
WO2016161728A1 PCT/CN2015/086100 CN2015086100W WO2016161728A1 WO 2016161728 A1 WO2016161728 A1 WO 2016161728A1 CN 2015086100 W CN2015086100 W CN 2015086100W WO 2016161728 A1 WO2016161728 A1 WO 2016161728A1
Authority
WO
WIPO (PCT)
Prior art keywords
radioactive
pellet
plug assembly
choke plug
pressurized water
Prior art date
Application number
PCT/CN2015/086100
Other languages
English (en)
French (fr)
Inventor
李冬生
黄可欣
赵帅
张勇
蔡利
Original Assignee
中科华核电技术研究院有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中科华核电技术研究院有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中科华核电技术研究院有限公司
Publication of WO2016161728A1 publication Critical patent/WO2016161728A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21GCONVERSION OF CHEMICAL ELEMENTS; RADIOACTIVE SOURCES
    • G21G1/00Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes
    • G21G1/02Arrangements for converting chemical elements by electromagnetic radiation, corpuscular radiation or particle bombardment, e.g. producing radioactive isotopes in nuclear reactors

Definitions

  • the invention relates to a component for a nuclear reactor, in particular to a novel choke plug assembly and a radioactive rod for producing a radioactive source for a pressurized water reactor capable of producing a radioisotope.
  • Radioisotopes are widely used in various fields such as industry, agriculture, medicine and scientific research.
  • Current isotope production relies mainly on low-power research reactors or accelerators. Some of the domestic production, or a portion of it imported from abroad, is still lacking in supply and it is difficult to meet the growing demand.
  • radioisotopes include cobalt-60, cesium-137, cesium-192 and the like. Taking cobalt radioisotope as an example, cobalt-59 is irradiated in the reactor for a suitable time, and cobalt-59 can obtain a high specific activity of cobalt-60 by absorbing a neutron. Cobalt-60 is the most commonly used radioisotope in nuclear technology applications. It emits 1.17 MeV and 1.33 MeV gamma rays or 0.315 MeV beta rays with a half-life of 5.27 years.
  • the pressurized water reactor is a mature, safe, and economical pile.
  • Adjusting rod as a kind of control rod for adjusting the reactivity of the core.
  • the working condition of the reactor changes and needs to be adjusted by the adjusting rod, it is inevitable that the adjusting rod is often pulled out or inserted into the core, and the cobalt is bound.
  • the irradiation dose is unstable;
  • the adjustment rod with cobalt is used instead of the stainless steel adjustment rod, and a heavy radioactive shielding protection device is needed around the adjustment rod bound with cobalt to shield the living body;
  • pressurized water reactors are mature, safe, and economical.
  • the total installed capacity of pressurized water reactor nuclear power plants accounts for more than 60% of the total reactors of all nuclear power plants. China is currently in commercial use.
  • the pressurized water reactor type accounts for more than 90%.
  • the applicant hopes to produce radioisotopes in pressurized water reactors and utilize the extensive use of pressurized water reactors to achieve mass production of radioisotopes to meet industrial, agricultural and medical needs.
  • Another object of the present invention is to provide a radioactive rod that produces a radioactive isotope by absorbing neutrons in a nuclear reactor core.
  • the present invention provides a novel choke plug assembly for a pressurized water reactor for preparing a radioactive source, comprising a connecting plate and a stainless steel choke bar, the connecting plate having a stainless steel choke bar mounted thereon a mounting portion, the mounting portion is distributed, and the number of the mounting portions is 24, wherein the radioactive rod that absorbs neutrons to produce a radioactive isotope, the number of the radioactive rods is a natural number of N, N ⁇ 24, The radioactive rods are suspended and correspondingly mounted on the N mounting portions, and the remaining mounting portions are suspended to correspondingly mount a stainless steel choke plug, and the radioactive rods and the stainless steel choke plugs are parallel to each other.
  • the radioactive rod comprises a cladding tube, a radioactive pellet and an elastic element, the radioactive pellet is sealed and encapsulated in the cladding tube, and the elastic element is disposed in the cladding tube and is constant The radioactive pellet is biased in the cladding tube and fixed.
  • the cladding tube has a hollow structure, and the hollow structure forms a receiving cavity, the radioactivity
  • the core block is filled in a lower portion of the receiving cavity, and the elastic member is received in an upper portion of the receiving cavity, and the receiving cavity is filled with helium.
  • the upper end of the cladding tube is sealed by an upper end plug, and the lower end of the cladding tube is sealed by a lower end plug.
  • the novel choke plug assembly for a pressurized water reactor to prepare a radiation source further includes a central guiding cylinder, the upper end of the central guiding cylinder is vertically slidably and elastically clamped at a center of a pressing member.
  • the lower end of the center guiding cylinder is fixedly connected to the connecting plate.
  • the novel choke plug assembly for a pressurized water reactor to prepare a radiation source further includes a pin, an upper end of the pin is fixed to the pressing member, and the central guiding cylinder is vertically opened with a guiding groove The lower end of the pin slides up and down in the guiding groove.
  • the novel choke plug assembly for a pressurized water reactor to prepare a radiation source further includes a coil spring, the coil spring is sleeved outside the central guiding cylinder and located at the pressing member and the connecting plate between.
  • the connecting plate is provided with a water flow hole.
  • the outer diameter of the stainless steel choke bar is the same as the outer diameter of the radioactive rod.
  • the radioactive pellet is in the form of a pellet or a cylinder, wherein the pellet-shaped radioactive pellet has a diameter of less than 8.74 mm; the cylindrical radioactive pellet has a diameter of less than 8.74 mm and a height of 0.50 mm. -50.00mm between.
  • the superimposed height of the radioactive pellets in the cladding tube is between 100.00 mm and 4200.00 mm.
  • the radioactive pellet is a cobalt pellet, a crucible core, a crucible core, a molybdenum pellet, a crucible core, a carbon pellet, a nickel pellet, a core pellet, a selenium pellet, a crucible core, ⁇ core block, ⁇ core block, ⁇ core block, ⁇ core block or ⁇ core block.
  • the surface of the radioactive pellet is further coated with a nickel plating film.
  • the radioactive rod provided by the present invention absorbs neutrons in a nuclear reactor core to produce a radioisotope, which comprises a cladding tube, a radioactive pellet and an elastic member, and the radioactive pellet is sealed and encapsulated in the cladding tube,
  • the elastic element is disposed in the cladding tube and constantly biases the radioactive pellet in the cladding tube to be fixed.
  • the present invention will have a part of the stainless steel choke plug which is installed on the connecting plate.
  • the rod is replaced with a radioactive rod to form a novel choke plug assembly, and the radioactive rod replacing the stainless steel choke rod has the same function as the stainless steel choke rod to limit the bypass flow of the core coolant, and the radioactive rod is also
  • the radioactive isotope can be produced, so the novel choke plug assembly of the present invention does not affect the original function of limiting the bypass flow of the core coolant; and the novel choke plug assembly of the present invention acts as a stationary related component of the core and does not participate in the core
  • the regulation of reactivity therefore, does not affect the safe operation of the reactor while preparing the radioisotope; at the same time, the radioactive pellet (ie, the target) in the novel choke plug assembly of the present invention is located in the active segment of the core, always in the core spoke
  • the irradiation area is stable, the radiation dose is stable, and the radioisotope quality is high.
  • pressurized water reactor to prepare radioisotope can greatly improve the utilization efficiency of neutrons under the premise of ensuring the safety of the core, so that the invention is suitable for a large number of commercial operations.
  • the mainstream reactor type of the pressurized water reactor nuclear power plant being built the radioactive isotope production volume is large, and the economic efficiency Significantly, to meet the great demand for industrial, agricultural and medical use.
  • Figure 1 is a schematic view showing the structure of a radioactive rod of the present invention.
  • FIG. 2 is a schematic view showing the structure of a novel choke plug assembly for a pressurized water reactor preparation radioactive source equipped with the radioactive rod shown in FIG. 1.
  • Figure 3 is a plan view of Figure 2.
  • FIG. 4 is a layout view of a fuel-related assembly in which a novel choke plug assembly for a pressurized water reactor preparation radioactive source shown in FIG. 3 is installed.
  • the radioactive rod 1 of the present invention is used for absorbing neutrons in a nuclear reactor core, thereby producing a radioactive isotope, the radioactive rod 1 comprising a cladding tube 11, a radioactive pellet 12 and an elastic member 13,
  • the radioactive pellet 12 is hermetically sealed in the cladding tube 11, and the elastic member 13 is disposed in the cladding tube 11 and constantly biases the radioactive pellet 12 into the cladding tube 11.
  • the radioactive core block 12 is positioned by the elastic member 13, thereby effectively preventing radiation
  • the elastic core block 12 vibrates in the cladding tube 11; specifically, the elastic member 13 is a coil spring, the upper end of the coil spring is in contact with the lower end of the upper end plug 15, and the lower end of the coil spring is superimposed on the cladding tube 11
  • the uppermost end of the radioactive block 12 is in contact with each other such that the coil spring is in a compressed state, so that the radioactive core block 12 is constantly biased in the cladding tube 11 by the coil spring; of course, the elastic element 13 can also be This selection is common knowledge for existing elastic members other than coil springs, and therefore will not be described again.
  • the radioactive pellet 12 of the radioactive rod 1 of the present invention Since the release of neutrons is accompanied by a nuclear reaction, and the radioactive pellet 12 of the radioactive rod 1 of the present invention has the ability to absorb (ie, capture) neutrons and produce radioisotopes, the radioactive rod 1 of the present invention is used for a nuclear reactor. Radioisotopes can be produced in the core.
  • the radioactive pellet 12 disposed in the cladding tube 11 of the present invention may be a cobalt-59 pellet, or may be a crucible core, a crucible core, a molybdenum pellet, a crucible core, a carbon pellet, a nickel pellet, and an iron.
  • Other radioactive pellets which can be irradiated to produce radioactivity in the reactor such as core block, selenium core block, crucible core block, crucible core block, crucible core block, crucible core block, crucible core block, crucible core block or crucible core block;
  • the radioactive pellets can be selected by those skilled in the art according to the needs of the actual situation, without any creative labor, and will not be elaborated here.
  • the cladding tube 11 has a hollow structure, and the hollow structure forms a receiving cavity.
  • the radioactive core block 12 is filled in a lower portion of the receiving cavity, and the elastic component is received in the upper part of the receiving cavity.
  • the receiving cavity is filled with helium gas; specifically, the upper portion of the receiving cavity forms an air cavity 14; when used, the helium gas is filled into the air cavity 14 with a certain pressure, which can effectively prevent the external pressure of the coolant during the irradiation.
  • the creeping collapse of the cladding tube 11 occurs.
  • the elastic member 13 fixes the radioactive pellet 12.
  • the opening of the upper end of the cladding tube 11 is sealed by the upper end plug 15, and the opening of the lower end of the cladding tube 11 is sealed by the lower end plug 16.
  • the novel choke plug assembly 100 for preparing a radioactive source of a pressurized water reactor includes a connecting plate 2 and a stainless steel choke plug 3
  • the connecting plate 2 has a mounting portion 21 on which the stainless steel choke bar 3 is mounted.
  • the mounting portion 21 is a mounting hole, and the mounting portion is distributed, and the number of the mounting portions 21 is 24.
  • the novel choke plug assembly 100 further includes a radioactive rod 1 for absorbing neutrons to produce a radioisotope.
  • the number of the radioactive rods 1 is a natural number of N, N ⁇ 24, and the radioactive rods 1 are suspended and mounted on the N mounting portions 21, and the remaining mounting portions 21 are suspended and correspondingly mounted with the stainless steel choke.
  • the stopper rod 3, that is, the stainless steel choke rod 3 is 24-N, and the radio rod 1 and the stainless steel choke rod 3 are parallel to each other, specifically, the stainless steel choke rod 3
  • the diameter is the same as the outer diameter of the radioactive rod 1, and the upper ends of the N radioactive rods 1 are correspondingly mounted on the N mounting portions 21 of the connecting plate 2, so that the lower end of the radioactive rod 1 is suspended, 24-N stainless steel
  • the upper end of the flow plug 3 is correspondingly mounted on the 24-N mounting portion 21 of the connecting plate 2, so that the lower end of the stainless steel choke bar 3 is suspended; the existing choke plug assembly has 24 correspondingly.
  • the present invention has the function of producing isotopes in order to maintain the original function (ie, restricting the reactor core coolant bypass flow) from being affected, thus designing the above-mentioned Radioactive rod 1 to replace part of stainless steel choke rod 3 and installed in the company
  • the number of flow plugs 3 required is the difference between 24 and N (i.e., 24-N).
  • the connecting plate 2 shown in FIG. 3 has twenty-four mounting portions 21 and eight water holes 22, and four of the twenty-four mounting portions 21 are used for mounting the radioactive rod of the present invention.
  • the specific positions of the four radioactive rods 1 have been all marked with the reference numerals in Figure 3, and the remaining twenty mounting portions 21 are used to install the stainless steel choke rods 3 (not all of which are shown in Figure 3);
  • the illustrated novel choke plug assembly 100 of the present invention has the same existing choke plug assembly that limits the function of the bypass coolant bypass flow rate: all twenty four mounting portions 21 are fitted with stainless steel choke plugs 3.
  • the novel choke plug assembly 100 of the present invention further includes a central guiding cylinder 4, the upper end of which is vertically slidable and elastically clamped at the center of the pressing member 5.
  • the lower end of the center guiding cylinder 4 is fixedly connected to the connecting plate 2.
  • the novel choke plug assembly 100 of the present invention further includes a pin 6 having an upper end fixed to the pressing member 5, the central guiding cylinder 4 having a vertical guiding groove 41.
  • the lower end of the pin 6 slides up and down in the guiding groove 41.
  • the pressing member 5 can be further accurately aligned along the center guiding cylinder 4 in the vertical direction. Slide the direction up and down.
  • the novel choke plug assembly 100 of the present invention further includes a coil spring 7, which is sleeved Outside the center guiding cylinder 4 and between the pressing member 5 and the connecting plate 2; when the pressing member 5 is subjected to a downward force during use, the guiding action of the pressing member 5 at the pin 6
  • the lower central guiding cylinder 4 slides vertically downward to compress the coil spring 7, so that the coil spring 7 presses against the connecting plate 2, and the coil spring 7 compresses continuously as the pressing member 5 continuously slides downward.
  • the connecting plate 2 is provided with a flow hole 22 therethrough.
  • the radioactive pellet 12 in the radioactive rod 1 of the present invention is in the form of a pellet or a cylinder, wherein the spherical pellet-shaped radioactive pellet has a diameter of less than 8.74 mm; the cylindrical radioactive pellet has a diameter of less than 8.74 mm.
  • the height is between 0.50mm and 50.00mm.
  • the superimposed height of the radioactive pellets 12 in the radioactive rod 1 of the present invention in the cladding tube 11 is between 100.00 mm and 4200.00 mm; more specifically, the radioactive pellets 12 are in the cladding tube 11.
  • the surface position should be no higher than the upper surface of the fuel pellet to allow the radioactive pellet 12 to be effectively irradiated.
  • the surface of the radioactive pellet 12 in the radioactive rod 1 of the present invention is further coated with a nickel-plated film.
  • the core has two components, a fuel assembly and a fuel-related assembly.
  • the choke plug assembly is a type of fuel-related assembly that is inserted into the fuel assembly to limit the core bypass.
  • the fuel related components include a control rod assembly 61 group and a stationary assembly 96 group, a fixed group.
  • the present invention since the present invention replaces a part of the stainless steel choke rod 3 which is currently mounted on the connecting plate 2 with the radioactive rod 1, a new choke plug assembly 100 is formed, and the stainless steel choke is replaced.
  • the radioactive rod 1 of the stopper rod 3 has the same function as the stainless steel choke stopper rod 3 for restricting the bypass flow rate of the core coolant, and the radioactive rod 1 can also produce a radioactive isotope, so that the novel choke plug assembly 100 of the present invention does not Affecting the original function of limiting the bypass flow of the core coolant; and the novel choke plug assembly 100 of the present invention acts as a stationary component and does not participate in the regulation of core reactivity, thereby preparing the radioisotope without affecting the safe operation of the reactor.
  • the radioactive core block 12 (ie, the target member) in the novel choke plug assembly 100 of the present invention is located in the core active section, is always in the core irradiation area, has stable irradiation dose, high radioisotope quality, and uses pressurized water.
  • the preparation of radioisotopes in the reactor can greatly improve the utilization efficiency of neutrons while ensuring the safety of the core, thereby making the invention applicable to a large number of commercial enterprises.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

一种用于压水堆制备放射源的新型阻流塞组件(100)及一种放射性棒(3),该新型阻流塞组件(100)包括连接板(2)及不锈钢阻流塞棒(3),所述连接板(2)具有安装所述不锈钢阻流塞棒(3)的安装部(21),所述安装部(21)呈分散分布,所述安装部(21)的数量为24,该新型阻流塞组件(100)还包括吸收中子而生产放射性同位素的放射性棒(1),所述放射性棒(1)的数量为N,N≤24的自然数,所述放射性棒(1)呈悬空的对应安装于N个安装部(21)上,剩余的安装部(21)上呈悬空的对应安装一所述不锈钢阻流塞棒(3),所述放射性棒(1)与所述不锈钢阻流塞棒(3)相互平行;该用于压水堆制备放射源的新型阻流塞组件(100)既能限制反应堆堆芯冷却剂旁通流量,又能生产放射性同位素。

Description

用于压水堆制备放射源的新型阻流塞组件及放射性棒 技术领域
本发明涉及一种核反应堆用组件,尤其涉及一种能生产放射性同位素的用于压水堆制备放射源的新型阻流塞组件及放射性棒。
背景技术
放射性同位素广泛应用于工业、农业、医学和科研等各个领域。目前的同位素生产主要依赖于低功率的研究用反应堆或加速器,国内生产一部分,间或从国外进口一部分,但依然货源匮乏,难以满足日益增长的需求。
常用的放射性同位素包括钴-60、铯-137、铱-192等。以钴放射性同位素为例,钴-59在反应堆内辐照适当时间,钴-59通过吸收一个中子,即可获得高比活度的钴-60。钴-60是核技术应用中最常用的放射性同位素,发射能量为1.17MeV和1.33MeV的γ射线或者0.315MeV的β射线,半衰期为5.27年。
压水堆是技术成熟、运行安全、经济实用的堆型。国际上,压水堆核电厂装机总容量约占所有核电厂各类反应堆总和的60%以上;我国目前已经投入商业运行和正在建造的核电机组中,压水堆堆型占90%以上。怎么利用核电厂中的核反应所产生的中子来生产放射性同位素,也成为核电技术人员所关注的问题。
上海核工程研究设计院于2008年提出了利用重水堆钴调节棒组件生产放射性同位素钴的一项中国发明专利申请,其公开号为CN101252025A,发明名称为:重水堆钴调节棒组件;由于该技术应用于重水堆中且束缚于其调节作用的调节棒上,因此存在以下缺陷:
(1)调节棒作为调节堆芯反应性的一种控制棒,当反应堆工况发生变化而需要用调节棒进行调节时,不可避免地使该调节棒时常抽出或插入堆芯,对束缚有钴的调节棒中的钴靶件而言,存在辐照剂量不稳定的现象;
(2)用束缚有钴的调节棒替代不锈钢调节棒起到调节反应性的功能,对反应堆运行有影响,需对核特性、热工、辐照安全等进行多项分析和合理设计,论证工作量大且复杂;
(3)在重水堆中用束缚有钴的调节棒替代不锈钢调节棒,需要在束缚有钴的调节棒周围设置厚重的放射性屏蔽防护装置,对生物起到屏蔽作用;
(4)该技术仅适用于重水堆,国内外核电厂使用重水堆的非常少,我国目前仅只有两座,应用范围有限,使钴放射源的生产数量受限,难以满足医用或工、农业广泛应用市场的需求。
目前而言,压水堆是技术成熟、运行安全、经济实用的堆型,国际上,压水堆核电厂装机总容量约占所有核电厂各类反应堆总和的60%以上;我国目前已经投入商业运行和正在建造的核电机组中,压水堆堆型占90%以上。
基于上述因素考虑,本申请人希望在压水堆中生产放射性同位素,并利用压水堆使用广泛的特点,来实现放射性同位素的大量生产,以满足工业、农业及医用的需求。
发明内容
本发明的目的在于提供一种既能限制反应堆堆芯冷却剂旁通流量,又能生产放射性同位素的新用于压水堆制备放射源的新型阻流塞组件。
本发明的另一目的在于提供一种在核反应堆芯中吸收中子而生产放射性同位素的放射性棒。
为实现上述目的,本发明提供了一种用于压水堆制备放射源的新型阻流塞组件,包括连接板及不锈钢阻流塞棒,所述连接板具有安装所述不锈钢阻流塞棒的安装部,所述安装部呈分散分布,所述安装部的数量为24,其中,还包括吸收中子而生产放射性同位素的放射性棒,所述放射性棒的数量为N,N≤24的自然数,所述放射性棒呈悬空的对应安装于N个安装部上,剩余的安装部上呈悬空的对应安装一所述不锈钢阻流塞棒,所述放射性棒与所述不锈钢阻流塞棒相互平行。
较佳地,所述放射性棒包括包壳管、放射性芯块及弹性元件,所述放射性芯块呈密封的封装于所述包壳管内,所述弹性元件设置于所述包壳管内并恒将所述放射性芯块偏压于所述包壳管内固定不动。
较佳地,所述包壳管呈中空结构,所述中空结构形成收容腔,所述放射性 芯块填充于所述收容腔下部,所述弹性元件收容于所述收容腔上部,所述收容腔充入氦气。
较佳地,所述包壳管的上端藉由一上端塞密封,所述包壳管的下端藉由一下端塞密封。
较佳地,所述用于压水堆制备放射源的新型阻流塞组件还包括中心导向筒,所述中心导向筒的上端呈上下滑动且弹性的卡设于一压紧件的中心处,所述中心导向筒的下端与所述连接板固定连接。
较佳地,所述用于压水堆制备放射源的新型阻流塞组件还包括销钉,所述销钉的上端固定于所述压紧件上,所述中心导向筒呈竖直开设有导向槽,所述销钉的下端呈上下滑动的卡设于所述导向槽内。
较佳地,所述用于压水堆制备放射源的新型阻流塞组件还包括螺旋弹簧,所述螺旋弹簧套设于所述中心导向筒外并位于所述压紧件与所述连接板之间。
较佳地,所述连接板贯穿开设有流水孔。
较佳地,所述不锈钢阻流塞棒的外径与所述放射性棒的外径相同。
较佳地,所述放射性芯块呈圆球颗粒状或圆柱体状,其中圆球颗粒状的放射性芯块直径小于8.74mm;圆柱体状的放射性芯块直径小于8.74mm,高度介于0.50mm-50.00mm之间。
较佳地,放射性芯块在所述包壳管内的叠加高度介于100.00mm-4200.00mm之间。
较佳地,所述放射性芯块为钴芯块、铯芯块、铱芯块、钼芯块、氚芯块、碳芯块、镍芯块、铁芯块、硒芯块、锑芯块、镱芯块、铥芯块、铊芯块、钋芯块或钚芯块。
较佳地,所述放射性芯块的表面还包覆一层镀镍膜。
本发明提供的放射性棒,在核反应堆芯中吸收中子而生产放射性同位素,其包括包壳管、放射性芯块及弹性元件,所述放射性芯块呈密封的封装于所述包壳管内,所述弹性元件设置于所述包壳管内并恒将所述放射性芯块偏压于所述包壳管内固定不动。
与现有技术相比,由于本发明将现有安装于连接板上的部分不锈钢阻流塞 棒用放射性棒进行替换,从而形成新型阻流塞组件,并且替换不锈钢阻流塞棒的放射性棒具有与不锈钢阻流塞棒同样的限制堆芯冷却剂旁通流量的功能,同时该放射性棒还能生产放射性同位素,因此本发明的新型阻流塞组件不影响限制堆芯冷却剂旁通流量的原始功能;并且本发明的新型阻流塞组件作为堆芯的固定式相关组件,不参与堆芯反应性的调节,因而在制备放射性同位素的同时不影响反应堆的安全运行;同时本发明的新型阻流塞组件中的放射性芯块(即靶件)位于堆芯活性段内,始终处于堆芯辐照区,辐照剂量稳定,放射性同位素品质高,利用压水堆制备放射性同位素,可在确保堆芯安全的前提下,大幅提高中子的利用效率,从而使得本发明适用于大批已经投入商业运行和正在建造的压水堆核电厂主流堆型,放射性同位素生产批量大,经济效益显著,能极大的满足工业、农业及医用的需求。
附图说明
图1是本发明放射性棒的结构示意图。
图2是安装有图1所示放射性棒的用于压水堆制备放射源的新型阻流塞组件的结构示意图。
图3是图2的俯视图。
图4是安装有图3所示的用于压水堆制备放射源的新型阻流塞组件的燃料相关组件的布置图。
具体实施方式
现在参考附图描述本发明的实施例,附图中类似的元件标号代表类似的元件。
如图1所示,本发明的放射性棒1用于在核反应堆芯中吸收中子,从而可生产放射性同位素,所述放射性棒1包括包壳管11、放射性芯块12及弹性元件13,所述放射性芯块12呈密封的封装于所述包壳管11内,所述弹性元件13设置于所述包壳管11内并恒将所述放射性芯块12偏压于所述包壳管11内固定不动,通过所述弹性元件13对放射性芯块12进行定位,从而有效的防止了放射 性芯块12在包壳管11内发生振动;具体地,所述弹性元件13为螺旋弹簧,该螺旋弹簧的上端与上端塞15的下端抵触,螺旋弹簧的下端与叠加在包壳管11内的放射性芯块12的最上端抵触,从而使得该螺旋弹簧处于压缩状,从而藉由该螺旋弹簧恒将放射性芯块12偏压于包壳管11内固定不动;当然该弹性元件13也可为除螺旋弹簧之外的其它现有的弹性元件,该选择属于公知常识,因此不再赘述。
由于核反应过程中会伴随着中子的释放,而本发明的放射性棒1的放射性芯块12具有吸收(即捕获)中子并生产放射性同位素的能力,因此将本发明的放射性棒1用于核反应堆芯中可生产放射性同位素。
本发明安置于包壳管11内的放射性芯块12可以为钴-59芯块,也可以为铯芯块、铱芯块、钼芯块、氚芯块、碳芯块、镍芯块、铁芯块、硒芯块、锑芯块、镱芯块、铥芯块、铊芯块、钋芯块或钚芯块等其它可在反应堆中辐照生产放射性的其它放射性芯块;具体选用何种放射性芯块,本领域技术人员根据实际情况的需要,在本发明所提供的技术方案的前提下,无需任何创造性的劳动即可作出选择,在此不再详细阐述。
继续结合图1所示,所述包壳管11呈中空结构,所述中空结构形成收容腔,所述放射性芯块12填充于所述收容腔下部,所述弹性元件收容于所述收容腔上部,所述收容腔充入氦气;具体地,收容腔上部形成气腔14;使用时往气腔14内充入一定气压的氦气,可有效的防止在辐照期间由于冷却剂外压力使包壳管11发生蠕变坍塌的现象发生。
较佳者,所述弹性元件13对放射性芯块12进行固定。
继续结合图1所示,包壳管11的上端的开口藉由上端塞15进行密封,所述包壳管11的下端的开口藉由下端塞16密封。
结合图1-图3所示,本发明用于压水堆制备放射源的新型阻流塞组件100(下文统一简称为:新型阻流塞组件100)包括连接板2及不锈钢阻流塞棒3,所述连接板2具有安装所述不锈钢阻流塞棒3的安装部21,具体地,所述安装部21为安装孔,所述安装部呈分散分布,所述安装部21的数量为24,其中,所述新型阻流塞组件100还包括吸收中子而生产放射性同位素的放射性棒1,所 述放射性棒1的数量为N,N≤24的自然数,所述放射性棒1呈悬空的对应安装于N个安装部21上,剩余的安装部21上呈悬空的对应安装一所述不锈钢阻流塞棒3,即所述不锈钢阻流塞棒3的数量为24-N,所述放射性棒1与所述不锈钢阻流塞棒3相互平行,具体地,所述不锈钢阻流塞棒3的外径与所述放射性棒1的外径相同,N个放射性棒1的上端对应安装于连接板2的N个安装部21上,从而使得放射性棒1的下端呈悬空状,24-N个不锈钢阻流塞棒3的上端对应安装于连接板2的24-N个安装部21上,从而使得不锈钢阻流塞棒3的下端呈悬空状;现有的这种阻流塞组件相应的就具有24个不锈钢阻流塞棒3,本发明为了在保持原有功能(即:限制反应堆堆芯冷却剂旁通流量)不受影响的前提下,还具有生产同位素的功能,因此设计了上述所述的放射性棒1来替换部分不锈钢阻流塞棒3而安装于连接板2的安装部21上,从而形成本发明的新型阻流塞组件;更具体地,本发明的新型阻流塞组件提供N个放射性棒1,由于连接板2只具有24个安装部21,因此该24个安装部21上除了安装不锈钢阻流塞棒3之外,其余的全部安装放射性棒1,因此放射性棒1及不锈钢阻流塞棒3的数量之和必须为数量24,故不锈钢阻流塞棒3所需的数量为24与N之差(即,24-N)。
值得注意的是,本发明的新型阻流塞组件100的放射性棒1的数量N的选择,本领域技术人员在本发明所提供的技术方案的前提下,根据生产放射性同位素的产量,无需任何创造性的劳动即可作出决定,在此不再详细赘述。
结合图3所示,图3给出的连接板2上具有二十四个安装部21和八个流水孔22,该二十四个安装部21中有四个用于安装本发明的放射性棒1,该四个放射性棒1的具体位置已在图3中用标号全部标示出来,其余二十个安装部21用于安装不锈钢阻流塞棒3(图3未全部标示出来);与图3所示的本发明的新型阻流塞组件100具有相同的限制堆芯冷却剂旁通流量功能的现有的阻流塞组件为:全部二十四个安装部21上均安装不锈钢阻流塞棒3。
继续结合图2及图3所示,本发明的新型阻流塞组件100还包括中心导向筒4,所述中心导向筒4的上端呈上下滑动且弹性的卡设于压紧件5的中心处,所述中心导向筒4的下端与所述连接板2固定连接。
继续结合图2所示,本发明的新型阻流塞组件100还包括销钉6,所述销钉6的上端固定于所述压紧件5上,所述中心导向筒4呈竖直开设有导向槽41,所述销钉6的下端呈上下滑动的卡设于所述导向槽41内;藉由所述销钉6的引导和限制,使得压紧件5可沿中心导向筒4进一步精确的在竖直方向上下滑动。
继续结合图2所示,为了使得压紧件5能更好的对连接板2施加压紧的作用力;本发明的新型阻流塞组件100还包括螺旋弹簧7,所述螺旋弹簧7套设于所述中心导向筒4外并位于所述压紧件5与所述连接板2之间;使用时当压紧件5受到向下的作用力时,压紧件5在销钉6的导向作用下沿中心导向筒4竖直向下滑动,从而对螺旋弹簧7进行压缩,进而使得螺旋弹簧7抵压连接板2,随着压紧件5不断的向下滑动,螺旋弹簧7压缩量不断的增大,从而螺旋弹簧7给予连接板2的向下作用力也逐步增大;因此藉由螺旋弹簧7使得压紧件5呈逐步渐进的给予连接板2作用力,避免了二者通过刚性接触来施加压力易造成损伤的情况发生,进一步确保了核反应堆的堆芯的安全性。
继续结合图3所示,为了便于核反应的堆芯内冷却剂的流动,所述连接板2贯穿开设有流水孔22。
较佳者,本发明放射性棒1中的放射性芯块12呈圆球颗粒状或圆柱体状,其中圆球颗粒状的放射性芯块直径小于8.74mm;圆柱体状的放射性芯块直径小于8.74mm,高度介于0.50mm-50.00mm之间。
较佳者,本发明放射性棒1中的放射性芯块12在包壳管11内的叠加高度介于100.00mm-4200.00mm之间;更具体地,放射性芯块12在包壳管11中的上表面位置应不高于燃料芯块上表面,以使放射性芯块12得到有效辐照。
较佳者,为了防止放射性芯块12不被氧化,本发明放射性棒1中的放射性芯块12的表面还包覆一层镀镍膜。
如图4所示,燃料相关组件中,至少部分为本发明的新型阻流塞组件100,具体结合图4所示的实施例进行说明。值得注意的是,在本技术领域内,堆芯内有燃料组件和燃料相关组件两种组件,阻流塞组件是燃料相关组件的一种,插入在燃料组件上用以限制堆芯旁流。以百万千瓦级压水堆核电厂的平衡循环堆芯为例,燃料相关组件包括控制棒组件61组和固定式组件96组,固定式组 件含二次中子源组件2组(平衡循环堆芯无一次中子源组件,或也可以取消二次中子源)和阻流塞组件94组,其中94组阻流塞组件中12组为本发明的新型阻流塞组件,其余82组为原阻流塞组件(即,现有的阻流塞组件,也即连接板的24个连接部全部安装不锈钢阻流塞棒)。
结合图1-图4所示,由于本发明将现有安装于连接板2上的部分不锈钢阻流塞棒3用放射性棒1进行替换,从而形成新型阻流塞组件100,并且替换不锈钢阻流塞棒3的放射性棒1具有与不锈钢阻流塞棒3同样的限制堆芯冷却剂旁通流量的功能,同时该放射性棒1还能生产放射性同位素,因此本发明的新型阻流塞组件100不影响限制堆芯冷却剂旁通流量的原始功能;并且本发明的新型阻流塞组件100作为固定式组件,不参与堆芯反应性的调节,因而在制备放射性同位素的同时不影响反应堆的安全运行;同时本发明的新型阻流塞组件100中的放射性芯块12(即靶件)位于堆芯活性段内,始终处于堆芯辐照区,辐照剂量稳定,放射性同位素品质高,利用压水堆制备放射性同位素,可在确保堆芯安全的前提下,大幅提高中子的利用效率,从而使得本发明适用于大批已经投入商业运行的压水堆核电厂主流堆型,放射性同位素生产批量大,经济效益显著,能极大的满足工业、农业及医用的需求。
另,本发明所涉及的放射性芯块12辐照形成放射性同位素的原理以及连接板1和不锈钢阻流塞棒3的具体结构及工作原理,均为本领域普通技术人员所熟知的,在此不再作详细的说明。
以上所揭露的仅为本发明的优选实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明申请专利范围所作的等同变化,仍属本发明所涵盖的范围。

Claims (17)

  1. 一种用于压水堆制备放射源的新型阻流塞组件,包括连接板及不锈钢阻流塞棒,所述连接板具有安装所述不锈钢阻流塞棒的安装部,所述安装部呈分散分布,所述安装部的数量为24,其特征在于:还包括吸收中子而生产放射性同位素的放射性棒,所述放射性棒的数量为N,N≤24的自然数,所述放射性棒呈悬空的对应安装于N个安装部上,剩余的安装部上呈悬空的对应安装一所述不锈钢阻流塞棒,所述放射性棒与所述不锈钢阻流塞棒相互平行。
  2. 如权利要求1所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述放射性棒包括包壳管、放射性芯块及弹性元件,所述放射性芯块呈密封的封装于所述包壳管内,所述弹性元件设置于所述包壳管内并恒将所述放射性芯块偏压于所述包壳管内固定不动。
  3. 如权利要求2所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述包壳管呈中空结构,所述中空结构形成收容腔,所述放射性芯块填充于所述收容腔下部,所述弹性元件收容于所述收容腔上部,所述收容腔充入氦气。
  4. 如权利要求3所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述包壳管的上端藉由一上端塞密封,所述包壳管的下端藉由一下端塞密封。
  5. 如权利要求1所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:还包括中心导向筒,所述中心导向筒的上端呈上下滑动且弹性的卡设于一压紧件的中心处,所述中心导向筒的下端与所述连接板固定连接。
  6. 如权利要求5所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:还包括销钉,所述销钉的上端固定于所述压紧件上,所述中心导向筒呈竖直开设有导向槽,所述销钉的下端呈上下滑动的卡设于所述导向槽内。
  7. 如权利要求5所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:还包括螺旋弹簧,所述螺旋弹簧套设于所述中心导向筒外并位于所述压紧件与 所述连接板之间。
  8. 如权利要求1所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述连接板贯穿开设有流水孔。
  9. 如权利要求1所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述不锈钢阻流塞棒的外径与所述放射性棒的外径相同。
  10. 如权利要求2所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述放射性芯块呈圆球颗粒状或圆柱体状,其中圆球颗粒状的放射性芯块直径小于8.74mm;圆柱体状的放射性芯块直径小于8.74mm,高度介于0.50mm-50.00mm之间。
  11. 如权利要求2所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述放射性芯块在所述包壳管内的叠加高度介于100.00mm-4200.00mm之间。
  12. 如权利要求2所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述放射性芯块为钴芯块、铯芯块、铱芯块、钼芯块、氚芯块、碳芯块、镍芯块、铁芯块、硒芯块、锑芯块、镱芯块、铥芯块、铊芯块、钋芯块或钚芯块。
  13. 如权利要求2所述的用于压水堆制备放射源的新型阻流塞组件,其特征在于:所述放射性芯块的表面还包覆一层镀镍膜。
  14. 一种放射性棒,在核反应堆芯中吸收中子而生产放射性同位素,其特征在于:所述放射性棒包括包壳管、放射性芯块及弹性元件,所述放射性芯块呈密封的封装于所述包壳管内,所述弹性元件设置于所述包壳管内并恒将所述放射性芯块偏压于所述包壳管内固定不动。
  15. 如权利要求14所述的放射性棒,其特征在于:所述包壳管呈中空结构,所述中空结构形成收容腔,所述放射性芯块填充于所述收容腔下部,所述弹性元件收容于所述收容腔上部,所述收容腔充入氦气。
  16. 如权利要求14所述的放射性棒,其特征在于:所述包壳管的上端藉由一上端塞密封,所述包壳管的下端藉由一下端塞密封。
  17. 如权利要求14所述的放射性棒,其特征在于:所述放射性芯块的表面还包覆一层镀镍膜。
PCT/CN2015/086100 2015-04-08 2015-08-05 用于压水堆制备放射源的新型阻流塞组件及放射性棒 WO2016161728A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510161315.9 2015-04-08
CN201510161315.9A CN104900288A (zh) 2015-04-08 2015-04-08 用于压水堆制备放射源的新型阻流塞组件及放射性棒

Publications (1)

Publication Number Publication Date
WO2016161728A1 true WO2016161728A1 (zh) 2016-10-13

Family

ID=54032903

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/086100 WO2016161728A1 (zh) 2015-04-08 2015-08-05 用于压水堆制备放射源的新型阻流塞组件及放射性棒

Country Status (2)

Country Link
CN (1) CN104900288A (zh)
WO (1) WO2016161728A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109986515A (zh) * 2017-12-29 2019-07-09 中核建中核燃料元件有限公司 一种阻力塞组件组装装置
CN112117021A (zh) * 2020-08-26 2020-12-22 中国核电工程有限公司 一种放置在核反应堆内的方形组件中的碳14靶件棒
US20220155468A1 (en) * 2020-11-16 2022-05-19 Westinghouse Electric Company Llc Radioisotope activity surveillance apparatus, system, and method
US20240105354A1 (en) * 2019-10-14 2024-03-28 Westinghouse Electric Company Llc Modular radioisotope production capsules and related method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106128539B (zh) * 2016-08-30 2019-01-22 中广核研究院有限公司 一种利用压水堆核电站生产医用短寿期放射源的系统
CN111667939A (zh) * 2020-05-19 2020-09-15 上海核工程研究设计院有限公司 一种用于生产碳-14同位素的堆芯组件及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105798A (ja) * 1995-10-12 1997-04-22 Mitsubishi Heavy Ind Ltd 使用済核燃料の輸送・貯蔵容器の収納バスケット
US20040105520A1 (en) * 2002-07-08 2004-06-03 Carter Gary Shelton Method and apparatus for the ex-core production of nuclear isotopes in commercial PWRs
CN101252025A (zh) * 2008-03-13 2008-08-27 上海核工程研究设计院 重水堆钴调节棒组件
CN101710496A (zh) * 2009-12-02 2010-05-19 中国广东核电集团有限公司 一种核电站可燃毒物棒处理方法及可燃毒物棒吊挂架
CN202307174U (zh) * 2011-10-13 2012-07-04 秦山核电有限公司 一种可分离式移动燃料篮
CN102789821A (zh) * 2012-06-14 2012-11-21 华北电力大学 一种新型钍基反应堆装置
CN103280246A (zh) * 2013-05-23 2013-09-04 中国科学院合肥物质科学研究院 一种液态重金属冷却反应堆燃料元件
CN103474104A (zh) * 2012-06-08 2013-12-25 中国核动力研究设计院 吊篮下挂分体式一体化压水堆
CN103489488A (zh) * 2012-06-11 2014-01-01 中国核动力研究设计院 模块式压水堆

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738820A (en) * 1986-11-21 1988-04-19 Westinghouse Electric Corp. Nuclear fuel assembly bottom nozzle attachment system allowing reconstitution
JPH07218672A (ja) * 1994-01-31 1995-08-18 Nuclear Fuel Ind Ltd 可燃性毒物集合体
US8953731B2 (en) * 2004-12-03 2015-02-10 General Electric Company Method of producing isotopes in power nuclear reactors
CN203659450U (zh) * 2013-11-27 2014-06-18 上海核工程研究设计院 用于生产医用高比活度钴源的钴调节棒及钴棒束组件

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09105798A (ja) * 1995-10-12 1997-04-22 Mitsubishi Heavy Ind Ltd 使用済核燃料の輸送・貯蔵容器の収納バスケット
US20040105520A1 (en) * 2002-07-08 2004-06-03 Carter Gary Shelton Method and apparatus for the ex-core production of nuclear isotopes in commercial PWRs
CN101252025A (zh) * 2008-03-13 2008-08-27 上海核工程研究设计院 重水堆钴调节棒组件
CN101710496A (zh) * 2009-12-02 2010-05-19 中国广东核电集团有限公司 一种核电站可燃毒物棒处理方法及可燃毒物棒吊挂架
CN202307174U (zh) * 2011-10-13 2012-07-04 秦山核电有限公司 一种可分离式移动燃料篮
CN103474104A (zh) * 2012-06-08 2013-12-25 中国核动力研究设计院 吊篮下挂分体式一体化压水堆
CN103489488A (zh) * 2012-06-11 2014-01-01 中国核动力研究设计院 模块式压水堆
CN102789821A (zh) * 2012-06-14 2012-11-21 华北电力大学 一种新型钍基反应堆装置
CN103280246A (zh) * 2013-05-23 2013-09-04 中国科学院合肥物质科学研究院 一种液态重金属冷却反应堆燃料元件

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109986515A (zh) * 2017-12-29 2019-07-09 中核建中核燃料元件有限公司 一种阻力塞组件组装装置
US20240105354A1 (en) * 2019-10-14 2024-03-28 Westinghouse Electric Company Llc Modular radioisotope production capsules and related method
CN112117021A (zh) * 2020-08-26 2020-12-22 中国核电工程有限公司 一种放置在核反应堆内的方形组件中的碳14靶件棒
US20220155468A1 (en) * 2020-11-16 2022-05-19 Westinghouse Electric Company Llc Radioisotope activity surveillance apparatus, system, and method
US12080434B2 (en) * 2020-11-16 2024-09-03 Westinghouse Electric Company Llc Radioisotope activity surveillance apparatus, system, and method

Also Published As

Publication number Publication date
CN104900288A (zh) 2015-09-09

Similar Documents

Publication Publication Date Title
WO2016161728A1 (zh) 用于压水堆制备放射源的新型阻流塞组件及放射性棒
CA2900685C (en) Nuclear reactor target assemblies, nuclear reactor configurations, and methods for producing isotopes, modifying materials within target material, and/or characterizing material within a target material
RU2407078C2 (ru) Усовершенствованная управляющая сборка серых стержней
US6678344B2 (en) Method and apparatus for producing radioisotopes
CN105244069A (zh) 高比活度放射源芯靶、放射性棒及新型阻流塞组件
CN101252025B (zh) 重水堆钴调节棒组件
KR101522719B1 (ko) 가압경수로용 중성자선원 집합체
US20120002777A1 (en) Triuranium disilicide nuclear fuel composition for use in light water reactors
KR20210041275A (ko) Co-60 방사성 동위원소 제조 방법 및, 그에 사용되는 타겟봉
US11276502B2 (en) Nuclear fuel bundle containing thorium and nuclear reactor comprising same
CN103106939A (zh) 一种利用压水堆嬗变长寿命高放核素的方法
JP2022553924A (ja) モジュール式放射性同位体生成カプセルおよび関連方法
KR101955926B1 (ko) 중수로핵연료 중심 연료봉에의 Co-59 장입을 통한 Co-60 생산 방안
RU2013135377A (ru) Способ эксплуатации ядерного реактора в ториевом топливном цикле с расширенным воспроизводством изотопа 233u
US4696793A (en) Burnable poison rod for use in a nuclear reactor
KR101882586B1 (ko) 코발트다발 설계 방법
Abdelhameed et al. Soluble-Boron-Free SMR Design with Centrally Shielded Burnable Absorbers
Nguyen et al. A Monte Carlo-Diffusion Two-step Analysis of an Soluble-Boron-Free SMR Using Centrally-Shielded Burnable Absorber
JP2011520092A (ja) 高融点金属に離散的中性子吸収材を混入させた中性子吸収体
CN114613525A (zh) 一种利用重水堆生产高比活度钴放射源的钴调节棒芯体
RU2577783C1 (ru) Канал технологический совмещенный для промышленной ядерной установки
KR20240151991A (ko) 이동형 소형 모듈 원자로 노심 및 이를 구비한 원자로
RU2594004C1 (ru) Рабочий орган компенсации реактивности системы управления и защиты реактора на быстрых нейтронах
KR20180080380A (ko) 코발트 조절봉의 반응도 설계방법 및 그 설계 방법에 의해 제작된 조절봉
Hummel et al. Analysis of Multiple TRIGA-Based Molybdenum Production Reactor Cores Using a New Low-Enriched Uranium Target as Fuel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 14/03/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888283

Country of ref document: EP

Kind code of ref document: A1