WO2016161574A1 - 一种超声造影成像方法及装置 - Google Patents

一种超声造影成像方法及装置 Download PDF

Info

Publication number
WO2016161574A1
WO2016161574A1 PCT/CN2015/076047 CN2015076047W WO2016161574A1 WO 2016161574 A1 WO2016161574 A1 WO 2016161574A1 CN 2015076047 W CN2015076047 W CN 2015076047W WO 2016161574 A1 WO2016161574 A1 WO 2016161574A1
Authority
WO
WIPO (PCT)
Prior art keywords
nonlinear
linear
echo
component
amplitude information
Prior art date
Application number
PCT/CN2015/076047
Other languages
English (en)
French (fr)
Inventor
桑茂栋
储霞
冒祖华
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to CN201580007455.9A priority Critical patent/CN106061396B/zh
Priority to PCT/CN2015/076047 priority patent/WO2016161574A1/zh
Publication of WO2016161574A1 publication Critical patent/WO2016161574A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/481Diagnostic techniques involving the use of contrast agent, e.g. microbubbles introduced into the bloodstream
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/13Tomography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5207Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of raw data to produce diagnostic data, e.g. for generating an image

Definitions

  • the present invention relates to the field of ultrasound contrast imaging, and in particular to an ultrasound contrast imaging method and apparatus.
  • a probe In a medical ultrasound imaging system, a probe is usually driven by a transmitting circuit to emit an ultrasonic pulse into a human body, and the reflection of the ultrasonic wave at the interface of the human body is utilized, and the visible ultrasound of the human tissue is obtained by receiving and processing an echo carrying the characteristic information of the human tissue. image.
  • the display of ultrasound images for weak borders and small blood vessels is blurred and sometimes cannot be displayed.
  • the contrast between the contrast agent and the surrounding tissue is large, which can change the absorption, reflection, scattering and refraction of sound waves between tissues, so that the echo signal of the site is enhanced and the contrast resolution of the image is increased.
  • the contrast agent has a remarkable nonlinear characteristic, and the degree of expansion and contraction is different under the excitation of the ultrasonic pulse, so that the ultrasonic echo reflected thereby includes not only the fundamental component corresponding to the original ultrasonic pulse, that is, the linear component, but also It also includes harmonic components, ie nonlinear components.
  • the linear component contains both the linear component of the tissue and the linear component of the contrast agent.
  • the contrast of the ultrasound image formed by the linear component of the detection and processing of the fundamental wave is not high, and the contrast cannot be clearly presented.
  • the perfusion of microvessels and tissues affects the clinical differential diagnosis. Therefore, the current ultrasound contrast imaging is mostly a nonlinear component detection technique that extracts nonlinear components in the echo for imaging.
  • the echo signal amplitude of some strong reflective surface areas is very high, and the signal after detection and cancellation still maintains a high amplitude, and a relatively strong tissue residue is formed on the contrast image.
  • the echogenic tissue components there are several factors that will cause the echogenic tissue components to be mixed into the contrast signal.
  • signal saturation will cause the linear components of the organization in the receiving processing process to be canceled and remain in the contrast image;
  • motion of the human tissue causes the phase and amplitude of the transmitted pulse echo signal to not satisfy the linear cancellation condition.
  • the tissue components are left in the contrast image.
  • the tissue residue caused by these factors makes it difficult to distinguish the tissue and the contrast agent in the contrast image, directly affecting the CTR (contrast to tissue ratio) of the contrast image, that is, the more residual tissue components in the contrast image More, the contrast resolution of the contrast image is worse.
  • U.S. Patent No. 6,626,836 proposes to use the ratio of the second harmonic (2F0) in the echo to the linear fundamental wave (F0) B/A to distinguish whether the echo data is from the tissue region or the contrast region, and respectively Different signal processing methods and display methods are applied to the echo data of the two regions, thereby improving the CTR of the contrast image.
  • US Patent US8047994 determines the amplitude of the three harmonic components of the subharmonic (F0/2), second harmonic (2F0) and fundamental wave (F0) to determine the reflection area of the echo belongs to the tissue or contrast agent, and according to the judgment result Change the display effect of the corresponding area of the contrast image.
  • the second harmonic signal decays faster in the tissue, the penetrating power of the contrast image is limited, and because the tissue also produces the second harmonic component and is mixed with the second harmonic component of the contrast agent, The CTR of the contrast image is limited.
  • the high energy required for the generation of the second harmonic signal can cause damage to the microbubbles, reduce the duration of the contrast agent in the human body, and the subharmonics may result in poor resolution of the contrast image due to the low frequency. Therefore, the above two prior art processing methods fail to achieve the desired effect.
  • NLF nonlinear fundamental wave
  • the present invention adopts the following technical solutions:
  • An ultrasound contrast imaging method includes:
  • S4 generating a nonlinear parameter by using amplitude information of the nonlinear component and the linear component;
  • the nonlinear parameter is an increasing function of the amplitude information of the nonlinear component, and is a decreasing function of the amplitude information of the linear component;
  • An apparatus for performing contrast-enhanced imaging using the method described above comprising:
  • An ultrasonic probe for transmitting pulse waveform sequences of different amplitude weights
  • An echo receiving module configured to receive an echo signal of a pulse emitted by the ultrasonic probe
  • a calculation module configured to separately calculate amplitude information of a linear component and a nonlinear component of the echo signal received in the echo receiving module, and generate a nonlinear parameter by using amplitude information of the nonlinear component and the linear component;
  • the linear parameter is an increasing function of the amplitude information of the nonlinear component, and is a decreasing function of the amplitude information of the linear component;
  • An image processing module is configured to perform imaging processing on nonlinear parameters produced by the computing module.
  • the invention combines the different manifestations of different tissues and (capillary) blood vessels in the contrast perfusion process, and proposes a new contrast imaging method, which is based on the nonlinear fundamental wave detection technology, directly using the linear component of the echo itself to suppress The residual tissue of the angiographic image, especially the residual of the strongly reflective tissue with less vascular distribution, does not affect the angiographic performance of the remaining regions.
  • the invention is characterized in that the linear component of the echo and the amplitude information of the nonlinear component are simultaneously used to generate a nonlinear parameter, and the parameter is processed and imaged, thereby effectively suppressing tissue residual, increasing the dynamic range of the contrast agent signal, thereby enhancing the contrast image. CTR and contrast resolution.
  • FIG. 1 is a schematic flowchart of Embodiment 1 of the present invention.
  • Figure 2 shows a frame of liver tissue image and nonlinear fundamental image acquired before microbubble injection.
  • FIG. 3 is a comparison diagram of the nonlinear fundamental wave and the nonlinear parameter C/A of FIG. 2.
  • Figure 4 is a liver tissue image and a nonlinear fundamental image of the same location acquired after injecting the microbubbles.
  • Figure 5 is a comparison of the nonlinear fundamental wave and the nonlinear parameter C/A of Figure 4.
  • Figure 6 is a comparison of the histogram of the nonlinear fundamental amplitude and the nonlinear parameter C/A in Figure 5.
  • FIG. 7 is a comparison diagram of the histogram distribution of the nonlinear parameter C/A of FIGS. 2 and 4.
  • FIG. 8 is a schematic flowchart of Embodiment 2 of the present invention.
  • Figure 9 is a comparison of the second harmonic and the nonlinear parameter B/A of Figure 2.
  • Figure 10 is a comparison of the histograms of the second harmonic amplitude and the nonlinear parameter B/A in Figure 9.
  • contrast microbubbles Compared with human tissue, contrast microbubbles will exhibit significant nonlinear characteristics under ultrasonic excitation, so the core idea of nonlinear detection technology in existing ultrasound imaging is to extract nonlinear information generated by microbubbles in echoes. .
  • nonlinear fundamental imaging technique when the human body does not inject microbubbles, we hope that the nonlinear fundamental signal used for contrast imaging is weak, but due to the asymmetry of the system transmitting circuit itself. The echo signal saturation of the strong and strong reflection surface, the motion of the tissue and its nonlinearity, etc., will inevitably exist in the nonlinear signal detected by the fundamental fundamental wave.
  • the reflected echo intensity of ultrasonic waves in a liquid medium such as blood is much lower than that of a uniform tissue, and is weaker than that of a strong reflection surface. Therefore, most of the residual tissue observed in a contrast image without microbubbles is observed.
  • a high-bright echo such signals come from echoes of strong reflection surfaces such as blood vessel walls and organ envelopes.
  • Ultrasound contrast microbubbles belong to the blood pool tracer. The contrast microbubbles can diffuse with the blood of the human body to the large blood vessels and capillaries of the body and only exist in the blood vessels. Currently, there are few blood vessels or capillaries in the tissue of the strong reflective surface. Therefore, with the perfusion of microbubbles, the echo intensity from the liquid region will gradually become stronger.
  • the echo intensity of this region slowly recovers to be consistent with that before injection, and the blood vessel distribution is better.
  • the echo intensity of the tissue residual area is almost constant during the process of microbubbles from entry to regression.
  • the idea of the present invention comes from this feature, that is, the more the residual tissue perfusion, the lower the residual amplitude of the tissue, and the less the perfusion, the higher the residual amplitude of the tissue in the strong reflective region.
  • the stronger the residual tissue in the region where the reflected echo is stronger under ultrasonic excitation the smaller the residual tissue in the region where the reflected echo is weaker, and the inhibition of the tissue residue on the strong reflecting surface hardly affects the perfusion of the contrast agent. which performed.
  • the form of the kth emission pulse in the emission sequence of the contrast imaging is:
  • a k represents the amplitude and polarity of the kth transmitted pulse
  • A(t) represents the envelope of the transmitted signal
  • cos( ⁇ t) represents the carrier frequency.
  • Each of the transmitted pulses passes through an echo reflected by the tissue medium containing the contrast agent, and includes both a linear fundamental component and a high-order nonlinear component, and the expression is:
  • the amplitude factor of the linear fundamental wave ( ⁇ t) in the received echo signal of the kth transmitted pulse is w 1 a k
  • the amplitude factor of the quadratic nonlinear component is The amplitude factor of the cubic nonlinear component.
  • the present invention processes echoes of a plurality of amplitudes and phases (or polarities) of different transmitted pulses, respectively Linear and nonlinear components are extracted. After the respective signal processing, the nonlinear component and the amplitude information of the linear component are used to obtain a nonlinear parameter, and the nonlinear parameters are imaged and finally displayed.
  • a nonlinear fundamental wave (NLF) located in the pass band of the probe can be extracted as a cubic nonlinear component in the echo.
  • the linear component can directly use the linear fundamental wave (F) of the echo data of any one of the transmitted pulse sequences.
  • a method for ultrasound contrast imaging provided by Embodiment 1 of the present invention specifically includes the following steps:
  • the four pulses have different amplitude weights; in this embodiment, the amplitude weights of the four pulses are a, -1, 1, and 1-a, where 0 ⁇ a ⁇ 1;
  • S3 selecting an echo of any one or more pulses for processing, extracting a linear fundamental wave, and obtaining amplitude information of the linear fundamental wave;
  • the process of extracting the nonlinear fundamental signal is as shown by the dotted line in FIG. 1, and after receiving the echo of 4 pulses, firstly transmitting the pulses having the weights a and (1-a) The echo is summed and downsampled, and the echoes of the pulse with a transmission weight of -1 after delay and downsampling are spliced and modulated, and the symmetrical part of the linear fundamental wave and the nonlinear fundamental wave is modulated into the generated spliced signal.
  • Fs/2 Fs is the sampling frequency of the data
  • the echo of the pulse having the transmission weight of 1 is inverted, and then the delay and down-sampling are performed, and the sum of the echoes of the downsampled emission weights a and (1-a) are spliced and modulated, and the generated is generated.
  • the spliced signal only the asymmetrical portion of the nonlinear fundamental wave is retained at the original frequency position F 0 .
  • the two modulated signals are summed and processed by a low-pass filter, the symmetrical part of the linear fundamental wave and the nonlinear fundamental wave that is moved from the original frequency position F 0 to Fs/2 ⁇ F 0 is filtered by the low-pass filter. , outputting an asymmetrical portion of the nonlinear fundamental signal.
  • the obtained nonlinear fundamental wave signal is subjected to orthogonal demodulation, decimation filtering and envelope detection processing in sequence, and the amplitude information of the nonlinear fundamental wave is obtained, which is denoted as C.
  • the method for extracting the linear fundamental signal may be directly selecting the echo signal of any one of the S1 as the linear fundamental signal; or the signal after combining the echoes of the plurality of pulses according to a certain weight coefficient.
  • Linear fundamental signal In the embodiment of the present invention, an echo of a pulse having an amplitude weight of 1 is selected as a linear fundamental wave signal.
  • amplitude information of the linear fundamental wave is obtained, which is denoted as A.
  • the nonlinear parameter is an increasing function of the amplitude information of the nonlinear fundamental wave, and is a decreasing function of the amplitude information of the linear fundamental wave.
  • the amplitude of the nonlinear fundamental wave is divided by the amplitude corresponding to the linear fundamental wave to obtain a nonlinear parameter, which is denoted as C/A.
  • the logarithmic compression processing of the nonlinear parameter is further included.
  • the logarithmic compression processing method may directly perform logarithmic compression of the nonlinear parameter C/A; or may perform logarithmic compression of the amplitude of the nonlinear fundamental wave and the amplitude of the linear fundamental wave, respectively.
  • Nonlinear parameters in this case, the amplitude of the nonlinear fundamental wave is subtracted from the amplitude of the linear fundamental wave, and the nonlinear parameter should be CA.
  • the step of performing imaging processing on the nonlinear parameters includes luminance compensation, dynamic range conversion, curve mapping, DSC (Digital Scanning Converter), and the like.
  • C/A is an increasing function of the nonlinear fundamental amplitude C, which is a decreasing function of the linear fundamental amplitude A.
  • the residual area of the tissue in the angiographic image is often the position of the strong reflection surface, and the amplitude of the linear fundamental wave from the echoes of these regions is large, so the result of the nonlinear parameter C/A of such region is reduced.
  • the nonlinear fundamental wave amplitude increases and decreases with the perfusion and withdrawal of microbubbles, and the corresponding nonlinear parameter C/A still increases and decreases.
  • Figure 2 shows the microbubble before injection
  • the acquired image of the liver tissue and the nonlinear fundamental angiography image, the high echo on the angiographic image is the tissue residue, as indicated by the arrow.
  • the nonlinear fundamental and nonlinear parameters of the echo data are further compared.
  • the left side is the amplitude diagram of the nonlinear fundamental signal in the echo signal
  • the right side is the schematic diagram of the nonlinear parameter C/A. From the results of the nonlinear parameter C/A, the value of the tissue residual region is smaller than that of the uniform tissue region, and significant inhibition is obtained.
  • Figure 4 shows the liver tissue image and nonlinear fundamental angiography image acquired at the same position after microbubble injection. Since the tissue residue has been mixed with the signal of the contrast agent, we cannot distinguish tissue residue from the angiographic image, or even Mistaken tissue damage as a blood vessel, as indicated by the arrow.
  • the echo data is further analyzed, as shown in FIG. 5, the left side is a schematic diagram of the amplitude of the nonlinear fundamental wave signal in the corresponding echo signal, and the right side is a schematic diagram of the nonlinear parameter C/A. From the results of the nonlinear parameter C/A, the value of the previously unrecognizable tissue residual region is also smaller than the contrast agent perfusion region, which is significantly suppressed.
  • the left side is the histogram distribution of the nonlinear parameter C/A corresponding to the injection of the microbubble
  • the right side is the histogram distribution of the nonlinear parameter C/A after the contrast injection
  • the data of the left figure corresponds to the right diagram.
  • the shorter area changes in the distribution of histograms before and after injection of microbubbles into the human body indicate that
  • the data of the change of nonlinear parameter C/A value caused by microbubble perfusion is mainly in the range of -30dB to 10dB, and most of them are higher than the nonlinear parameter C/A value of tissue residual, which just confirms the idea of the invention.
  • Use the nonlinear parameter C/A to inhibit tissue residue and not affect the perfusion performance of the contrast agent.
  • the nonlinear component of the echo is not limited to the nonlinear fundamental wave, and may be the second harmonic in the echo.
  • an ultrasound contrast imaging method provided by an embodiment of the present invention provides a flow of nonlinear parametric imaging using second harmonics.
  • the embodiment of the present invention includes the following steps:
  • the two pulses have different amplitude weights; in this embodiment, the amplitude weights of the two pulses are -1 and 1 respectively;
  • the process of extracting the second harmonic signal is as shown by the dotted line in FIG. 8.
  • the echo of the transmitting pulse having the transmission weight of -1 is lowered.
  • the echo of the pulse with the transmission weight of 1 is delayed and downsampled; the two sampled signals are spliced and modulated, and the generated modulated signal is processed by a low-pass filter to obtain a second harmonic signal.
  • amplitude information of the second harmonic is obtained, which is denoted as B.
  • the method for extracting the linear fundamental signal may be directly selecting the echo signal of any one of the pulses in S1 as the linear fundamental signal; or the echo of the two pulses according to a certain weight coefficient.
  • the combined signal is used as a linear fundamental signal.
  • an echo of a pulse having an amplitude weight of 1 is selected as a linear fundamental wave signal.
  • amplitude information of the linear fundamental wave is obtained, which is denoted as A.
  • the nonlinear parameter is an increasing function of the amplitude information of the second harmonic, and is a decreasing function of the amplitude information of the linear fundamental wave.
  • the amplitude of the second harmonic is divided by the amplitude corresponding to the linear fundamental wave, and a nonlinear parameter is obtained, which is recorded as B/A.
  • the logarithmic compression processing of the nonlinear parameter is further included.
  • the logarithmic compression processing method may directly perform logarithmic compression of the nonlinear parameter B/A; or may perform logarithmic compression of the amplitude of the second harmonic and the amplitude of the linear fundamental wave, respectively.
  • Nonlinear parameters, in this case, the amplitude of the second harmonic should be subtracted from the amplitude of the linear fundamental, and the nonlinear parameter should be BA.
  • the steps of imaging the nonlinear parameters include luminance compensation, dynamic range conversion, curve mapping, DSC, and the like.
  • Fig. 9 is a schematic diagram showing the amplitude of the second harmonic extracted from the echo data of the contrast agent and the nonlinear parameter B/A in the same section
  • Fig. 10 is a histogram corresponding to Fig. 9. It can be seen from Fig. 9 and Fig. 10 that the nonlinear parameter B/A can also suppress tissue residue and increase the effective dynamic range of the signal.
  • the nonlinear component of the echo may also be the sum of the amplitudes of the nonlinear fundamental wave and the second harmonic.
  • An ultrasound contrast imaging method provided by an embodiment of the present invention provides a flow of nonlinear parametric imaging using the sum of amplitudes of a nonlinear fundamental wave and a second harmonic.
  • the embodiment of the present invention includes the following steps:
  • the four pulses have different amplitude weights; in this embodiment, the amplitude weights of the four pulses are a, -1, 1, and 1-a, where 0 ⁇ a ⁇ 1;
  • S3 selecting an echo of any one or more pulses for processing, extracting a linear fundamental wave, and obtaining amplitude information of the linear fundamental wave;
  • a subset of the pulse waveform sequence transmitted in S1 can be selected as the basis of signal processing to extract the amplitude information of the second harmonic.
  • the nonlinear parameter is an increasing function of the sum of the amplitudes of the nonlinear fundamental wave and the second harmonic, and is a decreasing function of the amplitude information of the linear fundamental wave.
  • the sum of the amplitudes of the nonlinear fundamental wave and the second harmonic is divided by the amplitude of the linear fundamental wave to obtain a nonlinear parameter, which is denoted as (B+C)/A.
  • the logarithmic compression processing method may directly perform logarithmic compression of the nonlinear parameter (B+C)/A; or may firstly sum the amplitudes of the nonlinear fundamental wave and the second harmonic and the linear fundamental wave. After the logarithmic compression of the amplitudes, the nonlinear parameters are obtained. In this case, the sum of the amplitudes of the nonlinear fundamental wave and the second harmonic is subtracted from the amplitude of the linear fundamental wave, and the nonlinear parameter should be (B+C)-A.
  • the steps of imaging the nonlinear parameters include luminance compensation, dynamic range conversion, curve mapping, DSC, and the like.
  • Embodiments of the present invention provide an ultrasound contrast imaging apparatus for performing ultrasound contrast imaging using the above method.
  • the ultrasound contrast imaging apparatus includes:
  • An ultrasonic probe for transmitting pulse waveform sequences of different amplitude weights
  • An echo receiving module configured to receive an echo signal of a pulse emitted by the ultrasonic probe
  • a calculation module configured to separately calculate amplitude information of a linear component and a nonlinear component of the echo signal received in the echo receiving module, and generate a nonlinear parameter by using amplitude information of the nonlinear component and the linear component;
  • the linear parameter is an increasing function of the amplitude information of the nonlinear component, and is a decreasing function of the amplitude information of the linear component;
  • An image processing module is configured to perform imaging processing on nonlinear parameters produced by the computing module.
  • the invention combines the different manifestations of different tissues and (capillary) blood vessels in the contrast perfusion process, and proposes a new contrast imaging method, which is based on the nonlinear fundamental wave detection technology, directly using the linear component of the echo itself to suppress The residual tissue of the angiographic image, especially the residual of the strongly reflective tissue with less vascular distribution, does not affect the angiographic performance of the remaining regions.
  • the invention is characterized in that the linear component of the echo and the amplitude information of the nonlinear component are simultaneously used to generate a nonlinear parameter, and the parameter is processed and imaged, thereby effectively suppressing tissue residual, increasing the dynamic range of the contrast agent signal, thereby enhancing the contrast image. CTR and contrast resolution.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Ultra Sonic Daignosis Equipment (AREA)
  • Hematology (AREA)
  • Computer Vision & Pattern Recognition (AREA)

Abstract

一种超声造影成像方法及装置,所述方法包括:S1、发射多个脉冲波形序列,并获取各脉冲的回波信号;S2、对各脉冲的回波进行处理,提取回波的非线性成分,并获取非线性成分的幅度信息;S3、选择任何一个或多个脉冲的回波进行处理,提取回波的线性成分,并获取线性成分的幅度信息;S4、利用非线性成分与线性成分的幅度信息,生成一非线性参量;S5、将非线性参量进行成像处理。该方法同时利用回波的线性成分和非线性成分的幅度信息,生成非线性参量,对此参量进行处理后成像,可有效抑制组织残留、增加造影剂信号动态范围,从而提升造影图像的CTR和对比分辨率。

Description

一种超声造影成像方法及装置 技术领域
本发明涉及超声造影成像领域,具体涉及一种超声造影成像方法及装置。
背景技术
在医用超声成像系统中,通常由发射电路驱动探头向人体内发射超声脉冲,利用超声波在人体组织界面处的反射,通过接收和处理载有人体组织特征信息的回波,获得人体组织的可见超声图像。然而由于混响的存在和分辨力的限制,超声图像对于弱边界和小血管的显示较为模糊,有时甚至无法显示。造影剂与周围组织的声阻抗差异大,可改变声波在组织间的吸收、反射、散射和折射,从而使所在部位的回声信号增强,增加图像的对比分辨力。
但是,造影剂具有显著的非线性特征,在超声脉冲的激励下,伸缩和扩张的程度不同,导致其反射的超声回波不仅包括与原超声脉冲相对应的基波分量,即线性分量,而且还包括谐波分量,即非线性分量。经过含造影剂的人体组织反射的超声回波中,线性分量既包含组织的线性成分又包含造影剂的线性成分,检测处理基波线性分量形成的超声图像对比分辨率不高,无法清晰呈现造影剂在微血管和组织的灌注情况,影响临床的鉴别诊断。所以目前的超声造影成像大多为非线性分量检测技术,提取回波中的非线性分量进行成像。
超声造影成像中传统检测非线性分量的方法是:发射两个或多个幅度和相位不同的脉冲,对各接收回波加权求和消除线性成分,从而检测造影剂在人体组织及血管中的非线性分量。然而实际情况下,检测到的造影剂信号中难免混入组织成分,主要原因是系统发射电路本身的非对称性。理论上,两个幅度、频率一样,相位相差180度的正负波形相加为零,然而实际发射电路输出的正脉冲和负脉冲不是严格对称的,两者抵消后并非为零。所以,某些强反射面区域回波信号幅度很高,经过检测抵消后的信号仍然保持较高的幅度,在造影图像上形成比较强的组织残留。此外还有几种因素也会导致回声较强的组织成分混入造影信号,一是由于信号饱和,非线性检测方法中各发射脉冲的幅度经过调 制,信号饱和会导致在接收处理环节组织的线性成分无法相消,残留在造影图像中;二是由于运动,人体组织的运动导致发射脉冲回波信号的相位、幅度不满足线性相消条件,使得组织成分残留在造影图像中。总之,这些因素导致的组织残留会使造影图像中对组织和造影剂的分辨变得困难,直接影响造影图像的CTR(contrast to tissue ratio,造影组织比),即造影图像中残留的组织成分越多,造影图像的对比分辨率越差。
为解决上述问题,美国专利US6626836提出,使用回波中的二次谐波(2F0)与线性基波(F0)之比B/A,来区分回波数据来自组织区域还是造影剂区域,并分别对两个区域的回波数据采用不同的信号处理方式和显示方法,从而提高造影图像的CTR。美国专利US8047994通过比较次谐波(F0/2)、二次谐波(2F0)与基波(F0)三种频率成分的幅度,确定回波的反射区域属于组织或者造影剂,并根据判断结果改变造影图像相应区域的显示效果。
但是,因为二次谐波信号在组织内的衰减较快,导致造影图像的穿透力有限,同时因为组织也会产生二次谐波成分并与造影剂的二次谐波成分混在一起,对造影图像的CTR提升有限。二次谐波信号的产生所需的高能量会对微泡造成破坏,减少造影剂在人体的持续时间,并且次谐波因为频率低会导致造影图像分辨率较差。因此上述两个现有技术的处理方法均不能达到理想效果。
发明内容
本发明的目的在于,提供一种超声造影成像方法及装置,可以在非线性基波(NLF)检测方法的基础上进一步抑制组织残留,增强造影剂信息,进而提高造影图像的CTR。
为实现上述目的,本发明采用以下技术方案:
一种超声造影成像方法,包括:
S1、发射多个脉冲波形序列,并获取各脉冲的回波信号;
S2、对各脉冲的回波进行处理,提取回波的非线性成分,并获取非线性成分的幅度信息;
S3、选择任何一个或多个脉冲的回波进行处理,提取回波的线性成分,并 获取线性成分的幅度信息;
S4、利用非线性成分与线性成分的幅度信息,生成一非线性参量;所述非线性参量为非线性成分的幅度信息的递增函数,且为线性成分的幅度信息的递减函数;
S5、将非线性参量进行成像处理。
一种使用以上所述的方法进行超声造影成像的装置,包括:
超声探头,用于发射不同幅度权重的脉冲波形序列;
回波接收模块,用于接收超声探头发射出的脉冲的回波信号;
计算模块,用于分别计算回波接收模块中接收到的回波信号的线性成分和非线性成分的幅度信息,并利用非线性成分与线性成分的幅度信息,生成一非线性参量;所述非线性参量为非线性成分的幅度信息的递增函数,且为线性成分的幅度信息的递减函数;
图像处理模块,用于将计算模块生产的非线性参量进行成像处理。
本发明结合不同组织和(毛细)血管在造影灌注过程中的不同表现,提出了一种新的造影成像方法,即在非线性基波检测技术的基础上,直接利用回波的线性成分本身抑制造影图像的组织残留,尤其是血管分布较少的强反射组织的残留,同时不影响其余区域的造影表现。本发明的特点是同时利用回波的线性成分和非线性成分的幅度信息,生成非线性参量,对此参量进行处理后成像,可有效抑制组织残留、增加造影剂信号动态范围,从而提升造影图像的CTR和对比分辨率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一的流程示意图。
图2为微泡注入前采集的一帧肝脏组织图像和非线性基波造影图像。
图3为图2的非线性基波和非线性参量C/A的对比图。
图4为注入微泡后采集到的同一个位置的肝脏组织图像和非线性基波造影图像。
图5为图4的非线性基波和非线性参量C/A的对比图。
图6为图5中非线性基波幅度和非线性参量C/A的直方分布对比图。
图7为图2和图4的非线性参量C/A的直方分布对比图。
图8为本发明实施例二的流程示意图。
图9为图2的二次谐波和非线性参量B/A的对比图。
图10为图9中二次谐波幅度和非线性参量B/A的直方分布对比图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
相比较人体组织,造影剂微泡在超声激励下会表现出显著的非线性特征,所以现有的超声造影成像中的非线性检测技术的核心思想是提取回波中微泡产生的非线性信息。以目前最常用的非线性基波造影成像技术为例,在人体没有注入微泡时,我们希望检测到的用于造影成像的非线性基波信号很弱,然而由于系统发射电路本身的不对称性、强反射面的回波信号饱和、组织运动及其本身的非线性等因素影响,实际检测到的非线性基波信号中不可避免会存在组织残留的成分。超声波在血液等液性介质中的反射回波强度远低于均匀组织的反射回波,更是弱于强反射面的回波,所以在没有注入微泡的造影图像中观察到的组织残留大都呈现为偏高亮回声,这类信号来自于血管壁、脏器包膜等强反射面的回波。超声造影微泡属于血池示踪剂,造影剂微泡随着人体血液扩散到全身大血管及毛细血管且只会存在于血管中,从人体的组织构造特征中可以发 现,强反射面组织中的血管或毛细血管分布很少。所以,随着微泡的灌注,来自液性区域的回波强度会逐渐变强,随着微泡的破裂、排出,此区域的回波强度慢慢恢复到与注入前一致,而血管分布较少的组织残留区域的回波强度在微泡从进入到消退的过程中则会几乎保持不变。本发明的思路正是来自此特征,即造影剂灌注越多的区域组织残留幅度越低而灌注越少的强反射区域组织残留幅度越高。换句话说,超声激励下反射回波越强的区域组织残留越大,反射回波越弱的区域组织残留越小,并且对强反射面的组织残留进行抑制几乎不会影响到造影剂的灌注表现。
记造影成像的发射序列中第k个发射脉冲形式为:
fk(t)=akA(t)cos(ωt);
其中ak表示第k个发射脉冲的幅度及极性,A(t)表示发射信号的包络,cos(ωt)表示载波频率。每个发射脉冲经过含有造影剂的组织介质反射的回波,同时包含线性基波成分和高次非线性成分,记其表达式为:
Figure PCTCN2015076047-appb-000001
其中wi为回波中线性及各高次非线性分量的系数,i=1,2,3,…。
所以,第k个发射脉冲的接收回波信号中线性基波(ωt)的幅度因子为w1ak,二次非线性分量的幅度因子为
Figure PCTCN2015076047-appb-000002
三次非线性分量的幅度因子为
Figure PCTCN2015076047-appb-000003
值得注意的是,造影剂相比较人体组织具有显著的非线性特征,所以造影剂的非线性分量的系数要远远大于组织的同阶系数。
根据三角公式
Figure PCTCN2015076047-appb-000004
造影剂回波中三次非线性分量,75%的能量会以基波形式(ω)出现,称之为非线性基波,25%的能量以三次谐波(3ω)出现,而在频域中三次谐波成分已经位于超声探头的通带以外,而非线性基波分量则在探头的通带内。
本发明对多个幅度以及相位(或极性)不同的发射脉冲的回波进行处理,分别 提取线性和非线性成分,经过各自的信号处理后,利用非线性成分与线性成分的幅度信息,得到一种非线性参量,将非线性参量进行成像处理并最终显示。根据公式(1)、(2),在接收处理时,可以提取位于探头通带内的非线性基波(NLF)作为回波中的三次非线性成分。而线性成分可以直接使用发射脉冲序列中任何一个的回波数据的线性基波(F)。
以下提供几个实施例对本发明的技术方案进行详细说明。
实施例一
如图1所示,本发明实施例一提供的一种超声造影成像方法具体包括以下步骤:
S1、发射4个脉冲波形序列,并获取各脉冲的回波信号。所述4个脉冲具有不同的幅度权重;在本实施例中,4个脉冲的幅度权重分别为a、-1、1和1-a,其中0<a<1;
S2、对各脉冲的回波进行处理,提取非线性基波,并获取非线性基波的幅度信息;
S3、选择任何一个或多个脉冲的回波进行处理,提取线性基波,并获取线性基波的幅度信息;
S4、利用线性基波的幅度信息以及非线性基波的幅度信息,生成一非线性参量;
S5、将非线性参量进行成像处理。
具体地,在S2中,提取非线性基波信号的过程如图1中虚线框所示,在收到4个脉冲的回波后,首先对发射权重为a和(1-a)的脉冲的回波求和并降采样,与延时、降采样后的发射权重为-1的脉冲的回波进行拼接调制,生成的拼接信号中,线性基波和非线性基波的对称部分被调制到了Fs/2(Fs为数据的采样频率)两边,只有非线性基波的非对称部分被保留在原来的频率位置F0。类似地,将发射权重为1的脉冲的回波取反后进行延时、降采样,与降采样的发射权重为a和(1-a)的脉冲的回波之和进行拼接调制,生成的拼接信号中,同样在原来的 频率位置F0只保留非线性基波的非对称部分。两个调制信号求和后经过一个低通滤波器处理,被从原来频率位置F0移到Fs/2±F0的线性基波和非线性基波的对称部分会被低通滤波器滤除,输出非线性基波信号的非对称部分。
进一步地,将获得的非线性基波信号依次经过正交解调、抽取滤波和包络检测处理后,得到非线性基波的幅度信息,记为C。
在S3中,提取线性基波信号的方法可以是直接选取S1中的任何一个脉冲的回波信号作为线性基波信号;也可以是将多个脉冲的回波按照一定权重系数组合之后的信号作为线性基波信号。本发明实施例中,选择幅度权重为1的脉冲的回波作为线性基波信号。
进一步地,将获得的线性基波信号依次经过正交解调、抽取滤波和包络检测处理之后,得到线性基波的幅度信息,记为A。
在S4中,所述非线性参量为非线性基波的幅度信息的递增函数,且为线性基波的幅度信息的递减函数。在本发明实施例中,将非线性基波的幅度与线性基波的幅度对应相除,得到非线性参量,记为C/A。
进一步地,在S4中,还包括对非线性参量进行对数压缩处理。所述对数压缩处理的方法可以是直接将非线性参量C/A进行对数压缩;还可以是先将非线性基波的幅度与线性基波的幅度分别进行对数压缩之后,再得出非线性参量,这种情况下需将非线性基波的幅度与线性基波的幅度对应相减,得到非线性参量应为C-A。
在S5中,将非线性参量进行成像处理的步骤包括亮度补偿、动态范围变换、曲线映射、DSC(Digital Scanning Converter,数字扫描变换)等。
从非线性参量C/A相除的表达式可以知道,在幅度信息的定义域内,C/A为非线性基波幅度C的递增函数,为线性基波幅度A的递减函数。前面分析过,造影图像中的组织残留区域往往是强反射面的位置,来自这些区域回波的线性基波幅度值很大,所以这类区域的非线性参量C/A的结果会降低。同时,对于血管分布丰富的微泡灌注区域,非线性基波幅度随着微泡的灌注和退出而增强和减弱,对应的非线性参量C/A的值依然随之增强和减弱。图2为微泡注入前 采集的一帧肝脏组织图像和非线性基波造影图像,在造影图像上的偏高回声即为组织残留,如箭头所示。对回波数据的非线性基波和非线性参量进行进一步对比,如图3所示,左边为回波信号中非线性基波信号的幅度示意图,右边为非线性参量C/A的示意图。从非线性参量C/A的结果看,组织残留区域的值小于均匀组织区域,得到了明显的抑制。
下面分析注入造影剂之后的情况。图4为注入微泡后采集到的同一个位置的肝脏组织图像和非线性基波造影图像,因为组织残留已经与造影剂的信号混在一起,我们无法从造影图像中区分出组织残留,甚至会把组织残留误以为是血管,如箭头所示。对回波数据进行进一步分析,如图5所示,左边为对应回波信号中非线性基波信号的幅度示意图,右边为非线性参量C/A的示意图。从非线性参量C/A的结果看,之前难以辨别的组织残留区域的值同样小于造影剂灌注区域,得到了明显抑制。
图3和图5所示的对比结果清晰表明,相比较现有的基于非线性基波信号的造影图像,利用非线性参量C/A进行成像,强反射面造成的组织残留在注入造影剂前后均可以得到显著抑制。另一方面,通过引入线性基波分量的幅度A,非线性参量C/A的有效动态范围也比单纯的非线性基波信号要大,图6给出了图5对应数据的非线性基波幅度和非线性参量C/A的直方图,横轴为数据中所有值的范围(单位dB),纵轴为相应数据的分布数量。从两组数据的横轴分布可以看出,非线性参量C/A信号的动态范围大于60dB,显著大于非线性基波信号的动态范围(约30dB)。
需要说明的是,从注入微泡前非线性参量C/A的示意图及其直方图分布可以看出,高亮的组织残留区域对应-38dB附近的数据,在造影剂注入后该范围内非线性参量C/A的值变化不大。原因正是该范围对应的组织残留区域大多为强反射组织结构,血管分布很少,所以在微泡注入前后几乎不会引起非线性参量C/A的值产生变化。如图7所示,左边为注入微泡前对应的非线性参量C/A的直方图分布,右边为造影剂注入后的非线性参量C/A的直方图分布,左图的数据对应右图中较矮的区域。同时,微泡注入人体前、后直方图分布的变化表明, 微泡灌注所引起的非线性参量C/A值变化的数据主要位于-30dB到10dB的范围,绝大部分都高于组织残留的非线性参量C/A值,这刚好印证了本发明的思路——利用非线性参量C/A抑制组织残留并且不影响造影剂的灌注表现。
实施例二
本发明中,回波的非线性成分不限于非线性基波,也可以是回波中的二次谐波。
如图8所示,本发明实施例提供的一种超声造影成像方法,给出了使用二次谐波进行非线性参量成像的流程。
具体的,本发明实施例包括以下步骤:
S1、发射2个脉冲波形序列,并获取各脉冲的回波信号。所述2个脉冲具有不同的幅度权重;在本实施例中,2个脉冲的幅度权重分别为-1和1;
S2、对各脉冲的回波进行处理,提取二次谐波,并获取二次谐波的幅度信息;
S3、选择其中一个或多个脉冲的回波进行处理,提取线性基波,并获取线性基波的幅度信息;
S4、利用线性基波的幅度信息以及二次谐波的幅度信息,生成一非线性参量;
S5、将非线性参量进行成像处理。
具体地,在S2中,提取二次谐波信号的过程如图8中虚线框所示,在收到2个脉冲的回波后,首先对发射权重为-1的发射脉冲的回波进行降采样,再对发射权重为1的脉冲的回波进行延时、降采样;对两个采样信号进行拼接调制,生成的调制信号经过一个低通滤波器处理,得到二次谐波信号。
进一步地,将获得的二次谐波信号依次经过正交解调、抽取滤波和包络检测处理后,得到二次谐波的幅度信息,记为B。
在S3中,提取线性基波信号的方法可以是直接选取S1中的任何一个脉冲的回波信号作为线性基波信号;也可以是将2个脉冲的回波按照一定权重系数 组合之后的信号作为线性基波信号。本发明实施例中,选择幅度权重为1的脉冲的回波作为线性基波信号。
进一步地,将获得的线性基波信号依次经过正交解调、抽取滤波和包络检测处理之后,得到线性基波的幅度信息,记为A。
在S4中,所述非线性参量为二次谐波的幅度信息的递增函数,且为线性基波的幅度信息的递减函数。在本发明实施例中,将二次谐波的幅度与线性基波的幅度对应相除,得到非线性参量,记为B/A。
进一步地,在S4中,还包括对非线性参量进行对数压缩处理。所述对数压缩处理的方法可以是直接将非线性参量B/A进行对数压缩;还可以是先将二次谐波的幅度与线性基波的幅度分别进行对数压缩之后,再得出非线性参量,这种情况下需将二次谐波的幅度与线性基波的幅度对应相减,得到非线性参量应为B-A。
在S5中,将非线性参量进行成像处理的步骤包括亮度补偿、动态范围变换、曲线映射、DSC等。
图9为同样切面下,注入造影剂的回波数据中提取的二次谐波幅度示意图及非线性参量B/A的示意图,图10为与图9对应的直方图。由图9和图10可见,非线性参量B/A同样能够抑制组织残留,并增大信号的有效动态范围。
实施例三
本发明中,回波的非线性成分还可以是非线性基波和二次谐波的幅度之和。
本发明实施例提供的一种超声造影成像方法,给出了使用非线性基波和二次谐波的幅度之和进行非线性参量成像的流程。
具体的,本发明实施例包括以下步骤:
S1、发射4个脉冲波形序列,并获取各脉冲的回波信号。所述4个脉冲具有不同的幅度权重;在本实施例中,4个脉冲的幅度权重分别为a、-1、1和1-a,其中0<a<1;
S2、对各脉冲的回波进行处理,分别提取非线性基波和二次谐波,获取两 者的幅度信息,并求出两者的幅度信息之和;
S3、选择任何一个或多个脉冲的回波进行处理,提取线性基波,并获取线性基波的幅度信息;
S4、利用线性基波的幅度信息以及非线性基波与二次谐波的幅度信息之和,生成一非线性参量;
S5、将非线性参量进行成像处理。
在S2至S3中,获取非线性基波、二次谐波和线性基波的幅度信息的具体方法与实施例一和实施例二所述的方法相同,在此不再赘述。
作为改进,在S2中,可以选择S1中发射的脉冲波形序列的子集做为信号处理的基础,提取二次谐波的幅度信息。
在S4中,所述非线性参量为非线性基波和二次谐波的幅度之和的递增函数,且为线性基波的幅度信息的递减函数。在本发明实施例中,将非线性基波和二次谐波的幅度之和除以线性基波的幅度,得到非线性参量,记为(B+C)/A。
进一步地,在S4中,还包括对非线性参量进行对数压缩处理。所述对数压缩处理的方法可以是直接将非线性参量(B+C)/A进行对数压缩;还可以是先将非线性基波和二次谐波的幅度之和以及线性基波的幅度分别进行对数压缩之后,再得出非线性参量,这种情况下需将非线性基波和二次谐波的幅度之和与线性基波的幅度对应相减,得到非线性参量应为(B+C)-A。
在S5中,将非线性参量进行成像处理的步骤包括亮度补偿、动态范围变换、曲线映射、DSC等。
实施例四
本发明实施例提供了一种超声造影成像装置,用于使用上述方法进行超声造影成像。
具体地,所述超声造影成像装置包括:
超声探头,用于发射不同幅度权重的脉冲波形序列;
回波接收模块,用于接收超声探头发射出的脉冲的回波信号;
计算模块,用于分别计算回波接收模块中接收到的回波信号的线性成分和非线性成分的幅度信息,并利用非线性成分与线性成分的幅度信息,生成一非线性参量;所述非线性参量为非线性成分的幅度信息的递增函数,且为线性成分的幅度信息的递减函数;
图像处理模块,用于将计算模块生产的非线性参量进行成像处理。
本发明结合不同组织和(毛细)血管在造影灌注过程中的不同表现,提出了一种新的造影成像方法,即在非线性基波检测技术的基础上,直接利用回波的线性成分本身抑制造影图像的组织残留,尤其是血管分布较少的强反射组织的残留,同时不影响其余区域的造影表现。本发明的特点是同时利用回波的线性成分和非线性成分的幅度信息,生成非线性参量,对此参量进行处理后成像,可有效抑制组织残留、增加造影剂信号动态范围,从而提升造影图像的CTR和对比分辨率。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (8)

  1. 一种超声造影成像方法,其特征在于,包括:
    S1、发射多个脉冲波形序列,并获取各脉冲的回波信号;
    S2、对各脉冲的回波进行处理,提取回波的非线性成分,并获取非线性成分的幅度信息;
    S3、选择任何一个或多个脉冲的回波进行处理,提取回波的线性成分,并获取线性成分的幅度信息;
    S4、利用非线性成分与线性成分的幅度信息,生成一非线性参量;所述非线性参量为非线性成分的幅度信息的递增函数,且为线性成分的幅度信息的递减函数;
    S5、将非线性参量进行成像处理。
  2. 根据权利要求1所述的超声造影成像方法,其特征在于,在S1中,所述多个脉冲具有不同的幅度权重。
  3. 根据权利要求1所述的超声造影成像方法,其特征在于,所述非线性成分为回波的非线性基波或二次谐波。
  4. 根据权利要求1所述的超声造影成像方法,其特征在于,所述非线性成分为回波的非线性基波与二次谐波之和。
  5. 根据权利要求1所述的超声造影成像方法,其特征在于,所述线性成分为回波的线性基波。
  6. 根据权利要求5所述的超声造影成像方法,其特征在于,所述线性基波为S1中其中一个脉冲的回波信号,或者为将多个脉冲的回波按照一权重系数组 合后的信号。
  7. 根据权利要求1所述的超声造影成像方法,其特征在于,在S4中,还包括对非线性参量进行对数压缩处理。
  8. 一种使用权利要求1至7任一所述的方法进行超声造影成像的装置,其特征在于,包括:
    超声探头,用于发射不同幅度权重的脉冲波形序列;
    回波接收模块,用于接收超声探头发射出的脉冲的回波信号;
    计算模块,用于分别计算回波接收模块中接收到的回波信号的线性成分和非线性成分的幅度信息,并利用非线性成分与线性成分的幅度信息,生成一非线性参量;所述非线性参量为非线性成分的幅度信息的递增函数,且为线性成分的幅度信息的递减函数;
    图像处理模块,用于将计算模块生产的非线性参量进行成像处理。
PCT/CN2015/076047 2015-04-08 2015-04-08 一种超声造影成像方法及装置 WO2016161574A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580007455.9A CN106061396B (zh) 2015-04-08 2015-04-08 一种超声造影成像方法及装置
PCT/CN2015/076047 WO2016161574A1 (zh) 2015-04-08 2015-04-08 一种超声造影成像方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076047 WO2016161574A1 (zh) 2015-04-08 2015-04-08 一种超声造影成像方法及装置

Publications (1)

Publication Number Publication Date
WO2016161574A1 true WO2016161574A1 (zh) 2016-10-13

Family

ID=57071736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076047 WO2016161574A1 (zh) 2015-04-08 2015-04-08 一种超声造影成像方法及装置

Country Status (2)

Country Link
CN (1) CN106061396B (zh)
WO (1) WO2016161574A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164160A (zh) * 2020-05-18 2021-07-23 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法、装置和存储介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109498057B (zh) * 2018-12-29 2021-09-28 深圳开立生物医疗科技股份有限公司 一种超声造影成像方法、系统、控制设备及存储介质
WO2022241650A1 (zh) * 2021-05-18 2022-11-24 中国科学院深圳先进技术研究院 基于超声造影成像技术的信号处理系统、方法及终端设备
CN117679073A (zh) * 2022-09-05 2024-03-12 复旦大学 微血管血流超声成像方法和系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626836B2 (en) * 2001-04-04 2003-09-30 Siemens Medical Solutions Usa, Inc. Adaptive signal processing scheme for contrast agent imaging
WO2006003556A1 (en) * 2004-06-30 2006-01-12 Koninklijke Philips Electronics, N.V. Nonlinear ultrasonic diagnostic imaging using intermodulation product signals
CN1788687A (zh) * 2004-09-24 2006-06-21 株式会社东芝 超声波诊断装置和图像数据生成方法
US8047994B2 (en) * 2003-09-09 2011-11-01 Esaote, S.P.A. Ultrasound imaging method combined with the presence of contrast media in the body under examination
CN103126725A (zh) * 2011-12-01 2013-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声成像的方法和装置
CN104427943A (zh) * 2012-07-05 2015-03-18 日立阿洛卡医疗株式会社 超声波诊断装置以及超声波图像取得方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6626836B2 (en) * 2001-04-04 2003-09-30 Siemens Medical Solutions Usa, Inc. Adaptive signal processing scheme for contrast agent imaging
US8047994B2 (en) * 2003-09-09 2011-11-01 Esaote, S.P.A. Ultrasound imaging method combined with the presence of contrast media in the body under examination
WO2006003556A1 (en) * 2004-06-30 2006-01-12 Koninklijke Philips Electronics, N.V. Nonlinear ultrasonic diagnostic imaging using intermodulation product signals
CN1788687A (zh) * 2004-09-24 2006-06-21 株式会社东芝 超声波诊断装置和图像数据生成方法
CN103126725A (zh) * 2011-12-01 2013-06-05 深圳迈瑞生物医疗电子股份有限公司 一种超声成像的方法和装置
CN104427943A (zh) * 2012-07-05 2015-03-18 日立阿洛卡医疗株式会社 超声波诊断装置以及超声波图像取得方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113164160A (zh) * 2020-05-18 2021-07-23 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法、装置和存储介质
CN113164160B (zh) * 2020-05-18 2022-09-16 深圳迈瑞生物医疗电子股份有限公司 超声造影成像方法、装置和存储介质

Also Published As

Publication number Publication date
CN106061396B (zh) 2019-05-21
CN106061396A (zh) 2016-10-26

Similar Documents

Publication Publication Date Title
JP4583068B2 (ja) 超音波診断装置
Needles et al. Nonlinear contrast imaging with an array-based micro-ultrasound system
EP1501419B1 (en) Contrast-agent enhanced color-flow imaging
JP4945040B2 (ja) 超音波診断装置
US20130094729A1 (en) Singular value filter for imaging or detection
WO2016161574A1 (zh) 一种超声造影成像方法及装置
US11786216B2 (en) Ultrasound contrast enhanced imaging method and ultrasound imaging system
Shen et al. Pulse inversion techniques in ultrasonic nonlinear imaging
CN108135566B (zh) 一种增强超声造影图像的方法、系统及超声造影成像设备
CN103619262A (zh) 超声波诊断装置、图像显示方法以及图像处理装置
Stanziola et al. Ultrasound imaging with microbubbles [life sciences]
JP2004180784A (ja) 超音波診断装置
Yildiz et al. Correction of non-linear propagation artifact in contrast-enhanced ultrasound imaging of carotid arteries: Methods and in vitro evaluation
US20020165454A1 (en) Ultrasonic diagnostic apparatus and control method thereof
JP2004181209A (ja) 超音波診断装置
CN104720850B (zh) 一种超声造影成像方法及造影图像的区域检测、显像方法
Needles et al. High-frequency subharmonic pulsed-wave Doppler and color flow imaging of microbubble contrast agents
Harput et al. Separating the second harmonic response of tissue and microbubbles using bispectral analysis
Fang et al. Discrimination between Newly Formed and Aged Thrombi Using Empirical Mode Decomposition of Ultrasound B‐Scan Image
JP3908348B2 (ja) 超音波診断装置
WO2022006735A1 (zh) 超声造影成像方法、超声成像装置和存储介质
JP4393554B2 (ja) 超音波診断装置
Song et al. Ultrasound harmonic imaging using nonlinear chirp for cardiac imaging
Wu et al. Factor analysis in both spatial and temporal domains of color blooming artifacts in ultrasound investigations utilizing contrast agents
JP2023109051A (ja) 超音波診断装置、超音波診断方法、及び超音波診断プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888131

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 23.01.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888131

Country of ref document: EP

Kind code of ref document: A1