WO2016159639A1 - Method for manufacturing transparent electrode and apparatus for manufacturing transparent electrode - Google Patents

Method for manufacturing transparent electrode and apparatus for manufacturing transparent electrode Download PDF

Info

Publication number
WO2016159639A1
WO2016159639A1 PCT/KR2016/003218 KR2016003218W WO2016159639A1 WO 2016159639 A1 WO2016159639 A1 WO 2016159639A1 KR 2016003218 W KR2016003218 W KR 2016003218W WO 2016159639 A1 WO2016159639 A1 WO 2016159639A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiber web
electroplating
electrospinning
nanofiber
transparent electrode
Prior art date
Application number
PCT/KR2016/003218
Other languages
French (fr)
Korean (ko)
Inventor
윤석구
안성필
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2016159639A1 publication Critical patent/WO2016159639A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides

Definitions

  • the present invention relates to a transparent electrode manufacturing apparatus and a method for manufacturing the same, and includes a thin film display such as an OLED and an LCD, an electrochromic window, a transparent thin film transistor, a touch screen panel, The present invention relates to a method and apparatus for manufacturing a transparent electrode using nanofibers that can improve the performance of a transparent electrode used in advanced electronic products such as a solar cell.
  • ITO which is a widely used transparent electrode, has the performance of sheet resistance of 1 ⁇ 10 3 ⁇ / sq and transmittance of about 85%, but has reached the limit to realize higher performance. Due to the nature of the materials used, flexible ITO transparent electrodes are difficult to manufacture due to bending, and durability due to oxidation of materials is weak.
  • the present invention utilizes nanofiber line patterning technology and sputtering technology to enable the use of metals with excellent electrical conductivity and at the same time to realize high performance in a small amount, thereby providing a great advantage in efficiency and cost. It is an object to provide a manufacturing apparatus and a manufacturing method.
  • the transparent electrode obtained by the nanofiber line patterning of the present invention it is possible to secure high permeability to improve the quality satisfaction, and also to increase the adhesion of the metal nanofibers and prevent the oxidation of the metal nanofibers in the sputtering process.
  • the purpose of the present invention is to provide a method and apparatus for manufacturing a transparent electrode which can be applied to a flexible electronic product, which can be applied to a substrate having various finishes and sizes, which can greatly improve the durability of the product and can be applied to a flexible electronic product. do.
  • the present invention provides an electrospinning step of forming a nanofiber web in which a polymer spinning liquid is discharged through high voltage through an electrospinning nozzle of an electrospinning module to form a fiber, and electroplating the nanofiber web with a predetermined metal in an electroplating module. It provides a method for manufacturing a transparent electrode having an electroplating step.
  • a nanofiber web frame is applied to the electrospinning nozzle through the high voltage unit 200 of the electrospinning module and grounded at a corresponding position of the electrospinning nozzle.
  • the nanofiber web may be formed in the nanofiber web frame.
  • the electroplating anode formed of a predetermined plating metal in the electroplating module tank of the electroplating module and a plating solution in which the nanofiber web frame can be immersed
  • An immersion step of immersing the electroplating anode and the nanofiber web frame And applying a voltage to the nanofiber web frame and the electroplating anode as an electroplating power supply unit of the electroplating module.
  • the transparent electrode further comprising a plating enhancement film forming step of forming a plating enhancement film on the nanofiber web formed on the nanofiber web frame in the nanofiber web frame between the electrospinning step and the electroplating step with a plating enhancement metal. It can be provided.
  • the predetermined plating enhancing metal includes at least one of gold and platinum, and the forming of the plating enhancing film is performed by sputtering deposition of the predetermined plating promoting metal on the nanofiber web sputtering module. It may be a step.
  • the polymer spinning liquid is discharged through the high voltage through the electrospinning nozzle of the electrospinning module to the nanofiber web to support the nanofiber web
  • a web reinforcing step of forming a reinforcing web may be further provided.
  • the nanofiber web transfer step of transferring the nanofiber web frame on a nanofiber substrate may be provided.
  • the nanofiber substrate may be at least one of glass, polyimide (Polyimide), polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS).
  • Polyimide Polyimide
  • PET polyethylene terephthalate
  • PDMS polydimethylsiloxane
  • the cleaning step of cleaning the nanofiber web transferred to the substrate may be further provided.
  • the protective film forming step of forming a protective film of the nanofiber web transferred to the substrate with a predetermined oxide may be further provided.
  • the preset oxide may be at least one of ITO, ZnO, IZO, AZO.
  • the ground electrode formed on the stage on which the nanofiber web frame is disposed is disposed so that two or more of a pair facing each other with the nanofiber web frame interposed therebetween.
  • the ground electrode pairs may be sequentially charged alternately.
  • the present invention provides an electrospinning module for forming a nanofiber web in which a polymer spinning solution is discharged through a high voltage through an electrospinning nozzle to form a fiber, and the nanofiber web is electroplated with a predetermined metal.
  • an electroplating module for electroplating in the electrospinning module, wherein the electrospinning module includes a stage on which the nanofiber web frame is disposed to face the electrospinning nozzle to form the nanofiber web, and applies a high voltage to the electrospinning nozzle.
  • a high voltage generator And a grounding power source that forms an electric field in a space between the electrospinning nozzle and the fiber discharged from the electrospinning nozzle so as to be induced by an electrostatic force, wherein the grounding power sources are: facing each other with the nanofiber web frame therebetween.
  • a transparent electrode manufacturing apparatus comprising a ground electrode pair disposed so that two or more of the pairs intersect with each other, and a movable terminal capable of intermittent connection with the ground electrode pair.
  • the present invention provides a method and apparatus for manufacturing a transparent electrode having a nanofiber web and a nanofiber substrate using electrospinning and electroplating, by varying the type of metal used in various electroplating to suit the purpose, Applicable to the application.
  • the transparent electrode manufacturing method and apparatus of the present invention by using a nanofiber line patterning technology and sputtering technology, it is possible to use a metal with excellent electrical conductivity and at the same time to realize a high performance in a small amount, It can provide a great effect in terms of cost.
  • the transparent electrode manufacturing method and apparatus of the present invention in the case of the transparent electrode obtained by nanofiber line patterning can ensure a high permeability to improve the quality satisfaction, and also increase the adhesion of the metal nanofibers in the sputtering process And it is possible to obtain the anti-oxidation effect of the metal nanofibers, greatly improve the durability of the product and can be applied to a substrate having a variety of finishes and sizes can be applied to the flexible electronic products strong in bending characteristics.
  • FIG. 1 and 2 are schematic and detailed configuration diagrams conceptually showing the configuration of a method for manufacturing a transparent electrode according to an embodiment of the present invention.
  • Figure 3 (a), (b) is a photograph of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention, the copper-coated nano-attached in a non-planar position, such as a human hand It is a photographic diagram showing a state of being energized by connecting a photo of a transparent electrode implemented with a nanofiber web having fibers and connecting a battery and an LED to the transparent electrode.
  • Figure 4 (a), (b) is a photograph of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention, the copper-coated nanofibers attached to a non-planar position, such as leaves It is a photographic diagram showing a state of being energized by connecting a battery and an LED to a transparent electrode and a transparent electrode formed of a nanofiber web provided thereon.
  • Figure 5 (a) is a sheet resistance diagram
  • (b) to (d) is a photograph of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention
  • the nanofiber substrate is implemented in PDMS Is a photograph showing a transmission state of the transparent electrode according to the present invention
  • (e) is a transmittance-wavelength diagram of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention.
  • 6 and 7 are diagrams showing another modified example of the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention.
  • FIG. 9 is an enlarged diagram of nanofibers of a nanofiber web formed on a nanofiber substrate of a transparent electrode produced by the manufacturing method of the present invention.
  • the present invention has excellent thermal conductivity. It provides a device for producing a nano-textured film as a fiber film having a high specific surface area covered with a metal that generates high heat, through the nano-textured film of the ecological imitation devil visible structure produced through the present invention, With its heat dissipation capability, it can be easily removed from the heat generated from various electrical, electronic and mechanical products.
  • the transparent electrode manufacturing method according to an embodiment of the present invention includes an electrospinning step (S10) and an electroplating step (S40).
  • the transparent electrode manufacturing apparatus 1 of the present invention may include a control unit 20 and a storage unit 30.
  • the control unit 20 controls the operation of the electrospinning module 10 and the electroplating module 11a. In some cases, it is possible to control the operation of the transfer unit for transporting the nanofiber web frame or the substrate to be used in some cases, and simultaneously control the operation of a roll-to-roll module (not shown) as a continuous process.
  • the storage unit 30 is connected to the control unit 20 and controls the data according to the operation mode, including preset data such as the radiation amount of the polymer spinning solution, the interruption order of the ground power cutoff unit, and the reference power value of the electroplating power supply unit. ) To enable a certain smooth operation.
  • the polymer spinning liquid is discharged through a high voltage through the electrospinning nozzle 100 of the electrospinning module 10 to form a nanofiber web.
  • the electrospinning module 10 in which the electrospinning step S10 is performed includes an electrospinning nozzle 100, a high voltage generator 200, and a ground power source 300 connected to the ground plate 310.
  • the electrospinning nozzle 100 is configured to discharge the polymer spinning liquid through a high voltage and to form a fiber, and supply the polymer spinning liquid from the polymer spinning liquid supply unit 110 connected to the electrospinning nozzle 100 as shown in FIG. 1. It is configured in such a way that it receives and discharges.
  • a syringe pump for supplying a fixed amount of the polymer spinning solution to the polymer spinning solution is used.
  • the polymer spinning solution is prepared by preparing 8 wt% of polyacrylonitrile in dimethylformamide and using a syringe pump (not shown) at a temperature of 24 ° C. and a humidity of 60%.
  • the electrospinning was performed by supplying a flow rate of / hr and applying a voltage of 7 kV in the high voltage generator 200 described below.
  • the polymer spinning solution may be a solution of a mixture of polyvinyl alcohol (PVA) and water other than polyacrylonitrile (polyacrylonitrile), using a polymer having excellent mechanical properties such as nylon
  • PVA polyvinyl alcohol
  • polyacrylonitrile polyacrylonitrile
  • a variety of polymer materials may be used in a range that takes a structure capable of discharging through an electrospinning nozzle, such as a strong acid solution such as formic acid.
  • the electrospinning nozzle 100 may be a nozzle in the form of a cone jet to receive and discharge the polymer spinning liquid from a syringe pump (not shown).
  • the high voltage generator 200 applies a high voltage to the electrospinning nozzle 100, and correspondingly, a separate ground power source 300 is provided at a position spaced apart from the electrospinning nozzle 100.
  • the ground power supply 300 may be grounded to the nanofiber web frame 301 as shown in FIG. 1.
  • a separate stage may be provided, a ground electrode connected to the ground power source may be disposed on the stage, and the nanofiber web frame 300 may be connected to the ground electrode.
  • the nanofiber web frame 301 is formed in the rectangular frame of the conductive material in the present embodiment, which is not limited to this as an example for explaining the present invention.
  • a high voltage is applied from the high voltage generator 200, and the polymer spinning liquid is discharged from the electrospinning nozzle at the same time, the electrospinning nozzle 100 and the nanofiber web frame (
  • the polymer spinning liquid charged by the electric field formed between the 301 is fiberized and attached to the nanofiber web frame 301 so that the polymer spinning liquid forms the nanofiber web 3a, which is formed on the nanofiber web frame 301.
  • the nanofiber webs 3a are randomly formed.
  • the nanofiber web 3a formed on the nanofiber web frame 301 is not biased to either side of the nanofiber web frame 301 due to random formation when a predetermined time spinning of the polymer spinning solution is achieved. Attached to the nanofiber web frame 301 is formed.
  • the electrospinning module of the transparent electrode manufacturing apparatus 1 of the present invention is not limited to the above configuration, various configurations are possible. That is, as shown in FIGS. 6 and 7, the electrospinning module 10a includes an electrospinning nozzle 100, a stage 3, a high voltage generator 200, and a ground power supply 300. 100, the high voltage generator 200, and the ground power source 300 are the same as described above.
  • the stage 3 is disposed opposite to the electrospinning nozzle 100, and a nanofiber web frame 301 in which the nanofiber web 2 is formed may be seated on one surface of the stage 3.
  • stage 3 On one surface of the stage 3 is provided with a stage mounting portion (not shown) in which the nanofiber web frame 301 is seated and held, and the nanofiber web frame 301 may be held in place.
  • the stage 3 is provided with ground electrode portions 3a, 3b, 3c, and 3d, and the nanofiber web frame 301 is connected to the ground power supply 300 through the ground electrode portions 3a, 3b, 3c, and 3d. Can be.
  • the ground electrode portions 3a, 3b, 3c, and 3d include ground electrode pairs 3b and 3c and a ground movable terminal 3d, and the ground controller 3a applies a ground control signal to the ground movable terminal 3d. To implement a predetermined ground movable terminal function.
  • the ground electrode pairs 3b and 3c are formed on one surface of the stage 3, and two or more pairs of mutually facing each other with the nanofiber web frame 301 interposed therebetween are disposed so that two or more pairs cross each other, that is, The virtual line segments formed by the ground electrode pairs facing each other are arranged such that the virtual line segments formed by the other ground electrode pairs cross each other. That is, as shown in FIGS. 6 and 7, the ground electrode 3b is a pair of ground electrodes facing each other, and the other ground electrode 3c is another pair of ground electrodes facing each other, and these pairs Take the structure of 90 degrees cross each other.
  • the ground movable terminal 3d is connected to a predetermined actuator, for example, an electric motor, and operated according to the ground control signal of the ground control unit 3a, so that the ground movable terminal 3d achieves a predetermined rotation operation.
  • the ground movable terminal 3d forms an always-connected state with the ground power supply 300.
  • the contact state with the ground electrode may be changed by the rotation of the ground movable terminal 3d.
  • the ground movable terminal is rotated by the rotation of the ground movable terminal 3d.
  • the nanofiber webs 2 formed in the nanofiber web frame 301 continuously formed in the direction in which the spinning solution is perpendicular to each other may have a structure that is substantially orthogonally arranged.
  • the electroplating step S40 is executed.
  • the nanofiber web 2 formed in the electrospinning step S10 is electroplated in the electroplating module 11 with a predetermined metal.
  • the electroplating module 11 may generate a control signal for controlling the power supply of the electroplating power supply 11b of the electroplating module 11 from the control unit 20.
  • the electroplating module 11 includes an electroplating module water tank 11a, an electroplating anode 11c, and an electroplating power supply portion 11b.
  • the electroplating module bath 11a accommodates the plating liquid 11e in which the nanofiber web frame 301 formed by collecting and attaching the nanofiber web 2 is immersed, and the electroplating anode 11c is a plating solution in the electroplating module bath ( 11e) and is immersed and formed of a predetermined plating metal, and the electroplating power supply 11b applies a voltage to the film base 500 and the electroplating anode 11c from which the fibers 600 are collected.
  • the electroplating power supply portion 11b is a DC power supply in the drawing, it is apparent from the present invention to form a structure applicable to an AC power supply at an actual manufacturing site.
  • the plating solution 11e includes a metal to be electroplated as an electrolyte solution, which is determined according to a predetermined plating metal of the electroplating anode 11c.
  • the plating liquid may include a Cu plating liquid, and various selections are possible within a range of forming a predetermined electroplating.
  • the time during which the nanofiber web frame 301 is immersed in the plating solution 11e may be variously changed according to design specifications.
  • the metal forming the electroplating anode expands the surface area, that is, the outer surface of the fiber is uniformly uniformed in one layer thickness. It is possible to maximize the surface area of the metal plated coated fiber on the film base by forming a continuous continuous growth structure from the plated surface coated with metal to the outer surface as the tree branches rather than coating.
  • the process in the electroplating module is, for example, when the electroplating anode 11c in which the predetermined electroplating metal is made of copper (Cu) is provided, the plating solution 11e is also an electrolyte solution containing a copper (Cu) component. Is formed.
  • the electroplating step S40 of the present invention includes an immersion step S41 and a power applying step S43.
  • the immersion step S41 the electroplating module tank 11a of the electroplating module 11 is provided.
  • the nano-electrode (11c) and the nanofiber web frame (301) formed of a predetermined plating metal in the accommodating plating solution that can be immersed and connected to the cathode of the electroplating anode (11c) and the electroplating power supply (11b)
  • the fiber web frame 301 is immersed, and in the power application step S43, the control unit 20 is an electroplating power supply 11b of the electroplating module 11, and the nanofiber web frame 301 and the electroplating anode 11c. Apply voltage to it.
  • the electroplating anode 11c is formed of a copper metal plate, and the plating solution is formed by mixing sulfuric acid, hydrochloric acid, copper sulfate, formaldehyde, and distilled water, 10 g of sulfuric acid, 1 g of hydrochloric acid, and copper sulfate. 32 g of copper sulfate and 20 g of formaldehyde are mixed with 200 mL of deionized water. Electroplating was performed for about 3 seconds at a current density of 100 mA / cm 2 , which is one example. The present invention is capable of various modifications within the range of the electroplating structure.
  • a separate cleaning step and / or strengthening step may be further provided after the electroplating step. That is, a strengthening step of supporting the formaldehyde solution for a predetermined time after the electroplating step and a cleaning step of cleaning the foreign matter after the strengthening step may be further provided.
  • a 10 minute formaldehyde solution was immersed in a 10% formaldehyde solution for 5 minutes and then rinsed with distilled water for 1 minute to perform a cleaning process to take a structure for strengthening the bond between the copper metal, which is an electroplating material, and nanofibers covered with gold / platinum.
  • various modifications are possible.
  • the method of manufacturing a transparent electrode of the present invention may further include a plating enhancement film forming step (S20) between the electrospinning step and the electroplating step.
  • Plating enhancement film forming step (S20) is to form a plating enhancement film with a predetermined plating enhancement metal on the nanofiber web 2 formed on the nanofiber web frame.
  • the plating enhancement film forming step S20 is performed in the nanofiber web sputtering module 9, but the plating enhancement film forming step of the present invention may be performed by another deposition method in addition to sputtering.
  • the nanofiber web sputtering module 9 corresponds to a conventional sputtering device.
  • the nanofiber web frame 301 An electric field is applied to the nanofiber web frame 301 in which the nanofiber web is formed in the vacuum sputtering chamber (not shown) and the plating enhancing metal, a plasma is formed in the sputtering chamber, and an inert gas, argon, is accelerated to the plating promoting metal 9a. It is possible to take a structure in which the plating enhancement metal particles generated by the collision is formed to the nanofiber web frame side.
  • the preset plating enhancing metal comprises one or more of gold (Au) and platinum (Pt).
  • the plating enhancement film forming step (S20) a thin coating of gold or platinum on the surface of the nanofibers formed by the nanofiber web is performed, followed by the electroplating step (S40).
  • the particles may be plated on the surface of the nanofibers constituting the nanofiber web more quickly and easily.
  • sputtering deposition in the plating enhancement film forming step was performed for 200 seconds in gold (Au) under a 0.08 Pa atmosphere.
  • the transparent electrode manufacturing apparatus and the manufacturing method of the present invention are not limited to opposing sputtering modules, and various methods are possible in a range of forming a plating enhancement film on a nanofiber web.
  • the transparent electrode manufacturing method of the present invention after the electroplating step before the electroplating step, if the plating enhancement film forming step (S20) is optionally further provided, after the plating enhancement film forming step web strengthening step (S30) It may be further provided.
  • the web reinforcing step (S30) the reinforcing web 4 supporting the nanofiber web 2 by discharging the polymer spinning liquid through the high voltage through the electrospinning nozzle 100 of the electrospinning module 10 to the nanofiber web.
  • the polymer spinning liquid for forming the reinforcing web may be formed of the same material as the material forming the nanofiber web, and in some cases, may form the reinforcing web with different polymer spinning liquid,
  • the thickness is also adjustable. In the case of the reinforcing web as described above, it may be formed in a random manner, or various configurations are possible, such as taking an orthogonal form using an electrospinning module arranged orthogonally.
  • the nanofibers constituting such a reinforcing web serves as a supporting structure that allows the nanofibers coated with gold or platinum to maintain their shape without breaking in a subsequent electroplating step (S40). That is, when the nanofibers of the reinforcing web do not form a support structure, the nanofibers formed in the step S10 are immersed in the plating solution of the electroplating module and drawn out in the process of capillary action. A fine attraction occurs between the solvent and the nanofibers in the nanofiber web, so that the nanofibers of the nanofiber web are broken. This structure can be prevented by forming a structure supported by the reinforcing web.
  • the transparent electrode manufacturing method of the present invention performs the nanofiber web transfer step (S50) after the electroplating step is completed.
  • the nanofiber web transfer step S50 the nanofiber web 2 of the nanofiber web frame 301 is transferred onto the nanofiber substrate 2a.
  • the nanofiber substrate 2a transfers the nanofiber web 2 to the nanofiber substrate 2a when the nanofiber substrate 2a includes at least one of glass, polyimide, polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS). .
  • the transfer process may be performed through a conventional transfer process.
  • a small amount of methanol is applied to the nanofiber substrate 2a on which the nanofiber web 2 is to be transferred, and then a transfer process is performed to produce the nanofiber substrate 2a. It is also possible to enhance the transfer adhesion of the nanofiber web 2 attached to it.
  • the nanofiber web frame 301 is placed on the nanofiber substrate 2a to bring the nanofiber web 2 into close contact with the nanofiber substrate 2a.
  • the halogel lamp is operated to transfer the nanofiber web 2 to the nanofiber substrate 2a.
  • the halogen lamp forms an irradiation state for about 5 hours with a 50W halogen lamp.
  • the nanofiber substrate 2a may be formed on an amorphous material such as glass, and may be formed of a polymer compound such as polyimide, polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS). It may be implemented as a substrate, the thickness of the substrate can be various configurations depending on the design specifications. For example, when a predetermined rigidity is required, the nanofiber substrate 2a may be implemented as a substrate having a predetermined thickness, or may be formed as a film-based film base and attached to other components. ) Can be variously modified according to the design purpose.
  • a polymer compound such as polyimide, polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS).
  • PET polyethylene terephthalate
  • PDMS polydimethylsiloxane
  • the method for manufacturing a transparent electrode of the present invention may further include a cleaning step S60 as a subsequent process executed after the nanofiber web transfer step S50 is completed.
  • a cleaning step S60 foreign matter attached to the nanofiber web 2 transferred and attached to the nanofiber substrate 2a may be removed, and the transparent electrode formed by the nanofiber web is implemented by performing the cleaning step. Transparency can be further improved.
  • the fibers constituting the reinforcing web formed to support the nanofiber web in the electroplating step are disposed outside the nanofiber web.
  • the gap between the space where the nanofiber web forming the electrode is formed and the space other than the space may be filled to impede the permeability in terms of the overall configuration, which is unnecessary by cleaning the nanofiber web 2 as the final product performed in the cleaning step S60. It is also possible to exclude the reinforced web.
  • a dimethylformamide solution is sprayed onto the nanofiber web 2 in which foreign substances or reinforcing webs remain, thereby forming a random-type reinforcing web formed in the foreign substance to web reinforcing step. It is also possible to remove the nanofibers, thereby improving the transmittance of the final transparent electrode.
  • a protective film forming step S70 may be further provided to protect the nanofiber web.
  • the protective film forming step S70 is performed after the cleaning step S60 is performed, and the configuration of the step may be variously modified according to manufacturing design specifications.
  • a protective film is formed by using a predetermined oxide on the nanofiber web 2 transferred to the nanofiber substrate 2a.
  • the protective film forming step (S70) is executed in the sputtering module 9b.
  • the sputtering module 9b used in this embodiment is a magnetron sputtering device, unlike a physical deposition method using an impact amount in which particles of argon inert gas collide with a metal target charged in a plasma atmosphere.
  • HIPIMS High Power Impulse Magnetron Sputtering
  • Configuration is possible.
  • the preset oxide used in this embodiment is implemented with IZO, but the present invention is not limited thereto. That is, the preset oxide used in the protective film forming step S70 may be one or more of ITO, ZnO, IZO, and AZO.
  • the protective film formed on the sputtering module 9b is applied on one surface of the nanofiber web 2 formed on one surface of the nanofiber substrate 2a, thereby forming a predetermined protective film or protective layer.
  • the high power impulse magnetron sputtering (HIPIMS) device described above was selected to enhance the selection and concentration of the deposition region.
  • the IZO is 150 W power, 4 sccm of argon (Ar) gas flow rate, and vacuum pressure.
  • the metal fiber is more strongly adhered to the substrate so that the nanofiber web (2), the surface of the fiber is copper plated to be more closely adhered to the nanofiber substrate (2a), and at the same time IZO
  • a very thin oxide film of 10 nm or less as a protective film implemented as a coating layer, the nanofibers in the fine copper-coated nanofiber web (2) is not oxidized, it is possible to significantly increase the durability to maintain performance for a long time.
  • Figure 2 shows an enlarged diagram of the copper-coated nanofibers of the nanofiber web formed by the transparent electrode manufacturing method of the transparent electrode manufacturing apparatus of the present invention.
  • SEM pictures ((a), (b), (c)) of fine copper nanofibers are shown, with perfect bonding between the copper plated coated nanofibers of the fine nanofiber webs.
  • 3 (a), 3 (b) and 4 (a), (b) each show a nanofiber web having copper coated nanofibers attached to non-planar positions, such as a human hand or a leaf.
  • a picture of a transparent electrode and a picture of a state capable of conducting electricity by connecting a battery and an LED to the transparent electrode are shown.
  • FIG. 5 (a) to (e) shows a diagram of a transparent electrode implemented as a nanofiber substrate with a nanofiber web formed in accordance with an embodiment of the present invention, (a) a sheet resistance-transmittance of the transparent electrode
  • the diagram shows that the transparent electrode of the present invention is represented by a red dot so that the sheet resistance is significantly reduced compared to other electrodes, and thus the conductivity is significantly improved.
  • (b) to (d) of FIG. 5 is a photograph showing the transmission state of the transparent electrode according to the present invention when the nanofiber substrate is implemented by PDMS, the transmittance of the transparent electrode is shown in (e) of FIG.
  • the wavelength diagram is shown, whereby the transmittance is kept flat over a wide range of wavelengths, thereby making it possible to confirm the versatility of the wavelength band of the transparent electrode according to the present invention. You can see the widening.
  • Figure 8 shows the results of the durability test of the film-type transparent electrode calculated by the manufacturing method of the present invention, (a) is a bending curvature test, (b) is a bending durability test, (c) As a diagram of the stretch test results, it can be seen that the bending curvature has an excellent value, the number of bending repetitions is excellent, the elongation with respect to elongation is excellent, and the durability of the fracture is reduced.
  • nanofibers of a nanofiber web formed on a nanofiber substrate of a transparent electrode produced by the manufacturing method of the present invention as shown in (a) / (b), (c) / (d)
  • the nanofibers can have excellent electrical properties by forming a fully bonded state by copper metal to facilitate the movement of electrons and rapidly reduce the sheet resistance.
  • the transparent electrode obtained through the transparent electrode manufacturing method and the transparent electrode manufacturing apparatus of the present invention can be used in various fields such as electronic products, mechanical devices, etc. in fields requiring heat dissipation, heat transfer, heat reception, and the like, such as heat dissipation or heat transfer.
  • the present invention provides an apparatus and method for manufacturing a transparent electrode using nanofiber line patterning technology and sputtering technology, but in addition to the transparent electrode, it is possible to use a metal having excellent electrical conductivity and at the same time to realize high performance in a small amount. Therefore, the present invention may be applied to various fields such as an electric device to have a great advantage in efficiency and cost.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

Provided is a method for manufacturing a transparent electrode, including: an electrospinning step for forming a nanofiber web fiberized by discharging a polymer spinning solution through an electrospinning nozzle of an electrospinning module by means of a high voltage; and an electroplating step for electroplating the nanofiber web by a predetermined metal in an electroplating module.

Description

투명 전극 제조 방법 및 투명 전극 제조 장치Transparent electrode manufacturing method and transparent electrode manufacturing apparatus
본 발명은 투명 전극 제조 장치 및 이의 제조 방법에 관한 것으로서, OLED, LCD와 같은 박막 디스플레이, 전기변색 창(Electrochromic window), 투명박막트랜지스터(Transparent thin film transistor), 터치스크린패널(Touch screen panel), 태양전지(Solar cell)등과 같은 첨단 전자제품에 사용되는 투명전극의 성능을 높일 수 있는 나노 섬유를 활용한 투명전극 제조 방법 및 장치에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a transparent electrode manufacturing apparatus and a method for manufacturing the same, and includes a thin film display such as an OLED and an LCD, an electrochromic window, a transparent thin film transistor, a touch screen panel, The present invention relates to a method and apparatus for manufacturing a transparent electrode using nanofibers that can improve the performance of a transparent electrode used in advanced electronic products such as a solar cell.
전기·전자 제품의 오랜 수명과 장시간 안정적인 사용을 위해서는 내구성에 대한 요구가 증대되고 있는데, 다양한 전기 전자 제품에 사용되는 전극에도 동일한 문제점이 대두되고 있다. There is an increasing demand for durability for long life and stable use of electrical and electronic products, but the same problem is also raised for electrodes used in various electrical and electronic products.
즉, 기존에 널리 사용되는 투명전극인 ITO의 경우는 면저항 1~103 Ω/sq 및 투과도 85 % 정도의 성능을 보유하고 있으나, 더 높은 성능을 구현하는데 한계점에 도달하였으며, ITO 투명전극 제조에 사용되는 재료의 특성상 구부림에 취약하여 유연(flexible) ITO 투명전극 제조가 어렵고, 재료의 산화 등에 의한 내구성이 취약하여, 최근 주목 받고 있는 유연 첨단전자제품에 적용이 어려운 점이 존재한다.In other words, ITO, which is a widely used transparent electrode, has the performance of sheet resistance of 1 ~ 10 3 Ω / sq and transmittance of about 85%, but has reached the limit to realize higher performance. Due to the nature of the materials used, flexible ITO transparent electrodes are difficult to manufacture due to bending, and durability due to oxidation of materials is weak.
본 발명은 나노섬유 라인패터닝 기술 및 스퍼터링 기술을 이용하여, 전기 전도성이 뛰어난 금속을 사용할 수 있고 동시에 적은 양으로도 높은 성능의 구현이 가능하도록 함으로써, 효율 및 비용면에서 큰 이점을 구비하는 투명 전극 제조 장치 및 제조 방법을 제공하는 것을 목적으로 한다. The present invention utilizes nanofiber line patterning technology and sputtering technology to enable the use of metals with excellent electrical conductivity and at the same time to realize high performance in a small amount, thereby providing a great advantage in efficiency and cost. It is an object to provide a manufacturing apparatus and a manufacturing method.
또한, 본 발명의 나노 섬유 라인패터닝에 의하여 얻어지는 투명 전극의 경우 높은 투과도 확보가 가능하여 품질 만족도를 개선시킬 수 있고, 더불어, 스퍼터링 공정 과정에서 금속나노섬유의 접착력 상승 및 금속나노섬유의 산화방지 효과를 얻을 수 있어, 제품의 내구성을 크게 향상 시킬 수 있고 다양한 종료 및 크기를 지닌 기판에 적용 가능하여 구부림 특성에 강하여 유연 전자제품이 적용이 가능한 투명 전극을 제조하는 방법 및 장치를 제공하는 것을 목적으로 한다. In addition, in the case of the transparent electrode obtained by the nanofiber line patterning of the present invention, it is possible to secure high permeability to improve the quality satisfaction, and also to increase the adhesion of the metal nanofibers and prevent the oxidation of the metal nanofibers in the sputtering process. The purpose of the present invention is to provide a method and apparatus for manufacturing a transparent electrode which can be applied to a flexible electronic product, which can be applied to a substrate having various finishes and sizes, which can greatly improve the durability of the product and can be applied to a flexible electronic product. do.
본 발명은, 전기 방사 모듈의 전기 방사 노즐을 통하여 폴리머 방사액이 고전압을 통해 토출시켜 섬유화되는 나노 섬유 웹을 형성하는 일렉트로스피닝 단계와, 상기 나노 섬유 웹을 사전 설정된 금속으로 전기 도금 모듈에서 전기 도금시키는 일렉트로플레이팅 단계를 구비하는 투명 전극 제조 방법을 제공한다.The present invention provides an electrospinning step of forming a nanofiber web in which a polymer spinning liquid is discharged through high voltage through an electrospinning nozzle of an electrospinning module to form a fiber, and electroplating the nanofiber web with a predetermined metal in an electroplating module. It provides a method for manufacturing a transparent electrode having an electroplating step.
상기 투명 전극 제조 방법에 있어서, 상기 일렉트로스피닝 단계에서, 상기 전기 방사 노즐에는 상기 전기 방사 모듈의 고전압부(200)를 통하여 전압 인가되고, 상기 전기 방사 노즐의 대응되는 위치에 접지되는 나노 섬유 웹 프레임이 배치되어, 상기 나노섬유 웹은 상기 나노 섬유 웹 프레임에 형성될 수 있다. In the method of manufacturing the transparent electrode, in the electrospinning step, a nanofiber web frame is applied to the electrospinning nozzle through the high voltage unit 200 of the electrospinning module and grounded at a corresponding position of the electrospinning nozzle. In this arrangement, the nanofiber web may be formed in the nanofiber web frame.
상기 투명 전극 제조 방법에 있어서, 상기 일렉트로플레이팅 단계에서, 상기 전기 도금 모듈의 전기 도금 모듈 수조에 사전 설정 도금 금속으로 형성되는 전기 도금 애노드와 상기 나노 섬유 웹 프레임이 침지될 수 있는 도금액을 수용하고 상기 전기 도금 애노드와 상기 나노 섬유 웹 프레임을 침지시키는 침지 단계; 상기 전기 도금 모듈의 전기 도금 전원부로 상기 나노 섬유 웹 프레임과 상기 전기 도금 애노드에 전압을 인가하는 전원 인가 단계를 포함할 수 있다. In the transparent electrode manufacturing method, in the electroplating step, the electroplating anode formed of a predetermined plating metal in the electroplating module tank of the electroplating module and a plating solution in which the nanofiber web frame can be immersed An immersion step of immersing the electroplating anode and the nanofiber web frame; And applying a voltage to the nanofiber web frame and the electroplating anode as an electroplating power supply unit of the electroplating module.
상기 투명 전극 제조 방법에 있어서, 상기 일렉트로스피닝 단계 및 상기 일렉트로플레이팅 단계 사이에 상기 나노 섬유 웹 프레임에 형성된 상기 나노 섬유 웹에 사전 설정 도금 증진 금속으로 도금 증진막을 형성하는 도금 증진막 형성 단계를 더 구비할 수 있다. In the method of manufacturing the transparent electrode, further comprising a plating enhancement film forming step of forming a plating enhancement film on the nanofiber web formed on the nanofiber web frame in the nanofiber web frame between the electrospinning step and the electroplating step with a plating enhancement metal. It can be provided.
상기 투명 전극 제조 방법에 있어서, 상기 사전 설정 도금 증진 금속은 금 및 백금 중 하나 이상을 포함하고, 상기 도금 증진 막 형성 단계는 상기 사전 설정 도금 증진 금속을 상기 나노 섬유 웹스퍼터링 모듈에 스퍼터링 증착시키는 증착 단계일 수 있다. In the method for manufacturing a transparent electrode, the predetermined plating enhancing metal includes at least one of gold and platinum, and the forming of the plating enhancing film is performed by sputtering deposition of the predetermined plating promoting metal on the nanofiber web sputtering module. It may be a step.
상기 투명 전극 제조 방법에 있어서, 상기 일렉트로스피닝 단계 후 상기 일렉트로플레이팅 단계 전에, 상기 나노 섬유 웹에 전기 방사 모듈의 전기 방사 노즐을 통하여 폴리머 방사액이 고전압을 통해 토출시켜 상기 나노 섬유 웹을 지지하는 강화 웹을 형성하는 웹 강화 단계를 더 구비할 수 있다. In the method of manufacturing the transparent electrode, after the electrospinning step and before the electroplating step, the polymer spinning liquid is discharged through the high voltage through the electrospinning nozzle of the electrospinning module to the nanofiber web to support the nanofiber web A web reinforcing step of forming a reinforcing web may be further provided.
상기 투명 전극 제조 방법에 있어서, 상기 일렉트로플레이팅 단계 후, 상기 나노 섬유 웹 프레임을 나노 섬유 기판 상에 전사시키는 나노 섬유 웹 전사 단계를 구비할 수 있다. In the method of manufacturing the transparent electrode, after the electroplating step, the nanofiber web transfer step of transferring the nanofiber web frame on a nanofiber substrate may be provided.
상기 투명 전극 제조 방법에 있어서, 상기 나노 섬유 기판은 유리, 폴리이미드(Polyimide), PET(Polyethylen Terephthalate), 및 PDMS (Polydimethylsiloxane) 중의 하나 이상일 수 있다. In the method of manufacturing the transparent electrode, the nanofiber substrate may be at least one of glass, polyimide (Polyimide), polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS).
상기 투명 전극 제조 방법에 있어서, 상기 나노 섬유 웹 전사 단계 후, 상기 기판에 전사된 나노 섬유 웹을 세정하는 세정 단계를 더 구비할 수 있다. In the method of manufacturing the transparent electrode, after the nanofiber web transfer step, the cleaning step of cleaning the nanofiber web transferred to the substrate may be further provided.
상기 투명 전극 제조 방법에 있어서, 상기 나노 섬유 웹 전사 단계 후, 상기 기판에 전사된 나노 섬유 웹을 사전 설정 산화물로 보호막을 형성하는 보호막 형성 단계를 더 구비할 수 있다. In the method of manufacturing the transparent electrode, after the nanofiber web transfer step, the protective film forming step of forming a protective film of the nanofiber web transferred to the substrate with a predetermined oxide may be further provided.
상기 투명 전극 제조 방법에 있어서, 상기 사전 설정 산화물은 ITO, ZnO, IZO, AZO 중의 하나 이상일 수 있다. In the transparent electrode manufacturing method, the preset oxide may be at least one of ITO, ZnO, IZO, AZO.
상기 투명 전극 제조 방법에 있어서, 상기 일렉트로스피닝 단계에서, 상기 나노 섬유 웹 프레임이 배치되는 스테이지에 형성되는 접지 전극은 상기 나노 섬유 웹 프레임을 사이에 두고 서로 마주하는 쌍의 두 개 이상이 교차되도록 배치되고, 상기 접지 전극 쌍은 순차적으로 교번 대전될 수 있다. In the method of manufacturing the transparent electrode, in the electrospinning step, the ground electrode formed on the stage on which the nanofiber web frame is disposed is disposed so that two or more of a pair facing each other with the nanofiber web frame interposed therebetween. The ground electrode pairs may be sequentially charged alternately.
본 발명의 다른 일면에 따르면, 본 발명은 전기 방사 노즐을 통하여 폴리머 방사액이 고전압을 통해 토출시켜 섬유화되는 나노 섬유 웹을 형성하는 전기 방사 모듈과, 상기 나노 섬유 웹을 사전 설정된 금속으로 전기 도금 모듈에서 전기 도금시키는 전기 도금 모듈을 포함하고, 상기 전기 방사 모듈은, 상기 전기 방사 노즐과 대향 배치되어 상기 나노 섬유 웹이 형성되는 나노 섬유 웹 프레임이 배치되는 스테이지와, 상기 전기 방사 노즐에 고전압을 인가하는 고전압 발생기; 상기 전기 방사 노즐로부터 토출되는 섬유가 정전기력에 의해 유도되도록 상기 전기 방사 노즐과의 사이 공간에 전기장을 형성하는 접지 전원;을 포함하고, 상기 접지 전원은: 상기 나노 섬유 웹 프레임을 사이에 두고 서로 마주하는 쌍의 두 개 이상이 교차되도록 배치되는 접지 전극 쌍과, 상기 접지 전극 쌍과 접속 단속 가능한 가동 단자를 포함하는 것을 특징으로 하는 투명 전극 제조 장치를 제공한다. According to another aspect of the present invention, the present invention provides an electrospinning module for forming a nanofiber web in which a polymer spinning solution is discharged through a high voltage through an electrospinning nozzle to form a fiber, and the nanofiber web is electroplated with a predetermined metal. And an electroplating module for electroplating in the electrospinning module, wherein the electrospinning module includes a stage on which the nanofiber web frame is disposed to face the electrospinning nozzle to form the nanofiber web, and applies a high voltage to the electrospinning nozzle. A high voltage generator; And a grounding power source that forms an electric field in a space between the electrospinning nozzle and the fiber discharged from the electrospinning nozzle so as to be induced by an electrostatic force, wherein the grounding power sources are: facing each other with the nanofiber web frame therebetween. Provided is a transparent electrode manufacturing apparatus comprising a ground electrode pair disposed so that two or more of the pairs intersect with each other, and a movable terminal capable of intermittent connection with the ground electrode pair.
본 발명은 전기 방사 및 전기 도금을 이용한 나노 섬유 웹 및 나노 섬유 기판을 구비하는 투명 전극을 제조하는 방법 및 장치를 제공하는 것이며, 다양한 전기도금 시 사용되는 금속의 종류를 용도에 맞게 변화시켜, 여러 용도에 적용이 가능하다. The present invention provides a method and apparatus for manufacturing a transparent electrode having a nanofiber web and a nanofiber substrate using electrospinning and electroplating, by varying the type of metal used in various electroplating to suit the purpose, Applicable to the application.
첫째, 본 발명의 투명 전극 제조 방법 및 장치는, 나노섬유 라인패터닝 기술 및 스퍼터링 기술을 이용하여, 전기 전도성이 뛰어난 금속을 사용할 수 있고 동시에 적은 양으로도 높은 성능의 구현이 가능하도록 함으로써, 효율 및 비용면에서 큰 효과를 제공할 수 있다. First, the transparent electrode manufacturing method and apparatus of the present invention, by using a nanofiber line patterning technology and sputtering technology, it is possible to use a metal with excellent electrical conductivity and at the same time to realize a high performance in a small amount, It can provide a great effect in terms of cost.
둘째, 본 발명의 투명 전극 제조 방법 및 장치는, 나노 섬유 라인패터닝에 의하여 얻어지는 투명 전극의 경우 높은 투과도 확보가 가능하여 품질 만족도를 개선시킬 수 있고, 더불어, 스퍼터링 공정 과정에서 금속나노섬유의 접착력 상승 및 금속나노섬유의 산화방지 효과를 얻을 수 있어, 제품의 내구성을 크게 향상 시킬 수 있고 다양한 종료 및 크기를 지닌 기판에 적용 가능하여 구부림 특성에 강하여 유연 전자제품이 적용이 가능하게 할 수도 있다. Second, the transparent electrode manufacturing method and apparatus of the present invention, in the case of the transparent electrode obtained by nanofiber line patterning can ensure a high permeability to improve the quality satisfaction, and also increase the adhesion of the metal nanofibers in the sputtering process And it is possible to obtain the anti-oxidation effect of the metal nanofibers, greatly improve the durability of the product and can be applied to a substrate having a variety of finishes and sizes can be applied to the flexible electronic products strong in bending characteristics.
도 1 및 도 2는 본 발명의 일 실시예에 따른 투명 전극 제조 방법의 구성을 개념적으로 도시한 구성도 및 상세 구성도이다.1 and 2 are schematic and detailed configuration diagrams conceptually showing the configuration of a method for manufacturing a transparent electrode according to an embodiment of the present invention.
도 3의 (a),(b)는 본 발명의 일실시예에 따른 투명 전극 제조 방법 및 장치에 의하여 산출된 투명 전극의 사진으로, 사람의 손과 같이 비평면 위치에 부착시킨 구리 코팅된 나노 섬유를 구비하는 나노 섬유 웹으로 구현되는 투명 전극의 사진과 투명 전극에 배터리와 LED를 연결하여 도전시켜 통전 가능한 상태를 도시하는 사진 선도이다. Figure 3 (a), (b) is a photograph of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention, the copper-coated nano-attached in a non-planar position, such as a human hand It is a photographic diagram showing a state of being energized by connecting a photo of a transparent electrode implemented with a nanofiber web having fibers and connecting a battery and an LED to the transparent electrode.
도 4의 (a),(b)는 본 발명의 일실시예에 따른 투명 전극 제조 방법 및 장치에 의하여 산출된 투명 전극의 사진으로, 나뭇잎과 같이 비평면 위치에 부착시킨 구리 코팅된 나노 섬유를 구비하는 나노 섬유 웹으로 구현되는 투명 전극의 사진과 투명 전극에 배터리와 LED를 연결하여 도전시켜 통전 가능한 상태를 도시하는 사진 선도이다. Figure 4 (a), (b) is a photograph of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention, the copper-coated nanofibers attached to a non-planar position, such as leaves It is a photographic diagram showing a state of being energized by connecting a battery and an LED to a transparent electrode and a transparent electrode formed of a nanofiber web provided thereon.
도 5의 (a)는 면저항 선도이고, (b) 내지 (d)는 본 발명의 일실시예에 따른 투명 전극 제조 방법 및 장치에 의하여 산출된 투명 전극의 사진으로, 나노 섬유 기판이 PDMS로 구현되는 경우의 본 발명에 따른 투명 전극의 투과 상태를 나타내는 사진이고, (e)는 본 발명의 일실시예에 따른 투명 전극 제조 방법 및 장치에 의하여 산출된 투명 전극의 투과도-파장 선도이다.Figure 5 (a) is a sheet resistance diagram, (b) to (d) is a photograph of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention, the nanofiber substrate is implemented in PDMS Is a photograph showing a transmission state of the transparent electrode according to the present invention, and (e) is a transmittance-wavelength diagram of the transparent electrode calculated by the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention.
도 6 및 도 7은 본 발명의 일실시예에 따른 투명 전극 제조 방법 및 장치의 다른 변형예의 선도이다. 6 and 7 are diagrams showing another modified example of the method and apparatus for manufacturing a transparent electrode according to an embodiment of the present invention.
도 8은 본 발명의 제조 방법에 의하여 산출되는 필름 타입의 투명 전극의 내구성 실험에 대한 결과 선도이다.8 is a result diagram for the durability test of the film-type transparent electrode calculated by the manufacturing method of the present invention.
도 9는 본 발명의 제조 방법에 의하여 산출되는 투명 전극의 나노 섬유 기판 상에 형성되는 나노 섬유 웹의 나노 섬유에 대한 확대 선도이다.9 is an enlarged diagram of nanofibers of a nanofiber web formed on a nanofiber substrate of a transparent electrode produced by the manufacturing method of the present invention.
본 발명은 우수한 열전도율을 가지는 진다. 이를 이용하여 높은 열이 발생하는 금속으로 덮인 높은 비표면적을 지닌 섬유필름으로서의 나노 텍스처 필름을 제조하는 장치를 제공하는데, 본 발명을 통하여 제조된 생태모방 악마가시 구조의 나노텍스처 필름을 통해, 우수한 방열 성능을 수반함으로써, 다양한 전기·전자 및 기계제품에 장착되어 이들로부터 발생되는 열을 손쉽게 제거할 수 있다.The present invention has excellent thermal conductivity. It provides a device for producing a nano-textured film as a fiber film having a high specific surface area covered with a metal that generates high heat, through the nano-textured film of the ecological imitation devil visible structure produced through the present invention, With its heat dissipation capability, it can be easily removed from the heat generated from various electrical, electronic and mechanical products.
도 1 및 도 2는 본 발명의 일 실시예에 따른 투명 전극 제조 방법의 구성을 개념적으로 도시한 구성도 및 상세 구성도이다. 본 발명의 일 실시예에 따른 투명 전극 제조 방법은 일렉트로스피닝 단계(S10)과 일렉트로플레이팅 단계(S40)를 포함한다. 1 and 2 are schematic and detailed configuration diagrams conceptually showing the configuration of a method for manufacturing a transparent electrode according to an embodiment of the present invention. The transparent electrode manufacturing method according to an embodiment of the present invention includes an electrospinning step (S10) and an electroplating step (S40).
본 발명의 투명 전극 제조 장치(1)는 제어부(20)와 저장부(30)를 포함할 수 있는데, 제어부(20)는 전기 방사 모듈(10) 및 전기 도금 모듈(11a)의 작동을 제어하고, 경우에 따라 하기되는 나노 섬유 웹 프레임 내지 기판을 이송하는 이송부의 동작을 제어할 수도 있고, 연속공정으로서의 롤투롤 모듈(미도시) 등의 작동도 동시 제어할 수 있다. 저장부(30)는 제어부(20)와 연결되어 폴리머 방사액의 방사량, 접지 전원 차단부의 단속 순서, 전기 도금 전원부의 기준 전원값 등의 사전 설정 데이터를 포함하여 작동 모드에 따른 데이터를 제어부(20)에 전달하여 소정의 원활한 동작을 가능하게 할 수 있다. The transparent electrode manufacturing apparatus 1 of the present invention may include a control unit 20 and a storage unit 30. The control unit 20 controls the operation of the electrospinning module 10 and the electroplating module 11a. In some cases, it is possible to control the operation of the transfer unit for transporting the nanofiber web frame or the substrate to be used in some cases, and simultaneously control the operation of a roll-to-roll module (not shown) as a continuous process. The storage unit 30 is connected to the control unit 20 and controls the data according to the operation mode, including preset data such as the radiation amount of the polymer spinning solution, the interruption order of the ground power cutoff unit, and the reference power value of the electroplating power supply unit. ) To enable a certain smooth operation.
일렉트로스피닝 단계(S10)에서 전기 방사 모듈(10)의 전기 방사 노즐(100)을 통하여 폴리머 방사액이 고전압을 통해 토출되어 섬유화되는 나노 섬유 웹이 형성된다. In the electrospinning step S10, the polymer spinning liquid is discharged through a high voltage through the electrospinning nozzle 100 of the electrospinning module 10 to form a nanofiber web.
이와 같은 일렉트로스피닝 단계(S10)가 실행되는 전기 방사 모듈(10)은 전기 방사 노즐(100)과, 고전압 발생기(200)와, 접지판(310)과 연결되는 접지 전원(300)을 포함한다. The electrospinning module 10 in which the electrospinning step S10 is performed includes an electrospinning nozzle 100, a high voltage generator 200, and a ground power source 300 connected to the ground plate 310.
전기 방사 노즐(100)은 폴리머 방사액을 고전압을 통해 토출하며 섬유화시키는 구성으로, 도 1에 도시된 바와 같이 전기 방사 노즐(100)과 연결되는 폴리머 방사액 공급부(110)로부터 폴리머 방사액을 공급받아 토출하는 방식으로 구성되는데, 예를 들면, 폴리머 방사액 공급부는 폴리머 방사액을 정량 공급하는 시린지 펌프(syringe pump)가 사용된다. The electrospinning nozzle 100 is configured to discharge the polymer spinning liquid through a high voltage and to form a fiber, and supply the polymer spinning liquid from the polymer spinning liquid supply unit 110 connected to the electrospinning nozzle 100 as shown in FIG. 1. It is configured in such a way that it receives and discharges. For example, a syringe pump for supplying a fixed amount of the polymer spinning solution to the polymer spinning solution is used.
본 실시예에서 폴리머 방사액은 다이메틸폼아마이드(dimethylformamaide)에 폴리아크릴로나이트릴(polyacrylonitrile)를 8wt%로 제조하여 24℃의 온도 및 습도 60% 조건에서 시린지 펌프(미도시)를 이용하여 200μL/hr의 유량으로 공급하고 하기되는 고전압 발생기(200)에서 7kV의 전압을 인가여 전기 방사를 실행하였다. 폴리머 방사액 및 조건은 이에 국한되지 않고, 폴리머 방사액은 폴리아크릴로나이트릴(polyacrylonitrile) 이외 PVA(Polyvinyl alcohol)와 물이 혼합된 용액이 사용될 수 있고, 나일론 등의 기계적 성질이 우수한 폴리머를 사용하는 경우에는 포름산(Formic Acid) 등의 강한산성 용액을 사용할 수 있는 등, 전기 방사 노즐을 통하여 토출 가능한 구조를 취하는 범위에서 다양한 고분자 재료가 사용될 수 있다. 전기 방사 노즐(100)은 시린지 펌프(미도시)로부터 폴리머 방사액을 공급받아 토출하는 콘젯 형태의 노즐이 적용될 수 있다. In the present embodiment, the polymer spinning solution is prepared by preparing 8 wt% of polyacrylonitrile in dimethylformamide and using a syringe pump (not shown) at a temperature of 24 ° C. and a humidity of 60%. The electrospinning was performed by supplying a flow rate of / hr and applying a voltage of 7 kV in the high voltage generator 200 described below. Polymer spinning solution and conditions are not limited to this, the polymer spinning solution may be a solution of a mixture of polyvinyl alcohol (PVA) and water other than polyacrylonitrile (polyacrylonitrile), using a polymer having excellent mechanical properties such as nylon In this case, a variety of polymer materials may be used in a range that takes a structure capable of discharging through an electrospinning nozzle, such as a strong acid solution such as formic acid. The electrospinning nozzle 100 may be a nozzle in the form of a cone jet to receive and discharge the polymer spinning liquid from a syringe pump (not shown).
고전압 발생기(200)는 전기 방사 노즐(100)에 고전압을 인가하며, 이에 대응하여 전기 방사 노즐(100)과 이격되는 위치에는 별도의 접지 전원(300)이 구비된다. 접지 전원(300)은 도 1에 도시된 바와 같이 나노 섬유 웹 프레임(301)에 접지 연결될 수 있다. 경우에 따라, 도 1에 도시되지는 않았으나 별도의 스테이지가 구비되고 스테이지에 접지 전원과 연결되는 접지 전극이 배치되고 나노 섬유 웹 프레임(300)이 접지 전극과 연결되는 구조를 취할 수도 있다. The high voltage generator 200 applies a high voltage to the electrospinning nozzle 100, and correspondingly, a separate ground power source 300 is provided at a position spaced apart from the electrospinning nozzle 100. The ground power supply 300 may be grounded to the nanofiber web frame 301 as shown in FIG. 1. In some cases, although not shown in FIG. 1, a separate stage may be provided, a ground electrode connected to the ground power source may be disposed on the stage, and the nanofiber web frame 300 may be connected to the ground electrode.
나노 섬유 웹 프레임(301)은 본 실시예에서 도전성 재료의 사각 틀로 형성되나 이는 본 발명을 설명하기 위한 일예로서 이에 국한되는 것은 아니다. 나노 섬유 웹 프레임(301)이 접지 전원(300)과 연결되고 고전압 발생기(200)에서 고전압이 인가되고 동시에 전기 방사 노즐에서 폴리머 방사액을 토출하는 경우 전기 방사 노즐(100)과 나노 섬유 웹 프레임(301) 간에 형성되는 전기장에 의하여 대전된 폴리머 방사액은 섬유화되어 나노 섬유 웹 프레임(301)에 형성 부착되어 폴리머 방사액이 나노 섬유 웹(3a)를 형성하는데, 나노 섬유 웹 프레임(301)에 형성되는 나노 섬유 웹(3a)은 랜덤하게 형성된다. 즉, 나노 섬유 웹 프레임(301)에 형성되는 나노 섬유 웹(3a)은 폴리머 방사액의 일정 시간 방사가 이루지는 경우 랜덤한 형성으로 인하여 나노 섬유 웹 프레임(301)의 어느 한 측에 치우치지 않고 나노 섬유 웹 프레임(301)에 부착 형성된다. The nanofiber web frame 301 is formed in the rectangular frame of the conductive material in the present embodiment, which is not limited to this as an example for explaining the present invention. When the nanofiber web frame 301 is connected to the ground power source 300, a high voltage is applied from the high voltage generator 200, and the polymer spinning liquid is discharged from the electrospinning nozzle at the same time, the electrospinning nozzle 100 and the nanofiber web frame ( The polymer spinning liquid charged by the electric field formed between the 301 is fiberized and attached to the nanofiber web frame 301 so that the polymer spinning liquid forms the nanofiber web 3a, which is formed on the nanofiber web frame 301. The nanofiber webs 3a are randomly formed. That is, the nanofiber web 3a formed on the nanofiber web frame 301 is not biased to either side of the nanofiber web frame 301 due to random formation when a predetermined time spinning of the polymer spinning solution is achieved. Attached to the nanofiber web frame 301 is formed.
한편, 본 발명의 투명 전극 제조 장치(1)의 전기 방사 모듈은 상기와 같은 구성에 한정되지 않고 다양한 구성이 가능하다. 즉, 도 6 및 도 7에 도시된 바와같이 전기 방사 모듈(10a)은 전기 방사 노즐(100)과, 스테이지(3)와 고전압 발생기(200)와 접지 전원(300)을 구비하고, 전기 방사 노즐(100)과 고전압 발생기(200)와 접지 전원(300)은 앞서 기술한 바와 동일하다. 스테이지(3)는 전기 방사 노즐(100)에 대향 배치되는데, 스테이지(3)의 일면 상에는 나노 섬유 웹(2)이 형성되는 나노 섬유 웹 프레임(301)이 안착될 수 있다. 스테이지(3)의 일면 상에는 나노 섬유 웹 프레임(301)이 안착 유지되는 스테이지 장착부(미도시)가 구비되고 나노 섬유 웹 프레임(301)은 정위치에 위치 유지될 수도 있다. 스테이지(3)에는 접지 전극부(3a,3b,3c,3d)가 배치되는데, 나노 섬유 웹 프레임(301)은 접지 전극부(3a,3b,3c,3d)를 통하여 접지 전원(300)과 접속될 수 있다. 접지 전극부(3a,3b,3c,3d)는 접지 전극 쌍(3b,3c)와 접지 가동 단자(3d)를 포함하고, 접지 제어부(3a)는 접지 가동 단자(3d)에 접지 제어 신호를 인가하여 소정의 접지 가동 단자 기능을 구현하도록 한다. On the other hand, the electrospinning module of the transparent electrode manufacturing apparatus 1 of the present invention is not limited to the above configuration, various configurations are possible. That is, as shown in FIGS. 6 and 7, the electrospinning module 10a includes an electrospinning nozzle 100, a stage 3, a high voltage generator 200, and a ground power supply 300. 100, the high voltage generator 200, and the ground power source 300 are the same as described above. The stage 3 is disposed opposite to the electrospinning nozzle 100, and a nanofiber web frame 301 in which the nanofiber web 2 is formed may be seated on one surface of the stage 3. On one surface of the stage 3 is provided with a stage mounting portion (not shown) in which the nanofiber web frame 301 is seated and held, and the nanofiber web frame 301 may be held in place. The stage 3 is provided with ground electrode portions 3a, 3b, 3c, and 3d, and the nanofiber web frame 301 is connected to the ground power supply 300 through the ground electrode portions 3a, 3b, 3c, and 3d. Can be. The ground electrode portions 3a, 3b, 3c, and 3d include ground electrode pairs 3b and 3c and a ground movable terminal 3d, and the ground controller 3a applies a ground control signal to the ground movable terminal 3d. To implement a predetermined ground movable terminal function.
접지 전극 쌍(3b,3c)은 스테이지(3)의 일면 상에 형성되되, 나노 섬유 웹 프레임(301)을 사이에 두고 서로 마주하는 쌍이 두 개 이상 배치되되, 두 개 이상의 쌍이 서로 교차되도록, 즉 서로 마주하는 접지 전극 쌍이 이루는 가상의 선분이 다른 접지 전극 쌍이 이루는 가상의 선분이 서로 교차하도록 배치된다. 즉, 도 6 및 도 7에 도시된 바와 같이, 접지 전극(3b)은 서로 마주하는 한 쌍의 접지 전극이고, 다른 접지 전극(3c)은 서로 마주하는 다른 한 쌍의 접지 전극인데, 이들 쌍은 서로 90도 교차 배치되는 구조를 취한다. 이때, 접지 가동 단자(3d)는 소정의 액츄에이터, 예를 들어 전기 모터와 연결되어 접지 제어부(3a)의 접지 제어 신호에 따라 가동되어 접지 가동 단자(3d)가 소정의 회전 동작을 이룬다. 접지 가동 단자(3d)는 접지 전원(300)과 상시 연결 상태를 형성한다. 접지 가동 단자(3d)의 회전에 의하여 접지 전극과의 접촉 상태가 변화될 수 있는데, 도 6의 (a)와 (b)에 도시된 바와 같이 접지 가동 단자(3d)의 회동에 의하여 접지 가동 단자(3d)는 도면 부호 3c로 지시되는 접지 전극 쌍(3c)과 접촉되거나 도면 부호 3b로 지시되는 접지 전극 쌍(3b)와 접촉되어 교번 접지 대전되어 궁극적으로 전기 방사 노즐(100)에서 토출되는 폴리머 방사액이 서로 직교하는 방향으로 연속적으로 형성되어 나노 섬유 웹 프레임(301)에 형성되는 나노 섬유 웹(2)은 거의 직교 배열되는 구조를 구비할 수도 있다. The ground electrode pairs 3b and 3c are formed on one surface of the stage 3, and two or more pairs of mutually facing each other with the nanofiber web frame 301 interposed therebetween are disposed so that two or more pairs cross each other, that is, The virtual line segments formed by the ground electrode pairs facing each other are arranged such that the virtual line segments formed by the other ground electrode pairs cross each other. That is, as shown in FIGS. 6 and 7, the ground electrode 3b is a pair of ground electrodes facing each other, and the other ground electrode 3c is another pair of ground electrodes facing each other, and these pairs Take the structure of 90 degrees cross each other. At this time, the ground movable terminal 3d is connected to a predetermined actuator, for example, an electric motor, and operated according to the ground control signal of the ground control unit 3a, so that the ground movable terminal 3d achieves a predetermined rotation operation. The ground movable terminal 3d forms an always-connected state with the ground power supply 300. The contact state with the ground electrode may be changed by the rotation of the ground movable terminal 3d. As shown in FIGS. 6A and 6B, the ground movable terminal is rotated by the rotation of the ground movable terminal 3d. 3d is a polymer which is in contact with the ground electrode pair 3c indicated by the reference 3c or in contact with the ground electrode pair 3b indicated by the reference 3b and is alternately ground charged and ultimately discharged from the electrospinning nozzle 100 The nanofiber webs 2 formed in the nanofiber web frame 301 continuously formed in the direction in which the spinning solution is perpendicular to each other may have a structure that is substantially orthogonally arranged.
상기와 같은 소정의 전기 방사 모듈(1)에서 이루어지는 일렉트로스피닝 단계(S10)가 완료된 후, 일렉트로플레이팅 단계(S40)가 실행된다. 일렉트로스피닝 단계(S10)에서 형성된 나노 섬유 웹(2)을 사전 설정된 금속으로 전기 도금 모듈(11)에서 전기 도금시킨다. 전기 도금 모듈(11)은 제어부(20)로부터의 전기 도금 모듈(11)의 전기 도금 전원(11b)의 전원 인가를 제어하는 제어 신호를 생성할 수도 있다. After the electrospinning step S10 made in the predetermined electrospinning module 1 is completed, the electroplating step S40 is executed. The nanofiber web 2 formed in the electrospinning step S10 is electroplated in the electroplating module 11 with a predetermined metal. The electroplating module 11 may generate a control signal for controlling the power supply of the electroplating power supply 11b of the electroplating module 11 from the control unit 20.
전기 도금 모듈(11)은 전기 도금 모듈 수조(11a)와, 전기 도금 애노드(11c)와, 전기 도금 전원부(11b)를 포함한다. 전기 도금 모듈 수조(11a)는 나노 섬유 웹(2)이 수집 부착 형성된 나노 섬유 웹 프레임(301)이 침지 가능한 도금액(11e)을 수용하고, 전기 도금 애노드(11c)는 전기 도금 모듈 수조 내 도금액(11e)에 침지되어 배치되고 사전 설정된 도금 금속으로 형성되며, 전기 도금 전원부(11b)는 섬유(600)가 수집된 필름 베이스(500)와 전기 도금 애노드(11c)로 전압을 인가한다. 전기 도금 전원부(11b)는 도면 상 DC 전원인 것으로 되었으나, 실제 제조 현장에서 AC 전원으로 적용 가능한 구조를 이루는 것은 본 발명으로부터 명백하다.The electroplating module 11 includes an electroplating module water tank 11a, an electroplating anode 11c, and an electroplating power supply portion 11b. The electroplating module bath 11a accommodates the plating liquid 11e in which the nanofiber web frame 301 formed by collecting and attaching the nanofiber web 2 is immersed, and the electroplating anode 11c is a plating solution in the electroplating module bath ( 11e) and is immersed and formed of a predetermined plating metal, and the electroplating power supply 11b applies a voltage to the film base 500 and the electroplating anode 11c from which the fibers 600 are collected. Although the electroplating power supply portion 11b is a DC power supply in the drawing, it is apparent from the present invention to form a structure applicable to an AC power supply at an actual manufacturing site.
도금액(11e)은 전해질 용액으로서 전기 도금하고자 하는 금속이 포함되는데, 전기 도금 애노드(11c)의 사전 설정된 도금 금속에 따라 결정된다. 예를 들어 전기 도금 애노드가 구리로 형성되는 경우, 도금액은 Cu 도금액을 포함할 수 있는데, 소정의 전기 도금을 이루는 범위에서 다양한 선택이 가능하다. 나노 섬유 웹 프레임(301)이 도금액(11e)에 침지되는 시간은 설계사양에 따라 다양한 변화가 가능하다. The plating solution 11e includes a metal to be electroplated as an electrolyte solution, which is determined according to a predetermined plating metal of the electroplating anode 11c. For example, when the electroplating anode is formed of copper, the plating liquid may include a Cu plating liquid, and various selections are possible within a range of forming a predetermined electroplating. The time during which the nanofiber web frame 301 is immersed in the plating solution 11e may be variously changed according to design specifications.
도금액에 침지된 나노 섬유 웹 프레임(301)에 형성된 나노 섬유 웹(2)의 섬유의 표면에는 전기 도금 애노드를 이루는 금속이 표면적을 확장하는 방식, 즉 단순하게 섬유의 외면을 일층의 두께로 균일하게 코팅하는 것이 아닌 나뭇가지가 뻗어 나가듯이 금속으로 도금 코팅된 표면에서 외면을 향하여 계속적인 연속 성장 구조를 이루여 필름 베이스 상의 금속 도금 코팅된 섬유의 표면적이 극대화될 수도 있다. 전기 도금 모듈에서의 공정은 예를 들어, 사전 설정 전기 도금 금속이 구리(Cu)로 형성된 전기 도금 애노드(11c)가 구비되는 경우, 도금액(11e)도 구리(Cu) 성분을 포함하는 전해질 용액으로 형성된다. On the surface of the fiber of the nanofiber web 2 formed on the nanofiber web frame 301 immersed in the plating solution, the metal forming the electroplating anode expands the surface area, that is, the outer surface of the fiber is uniformly uniformed in one layer thickness. It is possible to maximize the surface area of the metal plated coated fiber on the film base by forming a continuous continuous growth structure from the plated surface coated with metal to the outer surface as the tree branches rather than coating. The process in the electroplating module is, for example, when the electroplating anode 11c in which the predetermined electroplating metal is made of copper (Cu) is provided, the plating solution 11e is also an electrolyte solution containing a copper (Cu) component. Is formed.
보다 구체적으로 본 발명의 일렉트로플레이팅 단계(S40)는 침지 단계(S41)와 전원 인가 단계(S43)를 포함하는데, 침지 단계(S41)에서 전기 도금 모듈(11)의 전기 도금 모듈 수조(11a)에 사전 설정 도금 금속으로 형성되는 전기 도금 애노드(11c)와 나노 섬유 웹 프레임(301)이 침지될 수 있는 도금액을 수용하고 전기 도금 애노드(11c)와 전기 도금 전원부(11b)의 음극에 접속되는 나노 섬유 웹 프레임(301)이 침지되고, 전원 인가 단계(S43)에서 제어부(20)는 전기 도금 모듈(11)의 전기 도금 전원부(11b)로 나노 섬유 웹 프레임(301)과 전기 도금 애노드(11c)에 전압을 인가한다. 본 실시예에서 전기 도금 애노드(11c)는 구리 금속판으로 형성되고, 도금액은 황산, 염산, 황산구리, 포름알데히드 및 증류수를 혼합하여 형성하였으며, 황산(Sulfuric acid) 10g, 염산(Hydrochloric acid) 1g, 황산구리(Copper sulfate) 32g, 포름알데히드(Formaldehyde) 20g을 200 mL의 증류수(Deionized water)에 섞어서 제조한다. 100 mA/cm2의 전류밀도로 약 3초간 전기도금을 진행하였는데, 이는 ㅇ일예로서 본 발명은 일렉트로플레이팅 구조를 이루는 범위에서 다양한 변형이 가능하다. More specifically, the electroplating step S40 of the present invention includes an immersion step S41 and a power applying step S43. In the immersion step S41, the electroplating module tank 11a of the electroplating module 11 is provided. The nano-electrode (11c) and the nanofiber web frame (301) formed of a predetermined plating metal in the accommodating plating solution that can be immersed and connected to the cathode of the electroplating anode (11c) and the electroplating power supply (11b) The fiber web frame 301 is immersed, and in the power application step S43, the control unit 20 is an electroplating power supply 11b of the electroplating module 11, and the nanofiber web frame 301 and the electroplating anode 11c. Apply voltage to it. In this embodiment, the electroplating anode 11c is formed of a copper metal plate, and the plating solution is formed by mixing sulfuric acid, hydrochloric acid, copper sulfate, formaldehyde, and distilled water, 10 g of sulfuric acid, 1 g of hydrochloric acid, and copper sulfate. 32 g of copper sulfate and 20 g of formaldehyde are mixed with 200 mL of deionized water. Electroplating was performed for about 3 seconds at a current density of 100 mA / cm 2 , which is one example. The present invention is capable of various modifications within the range of the electroplating structure.
또한, 일렉트로플레이팅 단계 후 별도의 세정 단계 및/또는 강화 단계가 더 구비될 수도 있다. 즉, 일렉트로플레이팅 단계 후 포름알데히드 용액에 사전 설정 시간 동안 담지시키는 강화 단계와, 강화 단계 후 이물을 세정하는 세정 단계가 더 구비될 수도 있다. 본 실시예에서는 10% 포름알데히드 용액에 5분간 담근 후, 증류수로 1분간 헹구는 세정 과정을 실행하여, 전기 도금 재료인 구리 금속과 금/백금으로 덮인 나노섬유 간의 결합을 강화시키는 구조를 취하였는데, 이는 일예로서 다양한 변형이 가능하다. In addition, a separate cleaning step and / or strengthening step may be further provided after the electroplating step. That is, a strengthening step of supporting the formaldehyde solution for a predetermined time after the electroplating step and a cleaning step of cleaning the foreign matter after the strengthening step may be further provided. In this embodiment, a 10 minute formaldehyde solution was immersed in a 10% formaldehyde solution for 5 minutes and then rinsed with distilled water for 1 minute to perform a cleaning process to take a structure for strengthening the bond between the copper metal, which is an electroplating material, and nanofibers covered with gold / platinum. As one example, various modifications are possible.
한편, 본 발명의 투명 전극 제조 방법은 일렉트로스피닝 단계와 일렉트로플레이팅 단계의 사이에 도금 증진막 형성 단계(S20)을 더 구비할 수도 있다. 도금 증진막 형성 단계(S20)는 나노 섬유 웹 프레임에 형성된 나노 섬유 웹(2)에 사전 설정 도금 증진 금속으로 도금 증진막을 형성하는 것이다. 본 실시예에서 도금 증진막 형성 단계(S20)는 나노 섬유 웹 스퍼터링 모듈(9)에서 실행되나 본 발명의 도금 증진막 형성 단계는 스퍼터링 이외에 다른 증착 방식으로 실행될 수도 있다. 나노 섬유 웹 스퍼터링 모듈(9)은 통상적인 스퍼터 장치에 대응된다. 진공 상태의 스퍼터링 챔버(미도시)에 나노 섬유 웹이 형성된 나노 섬유 웹 프레임(301)과 도금 증진 금속에 전계를 가하고 스퍼터링 챔버 내 플라즈마를 형성하고 비활성 기체인 아르곤을 도금 증진 금속(9a)으로 가속시켜 충돌로 발생하는 도금 증진 금속 입자가 나노 섬유 웹 프레임 측으로 도금 증진막이 형성되는 구조를 취할 수 있다. 본 실시예에서 사전 설정 도금 증진 금속은 금(Au) 및 백금(Pt) 중 하나 이상을 포함한다. On the other hand, the method of manufacturing a transparent electrode of the present invention may further include a plating enhancement film forming step (S20) between the electrospinning step and the electroplating step. Plating enhancement film forming step (S20) is to form a plating enhancement film with a predetermined plating enhancement metal on the nanofiber web 2 formed on the nanofiber web frame. In the present embodiment, the plating enhancement film forming step S20 is performed in the nanofiber web sputtering module 9, but the plating enhancement film forming step of the present invention may be performed by another deposition method in addition to sputtering. The nanofiber web sputtering module 9 corresponds to a conventional sputtering device. An electric field is applied to the nanofiber web frame 301 in which the nanofiber web is formed in the vacuum sputtering chamber (not shown) and the plating enhancing metal, a plasma is formed in the sputtering chamber, and an inert gas, argon, is accelerated to the plating promoting metal 9a. It is possible to take a structure in which the plating enhancement metal particles generated by the collision is formed to the nanofiber web frame side. In this embodiment the preset plating enhancing metal comprises one or more of gold (Au) and platinum (Pt).
이와 같이 도금 증진막 형성 단계(S20)에서 나노 섬유 웹이 이루는 나노 섬유의 표면에 금 또는 백금으로 얇게 코팅하여 후속하는 일렉트로플레이팅 단계(S40)에서 사전 설정 도금 금속, 예를 들어 구리(Cu) 입자가 나노 섬유 웹을 구성하는 나노 섬유의 표면에 도금을 보다 신속하고 용이하게 이루어지도록 할 수 있다. 본 실시예에서 도금 증진막 형성 단계에서 스퍼터링 증착이 이루어지는 조건은 0.08Pa 분위기 하에서 금(Au)으로 200초간 이루어졌다. In this way, in the plating enhancement film forming step (S20), a thin coating of gold or platinum on the surface of the nanofibers formed by the nanofiber web is performed, followed by the electroplating step (S40). The particles may be plated on the surface of the nanofibers constituting the nanofiber web more quickly and easily. In the present embodiment, sputtering deposition in the plating enhancement film forming step was performed for 200 seconds in gold (Au) under a 0.08 Pa atmosphere.
앞서 기술한 바와 같이 본 발명의 투명 전극 제조 장치 및 제조 방법은 대향 방식의 스퍼터링 모듈에 한정되지 않고 나노 섬유 웹에 도금 증진막을 형성하는 범위에서 다양한 방식이 가능하다. As described above, the transparent electrode manufacturing apparatus and the manufacturing method of the present invention are not limited to opposing sputtering modules, and various methods are possible in a range of forming a plating enhancement film on a nanofiber web.
또한, 본 발명의 투명 전극 제조 방법은 일렉트로스피닝 단계 후 일렉트로플레이팅 단계 전에, 경우에 따라 도금 증진막 형성 단계(S20)가 더 구비되는 경우, 도금 증진막 형성 단계 후 웹 강화 단계(S30)을 더 구비할 수도 있다. 웹 강화 단계(S30)에서 나노 섬유 웹에 전기 방사 모듈(10)의 전기 방사 노즐(100)을 통하여 폴리머 방사액을 고전압을 통해 토출시켜 나노 섬유 웹(2)을 지지하는 강화 웹(4)을 형성하는데, 강화 웹을 형성하기 위한 폴리머 방사액은 나노 섬유 웹을 형성하는 재료와 동일한 재료로 형성될 수도 있고 경우에 따라 상이한 폴리머 방사액으로 강화웹을 형성할 수도 있고 강화웹의 폴리머 방사액의 두께도 조절 가능하다. 강화 웹의 경우에도 앞서 기술한 바와 같이 랜덤 방식으로 형성할 수도 있고, 직교 배치되는 전기 방사 모듈을 이용하여 직교 형성하는 방식을 취할 수도 있는 등 다양한 구성이 가능하다. In addition, the transparent electrode manufacturing method of the present invention after the electroplating step before the electroplating step, if the plating enhancement film forming step (S20) is optionally further provided, after the plating enhancement film forming step web strengthening step (S30) It may be further provided. In the web reinforcing step (S30), the reinforcing web 4 supporting the nanofiber web 2 by discharging the polymer spinning liquid through the high voltage through the electrospinning nozzle 100 of the electrospinning module 10 to the nanofiber web. The polymer spinning liquid for forming the reinforcing web may be formed of the same material as the material forming the nanofiber web, and in some cases, may form the reinforcing web with different polymer spinning liquid, The thickness is also adjustable. In the case of the reinforcing web as described above, it may be formed in a random manner, or various configurations are possible, such as taking an orthogonal form using an electrospinning module arranged orthogonally.
이와 같은 강화웹을 이루는 나노 섬유는 후속하는 일렉트로플레이팅 단계(S40)에서 금 또는 백금으로 코팅된 나노섬유가 끊어지지 않고 형태를 일정하게 유지 가능하도록 하는 지지 구조 역할을 수행한다. 즉, 강화웹의 나노섬유가 지지 구조를 형성하지 않는 경우, 앞서 단계 S10에서 형성된 나노 섬유는 전기 도금 모듈의 도금액에 침지시키고 인출하는 과정에서 마치 모세관 현상에서 기판 표면에 물이 달라붙는 현상과 같이 용매와 나노 섬유 웹 내 나노 섬유 간에 미세한 인력이 발생하여 나노 섬유 웹의 나노 섬유가 파단되는 현상이 발생하는데, 강화웹을 통하여 지지되는 구조를 이룸으로써 이와 같은 파단 현상을 방지할 수도 있다. The nanofibers constituting such a reinforcing web serves as a supporting structure that allows the nanofibers coated with gold or platinum to maintain their shape without breaking in a subsequent electroplating step (S40). That is, when the nanofibers of the reinforcing web do not form a support structure, the nanofibers formed in the step S10 are immersed in the plating solution of the electroplating module and drawn out in the process of capillary action. A fine attraction occurs between the solvent and the nanofibers in the nanofiber web, so that the nanofibers of the nanofiber web are broken. This structure can be prevented by forming a structure supported by the reinforcing web.
상기한 바와 같이, 본 발명의 투명 전극 제조 방법은 일렉트로플레이팅 단계가 완료된 후 나노 섬유 웹 전사 단계(S50)를 실행한다. 나노 섬유 웹 전사 단계(S50)에서 나노 섬유 웹 프레임(301)의 나노 섬유 웹(2)을 나노 섬유 기판(2a) 상에 전사시킨다. 나노 섬유 기판(2a)은 유리, 폴리 이미드(Polyimide), PET(Polyethylen Terephthalate), 및 PDMS(Polydimethylsiloxane) 중의 하나 이상을 포함하는대, 나노 섬유 기판(2a)에 나노 섬유 웹(2)울 전사시킨다. 전사 과정은 통상적인 전사 과정을 통하여 이루어질 수도 있는데, 본 실시예에서 나노 섬유 웹(2)이 전사될 나노 섬유 기판(2a)에 소량의 메탄올을 도포시킨 후 전사 과정이 이루어 나노 섬유 기판(2a)에 부착되는 나노 섬유 웹(2)의 전사 접착력을 강화시킬 수도 있다. 나노 섬유 기판(2a)에 소량의 메탄올을 도포한 후, 나노 섬유 웹 프레임(301)을 나노 섬유 기판(2a)에 배치시켜 나노 섬유 웹(2)과 나노 섬유 기판(2a)을 밀착시킨다. 그런 후, 할로겔 램프를 작동시켜 나노 섬유 웹(2)을 나노 섬유 기판(2a)으로 전사시키는데, 본 실시예에서 할로겐 램프는 50W 할로겐 램프로 5시간 정도 조사 상태를 형성한다. 할로겐 램프로부터 열을 전달받은 나노 섬유 웹(2)의 나노 섬유의 표면에 코팅된 구리 금속 성분은 플라스모닉(Plasmonic)효과를 형성하여 국소 부위에 열을 형성하고, 형성된 열은 구리 도금된 금속을 일정 부분만큼 용융시켜 나노 섬유 기판(2a)의 표면과의 접착력을 강화시킬 수도 있다. As described above, the transparent electrode manufacturing method of the present invention performs the nanofiber web transfer step (S50) after the electroplating step is completed. In the nanofiber web transfer step S50, the nanofiber web 2 of the nanofiber web frame 301 is transferred onto the nanofiber substrate 2a. The nanofiber substrate 2a transfers the nanofiber web 2 to the nanofiber substrate 2a when the nanofiber substrate 2a includes at least one of glass, polyimide, polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS). . The transfer process may be performed through a conventional transfer process. In this embodiment, a small amount of methanol is applied to the nanofiber substrate 2a on which the nanofiber web 2 is to be transferred, and then a transfer process is performed to produce the nanofiber substrate 2a. It is also possible to enhance the transfer adhesion of the nanofiber web 2 attached to it. After applying a small amount of methanol to the nanofiber substrate 2a, the nanofiber web frame 301 is placed on the nanofiber substrate 2a to bring the nanofiber web 2 into close contact with the nanofiber substrate 2a. Thereafter, the halogel lamp is operated to transfer the nanofiber web 2 to the nanofiber substrate 2a. In this embodiment, the halogen lamp forms an irradiation state for about 5 hours with a 50W halogen lamp. The copper metal component coated on the surface of the nanofibers of the nanofiber web 2, which receives heat from the halogen lamp, forms a plasmonic effect to form heat at a localized site, and the formed heat is copper-plated metal. May be melted by a predetermined portion to enhance adhesion to the surface of the nanofiber substrate 2a.
또한, 상기 실시에에서 나노 섬유 기판(2a)은 유리와 같은 비정질 재료 상에 형성될 수도 있고, 폴리 이미드(Polyimide), PET(Polyethylen Terephthalate), 및 PDMS(Polydimethylsiloxane) 등과 같은 고분자 화합물이 형성하는 기판으로 구현될 수도 있는데, 기판의 두께는 설계 사양에 따라 다양한 구성이 가능하다. 예를 들어, 소정의 강성이 요구되는 경우 소정의 두께를 구비하는 기판으로 구현될 수도 있고, 필름 타입의 필름 베이스로 구현되어 다른 구성요소에 부착되는 구조로 형성될 수도 있는 등 나노 섬유 기판(2a)의 구성은 설계 목적에 따라 다양한 변형이 가능하다. In addition, in the above embodiment, the nanofiber substrate 2a may be formed on an amorphous material such as glass, and may be formed of a polymer compound such as polyimide, polyethylene terephthalate (PET), and polydimethylsiloxane (PDMS). It may be implemented as a substrate, the thickness of the substrate can be various configurations depending on the design specifications. For example, when a predetermined rigidity is required, the nanofiber substrate 2a may be implemented as a substrate having a predetermined thickness, or may be formed as a film-based film base and attached to other components. ) Can be variously modified according to the design purpose.
본 발명의 투명 전극 제조 방법은 나노 섬유 웹 전사 단계(S50)가 완료된 후 실행되는 후속 공정으로서 세정 단계(S60)를 더 구비할 수도 있다. 세정 단계(S60)에서 나노 섬유 기판(2a)에 전사되어 부착된 나노 섬유 웹(2)에 부착된 이물을 제거할 수 있는데, 이와 같은 세정 단계를 실행하여 나노 섬유 웹이 형성하는 투명 전극이 구현하는 투명도를 더욱 향상시킬 수도 있다. The method for manufacturing a transparent electrode of the present invention may further include a cleaning step S60 as a subsequent process executed after the nanofiber web transfer step S50 is completed. In the cleaning step S60, foreign matter attached to the nanofiber web 2 transferred and attached to the nanofiber substrate 2a may be removed, and the transparent electrode formed by the nanofiber web is implemented by performing the cleaning step. Transparency can be further improved.
특히, 본 발명의 투명 전극 제조 방법에 있어서, 웹 강화 단계(S30)가 더 구비되는 경우 일렉트로플레이팅 단계에서 나노 섬유 웹을 지지하기 위하여 형성된 강화 웹을 구성하는 섬유는 나노 섬유 웹의 외부에 배치되어 전극을 형성하는 나노 섬유 웹이 형성된 공간과 중첩 내지 이외의 공간을 메워 전체적 구성면에서 투과도를 저해시킬 수 있는데, 세정 단계(S60)에서 실행되는 최종적 산물로서의 나노 섬유 웹(2)을 세정함으로써 불필요한 강화웹 등을 배제할 수도 있다. 본 실시예에 따른 세정 단계(S60)에서는 이물 내지 강화웹 등이 잔존하는 나노 섬유 웹(2)에 다이메틸폼아마이드(dimethylformamide) 용액을 뿌려서 이물 내지 웹 강화 단계에서 형성된 무작위 형태의 강화 웹을 형성하는 나노 섬유들을 제거할 수도 있고, 이를 통해, 최종 완성된 투명전극의 투과도를 향상시킬 수도 있다. In particular, in the method for manufacturing a transparent electrode of the present invention, when the web reinforcing step (S30) is further provided, the fibers constituting the reinforcing web formed to support the nanofiber web in the electroplating step are disposed outside the nanofiber web. The gap between the space where the nanofiber web forming the electrode is formed and the space other than the space may be filled to impede the permeability in terms of the overall configuration, which is unnecessary by cleaning the nanofiber web 2 as the final product performed in the cleaning step S60. It is also possible to exclude the reinforced web. In the cleaning step (S60) according to the present embodiment, a dimethylformamide solution is sprayed onto the nanofiber web 2 in which foreign substances or reinforcing webs remain, thereby forming a random-type reinforcing web formed in the foreign substance to web reinforcing step. It is also possible to remove the nanofibers, thereby improving the transmittance of the final transparent electrode.
또 한편, 본 발명의 투명 전극 제조 방법에 있어 나노 섬유 웹 전사 단계(S50)가 완료된 후, 나노 섬유 웹을 보호하기 위한 보호막 형성 단계(S70)가 더 구비될 수도 있다. 본 실시에에서 보호막 형성 단계(S70)는 세정 단계(S60)가 실행된 후 이루어지는데 이러한 단계의 구성은 제조 설계 사양에 따라 다양한 변형이 가능하다. 보호막 형성 단계(S70)에서는 나노 섬유 기판(2a)에 전사된 나노 섬유 웹(2)을 사전 설정 산화물로 보호막을 형성하는데, 본 실시예에서 보호막 형성 단계(S70)는 스퍼터링 모듈(9b)에서 실행되고, 본 실시예에서 사용된 스퍼터링 모듈(9b)은 마그네트론 스퍼터링(Magnetron sputtering) 장치로서 아르곤 비활성 기체의 입자가 플라즈마 분위기 하에서 대전되는 금속타겟에 충돌하는 충격량을 이용하는 물리적 증착 방식과 달리 자기장(magnetic field)을 사용하여 원하는 증착 영역을 국소적으로 높은 집적도하에 강력한 물리적 힘으로 코팅을 실행하는 HIPIMS(High Power Impulse Magnetron Sputtering)를 이용하였으나, 이는 본 발명의 실시예로서 소정의 증착 공정을 이루는 범위에서 다양한 구성이 가능하다.In addition, in the method for manufacturing a transparent electrode of the present invention, after the nanofiber web transfer step S50 is completed, a protective film forming step S70 may be further provided to protect the nanofiber web. In the present embodiment, the protective film forming step S70 is performed after the cleaning step S60 is performed, and the configuration of the step may be variously modified according to manufacturing design specifications. In the protective film forming step (S70), a protective film is formed by using a predetermined oxide on the nanofiber web 2 transferred to the nanofiber substrate 2a. In this embodiment, the protective film forming step (S70) is executed in the sputtering module 9b. The sputtering module 9b used in this embodiment is a magnetron sputtering device, unlike a physical deposition method using an impact amount in which particles of argon inert gas collide with a metal target charged in a plasma atmosphere. HIPIMS (High Power Impulse Magnetron Sputtering) is used to perform coating with a strong physical force at a locally high density on a desired deposition area, but this is an embodiment of the present invention. Configuration is possible.
본 실시예에서 사용되는 사전 설정 산화물은 IZO로 구현되었으나, 본 발명은 이에 국한되지 않는다. 즉, 보호막 형성 단계(S70)에서 사용되는 사전 설정 산화물은 ITO, ZnO, IZO, AZO 중의 하나 이상일 수도 있다. 스퍼터링 모듈(9b)에서 형성된는 보호막은 나노 섬유 기판(2a)의 일면에 형성된 나노 섬유 웹(2)의 일면 상에 도포됨으로서, 소정의 보호막 내지 보호층을 형성한다. 본 실시예에서는 앞서 기술된 HIPIMS(High power impulse magnetron sputtering) 장치를 이용하여 증착 영역의 선택 및 집중을 강화하는 방식으로 택하였는데, IZO를 150 W 전원, 아르곤(Ar) 가스 유량 4 sccm, 진공압력 0.5 mTorr 조건 하에서 스퍼터링을 진행하여, 섬유 표면이 구리도금이 되어있는 나노 섬유 웹(2)이 나노 섬유 기판(2a)에 더욱 밀착되어 접착되도록 하는 금속섬유가 기판에 더욱 강하게 접착이 되고, 동시에 IZO 코팅층으로 구현되는 보호막으로 10 nm 이하의 매우 얇은 산화막이 형성됨으로써, 미세 구리 코팅된 나노 섬유 웹(2) 내 나노 섬유가 산화되지않고, 오랫동안 성능을 유지하도록 내구성을 현격하게 증진시킬 수도 있다. The preset oxide used in this embodiment is implemented with IZO, but the present invention is not limited thereto. That is, the preset oxide used in the protective film forming step S70 may be one or more of ITO, ZnO, IZO, and AZO. The protective film formed on the sputtering module 9b is applied on one surface of the nanofiber web 2 formed on one surface of the nanofiber substrate 2a, thereby forming a predetermined protective film or protective layer. In this embodiment, the high power impulse magnetron sputtering (HIPIMS) device described above was selected to enhance the selection and concentration of the deposition region. The IZO is 150 W power, 4 sccm of argon (Ar) gas flow rate, and vacuum pressure. Sputtering under 0.5 mTorr conditions, the metal fiber is more strongly adhered to the substrate so that the nanofiber web (2), the surface of the fiber is copper plated to be more closely adhered to the nanofiber substrate (2a), and at the same time IZO By forming a very thin oxide film of 10 nm or less as a protective film implemented as a coating layer, the nanofibers in the fine copper-coated nanofiber web (2) is not oxidized, it is possible to significantly increase the durability to maintain performance for a long time.
도 2에는 본 발명의 투명 전극 제조 장치의 투명 전극 제조 방법으로 형성된 나노 섬유 웹의 구리 코팅된 나노 섬유의 확대선도가 도시된다. 미세한 나노 섬유 웹의 구리 도금 코팅된 나노 섬유 간에 완벽하게 접합이 이루어진 미세 구리 나노 섬유의 SEM 사진((a),(b),(c))이 도시된다. 또한, 도 3의 (a),(b) 및 도 4의 (a),(b)에는 각각 사람의 손이나 나뭇잎과 같이 비평면 위치에 부착시킨 구리 코팅된 나노 섬유를 구비하는 나노 섬유 웹으로 구현되는 투명 전극의 사진과 투명 전극에 배터리와 LED를 연결하여 도전시켜 통전 가능한 상태를 도시하는 사진이 도시된다. Figure 2 shows an enlarged diagram of the copper-coated nanofibers of the nanofiber web formed by the transparent electrode manufacturing method of the transparent electrode manufacturing apparatus of the present invention. SEM pictures ((a), (b), (c)) of fine copper nanofibers are shown, with perfect bonding between the copper plated coated nanofibers of the fine nanofiber webs. 3 (a), 3 (b) and 4 (a), (b) each show a nanofiber web having copper coated nanofibers attached to non-planar positions, such as a human hand or a leaf. A picture of a transparent electrode and a picture of a state capable of conducting electricity by connecting a battery and an LED to the transparent electrode are shown.
도 5의 (a) 내지 (e)에는 본 발명의 일실시예에 따라 형성된 나노 섬유 웹이 부착된 나노 섬유 기판으로 구현되는 투명 전극의 선도가 도시되는데, (a)에는 투명 전극의 면저항-투과도 선도가 도시되는데, 본 발명의 투명 전극은 빨간점으로 표현되어 여타 전극 대비 면저항이 상당히 감소되어 도전율을 현격하게 향상된 구조임을 알 수 있다. 또한, 도 5의 (b) 내지 (d)에는 나노 섬유 기판이 PDMS로 구현되는 경우의 본 발명에 따른 투명 전극의 투과 상태를 나타내는 사진이 도시되고, 도 5의 (e)에는 투명 전극의 투과도-파장 선도가 도시되는데, 넓은 범위의 파장 대에서 투과도가 평평하게 유지됨으로써 본 발명에 의한 투명 전극의 파장대에 대한 범용성을 확인할 수 있어, 본 발명의 투명전극은 광학 전기 전자 장비에 활용 폭이 상당히 넓어짐을 알 수 있다. 5 (a) to (e) shows a diagram of a transparent electrode implemented as a nanofiber substrate with a nanofiber web formed in accordance with an embodiment of the present invention, (a) a sheet resistance-transmittance of the transparent electrode The diagram shows that the transparent electrode of the present invention is represented by a red dot so that the sheet resistance is significantly reduced compared to other electrodes, and thus the conductivity is significantly improved. In addition, (b) to (d) of FIG. 5 is a photograph showing the transmission state of the transparent electrode according to the present invention when the nanofiber substrate is implemented by PDMS, the transmittance of the transparent electrode is shown in (e) of FIG. The wavelength diagram is shown, whereby the transmittance is kept flat over a wide range of wavelengths, thereby making it possible to confirm the versatility of the wavelength band of the transparent electrode according to the present invention. You can see the widening.
도 8에는 본 발명의 제조 방법에 의하여 산출되는 필름 타입의 투명 전극의 내구성 실험에 대한 결과 선도가 도시되는데, (a)는 벤딩 곡률 테스트를, (b)는 벤딩 내구성 테스트를, (c)는 스트레치 테스트 결과의 선도로서, 벤딩 곡률이 우수한 값을 구비하고, 벤딩 반복 회수도 우수하며 신장에 대한 신장률도 우수하여 파단 가능성이 저감되는 우수한 내구성을 구비함을 알 수 있다. Figure 8 shows the results of the durability test of the film-type transparent electrode calculated by the manufacturing method of the present invention, (a) is a bending curvature test, (b) is a bending durability test, (c) As a diagram of the stretch test results, it can be seen that the bending curvature has an excellent value, the number of bending repetitions is excellent, the elongation with respect to elongation is excellent, and the durability of the fracture is reduced.
도 9에는 본 발명의 제조 방법에 의하여 산출되는 투명 전극의 나노 섬유 기판 상에 형성되는 나노 섬유 웹의 나노 섬유에 대한 확대 선도로서 (a)/(b), (c)/(d)에 도시된 바와 같이 나노 섬유 간에는 구리 금속에 의하여 완전 접합 상태를 형성하여 전자의 이동을 원활하게 하여 면저항을 급감시킴으로써 우수한 전기적 특성을 구비할 수 있다. 9 is an enlarged diagram for nanofibers of a nanofiber web formed on a nanofiber substrate of a transparent electrode produced by the manufacturing method of the present invention, as shown in (a) / (b), (c) / (d) As described above, the nanofibers can have excellent electrical properties by forming a fully bonded state by copper metal to facilitate the movement of electrons and rapidly reduce the sheet resistance.
본 발명의 투명 전극 제조 방법 및 투명 전극 제조 장치를 통하여 얻어진 투명 전극은 방열 내지 열전달 등과 같이 열방출, 열전달, 열수용 등의 필요로 하는 분야에 전자 제품, 기계 장치 등 다양한 분야에 사용될 수 있다. The transparent electrode obtained through the transparent electrode manufacturing method and the transparent electrode manufacturing apparatus of the present invention can be used in various fields such as electronic products, mechanical devices, etc. in fields requiring heat dissipation, heat transfer, heat reception, and the like, such as heat dissipation or heat transfer.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.
본 발명은 나노섬유 라인패터닝 기술 및 스퍼터링 기술을 이용하여 투명 전극 제조 장치 및 제조 방법을 제공하것이나, 투명 전극 이외에도 전기 전도성이 뛰어난 금속을 사용할 수 있고 동시에 적은 양으로도 높은 성능의 구현이 가능하도록 하여 효율 및 비용면에서 큰 이점을 구비하도록 하는 전기 소자 등의 다양한 분야에 적용될 수도 있다. The present invention provides an apparatus and method for manufacturing a transparent electrode using nanofiber line patterning technology and sputtering technology, but in addition to the transparent electrode, it is possible to use a metal having excellent electrical conductivity and at the same time to realize high performance in a small amount. Therefore, the present invention may be applied to various fields such as an electric device to have a great advantage in efficiency and cost.

Claims (13)

  1. 전기 방사 모듈의 전기 방사 노즐을 통하여 폴리머 방사액이 고전압을 통해 토출시켜 섬유화되는 나노 섬유 웹을 형성하는 일렉트로스피닝 단계와, An electrospinning step of forming a nanofiber web into which the polymer spinning solution is discharged through high voltage through an electrospinning nozzle of the electrospinning module to form a fiber;
    상기 나노 섬유 웹을 사전 설정된 금속으로 전기 도금 모듈에서 전기 도금시키는 일렉트로플레이팅 단계를 구비하는 투명 전극 제조 방법.And electroplating the nanofiber web with a predetermined metal in an electroplating module.
  2. 제 1항에 있어서, The method of claim 1,
    상기 일렉트로스피닝 단계에서, In the electrospinning step,
    상기 전기 방사 노즐에는 상기 전기 방사 모듈의 고전압부(200)를 통하여 전압 인가되고, 상기 전기 방사 노즐의 대응되는 위치에 접지되는 나노 섬유 웹 프레임이 배치되어, 상기 나노섬유 웹은 상기 나노 섬유 웹 프레임에 형성되는 것을 특징으로 하는 투명 전극 제조 방법.The electrospinning nozzle is provided with a nanofiber web frame which is applied with a voltage through the high voltage unit 200 of the electrospinning module and grounded at a corresponding position of the electrospinning nozzle, and the nanofiber web is the nanofiber web frame. It is formed in the transparent electrode manufacturing method characterized in that.
  3. 제 2항에 있어서, The method of claim 2,
    상기 일렉트로플레이팅 단계에서, In the electroplating step,
    상기 전기 도금 모듈의 전기 도금 모듈 수조에 사전 설정 도금 금속으로 형성되는 전기 도금 애노드와 상기 나노 섬유 웹 프레임이 침지될 수 있는 도금액을 수용하고 상기 전기 도금 애노드와 상기 나노 섬유 웹 프레임을 침지시키는 침지 단계;Immersion step of receiving an electroplating anode formed of a predetermined plating metal and a plating solution in which the nanofiber web frame can be immersed in the electroplating module tank of the electroplating module and immersing the electroplating anode and the nanofiber web frame. ;
    상기 전기 도금 모듈의 전기 도금 전원부로 상기 나노 섬유 웹 프레임과 상기 전기 도금 애노드에 전압을 인가하는 전원 인가 단계를 포함하는 것을 특징으로 하는 투명 전극 제조 방법.And applying a power to the nanofiber web frame and the electroplating anode to an electroplating power source of the electroplating module.
  4. 제 3항에 있어서, The method of claim 3, wherein
    상기 일렉트로스피닝 단계 및 상기 일렉트로플레이팅 단계 사이에 상기 나노 섬유 웹 프레임에 형성된 상기 나노 섬유 웹에 사전 설정 도금 증진 금속으로 도금 증진막을 형성하는 도금 증진막 형성 단계를 더 구비하는 것을 특징으로 하는 투명 전극 제조 방법.And a plating enhancement film forming step of forming a plating enhancement film with a plating enhancement metal on the nanofiber web formed on the nanofiber web frame between the electrospinning step and the electroplating step. Manufacturing method.
  5. 제 4항에 있어서, The method of claim 4, wherein
    상기 사전 설정 도금 증진 금속은 금 및 백금 중 하나 이상을 포함하고,The preset plating enhancing metal comprises at least one of gold and platinum,
    상기 도금 증진 막 형성 단계는 상기 사전 설정 도금 증진 금속을 상기 나노 섬유 웹스퍼터링 모듈에 스퍼터링 증착시키는 증착 단계인 것을 특징으로 하는 투명 전극 제조 방법.And the plating enhancing film forming step is a deposition step of sputtering deposition of the predetermined plating enhancement metal on the nanofiber web sputtering module.
  6. 제 2항에 있어서, The method of claim 2,
    상기 일렉트로스피닝 단계 후 상기 일렉트로플레이팅 단계 전에, 상기 나노 섬유 웹에 전기 방사 모듈의 전기 방사 노즐을 통하여 폴리머 방사액이 고전압을 통해 토출시켜 상기 나노 섬유 웹을 지지하는 강화 웹을 형성하는 웹 강화 단계를 더 구비하는 것을 특징으로 하는 투명 전극 제조 방법.A web reinforcing step of forming a reinforcing web supporting the nanofiber web by discharging a polymer spinning liquid through a high voltage through an electrospinning nozzle of an electrospinning module to the nanofiber web after the electrospinning step and before the electroplating step. Transparent electrode manufacturing method characterized in that it further comprises.
  7. 제 2항에 있어서,The method of claim 2,
    상기 일렉트로플레이팅 단계 후, 상기 나노 섬유 웹 프레임을 나노 섬유 기판 상에 전사시키는 나노 섬유 웹 전사 단계를 구비하는 것을 특징으로 하는 투명 전극 제조 방법.And a nanofiber web transfer step of transferring the nanofiber web frame onto a nanofiber substrate after the electroplating step.
  8. 제 7항에 있어서, The method of claim 7, wherein
    상기 나노 섬유 기판은 유리, 폴리 이미드(Polyimide), PET(Polyethylen Terephthalate), 및 PDMS(Polydimethylsiloxane) 중의 하나 이상인 것을 특징으로 하는 투명 전극 제조 방법.The nanofiber substrate is a transparent electrode manufacturing method, characterized in that at least one of glass, polyimide (Polyimide), PET (Polyethylen Terephthalate), and PDMS (Polydimethylsiloxane).
  9. 제 7항에 있어서, The method of claim 7, wherein
    상기 나노 섬유 웹 전사 단계 후, 상기 기판에 전사된 나노 섬유 웹을 세정하는 세정 단계를 더 구비하는 것을 특징으로 하는 투명 전극 제조 방법.After the nanofiber web transfer step, the transparent electrode manufacturing method characterized in that it further comprises a cleaning step for cleaning the nanofiber web transferred to the substrate.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 나노 섬유 웹 전사 단계 후, 상기 기판에 전사된 나노 섬유 웹을 사전 설정 산화물로 보호막을 형성하는 보호막 형성 단계를 더 구비하는 것을 특징으로 하는 투명 전극 제조 방법.And a protective film forming step of forming a protective film using a predetermined oxide on the nanofiber web transferred to the substrate after the nanofiber web transferring step.
  11. 제 10항에 있어서, The method of claim 10,
    상기 사전 설정 산화물은 ITO, ZnO, IZO, AZO 중의 하나 이상인 것을 특징으로 하는 투명 전극 제조 방법.And said preset oxide is at least one of ITO, ZnO, IZO, and AZO.
  12. 제 1항에 있어서, The method of claim 1,
    상기 일렉트로스피닝 단계에서, In the electrospinning step,
    상기 나노 섬유 웹 프레임이 배치되는 스테이지에 형성되는 접지 전극은 상기 나노 섬유 웹 프레임을 사이에 두고 서로 마주하는 쌍의 두 개 이상이 교차되도록 배치되고, 상기 접지 전극 쌍은 순차적으로 교번 대전되는 것을 특징으로 하는 투명 전극 제조 방법.The ground electrode formed on the stage where the nanofiber web frame is disposed is disposed so that two or more pairs facing each other with the nanofiber web frame interposed therebetween, and the pair of ground electrodes are alternately charged. Transparent electrode manufacturing method.
  13. 전기 방사 노즐을 통하여 폴리머 방사액이 고전압을 통해 토출시켜 섬유화되는 나노 섬유 웹을 형성하는 전기 방사 모듈과, An electrospinning module for forming a nanofiber web into which a polymer spinning liquid is discharged through high voltage through an electrospinning nozzle to form a fiber;
    상기 나노 섬유 웹을 사전 설정된 금속으로 전기 도금 모듈에서 전기 도금시키는 전기 도금 모듈을 포함하고, An electroplating module for electroplating the nanofiber web in a electroplating module with a predetermined metal,
    상기 전기 방사 모듈은, The electrospinning module,
    상기 전기 방사 노즐과 대향 배치되어 상기 나노 섬유 웹이 형성되는 나노 섬유 웹 프레임이 배치되는 스테이지와,A stage on which the nanofiber web frame is disposed to face the electrospinning nozzle to form the nanofiber web;
    상기 전기 방사 노즐에 고전압을 인가하는 고전압 발생기; A high voltage generator for applying a high voltage to the electrospinning nozzle;
    상기 전기 방사 노즐로부터 토출되는 섬유가 정전기력에 의해 유도되도록 상기 전기 방사 노즐과의 사이 공간에 전기장을 형성하는 접지 전원;을 포함하고, And a ground power source for forming an electric field in a space between the electrospinning nozzle and the fiber discharged from the electrospinning nozzle so as to be induced by an electrostatic force.
    상기 접지 전원은:The ground power source is:
    상기 나노 섬유 웹 프레임을 사이에 두고 서로 마주하는 쌍의 두 개 이상이 교차되도록 배치되는 접지 전극 쌍과, A pair of ground electrodes disposed to intersect two or more of the pair facing each other with the nanofiber web frame interposed therebetween,
    상기 접지 전극 쌍과 접속 단속 가능한 가동 단자를 포함하는 것을 특징으로 하는 투명 전극 제조 장치.And a movable terminal capable of intermittent connection with the ground electrode pair.
PCT/KR2016/003218 2015-03-30 2016-03-29 Method for manufacturing transparent electrode and apparatus for manufacturing transparent electrode WO2016159639A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0044011 2015-03-30
KR1020150044011A KR101715224B1 (en) 2015-03-30 2015-03-30 Method for manufacturing transparent conductive film and apparatus for the same

Publications (1)

Publication Number Publication Date
WO2016159639A1 true WO2016159639A1 (en) 2016-10-06

Family

ID=57006192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003218 WO2016159639A1 (en) 2015-03-30 2016-03-29 Method for manufacturing transparent electrode and apparatus for manufacturing transparent electrode

Country Status (2)

Country Link
KR (1) KR101715224B1 (en)
WO (1) WO2016159639A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534704A (en) * 2018-08-31 2021-12-09 センサービュー・インコーポレイテッドSensorview Incorporated Transmission lines using nanostructured materials and their manufacturing methods
JP2021534705A (en) * 2018-08-31 2021-12-09 センサービュー・インコーポレイテッドSensorview Incorporated Transmission line using nanostructured material formed by electric field spinning and its manufacturing method
EP4355052A1 (en) 2022-10-12 2024-04-17 Institutul National de Cercetare-Dezvoltare Pentru Fizica Materialelor-INCDFM Bucuresti Transparent and flexible multilayer diode device based on electrospun polymer fibers and organometallic compounds and process for manufacturing such device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102042888B1 (en) * 2016-10-17 2019-11-27 고려대학교 산학협력단 Transparent heater of manufacturing the same
KR101954401B1 (en) * 2017-06-02 2019-03-05 한국과학기술원 A method for manufacturing film having carbon-metal hybrid nano-structure
KR102004162B1 (en) * 2017-06-02 2019-07-26 한국과학기술원 An apparaus for manufacturing film having mash nano-structure using a frame that enhance binding force with nanofiber constricted by carbonization

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090050872A (en) * 2007-11-16 2009-05-20 한양대학교 산학협력단 Manufacturing method of metal fiber and metal fiber manufactured by the same
KR20110110643A (en) * 2010-04-01 2011-10-07 경희대학교 산학협력단 Preparation method of electroconductive nanofiber through electrospinning followed by electroless plating
JP2011236512A (en) * 2010-05-07 2011-11-24 Shinshu Univ Manufacturing method of fiber conductor and fiber conductor obtained thereby
KR20130039648A (en) * 2011-10-12 2013-04-22 고려대학교 산학협력단 Electrospinning apparatus with supersonic stream nozzle
WO2014129504A1 (en) * 2013-02-20 2014-08-28 国立大学法人東京工業大学 Electroconductive nanowire network, and electroconductive substrate and transparent electrode using same, and method for manufacturing electroconductive nanowire network, electroconductive substrate, and transparent electrode

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130026885A (en) * 2011-09-06 2013-03-14 삼성전기주식회사 Method of manufacturing touch panel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090050872A (en) * 2007-11-16 2009-05-20 한양대학교 산학협력단 Manufacturing method of metal fiber and metal fiber manufactured by the same
KR20110110643A (en) * 2010-04-01 2011-10-07 경희대학교 산학협력단 Preparation method of electroconductive nanofiber through electrospinning followed by electroless plating
JP2011236512A (en) * 2010-05-07 2011-11-24 Shinshu Univ Manufacturing method of fiber conductor and fiber conductor obtained thereby
KR20130039648A (en) * 2011-10-12 2013-04-22 고려대학교 산학협력단 Electrospinning apparatus with supersonic stream nozzle
WO2014129504A1 (en) * 2013-02-20 2014-08-28 国立大学法人東京工業大学 Electroconductive nanowire network, and electroconductive substrate and transparent electrode using same, and method for manufacturing electroconductive nanowire network, electroconductive substrate, and transparent electrode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021534704A (en) * 2018-08-31 2021-12-09 センサービュー・インコーポレイテッドSensorview Incorporated Transmission lines using nanostructured materials and their manufacturing methods
JP2021534705A (en) * 2018-08-31 2021-12-09 センサービュー・インコーポレイテッドSensorview Incorporated Transmission line using nanostructured material formed by electric field spinning and its manufacturing method
EP4355052A1 (en) 2022-10-12 2024-04-17 Institutul National de Cercetare-Dezvoltare Pentru Fizica Materialelor-INCDFM Bucuresti Transparent and flexible multilayer diode device based on electrospun polymer fibers and organometallic compounds and process for manufacturing such device

Also Published As

Publication number Publication date
KR20160117660A (en) 2016-10-11
KR101715224B1 (en) 2017-03-13

Similar Documents

Publication Publication Date Title
WO2016159639A1 (en) Method for manufacturing transparent electrode and apparatus for manufacturing transparent electrode
JP4737348B2 (en) Method for forming transparent conductive layer pattern
US9717144B2 (en) Electroconductive nanowire network, and electroconductive substrate and transparent electrode using same, and method for manufacturing electroconductive nanowire network, electroconductive substrate, and transparent electrode
RU2012111658A (en) ELECTROCHROMIC DEVICES, ASSEMBLY NODES, INCLUDING ELECTROCHROMIC DEVICES, AND / OR METHODS FOR THEIR MANUFACTURE
US20010050372A1 (en) Flexible substrate
JP2002521234A (en) Flexible substrate
WO2013015612A1 (en) Electrode structure and method for producing electrode
CN107993747B (en) Transparent conductive film, conductive structure and preparation method thereof
WO2017099345A1 (en) Method for manufacturing conductive nanowire network using electron beam, and transparent electrode and electronic device employing same
DE102013219886A1 (en) Apparatus and method for the continuous production of porous silicon layers
CN109768167A (en) The perovskite solar cell and preparation method thereof of no current sluggishness
CN113557137B (en) Transfer foil for touch sensor and method for manufacturing conductive film for touch sensor
EP2422383A1 (en) Optoelectric device and method for manufacturing the same
CN106297964A (en) A kind of compound transparent electricity conductive film and preparation method thereof
CN113012856A (en) Metal grid flexible transparent conductive electrode based on cellulose nanofiber and preparation method thereof
CN111399708A (en) Electrode wiring structure of touch functional sheet and preparation method thereof
WO2016052878A1 (en) Metal nanowire and graphene oxide-based transparent electrode using combined light source, and method for manufacturing same
CN106119971B (en) A kind of preparation and its application of organic and inorganic perovskite spike crystal
US9801284B2 (en) Method of manufacturing a patterned conductor
KR20130096873A (en) Method of manufacturing coated electronic parts with high anti-bending and heat resistancy properties and coated electronic parts thereof
CN110729415B (en) Flexible OLED lighting panel and manufacturing method thereof
CN107132707B (en) A kind of liquid crystal display panel and preparation method thereof
TWI249180B (en) Gas discharge panel and manufacturing method therefor
CN114999734B (en) Flexible metal nanowire film and preparation method thereof
WO2017034292A1 (en) Method of manufacturing pattern of dispersed particles using electric field on nonconductive substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773420

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773420

Country of ref document: EP

Kind code of ref document: A1