WO2016159598A1 - Method for separating methyl ethyl ketone from azeotropic mixture comprising methyl ethyl ketone and isobutyraldehyde - Google Patents

Method for separating methyl ethyl ketone from azeotropic mixture comprising methyl ethyl ketone and isobutyraldehyde Download PDF

Info

Publication number
WO2016159598A1
WO2016159598A1 PCT/KR2016/003095 KR2016003095W WO2016159598A1 WO 2016159598 A1 WO2016159598 A1 WO 2016159598A1 KR 2016003095 W KR2016003095 W KR 2016003095W WO 2016159598 A1 WO2016159598 A1 WO 2016159598A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethyl ketone
methyl ethyl
isobutyl aldehyde
azeotrope containing
separating
Prior art date
Application number
PCT/KR2016/003095
Other languages
French (fr)
Korean (ko)
Inventor
김우영
신우균
이경준
Original Assignee
지에스칼텍스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 지에스칼텍스 주식회사 filed Critical 지에스칼텍스 주식회사
Publication of WO2016159598A1 publication Critical patent/WO2016159598A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/40Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by oxidation with ozone; by ozonolysis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C45/00Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
    • C07C45/51Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by pyrolysis, rearrangement or decomposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms
    • C07C49/10Methyl-ethyl ketone

Definitions

  • the present invention relates to a process for separating methylethylketone from an azeotrope containing methylethylketone and isobutylaldehyde.
  • Methylethylketone and isobutylaldehyde are produced together as a byproduct of the dehydration of 2,3-butanediol.
  • methyl ethyl ketone is a compound with high industrial added value, and is economical when used separately from isobutyl aldehyde.
  • Methyl ethyl ketone and isobutyl aldehyde are liquid at room temperature and must be distilled to separate methyl ethyl ketone from their mixture.
  • methyl ethyl ketone has a boiling point of 79 ° C. and isobutyl aldehyde has a boiling point of 63 ° C., and a boiling point of 63 ° C. has little difference, and a mixture of methyl ethyl ketone and isobutyl aldehyde forms azeotropes. There is a problem that is consumed.
  • the present invention aims to solve the above problems and to reduce energy costs by efficiently removing isobutylaldehyde from methyl ethyl ketone in an economical and convenient way as compared to general distillation.
  • one embodiment of the present invention specifically for an azeotrope containing methyl ethyl ketone and isobutyl aldehyde,
  • FIG. 1 is a schematic diagram showing a method of separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde by gas-liquid reaction.
  • FIG. 2 is a schematic diagram showing a method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde by gas phase reaction.
  • One embodiment of the present invention specifically for an azeotrope containing methyl ethyl ketone and isobutyl aldehyde,
  • the steps a) and b) may be optionally included.
  • FIG. 1 is a schematic diagram showing a method of separating methyl ethyl ketone from an azeotropic mixture comprising gas-liquid reaction, ie, methyl ethyl ketone and isobutyl aldehyde by step a).
  • isobutyl aldehyde As shown in FIG. 1, for an azeotrope containing methyl ethyl ketone (MEK) and isobutyl aldehyde (Isobutyraldehyde, IBA), when the heat treatment is carried out while charging an oxidizing gas, isobutyl aldehyde is oxidized to isobutyric acid. (Isobutyric Acid, IBAC) is converted to isobutyric acid boiling point 155 °C, so that distillation with methyl ethyl ketone is smooth.
  • IBAC isobutyric Acid
  • the oxidizing gas of step a) may be at least one selected from oxygen, ozone, and air, and may be charged together with at least one inert gas selected from nitrogen, helium, neon, and argon.
  • the oxidizing gas of step a) may be charged at a partial pressure selected from the range of 0 ⁇ 2 bar.
  • the heat treatment of step a) is preferably carried out at a temperature selected from the range of 30 ⁇ 70 °C. If the heat treatment temperature is less than 30 ° C there is a problem that the induced oxidation reaction does not occur, and if the heat treatment temperature exceeds 70 ° C, methyl ethyl ketone and isobutyl aldehyde is vaporized.
  • beads may be filled in the reactor used in step a), and the beads filled in the reactor may be glass beads or aluminum oxide beads.
  • the injection direction of the mixture and the charging direction of the oxidizing gas in the reactor may be the same or opposite directions.
  • the azeotropic mixture can be lowered in the reactor along the direction of gravity by injecting from the top of the reactor towards the bottom, and the oxidizing gas is charged upward from the bottom of the reactor to the diffusion direction of the gas. It can rise in the reactor along.
  • the beads charged in the reactor serve to reduce the moving speed of the azeotropic mixture and the oxidizing gas, and maximize the contact area between the mixture and the oxidizing gas by widening the diffusion direction.
  • step b) gas reaction
  • FIG. 2 is a schematic diagram illustrating a method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde by step b).
  • the oxidizing agent of step b) may be at least one selected from aluminum oxide, silica gel, zeolite.
  • the heat treatment of step b) is preferably carried out at a temperature selected from the range of 70 ⁇ 120 °C. If the heat treatment temperature is less than 70 °C, methyl ethyl ketone and isobutyl aldehyde is not vaporized to meet the oxidizing agent. If the heat treatment temperature exceeds 120 °C, the azeotropic mixture has a sufficient contact time with the oxidizing agent by rapid vaporization There is a problem that it does not have to boil and discharge to the outside.
  • beads may be filled in the reactor used in step b), and the beads filled in the reactor may be the oxidant beads described above.
  • the charged oxidant beads in the reactor serve to reduce the moving speed of the vaporized azeotropic mixture, and at the same time, maximize the contact area between the azeotropic mixture and the oxidant by widening the diffusion direction.
  • the azeotrope (methylethyl ketone + isobutylaldehyde) was supplied to the upper inlet and oxygen, a gas oxidant, to the lower inlet.
  • the composition of the azeotrope consisted of 90 mol% of methyl ethyl ketone and 10 mol% of isobutylaldehyde.
  • the azeotrope falls downward in the reactor by gravity, while the gaseous oxidant moves upward by the density difference, resulting in a large contact area between the azeotrope and the gaseous oxidant.
  • the inert or weakly acidic silica gel and alumina beads were filled in the reactor.
  • the azeotrope and the gas oxidant were supplied while maintaining the temperature in the reactor at 30 to 70 ° C.
  • reaction gas oxidant was discharged to the upper outlet, and 90 mol% of methyl ethyl ketone and 10 mol% of isobutyric acid, which is oxidized isobutylaldehyde, were discharged to the lower outlet.
  • Methyl ethyl ketone had a boiling point of 79 DEG C and isobutyric acid having a boiling point of 155 DEG C. Thus, high-purity methyl ethyl ketone could be obtained by a simple distillation process.
  • the distillation reactor includes a lower inlet through which an azeotrope is supplied and an upper outlet through which the reactant is discharged.
  • the inside of the distillation reactor is filled with alumina, zeolite, and the like, which are solid oxidants.
  • the composition of the azeotrope consisted of 90 mol% of methyl ethyl ketone and 10 mol% of isobutylaldehyde.
  • isobutyl aldehyde is converted to isobutyric acid when the solid oxide located at the inside of the reactor and the gaseous azeotrope are contacted.
  • the isobutyl acid having a boiling point of about 150 ° C. is liquefied and does not move to the upper part in the distillation reactor. It will fall to the bottom.
  • methyl ethyl ketone of 99% purity or higher is discharged to the upper outlet, and only isobutyric acid remains at the lower end, so the two substances are separated without separate separation / purification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

The present invention relates to a method for separating methyl ethyl ketone from an azeotropic mixture comprising methyl ethyl ketone and isobutyraldehyde.

Description

메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법Method for separating methyl ethyl ketone from azeotrope containing methyl ethyl ketone and isobutyl aldehyde
본 발명은 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법에 관한 것이다.The present invention relates to a process for separating methylethylketone from an azeotrope containing methylethylketone and isobutylaldehyde.
메틸에틸케톤 및 이소부틸알데하이드는 2,3-부탄디올의 탈수반응의 부산물로 함께 생성된다. 이 중 메틸에틸케톤은 산업적 부가가치가 높은 화합물로서, 이소부틸알데하이드로부터 분리하여 별도로 이용하는 경우 경제성이 높다. Methylethylketone and isobutylaldehyde are produced together as a byproduct of the dehydration of 2,3-butanediol. Of these, methyl ethyl ketone is a compound with high industrial added value, and is economical when used separately from isobutyl aldehyde.
메틸에틸케톤 및 이소부틸알데하이드는 상온에서 액체 상태로서 이들의 혼합물에서 메틸에틸케톤을 분리하기 위해서는 증류를 하여야 한다. Methyl ethyl ketone and isobutyl aldehyde are liquid at room temperature and must be distilled to separate methyl ethyl ketone from their mixture.
그러나, 메틸에틸케톤은 끓는점이 79℃, 이소부틸알데하이드는 끓는점이 63℃로 끓는점의 차이가 거의 없고, 메틸에틸케톤 및 이소부틸알데하이드의 혼합물은 공비를 형성하기 때문에 일반적인 증류를 행할 경우, 과도한 에너지가 소비되는 문제점이 있다.However, methyl ethyl ketone has a boiling point of 79 ° C. and isobutyl aldehyde has a boiling point of 63 ° C., and a boiling point of 63 ° C. has little difference, and a mixture of methyl ethyl ketone and isobutyl aldehyde forms azeotropes. There is a problem that is consumed.
본 발명은 상기의 문제를 해결하고, 일반적인 증류법과 대비하여 경제적이고 간편한 방법으로 메틸에틸케톤으로부터 이소부틸알데하이드를 효율적으로 제거하여 에너지 비용을 감소시키고자 하는데 목적이 있다.The present invention aims to solve the above problems and to reduce energy costs by efficiently removing isobutylaldehyde from methyl ethyl ketone in an economical and convenient way as compared to general distillation.
상기의 목적을 달성하기 위하여, 본 발명의 일실시예는 구체적으로 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물에 대하여, In order to achieve the above object, one embodiment of the present invention specifically for an azeotrope containing methyl ethyl ketone and isobutyl aldehyde,
a) 산화성 기체를 장입하면서 열처리하는 단계; 또는 a) heat treatment while charging oxidizing gas; or
b) 산화제를 접촉하면서 열처리하는 단계;b) heat treatment while contacting the oxidant;
를 포함함으로써, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법을 제공한다.By including, it provides a method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde.
본 발명의 방법에 의할 경우, 일반적인 증류법과 대비하여 경제적이고 간편한 방법으로 메틸에틸케톤으로부터 이소부틸알데하이드를 효율적으로 제거하여 에너지 비용을 감소시킬 수 있다는 효과가 있다.According to the method of the present invention, there is an effect that the energy cost can be reduced by efficiently removing isobutylaldehyde from methyl ethyl ketone in an economical and convenient way as compared to the general distillation method.
도 1은 기액 반응에 의한 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법을 도시한 모식도이다.1 is a schematic diagram showing a method of separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde by gas-liquid reaction.
도 2는 기상 반응에 의한 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법을 도시한 모식도이다.FIG. 2 is a schematic diagram showing a method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde by gas phase reaction.
본 발명의 이점 및 특징, 및 이를 달성하는 방법은 상세하게 후술되어 있는 실시예 및 도면을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예 및 도면에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예 및 도면은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and methods of achieving the same will be apparent from the embodiments and drawings described below in detail. However, the present invention is not limited to the embodiments and drawings disclosed below, but will be implemented in various different forms, only the embodiments and drawings to make the disclosure of the present invention complete, in the art to which the present invention pertains. It is provided to fully inform the person skilled in the art the scope of the invention, which is defined only by the scope of the claims.
이하 본 발명의 바람직한 실시예에 따른 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법 에 관하여 상세히 설명하면 다음과 같다. Hereinafter, a method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde according to a preferred embodiment of the present invention will be described in detail.
본 발명의 일실시예는 구체적으로 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물에 대하여, One embodiment of the present invention specifically for an azeotrope containing methyl ethyl ketone and isobutyl aldehyde,
a) 산화성 기체를 장입하면서 열처리하는 단계; 또는 a) heat treatment while charging oxidizing gas; or
b) 산화제를 접촉하면서 열처리하는 단계;b) heat treatment while contacting the oxidant;
를 포함함으로써, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법을 제공한다.By including, it provides a method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde.
본 발명의 분리 방법에 있어서, 상기 a) 단계와 b) 단계는 선택적으로 포함될 수 있다.In the separation method of the present invention, the steps a) and b) may be optionally included.
먼저 도 1을 통해 a) 단계(기액 반응)에 대하여 설명한다.First, a step (gas-liquid reaction) will be described with reference to FIG. 1.
도 1은 기액 반응, 즉 a) 단계에 의한 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법을 도시한 모식도이다.FIG. 1 is a schematic diagram showing a method of separating methyl ethyl ketone from an azeotropic mixture comprising gas-liquid reaction, ie, methyl ethyl ketone and isobutyl aldehyde by step a).
도 1에 나타낸 바와 같이, 메틸에틸케톤(Methyl Ethyl Ketone, MEK) 및 이소부틸알데하이드(Isobutyraldehyde, IBA)를 포함하는 공비 혼합물에 대하여, 산화성 기체를 장입하면서 열처리하면, 이소부틸알데하이드가 산화되어 이소부티르산(Isobutyric Acid, IBAC)으로 전환되고, 이소부티르산은 끓는점이 155℃이므로 메틸에틸케톤과의 증류가 원활히 이루어지게 된다.As shown in FIG. 1, for an azeotrope containing methyl ethyl ketone (MEK) and isobutyl aldehyde (Isobutyraldehyde, IBA), when the heat treatment is carried out while charging an oxidizing gas, isobutyl aldehyde is oxidized to isobutyric acid. (Isobutyric Acid, IBAC) is converted to isobutyric acid boiling point 155 ℃, so that distillation with methyl ethyl ketone is smooth.
여기에서, 상기 a) 단계의 산화성 기체는 산소, 오존 및 공기(air)로부터 선택되는 적어도 하나일 수 있으며, 질소, 헬륨, 네온 및 아르곤으로부터 선택되는 적어도 하나의 비활성 기체와 함께 장입될 수도 있다.Here, the oxidizing gas of step a) may be at least one selected from oxygen, ozone, and air, and may be charged together with at least one inert gas selected from nitrogen, helium, neon, and argon.
여기에서, 상기 a) 단계의 산화성 기체는 0~2 bar 의 범위에서 선택되는 부분압으로 장입될 수 있다.Here, the oxidizing gas of step a) may be charged at a partial pressure selected from the range of 0 ~ 2 bar.
산화성 기체의 장입 압력이 2 bar를 초과하는 경우에는 공비 혼합물의 유동을 저해하는 문제가 있다.If the charging pressure of the oxidizing gas exceeds 2 bar, there is a problem of inhibiting the flow of the azeotropic mixture.
여기에서, 상기 a) 단계의 열처리는 30~70℃의 범위에서 선택되는 온도에서 수행되는 것이 바람직하다. 열처리 온도가 30℃ 미만일 경우에는 유도하는 산화반응이 발생하지 않는 문제가 있고, 열처리 온도가 70℃를 초과하는 경우에는 메틸에틸케톤 및 이소부틸알데하이드가 기화되는 문제가 발생한다 .Here, the heat treatment of step a) is preferably carried out at a temperature selected from the range of 30 ~ 70 ℃. If the heat treatment temperature is less than 30 ° C there is a problem that the induced oxidation reaction does not occur, and if the heat treatment temperature exceeds 70 ° C, methyl ethyl ketone and isobutyl aldehyde is vaporized.
도 1에 나타낸 바와 같이, 상기 a) 단계에서 사용되는 반응기 내에는 비드(bead)가 충진될 수 있는데, 상기 반응기 내 충진된 비드는 유리 비드 또는 산화알루미늄 비드일 수 있다.As shown in FIG. 1, beads may be filled in the reactor used in step a), and the beads filled in the reactor may be glass beads or aluminum oxide beads.
메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물에 대하여, 메틸에틸케톤을 효율적으로 분리하기 위해서는 이소부틸알데하이드의 산화반응이 원활히 일어나야 하는데, 이를 위해서는 상기 공비 혼합물과 상기 산화성 기체의 접촉 면적을 넓힐 필요가 있는바, 이는 상기 반응기 내 충진된 비드에 의해 달성될 수 있다.For azeotropic mixtures containing methyl ethyl ketone and isobutyl aldehyde, in order to efficiently separate methyl ethyl ketone, the oxidation reaction of isobutyl aldehyde must occur smoothly, and for this purpose, the contact area between the azeotropic mixture and the oxidizing gas needs to be widened. This can be achieved by beads charged in the reactor.
이 때, 반응기 내에서 상기 혼합물의 주입 방향과 상기 산화성 기체의 장입 방향은 서로 동일 또는 반대 방향일 수 있다.At this time, the injection direction of the mixture and the charging direction of the oxidizing gas in the reactor may be the same or opposite directions.
예를 들어, 상기 공비 혼합물은 상기 반응기의 상부에서 하부를 향해 주입됨으로써 중력 방향을 따라 상기 반응기 내에서 하강할 수 있으며, 상기 산화성 기체는 상기 반응기의 하부에서 상부를 향해 장입됨으로써 상기 기체의 확산 방향을 따라 상기 반응기 내에서 상승할 수 있다.For example, the azeotropic mixture can be lowered in the reactor along the direction of gravity by injecting from the top of the reactor towards the bottom, and the oxidizing gas is charged upward from the bottom of the reactor to the diffusion direction of the gas. It can rise in the reactor along.
여기에서, 상기 반응기 내 충진된 비드는 상기 공비 혼합물과 상기 산화성 기체의 이동 속도를 저감시키기 위한 역할을 수행함과 동시에, 확산 방향을 넓힘으로써 상기 혼합물과 상기 산화성 기체의 접촉 면적을 최대화하게 된다.Here, the beads charged in the reactor serve to reduce the moving speed of the azeotropic mixture and the oxidizing gas, and maximize the contact area between the mixture and the oxidizing gas by widening the diffusion direction.
다음으로 도 2를 통해 b) 단계(기상 반응)에 대하여 설명한다.Next, step b) (gas reaction) will be described with reference to FIG. 2.
도 2는 기상 반응, 즉 b) 단계에 의한 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법을 도시한 모식도이다.FIG. 2 is a schematic diagram illustrating a method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde by step b).
도 2에 나타낸 바와 같이, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물을 산화제가 장입된 반응기 내 주입하고 열처리하면, 기화된 공비 혼합물이 산화제와 접촉하면서 이소부틸알데하이드가 산화되어 이소부티르산으로 전환되고, 이소부티르산은 끓는점이 155℃이므로 공비 혼합물은 기상의 메틸에틸케톤과 액상의 이소부티르산으로 분리됨으로써 메틸에틸케톤의 분리가 원활히 이루어지게 된다.As shown in FIG. 2, when an azeotrope containing methyl ethyl ketone and isobutyl aldehyde is injected into a reactor loaded with an oxidizing agent and heat treated, the isobutyl aldehyde is oxidized and converted to isobutyric acid while the vaporized azeotrope is in contact with the oxidizing agent. Since isobutyric acid has a boiling point of 155 ° C., the azeotropic mixture is separated into methyl ethyl ketone in the gas phase and isobutyric acid in the liquid phase, thereby separating methyl ethyl ketone smoothly.
여기에서, 상기 b) 단계의 산화제는 산화알루미늄, 실리카겔, 제올라이트로부터 선택되는 적어도 하나일 수 있다.Here, the oxidizing agent of step b) may be at least one selected from aluminum oxide, silica gel, zeolite.
여기에서, 상기 b) 단계의 열처리는 70~120℃의 범위에서 선택되는 온도에서 수행되는 것이 바람직하다. 열처리 온도가 70℃ 미만일 경우에는 메틸에틸케톤과 이소부틸알데하이드가 기화되지 않아 산화제와 만나지 못하는 문제가 있고, 열처리 온도가 120℃를 초과하는 경우에는 공비 혼합물이 급속한 기화에 의해 산화제와 충분한 접촉 시간을 가지지 못한 채 외부로 끓어 배출되는 문제가 있다. Here, the heat treatment of step b) is preferably carried out at a temperature selected from the range of 70 ~ 120 ℃. If the heat treatment temperature is less than 70 ℃, methyl ethyl ketone and isobutyl aldehyde is not vaporized to meet the oxidizing agent. If the heat treatment temperature exceeds 120 ℃, the azeotropic mixture has a sufficient contact time with the oxidizing agent by rapid vaporization There is a problem that it does not have to boil and discharge to the outside.
도 2에 나타낸 바와 같이, 상기 b) 단계에서 사용되는 반응기 내에는 비드(bead)가 충진될 수 있는데, 상기 반응기 내 충진된 비드는 상기한 산화제 비드일 수 있다.As shown in FIG. 2, beads may be filled in the reactor used in step b), and the beads filled in the reactor may be the oxidant beads described above.
메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물에 대하여, 메틸에틸케톤을 효율적으로 분리하기 위해서는 이소부틸알데하이드의 산화반응이 원활히 일어나야 하는바, 이를 위해서는 상기 공비 혼합물과 상기 산화제의 접촉 면적을 넓힐 필요가 있는바, 이는 상기 반응기 내 충진된 산화제 비드에 의해 달성될 수 있다.For azeotropic mixtures containing methyl ethyl ketone and isobutyl aldehyde, in order to efficiently separate methyl ethyl ketone, the oxidation reaction of isobutyl aldehyde must occur smoothly. For this purpose, the contact area between the azeotropic mixture and the oxidant needs to be widened. This can be achieved by oxidant beads charged in the reactor.
여기에서, 상기 반응기 내 충진된 산화제 비드는 기화된 상기 공비 혼합물의 이동 속도를 저감시키기 위한 역할을 수행함과 동시에, 확산 방향을 넓힘으로써 상기 공비 혼합물과 상기 산화제의 접촉 면적을 최대화하게 된다.Here, the charged oxidant beads in the reactor serve to reduce the moving speed of the vaporized azeotropic mixture, and at the same time, maximize the contact area between the azeotropic mixture and the oxidant by widening the diffusion direction.
이하, 본 발명의 바람직한 실시예를 통해 본 발명을 더욱 구체적으로 설명한다.Hereinafter, the present invention will be described in more detail with reference to preferred embodiments of the present invention.
실시예 1 - 기액반응기를 이용한 분리Example 1 Separation Using a Gas-liquid Reactor
도 1에서와 같이 2개의 주입구(inlet)와 2개의 출구(outlet)로 구성된 반응기에서 공비혼합물(메틸에틸케톤+이소부틸알데하이드)은 상부 주입구로 공급하고 기체 산화제인 산소를 하부 주입구로 공급하였다. 이 때 공비혼합물의 조성은 메틸에틸케톤 90 mol%, 이소부틸알데하이드 10 mol% 로 구성되었다. 공비혼합물은 중력에 의해 반응기 내에서 아래쪽으로 떨어지는 반면, 기체 산화제는 밀도차에 의해 위쪽으로 이동하면서 공비혼합물과 기체 산화제의 접촉면적이 커진다. 이 때 기체 산화제의 이동을 분산시켜주기 위해 반응기 내에는 불활성이거나 약산성을 띄고 있는 실리카겔과 알루미나 비드를 채워주었다. 반응기 내 온도는 30~70℃로 유지하면서 상기 공비혼합물과 기체 산화제를 공급하여 주었다. As shown in FIG. 1, in the reactor consisting of two inlets and two outlets, the azeotrope (methylethyl ketone + isobutylaldehyde) was supplied to the upper inlet and oxygen, a gas oxidant, to the lower inlet. At this time, the composition of the azeotrope consisted of 90 mol% of methyl ethyl ketone and 10 mol% of isobutylaldehyde. The azeotrope falls downward in the reactor by gravity, while the gaseous oxidant moves upward by the density difference, resulting in a large contact area between the azeotrope and the gaseous oxidant. At this time, in order to disperse the movement of the gaseous oxidizer, the inert or weakly acidic silica gel and alumina beads were filled in the reactor. The azeotrope and the gas oxidant were supplied while maintaining the temperature in the reactor at 30 to 70 ° C.
그 결과, 상부 출구로는 반응 기체 산화제가 배출되고, 하부 출구로는 메틸에틸케톤 90 mol% 와 산화된 이소부틸알데하이드인 이소부티르산 10 mol%이 배출되었다.As a result, the reaction gas oxidant was discharged to the upper outlet, and 90 mol% of methyl ethyl ketone and 10 mol% of isobutyric acid, which is oxidized isobutylaldehyde, were discharged to the lower outlet.
메틸에틸케톤은 끓는점이 79℃, 이소부티르산은 끓는점이 155℃인바, 간단한 증류공정에 의하여 고순도 메틸에틸케톤을 얻어낼 수 있었다.Methyl ethyl ketone had a boiling point of 79 DEG C and isobutyric acid having a boiling point of 155 DEG C. Thus, high-purity methyl ethyl ketone could be obtained by a simple distillation process.
실시예 2 - 기상반응기를 이용한 분리Example 2 Separation Using Gas Phase Reactor
도 2에서와 같이 증류-반응기는 공비혼합물이 공급되는 하부 주입구와 반응물이 배출되는 상부 출구로 구성되고, 증류-반응기의 내부는 고체 산화제인 알루미나, 지올라이트 등으로 채워진다. 이 때 공비혼합물의 조성은 메틸에틸케톤 90 mol%, 이소부틸알데하이드 10 mol% 로 구성되었다. 하부 주입구 측에서 70~120℃의 온도로 가열된 상태에서 공비 혼합물을 공급하면 메틸에틸케톤과 이소부틸알데하이드는 증류 반응기의 상단부 방향으로 기화되어 이동한다. 이 때 반응기 내부 중단부에 위치한 고체산화물과 기체상태인 공비혼합물이 접촉하면서 이소부틸알데하이드가 이소부티르산으로 전환되는데, 끓는점이 약 150℃ 인 이소부틸릭산은 액화되어 증류-반응기 내에서 상단부로 이동하지 못하고, 하단부로 떨어지게 된다. 최종적으로 상부 출구로는 순도 99% 이상의 메틸에틸케톤만 배출되고 하단부에는 이소부티르산만 남게 되어 별도 분리/정제 없이 두 물질이 분리된다 As shown in FIG. 2, the distillation reactor includes a lower inlet through which an azeotrope is supplied and an upper outlet through which the reactant is discharged. The inside of the distillation reactor is filled with alumina, zeolite, and the like, which are solid oxidants. At this time, the composition of the azeotrope consisted of 90 mol% of methyl ethyl ketone and 10 mol% of isobutylaldehyde. When the azeotrope is fed while heated to a temperature of 70-120 ° C. at the lower inlet side, methyl ethyl ketone and isobutyl aldehyde are vaporized and moved toward the top of the distillation reactor. At this time, isobutyl aldehyde is converted to isobutyric acid when the solid oxide located at the inside of the reactor and the gaseous azeotrope are contacted. The isobutyl acid having a boiling point of about 150 ° C. is liquefied and does not move to the upper part in the distillation reactor. It will fall to the bottom. Finally, methyl ethyl ketone of 99% purity or higher is discharged to the upper outlet, and only isobutyric acid remains at the lower end, so the two substances are separated without separate separation / purification.
이상에서는 본 발명의 실시예를 중심으로 설명하였지만, 당업자의 수준에서 다양한 변경이나 변형을 가할 수 있다. 이러한 변경과 변형이 본 발명의 범위를 벗어나지 않는 한 본 발명에 속한다고 할 수 있다. 따라서 본 발명의 권리범위는 이하에 기재되는 청구범위에 의해 판단되어야 할 것이다.In the above description, the embodiment of the present invention has been described, but various changes and modifications can be made at the level of those skilled in the art. Such changes and modifications may belong to the present invention without departing from the scope of the present invention. Therefore, the scope of the present invention will be determined by the claims described below.

Claims (14)

  1. 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물에 대하여, For an azeotrope containing methyl ethyl ketone and isobutyl aldehyde,
    a) 산화성 기체를 장입하면서 열처리하는 단계; 또는 a) heat treatment while charging oxidizing gas; or
    b) 산화제를 접촉하면서 열처리하는 단계;b) heat treatment while contacting the oxidant;
    를 포함하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.A method of separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde.
  2. 제 1항에 있어서,The method of claim 1,
    상기 a) 단계의 산화성 기체는 산소, 오존 및 공기(air)로부터 선택되는 적어도 하나인 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.The method of separating methylethylketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde, characterized in that the oxidizing gas of step a) is at least one selected from oxygen, ozone and air.
  3. 제 1항에 있어서,The method of claim 1,
    상기 a) 단계의 산화성 기체는 질소, 헬륨, 네온 및 아르곤으로부터 선택되는 적어도 하나의 비활성 기체와 함께 장입되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.Separating methylethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde, characterized in that the oxidizing gas of step a) is charged with at least one inert gas selected from nitrogen, helium, neon and argon. How to.
  4. 제 1항에 있어서,The method of claim 1,
    상기 a) 단계의 산화성 기체는 0~2 bar 의 범위에서 선택되는 부분압으로 주입되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.The method of separating methylethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde, characterized in that the oxidizing gas of step a) is injected at a partial pressure selected from the range of 0-2 bar.
  5. 제 1항에 있어서,The method of claim 1,
    상기 a) 단계의 열처리는 30~70℃의 범위에서 선택되는 온도에서 수행되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.The heat treatment of step a) is characterized in that carried out at a temperature selected in the range of 30 ~ 70 ℃, methyl ethyl ketone from the azeotrope containing methyl ethyl ketone and isobutyl aldehyde.
  6. 제 1항에 있어서,The method of claim 1,
    상기 a) 단계의 열처리를 통한 상기 혼합물 및 산화성 기체의 반응에 의하여 이소부틸알데하이드가 이소부티르산으로 전환되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.Separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde, characterized in that isobutyl aldehyde is converted to isobutyric acid by the reaction of the mixture and the oxidizing gas through the heat treatment of step a) Way.
  7. 제 1항에 있어서,The method of claim 1,
    상기 a) 단계는 비드(bead)가 충진된 반응기 내로 주입된 혼합물이, 상기 반응기 내로 장입되는 산화성 기체와 접촉됨으로써 수행되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.Step a) is carried out by contacting a mixture injected into a bead-filled reactor with an oxidizing gas charged into the reactor, from the azeotrope containing methylethylketone and isobutylaldehyde. How to separate ethyl ketone.
  8. 제 7항에 있어서,The method of claim 7, wherein
    상기 반응기 내 충진된 비드는 유리 비드 또는 산화알루미늄 비드인 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.A method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde, characterized in that the beads charged in the reactor are glass beads or aluminum oxide beads.
  9. 제 7항에 있어서,The method of claim 7, wherein
    상기 혼합물의 주입 방향과 상기 산화성 기체의 장입 방향은 서로 동일 또는 반대 방향인 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.A method for separating methyl ethyl ketone from an azeotrope containing methyl ethyl ketone and isobutyl aldehyde, characterized in that the injection direction of the mixture and the charging direction of the oxidizing gas are the same or opposite directions.
  10. 제 7항에 있어서,The method of claim 7, wherein
    상기 혼합물은 상기 반응기의 상부에서 하부를 향해 주입되며, 상기 산화성 기체는 상기 반응기의 하부에서 상부를 향해 장입되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.The mixture is injected from the top of the reactor toward the bottom, and the oxidizing gas is charged from the bottom of the reactor to the top, whereby methyl ethyl ketone is extracted from the azeotrope containing methyl ethyl ketone and isobutylaldehyde. How to separate.
  11. 제 1항에 있어서,The method of claim 1,
    상기 b) 단계의 산화제는 산화알루미늄, 실리카겔, 제올라이트로부터 선택되는 적어도 하나인 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.The oxidizing agent of step b) is characterized in that at least one selected from aluminum oxide, silica gel, zeolite, methyl ethyl ketone from the azeotrope containing a mixture of methyl ethyl ketone and isobutyl aldehyde.
  12. 제 1항에 있어서,The method of claim 1,
    상기 b) 단계의 열처리는 70~120℃의 범위에서 선택되는 온도에서 수행되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.The heat treatment of step b) is characterized in that carried out at a temperature selected from the range of 70 ~ 120 ℃, methyl ethyl ketone from the azeotrope containing methyl ethyl ketone and isobutyl aldehyde.
  13. 제 1항에 있어서,The method of claim 1,
    상기 b) 단계의 열처리를 통한 상기 혼합물 및 산화제의 반응에 의하여 이소부틸알데하이드가 이소부티르산으로 전환되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.Isobutyl aldehyde is converted to isobutyric acid by the reaction of the mixture and the oxidant through the heat treatment of step b), methyl ethyl ketone from the azeotrope containing methyl ethyl ketone and isobutyl aldehyde .
  14. 제 1항에 있어서,The method of claim 1,
    상기 b) 단계는 산화제 비드(bead)가 충진된 반응기 내로 주입된 혼합물이, 열처리에 의해 기화되면서 산화제 비드와 접촉됨으로써 수행되는 것을 특징으로 하는, 메틸에틸케톤 및 이소부틸알데하이드를 포함하는 공비 혼합물로부터 메틸에틸케톤을 분리하는 방법.Step b) is performed from an azeotrope containing methyl ethyl ketone and isobutylaldehyde, characterized in that the mixture injected into the reactor filled with oxidant beads is carried out by contact with the oxidant beads while evaporating by heat treatment. Method for separating methyl ethyl ketone.
PCT/KR2016/003095 2015-03-27 2016-03-25 Method for separating methyl ethyl ketone from azeotropic mixture comprising methyl ethyl ketone and isobutyraldehyde WO2016159598A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2015-0043593 2015-03-27
KR1020150043593A KR101716563B1 (en) 2015-03-27 2015-03-27 The seperation method of methyl ethyl ketone from azeotrope comprising the methyl ethyl ketone and isobutyl aldehyde

Publications (1)

Publication Number Publication Date
WO2016159598A1 true WO2016159598A1 (en) 2016-10-06

Family

ID=57006997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003095 WO2016159598A1 (en) 2015-03-27 2016-03-25 Method for separating methyl ethyl ketone from azeotropic mixture comprising methyl ethyl ketone and isobutyraldehyde

Country Status (2)

Country Link
KR (1) KR101716563B1 (en)
WO (1) WO2016159598A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2355140A (en) * 1940-12-06 1944-08-08 Celanese Corp Separation of aldehyde-ketone mixtures
US4885399A (en) * 1986-11-26 1989-12-05 Catalytica, Inc. Process for obtaining substantially aldehyde-free ketone products
US6476260B1 (en) * 1997-10-02 2002-11-05 Rwe-Dea Aktiengesellschraft Fur Mineraloel Und Chemie Method of producing aldehydes and carboxylic acids by oxidizing primary alcohols

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2355140A (en) * 1940-12-06 1944-08-08 Celanese Corp Separation of aldehyde-ketone mixtures
US4885399A (en) * 1986-11-26 1989-12-05 Catalytica, Inc. Process for obtaining substantially aldehyde-free ketone products
US6476260B1 (en) * 1997-10-02 2002-11-05 Rwe-Dea Aktiengesellschraft Fur Mineraloel Und Chemie Method of producing aldehydes and carboxylic acids by oxidizing primary alcohols

Also Published As

Publication number Publication date
KR101716563B1 (en) 2017-03-15
KR20160116273A (en) 2016-10-07

Similar Documents

Publication Publication Date Title
WO2011043515A1 (en) Feedstock recycling process from polyester wastes and apparatus using the same
WO2019050280A1 (en) Method for removing primary alcohol in esterification, and method for producing ester composition, including same
WO2016200111A1 (en) Distillation apparatus
WO2014038892A2 (en) Method and apparatus for preparing isopropyl alcohol
WO2020111439A1 (en) Isopropyl alcohol purification method
WO2013070042A1 (en) Trihalosilane refining device
WO2017003247A1 (en) Distillation apparatus
WO2019098501A1 (en) Method for decomposing by-product of phenol production process
WO2023043003A1 (en) Multi-component mixture separation system
WO2025105803A1 (en) Purification method and purification apparatus for nmp
WO2016159598A1 (en) Method for separating methyl ethyl ketone from azeotropic mixture comprising methyl ethyl ketone and isobutyraldehyde
EP3237370A1 (en) Method and apparatus for purification of dimethyl carbonate using pervaporation
WO2013070043A1 (en) Trihalosilane refining device
WO2015076624A1 (en) Method for recovering absorption solvent in process for preparing butadiene through oxidative dehydrogenation
WO2025089754A1 (en) Sludge separator, and nmp purification method and apparatus using same
WO2015190801A1 (en) Method for preparing butadiene through oxidative dehydrogenation reaction
WO2015115725A1 (en) Method for recovering acetic acid when preparing aromatic carboxylic acid
WO2020130314A1 (en) Method for decomposing phenolic byproduct and apparatus therefor
WO2020111475A1 (en) Method for preparing terephthalate-based composition, comprising pressurization section
WO2019132470A1 (en) Method for separating unreacted monomer from mixed solution comprising unreacted monomer
WO2022235025A1 (en) Method for preparing isopropyl alcohol
WO2021002708A1 (en) System and method for preparing diester-based composition
WO2023063525A1 (en) Method for preparing acrylic acid
WO2015026161A1 (en) Method for purifying isopropyl alcohol
WO2023249377A1 (en) High-purity pftpa preparation apparatus and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773379

Country of ref document: EP

Kind code of ref document: A1