WO2016159493A1 - Biodegradable implant structure - Google Patents

Biodegradable implant structure Download PDF

Info

Publication number
WO2016159493A1
WO2016159493A1 PCT/KR2016/000037 KR2016000037W WO2016159493A1 WO 2016159493 A1 WO2016159493 A1 WO 2016159493A1 KR 2016000037 W KR2016000037 W KR 2016000037W WO 2016159493 A1 WO2016159493 A1 WO 2016159493A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
marker
biodegradable
implant structure
screw
Prior art date
Application number
PCT/KR2016/000037
Other languages
French (fr)
Korean (ko)
Inventor
이재춘
Original Assignee
(주)웹스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150045352A external-priority patent/KR101538620B1/en
Priority claimed from KR1020150045341A external-priority patent/KR101569698B1/en
Application filed by (주)웹스 filed Critical (주)웹스
Publication of WO2016159493A1 publication Critical patent/WO2016159493A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a biodegradable implant structure, and more particularly, to a biodegradable implant structure in which a bioabsorbable metal marker is inserted into a plate and a screw made of a biodegradable polymer to improve the mechanical strength of the structure and simultaneously observe the radiation.
  • a biodegradable implant structure in which a bioabsorbable metal marker is inserted into a plate and a screw made of a biodegradable polymer to improve the mechanical strength of the structure and simultaneously observe the radiation.
  • Representative materials for implants that are generally used for medical treatment are metal materials with excellent mechanical properties and processability. However, despite the excellent properties of metals, there are some problems, such as stress shielding, image degradation, implant migration, and the like.
  • biodegradable implants In order to overcome such drawbacks of metallic implants, research and development of biodegradable implants has been proposed. Medical applications of such biodegradable materials have been studied mainly from polymers such as polylactic acid (PLA), polyglycolic acid (PGA), or copolymers thereof.
  • PLA polylactic acid
  • PGA polyglycolic acid
  • biodegradable polymers have been limited in application due to low mechanical strength, acid generation problem during decomposition, difficulty in controlling biodegradation rate, and the like. My application in dental implants was difficult.
  • biomaterials that are mainly used as an implantable medical device are largely classified into metals, ceramics, and polymers, and require requirements such as strength, elastic modulus, durability, biostability, and ease of processing.
  • Table 1 is a table showing the compressive strength of the biomaterial to be the basis of strength, durability among the main factors.
  • metal materials such as titanium (Ti) and ceramic materials such as Hydroxyapatite (HA) show good effects in early bone union with high strength, but have high elastic modulus and high stress shielding effect. ) causes osteoporosis or destruction of surrounding bones, and foreign body reaction in vivo due to corrosion and ionization. In addition, most metal materials interfere with the strong magnetism of MRI, making it difficult to track and observe after the procedure.
  • Ti titanium
  • HA Hydroxyapatite
  • ceramic materials such as HA and bioglass have excellent biocompatibility and good compressive strength, but they are brittle and brittle and are very difficult to process. It has been used a lot of polymer material, PEEK, which has a compressive strength to fit and significantly improves its adaptability with the human body.
  • the PEEK has excellent strength, toughness and chemical stability, and has X-ray permeability.
  • the glass transition temperature is around 145 degrees, and the melting point is about 330-350 degrees, which is relatively stable to processing heat compared to other polymers.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide a biodegradable implant structure in which a bioabsorbable metal marker is inserted into a plate and a screw made of a biodegradable polymer.
  • an object of the present invention is to provide a biodegradable implant structure in which a bioabsorbable metal marker is inserted into a plate and a screw made of a biodegradable polymer to improve the strength and durability of the structure.
  • a biodegradable implant structure comprising: a plate formed of a biodegradable resin; A fastening hole penetrating through the plate; A screw inserted into the fastening hole; And a first marker formed of a bioabsorbable metal inside the plate.
  • the biodegradable implant structure of the present invention provides a structure in which a bioabsorbable metal and a biodegradable polymer are combined to improve mechanical strength and impact resistance, and to enable the observation of radiation (X-ray, etc.) observation. It is effective.
  • biodegradable implant structure of the present invention has the effect of providing a biodegradable implant structure that can be applied in a variety of applications, such as orthopedic, dental, cosmetic surgery.
  • biodegradable implant structure of the present invention has the effect of controlling the pH in the body by buffering the pH decrease or increase phenomenon caused by the decomposition of the bioabsorbable metal or biodegradable polymer.
  • FIG. 1 is a view showing a biodegradable implant structure according to an embodiment of the present invention.
  • FIG. 2 is a view showing a plate of a biodegradable implant structure according to the first embodiment of the present invention.
  • FIG 3 is a view showing a plate of the biodegradable implant structure according to the second embodiment of the present invention.
  • FIG. 4 is a view showing a plate of the biodegradable implant structure according to the third embodiment of the present invention.
  • FIG. 5 is a view showing a plate of the biodegradable implant structure according to the fourth embodiment of the present invention.
  • FIG. 6 is a view showing a plate of the biodegradable implant structure according to the fifth embodiment of the present invention.
  • FIG. 7 is a view showing a screw of the biodegradable implant structure according to an embodiment of the present invention.
  • FIG. 8 is a view showing various shapes of the biodegradable implant structure according to another embodiment of the present invention.
  • metals, bioabsorbable metals or biodegradable polymers used in conventional implant materials have the problems shown in Table 2 below.
  • the biodegradable implant structure of the present invention is a biodegradable implant structure configured by inserting a bioabsorbable metal reinforcing material into a biodegradable polymer to solve the above problems.
  • the biodegradable implant structure includes a plate 10 as a body, a fastening hole 20 formed through the plate 10, and a first marker 30 inserted into the plate. It is configured to include a screw 40 is inserted into the fastening hole 20.
  • the biodegradable implant structure according to the present invention is provided with a plate 10.
  • the plate 10 is a body of a biodegradable implant structure, and serves to connect bones.
  • the plate 10 is generally designed in a plate shape, as shown in FIG.
  • the plate 10 is composed of a biodegradable polymer.
  • the biodegradable polymer includes at least one of polylactic acid (PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer (Polylactide-co-Glycolide, PLGA).
  • polylactic acid polyglycolic acid
  • PGA polyglycolic acid
  • FDA US Food and Drug Administration
  • the biodegradable implant structure according to the present invention is provided with a fastening hole 20 formed through the plate 10.
  • the fastening hole 20 is provided with a space for the screw 40 to be described later to penetrate the plate 10, by inserting the screw 40 so that the plate 10 and the bone is fixed do.
  • the number and shape of the fastening holes 20 may be variously designed such as circular, triangular, square, etc., according to the size and shape of the plate 10 and the screw 40. you can change it.
  • the biodegradable implant structure according to the present invention is provided with a first marker 30 inside the plate 10.
  • the first marker 30 serves to enhance the durability of the plate 10 and to enable radiation observation.
  • the first marker 30 is composed of at least one of a metal and a metal alloy.
  • the first marker 30 is composed of a metal or a metal alloy to improve the mechanical strength of the prosthetic material.
  • the first marker 30 is made of a bioabsorbable metal, it is possible to decompose in vivo to prevent side effects such as secondary removal surgery, an inflammatory reaction, and the like that occur after the progression of bone fusion during normal metal insertion.
  • the bioabsorbable metal used in the first marker 30 includes at least one metal or metal alloy of magnesium, calcium, manganese, iron, zinc, silicon, yttrium, zirconium, and gadolinium.
  • the biodegradable implant structure of the present invention is most preferably using magnesium or magnesium alloy as the bioabsorbable metal.
  • Magnesium is an inorganic component constituting the human body has no advantages in vivo, has a high strength and biodegradability, light weight and excellent processability.
  • the elastic modulus of magnesium is significantly lower than other medical metal materials, there is an advantage to prevent the stress shielding phenomenon, which is one of the failure factors of the metal prosthetics, implants.
  • the first marker 30 is made of a metal or a metal alloy, not only the mechanical strength is improved, but also the metal is inserted into the first marker 30 to enable the radiation observation tracking.
  • the first marker 30 made of metal is inserted into the plate 10 to enable radiation observation.
  • the first marker 30 serves as a criterion for determining whether the position of the plate 10 is correctly positioned through the observation of radiation.
  • the first marker 30 preferably has a shape such as a linear shape, a plate shape, a column shape, or the like so as to identify a position.
  • the first marker 30 is a linear shape extending in the longitudinal direction of the plate 10, a plate shape formed along the longitudinal direction of the plate, is formed in a direction perpendicular to the plate 10 It is composed of at least one of the columnar shape.
  • the first marker 30 is provided in a linear shape.
  • the first marker 30 is provided in a linear shape, so that the insertion position and the equilibrium of the implant structure can be confirmed.
  • the first marker 30 provided in the linear shape is preferably provided in two or more linear so as to more accurately observe the position and equilibrium when the radiation is observed.
  • the plate 10 may be provided in various shapes such as a curved line and a curved line.
  • the first marker 30 is provided in a plate shape.
  • the first marker 30 is provided in a plate shape along the longitudinal direction of the plate 10, so that the position and equilibrium of the inserted implant structure can be confirmed.
  • the first marker 30 is provided by combining horizontal and vertical line shapes along the length direction of the plate 10.
  • the first marker 30 is formed to cross the horizontal and vertical lines in the plate 10, the position and the equilibrium can be confirmed in the horizontal direction, to improve the durability by reinforcing the plate 10 Make it work.
  • the first marker 30 is provided in a vertical column shape with respect to the side surface of the plate 10 to support both ends of the plate 10. It is provided in the form of reinforcement.
  • the above and the fourth embodiment may be variously designed and modified as long as it can perform the reinforcement role in the vertical direction such as the cylindrical shape of (H) or the cylindrical shape including the hollow part (I) as shown in FIG. Check the insertion position and equilibrium.
  • the first marker 30 is provided in the horizontal direction and the vertical direction in combination to support and reinforce the plate 10 and at the same time the contact surface with the plate 10. By widening the stress distribution applied to the plate 10 and the first marker 30 can be made smoothly.
  • the first marker 30 is attached to the upper and lower surfaces of the plate 10, and the outer surface which is in contact with the exposure of the first marker 30 due to the decomposition of the plate 10. By widening the contact surface with, the stress applied to the contact surface can be dispersed.
  • the biodegradable polymer constituting the plate 10 has a sharp drop in strength may cause durability problems. This, by inserting the first marker 30 in the mold portion 10 to reinforce the body plate 10 to improve the durability, mechanical strength.
  • the first marker 30 is inserted into the plate 10 as described above. This structure has the effect of slowing down the decomposition rate of the fast absorbing bioabsorbable metal.
  • the bioabsorbable metal has a very rapid corrosion and decomposition rate, so that when exposed to the outside, the bioabsorbable metal decomposes faster than the plate 10, so that it is difficult to perform a role of reinforcing the plate 10.
  • the plate 10 made of a biodegradable polymer encapsulates the first marker 30 to protect from the outside has the effect of slowing down the decomposition rate of the bioabsorbable metal.
  • the acid generated from the biodegradable polymer when the plate 10 is decomposed and the base generated from the bioabsorbable metal of the first marker 30 is combined and neutralized.
  • the bioabsorbable metal generates various problems such as the generation of a large amount of hydrogen due to the decomposition reaction, the inflammation caused by the increase in pH, and the necrosis of surrounding tissues.
  • biodegradable polymers may cause a large amount of acid during the decomposition reaction to cause harmful effects on the human body.
  • the biodegradable implant structure according to the present invention is provided with a screw 40.
  • the screw 40 is inserted into the fastening hole 20 and coupled to the plate 10.
  • the screw 40 is inserted into the fastening hole 20 and is inserted and fixed to the spine, and serves to fix the biodegradable implant structure and the spine of the present invention, it is made of a biodegradable polymer.
  • the screw 40 has a variety of three-dimensional structures, such as rod-shaped, disc-shaped, and polyhedral, and is designed in various ways depending on the size and shape between the fastening hole 20 of the plate 10 and the spine into which the structure is inserted. you can change it.
  • the screw 40 may further include a second marker 50.
  • the second marker 50 is embedded in the screw 40 in a longitudinal line shape, thereby enabling radiological observation of the screw 40.
  • the second marker 50 embedded in the screw 40 may be observed with radiation to confirm whether the insertion position of the screw 40 inserted into the spine is correct.
  • the position of the second marker 50 can be varied in design according to the purpose of use of the implant structure, as shown in Figure 8 if it can perform a radiological observation role in the screw (40).
  • the biodegradable implant structure according to the present invention may further include a through hole 60 into which the device can be inserted based on the upper surface of the plate 10.
  • the through hole 60 penetrates through the plate 10 and serves to insert a medical device into the structure.
  • the position, size, shape, etc. of the through hole 60 may be changed in design depending on the position at which the implant is inserted and the purpose of the implant structure.
  • the biodegradable implant structure basically installs the plate 10 in the bone. At this time, the plate 10 serves as a body of the implant structure.
  • the biodegradable implant structure is installed by inserting the screw 40 in the fastening hole 20 of the plate 10, it is fixed by fastening it. At this time, the screw 40 is inserted into the fastening hole 20 and inserted into the bone to fix the bone and the implant structure.
  • the first marker 30 inserted into the plate 10 and the second marker inserted into the screw 40 ( 50) is observed to confirm the insertion position and equilibrium of the implant structure.
  • the plate 10 and the screw 40 are disassembled.
  • the first marker 30 and the second marker 50 are inserted into the plate 10 and the screw 40, respectively, and are not exposed to the outside so that no decomposition (absorption) reaction occurs.
  • the new bone grows and connects to the location where the decomposition proceeds.
  • the first and second markers 30 and 50 which are inserted into the plate 10 and the screw 40, are inserted into the plate 10 and the screw 40. Exposure occurs.
  • the plate 10 and the screw 40 may be disassembled, and at the same time, the biomarker of the first marker 30 and the second marker 50 may be removed. Decomposition (absorption) proceeds.
  • the screw 40, the first marker 30, and the second marker 50 are completely disassembled, no foreign matter remains in the place where the implant structure is located, and bones are connected.

Abstract

The present invention relates to a biodegradable implant structure and, more particularly, to a biodegradable implant structure in which a bioabsorbable metal marker is insertedly installed in a screw and a plate formed of biodegradable polymer so that the mechanical strength of the structure is improved, and at the same time, radiation observation can be performed.

Description

생분해성 임플란트 구조체Biodegradable Implant Structure
본 발명은 생분해성 임플란트 구조체에 관한 것으로, 더욱 상세하게는 생분해성 고분자로 이루어진 플레이트 및 스크류에 생흡수성 금속마커가 삽입설치되어 구조체의 기계적 강도가 향상됨과 동시에 방사선 관찰이 가능한 생분해성 임플란트 구조체에 관한 것이다.The present invention relates to a biodegradable implant structure, and more particularly, to a biodegradable implant structure in which a bioabsorbable metal marker is inserted into a plate and a screw made of a biodegradable polymer to improve the mechanical strength of the structure and simultaneously observe the radiation. will be.
일반적으로 의료적 치료를 목적으로 사용되는 임플란트의 대표적 재료는 우수한 기계적 성질 및 가공성을 갖고 있는 금속재료이다. 그러나, 금속의 우수한 성질에도 불구하고 몇 가지 문제점을 갖는데, 이러한 문제점으로는 응력차폐현상(stress shielding), 이미지 왜곡(image degradation), 이동(implant migration) 등이 있다.Representative materials for implants that are generally used for medical treatment are metal materials with excellent mechanical properties and processability. However, despite the excellent properties of metals, there are some problems, such as stress shielding, image degradation, implant migration, and the like.
이러한, 금속성 임플란트의 단점을 극복하기 위하여, 생분해성 임플란트의 연구개발이 제기되었다. 이러한 생분해성 재료의 의학적 적용은 1960년대 중반부터 폴리유산(Poly Lactic Acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 또는 이들의 공중합체 등의 고분자를 위주로 이미 연구가 되기 시작하였다.In order to overcome such drawbacks of metallic implants, research and development of biodegradable implants has been proposed. Medical applications of such biodegradable materials have been studied mainly from polymers such as polylactic acid (PLA), polyglycolic acid (PGA), or copolymers thereof.
그러나, 상기 생분해성 고분자들은 낮은 기계적 강도, 분해 시의 산 발생 문제, 생체분해속도 제어의 어려움 등으로 인해 그 응용이 제한되어 있었고, 특히 기계적 강도가 낮은 고분자 특성으로 인하여 강한 하중을 받는 정형외과 분야나 치과 임플란트에서의 적용은 어려웠다.However, the biodegradable polymers have been limited in application due to low mechanical strength, acid generation problem during decomposition, difficulty in controlling biodegradation rate, and the like. My application in dental implants was difficult.
현재 체내 삽입용 의료기기로 주로 사용되는 생체 재료는 크게 금속, 세라믹, 고분자로 분류되며, 강도, 탄성 계수, 내구성, 생체 안정성 및 가공용이성 등의 요건이 필요하다.Currently, biomaterials that are mainly used as an implantable medical device are largely classified into metals, ceramics, and polymers, and require requirements such as strength, elastic modulus, durability, biostability, and ease of processing.
또한, 수술 후의 방사선학적 관찰을 위한 방사선 투과성이나 자기 투과성도 중요한 인자가 된다. 하기 표 1은 주요인자 중 강도, 내구성의 근거가 되는 생체 재료의 압축강도를 나타낸 표이다.In addition, radiotransmittance and magnetic permeability for postoperative radiological observation are also important factors. Table 1 is a table showing the compressive strength of the biomaterial to be the basis of strength, durability among the main factors.
특성characteristic BoneBone Ti alloyTi alloy PEEKPEEK HAHA PMMAPMMA PLAPLA
압축강도(MPa)Compressive strength (MPa) 130-180130-180 758-1117758-1117 120120 600600 7676 50-7050-70
상기 표1에 나타난 바와 같이, 티타늄(Ti)과 같은 금속 재료 및 Hydroxyapatite(HA)와 같은 세라믹 재료는 높은 강도로 초기 골유합에서 좋은 효과를 나타내지만, 탄성 계수가 너무 높아 stress shielding effect(응력 차폐 현상)이 발생하여 주변 골의 골다공증이나 파괴를 유발하며, 부식 및 이온화로 생체 내 이물반응을 일으키기도 한다. 또, 대부분의 금속 재료는 MRI의 강한 자성에 간섭현상을 일으켜 시술 후 추적과 관찰이 어렵다. As shown in Table 1, metal materials such as titanium (Ti) and ceramic materials such as Hydroxyapatite (HA) show good effects in early bone union with high strength, but have high elastic modulus and high stress shielding effect. ) Causes osteoporosis or destruction of surrounding bones, and foreign body reaction in vivo due to corrosion and ionization. In addition, most metal materials interfere with the strong magnetism of MRI, making it difficult to track and observe after the procedure.
또한, HA나 바이오글라스 등과 같은 세라믹 재료는 생체적합성이 우수하고 압축강도가 좋지만, 굉장히 brittle하여 부서지기 쉬워 가공이 매우 어려워 단독 사용에 제한이 많아, 최근에는 티타늄이나 HA보다 낮은 탄성계수를 가져 뼈에 맞는 압축강도를 가지면서도 인체와의 적응력이 현저하게 개선되는 PEEK인 고분자 소재를 많이 쓰고 있다. In addition, ceramic materials such as HA and bioglass have excellent biocompatibility and good compressive strength, but they are brittle and brittle and are very difficult to process. It has been used a lot of polymer material, PEEK, which has a compressive strength to fit and significantly improves its adaptability with the human body.
상기 PEEK는 강도, 인성 및 화학적 안정성이 우수하고, X-ray 투과성을 지닌다. 또한 유리전이온도가 145도 부근이며, 녹는점도 330-350도 정도로 높아 다른 Polymer에 비해 가공열에도 비교적 안정적이다. 이에 물성 측면에서는 기대할 수 있는 장점이 있으나 생분해성이 결여되어 기존의 재료와 마찬가지로 2차 제거 수술 등의 근본적인 문제는 해결될 수 없는 실정이다.The PEEK has excellent strength, toughness and chemical stability, and has X-ray permeability. In addition, the glass transition temperature is around 145 degrees, and the melting point is about 330-350 degrees, which is relatively stable to processing heat compared to other polymers. In terms of physical properties, there are advantages that can be expected, but the lack of biodegradability, such as the existing materials, such as the secondary problem of removal surgery cannot be solved.
본 발명은 상기의 문제점을 해결하기 위해서 안출된 것으로서, 생분해성 고분자로 이루어진 플레이트 및 스크류 내부에 생흡수성 금속 마커가 삽입되어 방사선 관찰이 가능한 생분해성 임플란트 구조체를 제공하는 데 그 목적이 있다.The present invention has been made to solve the above problems, and an object of the present invention is to provide a biodegradable implant structure in which a bioabsorbable metal marker is inserted into a plate and a screw made of a biodegradable polymer.
또한, 생분해성 고분자로 이루어진 플레이트 및 스크류 내부에 생흡수성 금속 마커를 삽입하여 구조체의 강도, 내구성을 향상시킨 생분해성 임플란트 구조체를 제공하는 데 그 목적이 있다.In addition, an object of the present invention is to provide a biodegradable implant structure in which a bioabsorbable metal marker is inserted into a plate and a screw made of a biodegradable polymer to improve the strength and durability of the structure.
발명이 해결하고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.Technical problems to be solved by the present invention are not limited to the technical problems mentioned above, and other technical problems not mentioned above will be clearly understood by those skilled in the art from the following description. Could be.
본 발명에 따른 생분해성 임플란트 구조체에 있어서, 생분해성 수지로 형성되는 플레이트; 상기 플레이트에 관통형성되는 체결홀; 상기 체결홀에 삽입설치되는 스크류; 상기 플레이트 내부에 생흡수성 금속으로 형성되는 제 1마커;를 포함하여 구성되는 것을 특징으로 한다.A biodegradable implant structure according to the present invention, comprising: a plate formed of a biodegradable resin; A fastening hole penetrating through the plate; A screw inserted into the fastening hole; And a first marker formed of a bioabsorbable metal inside the plate.
상기 과제의 해결 수단에 의해, 본 발명의 생분해성 임플란트 구조체는 생흡수성 금속과 생분해성 고분자를 결합한 구조체를 제공함으로써 기계적 강도 및 내충격성이 개선되고, 방사선(X-선 등) 관찰 추적을 가능하게 하는 효과가 있다.By solving the above problems, the biodegradable implant structure of the present invention provides a structure in which a bioabsorbable metal and a biodegradable polymer are combined to improve mechanical strength and impact resistance, and to enable the observation of radiation (X-ray, etc.) observation. It is effective.
또한, 본 발명의 생분해성 임플란트 구조체는 정형외과용, 치과용, 성형외과용 등 다양하게 응용되어질 수 있는 생분해성 임플란트 구조체를 제공할 수 있는 효과가 있다.In addition, the biodegradable implant structure of the present invention has the effect of providing a biodegradable implant structure that can be applied in a variety of applications, such as orthopedic, dental, cosmetic surgery.
또한, 본 발명의 생분해성 임플란트 구조체는 생흡수성 금속 또는 생분해성 고분자의 분해로 인한 체내 pH 감소 또는 증가 현상을 완충하여 체내 pH를 조절하는 효과가 있다. In addition, the biodegradable implant structure of the present invention has the effect of controlling the pH in the body by buffering the pH decrease or increase phenomenon caused by the decomposition of the bioabsorbable metal or biodegradable polymer.
도 1은 본 발명의 실시예에 따른 생분해성 임플란트 구조체를 나타내는 도면이다.1 is a view showing a biodegradable implant structure according to an embodiment of the present invention.
도 2는 본 발명의 제 1실시예에 따른 생분해성 임플란트 구조의 플레이트를 나타내는 도면이다. 2 is a view showing a plate of a biodegradable implant structure according to the first embodiment of the present invention.
도 3은 본 발명의 제 2실시예에 따른 생분해성 임플란트 구조체의 플레이트를 나타내는 도면이다. 3 is a view showing a plate of the biodegradable implant structure according to the second embodiment of the present invention.
도 4는 본 발명의 제 3실시예에 따른 생분해성 임플란트 구조체의 플레이트를 나타내는 도면이다. 4 is a view showing a plate of the biodegradable implant structure according to the third embodiment of the present invention.
도 5는 본 발명의 제 4실시예에 따른 생분해성 임플란트 구조체의 플레이트를 나타내는 도면이다. 5 is a view showing a plate of the biodegradable implant structure according to the fourth embodiment of the present invention.
도 6은 본 발명의 제 5실시예에 따른 생분해성 임플란트 구조체의 플레이트를 나타내는 도면이다. 6 is a view showing a plate of the biodegradable implant structure according to the fifth embodiment of the present invention.
도 7은 본 발명의 실시예에 따른 생분해성 임플란트 구조체의 스크류를 나타내는 도면이다.7 is a view showing a screw of the biodegradable implant structure according to an embodiment of the present invention.
도 8은 본 발명의 또 다른 실시예에 따른 생분해성 임플란트 구조체의 다양한 형상을 나타내는 도면이다.8 is a view showing various shapes of the biodegradable implant structure according to another embodiment of the present invention.
10. 플레이트10. Plate
20. 체결홀20. Fastening hole
30. 제 1마커30. The first marker
40. 스크류40. Screw
50. 제 2마커50. Second Marker
60. 관통구60. Through hole
이상과 같은 본 발명에 대한 해결하려는 과제, 과제의 해결 수단, 발명의 효과를 포함한 구체적인 사항들은 다음에 기재할 일실시예 및 도면들에 포함되어 있다. 본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 일실시예를 참조하면 명확해질 것이다.Specific matters including the problem to be solved, the solution to the problem, and the effects of the present invention as described above are included in the embodiments and drawings to be described below. Advantages and features of the present invention, and methods for achieving them will be apparent with reference to the embodiments described below in detail in conjunction with the accompanying drawings.
일반적으로, 종래의 임플란트 소재에 사용되는 금속, 생흡수성 금속 또는 생분해성 고분자는 하기 표 2에 나타난 바와 같은 문제점을 갖는다.In general, metals, bioabsorbable metals or biodegradable polymers used in conventional implant materials have the problems shown in Table 2 below.
구분division 금속metal 생흡수성 금속Bioabsorbable metal 생분해성 고분자Biodegradable polymer
문제점problem 응력차폐 현상2차 제거 수술염증이미지 왜곡보형재, 임플란트 이동Stress Shielding Phenomenon Secondary Removal Surgery Inflammation Distortion Prosthesis, Implant Movement 수소 발생(염기화)응력차폐현상빠른 분해속도Hydrogen generation (base) Stress shielding Fast decomposition rate 약한 강도산발생Weak strength acid generation
본 발명의 생분해성 임플란트 구조체는, 상기의 문제점을 해결하고자 생분해성 고분자 내부에 생흡수성 금속보강재를 삽입하여 구성된 생분해성 임플란트 구조체이다.The biodegradable implant structure of the present invention is a biodegradable implant structure configured by inserting a bioabsorbable metal reinforcing material into a biodegradable polymer to solve the above problems.
하기에서는 상기 제시된 생분해성 임플란트 구조체를 도면을 이용하여 상세하게 설명한다.In the following the biodegradable implant structure presented above will be described in detail with reference to the drawings.
도 1에 도시된 바와 같이, 본 발명에 의한 생분해성 임플란트 구조체는 몸체인 플레이트(10), 상기 플레이트(10)에 관통형성된 체결홀(20), 상기 플레이트 내부에 삽입되는 제 1마커(30), 상기 체결홀(20)에 삽입설치되는 스크류(40)를 포함하여 구성된다.As shown in FIG. 1, the biodegradable implant structure according to the present invention includes a plate 10 as a body, a fastening hole 20 formed through the plate 10, and a first marker 30 inserted into the plate. It is configured to include a screw 40 is inserted into the fastening hole 20.
먼저, 본 발명에 의한 생분해성 임플란트 구조체는 플레이트(10)가 마련된다. 상기 플레이트(10)는 생분해성 임플란트 구조체의 몸체로서, 뼈를 연결하는 역할을 수행한다.First, the biodegradable implant structure according to the present invention is provided with a plate 10. The plate 10 is a body of a biodegradable implant structure, and serves to connect bones.
상기 플레이트(10)는 도 2에 도시된 바와 같이, 일반적으로 판 형상으로 설계되나, 이는 적용되는 추간판 공간에 따라 원기둥, 다면체 등 다양하게 설계변경 가능하다.The plate 10 is generally designed in a plate shape, as shown in FIG.
상기 플레이트(10)는 생분해성 고분자로 구성된다. 상기 생분해성 고분자는 폴리락트산(Poly Lactic Acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리락트산-글리콜산 공중합체(Polylactide-co-Glycolide, PLGA) 중 적어도 어느 하나를 포함한다.The plate 10 is composed of a biodegradable polymer. The biodegradable polymer includes at least one of polylactic acid (PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer (Polylactide-co-Glycolide, PLGA).
상기 폴리락트산(Poly Lactic Acid, PLA), 폴리글리콜산(polyglycolic acid, PGA), 폴리락트산-글리콜산 공중합체(Polylactide-co-Glycolide, PLGA)는 미국 식품의약청(FDA)에 의해 임상용으로 승인된 합성 고분자로, 생체 내에서 분해되며 뛰어난 생체 적합성을 가지고, 상대적으로 양호한 가공성을 지니는 장점이 있다.The polylactic acid (PLA), polyglycolic acid (PGA), polylactic acid-glycolic acid copolymer (Polylactide-co-Glycolide, PLGA) is clinically approved by the US Food and Drug Administration (FDA) As a synthetic polymer, it has the advantage of being degraded in vivo and having excellent biocompatibility and relatively good processability.
다음으로, 본 발명에 의한 생분해성 임플란트 구조체는 상기 플레이트(10)에 관통형성된 체결홀(20)이 마련된다. 상기 체결홀(20)은 하기에서 설명할 스크류(40)가 상기 플레이트(10)를 관통할 수 있도록 공간을 마련하여, 상기 스크류(40)를 삽입설치함으로써 상기 플레이트(10)와 뼈가 고정되도록 한다.Next, the biodegradable implant structure according to the present invention is provided with a fastening hole 20 formed through the plate 10. The fastening hole 20 is provided with a space for the screw 40 to be described later to penetrate the plate 10, by inserting the screw 40 so that the plate 10 and the bone is fixed do.
도 3에 도시된 바와 같이, 상기 체결홀(20)의 갯수와 형태는 상기 플레이트(10) 및 상기 스크류(40)의 크기, 형태에 따라 상기 플레이트(10) 원형, 삼각형, 사각형 등 다양하게 설계변경 가능하다.As shown in FIG. 3, the number and shape of the fastening holes 20 may be variously designed such as circular, triangular, square, etc., according to the size and shape of the plate 10 and the screw 40. you can change it.
다음으로, 본 발명에 의한 생분해성 임플란트 구조체는 상기 플레이트(10) 내부에 제 1마커(30)가 마련된다. 상기 제 1마커(30)는 플레이트(10)를 내구성을 향상시키고, 방사선 관찰이 가능하도록 하는 역할을 수행한다.Next, the biodegradable implant structure according to the present invention is provided with a first marker 30 inside the plate 10. The first marker 30 serves to enhance the durability of the plate 10 and to enable radiation observation.
상기 제 1마커(30)는 금속, 금속 합금 중 적어도 어느 하나로 구성된다. 상기 제 1마커(30)는 금속 또는 금속 합금으로 구성되어 보형재의 기계적 강도를 향상시킨다.The first marker 30 is composed of at least one of a metal and a metal alloy. The first marker 30 is composed of a metal or a metal alloy to improve the mechanical strength of the prosthetic material.
특히, 상기 제 1마커(30)가 생흡수성 금속으로 구성될 경우, 생체 내에서 분해가 가능하여 일반 금속 삽입 시 골 유합 진행 후 발생하는 2차 제거 수술, 염증 반응 등의 부작용을 예방할 수 있다. In particular, when the first marker 30 is made of a bioabsorbable metal, it is possible to decompose in vivo to prevent side effects such as secondary removal surgery, an inflammatory reaction, and the like that occur after the progression of bone fusion during normal metal insertion.
상기 제 1마커(30)에 사용되는 생흡수성 금속은 마그네슘, 칼슘, 망간, 철, 아연, 규소, 이트륨, 지르코늄, 가돌리늄 중 적어도 어느 하나의 금속 또는 금속 합금을 포함한다.The bioabsorbable metal used in the first marker 30 includes at least one metal or metal alloy of magnesium, calcium, manganese, iron, zinc, silicon, yttrium, zirconium, and gadolinium.
예를 들어, 본 발명의 생분해성 임플란트 구조체는 상기 생흡수성 금속으로 마그네슘 또는 마그네슘 합금을 사용하는 것이 가장 바람직하다.For example, the biodegradable implant structure of the present invention is most preferably using magnesium or magnesium alloy as the bioabsorbable metal.
상기 마그네슘은 인체를 구성하는 무기물 성분으로 생체 내에서 독성을 나타내지 않고, 강도와 생분해성이 높으며 가볍고 가공성이 우수하다는 장점을 가지고 있다.Magnesium is an inorganic component constituting the human body has no advantages in vivo, has a high strength and biodegradability, light weight and excellent processability.
또한, 마그네슘의 탄성계수는 기타 의료용 금속소재에 비해 현저히 낮아 금속 소재 보형재, 임플란트의 실패 요인 중 하나인 응력차폐현상을 방지할 수 있는 장점이 있다.In addition, the elastic modulus of magnesium is significantly lower than other medical metal materials, there is an advantage to prevent the stress shielding phenomenon, which is one of the failure factors of the metal prosthetics, implants.
상기 제 1마커(30)를 금속 또는 금속 합금으로 구성할 경우, 기계적 강도 향상 뿐만 아니라, 상기 제 1마커(30) 내에 금속이 삽입되어 방사선 관찰 추적을 가능하게 하는 효과가 있다. When the first marker 30 is made of a metal or a metal alloy, not only the mechanical strength is improved, but also the metal is inserted into the first marker 30 to enable the radiation observation tracking.
일반적으로 생분해성 고분자로만 구성된 보형물은 방사선(x-선 등) 투과에 의한 수술 후 관찰 추적이 불가능하다. 이를, 상기 플레이트(10) 내에 금속인 상기 제 1마커(30)가 삽입설치되어 방사선 관찰 가능하게 한다.In general, implants composed solely of biodegradable polymers are unable to follow up after surgery due to radiation (x-ray, etc.) transmission. This, the first marker 30 made of metal is inserted into the plate 10 to enable radiation observation.
상기 제 1마커(30)는 방사선 관찰을 통해 상기 플레이트(10)가 위치가 올바르게 배치되었는 지를 판단하는 기준이 된다. 이를, 보다 효율적으로 활용하기 위하여 상기 제 1마커(30)는 위치를 확인할 수 있도록 선 형상, 판 형상, 기둥형상 등의 형태를 단독 또는 복합적으로 갖는 것이 바람직하다.The first marker 30 serves as a criterion for determining whether the position of the plate 10 is correctly positioned through the observation of radiation. In order to utilize this more efficiently, the first marker 30 preferably has a shape such as a linear shape, a plate shape, a column shape, or the like so as to identify a position.
보다 구체적으로, 상기 제 1마커(30)는 상기 플레이트(10)의 길이방향으로 연장형성되는 선 형상, 상기 플레이트의 길이방향을 따라 형성되는 판 형상, 상기 플레이트(10)에 수직방향으로 형성되는 기둥 형상 중 적어도 어느 하나로 구성된다.More specifically, the first marker 30 is a linear shape extending in the longitudinal direction of the plate 10, a plate shape formed along the longitudinal direction of the plate, is formed in a direction perpendicular to the plate 10 It is composed of at least one of the columnar shape.
하기에서는 제 1실시예, 제 2실시예, 제 3실시예, 제 4실시예, 제 5실시예를 이용하여 상기 제 1마커(30)의 형상과 그에 따른 효과를 상세하게 설명한다.Hereinafter, the shape of the first marker 30 and its effects will be described in detail using the first embodiment, the second embodiment, the third embodiment, the fourth embodiment, and the fifth embodiment.
(제 1실시예)(First embodiment)
도 2에 도시된 바와 같이, 제 1실시예에서는 상기 제 1마커(30)가 선 형상으로 구비된다. 제 1실시예에서는 상기 제 1마커(30)가 선 형상으로 구비되어, 임플란트 구조체의 삽입 위치 및 평형성 등을 확인할 수 있도록 한다.As shown in FIG. 2, in the first embodiment, the first marker 30 is provided in a linear shape. In the first embodiment, the first marker 30 is provided in a linear shape, so that the insertion position and the equilibrium of the implant structure can be confirmed.
또한, 상기 선 형상으로 구비되는 제 1마커(30)는 방사선 관찰 시 위치와 평형을 보다 정확하게 관찰할 수 있도록 두 개 이상의 선형으로 구비되는 것이 바람직하다.In addition, the first marker 30 provided in the linear shape is preferably provided in two or more linear so as to more accurately observe the position and equilibrium when the radiation is observed.
또한, 도 2의 (B)에 도시된 바와 같이 상기 플레이트(10)의 형태에 따라 꺾은선, 곡선형 등 다양한 형상으로 구비될 수 있다.In addition, as shown in (B) of FIG. 2, the plate 10 may be provided in various shapes such as a curved line and a curved line.
(제 2실시예)(Second embodiment)
도 3에 도시된 바와 같이, 제 2실시예에서는 상기 제 1마커(30)가 판 상으로 구비된다. 제 2실시예에서는 상기 제 1마커(30)가 상기 플레이트(10)의 길이 방향을 따라 판 상으로 구비되어, 삽입된 임플란트 구조체의 위치 및 평형성 등을 확인할 수 있도록 한다.As shown in FIG. 3, in the second embodiment, the first marker 30 is provided in a plate shape. In the second embodiment, the first marker 30 is provided in a plate shape along the longitudinal direction of the plate 10, so that the position and equilibrium of the inserted implant structure can be confirmed.
(제 3실시예)(Third Embodiment)
도 4에 도시된 바와 같이, 제 3실시예에서는 상기 제 1마커(30)가 상기 플레이트(10)의 길이 방향을 따른 가로, 세로의 선 형상을 결합하여 마련된다. 상기 제 1마커(30)는 상기 플레이트(10) 내부에 가로, 세로 방향의 선을 교차되게 형성되어, 수평 방향으로는 위치와 평형을 확인할 수 있으며, 상기 플레이트(10)를 보강하여 내구성을 향상시킬 수 있도록 한다. As shown in FIG. 4, in the third embodiment, the first marker 30 is provided by combining horizontal and vertical line shapes along the length direction of the plate 10. The first marker 30 is formed to cross the horizontal and vertical lines in the plate 10, the position and the equilibrium can be confirmed in the horizontal direction, to improve the durability by reinforcing the plate 10 Make it work.
(제 4실시예)(Example 4)
도 5에 도시된 바와 같이, 제 4실시예에서는 상기 제 1마커(30)가 상기 플레이트(10)에 대하여 측면을 기준으로 수직방향의 기둥형상으로 마련되어, 상기 플레이트(10)의 양단을 지지하여 보강하는 형태로 마련된다. 상기와 제 4실시예는 도 5와 같은 (H)의 원기둥 형상 또는 (I) 중공부를 포함하는 원기둥 형상 등 수직방향으로의 보강역할을 수행할 수 있는 형태라면 다양하게 설계변경 가능하며, 임플란트 구조체의 삽입 위치 및 평형성 등을 확인할 수 있도록 한다. As shown in FIG. 5, in the fourth embodiment, the first marker 30 is provided in a vertical column shape with respect to the side surface of the plate 10 to support both ends of the plate 10. It is provided in the form of reinforcement. The above and the fourth embodiment may be variously designed and modified as long as it can perform the reinforcement role in the vertical direction such as the cylindrical shape of (H) or the cylindrical shape including the hollow part (I) as shown in FIG. Check the insertion position and equilibrium.
(제 5실시예)(Example 5)
도 6에 도시된 바와 같이, 제 5실시예에서는 상기 제 1마커(30)가 수평방향과 수직방향으로 복합하여 마련되어, 상기 플레이트(10)를 지지하여 보강함과 동시에 상기 플레이트(10)와의 접촉면을 넓힘으로써 상기 플레이트(10) 및 제 1마커(30)에 가해지는 응력분산이 원활하게 이루어질 수 있도록 한다.As shown in FIG. 6, in the fifth embodiment, the first marker 30 is provided in the horizontal direction and the vertical direction in combination to support and reinforce the plate 10 and at the same time the contact surface with the plate 10. By widening the stress distribution applied to the plate 10 and the first marker 30 can be made smoothly.
또한, 도 6의 (J)와 같이 상기 제 1마커(30)는 플레이트(10)의 상하면에 부착되어, 상기 플레이트(10)의 분해작용으로 인한 상기 제 1마커(30)의 노출 시 맞닿는 외부와의 접촉면을 넓힘으로써, 접촉면에 가해지는 응력을 분산시킬 수 있다.In addition, as shown in (J) of FIG. 6, the first marker 30 is attached to the upper and lower surfaces of the plate 10, and the outer surface which is in contact with the exposure of the first marker 30 due to the decomposition of the plate 10. By widening the contact surface with, the stress applied to the contact surface can be dispersed.
일반적으로 상기 플레이트(10)를 구성하는 생분해성 고분자는 강도가 현격하게 떨어져 내구성의 문제가 발생할 수 있다. 이를, 상기 몰드부(10) 내에 제 1마커(30)를 삽입함으로써 몸체인 플레이트(10)를 보강하여 내구성, 기계적 강도를 향상시킨다.In general, the biodegradable polymer constituting the plate 10 has a sharp drop in strength may cause durability problems. This, by inserting the first marker 30 in the mold portion 10 to reinforce the body plate 10 to improve the durability, mechanical strength.
상기 제 1마커(30)는 상기 전술한 바와 같이, 상기 플레이트(10) 내에 삽입설치된다. 이러한 구조는 분해속도가 빠른 생흡수성 금속의 분해속도를 늦추는 효과가 있다.The first marker 30 is inserted into the plate 10 as described above. This structure has the effect of slowing down the decomposition rate of the fast absorbing bioabsorbable metal.
일반적으로 생흡수성 금속은 매우 빠른 부식, 분해속도를 가지고 있어 외부에 노출될 경우 상기 플레이트(10) 보다 빠르게 분해되어, 상기 플레이트(10)를 보강하는 역할을 수행하기 어려운 문제점이 있다. 이를, 생분해성 고분자로 구성되는 상기 플레이트(10)가 상기 제 1마커(30)를 캡슐화하여 외부로부터 보호함으로써 생흡수성 금속의 분해속도를 늦추는 효과가 있다.In general, the bioabsorbable metal has a very rapid corrosion and decomposition rate, so that when exposed to the outside, the bioabsorbable metal decomposes faster than the plate 10, so that it is difficult to perform a role of reinforcing the plate 10. This, the plate 10 made of a biodegradable polymer encapsulates the first marker 30 to protect from the outside has the effect of slowing down the decomposition rate of the bioabsorbable metal.
또한, 상기 플레이트(10)의 분해 시 생분해성 고분자에서 발생하는 산과 상기 제 1마커(30)의 생흡수성 금속에서 발생하는 염기가 결합하여 중화되는 효과가 있다.In addition, the acid generated from the biodegradable polymer when the plate 10 is decomposed and the base generated from the bioabsorbable metal of the first marker 30 is combined and neutralized.
보다 구체적으로, 생흡수성 금속은 분해반응에 따른 대량의 수소발생 및 pH 증가로 인한 염증 발생, 주변 조직 괴사 등 여러 문제점이 발생한다. 반면에, 생분해성 고분자는 분해반응 시 산이 대량발생하여 인체에 해로운 작용을 불러일으킬 수 있다. 이를, 생분해성 고분자와 생흡수성 금속을 결합하여 구성함으로써 중화작용을 통해 체내 안전성을 높이는 효과가 있다.More specifically, the bioabsorbable metal generates various problems such as the generation of a large amount of hydrogen due to the decomposition reaction, the inflammation caused by the increase in pH, and the necrosis of surrounding tissues. On the other hand, biodegradable polymers may cause a large amount of acid during the decomposition reaction to cause harmful effects on the human body. By combining the biodegradable polymer and the bioabsorbable metal, it has an effect of increasing the safety in the body through neutralization.
다음으로, 본 발명에 의한 생분해성 임플란트 구조체는 스크류(40)가 마련된다. 상기 스크류(40)는 상기 체결홀(20)에 삽입 설치되어, 상기 플레이트(10)와 결합된다.Next, the biodegradable implant structure according to the present invention is provided with a screw 40. The screw 40 is inserted into the fastening hole 20 and coupled to the plate 10.
또한, 상기 스크류(40)는 상기 체결홀(20)에 삽입되는 동시에 척추 등에 삽입 고정되어, 본 발명의 생분해성 임플란트 구조체와 척추를 고정하는 역할을 수행하며, 생분해성 고분자로 이루어진다.In addition, the screw 40 is inserted into the fastening hole 20 and is inserted and fixed to the spine, and serves to fix the biodegradable implant structure and the spine of the present invention, it is made of a biodegradable polymer.
상기 스크류(40)의 형태는 막대형, 원판형, 다면체형 등 다양한 3차원 구조로, 상기 플레이트(10)의 체결홀(20) 및 구조체가 삽입되는 척추 사이의 크기, 형태에 따라 다양하게 설계변경 가능하다.The screw 40 has a variety of three-dimensional structures, such as rod-shaped, disc-shaped, and polyhedral, and is designed in various ways depending on the size and shape between the fastening hole 20 of the plate 10 and the spine into which the structure is inserted. you can change it.
상기 스크류(40)에는 도 7에 도시된 바와 같이, 제 2마커(50)가 더 포함될 수 있다. 상기 제 2마커(50)는 상기 스크류(40)에 길이방향의 선 형상으로 내재되어 있어, 상기 스크류(40)의 방사선학적 관찰이 가능하도록 한다. As shown in FIG. 7, the screw 40 may further include a second marker 50. The second marker 50 is embedded in the screw 40 in a longitudinal line shape, thereby enabling radiological observation of the screw 40.
따라서, 상기 스크류(40)에 내재된 제 2마커(50)를 방사선으로 관찰하여 척추 내에 삽입되는 스크류(40)의 삽입 위치가 올바른 지 등을 확인할 수 있다.Therefore, the second marker 50 embedded in the screw 40 may be observed with radiation to confirm whether the insertion position of the screw 40 inserted into the spine is correct.
상기 제 2마커(50)의 위치는 상기 스크류(40) 내에서 방사선학적 관찰 역할을 수행할 수 있으면 도 8에 나타난 것과 같이, 임플란트 구조체의 사용 목적에 따라 다양하게 설계변경 가능하다.The position of the second marker 50 can be varied in design according to the purpose of use of the implant structure, as shown in Figure 8 if it can perform a radiological observation role in the screw (40).
다음으로, 본 발명에 의한 생분해성 임플란트 구조체는 상기 플레이트(10)의 상면을 기준으로 기기가 삽입될 수 있는 관통구(60)를 더 포함될 수 있다.Next, the biodegradable implant structure according to the present invention may further include a through hole 60 into which the device can be inserted based on the upper surface of the plate 10.
상기 관통구(60)는 상기 플레이트(10)에 관통형성되어, 상기 구조체 내로 의료용 기기가 삽입될 수 있도록 하는 역할을 수행한다.The through hole 60 penetrates through the plate 10 and serves to insert a medical device into the structure.
상기 관통구(60)의 위치, 크기, 모양 등은 임플란트가 삽입되는 위치 및 임플란트 구조체의 용도 등에 따라 설계변경 가능하다.The position, size, shape, etc. of the through hole 60 may be changed in design depending on the position at which the implant is inserted and the purpose of the implant structure.
상기 구성을 가지는 생분해성 임플란트 구조체의 작용에 대해서 설명하면, Referring to the action of the biodegradable implant structure having the above configuration,
생분해성 임플란트 구조체는 기본적으로 상기 플레이트(10)를 뼈에 설치한다. 이때, 상기 플레이트(10)는 임플란트 구조체의 몸체 역할을 수행하게 된다.The biodegradable implant structure basically installs the plate 10 in the bone. At this time, the plate 10 serves as a body of the implant structure.
상기 생분해성 임플란트 구조체는 상기 플레이트(10)의 체결홀(20)에 스크류(40)를 삽입 설치하며, 이를 체결하여 고정된다. 이때, 상기 스크류(40)는 상기 체결홀(20)에 삽입됨과 동시에 뼈 내부로 삽입되어 뼈와 임플란트 구조체를 고정한다.The biodegradable implant structure is installed by inserting the screw 40 in the fastening hole 20 of the plate 10, it is fixed by fastening it. At this time, the screw 40 is inserted into the fastening hole 20 and inserted into the bone to fix the bone and the implant structure.
상기 플레이트(10)와 스크류(40)를 뼈에 고정 후 방사선 관찰을 수행하면, 상기 플레이트(10) 내에 삽입되어 있는 제 1마커(30)와 상기 스크류(40) 내에 삽입되어 있는 제 2마커(50)가 관찰되어, 임플란트 구조체의 삽입 위치 및 평형성을 확인한다.When the plate 10 and the screw 40 are fixed to the bone and the radiation observation is performed, the first marker 30 inserted into the plate 10 and the second marker inserted into the screw 40 ( 50) is observed to confirm the insertion position and equilibrium of the implant structure.
상기 임플란트 구조체의 삽입 위치를 확인한 후, 시간이 경과함에 따라 상기 플레이트(10)와 스크류(40)의 분해가 진행된다. 이 때, 상기 제 1마커(30) 및 제 2마커(50)는 상기 플레이트(10)와 스크류(40) 내부에 각각 삽입되어 있어, 외부에 노출되지 않으므로 분해(흡수)반응이 일어나지 않는다. 상기 분해가 진행되는 위치에는 새로운 뼈가 성장하여 연결된다.After confirming the insertion position of the implant structure, as time passes, the plate 10 and the screw 40 are disassembled. At this time, the first marker 30 and the second marker 50 are inserted into the plate 10 and the screw 40, respectively, and are not exposed to the outside so that no decomposition (absorption) reaction occurs. The new bone grows and connects to the location where the decomposition proceeds.
생분해성 고분자인 상기 플레이트(10)와 스크류(40)의 분해가 계속됨에 따라 상기 플레이트(10)와 스크류(40) 내부에 삽입설치되어 있던 제 1마커(30), 제 2마커(50)의 노출이 발생한다.As the plate 10 and the screw 40, which are biodegradable polymers, continue to be decomposed, the first and second markers 30 and 50, which are inserted into the plate 10 and the screw 40, are inserted into the plate 10 and the screw 40. Exposure occurs.
상기 제 1마커(30), 제 2마커(50)가 노출되면, 상기 플레이트(10)와 스크류(40)의 분해와 동시에 생흡수성 금속인 제 1마커(30), 제 2마커(50)의 분해(흡수)가 진행된다. When the first marker 30 and the second marker 50 are exposed, the plate 10 and the screw 40 may be disassembled, and at the same time, the biomarker of the first marker 30 and the second marker 50 may be removed. Decomposition (absorption) proceeds.
상기 플레이트(10), 스크류(40), 제 1마커(30), 제 2마커(50)가 완전 분해됨에 따라, 임플란트 구조체가 위치한 자리에는 어떠한 이물질도 남아있지 않고, 뼈가 연결된다.As the plate 10, the screw 40, the first marker 30, and the second marker 50 are completely disassembled, no foreign matter remains in the place where the implant structure is located, and bones are connected.
이와 같이, 상술한 본 발명의 기술적 구성은 본 발명이 속하는 기술분야의 당업자가 본 발명의 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다.As such, the technical configuration of the present invention described above can be understood by those skilled in the art that the present invention can be implemented in other specific forms without changing the technical spirit or essential features of the present invention.
그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해되어야 하고, 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타나며, 특허청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.Therefore, the above-described embodiments are to be understood as illustrative and not restrictive in all respects, and the scope of the present invention is indicated by the following claims rather than the detailed description, and the meaning and scope of the claims and their All changes or modifications derived from an equivalent concept should be construed as being included in the scope of the present invention.

Claims (6)

  1. 판 형상의 몸체를 가지며, 생분해성 수지로 형성되는 플레이트;A plate having a plate-shaped body and formed of a biodegradable resin;
    상기 플레이트에 관통형성되는 체결홀;A fastening hole penetrating through the plate;
    상기 체결홀에 삽입설치되는 스크류;A screw inserted into the fastening hole;
    상기 플레이트 내부에 생흡수성 금속으로 형성되는 제 1마커;를 포함하여 구성되는 것을 특징으로 하는 생분해성 임플란트 구조체And a first marker formed of a bioabsorbable metal inside the plate.
  2. 판 형상의 몸체를 가지며, 생분해성 수지로 형성되는 플레이트;A plate having a plate-shaped body and formed of a biodegradable resin;
    상기 플레이트에 관통형성되는 체결홀;A fastening hole penetrating through the plate;
    상기 체결홀에 삽입설치되는 스크류;A screw inserted into the fastening hole;
    상기 스크류 내부에 생흡수성 금속으로 형성되는 제 2마커;를 포함하여 구성되는 것을 특징으로 하는 생분해성 임플란트 구조체And a second marker formed of a bioabsorbable metal inside the screw.
  3. 제 1항에 있어서,The method of claim 1,
    상기 제 1마커는 상기 플레이트의 길이방향으로 연장되는 선 형상인 것을 특징으로 하는 생분해성 임플란트The first marker is a biodegradable implant, characterized in that the linear extending in the longitudinal direction of the plate
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 제 1마커는 상기 플레이트 내부에 적어도 둘 이상이 평행하게 위치하는 것을 특징으로 하는 생분해성 임플란트The first marker is a biodegradable implant, characterized in that at least two or more are located in parallel in the plate
  5. 제 1항에 있어서,The method of claim 1,
    상기 제 1마커는 상기 플레이트의 길이방향을 따라 판 상으로 구비되는 것을 특징으로 하는 생분해성 임플란트The first marker is a biodegradable implant, characterized in that provided on the plate along the longitudinal direction of the plate
  6. 제 1항에 있어서,The method of claim 1,
    상기 플레이트에 관통형성되는 관통구;가 더 포함되는 것을 특징으로 하는 생분해성 임플란트 구조체Biodegradable implant structure further comprises; through-holes formed in the plate
PCT/KR2016/000037 2015-03-31 2016-01-05 Biodegradable implant structure WO2016159493A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020150045352A KR101538620B1 (en) 2015-03-31 2015-03-31 Biodegradable Intervertebral Fusion Cage
KR10-2015-0045341 2015-03-31
KR1020150045341A KR101569698B1 (en) 2015-03-31 2015-03-31 Biodegradable Implant Structure
KR10-2015-0045352 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159493A1 true WO2016159493A1 (en) 2016-10-06

Family

ID=57005155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/000037 WO2016159493A1 (en) 2015-03-31 2016-01-05 Biodegradable implant structure

Country Status (1)

Country Link
WO (1) WO2016159493A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050109915A (en) * 2002-12-02 2005-11-22 마티스 메디지날테크닉 아게 Implant for bone fixation
KR20080085139A (en) * 2005-12-21 2008-09-23 신세스 게엠바하 Resorbable anterior cervical plating system with screw retention mechanism
KR20090099670A (en) * 2008-03-18 2009-09-23 유앤아이 주식회사 Complex implants infilterated with biodegradable mg(alloys) inside porous structural materials and method for manufacturing the same
KR20100116566A (en) * 2009-04-22 2010-11-01 유앤아이 주식회사 A biodegradable implants and a manufacture method thereof
KR20130139831A (en) * 2010-07-09 2013-12-23 신세스 게엠바하 Self-detaching layer for easy implant removal
KR101569698B1 (en) * 2015-03-31 2015-11-17 (주) 웹스 Biodegradable Implant Structure

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050109915A (en) * 2002-12-02 2005-11-22 마티스 메디지날테크닉 아게 Implant for bone fixation
KR20080085139A (en) * 2005-12-21 2008-09-23 신세스 게엠바하 Resorbable anterior cervical plating system with screw retention mechanism
KR20090099670A (en) * 2008-03-18 2009-09-23 유앤아이 주식회사 Complex implants infilterated with biodegradable mg(alloys) inside porous structural materials and method for manufacturing the same
KR20100116566A (en) * 2009-04-22 2010-11-01 유앤아이 주식회사 A biodegradable implants and a manufacture method thereof
KR20130139831A (en) * 2010-07-09 2013-12-23 신세스 게엠바하 Self-detaching layer for easy implant removal
KR101569698B1 (en) * 2015-03-31 2015-11-17 (주) 웹스 Biodegradable Implant Structure

Similar Documents

Publication Publication Date Title
Nieminen et al. Amorphous and crystalline polyetheretherketone: Mechanical properties and tissue reactions during a 3‐year follow‐up
KR101742017B1 (en) Resorbable and biocompatible fibre glass compositions and their uses
Hasegawa et al. In vivo evaluation of a porous hydroxyapatite/poly‐DL‐lactide composite for use as a bone substitute
WO1990012605A1 (en) Biodegradable composites for internal medical use
KR20070078078A (en) Surgical implant and manufacturing method
Bottagisio et al. Animal models of orthopaedic infections. A review of rabbit models used to induce long bone bacterial infections
DE69812644T2 (en) SEMI-INTERLOCKING POLYMER NETWORK
WO2017155328A1 (en) Method for producing extracellular matrix membrane derived from biocompatible porcine cartilage capable of regulating in vivo decomposition rate and physical properties, and composition for preventing adhesion containing extracellular matrix derived from porcine cartilage as active ingredient
EP2852417B1 (en) Resorbable bioceramic compositions of poly-4-hydroxybutyrate and copolymers
WO2015167050A1 (en) Barrier membrane for implant
Shasteen et al. Biodegradable internal fixation plates enabled with X‐ray visibility by a radiopaque layer of β‐tricalcium phosphate and poly (lactic‐co‐glycolic acid)
KR20170056330A (en) Biodegradable Implant Structure
WO2016159493A1 (en) Biodegradable implant structure
KR101569698B1 (en) Biodegradable Implant Structure
WO2011090255A2 (en) Highly injectable calcium-based bone cement composition
Yamashima Cranioplasty with hydroxylapatite ceramic plates that can easily be trimmed during surgery: a preliminary report
Kelley et al. Totally resorbable high-strength composite material
Jukkala-Partio et al. Healing of subcapital femoral osteotomies fixed with self-reinforced poly-L-lactide screws: an experimental long-term study in sheep
Goia et al. Osseointegration of titanium alloy macroporous implants obtained by PM with addition of gelatin
WO2014208824A1 (en) Method for producing implant having bioactive material immobilized on surface thereof and implant produced thereby
WO2011071289A2 (en) Absorbable material, and implant fixture and implant using same
ES2317195T3 (en) IMPLANTABLE BIOABSORBIBLE SUBSTRATE.
KR101940507B1 (en) A Biodegradable Polymer Structure Manufacturing Method and A Manufacturing Method Using Thereof
WO2016085069A1 (en) High-strength crystallized glass ceramic comprising wollastonite, hydroxyapatite and akermanite
CN1151319C (en) High-strenth, high-modules degradation rate controllable calcium polyphosphate fibre and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773274

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07.12.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16773274

Country of ref document: EP

Kind code of ref document: A1