WO2016159379A1 - Appareil et procédé de construction de configuration de vaisseaux sanguins et programme logiciel informatique - Google Patents
Appareil et procédé de construction de configuration de vaisseaux sanguins et programme logiciel informatique Download PDFInfo
- Publication number
- WO2016159379A1 WO2016159379A1 PCT/JP2016/060992 JP2016060992W WO2016159379A1 WO 2016159379 A1 WO2016159379 A1 WO 2016159379A1 JP 2016060992 W JP2016060992 W JP 2016060992W WO 2016159379 A1 WO2016159379 A1 WO 2016159379A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- blood vessel
- image
- medical image
- unit
- shape
- Prior art date
Links
- 210000004204 blood vessel Anatomy 0.000 title claims abstract description 618
- 238000000034 method Methods 0.000 title claims description 63
- 238000010276 construction Methods 0.000 claims abstract description 75
- 238000012937 correction Methods 0.000 claims abstract description 66
- 238000013441 quality evaluation Methods 0.000 claims abstract description 29
- 238000011156 evaluation Methods 0.000 claims abstract description 16
- 230000017531 blood circulation Effects 0.000 claims description 95
- 238000003384 imaging method Methods 0.000 claims description 57
- 238000000605 extraction Methods 0.000 claims description 41
- 238000004458 analytical method Methods 0.000 claims description 38
- 230000011218 segmentation Effects 0.000 claims description 28
- 230000008859 change Effects 0.000 claims description 25
- 238000012916 structural analysis Methods 0.000 claims description 25
- 238000010191 image analysis Methods 0.000 claims description 24
- 210000000988 bone and bone Anatomy 0.000 claims description 23
- 230000002308 calcification Effects 0.000 claims description 21
- 230000008569 process Effects 0.000 claims description 16
- 238000013179 statistical model Methods 0.000 claims description 16
- 230000001419 dependent effect Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 12
- 230000000877 morphologic effect Effects 0.000 claims description 4
- 238000002591 computed tomography Methods 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims 1
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 238000005206 flow analysis Methods 0.000 description 63
- 238000003702 image correction Methods 0.000 description 30
- 239000012530 fluid Substances 0.000 description 24
- 230000006870 function Effects 0.000 description 24
- 230000003902 lesion Effects 0.000 description 22
- 238000005259 measurement Methods 0.000 description 20
- 238000010586 diagram Methods 0.000 description 19
- 208000004434 Calcinosis Diseases 0.000 description 18
- 239000002872 contrast media Substances 0.000 description 18
- 238000012545 processing Methods 0.000 description 18
- 239000008280 blood Substances 0.000 description 11
- 210000004369 blood Anatomy 0.000 description 11
- 238000000926 separation method Methods 0.000 description 11
- 230000002792 vascular Effects 0.000 description 10
- 230000003044 adaptive effect Effects 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 9
- 238000010801 machine learning Methods 0.000 description 7
- 238000003908 quality control method Methods 0.000 description 7
- 238000013178 mathematical model Methods 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- 206010002329 Aneurysm Diseases 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 208000031481 Pathologic Constriction Diseases 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 238000002608 intravascular ultrasound Methods 0.000 description 4
- 230000036262 stenosis Effects 0.000 description 4
- 208000037804 stenosis Diseases 0.000 description 4
- 231100000216 vascular lesion Toxicity 0.000 description 4
- 238000013500 data storage Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 206010003210 Arteriosclerosis Diseases 0.000 description 2
- 208000011775 arteriosclerosis disease Diseases 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 210000003928 nasal cavity Anatomy 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000002966 stenotic effect Effects 0.000 description 2
- 238000011410 subtraction method Methods 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 210000000709 aorta Anatomy 0.000 description 1
- 210000001367 artery Anatomy 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000001715 carotid artery Anatomy 0.000 description 1
- 210000001627 cerebral artery Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000004590 computer program Methods 0.000 description 1
- 210000004351 coronary vessel Anatomy 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000000265 homogenisation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/055—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves involving electronic [EMR] or nuclear [NMR] magnetic resonance, e.g. magnetic resonance imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B6/00—Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
- A61B6/02—Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
- A61B6/03—Computed tomography [CT]
Definitions
- the present invention relates to a blood vessel shape constructing apparatus for blood flow analysis by numerical fluid dynamics, a method thereof, and a computer software program.
- the inside / outside determination by the luminance value analysis is based on the half value of the maximum luminance value in the center line orthogonal image. Further, it is preferable that the blood vessel shape constructing unit enhances the accuracy of blood vessel region segmentation / extraction by recursively determining whether the blood vessel region is segmented / extracted.
- the means for segmenting the blood vessel having the characteristic 1-6 is a means for extracting the blood vessel by performing inside / outside blood vessel determination based on the characteristic of the luminance value of the portion corresponding to the blood vessel on the image. 1-8.
- the means for structural analysis of the blood vessel of feature 1-6 is a means for performing labeling by dividing the blood vessel extracted in feature 1-7 by center line extraction into each blood vessel and lesioned part. 1-9. Performing features 1-7 and 1-8 first is the rough extraction of blood vessels. Based on the results of the rough extraction, it is precise to repeat the features 1-7 and 1-8 to correct the results. Let's say extraction.
- the means for setting the region of the blood vessel of feature 1-6 includes the blood vessel / lesion labeled in feature 1-8 in the blood flow analysis by comparing the conditions to be satisfied as the region setting with a list of templates. It is a means for extracting only the region. 1-12.
- the means for constructing the shape of the blood vessel of the characteristic 1-6 is a means for forming the surface of the blood vessel from minute triangular elements by means of the marching cube method or the like with respect to the blood vessel set in the area of the characteristic 1-9. 1-13.
- the means for measuring the blood vessel shape of the characteristic 1-2 is a means for measuring the shape by creating an orthogonal cross section of the blood vessel at each point on the center line obtained in the characteristic 1-8. 1-14.
- the means for evaluating the quality of the blood vessel shape of the characteristic 1-2 calculates a quality score based on a luminance gradient in the vicinity of the blood vessel wall in the obtained blood vessel shape.
- the means for extracting the rough blood vessel shape by the rough inside / outside determination is a means for extracting the rough blood vessel shape by binarizing the image using a predetermined value or a reference value calculated from the luminance value histogram. It is. 4-5.
- the means for precise blood vessel extraction includes means for creating an orthogonal cross section at each point of the coarse center line, means for creating a center line orthogonal image by image interpolation, and analyzing the luminance value of the center line orthogonal image
- a blood vessel shape constructing device having a recursive blood vessel region dividing function is a recursive blood vessel region segmentation function in a blood vessel shape constructing apparatus that eliminates user dependence by fully automatically processing each step of blood vessel shape construction and enables quality control of blood vessel shape construction. Is to provide.
- a blood vessel is extracted from a medical image by segmentation, it is necessary to determine whether the blood vessel is inside or outside. The inside / outside blood vessel determination is performed by setting a certain threshold value with respect to a change in signal intensity from inside the blood vessel to the outside.
- the fifth feature of the present invention is to provide an automatic region setting function in a blood vessel shape construction device that eliminates user dependence and enables quality control of blood vessel shape construction by fully automatically processing each step of blood vessel shape construction. To do. It is necessary to set an analysis region for the blood vessel shape extracted by region division. Until now, the analysis area has been arbitrarily determined by the user, and this has been a factor in causing variation in analysis results.
- the present invention solves the problem by taking a new viewpoint of performing absolute evaluation based on blood flow information obtained from blood flow analysis results. More specifically, the wall shear stress acting on the blood vessel wall is an important index.
- the “imaging target 36” can be subdivided into “patient situation” and “imaging site”.
- “Patient status” relates to the degree of vascular lesions and the presence or absence of treatment.
- Examples of the “vascular lesion” include those caused by arteriosclerosis. When arteriosclerosis progresses, calcification is often accompanied, but in images containing such arteriosclerotic sites, local halation may occur due to calcification (or high calcification) Affects the construction of blood vessel shape.
- Presence / absence of treatment is, for example, whether or not a treatment device such as a stent, coil, clip, or the like is placed in the body.
- noise may be generated around the treatment device and the image quality may be reduced.
- the “imaging part” indicates a factor that affects the image quality in a part-dependent manner. For example, when the vicinity of the nasal cavity is imaged by MRA, the magnetic field tends to vary spatially due to the air layer. Further, when imaging around a hard tissue such as a bone by CTA, it is difficult to distinguish between the bone and the blood vessel.
- Image discrimination process (step S2)
- the image discriminating unit 12 encodes and digitizes two pieces of “image attribute information” and “image analysis information” as appropriate image information, and processes them as input images for blood flow analysis based on this. It is determined whether or not input is possible.
- the imaging target discriminating unit performs image analysis, discriminates various types of noise, quantifies and outputs as appropriate image information (step S2-2-2). Specifically, (1) device-derived ⁇ 1 , (2) contrast agent-derived ⁇ 2 , (3) blood vessel-derived ⁇ 3 , (4) hard tissue-derived ⁇ 4 , (5) site-derived ⁇ 5 , (6) Each noise of the treatment-derived ⁇ 6 is calculated. In this embodiment, noise is defined as an error factor in blood flow analysis.
- Device-derived noise is device-specific background noise included in the background of an image. There are random noise that is uniformly distributed over the entire image and bias noise that appears in a pattern such as a stripe pattern in the image local area. In this embodiment, the features of these noises are digitized by a phantom test image. More specifically, the random noise is quantified as a high frequency component by Fourier transform, and the bias noise is quantified as a low frequency component for output and discrimination.
- Contrast-agent-derived noise Contrast-agent-derived noise is detected as uneven brightness values due to poor mixing of contrast agent and blood.
- the blood vessel-derived noise is calculated based on the quantification of the blood vessel shape, and an area that is inappropriate for blood flow analysis is defined as blood vessel-derived noise and specified.
- Hard tissue-derived noise Hard tissue-derived noise is noise related to bone and calcification. Bone and calcification are observed as a high luminance signal exceeding the luminance value of the contrast agent. Because of the high luminance signal, the signal tends to be misrecognized as a part of the blood vessel lumen even though it is inside or outside the blood vessel wall. Therefore, here, signals from bone and calcification are detected as noise.
- the standard medical image, the image appropriateness level, and the image correction level are output (step S3-4-5).
- the image correction degree is the size of the area of the correction portion.
- the blood vessel shape constructing unit 14 deletes unnecessary blood vessels for constructing a blood vessel shape for blood flow analysis by filtering (step S4-4-2).
- Unnecessary blood vessels are fine blood vessels and short blood vessels that are inappropriate for blood flow analysis. Since the diameter and length of the blood vessel are obtained by thinning and graphing, filtering is performed by matching with a prescribed threshold value. Thereafter, a region for blood flow analysis is automatically extracted according to the type and site of the lesion (step S4-4-3). Here, the determination is made with reference to a template prepared in advance.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Molecular Biology (AREA)
- Veterinary Medicine (AREA)
- Pathology (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- High Energy & Nuclear Physics (AREA)
- Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Optics & Photonics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Apparatus For Radiation Diagnosis (AREA)
Abstract
L'invention concerne un appareil comportant : une unité de détermination de permission d'entrée qui reçoit une image médicale, détermine la propriété d'image de l'image médicale et le degré de pertinence de l'image médicale en tant que tel, et détermine si l'image médicale peut être traitée en tant qu'image d'entrée sur la base de cette dernière ; une unité de normalisation d'image qui modifie/corrige une image médicale qui a été déterminée comme pouvant être traitée en tant qu'image d'entrée sur la base de la propriété d'image déterminée et du degré déterminé de pertinence afin de normaliser la qualité de l'image de l'image médicale, et délivre en sortie un degré de correction indiquant le degré de modification/correction ; une unité de construction de configuration de vaisseaux sanguins qui construit une configuration de vaisseaux sanguins en trois dimensions sur la base de l'image médicale normalisée ; une unité d'évaluation de la qualité de la configuration de vaisseaux sanguins qui détermine l'exactitude de la construction de configuration de vaisseaux sanguins de la configuration de vaisseaux sanguins en trois dimensions construite, et calcule et délivre en sortie une évaluation de la qualité globale de la configuration de vaisseaux sanguins en trois dimensions construite sur la base de l'exactitude de la construction de configuration de vaisseaux sanguins, du degré de pertinence, et du degré de correction ; et une unité de sortie de données de configuration de vaisseaux sanguins qui délivre en sortie des données de configuration de vaisseaux sanguins qui représentent la configuration de vaisseaux sanguins en trois dimensions ainsi que l'évaluation de la configuration.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017510270A JP6713690B2 (ja) | 2015-04-02 | 2016-04-04 | 血管形状構築装置、その方法及びコンピュータソフトウエアプログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562142201P | 2015-04-02 | 2015-04-02 | |
US62/142,201 | 2015-04-02 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016159379A1 true WO2016159379A1 (fr) | 2016-10-06 |
Family
ID=57006987
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/060992 WO2016159379A1 (fr) | 2015-04-02 | 2016-04-04 | Appareil et procédé de construction de configuration de vaisseaux sanguins et programme logiciel informatique |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6713690B2 (fr) |
WO (1) | WO2016159379A1 (fr) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020054019A1 (fr) * | 2018-09-13 | 2020-03-19 | 株式会社Pfu | Dispositif de traitement d'image, procédé de traitement d'image et programme |
KR20200065923A (ko) * | 2018-11-30 | 2020-06-09 | 아주대학교산학협력단 | 기계학습용 의료 영상 데이터셋의 품질을 평가하는 방법 및 시스템 |
KR20200141323A (ko) * | 2019-06-10 | 2020-12-18 | 포항공과대학교 산학협력단 | 초음파 영상 생성 방법 및 이를 수행하는 장치들 |
CN112560363A (zh) * | 2020-12-15 | 2021-03-26 | 北京航空航天大学 | 一种基于映射过程的cfd计算中的网格变形质量评价方法 |
JP2021535793A (ja) * | 2018-09-05 | 2021-12-23 | エーアイ メディック インク. | 機械学習及び画像処理アルゴリズムを用いて医用画像の血管を自動的にセグメンテーションする方法及びシステム |
JP2022549433A (ja) * | 2019-09-18 | 2022-11-25 | トリアージ テクノロジーズ インク. | 画像および専門知識から皮膚症状を収集し特定するシステム |
CN116942104A (zh) * | 2023-09-21 | 2023-10-27 | 首都医科大学附属北京儿童医院 | 一种用于测量在体局部循环血管的智能观测方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004243128A (ja) * | 2003-02-11 | 2004-09-02 | Ge Medical Systems Global Technology Co Llc | 画質血管の統一評価方法及び装置 |
JP2009226043A (ja) * | 2008-03-24 | 2009-10-08 | Gifu Univ | 医用画像処理装置及び異常陰影検出方法 |
JP2010029481A (ja) * | 2008-07-29 | 2010-02-12 | Univ Of Tsukuba | 腫瘍の経過観察レポート自動作成診断支援システム |
US20130208963A1 (en) * | 2010-10-26 | 2013-08-15 | The Johns Hopkins University | Computer-aided detection (cad) system for personalized disease detection, assessment, and tracking, in medical imaging based on user selectable criteria |
JP2015024155A (ja) * | 2011-06-14 | 2015-02-05 | 株式会社東芝 | 画像処理装置 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8824752B1 (en) * | 2013-03-15 | 2014-09-02 | Heartflow, Inc. | Methods and systems for assessing image quality in modeling of patient anatomic or blood flow characteristics |
-
2016
- 2016-04-04 WO PCT/JP2016/060992 patent/WO2016159379A1/fr active Application Filing
- 2016-04-04 JP JP2017510270A patent/JP6713690B2/ja active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004243128A (ja) * | 2003-02-11 | 2004-09-02 | Ge Medical Systems Global Technology Co Llc | 画質血管の統一評価方法及び装置 |
JP2009226043A (ja) * | 2008-03-24 | 2009-10-08 | Gifu Univ | 医用画像処理装置及び異常陰影検出方法 |
JP2010029481A (ja) * | 2008-07-29 | 2010-02-12 | Univ Of Tsukuba | 腫瘍の経過観察レポート自動作成診断支援システム |
US20130208963A1 (en) * | 2010-10-26 | 2013-08-15 | The Johns Hopkins University | Computer-aided detection (cad) system for personalized disease detection, assessment, and tracking, in medical imaging based on user selectable criteria |
JP2015024155A (ja) * | 2011-06-14 | 2015-02-05 | 株式会社東芝 | 画像処理装置 |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021535793A (ja) * | 2018-09-05 | 2021-12-23 | エーアイ メディック インク. | 機械学習及び画像処理アルゴリズムを用いて医用画像の血管を自動的にセグメンテーションする方法及びシステム |
WO2020054019A1 (fr) * | 2018-09-13 | 2020-03-19 | 株式会社Pfu | Dispositif de traitement d'image, procédé de traitement d'image et programme |
JPWO2020054019A1 (ja) * | 2018-09-13 | 2021-04-30 | 株式会社Pfu | 画像処理装置、画像処理方法、及びプログラム |
KR20200065923A (ko) * | 2018-11-30 | 2020-06-09 | 아주대학교산학협력단 | 기계학습용 의료 영상 데이터셋의 품질을 평가하는 방법 및 시스템 |
KR102236826B1 (ko) | 2018-11-30 | 2021-04-06 | 아주대학교산학협력단 | 기계학습용 의료 영상 데이터셋의 품질을 평가하는 방법 및 시스템 |
KR20200141323A (ko) * | 2019-06-10 | 2020-12-18 | 포항공과대학교 산학협력단 | 초음파 영상 생성 방법 및 이를 수행하는 장치들 |
KR102248444B1 (ko) | 2019-06-10 | 2021-05-04 | 포항공과대학교 산학협력단 | 초음파 영상 생성 방법 및 이를 수행하는 장치들 |
JP2022549433A (ja) * | 2019-09-18 | 2022-11-25 | トリアージ テクノロジーズ インク. | 画像および専門知識から皮膚症状を収集し特定するシステム |
JP7330372B2 (ja) | 2019-09-18 | 2023-08-21 | トリアージ テクノロジーズ インク. | 画像および専門知識から皮膚症状を収集し特定するシステム |
US11948298B2 (en) | 2019-09-18 | 2024-04-02 | Triage Technologies Inc. | System to collect and identify medical conditions from images and expert knowledge |
US11972558B2 (en) | 2019-09-18 | 2024-04-30 | Triage Technologies Inc. | System to collect and identify skin conditions from images and expert knowledge |
CN112560363B (zh) * | 2020-12-15 | 2022-06-21 | 北京航空航天大学 | 一种基于映射过程的cfd计算中的网格变形质量评价方法 |
CN112560363A (zh) * | 2020-12-15 | 2021-03-26 | 北京航空航天大学 | 一种基于映射过程的cfd计算中的网格变形质量评价方法 |
CN116942104A (zh) * | 2023-09-21 | 2023-10-27 | 首都医科大学附属北京儿童医院 | 一种用于测量在体局部循环血管的智能观测方法 |
CN116942104B (zh) * | 2023-09-21 | 2024-01-02 | 首都医科大学附属北京儿童医院 | 一种用于测量在体局部循环血管的智能观测方法 |
Also Published As
Publication number | Publication date |
---|---|
JP6713690B2 (ja) | 2020-06-24 |
JPWO2016159379A1 (ja) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6713690B2 (ja) | 血管形状構築装置、その方法及びコンピュータソフトウエアプログラム | |
Chen et al. | Development of a quantitative intracranial vascular features extraction tool on 3 D MRA using semiautomated open‐curve active contour vessel tracing | |
CN107644420B (zh) | 基于中心线提取的血管图像分割方法、核磁共振成像系统 | |
Ukwatta et al. | Three‐dimensional ultrasound of carotid atherosclerosis: semiautomated segmentation using a level set‐based method | |
WO2017047819A1 (fr) | Dispositif d'analyse de forme de vaisseau sanguin, procédé pour ce dernier, et programme logiciel informatique pour ce dernier | |
Deshpande et al. | Automatic segmentation, feature extraction and comparison of healthy and stroke cerebral vasculature | |
US20120203530A1 (en) | Method and System for Patient-Specific Computational Modeling and Simulation for Coupled Hemodynamic Analysis of Cerebral Vessels | |
Kurugol et al. | Automated quantitative 3D analysis of aorta size, morphology, and mural calcification distributions | |
CN111415321B (zh) | 动脉瘤破裂风险检测装置及设备 | |
US20170323587A1 (en) | Blood-vessel-shape construction device for blood-flow simulation, method therefor, and computer software program | |
Larrabide et al. | Three‐dimensional morphological analysis of intracranial aneurysms: A fully automated method for aneurysm sac isolation and quantification | |
Lalys et al. | Generic thrombus segmentation from pre-and post-operative CTA | |
Linguraru et al. | Segmentation and quantification of pulmonary artery for noninvasive CT assessment of sickle cell secondary pulmonary hypertension | |
Hsu et al. | Gap-free segmentation of vascular networks with automatic image processing pipeline | |
US8934690B2 (en) | Method for processing vascular structure images | |
CN112749521A (zh) | 血流动力学指标数据的处理方法和系统 | |
Rajabzadeh-Oghaz et al. | Computer-assisted adjuncts for aneurysmal morphologic assessment: toward more precise and accurate approaches | |
CN114533002B (zh) | 一种颈动脉中心线提取方法、装置、存储介质及电子设备 | |
US10702156B2 (en) | Systems and methods for improved tractography images | |
Singh et al. | Good view frames from ultrasonography (USG) video containing ONS diameter using state-of-the-art deep learning architectures | |
WO2020115162A1 (fr) | Procédé de localisation et de caractérisation de bifurcations d'un arbre vasculaire cérébral, procédés et dispositifs associés | |
Zhang et al. | Robust infrarenal aortic aneurysm lumen centerline detection for rupture status classification | |
Kulathilake et al. | A segmentation method for extraction of main arteries from coronary cine-angiograms | |
Nikravanshalmani et al. | Segmentation and separation of cerebral aneurysms: A multi-phase approach | |
Woźniak et al. | Segmentation of 3D magnetic resonance brain vessel images based on level set approaches |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16773259 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2017510270 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16773259 Country of ref document: EP Kind code of ref document: A1 |