WO2016159197A1 - Rna aptamer and sensor using same - Google Patents

Rna aptamer and sensor using same Download PDF

Info

Publication number
WO2016159197A1
WO2016159197A1 PCT/JP2016/060585 JP2016060585W WO2016159197A1 WO 2016159197 A1 WO2016159197 A1 WO 2016159197A1 JP 2016060585 W JP2016060585 W JP 2016060585W WO 2016159197 A1 WO2016159197 A1 WO 2016159197A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
rna aptamer
guanine
sequence
adenine
Prior art date
Application number
PCT/JP2016/060585
Other languages
French (fr)
Japanese (ja)
Inventor
秀治 栗岡
浩康 田中
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Publication of WO2016159197A1 publication Critical patent/WO2016159197A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/115Aptamers, i.e. nucleic acids binding a target molecule specifically and with high affinity without hybridising therewith ; Nucleic acids binding to non-nucleic acids, e.g. aptamers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor

Definitions

  • the present invention relates to an RNA aptamer and a sensor using the RNA aptamer.
  • JP 2002-209579 A Japanese Patent Laid-Open No. 06-1113830
  • Patent Document 1 or 2 Since the antibody used in Patent Document 1 or 2 is produced using animal cells, variation between batches due to individual differences occurs, and it is not suitable for mass production by chemical synthesis, and it is difficult to reduce production costs. Furthermore, since an antibody is a protein, it has a property of being easily denatured under high temperature or a dry environment and having poor storage stability.
  • an aptamer that specifically binds to hemoglobin has low quality variation, and is low in cost and excellent in storage stability has been demanded.
  • the RNA aptamer according to the embodiment of the present invention includes AGNNNNGWGWSC (SEQ ID NO: 1) (excluding nucleotide sequences in which the third to fifth Ns counted from the 5 ′ end are adenine, guanine, and guanine, respectively), AGNNNNWGGWSC (sequence No. 2), AGNNNNNNGWGWSC (SEQ ID NO: 3), or AUGNNNNAGACC (SEQ ID NO: 4), the consensus sequence (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, S is guanine or cytosine Included).
  • a sensor according to an embodiment of the present invention includes a base and the above-described RNA aptamer immobilized on the base.
  • RNA aptamer by having the configuration as described above, it effectively binds specifically to at least HbA1c among the fraction components of hemoglobin (hereinafter also referred to as Hb). It becomes possible.
  • the senor according to the embodiment of the present invention it is possible to effectively specifically detect at least HbA1c among the fraction components of hemoglobin by having the above-described configuration.
  • RNA aptamer which has a base sequence shown by sequence number 88
  • (a) shows a primary structure
  • (b) shows a secondary structure.
  • (c) shows the secondary structure of RNA aptamer which has a base sequence shown by sequence number 95
  • (d) is RNA which has the base sequence shown by sequence number 96
  • the secondary structure of an aptamer is shown
  • (e) shows the secondary structure of the RNA aptamer which has a base sequence shown by sequence number 97.
  • FIG. 3 is an exploded plan view of the sensor of FIG. 2.
  • FIG. 6 is a plan view showing a modified example of the sensor in FIG. 2, (a) and (b) corresponding to FIG. 6 (d), and (c) corresponding to FIG. 2 (a). It is a figure which shows the modification of the sensor of FIG.
  • RNA aptamer 130 includes AGNNNNWGGWSC (SEQ ID NO: 1) (excluding nucleotide sequences in which the third to fifth Ns counted from the 5 ′ end are adenine, guanine, and guanine, respectively), AGNNNNWGGWSC ( SEQ ID NO: 2), AGNNNNNNGWGWSC (SEQ ID NO: 3), or AUGNNNNAGACC (SEQ ID NO: 4), a consensus sequence (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, S is guanine or cytosine And has a binding ability to HbA1c.
  • AGNNNNWGGWSC SEQ ID NO: 1 (excluding nucleotide sequences in which the third to fifth Ns counted from the 5 ′ end are adenine, guanine, and guanine, respectively)
  • AGNNWGGWSC SEQ ID NO: 2
  • AGNNNNNNGWGWSC
  • the RNA aptamer 130 of the present invention can specifically bind to HbA1c among the Hb fraction components.
  • the RNA aptamer 130 of the present invention does not bind to human serum albumin (HSA) and human IgG (h-IgG).
  • the RNA aptamer 130 has a common sequence represented by AGNHNWGGWSC (SEQ ID NO: 5), AGNHNNWGGWSC (SEQ ID NO: 6), AGNHNNNNGWGWSC (SEQ ID NO: 7), or AUGNHNAGGACC (SEQ ID NO: 8).
  • N is adenine, guanine, cytosine or uracil
  • H is adenine, cytosine or uracil
  • W is adenine or uracil
  • S is guanine or cytosine
  • the RNA aptamer 130 has a consensus sequence of AGNNNNGWGWSC (SEQ ID NO: 1) (base sequence in which the 3rd to 5th N from the 5 ′ end are adenine, guanine, and guanine, respectively. Except), AGNNNNNGWGWSC (SEQ ID NO: 2), or a base sequence represented by AGNNNNNNGWGWSC (SEQ ID NO: 3) (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, and S is guanine or cytosine) ).
  • the common sequence of the RNA aptamer 130 is a base sequence represented by AGNNNNAGACC (SEQ ID NO: 9) (N is adenine, guanine, cytosine or uracil, and 3 to 5 counted from the 5 ′ end. N may be a base sequence excluding adenine, guanine, and guanine, respectively.
  • the RNA aptamer 130 has a common sequence represented by AGWYDAGGACC (SEQ ID NO: 10) (W is adenine or uracil, Y is uracil or cytosine, D is adenine, guanine) Or uracil).
  • the common sequence of the RNA aptamer 130 is AGACGAGGACC (SEQ ID NO: 11), AGAUUAGGACC (SEQ ID NO: 12), AGACAAGGACC (SEQ ID NO: 13), AGAUGAGGAACC (SEQ ID NO: 14), AGUCGAGGACC (SEQ ID NO: 15). ), AGACUAGGACC (SEQ ID NO: 16), AGAUUGGAGGAGC (SEQ ID NO: 17), AGAGAGGGUGC (SEQ ID NO: 18), AGGAAUGGACC (SEQ ID NO: 19), AGAAUUGAGGACC (SEQ ID NO: 20), AGAACGAGGACC (SEQ ID NO: 21), or AUGAUUAGGACC (SEQ ID NO: 21) ).
  • the common sequence of the RNA aptamer 130 is AGACGAGGACC (SEQ ID NO: 11), AGAUUAGGACC (SEQ ID NO: 12), AGACAAGGACC (SEQ ID NO: 13), AGAUGAGGACC (SEQ ID NO: 14), AGUCGAGGACC (SEQ ID NO: 15), or AGACUAGGACC (SEQ ID NO: 15).
  • the base sequence shown by number 16) may be sufficient.
  • the RNA aptamer 130 may have a fluorine group at the 2 ′ position of ribose in at least one nucleotide in the consensus sequence, and a fluorine at the 2 ′ position of adenine and uracil ribose in the consensus sequence. It may have a group. According to this, the stability of the structure of the RNA aptamer 130 can be improved.
  • the RNA aptamer 130 may have a fluorine group at the 2'-position of the ribose of nucleotides other than the nucleotides contained in the common sequence.
  • the total number of nucleotides of the RNA aptamer 130 is not particularly limited as long as the RNA aptamer 130 has a binding ability to HbA1c, but may be 23 to 96.
  • the RNA aptamer 130 according to one embodiment of the present invention can be prepared by a known method as long as it has the sequence as described above.
  • it can be prepared by a known chemical synthesis method. it can.
  • the RNA aptamer 130 includes a common sequence region 130a including a common sequence, a first nucleotide sequence region 130b1 including a first nucleotide sequence that binds to the 5 ′ end of the common sequence, and a second nucleotide that binds to the 3 ′ end of the common sequence.
  • a second nucleotide sequence region 130b2 containing the sequence and a terminal region 130c (5 ′ end 130c1 and 3 ′ end 130c2) are provided.
  • RNA aptamer 130 having the base sequence represented by SEQ ID NO: 88 When the secondary structure of the RNA aptamer 130 having the base sequence represented by SEQ ID NO: 88 is displayed using the software for predicting the secondary structure (Centroid Fold, M. Hamada et al .: Bioinformatics, 2008 Dec. 18) The shape is as shown in FIG.
  • cytosine and guanine in the common sequence region 130a form a base pair, and the common sequence region forms a loop structure.
  • the nucleotides contained in the first nucleotide sequence region 130b1 and the nucleotides contained in the second nucleotide sequence region 130b2 form a base pair to form a stem region 130b. That is, the RNA aptamer 130 according to the present embodiment has a so-called stem loop shape, and the common sequence region 130a is included in the loop structure.
  • stem loop shape or “stem loop structure” is a concept that occurs when a secondary structure of a base sequence is shown, and single-stranded RNA forms a partially complementary base pair.
  • the other part has a loop structure including one or more base pairs and a single-stranded base sequence, and the 5 ′ end and 3 ′ end of the loop structure are directly linked to the stem structure. Represents the structure.
  • the “stem structure” may include a base pair mismatch site, a bulge structure, and the like.
  • the secondary structure of the RNA aptamer 130 having the base sequences shown by SEQ ID NOs: 95 to 97 is displayed using the software (Centroid Fold) for predicting the secondary structure, it is shown in FIGS. 1B (c) to (e), respectively.
  • the shape is as shown.
  • the common sequence region 130a is located in a loop structure consisting of 15 nucleotides without forming a base pair, and the six nucleotides contained in the first nucleotide sequence region 130b1 And the six nucleotides included in the second nucleotide sequence region 130b2 form base pairs to form the stem region 130b.
  • the common sequence region 130a has a loop structure consisting of three base pairs of six nucleotides contained in the region and five nucleotides including a single-stranded structure.
  • the nine nucleotides included in the first nucleotide sequence region 130b1 and the nine nucleotides included in the second nucleotide sequence region 130b2 form base pairs to form the stem region 130b.
  • the common sequence region 130a is located in a loop structure consisting of 19 nucleotides without forming a base pair, and the six nucleotides contained in the first nucleotide sequence region 130b1 The six nucleotides contained in the second nucleotide sequence region 130b2 form base pairs to form the stem region 130b.
  • the common sequence region 130a has one base sequence selected from the base sequences shown in SEQ ID NOs: 1 to 22.
  • the common array region 130a may form a loop structure.
  • the loop structure consists of one of guanine present from the first to the third position from the 5 ′ end of the common sequence and one of cytosine present from the first position to the third position from the 3 ′ end of the common sequence.
  • One may be formed by forming a base pair.
  • the RNA aptamer 130 includes a first nucleotide sequence region 130b1 that binds to the 5 ′ end of the common sequence, and a second nucleotide sequence region 130b2 that binds to the 3 ′ end of the common sequence.
  • the stem region 130b may be formed by forming a base pair between the nucleotide contained in the one nucleotide sequence region 130b1 and the nucleotide contained in the second nucleotide sequence region 130b2.
  • the first nucleotide sequence region 130b1 includes at least one nucleotide that forms a base pair with the nucleotide in the second nucleotide sequence region 130b2.
  • the number of nucleotides forming such a base pair is not particularly limited, but may be 1 to 13, or 6 to 13. If the number of nucleotides forming the base pair is 6 or more, the binding ability between the RNA aptamer and HbA1c can be improved.
  • the base pair formed may be a base pair of cytosine and guanine, or a base pair of adenine and uracil. At least one of the base pairs may be a base pair of cytosine and guanine.
  • the stability of the stem region 130b can be improved, and the binding ability of the RNA aptamer to HbA1c can be improved.
  • the first nucleotide sequence region 130b1 or the second nucleotide sequence region 130b2 can include at least one nucleotide that forms a base pair with a nucleotide in the common sequence.
  • the number of nucleotides forming such a base pair is not particularly limited, but may be 1 to 9, or 6 to 9. If the number of nucleotides forming the base pair is 6 or more, the binding ability between the RNA aptamer and HbA1c can be improved.
  • the base pair may be a base pair of cytosine and guanine, or a base pair of adenine and uracil. At least one of the base pairs may be a base pair of cytosine and guanine.
  • the stability of the stem region 130b can be improved, and the binding ability of the RNA aptamer to HbA1c can be improved.
  • the terminal region 130c may have a modifying group such as biotin, a thiol group, or an amino group.
  • the terminal region 130c means both ends of the base sequence of the RNA aptamer 130 and has a 3 ′ end 130c1 and a 5 ′ end 130c2.
  • each of the above-described modifying groups can be bonded to at least one of the 3 ′ end 130c1 and the 5 ′ end 130c2 in the end region 130c. For example, by binding at least one of the above-described modifying groups to both ends, it is possible to increase the variation of immobilization or improve the immobilization property of immobilization.
  • streptavidin hereinafter sometimes referred to as SA
  • SA streptavidin
  • the terminal region 130c when the terminal region 130c has a thiol group, it can be bonded to gold by a gold-thiol bond. Therefore, the RNA aptamer 130 can be relatively easily immobilized to other members via gold bonded to the thiol group.
  • a spacer having a predetermined length can be interposed between the thiol group and the RNA aptamer 130. According to this, the detection sensitivity of the detection target by the RNA aptamer 130 can be improved by appropriately adjusting the height from the base on which the RNA aptamer 130 is immobilized to the RNA aptamer 130.
  • the terminal region 130c may have a first substance that forms an amide bond with the amino group.
  • the first substance include polyethylene glycol (PEG).
  • the amino group forms an amide bond with the carboxyl group modified at the end of polyethylene glycol.
  • the RNA aptamer 130 can be immobilized with another member via a thiol group modified at the other end of polyethylene glycol.
  • the sensor 100 mainly includes a first cover member 1, an intermediate cover member 1A, a second cover member 2, and a detection element 3, as shown in FIG. In FIG. 2A, the vicinity of the detection element 3 is partially shown through the second cover member 2 for easy understanding of the structure.
  • the sensor 100 includes an inflow portion 14 into which the sample liquid flows, an inflow portion 14, and an intermediate cover member 1 ⁇ / b> A and a second cover member 2. And a flow path 15 that is surrounded and extends to at least the detection unit 13.
  • FIG. 2C shows a cross-sectional view of FIG. 2A, showing an aa cross section, a bb cross section, and a cc cross section in order from the top.
  • the inflow portion 14 is provided so as to penetrate the second cover member 2 in the thickness direction.
  • the inflow portion 14 may be provided so as to be located on the side surfaces of the intermediate cover member 1 ⁇ / b> A and the second cover member 2.
  • the inflow portion even when a thick detection element is used. It is possible to secure a flow path for the sample liquid from the detection part to the detection part, and to allow the sample liquid sucked from the inflow part to flow to the detection part by capillary action or the like. That is, it is possible to provide a sensor with a simple measuring operation that includes a specimen liquid suction mechanism while using a detecting element having a thickness.
  • the contact angles ⁇ 1a and ⁇ 2a with respect to the sample liquid on the surface of the member positioned upstream of the detection element are made smaller than the contact angle ⁇ 3 with respect to the sample liquid on the surface of the detection element.
  • the first cover member 1 has a flat plate shape as shown in FIG.
  • the thickness is, for example, 0.1 mm to 0.5 mm.
  • the planar shape of the first cover member 1 is generally rectangular.
  • the length of the first cover member 1 in the length direction is, for example, 1 cm to 5 cm, and the length in the width direction is, for example, 1 cm to 3 cm.
  • a material of the first cover member 1 for example, paper, plastic, celluloid, ceramics, nonwoven fabric, glass, or the like can be used. Plastics may be used from the viewpoint of combining required strength and cost.
  • the upper surface of the first cover member 1 is formed with a terminal 6 and a wiring 7 routed from the terminal 6 to the vicinity of the detection element 3.
  • the terminals 6 are formed on both sides of the detection element 3 in the width direction on the upper surface of the intermediate cover member 1A.
  • the terminal 6 and the external measuring instrument are electrically connected.
  • the terminal 6 and the detection element 3 are electrically connected through a wiring 7 or the like. Then, a signal from an external measuring instrument is input to the sensor 100 via the terminal 6, and a signal from the sensor 100 is output to the external measuring instrument via the terminal 6.
  • intermediate cover member 1A In the present embodiment, as shown in FIG. 2A, the intermediate cover member 1 ⁇ / b> A is positioned alongside the detection element 3 on the upper surface of the first cover member 1. Further, the intermediate cover member 1A and the detection element 3 are located via a gap.
  • the intermediate cover member 1A has a flat frame shape having a concave portion 4 on a flat plate, and has a thickness of, for example, 0.1 mm to 0.5 mm.
  • the recess forming portion 4 is a portion that divides the first upstream portion 1Aa and the first downstream portion 1Ab as shown in FIG.
  • the element housing recessed portion 5 is formed by the first cover member 1 and the intermediate cover member 1A.
  • the upper surface of the first cover member 1 positioned inside the recess forming portion 4 is the bottom surface of the element housing recess 5
  • the inner wall of the recess forming portion 4 is the inner wall of the element housing recess 5.
  • the material of the intermediate cover member 1A for example, resin (including plastic), paper, non-woven fabric, and glass can be used, and more specifically, resin materials such as polyester resin, polyethylene resin, acrylic resin, and silicone resin. May be used.
  • resin materials such as polyester resin, polyethylene resin, acrylic resin, and silicone resin. May be used.
  • the material of the first cover member 1 and the material of the intermediate cover member 1A may be the same or different.
  • the intermediate cover member 1A has a first upstream portion 1Aa and a first downstream portion 1Ab. As shown in FIG. It is located between the first upstream portion 1Aa and the first downstream portion 1Ab. According to this, the amount of the sample liquid flowing on the detection element 3 through the first upstream portion 1Aa in the flow path 15 exceeds the amount necessary for measurement flows to the first downstream portion 1Ab side. An appropriate amount of sample liquid can be supplied to the detection element 3.
  • the thickness of the intermediate cover member 1 ⁇ / b> A may be larger than the thickness of the detection element 3.
  • the second cover member 2 covers at least a part of the detection element 3 and is joined to the intermediate cover member 1A.
  • a material of the second cover member 2 for example, resin (including plastic), paper, non-woven fabric, and glass can be used, and more specifically, a resin such as a polyester resin, a polyethylene resin, an acrylic resin, and a silicone resin. Materials may be used.
  • the material of the first cover member 1 and the material of the second cover member 2 may be the same. As a result, it is possible to suppress the deformation caused by the difference between the thermal expansion coefficients of each other.
  • the second cover member 2 may be configured to be joined only to the intermediate cover member 1A, or may be joined to both the first cover member 1 and the intermediate cover member 1A.
  • the second cover member 2 has a third substrate 2a and a fourth substrate 2b.
  • the third substrate 2a is bonded to the upper surface of the intermediate cover member 1A.
  • the third substrate 2a is flat and has a thickness of, for example, 0.1 mm to 0.5 mm.
  • the fourth substrate 2b is bonded to the upper surface of the third substrate 2a.
  • the fourth substrate 2b is flat and has a thickness of 0.1 mm to 0.5 mm, for example.
  • the flow path 15 is formed in the lower portion of the second cover member 2 as shown in FIG.
  • the flow path 15 extends from the inflow part 14 to at least a region immediately above the detection part 13, and the cross-sectional shape is, for example, a rectangular shape.
  • the end portion of the flow path 15 is configured such that the gap between the fourth substrate 2b and the intermediate cover member 1A functions as the exhaust hole 18 without the third substrate 2a.
  • the exhaust hole 18 is for releasing air in the flow path 15 to the outside.
  • the exhaust hole 18 may have any shape such as a columnar shape or a quadrangular prism shape as long as the air in the flow path 15 can be extracted.
  • the opening of the exhaust hole 18 is too large, the area where the sample liquid existing in the flow channel 15 comes into contact with the outside air becomes large, and the moisture of the sample liquid is likely to evaporate. If it does so, the density
  • the opening of the exhaust hole 18 may be set so as not to be larger than necessary.
  • the diameter thereof is set to 1 mm or less, and in the case of the exhaust hole 18 made of a square column, one side thereof is set to be 1 mm or less.
  • the inner wall of the exhaust hole 18 is hydrophobic. As a result, the sample liquid filled in the flow path 15 is prevented from leaking out from the exhaust hole 18.
  • the first cover member 1, the intermediate cover member 1A, and the second cover member 2 can all be formed of the same material. According to this, since the thermal expansion coefficients of the respective members can be substantially uniformed, deformation due to the difference in the thermal expansion coefficients of the respective members is suppressed.
  • a biomaterial may be applied to the detection unit 13, but some of them may be easily altered by external light such as ultraviolet rays.
  • an opaque material having a light shielding property may be used as the material for the first cover member 1, the intermediate cover member 1 ⁇ / b> A, and the second cover member 2, an opaque material having a light shielding property may be used.
  • the second cover member 2 constituting the flow path 15 may be formed of a material close to transparency. In this case, the state of the sample liquid flowing in the flow channel 15 can be visually confirmed.
  • the detection element 3 is a base 10 positioned on the top surface of the first cover member 1, and a detection target that is positioned on the top surface of the base 10 and contained in the sample liquid. It has at least one detection part 13 which performs. Details of the detection element 3 are shown in FIG. 3B and FIG.
  • an electrode pattern is provided on the upper surface of the substrate 10, and an insulating member 28 shown in FIG. 8 is provided so as to cover the electrode pattern as necessary. May be.
  • the electrode pattern corresponds to an IDT (Inter Digital Transducer) electrode when a SAW element is used as the detection element 3.
  • IDT Inter Digital Transducer
  • a first IDT electrode 11, a second IDT electrode 12, a first extraction electrode 19, a second extraction electrode 20, and the like, which will be described later, are provided on the upper surface of the substrate 10.
  • the second cover member 2 is fixed on the IDT electrodes 11 and 12, for example, on the upper surface of the base 10.
  • the substrate 10 is made of, for example, a single crystal substrate having piezoelectricity such as a lithium tantalate (LiTaO 3 ) single crystal, a lithium niobate (LiNbO 3 ) single crystal, or quartz.
  • the planar shape and various dimensions of the substrate 10 may be set as appropriate.
  • the thickness of the substrate 10 is 0.3 mm to 1 mm.
  • the first IDT electrode 11 has a pair of comb electrodes.
  • Each comb electrode has two bus bars facing each other and a plurality of electrode fingers extending from each bus bar to the other bus bar side.
  • the pair of comb electrodes are arranged so that a plurality of electrode fingers mesh with each other.
  • the second IDT electrode 12 is configured similarly to the first IDT electrode 11.
  • the first IDT electrode 11 and the second IDT electrode 12 constitute a transversal IDT electrode.
  • the first IDT electrode 11 is for generating a predetermined surface acoustic wave (SAW: Surface Acoustic Wave), and the second IDT electrode 12 is for receiving the SAW generated by the first IDT electrode 11.
  • the first IDT electrode 11 and the second IDT electrode are arranged in the same straight line so that the second IDT electrode 12 can receive the SAW generated in the first IDT electrode 11.
  • the frequency characteristics can be designed using parameters such as the number of electrode fingers of the first IDT electrode 11 and the second IDT electrode 12, the distance between adjacent electrode fingers, and the cross width of the electrode fingers.
  • As the SAW excited by the IDT electrode there are various vibration modes.
  • a transverse wave vibration mode called an SH wave is used.
  • An elastic member for suppressing SAW reflection may be provided outside the first IDT electrode 11 and the second IDT electrode 12 in the SAW propagation direction (width direction).
  • the SAW frequency can be set, for example, within a range of several megahertz (MHz) to several gigahertz (GHz). In particular, if it is several hundred MHz to 2 GHz, it is practical, and downsizing of the detection element 3 and thus downsizing of the sensor 100 can be realized.
  • the first extraction electrode 19 is connected to the first IDT electrode 11, and the second extraction electrode 20 is connected to the second IDT electrode 12.
  • the first extraction electrode 19 is extracted from the first IDT electrode 11 to the opposite side of the detection unit 13, and the end 19 e of the first extraction electrode 19 is electrically connected to the wiring 7 provided on the first cover member 1. Yes.
  • the second extraction electrode 20 is extracted from the second IDT electrode 12 to the side opposite to the detection unit 13, and the end 20 e of the second extraction electrode 20 is electrically connected to the wiring 7.
  • the first IDT electrode 11, the second IDT electrode 12, the first extraction electrode 19 and the second extraction electrode 20 are made of, for example, aluminum or an alloy of aluminum and copper. These electrodes may have a multilayer structure. In the case of a multilayer structure, for example, titanium or chromium can be included in the first layer, and aluminum or aluminum alloy can be included in the second layer.
  • the detection unit 13 is located on the surface of the substrate 10 and on the propagation path of the elastic wave propagating from the first IDT electrode 11 to the second IDT electrode 12.
  • the detection unit 13 is located on the surface of the substrate 10 and on the propagation path of the elastic wave propagating from the first IDT electrode 11 to the second IDT electrode 12.
  • the detection unit 13 includes a plurality of SAs 134 immobilized on the substrate 10, a plurality of biotins 131a respectively bonded to the plurality of SAs 134, and a plurality of biotins 131a. And a plurality of RNA aptamers (binding portions) 130 that are respectively bonded through the main chain 133. That is, the RNA aptamer (binding portion) 130 has biotin 131a via a double strand 133 in the terminal region 130c.
  • the double strand 133 has a configuration in which AAAAAAAAAAAAAAAAAAA (SEQ ID NO: 23) added to the 3 ′ end of the RNA aptamer 130 and TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
  • the detection unit 13 includes an immobilization film 13a positioned on the surface of the substrate 10, a chain substance (SAM) 13c that is bonded to the immobilization film 13a, and a plurality of bonds that are bonded to the SAM.
  • Au gold
  • Ti Ti
  • Cu or the like
  • Au may be used.
  • the immobilization film 13a may be, for example, a gold film or a gold two-layer structure formed on chromium.
  • a protective film may be interposed between the base 10 and the immobilizing film 13a.
  • the chain substance 13c include alkane, polyethylene glycol, or a complex molecule of alkane and polyethylene glycol.
  • the RNA aptamer 130 of the detection unit 13 has an amino group in the terminal region 130c.
  • the first substance 132 chain substance 13c
  • examples of the first substance 132 include polyethylene glycol (PEG).
  • the amino group 131c forms an amide bond with the modified carboxyl group at the end of polyethylene glycol. And it can fix
  • the detection unit 13 includes an immobilization film (Au) 13a located on the surface of the substrate 10 and a plurality of chains bonded to the immobilization film 13a. And a plurality of RNA aptamers (binding portions) 130 that are respectively bonded to the plurality of chain substances 13c via amino groups 131c. Then, the carboxyl group located at the end of polyethylene glycol may be active esterified and bound to the RNA aptamer 130.
  • the RNA aptamer 130 of the detection unit 13 has a thiol group 131b in the terminal region 130c.
  • the detection unit 13 includes a plurality of fixed films (Au) 13a positioned on the surface of the base 10 and a plurality of bonds respectively bonded to the fixed films 13a.
  • the first substance 132 the chain substance 13c (polyethylene glycol)
  • the plurality of RNA aptamers (binding portions) 130 can be included.
  • the sensor 100 includes the set as shown in FIG. Are provided.
  • the detection object which reacts with one detection part 13 is set so that it may differ from the detection object which reacts with the other detection part 13, and two types of detection objects can be detected simultaneously by one sensor.
  • an RNA aptamer 130 that can specifically bind to HbA1c may be provided in one detection unit 13
  • an RNA aptamer that can specifically bind to HbA0 may be provided in the other detection unit 13.
  • aptamers and antibodies used for different detection targets as a set.
  • a reference electrode may be provided instead of the detection unit 13 and used as a reference unit.
  • Detection of detection object using detection element 3 In order to detect the sample liquid in the detection element 3 using SAW, first, a predetermined voltage is applied to the first IDT electrode 11 from an external measuring instrument via the wiring 7 or the first extraction electrode 19. As a result, the surface of the substrate 10 is excited in the formation region of the first IDT electrode 11, and SAW having a predetermined frequency is generated. A part of the generated SAW propagates toward the detection unit 13, passes through the detection unit 13, and then reaches the second IDT electrode 12.
  • the RNA aptamer 130 of the detection unit 13 binds to the detection target (HbA1c) 135 in the sample liquid, and the weight of the detection unit 13 changes by the amount of the binding, so that the SAW that passes through the detection unit 13 changes.
  • Characteristics such as phase change.
  • a voltage corresponding to the SAW is generated in the second IDT electrode. This voltage is output to the outside through the second extraction electrode 20, the wiring 7, etc., and by reading it with an external measuring instrument, the properties and components of the sample liquid can be examined.
  • the sensor 100 uses a capillary phenomenon.
  • the flow path 15 has an elongated tubular shape under the second cover member 2 by joining the second cover member 2 to the intermediate cover member 1A. Therefore, in consideration of the type of sample liquid, the material of the intermediate cover member 1A and the second cover member 2, the width or diameter of the flow channel 15 is set to a predetermined value, and the elongated tubular flow channel 15 is formed. Capillary action can occur.
  • the width of the flow path 15 is, for example, 0.5 mm to 3 mm, and the depth is, for example, 0.1 mm to 0.5 mm.
  • the flow path 15 includes an upstream portion 15a that is a portion from the inflow portion 14 to the front of the detection portion 13 and a downstream portion (extension portion) 15b that is a portion extending beyond the detection portion 13 beyond the detection portion 13.
  • the second cover member 2 has an exhaust hole 18 connected to the extension 15b. When the sample liquid enters the flow path 15, the air present in the flow path 15 is released to the outside from the exhaust hole 18.
  • the sample liquid flows through the flow path 15 by bringing the sample liquid into contact with the inflow portion 14. It is sucked into the cover member.
  • the sensor 100 itself includes a specimen liquid suction mechanism, the specimen liquid can be suctioned without using an instrument such as a pipette.
  • the entire inner surface of the flow path 15 or a part of the inner surface, for example, the bottom surface and the wall surface of the flow path 15 are lyophilic.
  • the inner surface of the flow path 15 is lyophilic, capillary action is likely to occur, and the sample liquid is easily aspirated from the inflow portion 14.
  • the lyophilic portion of the inner surface of the flow path 15 may have a contact angle with water of 60 ° or less.
  • the contact angle is 60 ° or less, capillary action is more likely to occur, and the sample liquid is more reliably aspirated into the flow path 15 when the sample liquid is brought into contact with the inflow portion.
  • FIG. 3A is an enlarged sectional view showing a part of the sensor 100 of FIG.
  • a method of applying hydrophilic treatment to the inner surface of the flow channel 15, a method of attaching a lyophilic film to the inner surface of the flow channel 15, and a flow A method of forming the cover member 2 constituting the path 15 with a lyophilic material can be employed.
  • a method of applying a hydrophilization treatment to the inner surface of the flow channel 15 and a method of attaching a lyophilic film to the inner surface of the flow channel 15 the sample liquid passes through the flow channel 15 along the lyophilic portion. Since it flows, it is possible to suppress the flow of the sample liquid to an unintended place and perform highly accurate measurement.
  • a capillary phenomenon can be caused, so that there is an advantage that the choice of materials that can be used as the cover member is increased.
  • the inner surface of the flow path 15 is subjected to oxygen plasma to change the surface functional group by ashing, and then a silane coupling agent is applied, and finally polyethylene glycol is applied. May be applied.
  • the lyophilic film in the method of attaching the lyophilic film, a commercially available polyester film or polyethylene film that has been subjected to a hydrophilic treatment can be used.
  • the lyophilic film may be formed only on the upper surface, the side surface, or the lower surface of the flow path 15 or a combination thereof.
  • the flow path 15 for the sample liquid has a depth of about 0.3 mm, whereas the detection element 3 has a thickness of about 0.3 mm. As shown in FIG. The depth of 15 and the thickness of the detection element 3 are substantially equal. Therefore, if the detection element 3 is placed on the flow channel 15 as it is, the flow channel 15 is blocked. Therefore, in the sensor 100, as shown in FIG. 2B and FIG. 3, the element is composed of a first cover member 1 on which the detection element 3 is mounted and an intermediate cover member 1A joined on the first cover member 1. A housing recess 5 is provided.
  • the flow path 15 for the sample liquid is prevented from being blocked. That is, the flow path 15 can be ensured by making the depth of the element accommodating recess 5 approximately the same as the thickness of the detecting element 3 and mounting the detecting element 3 in the element accommodating recess 5.
  • the height from the bottom surface of the element housing recess 5 to the upper surface of the substrate 10 is set to the depth of the element housing recess 5 from the viewpoint of sufficiently securing the sample liquid flow path 15. Or smaller (lower) than that.
  • the height of the upper surface of the substrate 10 from the bottom surface of the element housing recess 5 is the same as the depth of the element housing recess 5, when the inside of the channel 15 is viewed from the inflow portion 14,
  • the bottom surface and the detection unit 13 can be made substantially the same height.
  • the planar shape of the element receiving recess 5 may be, for example, a shape similar to the planar shape of the base 10, and the element receiving recess 5 may be set slightly larger than the base 10. More specifically, the element receiving recess 5 is large enough to form a gap of about 200 ⁇ m between the side surface of the base 10 and the inner wall of the element receiving recess 5 when the base 10 is mounted in the element receiving recess 5. That's it.
  • the detection element 3 is fixed to the bottom surface of the element housing recess 5 by a die bond material mainly composed of epoxy resin, polyimide resin, silicone resin or the like.
  • the end 19e of the first extraction electrode 19 and the wiring 7 are electrically connected by a thin metal wire 27 made of, for example, Au.
  • the connection between the end 20e of the second extraction electrode 20 and the wiring 7 is the same.
  • the connection between the first extraction electrode 19 and the second extraction electrode 20 and the wiring 7 is not limited to the connection with the metal thin wire 27 but may be performed with a conductive adhesive such as Ag paste. Since a gap is provided in the connection portion between the first extraction electrode 19 and the second extraction electrode 20 and the wiring 7, when the second cover member 2 is bonded to the first cover member 1, Damage is suppressed.
  • the 1st extraction electrode 19, the 2nd extraction electrode 20, the metal fine wire 27, and the wiring 7 are covered with the insulating sealing member. Since the first extraction electrode 19, the second extraction electrode 20, the fine metal wire 27 and the wiring 7 are covered with an insulating sealing member, it is possible to suppress corrosion of these electrodes and the like.
  • the flow path of the sample liquid extending from the inflow portion 14 to the detection portion 13 by accommodating the detection element 3 in the element accommodation recess 5 of the first cover member 1. 15 can be secured, and the sample liquid aspirated from the inflow portion by capillary action or the like can flow to the detection portion 13. That is, it is possible to provide the sensor 100 having the suction mechanism itself while using the thick detection element 3.
  • FIG. 6 is a plan view showing a manufacturing process of the sensor 100 of FIG.
  • a first cover member 1 on which terminals 6 and wirings 7 are formed is prepared.
  • the intermediate cover member 1 ⁇ / b> A is laminated on the first cover member 1.
  • the intermediate cover member 1A includes a first upstream portion 1Aa and a first downstream portion 1Ab.
  • the detection element 3 is mounted between the first upstream portion 1Aa and the first downstream portion 1Ab of the intermediate cover member 1A using the fine metal wires 27.
  • any of the steps of placing the intermediate cover member 1 ⁇ / b> A and the detection element 3 on the first cover member 1 may be executed first.
  • the third substrate 2a of the second cover member 2 is laminated on the intermediate cover member 1A.
  • the sensor 100 which concerns on this embodiment is manufactured by laminating
  • ⁇ Modification> 7 is a plan view showing sensors 100a, 100b, and 100c according to a modification of the sensor 100 of FIG. 2, and FIGS. 7A and 7B are views corresponding to FIG. 6D, and FIG. These are figures corresponding to Fig.2 (a).
  • FIG. 7C the vicinity of the detection element 3 is partially shown through the second cover member 2 for easy understanding of the structure.
  • the sensors 100a and 100b according to this modification are different from the sensor 100 according to the above-described embodiment in that the width of the intermediate cover member 1A and the second cover member 2 is larger than the width of the detection element 3. As shown in FIG. 7A, the sensor 100a is not provided with the intermediate cover member 1A (second downstream portion 1Ab) on the first cover member 1 downstream of the detection element 3. On the other hand, the sensor 100b is provided with an intermediate cover member 1A (second downstream portion 1Ab) on the first cover member 1 downstream of the detection element 3, as shown in FIG.
  • the sensor 100c according to this modification is different from the sensor 100 according to the above-described embodiment in the arrangement of the terminals 6 with respect to the detection element 3.
  • the terminal 6 is arranged on the exhaust hole 18 side of the detection element 3 with respect to the end portion on the inflow portion 14 side.
  • the sensor 100c of this modification as shown in FIG. 7C, at least a part of the terminal 6 is closer to the inflow portion 14 side than the end portion of the detection element 3 on the inflow portion 14 side. Is arranged.
  • the lengths of the wirings 7 connected to the two outer terminals 6 are substantially the same.
  • the lengths of the wirings 7 connected to the two inner terminals 6 are substantially the same. According to this, it is possible to suppress the signal obtained by the detection element 3 from varying depending on the length of the wiring 7. Further, for example, one of the wirings 7 having substantially the same length is connected to a portion where the detection unit 13 of the detection element 3 detects the detection target, and the other wiring 7 having substantially the same length is connected to the detection element 3. If the detection unit is configured to be connected to the reference electrode for the detection target, it is possible to suppress the variation in the signal and to improve the reliability of detection.
  • FIG. 8A and 8B are diagrams showing a sensor 101 according to a modification of the sensor 100 in FIG. 2, wherein FIG. 8A is a plan view, FIG. 8B is a sectional view in the length direction, and FIG. 8C is a sectional view in the width direction. is there.
  • FIG. 8A the vicinity of the detection element 3 is partially shown through the second cover member 2 for easy understanding of the structure.
  • the sensor 101 according to this modification is different from the sensor 100 according to the above-described embodiment, and the first IDT electrode 11 and the second IDT electrode 12 are covered with an insulating member 28.
  • the insulating member 28 contributes to the oxidation prevention of the first IDT electrode 11 and the second IDT electrode 12.
  • the insulating member 28 is made of, for example, silicon oxide, aluminum oxide, zinc oxide, titanium oxide, silicon nitride, or silicon.
  • the thickness of the insulating member 28 is, for example, about 1/10 (10 to 30 nm) of the thickness of the first IDT electrode 11 and the second IDT electrode.
  • the insulating member 28 may be formed over the entire top surface of the substrate 10 so as to expose the end 19e of the first extraction electrode 19 and the end 20e of the second extraction electrode 20.
  • the senor 101 according to the present modification is provided with a filling member 9 in the gap between the detection element 3 and the intermediate cover member 1A.
  • the filling member 9 can include a material different from that of the intermediate cover member 1A and the base 10, and for example, a resin material such as PDMS can be used.
  • the filling member 9 need not be provided in the entire region of the gap between the detection element 3 and the intermediate cover member 1 ⁇ / b> A, and may be provided only in a portion corresponding to the flow path 15, for example. Since the filling member 9 is positioned in the gap between the detection element 3 and the intermediate cover member 1A, it is possible to suppress the capillary phenomenon from being inhibited by the gap, and to aspirate the sample liquid more smoothly toward the detection element. Is possible.
  • FIG. 9 is a plan view showing a manufacturing process of the sensor 101 of FIG.
  • a first cover member 1 on which terminals 6 and wirings 7 are formed is prepared.
  • the intermediate cover member 1 ⁇ / b> A is laminated on the first cover member 1.
  • the intermediate cover member 1A includes a first upstream portion 1Aa and a first downstream portion 1Ab.
  • the detection element 3 is mounted between the first upstream portion 1Aa and the first downstream portion 1Ab of the intermediate cover member 1A using the fine metal wires 27.
  • any of the steps of placing the intermediate cover member 1 ⁇ / b> A and the detection element 3 on the first cover member 1 may be executed first.
  • the filling member 9 is disposed in the gap between the detection element 3 and the intermediate cover member 1A.
  • the third substrate 2a of the second cover member 2 is laminated on the intermediate cover member 1A.
  • the sensor 101 which concerns on this embodiment is manufactured by laminating
  • FIG. 10 is a diagram illustrating a sensor 101a according to a modification of the sensor 100 in FIG. 2, and particularly illustrates a manufacturing process.
  • the sensor 101a according to the present modification is different from the sensor 100 according to the above-described embodiment in that the detection element 3 is surrounded by the intermediate cover member 1A in the top view.
  • the filling member 9 is located in the gap between the detection element 3 and the intermediate cover member 1A so as to surround the outer periphery of the detection element 3, as shown in FIGS. According to this, since the step or the gap between the detection element 3 and its surroundings can be reduced in the flow path 15, the sample liquid can be smoothly flowed on the detection element 3.
  • the filling member 9 can cover a part of the wiring 7 and the conductive wire 27 that connects the detection element 3 and the wiring 7 in the region of the detection element 3 and the terminal 6, the contact between the filling member 9 and the sample liquid It is possible to suppress a decrease in detection sensitivity due to.
  • the intermediate cover member 1A and the detection element 3 are placed on the first cover member 1 as shown in FIG. 10B, and then detected as shown in FIG. 10C.
  • the element 3 and the wiring 7 are connected by a conducting wire 27.
  • the intermediate cover member 1A is placed on the first cover member 1. You may make it mount.
  • FIG. 11 is a plan view showing sensors 101b and 101c according to a modified example of the sensor 100 of FIG. 2, and corresponds to FIG. 6 (d).
  • the sensors 101b and 101c according to the present modification are different from the sensor 100 according to the above-described embodiment, and the filling member 9 includes a detection element 3 and an intermediate cover as shown in FIGS. 11 (a) and 11 (b). It is located along the longitudinal direction of the flow path 15 in the gap with the member 1A. According to this, since the level difference between the detection element 3 and both sides thereof can be reduced or the gap can be narrowed, the sample liquid can be smoothly flowed from the side to the detection element 3. In addition, since the filling member 9 can cover a part of the wiring 7 and the conductive wire 27 that connects the detection element 3 and the wiring 7 in the region of the detection element 3 and the terminal 6, the filling member 9 is in contact with the sample liquid. It is possible to suppress a decrease in detection sensitivity due to.
  • the detection member 3 is not only the gap between the detection element 3 and the intermediate cover member 1 ⁇ / b> A but also the detection element 3 among the conductive wires 27 for connecting the detection element 3 and the wiring 7.
  • the part located on the upper surface of (base 10) can also be covered. According to this, it is possible to further suppress a decrease in detection sensitivity due to contact between the lead wire 27 and the sample liquid.
  • RNA aptamer examples of the RNA aptamer according to the above-described embodiment and a sensor using the RNA aptamer will be described.
  • SERIESSSensorChipSA manufactured by GE Healthcare was used as a substrate (base) for evaluation.
  • RNA aptamer obtained by transcription from a single-stranded DNA consisting of a complementary sequence of RNA was used. Further, ab98306 manufactured by Abcam Co. was used as the hemoglobin A1c specimen.
  • HBS-P manufactured by GE Healthcare
  • MgCl 2 in HBS-P was used after adding MgCl 2 as contained 1 mM (hereinafter referred to as HBS-P (+ MgCl 2) .).
  • Fc2 was immobilized with 5 ⁇ M TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT
  • Fc1 One of the flow cells (hereinafter referred to as Fc1) was immobilized by flowing 1 mg / ml biotin at a flow rate of 5 ⁇ l / min for 6 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
  • Fc2 was immobilized by flowing 0.5 ⁇ M RNA aptamer at a flow rate of 5 ⁇ l / min for 4 minutes, and then the dissociation state for 2 minutes was monitored.
  • RNA aptamer AAAAAAAAAAAAAAA (SEQ ID NO: 23) was added to the 3 ′ end, and adenine and uracil in which the 2′-position was substituted with a fluorine group and annealed in advance were used. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
  • a hemoglobin A1c sample diluted with HBS-P (+ MgCl 2 ) so as to be 1 ⁇ M in the order of Fc1 and Fc2 is passed through the flow cells Fc1 and Fc2 for 4 minutes at a flow rate of 5 ⁇ l / min, and then dissociated for 2 minutes. The condition was monitored.
  • Table 1 shows the amount of RNA aptamer immobilized, the amount of HbA1c detected, the number of RNA aptamer bases, and the binding ratio of HbA1c per RNA aptamer.
  • the value of the binding ratio of HbA1c per RNA aptamer is 0.1 or more, ⁇ , when 0.055 or more and less than 0.1, ⁇ , and when greater than 0 and less than 0.055, ⁇ . , 0 or less was marked as x.
  • the RNA aptamer having the base sequence represented by any of SEQ ID NOs: 25 to 47 showed high binding strength to HbA1c.
  • the RNA aptamer having the base sequence represented by any of SEQ ID NOs: 25 to 39 showed particularly high binding strength to HbA1c.
  • Table 2 shows the dissociation constants for HbA1c and HbA0 (non-glycated hemoglobin) for the major aptamers.
  • the dissociation constant was obtained as follows.
  • Biacore T200 manufactured by GE Healthcare
  • This device has four flow cells.
  • SERIESSSensorChipSA manufactured by GE Healthcare was used as a substrate (base) for evaluation.
  • the RNA aptamer used was a sequence consisting of only a common sequence from the sequences in Table 1 and 6 to 13 base pairs from both ends. This RNA was synthesized outside the company.
  • an HbA1c-certified practical standard substance JCCRM423 (general incorporated association, manufactured by National Institute of Laboratory Medicine) was used.
  • the hemoglobin A0 specimen a substance obtained by removing HbA1c from the above-mentioned HbA1c certified practical reference material was used.
  • HBS-P manufactured by GE Healthcare
  • MgCl 2 in HBS-P was used after adding MgCl 2 as contained 1 mM (hereinafter referred to as HBS-P (+ MgCl 2) .).
  • Fc2 One of the flow cells (hereinafter referred to as Fc2) was immobilized by flowing 0.05 ⁇ M RNA aptamer having biotin at the 5 ′ end for 40 seconds at a flow rate of 20 ⁇ l / min. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
  • Fc1 One of the flow cells (hereinafter referred to as Fc1) was immobilized by flowing 1 mg / ml biotin at a flow rate of 5 ⁇ l / min for 6 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
  • a diluted solution of the hemoglobin A1c sample was flowed in the order of Fc1 and Fc2 for 2 minutes at a flow rate of 50 ⁇ l / min, and then a running buffer was flowed for 2 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
  • the above operations (7) to (11) were performed on the hemoglobin A0 specimen.
  • the hemoglobin A0 concentration was 0 (diluted solution only), 0.1 ⁇ M, 0.2 ⁇ M, 0.5 ⁇ M, 1 ⁇ M, 2 ⁇ M, and 5 ⁇ M.
  • a detection element 3 was prepared. Note that Au (gold) is used as the immobilization film 13a.
  • HBS-P (+ MgCl 2 ) After replacing 1 mM HEPES buffer (pH 8.0) with HBS-P (+ MgCl 2 ), HBS-P (+ MgCl 2 ) so that the concentration of RNA aptamer having biotin at the 5 ′ end is 5 ⁇ M.
  • the solution diluted in (1) was dropped on the area including the detection unit 13, left for 5 minutes, and then washed with HBS-P (+ MgCl 2 ). Note that this process was not performed when the reference electrode was formed.
  • a hemoglobin A1c sample diluted with HBS-P (+ MgCl 2 ) so as to be 1 ⁇ M was introduced into the detection element 3 using the flow path 15, and the amount of phase change that occurred when reacted for 5 minutes was measured. .
  • the RNA aptamer could be immobilized with high stability and the HbA1c could be detected by using the binding of SA and biotin with high binding power.
  • Example 4 Example having an amino group at the terminal
  • a detection element 3 was prepared. Note that Au (gold) is used as the immobilization film 13a.
  • Sensor element 3 is immersed in ethanol in which Carboxy-EG6-Undecanethiol (manufactured by Dojindo Laboratories) and Hydroxy-EG3-Undecanethiol (manufactured by Dojindo Laboratories) are dissolved in a desired concentration ratio for 16 hours. did.
  • the detection element 3 was rinsed with ethanol and ultrapure water and dried with nitrogen.
  • a region containing a detection unit 13 by dissolving an RNA aptamer having an amino group at the 5 ′ end in a 100 mM HEPES buffer (pH 7.4) solution containing 4.5 M NaCl so as to have a desired concentration. And then left for 30 minutes.
  • the region containing the detection unit 13 is washed with 10 mM NaOH and HBS-P (+ MgCl 2 ) to be present at the 5 ′ end of the esterified carboxyl group and the RNA aptamer.
  • the amino group to be amide-bonded was not performed.
  • the RNA aptamer could be immobilized with high stability and HbA1c could be detected.
  • Biacore T200 manufactured by GE Healthcare
  • This device has four flow cells.
  • SERIESSSensorChipSA manufactured by GE Healthcare was used as a substrate (base) for evaluation.
  • the RNA aptamer is the No. in Table 2.
  • 64 SEQ ID NO: 88
  • all base pairs other than the common sequence are GC pairs and the base pair chain length is changed.
  • These RNAs are synthesized outside the company.
  • the secondary structure of the RNA aptamer whose base pair chain length is changed is displayed using the software for predicting the secondary structure in the same manner as described above, the structure shown in FIG.
  • an HbA1c-certified practical standard substance JCCRM423 (general incorporated association, manufactured by National Institute of Laboratory Medicine) was used.
  • HBS-P manufactured by GE Healthcare
  • MgCl 2 in HBS-P was used after adding MgCl 2 as contained 1 mM (hereinafter referred to as HBS-P (+ MgCl 2) .).
  • RNA aptamer having biotin at the 5 ′ end was immobilized on one of the flow cells (hereinafter referred to as Fc2) at a flow rate of 5 ⁇ l / min for 6 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
  • FIG. 14B shows the signal intensity when the signal is fixed. It can be seen that each aptamer is immobilized in substantially the same amount.
  • the hemoglobin A1c specimen diluted to a concentration of 5 ⁇ M was flowed in the order of Fc1 and Fc4 at a flow rate of 5 ⁇ l / min for 4 minutes, and then a running buffer was flowed for 2 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
  • hemoglobin A1c can be bound even if the base pair portion is changed to only the GC pair. That is, it can be seen that the RNA aptamer binds to hemoglobin A1c by the common sequence and the base pair in Table 1. Furthermore, it can be seen that the longer the base pair chain length, the higher the binding performance with hemoglobin A1c.
  • the present invention is not limited to the above embodiment, and may be implemented in various modes.
  • the detection unit 13 has been described as being composed of a metal film and an RNA aptamer 130 immobilized on the surface of the metal film.
  • the RNA aptamer 130 may be immobilized on the surface.
  • the detection element 3 is made of a surface acoustic wave element.
  • the detection element 3 is not limited to this, and for example, a detection in which an optical waveguide is formed so that surface plasmon resonance occurs. Element 3 may be used. In this case, for example, a change in the refractive index of light in the detection unit is measured.
  • the detection element 3 in which a vibrator is formed on a piezoelectric substrate such as quartz can be used. In this case, for example, a change in the oscillation frequency of the vibrator is measured.
  • the detection element 3 a plurality of types of devices may be mixed on a single substrate.
  • an enzyme electrode method enzyme electrode may be provided next to the SAW element.
  • measurement by an enzyme method is possible, and the number of items that can be examined at a time can be increased.
  • the element accommodating recess 5 may be provided for each detection element 3 or the element accommodating recess 5 having a length or width that can accommodate all the detection elements 3 may be formed.
  • stem region 130b1 ... first nucleotide sequence region 130b2 ... second nucleotide sequence region 130c ... end region 130c1, ... 3 'end 130c2, ... 5' Terminal 131a ... Biotin 131b ... thiol group 131c ... amino group 132 ... first substance 133 ... double strand 134 ... streptavidin 135 ... detection target (hemoglobin A1c) 14 ... Inflow part 15 ... Flow path 15a ... Upstream part 15b ... Downstream part (extension part) 18 ... exhaust hole 19 ... first extraction electrode 19e ... end 20 ... second extraction electrode 20e ... end 27 ... conducting wire (fine metal wire) 28 ... Insulating member 100, 101 ... Sensor

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Medicinal Chemistry (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Cell Biology (AREA)
  • Sustainable Development (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

[Problem] To provide an RNA aptamer that binds specifically to HbA1c and a sensor using the same. [Solution] An RNA aptamer 130 having a common sequence AGNNNWGGWSC (SEQ ID NO:1) (excluding a base sequence wherein N's at the 3-5th positions from the 5' end are respectively adenine, guanine and guanine), AGNNNNWGGWSC (SEQ ID NO:2), AGNNNNNWGGWSC (SEQ ID NO:3) or AUGNNNAGGACC (SEQ ID NO:4) [wherein: N is adenine, guanine, cytosine or uracil; W is adenine or uracil; and S is guanine or cytosine] and being capable of binding to HbA1c.

Description

RNAアプタマーおよびそれを用いたセンサRNA aptamer and sensor using the same
 本発明は、RNAアプタマーおよびそれを用いたセンサに関するものである。 The present invention relates to an RNA aptamer and a sensor using the RNA aptamer.
 検出素子を用いて、検体液に含まれるヘモグロビンを測定するための抗体およびそれを用いたセンサが知られている(例えば、特許文献1または2参照)。 An antibody for measuring hemoglobin contained in a sample liquid using a detection element and a sensor using the same are known (for example, see Patent Document 1 or 2).
特開2002-209579号公報JP 2002-209579 A 特開平06-113830号公報Japanese Patent Laid-Open No. 06-1113830
 特許文献1または2で用いられる抗体は、動物細胞を使用して作製するため、個体差によるバッチ間変動が生じるとともに、化学合成による大量生産に向いておらず生産コストの低減も難しかった。さらに、抗体はタンパク質であるために、高温や乾燥環境下で変性しやすく保存性に乏しいという性質を有していた。 Since the antibody used in Patent Document 1 or 2 is produced using animal cells, variation between batches due to individual differences occurs, and it is not suitable for mass production by chemical synthesis, and it is difficult to reduce production costs. Furthermore, since an antibody is a protein, it has a property of being easily denatured under high temperature or a dry environment and having poor storage stability.
 そのため、ヘモグロビンと特異的な結合を行ない、品質バラツキが小さく低コストで保存性に優れたアプタマーが求められていた。 Therefore, an aptamer that specifically binds to hemoglobin, has low quality variation, and is low in cost and excellent in storage stability has been demanded.
 本発明の実施形態に係るRNAアプタマーは、AGNNNWGGWSC(配列番号1)(5’末端から数えて3~5番目のNが、それぞれアデニン、グアニン、およびグアニンである塩基配列を除く)、AGNNNNWGGWSC(配列番号2)、AGNNNNNWGGWSC(配列番号3)、またはAUGNNNAGGACC(配列番号4)で示される共通配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、Wはアデニンまたはウラシルであり、Sはグアニンまたはシトシンである)を含む。 The RNA aptamer according to the embodiment of the present invention includes AGNNNNGWGWSC (SEQ ID NO: 1) (excluding nucleotide sequences in which the third to fifth Ns counted from the 5 ′ end are adenine, guanine, and guanine, respectively), AGNNNNWGGWSC (sequence No. 2), AGNNNNNNGWGWSC (SEQ ID NO: 3), or AUGNNNNAGACC (SEQ ID NO: 4), the consensus sequence (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, S is guanine or cytosine Included).
 本発明の実施形態に係るセンサは、基体と、基体に固定化されている上述のRNAアプタマーとを備える。 A sensor according to an embodiment of the present invention includes a base and the above-described RNA aptamer immobilized on the base.
 本発明の実施形態に係るRNAアプタマーによれば、上述のような構成を有することで、効果的にヘモグロビン(以下、Hbとも表記する。)の分画成分のうち少なくともHbA1cと特異的に結合することが可能となる。 According to the RNA aptamer according to the embodiment of the present invention, by having the configuration as described above, it effectively binds specifically to at least HbA1c among the fraction components of hemoglobin (hereinafter also referred to as Hb). It becomes possible.
 本発明の実施形態に係るセンサによれば、上述のような構成を有することで、効果的にヘモグロビンの分画成分のうち少なくともHbA1cを特異的に検出することが可能となる。 According to the sensor according to the embodiment of the present invention, it is possible to effectively specifically detect at least HbA1c among the fraction components of hemoglobin by having the above-described configuration.
配列番号88で示される塩基配列を有するRNAアプタマーを示す図であり、(a)は一次構造を示し、(b)は二次構造を示す。It is a figure which shows the RNA aptamer which has a base sequence shown by sequence number 88, (a) shows a primary structure, (b) shows a secondary structure. RNAアプタマーの二次構造を示す図であり、(c)は配列番号95で示される塩基配列を有するRNAアプタマーの二次構造を示し、(d)は配列番号96で示される塩基配列を有するRNAアプタマーの二次構造を示し、(e)は配列番号97で示される塩基配列を有するRNAアプタマーの二次構造を示す。It is a figure which shows the secondary structure of RNA aptamer, (c) shows the secondary structure of RNA aptamer which has a base sequence shown by sequence number 95, (d) is RNA which has the base sequence shown by sequence number 96 The secondary structure of an aptamer is shown, (e) shows the secondary structure of the RNA aptamer which has a base sequence shown by sequence number 97. 本発明の実施形態に係るセンサを示す図であり、(a)は平面図、(b)は長さ方向の断面図、(c)は幅方向の断面図である。It is a figure which shows the sensor which concerns on embodiment of this invention, (a) is a top view, (b) is sectional drawing of a length direction, (c) is sectional drawing of the width direction. 図2のセンサの一部を拡大して示す断面図である。It is sectional drawing which expands and shows a part of sensor of FIG. 図2のセンサの検出素子を示す平面図である。It is a top view which shows the detection element of the sensor of FIG. 図2のセンサの分解平面図である。FIG. 3 is an exploded plan view of the sensor of FIG. 2. 図2のセンサの製造工程を示す図である。It is a figure which shows the manufacturing process of the sensor of FIG. 図2のセンサの変形例を示す平面図であり、(a)および(b)は図6(d)に対応する図であり、(c)は図2(a)に対応する図である。FIG. 6 is a plan view showing a modified example of the sensor in FIG. 2, (a) and (b) corresponding to FIG. 6 (d), and (c) corresponding to FIG. 2 (a). 図2のセンサの変形例を示す図であり、(a)は平面図、(b)は長さ方向の断面図、(c)は幅方向の断面図である。It is a figure which shows the modification of the sensor of FIG. 2, (a) is a top view, (b) is sectional drawing of a length direction, (c) is sectional drawing of the width direction. 図8のセンサの製造工程を示す図である。It is a figure which shows the manufacturing process of the sensor of FIG. 図2のセンサの変形例を示す図であり、特に製造工程を示す図である。It is a figure which shows the modification of the sensor of FIG. 2, and is a figure which shows a manufacturing process especially. 図2のセンサの変形例を示す平面図であり、図6(d)に対応する図である。It is a top view which shows the modification of the sensor of FIG. 2, and is a figure corresponding to FIG.6 (d). 図2のセンサの検出部の実施例を示す側面図である。It is a side view which shows the Example of the detection part of the sensor of FIG. 図2のセンサの検出部の実施例を示す側面図である。It is a side view which shows the Example of the detection part of the sensor of FIG. 本発明の実施形態に係るセンサ(RNAアプタマー)に関する実験データを示す図である。It is a figure which shows the experimental data regarding the sensor (RNA aptamer) which concerns on embodiment of this invention.
 以下、本発明の実施形態に係るRNAアプタマーおよびそれを用いたセンサの実施形態について、図面などを参照しつつ詳細に説明する。なお、以下に説明する各図面において同じ構成部材には同じ符号を付すものとする。また、各部材の大きさや部材同士の間の距離などは模式的に図示しており、現実のものとは異なる場合がある。 Hereinafter, embodiments of an RNA aptamer and a sensor using the RNA aptamer according to an embodiment of the present invention will be described in detail with reference to the drawings. In addition, in each drawing demonstrated below, the same code shall be attached | subjected to the same structural member. Further, the size of each member, the distance between members, and the like are schematically illustrated, and may differ from actual ones.
 <RNAアプタマー>
 本発明の実施形態に係るRNAアプタマー130は、AGNNNWGGWSC(配列番号1)(5’末端から数えて3~5番目のNが、それぞれアデニン、グアニン、およびグアニンである塩基配列を除く)、AGNNNNWGGWSC(配列番号2)、AGNNNNNWGGWSC(配列番号3)、またはAUGNNNAGGACC(配列番号4)で示される共通配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、Wはアデニンまたはウラシルであり、Sはグアニンまたはシトシンである)を含み、かつ、HbA1cに対する結合能を有する。本発明のRNAアプタマー130は、このような構成を有することで、Hbの分画成分のうちHbA1cと特異的に結合することが可能となる。なお、本発明のRNAアプタマー130は、ヒト血清アルブミン(HSA)およびヒトIgG(h-IgG)とは結合しない。
<RNA aptamer>
RNA aptamer 130 according to an embodiment of the present invention includes AGNNNNWGGWSC (SEQ ID NO: 1) (excluding nucleotide sequences in which the third to fifth Ns counted from the 5 ′ end are adenine, guanine, and guanine, respectively), AGNNNNWGGWSC ( SEQ ID NO: 2), AGNNNNNNGWGWSC (SEQ ID NO: 3), or AUGNNNNAGACC (SEQ ID NO: 4), a consensus sequence (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, S is guanine or cytosine And has a binding ability to HbA1c. By having such a configuration, the RNA aptamer 130 of the present invention can specifically bind to HbA1c among the Hb fraction components. The RNA aptamer 130 of the present invention does not bind to human serum albumin (HSA) and human IgG (h-IgG).
 本発明の一実施形態において、RNAアプタマー130が有する共通配列は、AGNHNWGGWSC(配列番号5)、AGNHNNWGGWSC(配列番号6)、AGNHNNNWGGWSC(配列番号7)、またはAUGNHNAGGACC(配列番号8)で示される塩基配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、Hはアデニン、シトシンまたはウラシルであり、Wはアデニンまたはウラシルであり、Sはグアニンまたはシトシンである)であってもよい。 In one embodiment of the present invention, the RNA aptamer 130 has a common sequence represented by AGNHNWGGWSC (SEQ ID NO: 5), AGNHNNWGGWSC (SEQ ID NO: 6), AGNHNNNNGWGWSC (SEQ ID NO: 7), or AUGNHNAGGACC (SEQ ID NO: 8). (N is adenine, guanine, cytosine or uracil, H is adenine, cytosine or uracil, W is adenine or uracil, and S is guanine or cytosine).
 本発明の一実施形態において、RNAアプタマー130が有する共通配列は、AGNNNWGGWSC(配列番号1)(5’末端から数えて3~5番目のNが、それぞれアデニン、グアニン、およびグアニンである塩基配列を除く)、AGNNNNWGGWSC(配列番号2)、またはAGNNNNNWGGWSC(配列番号3)で示される塩基配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、Wはアデニンまたはウラシルであり、Sはグアニンまたはシトシンである)であってもよい。 In one embodiment of the present invention, the RNA aptamer 130 has a consensus sequence of AGNNNNGWGWSC (SEQ ID NO: 1) (base sequence in which the 3rd to 5th N from the 5 ′ end are adenine, guanine, and guanine, respectively. Except), AGNNNNNGWGWSC (SEQ ID NO: 2), or a base sequence represented by AGNNNNNNGWGWSC (SEQ ID NO: 3) (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, and S is guanine or cytosine) ).
 本発明の一実施形態において、RNAアプタマー130が有する共通配列は、AGNNNAGGACC(配列番号9)で示される塩基配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、5’末端から数えて3~5番目のNが、それぞれアデニン、グアニン、およびグアニンである塩基配列を除く)であってもよい。 In one embodiment of the present invention, the common sequence of the RNA aptamer 130 is a base sequence represented by AGNNNNAGACC (SEQ ID NO: 9) (N is adenine, guanine, cytosine or uracil, and 3 to 5 counted from the 5 ′ end. N may be a base sequence excluding adenine, guanine, and guanine, respectively.
 本発明の一実施形態において、RNAアプタマー130が有する共通配列は、AGWYDAGGACC(配列番号10)で示される塩基配列(Wはアデニンまたはウラシルであり、Yはウラシルまたはシトシンであり、Dはアデニン、グアニンまたはウラシルである)であってもよい。 In one embodiment of the present invention, the RNA aptamer 130 has a common sequence represented by AGWYDAGGACC (SEQ ID NO: 10) (W is adenine or uracil, Y is uracil or cytosine, D is adenine, guanine) Or uracil).
 本発明の一実施形態において、RNAアプタマー130が有する共通配列は、AGACGAGGACC(配列番号11)、AGAUUAGGACC(配列番号12)、AGACAAGGACC(配列番号13)、AGAUGAGGACC(配列番号14)、AGUCGAGGACC(配列番号15)、AGACUAGGACC(配列番号16)、AGAUUGGAGGAGC(配列番号17)、AGACGAGGUGC(配列番号18)、AGGAAUGGACC(配列番号19)、AGAUUGAGGACC(配列番号20)、AGAACGAGGACC(配列番号21)、またはAUGAUUAGGACC(配列番号22)で示される塩基配列であってもよい。また、RNAアプタマー130が有する共通配列は、AGACGAGGACC(配列番号11)、AGAUUAGGACC(配列番号12)、AGACAAGGACC(配列番号13)、AGAUGAGGACC(配列番号14)、AGUCGAGGACC(配列番号15)、またはAGACUAGGACC(配列番号16)で示される塩基配列であってもよい。 In one embodiment of the present invention, the common sequence of the RNA aptamer 130 is AGACGAGGACC (SEQ ID NO: 11), AGAUUAGGACC (SEQ ID NO: 12), AGACAAGGACC (SEQ ID NO: 13), AGAUGAGGAACC (SEQ ID NO: 14), AGUCGAGGACC (SEQ ID NO: 15). ), AGACUAGGACC (SEQ ID NO: 16), AGAUUGGAGGAGC (SEQ ID NO: 17), AGAGAGGGUGC (SEQ ID NO: 18), AGGAAUGGACC (SEQ ID NO: 19), AGAAUUGAGGACC (SEQ ID NO: 20), AGAACGAGGACC (SEQ ID NO: 21), or AUGAUUAGGACC (SEQ ID NO: 21) ). The common sequence of the RNA aptamer 130 is AGACGAGGACC (SEQ ID NO: 11), AGAUUAGGACC (SEQ ID NO: 12), AGACAAGGACC (SEQ ID NO: 13), AGAUGAGGACC (SEQ ID NO: 14), AGUCGAGGACC (SEQ ID NO: 15), or AGACUAGGACC (SEQ ID NO: 15). The base sequence shown by number 16) may be sufficient.
 本発明の一実施形態において、RNAアプタマー130は、共通配列における少なくとも1つのヌクレオチドにおけるリボースの2’位にフッ素基を有してもよく、共通配列におけるアデニンおよびウラシルのリボースの2’位にフッ素基を有してもよい。これによれば、RNAアプタマー130の構造の安定性を向上させることができる。なお、RNAアプタマー130において、共通配列に含まれるヌクレオチド以外のヌクレオチドのリボースの2’位にフッ素基を有していてもよい。 In one embodiment of the invention, the RNA aptamer 130 may have a fluorine group at the 2 ′ position of ribose in at least one nucleotide in the consensus sequence, and a fluorine at the 2 ′ position of adenine and uracil ribose in the consensus sequence. It may have a group. According to this, the stability of the structure of the RNA aptamer 130 can be improved. The RNA aptamer 130 may have a fluorine group at the 2'-position of the ribose of nucleotides other than the nucleotides contained in the common sequence.
 本発明の一実施形態において、RNAアプタマー130の総ヌクレオチド数は、RNAアプタマー130がHbA1cに対する結合能を有していれば、特に制限されるものではないが、23~96であってもよい。 In one embodiment of the present invention, the total number of nucleotides of the RNA aptamer 130 is not particularly limited as long as the RNA aptamer 130 has a binding ability to HbA1c, but may be 23 to 96.
 本発明の一実施形態に係るRNAアプタマー130は、上記のような配列を有しているものであれば、公知の方法で作製することができ、たとえば、既知の化学合成法によって作製することができる。 The RNA aptamer 130 according to one embodiment of the present invention can be prepared by a known method as long as it has the sequence as described above. For example, it can be prepared by a known chemical synthesis method. it can.
 本実施形態に係るRNAアプタマー130の一次構造の一例として、配列番号88で示される塩基配列を有するRNAアプタマーの一次構造を図1(a)に示す。RNAアプタマー130は、共通配列を含む共通配列領域130aと、共通配列の5’末端に結合する第1ヌクレオチド配列を含む第1ヌクレオチド配列領域130b1と、共通配列の3’末端に結合する第2ヌクレオチド配列を含む第2ヌクレオチド配列領域130b2と、末端領域130c(5’末端130c1および3’末端130c2)とを備える。 As an example of the primary structure of the RNA aptamer 130 according to this embodiment, the primary structure of an RNA aptamer having the base sequence represented by SEQ ID NO: 88 is shown in FIG. The RNA aptamer 130 includes a common sequence region 130a including a common sequence, a first nucleotide sequence region 130b1 including a first nucleotide sequence that binds to the 5 ′ end of the common sequence, and a second nucleotide that binds to the 3 ′ end of the common sequence. A second nucleotide sequence region 130b2 containing the sequence and a terminal region 130c (5 ′ end 130c1 and 3 ′ end 130c2) are provided.
 配列番号88で示される塩基配列を有するRNAアプタマー130の二次構造を、二次構造を予測するソフトウェア(Centroid Fold,M.Hamada et al.: Bioinformatics, 2008 Dec. 18)を用いて表示させると、図1(b)に示すような形状となる。RNAアプタマーは、共通配列領域130a内におけるシトシンとグアニンとが塩基対を形成し、共通配列領域がループ構造を形成する。また、第1ヌクレオチド配列領域130b1に含まれるヌクレオチドと、第2ヌクレオチド配列領域130b2に含まれるヌクレオチドとは、塩基対を形成してステム領域130bを形成する。すなわち、本実施形態に係るRNAアプタマー130は、いわゆるステムループ形状を有し、共通配列領域130aはループ構造に含まれる。 When the secondary structure of the RNA aptamer 130 having the base sequence represented by SEQ ID NO: 88 is displayed using the software for predicting the secondary structure (Centroid Fold, M. Hamada et al .: Bioinformatics, 2008 Dec. 18) The shape is as shown in FIG. In the RNA aptamer, cytosine and guanine in the common sequence region 130a form a base pair, and the common sequence region forms a loop structure. The nucleotides contained in the first nucleotide sequence region 130b1 and the nucleotides contained in the second nucleotide sequence region 130b2 form a base pair to form a stem region 130b. That is, the RNA aptamer 130 according to the present embodiment has a so-called stem loop shape, and the common sequence region 130a is included in the loop structure.
 本願明細書において、「ステムループ形状」または「ステムループ構造」とは、塩基配列の二次構造を示す際に生じる概念であり、一本鎖のRNAが部分的に相補的な塩基対を形成するステム構造を有するが、他の部分では1以上の塩基対と一本鎖の塩基配列とを含むループ構造となっており、ループ構造の5’末端および3’末端がステム構造に直接連結している構造を表す。また、「ステム構造」には、塩基対のミスマッチ部位、およびバルジ構造などが含まれてもよい。 In the present specification, “stem loop shape” or “stem loop structure” is a concept that occurs when a secondary structure of a base sequence is shown, and single-stranded RNA forms a partially complementary base pair. The other part has a loop structure including one or more base pairs and a single-stranded base sequence, and the 5 ′ end and 3 ′ end of the loop structure are directly linked to the stem structure. Represents the structure. The “stem structure” may include a base pair mismatch site, a bulge structure, and the like.
 配列番号95~97で示される塩基配列を有するRNAアプタマー130の二次構造を、二次構造を予測するソフトウェア(Centroid Fold)を用いて表示させると、それぞれ図1B(c)~(e)に示すような形状となる。配列番号95で示される塩基配列を有するRNAアプタマー130において、共通配列領域130aは塩基対を形成することなく15ヌクレオチドからなるループ構造内に位置し、第1ヌクレオチド配列領域130b1に含まれる6つのヌクレオチドと、第2ヌクレオチド配列領域130b2に含まれる6つのヌクレオチドとがそれぞれ塩基対を形成してステム領域130bを形成する。配列番号96で示される塩基配列を有するRNAアプタマーにおいて、共通配列領域130aは、当該領域内に含まれる6つのヌクレオチドによる3つの塩基対と一本鎖構造を含む5つのヌクレオチドとからなるループ構造を形成し、第1ヌクレオチド配列領域130b1に含まれる9つのヌクレオチドと、第2ヌクレオチド配列領域130b2に含まれる9つのヌクレオチドとがそれぞれ塩基対を形成してステム領域130bを形成する。配列番号97で示される塩基配列を有するRNAアプタマーにおいて、共通配列領域130aは塩基対を形成することなく19ヌクレオチドからなるループ構造内に位置し、第1ヌクレオチド配列領域130b1に含まれる6つのヌクレオチドと、第2ヌクレオチド配列領域130b2に含まれる6つのヌクレオチドとがそれぞれ塩基対を形成してステム領域130bを形成する。 When the secondary structure of the RNA aptamer 130 having the base sequences shown by SEQ ID NOs: 95 to 97 is displayed using the software (Centroid Fold) for predicting the secondary structure, it is shown in FIGS. 1B (c) to (e), respectively. The shape is as shown. In the RNA aptamer 130 having the base sequence represented by SEQ ID NO: 95, the common sequence region 130a is located in a loop structure consisting of 15 nucleotides without forming a base pair, and the six nucleotides contained in the first nucleotide sequence region 130b1 And the six nucleotides included in the second nucleotide sequence region 130b2 form base pairs to form the stem region 130b. In the RNA aptamer having the base sequence represented by SEQ ID NO: 96, the common sequence region 130a has a loop structure consisting of three base pairs of six nucleotides contained in the region and five nucleotides including a single-stranded structure. The nine nucleotides included in the first nucleotide sequence region 130b1 and the nine nucleotides included in the second nucleotide sequence region 130b2 form base pairs to form the stem region 130b. In the RNA aptamer having the base sequence represented by SEQ ID NO: 97, the common sequence region 130a is located in a loop structure consisting of 19 nucleotides without forming a base pair, and the six nucleotides contained in the first nucleotide sequence region 130b1 The six nucleotides contained in the second nucleotide sequence region 130b2 form base pairs to form the stem region 130b.
 (共通配列領域)
 共通配列領域130aは、配列番号1~22で示される塩基配列から選択される1つの塩基配列を有する。本発明の一実施形態において、共通配列領域130aは、ループ構造を形成してもよい。ループ構造は、共通配列の5’末端から数えて1~3番目までに存在するグアニンのうちの1つと、共通配列の3’末端から数えて1~3番目までに存在するシトシンのうちの1つとが塩基対を形成することによって形成されてもよい。
(Common array area)
The common sequence region 130a has one base sequence selected from the base sequences shown in SEQ ID NOs: 1 to 22. In an embodiment of the present invention, the common array region 130a may form a loop structure. The loop structure consists of one of guanine present from the first to the third position from the 5 ′ end of the common sequence and one of cytosine present from the first position to the third position from the 3 ′ end of the common sequence. One may be formed by forming a base pair.
 (ステム領域)
 本発明の一実施形態において、RNAアプタマー130は、共通配列の5’末端に結合する第1ヌクレオチド配列領域130b1と、共通配列の3’末端に結合する第2ヌクレオチド配列領域130b2とを含み、第1ヌクレオチド配列領域130b1に含まれるヌクレオチドと、第2ヌクレオチド配列領域130b2に含まれるヌクレオチドとが塩基対を形成することによって、ステム領域130bを形成してもよい。ステム領域130bにおいて、第1ヌクレオチド配列領域130b1は、第2ヌクレオチド配列領域130b2中のヌクレオチドと塩基対を形成しているヌクレオチドを少なくとも1つ含む。このような塩基対を形成するヌクレオチドの数は、特に制限されるものではないが、1~13であってもよく、6~13であってもよい。塩基対を形成するヌクレオチドの数が6以上であれば、RNAアプタマーとHbA1cとの結合能を向上させることができる。
(Stem area)
In one embodiment of the present invention, the RNA aptamer 130 includes a first nucleotide sequence region 130b1 that binds to the 5 ′ end of the common sequence, and a second nucleotide sequence region 130b2 that binds to the 3 ′ end of the common sequence. The stem region 130b may be formed by forming a base pair between the nucleotide contained in the one nucleotide sequence region 130b1 and the nucleotide contained in the second nucleotide sequence region 130b2. In the stem region 130b, the first nucleotide sequence region 130b1 includes at least one nucleotide that forms a base pair with the nucleotide in the second nucleotide sequence region 130b2. The number of nucleotides forming such a base pair is not particularly limited, but may be 1 to 13, or 6 to 13. If the number of nucleotides forming the base pair is 6 or more, the binding ability between the RNA aptamer and HbA1c can be improved.
 形成される塩基対は、シトシンとグアニンとの塩基対であってもよく、アデニンとウラシルとの塩基対であってもよい。塩基対の少なくとも1つが、シトシンとグアニンとの塩基対であってもよい。また、形成される塩基対において、シトシンとグアニンとの塩基対の数を増やすことによって、ステム領域130bの安定性を向上させることができ、RNAアプタマーのHbA1cに対する結合能を向上させることができる。 The base pair formed may be a base pair of cytosine and guanine, or a base pair of adenine and uracil. At least one of the base pairs may be a base pair of cytosine and guanine. In addition, by increasing the number of base pairs of cytosine and guanine in the formed base pair, the stability of the stem region 130b can be improved, and the binding ability of the RNA aptamer to HbA1c can be improved.
 本発明の一実施形態において、第1ヌクレオチド配列領域130b1、または第2ヌクレオチド配列領域130b2は、共通配列中のヌクレオチドと塩基対を形成しているヌクレオチドを少なくとも1つ含むことが可能である。このような塩基対を形成するヌクレオチドの数は、特に制限されるものではないが、1~9であってもよく、6~9であってもよい。塩基対を形成するヌクレオチドの数が6以上であれば、RNAアプタマーとHbA1cとの結合能を向上させることができる。塩基対は、シトシンとグアニンとの塩基対であってもよく、アデニンとウラシルとの塩基対であってもよい。塩基対の少なくとも1つが、シトシンとグアニンとの塩基対であってもよい。また、形成される塩基対において、シトシンとグアニンとの塩基対の数を増やすことによって、ステム領域130bの安定性を向上させることができ、RNAアプタマーのHbA1cに対する結合能を向上させることができる。 In one embodiment of the present invention, the first nucleotide sequence region 130b1 or the second nucleotide sequence region 130b2 can include at least one nucleotide that forms a base pair with a nucleotide in the common sequence. The number of nucleotides forming such a base pair is not particularly limited, but may be 1 to 9, or 6 to 9. If the number of nucleotides forming the base pair is 6 or more, the binding ability between the RNA aptamer and HbA1c can be improved. The base pair may be a base pair of cytosine and guanine, or a base pair of adenine and uracil. At least one of the base pairs may be a base pair of cytosine and guanine. In addition, by increasing the number of base pairs of cytosine and guanine in the formed base pair, the stability of the stem region 130b can be improved, and the binding ability of the RNA aptamer to HbA1c can be improved.
 (末端領域)
 本発明の一実施形態において、末端領域130cが、ビオチン、チオール基、あるいはアミノ基などの修飾基を有するようにすることができる。末端領域130cとは、RNAアプタマー130の塩基配列の両端部を意味するものであって、3’末端130c1および5’末端130c2を有する。末端領域130cが修飾基を有することによって、RNAアプタマー130を他の部材に対して固定化することが容易になる。ここで、上述の修飾基はそれぞれ、末端領域130cのうち3’末端130c1または5’末端130c2のうち少なくとも一方に結合させることができる。例えば、上述の修飾基の少なくともいずれか1つを両末端と結合させることで、固定化のバリエーションを増やすことが可能となる、あるいは固定化の結合性を向上させることが可能となる。
(Terminal region)
In one embodiment of the present invention, the terminal region 130c may have a modifying group such as biotin, a thiol group, or an amino group. The terminal region 130c means both ends of the base sequence of the RNA aptamer 130 and has a 3 ′ end 130c1 and a 5 ′ end 130c2. When the terminal region 130c has a modifying group, it becomes easy to immobilize the RNA aptamer 130 to another member. Here, each of the above-described modifying groups can be bonded to at least one of the 3 ′ end 130c1 and the 5 ′ end 130c2 in the end region 130c. For example, by binding at least one of the above-described modifying groups to both ends, it is possible to increase the variation of immobilization or improve the immobilization property of immobilization.
 ここで、末端領域130cがビオチンを有する場合には、このビオチンにストレプトアビジン(以下、SAと表記する場合がある。)を結合するようにすればよい。これによれば、ストレプトアビジンとのアミド結合によって、RNAアプタマー130の他の部材への固定化が容易となる。 Here, when the terminal region 130c has biotin, streptavidin (hereinafter sometimes referred to as SA) may be bound to the biotin. According to this, the immobilization of RNA aptamer 130 on other members is facilitated by an amide bond with streptavidin.
 また、末端領域130cがチオール基を有する場合には、金-チオール結合によって金と結合させることができる。それ故、チオール基と結合した金を介して、RNAアプタマー130を他の部材に対して比較的容易に固定化させることができる。なお、末端領域130cにチオール基を有する場合において、チオール基とRNAアプタマー130との間に所定長さのスペーサを介在させることができる。これによれば、RNAアプタマー130を固定化しようとする基体からRNAアプタマー130までの高さを適度に調整することによって、RNAアプタマー130による検出対象の検出感度を向上させることができる。 Further, when the terminal region 130c has a thiol group, it can be bonded to gold by a gold-thiol bond. Therefore, the RNA aptamer 130 can be relatively easily immobilized to other members via gold bonded to the thiol group. In the case where the terminal region 130 c has a thiol group, a spacer having a predetermined length can be interposed between the thiol group and the RNA aptamer 130. According to this, the detection sensitivity of the detection target by the RNA aptamer 130 can be improved by appropriately adjusting the height from the base on which the RNA aptamer 130 is immobilized to the RNA aptamer 130.
 また、末端領域130cがアミノ基を有する場合には、このアミノ基とアミド結合を形成している第1物質を有するようにすればよい。ここで、第1物質としては、例えばポリエチレングリコール(PEG)が挙げられる。この際、アミノ基は、ポリエチレングリコールの末端に修飾されたカルボキシル基とアミド結合を形成することとなる。そして、ポリエチレングリコールの他の末端に修飾されたチオール基を介して、RNAアプタマー130を他の部材と固定化することができる。 In addition, when the terminal region 130c has an amino group, the terminal region 130c may have a first substance that forms an amide bond with the amino group. Here, examples of the first substance include polyethylene glycol (PEG). At this time, the amino group forms an amide bond with the carboxyl group modified at the end of polyethylene glycol. Then, the RNA aptamer 130 can be immobilized with another member via a thiol group modified at the other end of polyethylene glycol.
 <センサ>
 本発明の実施形態に係るセンサ100について、図2~図6を用いて説明する。
<Sensor>
A sensor 100 according to an embodiment of the present invention will be described with reference to FIGS.
 本実施形態に係るセンサ100は、図2に示すように、主に第1カバー部材1、中間カバー部材1A、第2カバー部材2および検出素子3を備える。なお、図2(a)において、検出素子3近傍については、構造を理解し易くするために、部分的に第2カバー部材2を透過して表す。 The sensor 100 according to the present embodiment mainly includes a first cover member 1, an intermediate cover member 1A, a second cover member 2, and a detection element 3, as shown in FIG. In FIG. 2A, the vicinity of the detection element 3 is partially shown through the second cover member 2 for easy understanding of the structure.
 具体的には、センサ100は、図2(b)に示すように、検体液が流入する流入部14と、流入部14と連続しており且つ中間カバー部材1Aと第2カバー部材2とで囲まれ少なくとも検出部13まで延びている流路15とを備えている。図2(c)は、図2(a)の断面図を示すものであり、上から順に、a-a断面、b-b断面、c-c断面を示す。流入部14は、図2(b)に示すように、第2カバー部材2を厚み方向に貫通するように設けられている。なお、流入部14は、中間カバー部材1Aおよび第2カバー部材2の側面に位置するように設けてもよい。 Specifically, as shown in FIG. 2B, the sensor 100 includes an inflow portion 14 into which the sample liquid flows, an inflow portion 14, and an intermediate cover member 1 </ b> A and a second cover member 2. And a flow path 15 that is surrounded and extends to at least the detection unit 13. FIG. 2C shows a cross-sectional view of FIG. 2A, showing an aa cross section, a bb cross section, and a cc cross section in order from the top. As shown in FIG. 2B, the inflow portion 14 is provided so as to penetrate the second cover member 2 in the thickness direction. The inflow portion 14 may be provided so as to be located on the side surfaces of the intermediate cover member 1 </ b> A and the second cover member 2.
 本実施形態に係るセンサ100では、第1カバー部材の上面に検出素子と流路の少なくとも一部を構成する中間カバー部材とを併設したことから、厚みのある検出素子を用いた場合でも流入部から検出部に至る検体液の流路を確保することができ、毛細管現象などによって流入部から吸引された検体液を検出部まで流すことができる。すなわち、厚みを有する検出素子を用いつつ、それ自体に検体液の吸引機構を備えた測定作業が簡便なセンサを提供することができる。また、検体液の流路において、検出素子よりも上流側に位置している部材表面の検体液に対する接触角θ1a、θ2aを、検出素子の表面の検体液に対する接触角θ3よりも小さくすることにより、流入部から流入した検体液が上流側に位置する部材表面を通じて検出素子(検出部)に向かってスムーズに流すことが可能となる。 In the sensor 100 according to the present embodiment, since the detection element and the intermediate cover member that constitutes at least a part of the flow path are provided on the upper surface of the first cover member, the inflow portion even when a thick detection element is used. It is possible to secure a flow path for the sample liquid from the detection part to the detection part, and to allow the sample liquid sucked from the inflow part to flow to the detection part by capillary action or the like. That is, it is possible to provide a sensor with a simple measuring operation that includes a specimen liquid suction mechanism while using a detecting element having a thickness. Further, in the flow path of the sample liquid, the contact angles θ1a and θ2a with respect to the sample liquid on the surface of the member positioned upstream of the detection element are made smaller than the contact angle θ3 with respect to the sample liquid on the surface of the detection element. Thus, the sample liquid flowing in from the inflow portion can flow smoothly toward the detection element (detection portion) through the surface of the member located on the upstream side.
 (第1カバー部材1)
 第1カバー部材1は、図2(b)に示すように平板状である。厚みは、例えば0.1mm~0.5mmである。第1カバー部材1の平面形状は概ね長方形状である。第1カバー部材1の長さ方向の長さは、例えば、1cm~5cmであり、幅方向の長さは、例えば1cm~3cmである。第1カバー部材1の材料としては、例えば、紙、プラスチック、セルロイド、セラミックス、不織布、ガラスなどを用いることができる。必要な強度とコストとを兼ね備える観点からプラスチックを用いてもよい。
(First cover member 1)
The first cover member 1 has a flat plate shape as shown in FIG. The thickness is, for example, 0.1 mm to 0.5 mm. The planar shape of the first cover member 1 is generally rectangular. The length of the first cover member 1 in the length direction is, for example, 1 cm to 5 cm, and the length in the width direction is, for example, 1 cm to 3 cm. As a material of the first cover member 1, for example, paper, plastic, celluloid, ceramics, nonwoven fabric, glass, or the like can be used. Plastics may be used from the viewpoint of combining required strength and cost.
 また、第1カバー部材1の上面には、図2(a)に示すように、端子6および端子6から検出素子3の近傍まで引き回された配線7が形成されている。端子6は、中間カバー部材1Aの上面において、検出素子3に対して幅方向に両側に形成されている。センサ100を外部の測定器(図示せず)で測定する際に、端子6と外部の測定器とが電気的に接続される。また、端子6と検出素子3とは、配線7などを介して電気的に接続されている。そして、外部の測定器からの信号が端子6を介してセンサ100に入力されるとともに、センサ100からの信号が端子6を介して外部の測定器に出力されることとなる。 Further, as shown in FIG. 2A, the upper surface of the first cover member 1 is formed with a terminal 6 and a wiring 7 routed from the terminal 6 to the vicinity of the detection element 3. The terminals 6 are formed on both sides of the detection element 3 in the width direction on the upper surface of the intermediate cover member 1A. When measuring the sensor 100 with an external measuring instrument (not shown), the terminal 6 and the external measuring instrument are electrically connected. Further, the terminal 6 and the detection element 3 are electrically connected through a wiring 7 or the like. Then, a signal from an external measuring instrument is input to the sensor 100 via the terminal 6, and a signal from the sensor 100 is output to the external measuring instrument via the terminal 6.
 (中間カバー部材1A)
 本実施形態において、図2(a)に示すように、中間カバー部材1Aが、第1カバー部材1の上面に、検出素子3と並んで位置している。また、中間カバー部材1Aと検出素子3とは間隙を介して位置している。
(Intermediate cover member 1A)
In the present embodiment, as shown in FIG. 2A, the intermediate cover member 1 </ b> A is positioned alongside the detection element 3 on the upper surface of the first cover member 1. Further, the intermediate cover member 1A and the detection element 3 are located via a gap.
 中間カバー部材1Aは、平板状の板に凹部形成部位4を有する平板枠状であり、その厚みは、例えば、0.1mm~0.5mmである。 The intermediate cover member 1A has a flat frame shape having a concave portion 4 on a flat plate, and has a thickness of, for example, 0.1 mm to 0.5 mm.
 本実施形態において、凹部形成部位4は、図2(a)に示すように、第1上流部1Aaおよび第1下流部1Abを分断する部位である。凹部形成部位4が設けられた中間カバー部材1Aを、平板状の第1カバー部材1と接合することによって、第1カバー部材1および中間カバー部材1Aによって素子収容凹部5が形成されることとなる。すなわち、凹部形成部位4の内側に位置する第1カバー部材1の上面が素子収容凹部5の底面となり、凹部形成部位4の内壁が素子収容凹部5の内壁となる。 In the present embodiment, the recess forming portion 4 is a portion that divides the first upstream portion 1Aa and the first downstream portion 1Ab as shown in FIG. By joining the intermediate cover member 1A provided with the recessed portion forming portion 4 to the flat first cover member 1, the element housing recessed portion 5 is formed by the first cover member 1 and the intermediate cover member 1A. . That is, the upper surface of the first cover member 1 positioned inside the recess forming portion 4 is the bottom surface of the element housing recess 5, and the inner wall of the recess forming portion 4 is the inner wall of the element housing recess 5.
 中間カバー部材1Aの材料としては、例えば、樹脂(プラスチックを含む)、紙、不織布、ガラスを用いることができ、より具体的には、ポリエステル樹脂、ポリエチレン樹脂、アクリル樹脂、シリコーン樹脂などの樹脂材料を用いてもよい。なお、第1カバー部材1の材料と中間カバー部材1Aの材料とは同じであってもよく、異なっていてもよい。 As the material of the intermediate cover member 1A, for example, resin (including plastic), paper, non-woven fabric, and glass can be used, and more specifically, resin materials such as polyester resin, polyethylene resin, acrylic resin, and silicone resin. May be used. The material of the first cover member 1 and the material of the intermediate cover member 1A may be the same or different.
 また、本実施形態において、中間カバー部材1Aは、第1上流部1Aaと第1下流部1Abとを有しており、図2(a)に示すように、上面視において、検出素子3は、第1上流部1Aaと第1下流部1Abとの間に位置している。これによれば、流路15のうち第1上流部1Aaを通って検出素子3上を流れる検体液は、測定に必要な量を超える量が第1下流部1Ab側に流れていくことから、検出素子3に適切な量の検体液を供給することが可能となる。 Further, in the present embodiment, the intermediate cover member 1A has a first upstream portion 1Aa and a first downstream portion 1Ab. As shown in FIG. It is located between the first upstream portion 1Aa and the first downstream portion 1Ab. According to this, the amount of the sample liquid flowing on the detection element 3 through the first upstream portion 1Aa in the flow path 15 exceeds the amount necessary for measurement flows to the first downstream portion 1Ab side. An appropriate amount of sample liquid can be supplied to the detection element 3.
 なお、中間カバー部材1Aの厚みは、検出素子3の厚みよりも大きくてもよい。 Note that the thickness of the intermediate cover member 1 </ b> A may be larger than the thickness of the detection element 3.
 (第2カバー部材2)
 第2カバー部材2は、図2(b)に示すように、検出素子3の少なくとも一部を覆うとともに中間カバー部材1Aに接合されている。第2カバー部材2の材料としては、例えば、樹脂(プラスチックを含む)、紙、不織布、ガラスを用いることができ、より具体的には、ポリエステル樹脂、ポリエチレン樹脂、アクリル樹脂、シリコーン樹脂などの樹脂材料を用いてもよい。なお、第1カバー部材1の材料と第2カバー部材2の材料とを同一としてもよい。これによって、互いの熱膨張係数の差に起因する変形を抑制することが可能となる。なお、第2カバー部材2は、中間カバー部材1Aにのみ接合される構成、あるいは第1カバー部材1および中間カバー部材1Aの双方に接合される構成にしてもよい。
(Second cover member 2)
As shown in FIG. 2B, the second cover member 2 covers at least a part of the detection element 3 and is joined to the intermediate cover member 1A. As a material of the second cover member 2, for example, resin (including plastic), paper, non-woven fabric, and glass can be used, and more specifically, a resin such as a polyester resin, a polyethylene resin, an acrylic resin, and a silicone resin. Materials may be used. The material of the first cover member 1 and the material of the second cover member 2 may be the same. As a result, it is possible to suppress the deformation caused by the difference between the thermal expansion coefficients of each other. The second cover member 2 may be configured to be joined only to the intermediate cover member 1A, or may be joined to both the first cover member 1 and the intermediate cover member 1A.
 ここで、第2カバー部材2は、第3基板2aと第4基板2bとを有する。 Here, the second cover member 2 has a third substrate 2a and a fourth substrate 2b.
 第3基板2aは、中間カバー部材1Aの上面に貼り合わされている。第3基板2aは平板状であり、その厚みは、例えば、0.1mm~0.5mmである。第4基板2bは、第3基板2aの上面に貼り合わされている。第4基板2bは、平板状であり、その厚みは、例えば、0.1mm~0.5mmである。そして、第4基板2bが第3基板2aと接合されることによって、図2(b)に示すように、第2カバー部材2の下部に流路15が形成されることとなる。流路15は、流入部14から少なくとも検出部13の直上領域まで延びており、断面形状は、例えば矩形状である。 The third substrate 2a is bonded to the upper surface of the intermediate cover member 1A. The third substrate 2a is flat and has a thickness of, for example, 0.1 mm to 0.5 mm. The fourth substrate 2b is bonded to the upper surface of the third substrate 2a. The fourth substrate 2b is flat and has a thickness of 0.1 mm to 0.5 mm, for example. Then, by joining the fourth substrate 2b to the third substrate 2a, the flow path 15 is formed in the lower portion of the second cover member 2 as shown in FIG. The flow path 15 extends from the inflow part 14 to at least a region immediately above the detection part 13, and the cross-sectional shape is, for example, a rectangular shape.
 本実施形態において、流路15の端部は、図2(b)に示すように、第3基板2aが存在せずに第4基板2bと中間カバー部材1Aとの隙間が排気孔18として機能する。排気孔18は、流路15内の空気などを外部に放出するためのものである。排気孔18は、円柱状または四角柱状など、流路15内の空気を抜くことが出来ればどのような形状であってもよい。ただし、排気孔18の開口が大きすぎると、流路15内に存在する検体液が外気に触れる面積が大きくなり、検体液の水分が蒸発しやすくなる。そうすると、検体液の濃度変化が起こりやすくなり、測定精度の低下を招くこととなる。そのため、排気孔18の開口は、必要以上に大きくならないように設定してもよい。具体的には、円柱状からなる排気孔18の場合にはその直径を1mm以下となるようにし、四角柱からなる排気孔18の場合にはその1辺が1mm以下となるようにしている。また、排気孔18の内壁は疎水性となっている。これにより、流路15内に満たされた検体液が排気孔18から外部に漏れ出ることが抑制される。 In the present embodiment, as shown in FIG. 2B, the end portion of the flow path 15 is configured such that the gap between the fourth substrate 2b and the intermediate cover member 1A functions as the exhaust hole 18 without the third substrate 2a. To do. The exhaust hole 18 is for releasing air in the flow path 15 to the outside. The exhaust hole 18 may have any shape such as a columnar shape or a quadrangular prism shape as long as the air in the flow path 15 can be extracted. However, if the opening of the exhaust hole 18 is too large, the area where the sample liquid existing in the flow channel 15 comes into contact with the outside air becomes large, and the moisture of the sample liquid is likely to evaporate. If it does so, the density | concentration change of a sample liquid will occur easily and it will cause the fall of a measurement precision. Therefore, the opening of the exhaust hole 18 may be set so as not to be larger than necessary. Specifically, in the case of the exhaust hole 18 made of a columnar shape, the diameter thereof is set to 1 mm or less, and in the case of the exhaust hole 18 made of a square column, one side thereof is set to be 1 mm or less. Further, the inner wall of the exhaust hole 18 is hydrophobic. As a result, the sample liquid filled in the flow path 15 is prevented from leaking out from the exhaust hole 18.
 第1カバー部材1、中間カバー部材1Aおよび第2カバー部材2は、すべて同じ材料によって形成することもできる。それによれば、各部材の熱膨張係数をほぼ揃えることができるため、部材ごとの熱膨張係数の差に起因する変形が抑制される。また、検出部13には生体材料が塗布されることがあるが、その中には紫外線などの外部の光によって変質しやすいものもある。その場合は、第1カバー部材1、中間カバー部材1Aおよび第2カバー部材2の材料として、遮光性を有する不透明なものを用いるとよい。一方、検出部13の外部の光による変質がほとんど起こらない場合は、流路15を構成する第2カバー部材2を透明に近い材料によって形成してもよい。この場合は、流路15内を流れる検体液の様子を視認することができる。 The first cover member 1, the intermediate cover member 1A, and the second cover member 2 can all be formed of the same material. According to this, since the thermal expansion coefficients of the respective members can be substantially uniformed, deformation due to the difference in the thermal expansion coefficients of the respective members is suppressed. In addition, a biomaterial may be applied to the detection unit 13, but some of them may be easily altered by external light such as ultraviolet rays. In that case, as the material for the first cover member 1, the intermediate cover member 1 </ b> A, and the second cover member 2, an opaque material having a light shielding property may be used. On the other hand, when almost no alteration due to light outside the detection unit 13 occurs, the second cover member 2 constituting the flow path 15 may be formed of a material close to transparency. In this case, the state of the sample liquid flowing in the flow channel 15 can be visually confirmed.
 (検出素子3)
 検出素子3は、図2(b)に示すように、第1カバー部材1の上面に位置している基体10、および基体10の上面に位置しており且つ検体液に含まれる検出対象の検出を行なう少なくとも1つの検出部13を有する。検出素子3の詳細については、図3(b)および図4に示している。
(Detecting element 3)
As shown in FIG. 2B, the detection element 3 is a base 10 positioned on the top surface of the first cover member 1, and a detection target that is positioned on the top surface of the base 10 and contained in the sample liquid. It has at least one detection part 13 which performs. Details of the detection element 3 are shown in FIG. 3B and FIG.
 なお、本実施形態においては、図4に示すように、基体10の上面に電極パターンを設けられており、必要に応じて、電極パターンを覆うように図8に示す絶縁性部材28が設けられてもよい。なお、電極パターンとしては、検出素子3としてSAW素子を用いる場合にはIDT(Inter Digital Transducer)電極が相当する。本実施形態において、基体10の上面には、後述する、第1IDT電極11、第2IDT電極12、第1引出し電極19および第2引出し電極20などが設けられている。本実施形態では、図3(b)に示すように、基体10の上面に、第2カバー部材2が、例えばIDT電極11、12上に固定されている。 In the present embodiment, as shown in FIG. 4, an electrode pattern is provided on the upper surface of the substrate 10, and an insulating member 28 shown in FIG. 8 is provided so as to cover the electrode pattern as necessary. May be. The electrode pattern corresponds to an IDT (Inter Digital Transducer) electrode when a SAW element is used as the detection element 3. In the present embodiment, a first IDT electrode 11, a second IDT electrode 12, a first extraction electrode 19, a second extraction electrode 20, and the like, which will be described later, are provided on the upper surface of the substrate 10. In the present embodiment, as shown in FIG. 3B, the second cover member 2 is fixed on the IDT electrodes 11 and 12, for example, on the upper surface of the base 10.
 (基体10)
 基体10は、例えば、タンタル酸リチウム(LiTaO)単結晶,ニオブ酸リチウム(LiNbO)単結晶または水晶などの圧電性を有する単結晶の基板からなる。基体10の平面形状および各種寸法は適宜に設定されてよい。一例として、基体10の厚みは、0.3mm~1mmである。
(Substrate 10)
The substrate 10 is made of, for example, a single crystal substrate having piezoelectricity such as a lithium tantalate (LiTaO 3 ) single crystal, a lithium niobate (LiNbO 3 ) single crystal, or quartz. The planar shape and various dimensions of the substrate 10 may be set as appropriate. As an example, the thickness of the substrate 10 is 0.3 mm to 1 mm.
 (IDT電極11、12)
 図4に示すように、第1IDT電極11は、1対の櫛歯電極を有する。各櫛歯電極は、互いに対向する2本のバスバーおよび各バスバーから他のバスバー側へ延びる複数の電極指を有している。そして、1対の櫛歯電極は、複数の電極指が互いに噛み合うように配置されている。第2IDT電極12も、第1IDT電極11と同様に構成されている。第1IDT電極11および第2IDT電極12は、トランスバーサル型のIDT電極を構成している。
(IDT electrodes 11, 12)
As shown in FIG. 4, the first IDT electrode 11 has a pair of comb electrodes. Each comb electrode has two bus bars facing each other and a plurality of electrode fingers extending from each bus bar to the other bus bar side. The pair of comb electrodes are arranged so that a plurality of electrode fingers mesh with each other. The second IDT electrode 12 is configured similarly to the first IDT electrode 11. The first IDT electrode 11 and the second IDT electrode 12 constitute a transversal IDT electrode.
 第1IDT電極11は、所定の弾性表面波(SAW:Surface Acoustic Wave)を発生させるためのものであり、第2IDT電極12は、第1IDT電極11で発生したSAWを受信するためのものである。第1IDT電極11で発生したSAWを第2IDT電極12が受信できるように、第1IDT電極11と第2IDT電極とは同一直線状に配置されている。第1IDT電極11および第2IDT電極12の電極指の本数、隣接する電極指同士の距離、ならびに電極指の交差幅などをパラメータとして周波数特性を設計することができる。IDT電極によって励振されるSAWとしては、種々の振動モードのものが存在するが、本実施形態に係る検出素子3においては、例えば、SH波とよばれる横波の振動モードを利用している。 The first IDT electrode 11 is for generating a predetermined surface acoustic wave (SAW: Surface Acoustic Wave), and the second IDT electrode 12 is for receiving the SAW generated by the first IDT electrode 11. The first IDT electrode 11 and the second IDT electrode are arranged in the same straight line so that the second IDT electrode 12 can receive the SAW generated in the first IDT electrode 11. The frequency characteristics can be designed using parameters such as the number of electrode fingers of the first IDT electrode 11 and the second IDT electrode 12, the distance between adjacent electrode fingers, and the cross width of the electrode fingers. As the SAW excited by the IDT electrode, there are various vibration modes. In the detection element 3 according to the present embodiment, for example, a transverse wave vibration mode called an SH wave is used.
 なお、第1IDT電極11および第2IDT電極12のSAWの伝搬方向(幅方向)における外側に、SAWの反射抑制のための弾性部材を設けてもよい。SAWの周波数は、例えば、数メガヘルツ(MHz)から数ギガヘルツ(GHz)の範囲内において設定可能である。中でも、数百MHzから2GHzとすれば、実用的であり、かつ検出素子3の小型化ひいてはセンサ100の小型化を実現することができる。 An elastic member for suppressing SAW reflection may be provided outside the first IDT electrode 11 and the second IDT electrode 12 in the SAW propagation direction (width direction). The SAW frequency can be set, for example, within a range of several megahertz (MHz) to several gigahertz (GHz). In particular, if it is several hundred MHz to 2 GHz, it is practical, and downsizing of the detection element 3 and thus downsizing of the sensor 100 can be realized.
 (引出し電極19、20)
 図4に示すように、第1引出し電極19は、第1IDT電極11と接続されており、第2引出し電極20は、第2IDT電極12と接続されている。第1引出し電極19は、第1IDT電極11から検出部13とは反対側に引き出され、第1引出し電極19の端部19eは第1カバー部材1に設けた配線7と電気的に接続されている。第2引出し電極20は、第2IDT電極12から検出部13とは反対側に引き出され、第2引出し電極20の端部20eは配線7と電気的に接続されている。
(Extraction electrodes 19, 20)
As shown in FIG. 4, the first extraction electrode 19 is connected to the first IDT electrode 11, and the second extraction electrode 20 is connected to the second IDT electrode 12. The first extraction electrode 19 is extracted from the first IDT electrode 11 to the opposite side of the detection unit 13, and the end 19 e of the first extraction electrode 19 is electrically connected to the wiring 7 provided on the first cover member 1. Yes. The second extraction electrode 20 is extracted from the second IDT electrode 12 to the side opposite to the detection unit 13, and the end 20 e of the second extraction electrode 20 is electrically connected to the wiring 7.
 ここで、第1IDT電極11、第2IDT電極12、第1引出し電極19および第2引出し電極20は、例えば、アルミニウムあるいはアルミニウムと銅との合金などからなる。また、これらの電極は、多層構造としてもよい。多層構造とする場合は、例えば、1層目にチタンまたはクロムを含め、2層目にアルミニウムまたはアルミニウム合金を含めることができる。 Here, the first IDT electrode 11, the second IDT electrode 12, the first extraction electrode 19 and the second extraction electrode 20 are made of, for example, aluminum or an alloy of aluminum and copper. These electrodes may have a multilayer structure. In the case of a multilayer structure, for example, titanium or chromium can be included in the first layer, and aluminum or aluminum alloy can be included in the second layer.
 (検出部13)
 検出部13は、図4に示すように、基体10の表面であって、第1IDT電極11から第2IDT電極12へと伝搬する弾性波の伝搬路に位置している。以下、上述した本実施形態に係るRNAアプタマー130を用いた例について説明する。
(Detector 13)
As shown in FIG. 4, the detection unit 13 is located on the surface of the substrate 10 and on the propagation path of the elastic wave propagating from the first IDT electrode 11 to the second IDT electrode 12. Hereinafter, an example using the RNA aptamer 130 according to this embodiment described above will be described.
 例えば、検出部13は、図12(a)に示すように、基体10に固定化された複数のSA134と、複数のSA134にそれぞれ結合している複数のビオチン131aと、複数のビオチン131aに二本鎖133を介してそれぞれ結合している複数のRNAアプタマー(結合部)130とを有する。すなわち、RNAアプタマー(結合部)130は末端領域130cに二本鎖133を介してビオチン131aを有する。そして、二本鎖133は、RNAアプタマー130の3’末端に付加されたAAAAAAAAAAAAAAAAAA(配列番号23)と、ビオチン131aに結合しているTTTTTTTTTTTTTTTTTT(配列番号24)とが塩基対を形成した構成を有する。 For example, as shown in FIG. 12A, the detection unit 13 includes a plurality of SAs 134 immobilized on the substrate 10, a plurality of biotins 131a respectively bonded to the plurality of SAs 134, and a plurality of biotins 131a. And a plurality of RNA aptamers (binding portions) 130 that are respectively bonded through the main chain 133. That is, the RNA aptamer (binding portion) 130 has biotin 131a via a double strand 133 in the terminal region 130c. The double strand 133 has a configuration in which AAAAAAAAAAAAAAAAAAA (SEQ ID NO: 23) added to the 3 ′ end of the RNA aptamer 130 and TTTTTTTTTTTTTTTTTTT (SEQ ID NO: 24) bound to biotin 131a form a base pair. .
 なお、上記検出部13の変形例として、図12(b)に示すような構成にしてもよい。 In addition, as a modification of the detection unit 13, a configuration as shown in FIG.
 本変形例において、検出部13は、基体10の表面に位置している固定化膜13aと、固定化膜13aに結合している鎖状物質(SAM)13cと、SAMに結合している複数のSA134と、複数のSA134にそれぞれ結合している複数のビオチン131aと、複数のビオチン131aにそれぞれ結合している複数のRNAアプタマー(結合部)130とを有するようにすることができる。ここで、固定化膜13aを形成する物質としては、例えば、Au(金)やTi、Cuなどを用いることができ、Auであってもよい。なお、固定化膜13aは、例えば、金の膜、あるいはクロム上に成膜された金の2層構造としてもよい。また、基体10と固定化膜13aとの間に保護膜を介在させてもよい。また、鎖状物質13cとしては、例えば、アルカン、ポリエチレングリコール、あるいはアルカンとポリエチレングリコールとの複合分子などが挙げられる。 In this modification, the detection unit 13 includes an immobilization film 13a positioned on the surface of the substrate 10, a chain substance (SAM) 13c that is bonded to the immobilization film 13a, and a plurality of bonds that are bonded to the SAM. , A plurality of biotins 131a respectively binding to a plurality of SA134s, and a plurality of RNA aptamers (binding portions) 130 respectively binding to a plurality of biotins 131a. Here, for example, Au (gold), Ti, Cu, or the like can be used as the material forming the fixing film 13a, and Au may be used. The immobilization film 13a may be, for example, a gold film or a gold two-layer structure formed on chromium. Further, a protective film may be interposed between the base 10 and the immobilizing film 13a. Examples of the chain substance 13c include alkane, polyethylene glycol, or a complex molecule of alkane and polyethylene glycol.
 また、上記検出部13の変形例として、図13(a)に示すような構成にしてもよい。 Further, as a modification of the detection unit 13, a configuration as shown in FIG.
 本変形例において、検出部13のRNAアプタマー130は末端領域130cにアミノ基を有している。この場合には、このアミノ基131cとアミド結合を形成している第1物質132(鎖状物質13c)を有するようにすればよい。ここで、第1物質132としては、例えばポリエチレングリコール(PEG)が挙げられる。この際、アミノ基131cは、ポリエチレングリコールの末端に修飾されたカルボキシル基とアミド結合を形成することとなる。そして、ポリエチレングリコールの他の末端に修飾されたチオール基131bを介して、他の部材と固定化することができる。具体的には、検出部13は、図13(a)に示すように、基体10の表面に位置している固定化膜(Au)13aと、固定化膜13aに結合している複数の鎖状物質(ポリエチレングリコール)13cと、複数の鎖状物質13cにアミノ基131cを介してそれぞれ結合している複数のRNAアプタマー(結合部)130とを有するようにすることができる。そして、ポリエチレングリコールの末端に位置するカルボキシル基を活性エステル化して、RNAアプタマー130と結合させればよい。 In this modification, the RNA aptamer 130 of the detection unit 13 has an amino group in the terminal region 130c. In this case, the first substance 132 (chain substance 13c) that forms an amide bond with the amino group 131c may be included. Here, examples of the first substance 132 include polyethylene glycol (PEG). At this time, the amino group 131c forms an amide bond with the modified carboxyl group at the end of polyethylene glycol. And it can fix | immobilize with another member via the thiol group 131b modified by the other terminal of polyethyleneglycol. Specifically, as shown in FIG. 13A, the detection unit 13 includes an immobilization film (Au) 13a located on the surface of the substrate 10 and a plurality of chains bonded to the immobilization film 13a. And a plurality of RNA aptamers (binding portions) 130 that are respectively bonded to the plurality of chain substances 13c via amino groups 131c. Then, the carboxyl group located at the end of polyethylene glycol may be active esterified and bound to the RNA aptamer 130.
 また、上記検出部13の変形例として、図13(b)に示すような構成にしてもよい。 Further, as a modification of the detection unit 13, a configuration as shown in FIG.
 本変形例において、検出部13のRNAアプタマー130は末端領域130cにチオール基131bを有している。この場合には、金-チオール結合によって金と結合させることができる。それ故、チオール基131bと結合した金を介して、他の部材に対して比較的容易に固定化させることができる。具体的には、検出部13は、図13(b)に示すように、基体10の表面に位置している固定化膜(Au)13aと、固定化膜13aにそれぞれ結合している複数の第1物質132(鎖状物質13c(ポリエチレングリコール))および複数のRNAアプタマー(結合部)130と、を有するようにすることができる。 In this modification, the RNA aptamer 130 of the detection unit 13 has a thiol group 131b in the terminal region 130c. In this case, it can be combined with gold through a gold-thiol bond. Therefore, it can be relatively easily fixed to another member via the gold bonded to the thiol group 131b. Specifically, as shown in FIG. 13 (b), the detection unit 13 includes a plurality of fixed films (Au) 13a positioned on the surface of the base 10 and a plurality of bonds respectively bonded to the fixed films 13a. The first substance 132 (the chain substance 13c (polyethylene glycol)) and the plurality of RNA aptamers (binding portions) 130 can be included.
 ここで、センサ100の幅方向に沿って配置された第1IDT電極、第2IDT電極および検出部13を1セットとすると、本実施形態に係るセンサ100には、図4に示すように、そのセットが2つ設けられている。これにより、一方の検出部13で反応する検出対象を、他方の検出部13で反応する検出対象と異なるように設定することによって、1つのセンサで2種類の検出対象の検出を同時に行なうことが可能となる。例えば、一方の検出部13にHbA1cと特異的に結合可能なRNAアプタマー130を設け、他方の検出部13にHbA0と特異的に結合可能なRNAアプタマーを設けるようにしてもよい。異なる検出対象に用いるアプタマーと抗体とをセットで使用することも可能である。また、2つのうち1つのセットについては、検出部13の代わりに、参照用電極を設けてリファレンス部として用いても良い。 Here, assuming that the first IDT electrode, the second IDT electrode, and the detection unit 13 arranged along the width direction of the sensor 100 are one set, the sensor 100 according to the present embodiment includes the set as shown in FIG. Are provided. Thereby, the detection object which reacts with one detection part 13 is set so that it may differ from the detection object which reacts with the other detection part 13, and two types of detection objects can be detected simultaneously by one sensor. It becomes possible. For example, an RNA aptamer 130 that can specifically bind to HbA1c may be provided in one detection unit 13, and an RNA aptamer that can specifically bind to HbA0 may be provided in the other detection unit 13. It is also possible to use aptamers and antibodies used for different detection targets as a set. In addition, for one of the two sets, a reference electrode may be provided instead of the detection unit 13 and used as a reference unit.
 (検出素子3を用いた検出対象の検出)
 SAWを利用した検出素子3において検体液の検出を行なうには、まず、第1IDT電極11に、配線7や第1引出し電極19などを介して外部の測定器から所定の電圧を印加する。そうすると、第1IDT電極11の形成領域において基体10の表面が励振され、所定の周波数を有するSAWが発生する。発生したSAWは、その一部が検出部13に向かって伝搬し、検出部13を通過した後、第2IDT電極12に到達する。検出部13では、検出部13のRNAアプタマー130が検体液中の検出対象(HbA1c)135と結合し、結合した分だけ検出部13の重さが変化するため、検出部13を通過するSAWの位相などの特性が変化する。このように特性が変化したSAWが第2IDT電極に到達すると、それに応じた電圧が第2IDT電極に生じる。この電圧が第2引出し電極20、配線7などを介して外部に出力され、それを外部の測定器で読み取ることによって、検体液の性質や成分を調べることができる。
(Detection of detection object using detection element 3)
In order to detect the sample liquid in the detection element 3 using SAW, first, a predetermined voltage is applied to the first IDT electrode 11 from an external measuring instrument via the wiring 7 or the first extraction electrode 19. As a result, the surface of the substrate 10 is excited in the formation region of the first IDT electrode 11, and SAW having a predetermined frequency is generated. A part of the generated SAW propagates toward the detection unit 13, passes through the detection unit 13, and then reaches the second IDT electrode 12. In the detection unit 13, the RNA aptamer 130 of the detection unit 13 binds to the detection target (HbA1c) 135 in the sample liquid, and the weight of the detection unit 13 changes by the amount of the binding, so that the SAW that passes through the detection unit 13 changes. Characteristics such as phase change. When the SAW whose characteristics have changed in this way reaches the second IDT electrode, a voltage corresponding to the SAW is generated in the second IDT electrode. This voltage is output to the outside through the second extraction electrode 20, the wiring 7, etc., and by reading it with an external measuring instrument, the properties and components of the sample liquid can be examined.
 ここで、検体液を検出部13に誘導するために、センサ100では毛細管現象を利用する。 Here, in order to guide the sample liquid to the detection unit 13, the sensor 100 uses a capillary phenomenon.
 具体的には、上述のように、流路15は、第2カバー部材2が中間カバー部材1Aに接合されることによって、第2カバー部材2の下部に細長い管状となる。そのため、検体液の種類、中間カバー部材1Aおよび第2カバー部材2の材質などを考慮して、流路15の幅あるいは径などを所定の値に設定することによって、細長い管状の流路15に毛細管現象を生じさせることができる。流路15の幅は、例えば、0.5mm~3mmであり、深さは、例えば、0.1mm~0.5mmである。なお、流路15は、流入部14から検出部13の手前までの部分である上流部15aと検出部13よりも検出部13を超えて延びた部分である下流部(延長部)15bとを有し、第2カバー部材2には延長部15bにつながった排気孔18が形成されている。そして、検体液が流路15内に入ってくると、流路15内に存在していた空気は排気孔18から外部へ放出される。 Specifically, as described above, the flow path 15 has an elongated tubular shape under the second cover member 2 by joining the second cover member 2 to the intermediate cover member 1A. Therefore, in consideration of the type of sample liquid, the material of the intermediate cover member 1A and the second cover member 2, the width or diameter of the flow channel 15 is set to a predetermined value, and the elongated tubular flow channel 15 is formed. Capillary action can occur. The width of the flow path 15 is, for example, 0.5 mm to 3 mm, and the depth is, for example, 0.1 mm to 0.5 mm. The flow path 15 includes an upstream portion 15a that is a portion from the inflow portion 14 to the front of the detection portion 13 and a downstream portion (extension portion) 15b that is a portion extending beyond the detection portion 13 beyond the detection portion 13. The second cover member 2 has an exhaust hole 18 connected to the extension 15b. When the sample liquid enters the flow path 15, the air present in the flow path 15 is released to the outside from the exhaust hole 18.
 このような毛細管現象を生じる管を、中間カバー部材1Aおよび第2カバー部材2を含むカバー部材によって形成すれば、流入部14に検体液を接触させることによって、検体液が流路15を流れてカバー部材の内部に吸い込まれていく。このように、センサ100は、それ自体が検体液の吸引機構を備えているため、ピペットなどの器具を使用することなく検体液の吸引を行なうことができる。 If a tube that causes such capillary action is formed by a cover member including the intermediate cover member 1A and the second cover member 2, the sample liquid flows through the flow path 15 by bringing the sample liquid into contact with the inflow portion 14. It is sucked into the cover member. Thus, since the sensor 100 itself includes a specimen liquid suction mechanism, the specimen liquid can be suctioned without using an instrument such as a pipette.
 (流路15の親液性)
 本実施形態に係るセンサ100においては、流路15の内面全体、あるいは内面の一部、例えば、流路15の底面および壁面などが親液性を有している。流路15の内面が親液性を有することによって毛細管現象が起こり易くなり、検体液が流入部14から吸引され易くなる。
(Liquidity of flow path 15)
In the sensor 100 according to the present embodiment, the entire inner surface of the flow path 15 or a part of the inner surface, for example, the bottom surface and the wall surface of the flow path 15 are lyophilic. When the inner surface of the flow path 15 is lyophilic, capillary action is likely to occur, and the sample liquid is easily aspirated from the inflow portion 14.
 流路15の内面のうち親液性を有する部分は、例えば、水との接触角が60°以下になるようにすればよい。接触角が60°以下であれば、より毛細管現象が起こり易くなり、検体液を流入部に接触させたときの検体液の流路15内への吸引がより確実なものとなる。以下、図3(a)を用いて詳細に説明する。図3(a)は図2(b)のセンサ100の一部を拡大して示す断面図である。 For example, the lyophilic portion of the inner surface of the flow path 15 may have a contact angle with water of 60 ° or less. When the contact angle is 60 ° or less, capillary action is more likely to occur, and the sample liquid is more reliably aspirated into the flow path 15 when the sample liquid is brought into contact with the inflow portion. Hereinafter, it demonstrates in detail using Fig.3 (a). FIG. 3A is an enlarged sectional view showing a part of the sensor 100 of FIG.
 流路15の内面が親液性を有するようにするには、例えば、流路15の内面に親水化処理を施す方法、流路15の内面に親液性のフィルムを貼り付ける方法、および流路15を構成するカバー部材2を親液性の材料で形成する方法などを採用することができる。中でも、流路15の内面に親水化処理を施す方法および流路15の内面に親液性のフィルムを貼り付ける方法を用いれば、検体液が親液性の部分に沿って流路15内を流れていくため、検体液が意図しない場所へ流れることを抑制して、精度の高い測定をすることができる。また、これらの方法によれば、疎水性の材料からなるカバー部材を用いる場合においても、毛細管現象を起こすことができるため、カバー部材として使用することができる材料の選択肢が増えるという利点もある。 In order to make the inner surface of the flow channel 15 lyophilic, for example, a method of applying hydrophilic treatment to the inner surface of the flow channel 15, a method of attaching a lyophilic film to the inner surface of the flow channel 15, and a flow A method of forming the cover member 2 constituting the path 15 with a lyophilic material can be employed. In particular, if a method of applying a hydrophilization treatment to the inner surface of the flow channel 15 and a method of attaching a lyophilic film to the inner surface of the flow channel 15, the sample liquid passes through the flow channel 15 along the lyophilic portion. Since it flows, it is possible to suppress the flow of the sample liquid to an unintended place and perform highly accurate measurement. In addition, according to these methods, even when a cover member made of a hydrophobic material is used, a capillary phenomenon can be caused, so that there is an advantage that the choice of materials that can be used as the cover member is increased.
 流路15の内面に親水化処理を施す方法としては、例えば、流路15の内面を酸素プラズマによってアッシングにより表面の官能基を変化させた後、シランカップリング剤を塗布し、最後にポリエチレングリコールを塗布すればよい。その他にも、流路15の内面を、ホスホリルコリンを有する処理剤を用いて表面処理するという方法もある。 As a method of applying a hydrophilic treatment to the inner surface of the flow path 15, for example, the inner surface of the flow path 15 is subjected to oxygen plasma to change the surface functional group by ashing, and then a silane coupling agent is applied, and finally polyethylene glycol is applied. May be applied. In addition, there is a method in which the inner surface of the flow path 15 is surface-treated using a treatment agent having phosphorylcholine.
 また、親液性のフィルムを貼り付ける方法において、親液性のフィルムとしては、親水化処理が施された市販のポリエステル系のフィルムあるいはポリエチレン系のフィルムなどを使用することができる。親液性のフィルムは、流路15の上面、側面、あるいは下面にのみ形成するようにしてもよく、これらを組み合わせてもよい。 In addition, in the method of attaching the lyophilic film, as the lyophilic film, a commercially available polyester film or polyethylene film that has been subjected to a hydrophilic treatment can be used. The lyophilic film may be formed only on the upper surface, the side surface, or the lower surface of the flow path 15 or a combination thereof.
 (流路15と検出素子3との位置関係)
 本実施形態において、検体液の流路15は深さが0.3mm程度であるのに対し、検出素子3は厚みが0.3mm程度であり、図2(b)に示すように、流路15の深さと検出素子3の厚さとがほぼ等しい。そのため、流路15上に検出素子3をそのまま置くと流路15が塞がれてしまう。そこで、センサ100においては、図2(b)および図3に示すように、検出素子3が実装される第1カバー部材1と第1カバー部材1上に接合される中間カバー部材1Aとによって素子収容凹部5を設けている。この素子収容凹部5の中に検出素子3を収容することによって、検体液の流路15が塞がれないようにしている。すなわち、素子収容凹部5の深さを検出素子3の厚みと同程度にし、その素子収容凹部5の中に検出素子3を実装することによって、流路15を確保することができる。
(Positional relationship between the flow path 15 and the detection element 3)
In this embodiment, the flow path 15 for the sample liquid has a depth of about 0.3 mm, whereas the detection element 3 has a thickness of about 0.3 mm. As shown in FIG. The depth of 15 and the thickness of the detection element 3 are substantially equal. Therefore, if the detection element 3 is placed on the flow channel 15 as it is, the flow channel 15 is blocked. Therefore, in the sensor 100, as shown in FIG. 2B and FIG. 3, the element is composed of a first cover member 1 on which the detection element 3 is mounted and an intermediate cover member 1A joined on the first cover member 1. A housing recess 5 is provided. By accommodating the detection element 3 in the element accommodating recess 5, the flow path 15 for the sample liquid is prevented from being blocked. That is, the flow path 15 can be ensured by making the depth of the element accommodating recess 5 approximately the same as the thickness of the detecting element 3 and mounting the detecting element 3 in the element accommodating recess 5.
 検体液の流路15を十分に確保する観点から、図2(b)および図3に示すように、素子収容凹部5の底面から基体10の上面までの高さを、素子収容凹部5の深さと同じかまたはそれよりも小さく(低く)しておくとよい。例えば、基体10の上面の素子収容凹部5の底面からの高さを素子収容凹部5の深さと同じにしておけば、流入部14から流路15の内部を見たときに、流路15の底面と検出部13とをほぼ同一高さとすることができる。 2B and FIG. 3, the height from the bottom surface of the element housing recess 5 to the upper surface of the substrate 10 is set to the depth of the element housing recess 5 from the viewpoint of sufficiently securing the sample liquid flow path 15. Or smaller (lower) than that. For example, if the height of the upper surface of the substrate 10 from the bottom surface of the element housing recess 5 is the same as the depth of the element housing recess 5, when the inside of the channel 15 is viewed from the inflow portion 14, The bottom surface and the detection unit 13 can be made substantially the same height.
 なお、素子収容凹部5の平面形状は、例えば、基体10の平面形状と相似の形状としてもよく、素子収容凹部5は基体10よりも若干大きく設定すればよい。より具体的には、素子収容凹部5は基体10を素子収容凹部5に実装したときに、基体10の側面と素子収容凹部5の内壁との間に200μm程度の隙間が形成されるような大きさである。 The planar shape of the element receiving recess 5 may be, for example, a shape similar to the planar shape of the base 10, and the element receiving recess 5 may be set slightly larger than the base 10. More specifically, the element receiving recess 5 is large enough to form a gap of about 200 μm between the side surface of the base 10 and the inner wall of the element receiving recess 5 when the base 10 is mounted in the element receiving recess 5. That's it.
 検出素子3は、例えば、エポキシ樹脂、ポリイミド樹脂またはシリコーン樹脂などを主成分とするダイボンド材によって、素子収容凹部5の底面に固定されている。 The detection element 3 is fixed to the bottom surface of the element housing recess 5 by a die bond material mainly composed of epoxy resin, polyimide resin, silicone resin or the like.
 第1引出し電極19の端部19eと配線7とは、例えば、Auなどからなる金属細線27によって電気的に接続されている。第2引出し電極20の端部20eと配線7との接続も同様である。なお、第1引出し電極19および第2引出し電極20と配線7との接続は、金属細線27によるものに限らず、例えば、Agペーストなどの導電性接着材によるものでもよい。第1引出し電極19および第2引出し電極20と配線7との接続部分には空隙が設けられているため、第2カバー部材2を第1カバー部材1に貼り合わせた際に、金属細線27の破損が抑制される。第1引出し電極19、第2引出し電極20、金属細線27および配線7は、絶縁性の封止部材によって覆われている。第1引出し電極19、第2引出し電極20、金属細線27および配線7が絶縁性の封止部材で覆われていることによって、これらの電極などが腐食することを抑制することができる。 The end 19e of the first extraction electrode 19 and the wiring 7 are electrically connected by a thin metal wire 27 made of, for example, Au. The connection between the end 20e of the second extraction electrode 20 and the wiring 7 is the same. Note that the connection between the first extraction electrode 19 and the second extraction electrode 20 and the wiring 7 is not limited to the connection with the metal thin wire 27 but may be performed with a conductive adhesive such as Ag paste. Since a gap is provided in the connection portion between the first extraction electrode 19 and the second extraction electrode 20 and the wiring 7, when the second cover member 2 is bonded to the first cover member 1, Damage is suppressed. The 1st extraction electrode 19, the 2nd extraction electrode 20, the metal fine wire 27, and the wiring 7 are covered with the insulating sealing member. Since the first extraction electrode 19, the second extraction electrode 20, the fine metal wire 27 and the wiring 7 are covered with an insulating sealing member, it is possible to suppress corrosion of these electrodes and the like.
 以上のように、本実施形態に係るセンサ100によれば、検出素子3を第1カバー部材1の素子収容凹部5に収容したことによって、流入部14から検出部13に至る検体液の流路15を確保することができ、毛細管現象などによって流入部から吸引された検体液を検出部13まで流すことができる。すなわち、厚みのある検出素子3を用いつつ、それ自体に吸引機構を備えたセンサ100を提供することができる。 As described above, according to the sensor 100 according to the present embodiment, the flow path of the sample liquid extending from the inflow portion 14 to the detection portion 13 by accommodating the detection element 3 in the element accommodation recess 5 of the first cover member 1. 15 can be secured, and the sample liquid aspirated from the inflow portion by capillary action or the like can flow to the detection portion 13. That is, it is possible to provide the sensor 100 having the suction mechanism itself while using the thick detection element 3.
 図6は、図2のセンサ100の製造工程を示す平面図である。 FIG. 6 is a plan view showing a manufacturing process of the sensor 100 of FIG.
 まず、図6(a)に示すように、端子6および配線7が形成された第1カバー部材1を用意する。 First, as shown in FIG. 6A, a first cover member 1 on which terminals 6 and wirings 7 are formed is prepared.
 次に、図6(b)に示すように、第1カバー部材1の上に、中間カバー部材1Aを積層する。ここで、中間カバー部材1Aは、第1上流部1Aaと第1下流部1Abとからなる。 Next, as shown in FIG. 6B, the intermediate cover member 1 </ b> A is laminated on the first cover member 1. Here, the intermediate cover member 1A includes a first upstream portion 1Aa and a first downstream portion 1Ab.
 次に、図6(c)に示すように、中間カバー部材1Aの第1上流部1Aaと第1下流部1Abとの間に、検出素子3を金属細線27を用いて実装する。ここで、第1カバー部材1の上に、中間カバー部材1Aおよび検出素子3を載置する工程は、いずれを先に実行してもよい。 Next, as shown in FIG. 6 (c), the detection element 3 is mounted between the first upstream portion 1Aa and the first downstream portion 1Ab of the intermediate cover member 1A using the fine metal wires 27. Here, any of the steps of placing the intermediate cover member 1 </ b> A and the detection element 3 on the first cover member 1 may be executed first.
 次に、図6(d)に示すように、中間カバー部材1Aの上に、第2カバー部材2の第3基板2aを積層する。 Next, as shown in FIG. 6D, the third substrate 2a of the second cover member 2 is laminated on the intermediate cover member 1A.
 そして、図6(e)に示すように、第3基板2aの上に第4基板2bを積層することによって、本実施形態に係るセンサ100が製造される。 And as shown in FIG.6 (e), the sensor 100 which concerns on this embodiment is manufactured by laminating | stacking the 4th board | substrate 2b on the 3rd board | substrate 2a.
 次に、実施形態に係るセンサ100の変形例について説明を行なう。 Next, a modified example of the sensor 100 according to the embodiment will be described.
 <変形例>
 図7は、図2のセンサ100の変形例に係るセンサ100a、100b、100cを示す平面図であり、(a)および(b)は図6(d)に対応する図であり、(c)は図2(a)に対応する図である。なお、図7(c)において、検出素子3近傍については、構造を理解し易くするために、部分的に第2カバー部材2を透過して表す。
<Modification>
7 is a plan view showing sensors 100a, 100b, and 100c according to a modification of the sensor 100 of FIG. 2, and FIGS. 7A and 7B are views corresponding to FIG. 6D, and FIG. These are figures corresponding to Fig.2 (a). In FIG. 7C, the vicinity of the detection element 3 is partially shown through the second cover member 2 for easy understanding of the structure.
 本変形例に係るセンサ100a、100bは、上述の実施形態に係るセンサ100とは異なり、中間カバー部材1Aおよび第2カバー部材2の幅が検出素子3の幅よりも大きい。センサ100aは、図7(a)に示すように、検出素子3の下流において、第1カバー部材1の上に中間カバー部材1A(第2下流部1Ab)が設けられていない。それに対して、センサ100bは、図7(b)に示すように、検出素子3の下流において、第1カバー部材1の上に中間カバー部材1A(第2下流部1Ab)が設けられている。 The sensors 100a and 100b according to this modification are different from the sensor 100 according to the above-described embodiment in that the width of the intermediate cover member 1A and the second cover member 2 is larger than the width of the detection element 3. As shown in FIG. 7A, the sensor 100a is not provided with the intermediate cover member 1A (second downstream portion 1Ab) on the first cover member 1 downstream of the detection element 3. On the other hand, the sensor 100b is provided with an intermediate cover member 1A (second downstream portion 1Ab) on the first cover member 1 downstream of the detection element 3, as shown in FIG.
 次に、本変形例に係るセンサ100cは、上述の実施形態に係るセンサ100と比較して、検出素子3に対する端子6の配置が異なる。 Next, the sensor 100c according to this modification is different from the sensor 100 according to the above-described embodiment in the arrangement of the terminals 6 with respect to the detection element 3.
 具体的には、センサ100では、図2に示すように、端子6は、検出素子3のうち流入部14側の端部よりも排気孔18側に配置されている。これに対して、本変形例のセンサ100cでは、図7(c)に示すように、端子6のうち少なくとも一部は、検出素子3のうち流入部14側の端部よりも流入部14側に配置されている。 Specifically, in the sensor 100, as shown in FIG. 2, the terminal 6 is arranged on the exhaust hole 18 side of the detection element 3 with respect to the end portion on the inflow portion 14 side. On the other hand, in the sensor 100c of this modification, as shown in FIG. 7C, at least a part of the terminal 6 is closer to the inflow portion 14 side than the end portion of the detection element 3 on the inflow portion 14 side. Is arranged.
 また、流路15の長手方向を基準にして検出素子3の一方側に配列している4つの端子6において、外側の2つの端子6に接続される配線7の長さが互いに略同一であり、また、内側の2つの端子6に接続される配線7の長さが互いに略同一である。これによれば、検出素子3で得られる信号が、配線7の長さによってばらつくことを抑制することが可能となる。さらに、例えば、一方の略同一の長さの配線7が、検出素子3の検出部13において検出対象を検出する部位に接続され、他方の略同一の長さの配線7が、検出素子3の検出部において検出対象に対する参照電極に接続される構成とすれば、上記の信号のばらつきを抑制することが可能となり検出の信頼性を向上させることが可能となる。 Further, in the four terminals 6 arranged on one side of the detection element 3 with respect to the longitudinal direction of the flow path 15, the lengths of the wirings 7 connected to the two outer terminals 6 are substantially the same. The lengths of the wirings 7 connected to the two inner terminals 6 are substantially the same. According to this, it is possible to suppress the signal obtained by the detection element 3 from varying depending on the length of the wiring 7. Further, for example, one of the wirings 7 having substantially the same length is connected to a portion where the detection unit 13 of the detection element 3 detects the detection target, and the other wiring 7 having substantially the same length is connected to the detection element 3. If the detection unit is configured to be connected to the reference electrode for the detection target, it is possible to suppress the variation in the signal and to improve the reliability of detection.
 図8は、図2のセンサ100の変形例に係るセンサ101を示す図であり、(a)は平面図、(b)は長さ方向の断面図、(c)は幅方向の断面図である。なお、図8(a)において、検出素子3近傍については、構造を理解し易くするために、部分的に第2カバー部材2を透過して表す。 8A and 8B are diagrams showing a sensor 101 according to a modification of the sensor 100 in FIG. 2, wherein FIG. 8A is a plan view, FIG. 8B is a sectional view in the length direction, and FIG. 8C is a sectional view in the width direction. is there. In FIG. 8A, the vicinity of the detection element 3 is partially shown through the second cover member 2 for easy understanding of the structure.
 本変形例に係るセンサ101は、上述の実施形態に係るセンサ100とは異なり、第1IDT電極11および第2IDT電極12は、絶縁性部材28によって覆われている。 The sensor 101 according to this modification is different from the sensor 100 according to the above-described embodiment, and the first IDT electrode 11 and the second IDT electrode 12 are covered with an insulating member 28.
 絶縁性部材28は、第1IDT電極11および第2IDT電極12の酸化防止などに寄与するものである。絶縁性部材28は、例えば、酸化珪素、酸化アルミニウム、酸化亜鉛、酸化チタン、窒化珪素またはシリコンによって形成されている。絶縁性部材28の厚さは、例えば、第1IDT電極11および第2IDT電極の厚さの1/10程度(10~30nm)である。絶縁性部材28は、第1引出し電極19の端部19eおよび第2引出し電極20の端部20eを露出するようにして、基体10の上面全体に亘って形成されてよい。 The insulating member 28 contributes to the oxidation prevention of the first IDT electrode 11 and the second IDT electrode 12. The insulating member 28 is made of, for example, silicon oxide, aluminum oxide, zinc oxide, titanium oxide, silicon nitride, or silicon. The thickness of the insulating member 28 is, for example, about 1/10 (10 to 30 nm) of the thickness of the first IDT electrode 11 and the second IDT electrode. The insulating member 28 may be formed over the entire top surface of the substrate 10 so as to expose the end 19e of the first extraction electrode 19 and the end 20e of the second extraction electrode 20.
 また、本変形例に係るセンサ101は、上述の実施形態に係るセンサ100とは異なり、検出素子3と中間カバー部材1Aとの間隙に、充填部材9を設けられている。 Further, unlike the sensor 100 according to the above-described embodiment, the sensor 101 according to the present modification is provided with a filling member 9 in the gap between the detection element 3 and the intermediate cover member 1A.
 充填部材9は、中間カバー部材1Aおよび基体10とは異なる材料を含むようにすることができ、例えばPDMSなどの樹脂材料を用いることができる。なお、充填部材9は、検出素子3と中間カバー部材1Aとの間隙の全ての領域に設けられる必要はなく、例えば流路15に対応する部位のみに設けるようにしてもよい。検出素子3と中間カバー部材1Aとの間隙に充填部材9が位置していることから、間隙による毛細管現象の阻害を抑制することができ、検体液をよりスムーズに検出素子に向けて吸引することが可能となる。 The filling member 9 can include a material different from that of the intermediate cover member 1A and the base 10, and for example, a resin material such as PDMS can be used. The filling member 9 need not be provided in the entire region of the gap between the detection element 3 and the intermediate cover member 1 </ b> A, and may be provided only in a portion corresponding to the flow path 15, for example. Since the filling member 9 is positioned in the gap between the detection element 3 and the intermediate cover member 1A, it is possible to suppress the capillary phenomenon from being inhibited by the gap, and to aspirate the sample liquid more smoothly toward the detection element. Is possible.
 図9は、図8のセンサ101の製造工程を示す平面図である。 FIG. 9 is a plan view showing a manufacturing process of the sensor 101 of FIG.
 まず、図9(a)に示すように、端子6および配線7が形成された第1カバー部材1を用意する。 First, as shown in FIG. 9A, a first cover member 1 on which terminals 6 and wirings 7 are formed is prepared.
 次に、図9(b)に示すように、第1カバー部材1の上に、中間カバー部材1Aを積層する。ここで、中間カバー部材1Aは、第1上流部1Aaと第1下流部1Abとからなる。 Next, as shown in FIG. 9B, the intermediate cover member 1 </ b> A is laminated on the first cover member 1. Here, the intermediate cover member 1A includes a first upstream portion 1Aa and a first downstream portion 1Ab.
 次に、図9(c)に示すように、中間カバー部材1Aの第1上流部1Aaと第1下流部1Abとの間に、検出素子3を、金属細線27を用いて実装する。ここで、第1カバー部材1の上に、中間カバー部材1Aおよび検出素子3を載置する工程は、いずれを先に実行してもよい。 Next, as shown in FIG. 9C, the detection element 3 is mounted between the first upstream portion 1Aa and the first downstream portion 1Ab of the intermediate cover member 1A using the fine metal wires 27. Here, any of the steps of placing the intermediate cover member 1 </ b> A and the detection element 3 on the first cover member 1 may be executed first.
 次に、図9(d)に示すように、検出素子3と中間カバー部材1Aとの間の間隙に、充填部材9を配置する。 Next, as shown in FIG. 9D, the filling member 9 is disposed in the gap between the detection element 3 and the intermediate cover member 1A.
 次に、図9(e)に示すように、中間カバー部材1Aの上に、第2カバー部材2の第3基板2aを積層する。 Next, as shown in FIG. 9E, the third substrate 2a of the second cover member 2 is laminated on the intermediate cover member 1A.
 そして、図9(f)に示すように、第3基板2aの上に第4基板2bを積層することによって、本実施形態に係るセンサ101が製造される。 And as shown in FIG.9 (f), the sensor 101 which concerns on this embodiment is manufactured by laminating | stacking the 4th board | substrate 2b on the 3rd board | substrate 2a.
 図10は、図2のセンサ100の変形例に係るセンサ101aを示す図であり、特に製造工程を示す図である。 FIG. 10 is a diagram illustrating a sensor 101a according to a modification of the sensor 100 in FIG. 2, and particularly illustrates a manufacturing process.
 本変形例に係るセンサ101aは、上述の実施形態に係るセンサ100とは異なり、上面視において、検出素子3が、中間カバー部材1Aで全周を囲まれている。そして、充填部材9は、図10(d)および図10(e)に示すように、検出素子3の外周を囲うように、検出素子3と中間カバー部材1Aとの間隙に位置している。これによれば、流路15において検出素子3とその周囲との段差あるいは隙間を低減することができることから、検体液をスムーズに検出素子3上に流すことが可能となる。また、充填部材9は、検出素子3と端子6との領域において、配線7の一部および検出素子3と配線7とを接続する導線27を覆うことができることから、これらと検体液との接触による検出感度の低下を抑制することが可能となる。 The sensor 101a according to the present modification is different from the sensor 100 according to the above-described embodiment in that the detection element 3 is surrounded by the intermediate cover member 1A in the top view. The filling member 9 is located in the gap between the detection element 3 and the intermediate cover member 1A so as to surround the outer periphery of the detection element 3, as shown in FIGS. According to this, since the step or the gap between the detection element 3 and its surroundings can be reduced in the flow path 15, the sample liquid can be smoothly flowed on the detection element 3. In addition, since the filling member 9 can cover a part of the wiring 7 and the conductive wire 27 that connects the detection element 3 and the wiring 7 in the region of the detection element 3 and the terminal 6, the contact between the filling member 9 and the sample liquid It is possible to suppress a decrease in detection sensitivity due to.
 なお、本変形例では、図10(b)に示すように中間カバー部材1Aと検出素子3とを第1カバー部材1の上に載置した上で、図10(c)に示すように検出素子3と配線7とを導線27によって接続している。これに代えて、検出素子3を第1カバー部材1の上に載置し、検出素子3と配線7とを導線27によって接続した後で、中間カバー部材1Aを第1カバー部材1の上に載置するようにしてもよい。 In this modification, the intermediate cover member 1A and the detection element 3 are placed on the first cover member 1 as shown in FIG. 10B, and then detected as shown in FIG. 10C. The element 3 and the wiring 7 are connected by a conducting wire 27. Instead, after the detection element 3 is placed on the first cover member 1 and the detection element 3 and the wiring 7 are connected by the conducting wire 27, the intermediate cover member 1A is placed on the first cover member 1. You may make it mount.
 図11は、図2のセンサ100の変形例に係るセンサ101b、101cを示す平面図であり、図6(d)に対応する図である。 FIG. 11 is a plan view showing sensors 101b and 101c according to a modified example of the sensor 100 of FIG. 2, and corresponds to FIG. 6 (d).
 本変形例に係るセンサ101b、101cは、上述の実施形態に係るセンサ100とは異なり、充填部材9は、図11(a)および図11(b)に示すように、検出素子3と中間カバー部材1Aとの間隙のうち、流路15の長手方向に沿うように位置している。これによれば、検出素子3とその両側との段差を低くあるいは隙間を狭くすることができることから、検出素子3に対して側方からも検体液をスムーズに流すことが可能となる。また、充填部材9は、検出素子3と端子6との領域において、配線7の一部および検出素子3と配線7とを接続する導線27を覆うことができることから、これらと検体液との接触による検出感度の低下を抑制することが可能となる。 The sensors 101b and 101c according to the present modification are different from the sensor 100 according to the above-described embodiment, and the filling member 9 includes a detection element 3 and an intermediate cover as shown in FIGS. 11 (a) and 11 (b). It is located along the longitudinal direction of the flow path 15 in the gap with the member 1A. According to this, since the level difference between the detection element 3 and both sides thereof can be reduced or the gap can be narrowed, the sample liquid can be smoothly flowed from the side to the detection element 3. In addition, since the filling member 9 can cover a part of the wiring 7 and the conductive wire 27 that connects the detection element 3 and the wiring 7 in the region of the detection element 3 and the terminal 6, the filling member 9 is in contact with the sample liquid. It is possible to suppress a decrease in detection sensitivity due to.
 また、図11(b)に示すように、充填部材9を検出素子3と中間カバー部材1Aとの間隙のみならず、検出素子3と配線7とを接続するための導線27のうち検出素子3(基体10)の上面に位置している部分をも覆うことができる。これによれば、導線27と検体液との接触による検出感度の低下をさらに抑制することが可能となる。 In addition, as shown in FIG. 11B, the detection member 3 is not only the gap between the detection element 3 and the intermediate cover member 1 </ b> A but also the detection element 3 among the conductive wires 27 for connecting the detection element 3 and the wiring 7. The part located on the upper surface of (base 10) can also be covered. According to this, it is possible to further suppress a decrease in detection sensitivity due to contact between the lead wire 27 and the sample liquid.
 以下、上述した実施形態に係るRNAアプタマーおよびこれを用いたセンサの実施例について説明する。 Hereinafter, examples of the RNA aptamer according to the above-described embodiment and a sensor using the RNA aptamer will be described.
(第1実施例)
 分子間相互作用解析装置であるBiacoreT200(GEヘルスケア製)を用いて評価を実施した。この装置は、4つのフローセルを有している。
(First embodiment)
Evaluation was performed using Biacore T200 (manufactured by GE Healthcare), which is an intermolecular interaction analyzer. This device has four flow cells.
 評価用の基板(基体)として、SeriesSSensorChipSA(GEヘルスケア製)を用いた。 SERIESSSensorChipSA (manufactured by GE Healthcare) was used as a substrate (base) for evaluation.
 以下において、SeriesSSensorChipSA上に、各種のRNAアプタマーを固定化し、ヘモグロビンA1cを検出する手順を示す。 Hereinafter, a procedure for immobilizing various RNA aptamers on the Series SensorChip SA and detecting hemoglobin A1c will be described.
 ここで、RNAアプタマーは、RNAの相補配列からなる一本鎖DNA(社外にて合成)から転写によって得られたものを用いた。また、ヘモグロビンA1c検体として、アブカム社製ab98306を用いた。 Here, the RNA aptamer obtained by transcription from a single-stranded DNA consisting of a complementary sequence of RNA (synthesized outside the company) was used. Further, ab98306 manufactured by Abcam Co. was used as the hemoglobin A1c specimen.
 また、ランニング緩衝液として、HBS-P(GEヘルスケア製)にMgClが1mM含有されるようにMgClを追加したものを用いた(以下、HBS-P(+MgCl)と記す。)。 Further, as the running buffer, MgCl 2 in HBS-P (manufactured by GE Healthcare) was used after adding MgCl 2 as contained 1 mM (hereinafter referred to as HBS-P (+ MgCl 2) .).
 (1) 全てのフローセルを、10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (1) All flow cells were washed with 10 mM NaOH at a flow rate of 20 μl / min for 1 minute.
 (2) 上記(1)を3回繰り返した。 (2) The above (1) was repeated three times.
 (3) フローセルの一つ(以下、Fc2と記す。)に、5’末端にビオチンを有する5μMのTTTTTTTTTTTTTTTTTT(配列番号24)を、流速5μl/minで6分間流して固定化した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (3) 5 μM TTTTTTTTTTTTTTTTTTT (SEQ ID NO: 24) having biotin at the 5 ′ end was flowed to one of the flow cells (hereinafter referred to as Fc2) at a flow rate of 5 μl / min for 6 minutes for immobilization. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (4) Fc2に、5’末端にビオチンを有する5μMのTTTTTTTTTTTTTTTTTT(配列番号24)を、流速5μl/minで2分間流して固定化した。 (4) Fc2 was immobilized with 5 μM TTTTTTTTTTTTTTTTTTT (SEQ ID NO: 24) having biotin at the 5 ′ end for 2 minutes at a flow rate of 5 μl / min.
 (5) フローセルの一つ(以下、Fc1と記す。)に、1mg/mlビオチンを流速5μl/minで6分間流して固定化した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (5) One of the flow cells (hereinafter referred to as Fc1) was immobilized by flowing 1 mg / ml biotin at a flow rate of 5 μl / min for 6 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (6) 上記のフローセルを、10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (6) The above flow cell was washed with 10 mM NaOH for 1 minute at a flow rate of 20 μl / min.
 (7) 上記(6)を1回繰り返した。 (7) The above (6) was repeated once.
 (8) Fc2に、0.5μMのRNAアプタマーを流速5μl/minで4分間流して固定化し、その後2分間の解離状態をモニターした。ここで、RNAアプタマーとして、3’末端にAAAAAAAAAAAAAAAAAA(配列番号23)を付加し、アデニンおよびウラシルは2’位がフッ素基に置換されており、予めアニール処理したものを用いた。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (8) Fc2 was immobilized by flowing 0.5 μM RNA aptamer at a flow rate of 5 μl / min for 4 minutes, and then the dissociation state for 2 minutes was monitored. Here, as the RNA aptamer, AAAAAAAAAAAAAAAAA (SEQ ID NO: 23) was added to the 3 ′ end, and adenine and uracil in which the 2′-position was substituted with a fluorine group and annealed in advance were used. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (9) 上記のフローセルFc1、Fc2に、Fc1、Fc2の順番に1μMとなるようにHBS-P(+MgCl)で希釈したヘモグロビンA1c検体を流速5μl/minで4分間流し、その後2分間の解離状態をモニターした。 (9) A hemoglobin A1c sample diluted with HBS-P (+ MgCl 2 ) so as to be 1 μM in the order of Fc1 and Fc2 is passed through the flow cells Fc1 and Fc2 for 4 minutes at a flow rate of 5 μl / min, and then dissociated for 2 minutes. The condition was monitored.
 (10) フローセルFc1、Fc2を、10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。この作業により、RNAアプタマーが外れて、SeriesSSensorChipSAは上記(7)が完了した状態に戻る。 (10) The flow cells Fc1 and Fc2 were washed with 10 mM NaOH for 1 minute at a flow rate of 20 μl / min. With this operation, the RNA aptamer is removed, and the Series SensorChip SA returns to the state in which the above (7) is completed.
 (11) その後、上記(8)~(10)を繰り返し、表1のsampleNo.1~63のRNAアプタマー(配列番号25~87)を順に評価した。評価結果を表1に示す。 (11) After that, the above (8) to (10) are repeated, and sampleNo. 1 to 63 RNA aptamers (SEQ ID NOs: 25 to 87) were evaluated in order. The evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1は、RNAアプタマーの固定化量、HbA1c検出量、RNAアプタマー塩基数とともに、RNAアプタマー1つ当たりのHbA1cの結合割合を示している。RNAアプタマー1つ当たりのHbA1cの結合割合の値が0.1以上の場合を◎とし、0.055以上0.1未満の場合を○とし、0よりも大きく0.055未満の場合を△とし、0以下の場合を×とした。 Table 1 shows the amount of RNA aptamer immobilized, the amount of HbA1c detected, the number of RNA aptamer bases, and the binding ratio of HbA1c per RNA aptamer. When the value of the binding ratio of HbA1c per RNA aptamer is 0.1 or more, ◎, when 0.055 or more and less than 0.1, ○, and when greater than 0 and less than 0.055, Δ. , 0 or less was marked as x.
 これによれば、表1に示されるように、配列番号25~47のいずれかで示される塩基配列を有するRNAアプタマーは、HbA1cに対して高い結合力を示した。また、配列番号25~39のいずれかで示される塩基配列を有するRNAアプタマーは、HbA1cに対して特に高い結合力を示した。 According to this, as shown in Table 1, the RNA aptamer having the base sequence represented by any of SEQ ID NOs: 25 to 47 showed high binding strength to HbA1c. In addition, the RNA aptamer having the base sequence represented by any of SEQ ID NOs: 25 to 39 showed particularly high binding strength to HbA1c.
(第2実施例)
 表2は主要なアプタマーについてHbA1c並びにHbA0(糖化されていないヘモグロビン)に対する解離定数を示したものである。解離定数は下記のようにして得られた。
(Second embodiment)
Table 2 shows the dissociation constants for HbA1c and HbA0 (non-glycated hemoglobin) for the major aptamers. The dissociation constant was obtained as follows.
 分子間相互作用解析装置であるBiacoreT200(GEヘルスケア製)を用いて評価を実施した。この装置は、4つのフローセルを有している。 Evaluation was performed using Biacore T200 (manufactured by GE Healthcare), which is an intermolecular interaction analyzer. This device has four flow cells.
 評価用の基板(基体)として、SeriesSSensorChipSA(GEヘルスケア製)を用いた。 SERIESSSensorChipSA (manufactured by GE Healthcare) was used as a substrate (base) for evaluation.
 ここで、RNAアプタマーは、表1の配列の中から共通配列とその両端から6~13の塩基対のみからなる配列としたものを用いた。このRNAは社外にて合成したものである。また、ヘモグロビンA1c検体として、HbA1c認証実用標準物質(JCCRM423)(一般社団法人 検査医学標準物質機構製)からHbA1cを単離したものを用いた。またヘモグロビンA0検体として、上記のHbA1c認証実用標準物質からHbA1cを除去したものを用いた。 Here, the RNA aptamer used was a sequence consisting of only a common sequence from the sequences in Table 1 and 6 to 13 base pairs from both ends. This RNA was synthesized outside the company. In addition, as the hemoglobin A1c specimen, an HbA1c-certified practical standard substance (JCCRM423) (general incorporated association, manufactured by National Institute of Laboratory Medicine) was used. Further, as the hemoglobin A0 specimen, a substance obtained by removing HbA1c from the above-mentioned HbA1c certified practical reference material was used.
 また、ランニング緩衝液として、HBS-P(GEヘルスケア製)にMgClが1mM含有されるようにMgClを追加したものを用いた(以下、HBS-P(+MgCl)と記す。)。 Further, as the running buffer, MgCl 2 in HBS-P (manufactured by GE Healthcare) was used after adding MgCl 2 as contained 1 mM (hereinafter referred to as HBS-P (+ MgCl 2) .).
 (1) 全てのフローセルを、10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (1) All flow cells were washed with 10 mM NaOH at a flow rate of 20 μl / min for 1 minute.
 (2) 上記(1)を3回繰り返した。 (2) The above (1) was repeated three times.
 (3) フローセルの一つ(以下、Fc2と記す。)に、5’末端にビオチンを有する0.05μMのRNAアプタマーを、流速20μl/minで40秒間流して固定化した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (3) One of the flow cells (hereinafter referred to as Fc2) was immobilized by flowing 0.05 μM RNA aptamer having biotin at the 5 ′ end for 40 seconds at a flow rate of 20 μl / min. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (4) フローセルの一つ(以下、Fc1と記す。)に、1mg/mlビオチンを流速5μl/minで6分間流して固定化した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (4) One of the flow cells (hereinafter referred to as Fc1) was immobilized by flowing 1 mg / ml biotin at a flow rate of 5 μl / min for 6 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (5) フローセルFc1、Fc2を、10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (5) The flow cells Fc1 and Fc2 were washed with 10 mM NaOH for 1 minute at a flow rate of 20 μl / min.
 (6) 上記(5)を3回繰り返した。 (6) The above (5) was repeated three times.
 (7) ヘモグロビンA1c検体の希釈液をFc1、Fc2の順番に流速50μl/minで2分間流し、その後、ランニング緩衝液を2分間流した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (7) A diluted solution of the hemoglobin A1c sample was flowed in the order of Fc1 and Fc2 for 2 minutes at a flow rate of 50 μl / min, and then a running buffer was flowed for 2 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (8) フローセルFc1、Fc2を10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (8) The flow cells Fc1 and Fc2 were washed with 10 mM NaOH for 1 minute at a flow rate of 20 μl / min.
 (9) ヘモグロビンA1cの濃度が0.01μMとなるように希釈した検体をFc1、Fc2の順番に流速50μl/minで2分間流し、その後、ランニング緩衝液を2分間流した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (9) The specimen diluted so that the concentration of hemoglobin A1c was 0.01 μM was flowed in the order of Fc1 and Fc2 for 2 minutes at a flow rate of 50 μl / min, and then a running buffer was flowed for 2 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (10) フローセルFc1、Fc2を10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (10) The flow cells Fc1 and Fc2 were washed with 10 mM NaOH for 1 minute at a flow rate of 20 μl / min.
 (11) 上記(9)、(10)をヘモグロビンA1c濃度が0.02μM、0.05μM、0.1μM、0.2μM、0.5μMとなるように希釈した検体に対して実施した。 (11) The above (9) and (10) were performed on the specimen diluted so that the hemoglobin A1c concentration was 0.02 μM, 0.05 μM, 0.1 μM, 0.2 μM, and 0.5 μM.
 (12) さらに上記(7)から(11)の操作をヘモグロビンA0検体に対して実施した。ただし、ヘモグロビンA0濃度は0(希釈液のみ)、0.1μM、0.2μM、0.5μM、1μM、2μM、5μMとした。 (12) Further, the above operations (7) to (11) were performed on the hemoglobin A0 specimen. However, the hemoglobin A0 concentration was 0 (diluted solution only), 0.1 μM, 0.2 μM, 0.5 μM, 1 μM, 2 μM, and 5 μM.
 (13) その後、SPR信号のヘモグロビンA1cおよびヘモグロビンA0濃度依存性に対して、BIAevaluationソフトウェアによる処理を行い、RNAアプタマーのヘモグロビンA1cおよびヘモグロビンA0に対する解離定数KD_HbA1c及びKD_HbA0を求めた。その結果を表2に示す。 (13) Thereafter, the BIAevaluation software was processed for the hemoglobin A1c and hemoglobin A0 concentration dependence of the SPR signal, and the dissociation constants KD_HbA1c and KD_HbA0 for the RNA aptamers hemoglobin A1c and hemoglobin A0 were determined. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(第3実施例:末端にビオチンを有する例)
 以下において、実装基板上に、RNAアプタマーを固定化し、ヘモグロビンA1cを検出する手順を示す。
(Third embodiment: Example having biotin at the end)
Hereinafter, a procedure for immobilizing an RNA aptamer on a mounting substrate and detecting hemoglobin A1c will be described.
 (1) 検出素子3を準備した。なお、固定化膜13aとしてAu(金)を用いる。 (1) A detection element 3 was prepared. Note that Au (gold) is used as the immobilization film 13a.
 (2) 検出部13を含む領域をピラニア溶液(濃硫酸と30%過酸化水素の混合溶液)で洗浄した。 (2) The region including the detection unit 13 was washed with a piranha solution (mixed solution of concentrated sulfuric acid and 30% hydrogen peroxide).
 (3) 検出部13を含む領域を水およびエタノールでリンスした。 (3) The region including the detection unit 13 was rinsed with water and ethanol.
 続く手順である下記(4)~(7)において、固定化膜Au上にアプタマーを固定化した。 In the following procedures (4) to (7), aptamers were immobilized on the immobilized film Au.
 (4) 3,3’-ジチオジプロピオン酸を検出部13を含む領域に滴下し、10分間放置後、水で洗浄した。 (4) 3,3′-dithiodipropionic acid was dropped onto the area containing the detection unit 13 and allowed to stand for 10 minutes, followed by washing with water.
 (5) 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド水溶液とN-ヒドロキシスクシンイミド水溶液との混合液を検出部13を含む領域に滴下し、20分間放置後、水で洗浄することにより、3,3’-ジチオジプロピオン酸の末端に位置するカルボキシル基を活性エステル化した。 (5) A liquid mixture of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide aqueous solution and N-hydroxysuccinimide aqueous solution is dropped on the region including the detection unit 13, left for 20 minutes, and then washed with water. The carboxyl group located at the end of 3,3′-dithiodipropionic acid was active esterified.
 (6) 1mMのHEPESバッファ(pH8.0)液に0.1mg/mLの濃度でストレプトアビジンを溶解した溶液を検出部13を含む領域に滴下し、20分間放置後、1mMのHEPESバッファ(pH8.0)液で洗浄することにより、エステル化したカルボキシル基とストレプトアビジン中のアミノ残基とをアミド結合させた。 (6) A solution in which streptavidin is dissolved at a concentration of 0.1 mg / mL in a 1 mM HEPES buffer (pH 8.0) solution is dropped onto an area including the detection unit 13 and allowed to stand for 20 minutes. 0.0) solution was used for amide bond between the esterified carboxyl group and the amino residue in streptavidin.
 (7) 1mMのHEPESバッファ(pH8.0)液をHBS-P(+MgCl)に置換した後、5’末端にビオチンを有するRNAアプタマーの濃度が5μMとなるようにHBS-P(+MgCl)で希釈した溶液を検出部13を含む領域に滴下し、5分間放置後、HBS-P(+MgCl)で洗浄した。なお、参照電極を形成する際には、この処理は行わなかった。 (7) After replacing 1 mM HEPES buffer (pH 8.0) with HBS-P (+ MgCl 2 ), HBS-P (+ MgCl 2 ) so that the concentration of RNA aptamer having biotin at the 5 ′ end is 5 μM. The solution diluted in (1) was dropped on the area including the detection unit 13, left for 5 minutes, and then washed with HBS-P (+ MgCl 2 ). Note that this process was not performed when the reference electrode was formed.
 (8) 1μMとなるようにHBS-P(+MgCl)で希釈したヘモグロビンA1c検体を、流路15を用いて検出素子3に導入し、5分間反応させた際に生じる位相変化量を測定した。 (8) A hemoglobin A1c sample diluted with HBS-P (+ MgCl 2 ) so as to be 1 μM was introduced into the detection element 3 using the flow path 15, and the amount of phase change that occurred when reacted for 5 minutes was measured. .
 これによれば、結合力の高いSAおよびビオチンの結合を用いることで、RNAアプタマーを高い安定性にて固定化することができ、HbA1cを検出することができた。 According to this, the RNA aptamer could be immobilized with high stability and the HbA1c could be detected by using the binding of SA and biotin with high binding power.
(第4実施例:末端にアミノ基を有する例)
 以下において、実装基板上に、RNAアプタマーを固定化し、ヘモグロビンA1cを検出する手順を示す。
(Example 4: Example having an amino group at the terminal)
Hereinafter, a procedure for immobilizing an RNA aptamer on a mounting substrate and detecting hemoglobin A1c will be described.
 (1) 検出素子3を準備した。なお、固定化膜13aとしてAu(金)を用いる。 (1) A detection element 3 was prepared. Note that Au (gold) is used as the immobilization film 13a.
 (2) 検出部13を含む領域をピラニア溶液(濃硫酸と30%過酸化水素の混合溶液)で洗浄した。 (2) The region including the detection unit 13 was washed with a piranha solution (mixed solution of concentrated sulfuric acid and 30% hydrogen peroxide).
 (3) 検出部13を含む領域を水およびエタノールでリンスした。 (3) The region including the detection unit 13 was rinsed with water and ethanol.
 続く手順である下記(4)~(7)において、固定化膜Au上にアプタマーを固定化した。 In the following procedures (4) to (7), aptamers were immobilized on the immobilized film Au.
 (4) Carboxy-EG6-Undecanethiol(同仁化学研究所製)及び、Hydroxy-EG3-Undecanethiol(同仁化学研究所製)を所望の濃度比となるように溶解させたエタノールに検出素子3を16時間浸漬した。 (4) Sensor element 3 is immersed in ethanol in which Carboxy-EG6-Undecanethiol (manufactured by Dojindo Laboratories) and Hydroxy-EG3-Undecanethiol (manufactured by Dojindo Laboratories) are dissolved in a desired concentration ratio for 16 hours. did.
 (5) 検出素子3をエタノール及び超純水にてリンスし、窒素にて乾燥させた。 (5) The detection element 3 was rinsed with ethanol and ultrapure water and dried with nitrogen.
 (6) 1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド水溶液、N-ヒドロキシスクシンイミド水溶液、及び塩酸の混合液を検出部13を含む領域に滴下し、10分間放置した。 (6) A mixed solution of 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide aqueous solution, N-hydroxysuccinimide aqueous solution, and hydrochloric acid was dropped on the region including the detection unit 13 and left for 10 minutes.
 (7) 上記混合液を除去し、上記と同じ組成の混合液を検出部13を含む領域に滴下し、10分間放置した。 (7) The mixed solution was removed, and a mixed solution having the same composition as that described above was dropped onto the region including the detection unit 13 and left for 10 minutes.
 (8) 上記(7)を4回繰り返した。 (8) The above (7) was repeated four times.
 (9) 10mM酢酸ナトリウム水溶液(pH5.0)で洗浄することにより、Carboxy-EG6-Undecanethiolの末端に位置するカルボキシル基を活性エステル化した。 (9) The carboxyl group located at the end of Carboxy-EG6-Undecanethiol was active esterified by washing with 10 mM sodium acetate aqueous solution (pH 5.0).
 (10) 4.5MのNaClを含む100mMのHEPESバッファ(pH7.4)液に、所望の濃度となるように、5’末端にアミノ基を有するRNAアプタマーを溶解させ、検出部13を含む領域に滴下し、30分間放置した。 (10) A region containing a detection unit 13 by dissolving an RNA aptamer having an amino group at the 5 ′ end in a 100 mM HEPES buffer (pH 7.4) solution containing 4.5 M NaCl so as to have a desired concentration. And then left for 30 minutes.
 (11) 上記の溶液を除去し、上記と同じ濃度のRNAアプタマー溶液を検出部13を含む領域に滴下し、30分間放置した。 (11) The above solution was removed, and an RNA aptamer solution having the same concentration as that described above was dropped onto the region including the detection unit 13 and allowed to stand for 30 minutes.
 (12) 上記(11)を繰り返した後、検出部13を含む領域を10mM NaOHとHBS-P(+MgCl)にて洗浄することにより、エステル化したカルボキシル基とRNAアプタマーの5’末端に存在するアミノ基をアミド結合させた。参照電極を形成する際には、上記(10)、(11)の操作は行わなかった。 (12) After repeating the above (11), the region containing the detection unit 13 is washed with 10 mM NaOH and HBS-P (+ MgCl 2 ) to be present at the 5 ′ end of the esterified carboxyl group and the RNA aptamer. The amino group to be amide-bonded. When forming the reference electrode, the operations (10) and (11) were not performed.
 (13) 5μMとなるようにHBS-P(+MgCl)で希釈したヘモグロビンA1c検体を、流路15を用いて検出素子3に導入し、30分間反応させた際に生じる位相変化量を測定した。 (13) A hemoglobin A1c sample diluted with HBS-P (+ MgCl 2 ) so as to be 5 μM was introduced into the detection element 3 using the flow path 15 and the amount of phase change generated when reacted for 30 minutes was measured. .
 これによれば、高い安定性を有するアミド結合を用いることで、RNAアプタマーを高い安定性にて固定化することができ、HbA1cを検出することができた。 According to this, by using an amide bond having high stability, the RNA aptamer could be immobilized with high stability and HbA1c could be detected.
(第5実施例:コア配列の検証)
 以下において、共通配列以外の部分の影響について評価した結果を示す。
(Fifth embodiment: verification of core sequence)
Below, the result evaluated about the influence of parts other than a common arrangement | sequence is shown.
 分子間相互作用解析装置であるBiacoreT200(GEヘルスケア製)を用いて評価を実施した。この装置は、4つのフローセルを有している。 Evaluation was performed using Biacore T200 (manufactured by GE Healthcare), which is an intermolecular interaction analyzer. This device has four flow cells.
 評価用の基板(基体)として、SeriesSSensorChipSA(GEヘルスケア製)を用いた。 SERIESSSensorChipSA (manufactured by GE Healthcare) was used as a substrate (base) for evaluation.
 ここで、RNAアプタマーは、表2のNo.64(配列番号88)について、共通配列以外の塩基対を全てG-Cペアとするとともに塩基対鎖長を変更させている。これらのRNAは社外にて合成したものである。塩基対鎖長を変更させたRNAアプタマーの2次構造を、前述と同様に二次構造を予測するソフトウェアを用いて表示させると、図14(a)に示す構造となる。また、ヘモグロビンA1c検体として、HbA1c認証実用標準物質(JCCRM423)(一般社団法人 検査医学標準物質機構製)からHbA1cを単離したものを用いた。 Here, the RNA aptamer is the No. in Table 2. For 64 (SEQ ID NO: 88), all base pairs other than the common sequence are GC pairs and the base pair chain length is changed. These RNAs are synthesized outside the company. When the secondary structure of the RNA aptamer whose base pair chain length is changed is displayed using the software for predicting the secondary structure in the same manner as described above, the structure shown in FIG. In addition, as the hemoglobin A1c specimen, an HbA1c-certified practical standard substance (JCCRM423) (general incorporated association, manufactured by National Institute of Laboratory Medicine) was used.
 また、ランニング緩衝液として、HBS-P(GEヘルスケア製)にMgClが1mM含有されるようにMgClを追加したものを用いた(以下、HBS-P(+MgCl)と記す。)。 Further, as the running buffer, MgCl 2 in HBS-P (manufactured by GE Healthcare) was used after adding MgCl 2 as contained 1 mM (hereinafter referred to as HBS-P (+ MgCl 2) .).
 (1) 全てのフローセルを、10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (1) All flow cells were washed with 10 mM NaOH at a flow rate of 20 μl / min for 1 minute.
 (2) 上記(1)を3回繰り返した。 (2) The above (1) was repeated three times.
 (3) フローセルの一つ(以下、Fc2と記す。)に、5’末端にビオチンを有する2μMのRNAアプタマーを、流速5μl/minで6分間流して固定化した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (3) 2 μM RNA aptamer having biotin at the 5 ′ end was immobilized on one of the flow cells (hereinafter referred to as Fc2) at a flow rate of 5 μl / min for 6 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 (4) Fc2に、5’末端にビオチンを有する2μMのRNAアプタマーを、流速5μl/minで2分間流して固定化した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。固定化した際の信号強度を図14(b)に示す。各アプタマーは、ほぼ同じ量固定化されていることが分かる。 (4) Fc2 was immobilized with 2 μM RNA aptamer having biotin at the 5 ′ end for 2 minutes at a flow rate of 5 μl / min. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution. FIG. 14B shows the signal intensity when the signal is fixed. It can be seen that each aptamer is immobilized in substantially the same amount.
 (5) フローセルFc1、Fc2を、10mMのNaOHを用いて流速20μl/minで1分間洗浄をした。 (5) The flow cells Fc1 and Fc2 were washed with 10 mM NaOH for 1 minute at a flow rate of 20 μl / min.
 (6) 上記(5)を3回繰り返した。 (6) The above (5) was repeated three times.
 (7) 濃度5μMになるように希釈したヘモグロビンA1c検体をFc1、Fc2の順番に流速5μl/minで4分間流し、その後、ランニング緩衝液を2分間流した。この際、希釈は、HBS-P(+MgCl)溶液を用いて行なった。 (7) The hemoglobin A1c specimen diluted to a concentration of 5 μM was flowed in the order of Fc1 and Fc4 at a flow rate of 5 μl / min for 4 minutes, and then a running buffer was flowed for 2 minutes. At this time, dilution was performed using an HBS-P (+ MgCl 2 ) solution.
 この評価結果を図14(c)に示す。塩基対部分をG-Cペアのみに変更してもヘモグロビンA1cと結合できることがわかる。すなわち、表1の共通配列と塩基対とによりRNAアプタマーはヘモグロビンA1cと結合することがわかる。さらに、塩基対鎖長が長い方が、ヘモグロビンA1cとの結合性能が高くなる傾向があることがわかる。 The evaluation result is shown in FIG. It can be seen that hemoglobin A1c can be bound even if the base pair portion is changed to only the GC pair. That is, it can be seen that the RNA aptamer binds to hemoglobin A1c by the common sequence and the base pair in Table 1. Furthermore, it can be seen that the longer the base pair chain length, the higher the binding performance with hemoglobin A1c.
 本発明は、以上の実施形態に限定されず、種々の態様で実施されてよい。 The present invention is not limited to the above embodiment, and may be implemented in various modes.
 例えば、上述した実施形態においては、検出部13が金属膜と金属膜の表面に固定化されたRNAアプタマー130からなるものについて説明したが、金属膜に代えて、導電性を有さない膜の表面にRNAアプタマー130を固定化してもよい。 For example, in the above-described embodiment, the detection unit 13 has been described as being composed of a metal film and an RNA aptamer 130 immobilized on the surface of the metal film. The RNA aptamer 130 may be immobilized on the surface.
 また、上述した実施形態においては、検出素子3が弾性表面波素子からなるものについて説明したが、検出素子3はこれに限らず、例えば、表面プラズモン共鳴が起こるように光導波路などを形成した検出素子3を用いてもよい。この場合は、例えば、検出部における光の屈折率の変化などを計測する。その他、水晶などの圧電基板に振動子を形成した検出素子3を用いることもできる。この場合は、例えば、振動子の発振周波数の変化を計測する。 In the embodiment described above, the detection element 3 is made of a surface acoustic wave element. However, the detection element 3 is not limited to this, and for example, a detection in which an optical waveguide is formed so that surface plasmon resonance occurs. Element 3 may be used. In this case, for example, a change in the refractive index of light in the detection unit is measured. In addition, the detection element 3 in which a vibrator is formed on a piezoelectric substrate such as quartz can be used. In this case, for example, a change in the oscillation frequency of the vibrator is measured.
 また、検出素子3として、一つの基板上に複数種類のデバイスを混在させても構わない。例えば、SAW素子の隣に酵素電極法の酵素電極を設けてもよい。この場合は、抗体やRNAアプタマーを用いた免疫法に加えて酵素法での測定も可能となり、一度に検査できる項目を増やすことができる。 Also, as the detection element 3, a plurality of types of devices may be mixed on a single substrate. For example, an enzyme electrode method enzyme electrode may be provided next to the SAW element. In this case, in addition to the immunization method using an antibody or RNA aptamer, measurement by an enzyme method is possible, and the number of items that can be examined at a time can be increased.
 また、上述した実施形態においては、検出素子3が1個設けられている例について説明したが、検出素子3を複数個設けてもよい。この場合、検出素子3ごとに素子収容凹部5を設けてもよいし、全ての検出素子3を収容できるような長さあるいは幅を有する素子収容凹部5を形成するようにしてもよい。 In the above-described embodiment, an example in which one detection element 3 is provided has been described. However, a plurality of detection elements 3 may be provided. In this case, the element accommodating recess 5 may be provided for each detection element 3 or the element accommodating recess 5 having a length or width that can accommodate all the detection elements 3 may be formed.
 また、上述した実施形態においては、第1カバー部材1、中間カバー部材1Aおよび第2カバー部材2がそれぞれ別部材である例を示したが、これに限らず、いずれかの部材同士が一体化されたものを用いてもよい。 In the above-described embodiment, the example in which the first cover member 1, the intermediate cover member 1A, and the second cover member 2 are separate members has been described. You may use what was done.
 1・・・第1カバー部材
 1A・・・中間カバー部材
  1Aa・・・第1上流部
  1Ab・・・第1下流部
 2・・・第2カバー部材
  2a・・・第3基板
  2b・・・第4基板
 3・・・検出素子
 4・・・凹部形成部位
 5・・・素子収容凹部
 6・・・端子
 7・・・配線
 9・・・充填部材
 10・・・基体
 11・・・第1IDT電極
 12・・・第2IDT電極
 13・・・検出部
  13a・・・固定化膜(固定化部材)
  13c・・・鎖状物質
   130・・・RNAアプタマー(結合部)
   130a・・・共通配列領域
   130b・・・ステム領域
   130b1・・第1ヌクレオチド配列領域
   130b2・・第2ヌクレオチド配列領域
   130c・・・末端領域
    130c1・・・・3’末端
    130c2・・・・5’末端
   131a・・・ビオチン
   131b・・・チオール基
   131c・・・アミノ基
   132・・・第1物質
   133・・・二本鎖
   134・・・ストレプトアビジン
   135・・・検出対象(ヘモグロビンA1c)
 14・・・流入部
 15・・・流路
  15a・・・上流部
  15b・・・下流部(延長部)
 18・・・排気孔
 19・・・第1引出し電極
  19e・・・端部
 20・・・第2引出し電極
  20e・・・端部
 27・・・導線(金属細線)
 28・・・絶縁性部材
 100、101・・・センサ
DESCRIPTION OF SYMBOLS 1 ... 1st cover member 1A ... Intermediate | middle cover member 1Aa ... 1st upstream part 1Ab ... 1st downstream part 2 ... 2nd cover member 2a ... 3rd board | substrate 2b ... 4th board | substrate 3 ... detection element 4 ... recessed part formation site 5 ... element accommodating recessed part 6 ... terminal 7 ... wiring 9 ... filling member 10 ... base | substrate 11 ... 1st IDT Electrode 12 ... 2nd IDT electrode 13 ... Detection part 13a ... Immobilization film | membrane (immobilization member)
13c ... chain substance 130 ... RNA aptamer (binding part)
130a ... common sequence region 130b ... stem region 130b1 ... first nucleotide sequence region 130b2 ... second nucleotide sequence region 130c ... end region 130c1, ... 3 'end 130c2, ... 5' Terminal 131a ... Biotin 131b ... thiol group 131c ... amino group 132 ... first substance 133 ... double strand 134 ... streptavidin 135 ... detection target (hemoglobin A1c)
14 ... Inflow part 15 ... Flow path 15a ... Upstream part 15b ... Downstream part (extension part)
18 ... exhaust hole 19 ... first extraction electrode 19e ... end 20 ... second extraction electrode 20e ... end 27 ... conducting wire (fine metal wire)
28 ... Insulating member 100, 101 ... Sensor

Claims (22)

  1.  AGNNNWGGWSC(配列番号1)(5’末端から数えて3~5番目のNが、それぞれアデニン、グアニン、およびグアニンである塩基配列を除く)、
     AGNNNNWGGWSC(配列番号2)、
     AGNNNNNWGGWSC(配列番号3)、または
     AUGNNNAGGACC(配列番号4)で示される共通配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、Wはアデニンまたはウラシルであり、Sはグアニンまたはシトシンである)を含み、かつ、HbA1cに対する結合能を有する、RNAアプタマー。
    AGNNNNGWGWSC (SEQ ID NO: 1) (excluding nucleotide sequences in which the 3rd to 5th N from the 5 ′ end are adenine, guanine, and guanine, respectively),
    AGNNNNWGGWSC (SEQ ID NO: 2),
    AGNNNNNWGGWSC (SEQ ID NO: 3) or AUGNNNNAGACC (SEQ ID NO: 4) contains a consensus sequence (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, and S is guanine or cytosine) And an RNA aptamer having binding ability to HbA1c.
  2.  前記共通配列は、
     AGNHNWGGWSC(配列番号5)、
     AGNHNNWGGWSC(配列番号6)、
     AGNHNNNWGGWSC(配列番号7)、または
     AUGNHNAGGACC(配列番号8)で示される塩基配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、Hはアデニン、シトシンまたはウラシルであり、Wはアデニンまたはウラシルであり、Sはグアニンまたはシトシンである)である、請求項1に記載のRNAアプタマー。
    The consensus sequence is
    AGNHNWGGWSC (SEQ ID NO: 5),
    AGNHNNWGGWSC (SEQ ID NO: 6),
    AGNHNNNNGWGWSC (SEQ ID NO: 7), or AUGNHNAGGACC (SEQ ID NO: 8), the base sequence (N is adenine, guanine, cytosine or uracil, H is adenine, cytosine or uracil, W is adenine or uracil, The RNA aptamer according to claim 1, wherein S is guanine or cytosine).
  3.  前記共通配列は、
     AGNNNWGGWSC(配列番号1)(5’末端から数えて3~5番目のNが、それぞれアデニン、グアニン、およびグアニンである塩基配列を除く)
     AGNNNNWGGWSC(配列番号2)、または
     AGNNNNNWGGWSC(配列番号3)で示される塩基配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、Wはアデニンまたはウラシルであり、Sはグアニンまたはシトシンである)である、請求項1に記載のRNAアプタマー。
    The consensus sequence is
    AGNNNNWGGWSC (SEQ ID NO: 1) (excluding nucleotide sequences in which 3rd to 5th N from the 5 ′ end are adenine, guanine and guanine, respectively)
    AGNNNNNGWGWSC (SEQ ID NO: 2) or the base sequence shown by AGNNNNNNGWGWSC (SEQ ID NO: 3) (N is adenine, guanine, cytosine or uracil, W is adenine or uracil, and S is guanine or cytosine) The RNA aptamer according to claim 1.
  4.  前記共通配列は、
     AGNNNAGGACC(配列番号9)で示される塩基配列(Nはアデニン、グアニン、シトシンまたはウラシルであり、5’末端から数えて3~5番目のNが、それぞれアデニン、グアニン、およびグアニンである塩基配列を除く)である、請求項1に記載のRNAアプタマー。
    The consensus sequence is
    A nucleotide sequence represented by AGNNNAGGACC (SEQ ID NO: 9) (N is adenine, guanine, cytosine, or uracil, and the third to fifth Ns counted from the 5 ′ end are adenine, guanine, and guanine, respectively. The RNA aptamer according to claim 1, wherein
  5.  前記共通配列は、
     AGWYDAGGACC(配列番号10)で示される塩基配列(Wはアデニンまたはウラシルであり、Yはウラシルまたはシトシンであり、Dはアデニン、グアニンまたはウラシルである)である、請求項4に記載のRNAアプタマー。
    The consensus sequence is
    The RNA aptamer according to claim 4, which is a base sequence represented by AGWYDAGGACC (SEQ ID NO: 10) (W is adenine or uracil, Y is uracil or cytosine, and D is adenine, guanine or uracil).
  6.  前記共通配列は、
     AGACGAGGACC(配列番号11)、
     AGAUUAGGACC(配列番号12)、
     AGACAAGGACC(配列番号13)、
     AGAUGAGGACC(配列番号14)、
     AGUCGAGGACC(配列番号15)、
     AGACUAGGACC(配列番号16)、
     AGAUUGGAGGAGC(配列番号17)、
     AGACGAGGUGC(配列番号18)、
     AGGAAUGGACC(配列番号19)、
     AGAUUGAGGACC(配列番号20)、
     AGAACGAGGACC(配列番号21)、または
     AUGAUUAGGACC(配列番号22)で示される塩基配列である、請求項1に記載のRNAアプタマー。
    The consensus sequence is
    AGACGAGGACC (SEQ ID NO: 11),
    AGAUUAGGACC (SEQ ID NO: 12),
    AGACAAGGACC (SEQ ID NO: 13),
    AGAUGAGGACC (SEQ ID NO: 14),
    AGUCGAGGACC (SEQ ID NO: 15),
    AGACUAGGACC (SEQ ID NO: 16),
    AGAUUGGAGGAGC (SEQ ID NO: 17),
    AGACGAGGUGC (SEQ ID NO: 18),
    AGGAAUGGACC (SEQ ID NO: 19),
    AGAUUGAGGACC (SEQ ID NO: 20),
    The RNA aptamer according to claim 1, which is a base sequence represented by AGAACGAGGACC (SEQ ID NO: 21) or AUGAUUAGGACC (SEQ ID NO: 22).
  7.  前記共通配列は、
     AGACGAGGACC(配列番号11)、
     AGAUUAGGACC(配列番号12)、
     AGACAAGGACC(配列番号13)、
     AGAUGAGGACC(配列番号14)、
     AGUCGAGGACC(配列番号15)、または
     AGACUAGGACC(配列番号16)で示される塩基配列である、請求項6に記載のRNAアプタマー。
    The consensus sequence is
    AGACGAGGACC (SEQ ID NO: 11),
    AGAUUAGGACC (SEQ ID NO: 12),
    AGACAAGGACC (SEQ ID NO: 13),
    AGAUGAGGACC (SEQ ID NO: 14),
    The RNA aptamer according to claim 6, which is a base sequence represented by AGUCGAGGACC (SEQ ID NO: 15) or AGACUAGGACC (SEQ ID NO: 16).
  8.  前記共通配列の5’末端から数えて1~3番目までに存在するグアニンのうちの1つと、前記共通配列の3’末端から数えて1~3番目までに存在するシトシンのうちの1つとが塩基対を形成している、請求項1~7のいずれか1項に記載のRNAアプタマー。 One of guanine existing from the first to the third position from the 5 ′ end of the common sequence and one of cytosine existing from the first position to the third position from the 3 ′ end of the common sequence. The RNA aptamer according to any one of claims 1 to 7, which forms a base pair.
  9.  前記共通配列の5’末端に結合する第1ヌクレオチド配列と、前記共通配列の3’末端に結合する第2ヌクレオチド配列とをさらに含む、請求項1~8のいずれか1項に記載のRNAアプタマー。 The RNA aptamer according to any one of claims 1 to 8, further comprising a first nucleotide sequence that binds to the 5 'end of the common sequence and a second nucleotide sequence that binds to the 3' end of the common sequence. .
  10.  前記第1ヌクレオチド配列は、前記第2ヌクレオチド配列中のヌクレオチドと塩基対を形成しているヌクレオチドを少なくとも1つ含む、請求項9に記載のアプタマー。 The aptamer according to claim 9, wherein the first nucleotide sequence includes at least one nucleotide that forms a base pair with the nucleotide in the second nucleotide sequence.
  11.  前記第1ヌクレオチド配列、または前記第2ヌクレオチド配列は、前記共通配列中のヌクレオチドと塩基対を形成しているヌクレオチドを少なくとも1つ含む、請求項9に記載のRNAアプタマー。 The RNA aptamer according to claim 9, wherein the first nucleotide sequence or the second nucleotide sequence includes at least one nucleotide that forms a base pair with the nucleotide in the common sequence.
  12.  前記共通配列と、前記第1ヌクレオチド配列と、前記第2ヌクレオチド配列とが、ステムループ構造を形成し得ることを特徴とする請求項10または11に記載のRNAアプタマー。 The RNA aptamer according to claim 10 or 11, wherein the common sequence, the first nucleotide sequence, and the second nucleotide sequence can form a stem-loop structure.
  13.  前記ステムループ構造における塩基対の数は、少なくとも6つ以上である、請求項12に記載のRNAアプタマー。 The RNA aptamer according to claim 12, wherein the number of base pairs in the stem-loop structure is at least 6 or more.
  14.  前記塩基対の少なくとも1つが、シトシンとグアニンとの塩基対である、請求項10~13のいずれか1項に記載のRNAアプタマー。 The RNA aptamer according to any one of claims 10 to 13, wherein at least one of the base pairs is a base pair of cytosine and guanine.
  15.  前記共通配列における少なくとも1つのヌクレオチドが、リボースの2’位にフッ素基を有する、請求項1~14のいずれか1項に記載のRNAアプタマー。 The RNA aptamer according to any one of claims 1 to 14, wherein at least one nucleotide in the common sequence has a fluorine group at the 2'-position of ribose.
  16.  総ヌクレオチド数が23~96である、請求項1~15のいずれか1項に記載のRNAアプタマー。 The RNA aptamer according to any one of claims 1 to 15, wherein the total number of nucleotides is 23 to 96.
  17.  配列番号25~47、および88~100のいずれかで示される塩基配列からなる、請求項1に記載のRNAアプタマー。 2. The RNA aptamer according to claim 1, comprising a base sequence represented by any of SEQ ID NOs: 25 to 47 and 88 to 100.
  18.  末端に位置しているビオチンをさらに備える、請求項1~17のいずれか1項に記載のRNAアプタマー。 The RNA aptamer according to any one of claims 1 to 17, further comprising biotin located at a terminal.
  19.  前記ビオチンに結合しているストレプトアビジンをさらに備える、請求項18に記載のRNAアプタマー。 The RNA aptamer according to claim 18, further comprising streptavidin bound to the biotin.
  20.  末端に位置しているアミノ基をさらに備える、請求項1~17のいずれかに記載のRNAアプタマー。 The RNA aptamer according to any one of claims 1 to 17, further comprising an amino group located at a terminal.
  21.  基体と、
     前記基体に固定化されている、請求項1~19のいずれか1項に記載のRNAアプタマーと、を備える、センサ。
    A substrate;
    The RNA aptamer according to any one of claims 1 to 19, which is immobilized on the substrate.
  22.  前記RNAアプタマーおよび前記基体の間に位置し、前記RNAアプタマーおよび前記基体の少なくとも一方と結合している固定化部材、をさらに備える請求項21に記載のセンサ。 The sensor according to claim 21, further comprising an immobilization member located between the RNA aptamer and the substrate and bonded to at least one of the RNA aptamer and the substrate.
PCT/JP2016/060585 2015-03-30 2016-03-30 Rna aptamer and sensor using same WO2016159197A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-070289 2015-03-30
JP2015070289 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016159197A1 true WO2016159197A1 (en) 2016-10-06

Family

ID=57007261

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060585 WO2016159197A1 (en) 2015-03-30 2016-03-30 Rna aptamer and sensor using same

Country Status (1)

Country Link
WO (1) WO2016159197A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520774A (en) * 2016-12-27 2017-03-22 三诺生物传感股份有限公司 Nucleic acid aptamer for glycosylated hemoglobin, application thereof and kit for detecting glycosylated hemoglobin
WO2018151138A1 (en) * 2017-02-14 2018-08-23 国立研究開発法人理化学研究所 Nucleic acid probe for detecting target substance
JP7451198B2 (en) 2020-02-03 2024-03-18 キヤノンメディカルシステムズ株式会社 Sample testing equipment and sample testing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140054905A (en) * 2012-10-30 2014-05-09 충북대학교 산학협력단 Hba1c-specific aptamer and composition for detecting of hba1c comprising thereof
JP2015507199A (en) * 2012-01-31 2015-03-05 ザ・ユニバーシティ・オブ・トレド Method and apparatus for analyte detection and measurement

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015507199A (en) * 2012-01-31 2015-03-05 ザ・ユニバーシティ・オブ・トレド Method and apparatus for analyte detection and measurement
KR20140054905A (en) * 2012-10-30 2014-05-09 충북대학교 산학협력단 Hba1c-specific aptamer and composition for detecting of hba1c comprising thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN HSIN-I ET AL.: "Selection of aptamers specific for glycated hemoglobin and total hemoglobin using on-chip SELEX", LAB CHIP, vol. 15, no. 2, 21 January 2015 (2015-01-21), pages 486 - 494, XP055315770, ISSN: 1473-0197 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106520774A (en) * 2016-12-27 2017-03-22 三诺生物传感股份有限公司 Nucleic acid aptamer for glycosylated hemoglobin, application thereof and kit for detecting glycosylated hemoglobin
CN106520774B (en) * 2016-12-27 2019-05-10 三诺生物传感股份有限公司 A kind of nucleic acid aptamer of glycosylated hemoglobin and its application and the kit for detecting glycosylated hemoglobin
WO2018151138A1 (en) * 2017-02-14 2018-08-23 国立研究開発法人理化学研究所 Nucleic acid probe for detecting target substance
JP7451198B2 (en) 2020-02-03 2024-03-18 キヤノンメディカルシステムズ株式会社 Sample testing equipment and sample testing method

Similar Documents

Publication Publication Date Title
JP5566543B2 (en) Sensor, detection method, detection system, and detection apparatus
JP6411439B2 (en) Biosensor
JP6633034B2 (en) Sensor device
JP6975828B2 (en) Sensor device
JP6285428B2 (en) Sensor, detection method, detection system, and detection apparatus
WO2016159197A1 (en) Rna aptamer and sensor using same
JP6194015B2 (en) Sensor device
JP2018105885A (en) Sensor device
WO2015046577A1 (en) Sensor, detection method, detection system, and detection device
JP2018081112A (en) Sensor
JP6169702B2 (en) RNA aptamer, sensor and detection method using the same
JP5964960B2 (en) Sensor, detection method, and detection system
WO2016121864A1 (en) Method for sensing detection target
JP2015190768A (en) sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16773078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16773078

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP