WO2016159110A1 - Binary gene expression system - Google Patents

Binary gene expression system Download PDF

Info

Publication number
WO2016159110A1
WO2016159110A1 PCT/JP2016/060443 JP2016060443W WO2016159110A1 WO 2016159110 A1 WO2016159110 A1 WO 2016159110A1 JP 2016060443 W JP2016060443 W JP 2016060443W WO 2016159110 A1 WO2016159110 A1 WO 2016159110A1
Authority
WO
WIPO (PCT)
Prior art keywords
expression
base sequence
seq
gene
expression unit
Prior art date
Application number
PCT/JP2016/060443
Other languages
French (fr)
Japanese (ja)
Inventor
謙一郎 立松
秀樹 瀬筒
恵郎 内野
Original Assignee
国立研究開発法人農業生物資源研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人農業生物資源研究所 filed Critical 国立研究開発法人農業生物資源研究所
Priority to JP2017510121A priority Critical patent/JP6964843B2/en
Publication of WO2016159110A1 publication Critical patent/WO2016159110A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New breeds of animals
    • A01K67/033Rearing or breeding invertebrates; New breeds of invertebrates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention relates to a binary gene expression system, a transformant containing the same, and a method for producing a gene expression enhanced individual obtained by mating the transformant.
  • Non-Patent Document 1 Non-Patent Document 1
  • the GAL4 / UAS system has been mainly used to express a target gene using transgenic silkworms (Non-patent Document 2).
  • This system consists of two systems, GAL4 and UAS.
  • the GAL4 strain has a GAL4 gene encoding a transcription factor placed under the control of an appropriate enhancer or promoter
  • the UAS strain has a UAS that is a recognition sequence for GAL4 and a target gene placed under its control.
  • the UAS line does not express the target gene by itself, but when one individual includes these two lines by mating, etc., the transcription factor GAL4 is expressed in cells in which the enhancer or promoter of the GAL4 line is activated, The target gene is expressed by binding to UAS.
  • Non-patent Document 3 By improving this GAL4 / UAS system, it is now possible to improve the expression efficiency of the target gene to nearly 10 times (Non-patent Document 3).
  • the GAL4 strains that have been constructed so far, which are expressed in various time-specific or tissue-specific ways, and the UAS strains that express various genes are accumulated as genetic assets. Even in this case, the other system has an advantage that the existing system can be used as it is.
  • the expression time and location cannot be controlled by individual genes. The strain has the problem that it is cytotoxic to the host.
  • the present invention improves the expression efficiency of a target gene, can control the expression of a plurality of introduced genes individually at a desired specific time and / or tissue, and is a new gene expression system with low cytotoxicity to a host
  • the issue is to develop and provide
  • TALEN Transcription Activator-Like Effector Nuclease
  • the technology of TALEN (Cermak T., et al., 2011, Nucleic Acids Res 39: e82, patent publication 2013-513389, patent publication 2012-514976), developed as a genome editing system, can be applied to silkworms. (Daimon T., et al., 2014, Develop. Growth Differ, 56: 14-25).
  • TALEN has been used not only for genome editing but also for transcriptional activation and transcriptional repression of arbitrary DNA sequences using the DNA sequence binding ability of TALE (TAL Effector).
  • TALE activator transcriptional activation using TALE (TALE activator) has been extensively studied using mammalian cells and plant cells (Morbitzer R., et al., 2010, PNAS, 107 (50): 21617- 21622, Zhang F., et al., 2011, Nature biotech, 29 (2): 149-153, Maeder ML, et al., 2013, Nature Methods, 10 (3): 243-245, Crocker J.et al ., 2013, Nature Methods, doi: 10.1038 / nmeth.2543), mainly used to control differentiation by controlling the expression of endogenous genes and to treat diseases. It has been reported that TALE ⁇ activator changes transcription activation ability depending on the position of target sequence and epigenetic state of chromosome, and transcription activation hardly occurs.
  • the present inventors have developed a TAL-GAL4 / UAS system that recognizes UAS using the TALE DNA binding domain TAL (Transcription Activator-Like) instead of the GAL4 DNA binding domain in the conventional GAL4 / UAS system.
  • TALE Transcription Activator-Like
  • this system has a problem that not only the transcription activity efficiency can be improved but also the transcription activity is lower than that of GAL4.
  • a first expression unit in which a TAL domain having a base sequence of a specific length as a target base sequence and a transcriptional activity domain comprising a plurality of transcriptional activity units consisting of 50 to 150 amino acids
  • a second expression unit that contains a TAL recognition sequence that includes a repetitive sequence in which multiple target base sequences are linked
  • the expression efficiency of the target gene is maximized in cultured cell systems compared to the conventional GAL4 / UAS system.
  • This invention is based on the said knowledge, Comprising: The following are provided.
  • a binary gene expression system comprising a first expression unit and a second expression unit, wherein the first expression unit is a TAL region comprising a promoter and a base sequence encoding a TAL domain arranged under the control of the promoter. And a transcription active region consisting of a base sequence encoding a transcription active domain in a state capable of expression, wherein the TAL domain recognizes the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 as a target base sequence An N-terminal site and a TAL-DNA base sequence recognition site, wherein, in the target base sequence, the N-terminal site is a 5′-terminal t, and the TAL-DNA base sequence recognition site is a main sequence following the t.
  • the TAL-DNA base sequence recognition site is the amino acid sequence represented by SEQ ID NO: 3 for each base constituting the main target base sequence
  • the transcriptional activity domain comprises a sequence in which 2 to 10 transcriptional activity units consisting of 50 to 150 amino acids are linked, and the second expression unit comprises a TAL recognition sequence and a gene of interest arranged under its control.
  • the system comprising a fragment thereof, wherein the TAL recognition sequence consists of a base sequence containing 5 to 25 target base sequences.
  • the binary gene expression system of the present invention can express a target gene in an amount exceeding the conventional GAL4 / UAS system.
  • the expression of each target gene in a different set can be controlled in a time-specific and / or tissue-specific manner, respectively.
  • the first expression unit constituting the binary gene expression system of the present invention has an effect of low cytotoxicity to the host as compared with the GAL strain of the GAL4 / UAS system.
  • the binary gene expression system of the present invention can individually maintain and manage lines containing each of the first expression unit and the second expression unit.
  • the binary gene expression system of the present invention may be produced by using the GAL4 / UAS system and the accumulated GAL4 line or UAS line as it is.
  • FIG. 1 shows the first expression unit
  • B shows the second expression unit.
  • the N-terminal region in the TAL region of the first expression unit is a region encoding the N-terminal site of the TAL domain
  • the TAL-DNA base sequence recognition region is a region encoding the TAL-DNA base sequence recognition site of the TAL domain.
  • the C-terminal region is a region encoding the C-terminal region of the TAL domain.
  • the transcription active unit region in the transcription active region is a region encoding the transcription active unit of the transcription active domain.
  • a transcription active region including four transcription active unit regions is exemplified.
  • a TAL recognition sequence including five target base sequences is exemplified.
  • the binary gene expression system of the present invention used in Example 1 a part of the TAL recognition sequence (base sequence in the figure) contained in the second expression unit and the TAL domain encoded by the first expression unit are recognized.
  • the range of the target base sequence (the range indicated by three bars in the base sequence in the figure) is shown.
  • the TAL recognition sequence is composed of a sequence in which a unit containing UAS, which is a GAL4 recognition sequence, is repeated 5 times.
  • the TAL domain encoded in the first expression unit of Example 1 recognizes UASTAL1, which recognizes 19 bases including the above unit in the TAL recognition sequence, and 20 bases from T (thymine) at the 5 ′ end most in the TAL recognition sequence.
  • UASTAL2 and UASTAL3 that recognizes 14 bases with 6 bases shortened on the 3 ′ end of the UASTAL2 recognition sequence.
  • the binary gene expression system of the present invention comprises a first expression unit comprising a TAL region (UASTAL) that recognizes various regions of UAS and a transcriptional active region linked downstream thereof, and UAS and a luciferase gene linked downstream thereof
  • UASTAL TAL region
  • ARII or VP16 was used as the transcription activity unit, and the number of unit regions in the transcription activity region was 1-6.
  • the expression level of luciferase in silkworm cultured cells when the first expression unit having the control GAL4 is used is 1, and the relative expression level is shown.
  • the binary gene expression system of this invention it is the figure which showed the relationship between the base number of the target base sequence of a 1st expression unit, the base number of a main target base sequence, and the expression level of a target gene. It is a figure which shows the specificity with respect to the target base sequence of the TAL domain encoded by the 1st expression unit in the binary gene expression system of this invention.
  • the upper figure shows the target sequence recognized by the first expression unit, and the mutant UAS in which base substitution is introduced into the base sequence of UAS and UAS of the TAL recognition sequence in the second expression unit.
  • capital letters indicate the target base sequence of the first expression unit
  • asterisks indicate the positions of the substituted bases.
  • the lower figure shows the expression level of luciferase in cultured silkworm cells when the first and second expression units shown in the upper figure are combined. “-” Indicates that the first expression unit is not introduced. It is a figure which shows the expression efficiency of EGFP when the middle silk gland specific binary gene expression system of this invention is introduce
  • FIG. 8 It is a figure which shows the cytotoxicity by a 1st expression unit in the transgenic silkworm which has a 1st expression unit of the binary gene expression system of this invention.
  • A shows the layer thickness of the transgenic silkworm
  • B shows the yield rate
  • C shows the result of the conversion rate.
  • a first expression unit containing GAL4 in a conventional GAL4 / UAS system known to exhibit cytotoxicity was used as .
  • the numerical value shown above each bar indicates the number of samples (N).
  • FIG. 8 the result of SDS-PAGE which analyzed the protein derived from the middle silk gland of the transgenic silkworm having the first expression unit of the binary gene expression system of the present invention is shown.
  • Ser1 indicates the position of sericin 1 protein
  • FibH indicates the position of fibroin H protein
  • Ser3 indicates the position of sericin 3 protein.
  • a to C are images of the silk gland of the same field
  • D to F are enlarged images within the white frame of the single star in Fig. A
  • G to I are within the white frame of the double star in Fig. A.
  • An enlarged view is shown.
  • RT-PCR shows the expression of EGFP and DsRed in the silk gland of the transgenic silkworm which has a binary gene expression system specific to each of the middle silk gland and the posterior silk gland.
  • NC is the RT-PCR product from the negative control
  • lane 1 is the RT-PCR product from the middle silk gland
  • lane 2 is the RT-PCR product from the posterior silk gland
  • lane 3 is from the middle and posterior silk gland.
  • RT-PCR product is shown. It is a figure which shows the expression efficiency of EGFP when the rear part silk gland specific binary gene expression system of this invention is introduce
  • Binary gene expression system 1-1 Overview A first aspect of the present invention is a binary gene expression system.
  • a “binary gene expression system” is a set of gene expression units composed of two expression units.
  • the binary gene expression system of the present invention induces the target expression encoded by the second expression unit by expressing the transcriptional activation domain encoded by the first expression unit in a host cell having two expression units, You can also strengthen it.
  • the binary gene expression system of the present invention comprises two units, a first expression unit and a second expression unit.
  • Each expression unit includes a target gene or an active domain thereof (hereinafter referred to as “target gene or the like”) in a state where it can be expressed, and includes an expression vector that can control the expression of the gene or the like.
  • target gene or the like a target gene or an active domain thereof
  • the “expressible state” means that a target gene or the like is placed under the control of a promoter in a base sequence constituting a unit and can be expressed according to the activity of the promoter. “Under the control of a promoter” is in principle downstream, that is, at the 3 ′ end. Therefore, “arranged under the control of a promoter” means that the target gene or the like is linked directly downstream of the promoter or indirectly with an intervening sequence such as a spacer in between.
  • expression vector refers to an expression unit that contains a target gene in a state where it can be expressed and can control the expression of the gene or the like.
  • expression unit refers to an expression unit that contains a target gene in a state where it can be expressed and can control the expression of the gene or the like.
  • the first expression unit contains a promoter, a TAL region and a transcriptional active region arranged under its control, and a mother nucleus vector as essential components. Further, if necessary, selective components such as marker genes, terminators, enhancers, 5′UTR and 3′UTR, insulators and transposon inverted terminal repeats can also be included. Hereinafter, each component will be described.
  • the “TAL region and transcriptional active region” is a chimeric gene encoding a chimeric protein (fusion protein) comprising a TAL domain and a transcriptional active domain linked to the C-terminal side thereof.
  • TAL region is a region consisting of a base sequence encoding a TAL domain.
  • TAL domain means DNA that lacks the transcriptional active region (effector domain) in TAL (Transcription Activator-Like) effector protein (Cermak T, et al., 2011, Nucleic Acids Res 39: e82) An amino acid site consisting only of the binding domain.
  • the TAL domain is composed of a TAL-DNA base sequence recognition site, an N-terminal site located on the N-terminal side, and a C-terminal site located on the C-terminal side.
  • the “TAL-DNA base sequence recognition site” is a site that directly recognizes a main target base sequence described later.
  • the TAL-DNA base sequence recognition site recognizes each base of the main target base sequence in units of an amino acid sequence composed of 34 amino acids shown in SEQ ID NO: 3, respectively.
  • the unit consists of a pair of amino acid residues at the 12th and 13th positions from the N-terminal side, and each of the four bases constituting the DNA (A: adenine, G: guanine, C: cytosine, T: thymine) Can be specifically recognized.
  • A adenine
  • G guanine
  • C cytosine
  • T thymine
  • the TAL-DNA base sequence recognition site repeatedly contains the unit according to the base length of the target base sequence.
  • the “target base sequence” is a base sequence recognized by the TAL domain, and a plurality of essential constituent elements are included in the second expression unit described later.
  • the structure of the target base sequence is, as shown in SEQ ID NO: 1 or 2, t (thymine) arranged on the 5 ′ end side, followed by the main target base sequence, 14 bases in total or 15 It consists of a base sequence.
  • the “main target base sequence” is a base sequence other than t (thymine) at the 5 ′ end contained in the target base sequence, and consists of an arbitrary base sequence of 13 bases or 14 bases. Therefore, an arbitrary DNA sequence can be used as a target base sequence by designing this main target base sequence into a desired base sequence.
  • Specific examples of the main target base sequence include, for example, the base sequence represented by SEQ ID NO: 4 or SEQ ID NO: 5. More specifically, in the GAL4-UAS system, it is a part of a GAL4 recognition sequence comprising UAS (Upstream Activating Sequence) (SEQ ID NO: 35) and consisting of a base sequence represented by SEQ ID NO: 9, An example is the base sequence represented by SEQ ID NO: 8. Furthermore, even a base sequence in which 1, 2, 3, 4, or 5 bases are substituted in the base sequence represented by SEQ ID NO: 6 included in the base sequence represented by SEQ ID NO: 4 or 5 Good.
  • the TAL-DNA base sequence recognition site recognizes each base constituting the main target base sequence in units of an amino acid sequence composed of 34 amino acids shown in SEQ ID NO: 3. Therefore, the TAL-DNA base sequence recognition site has a structure in which the unit consisting of the 34 amino acids is repeated 13 or 14 times.
  • the base sequence encoding the TAL-DNA base sequence recognition site for example, when the base sequence represented by SEQ ID NO: 7 is the main target base sequence, the base sequence encoding the TAL-DNA base sequence recognition site is: The nucleotide sequence is represented by SEQ ID NO: 10.
  • the base sequence encoding the TAL-DNA base sequence recognition site is the base sequence represented by SEQ ID NO: 11.
  • N-terminal site refers to a site involved in the recognition of t (thymine) located on the 5′-terminal side of the target base sequence, including a TAL domain transport signal.
  • the N-terminal site is composed of, for example, the amino acid sequence represented by SEQ ID NO: 12, and the base sequence encoding it includes, for example, the base sequence represented by SEQ ID NO: 13.
  • transcription active region is a region consisting of a base sequence encoding a transcription active domain.
  • transcription activation domain is a functional domain of a transcription activation factor and has a function of activating expression of a target gene.
  • the transcriptional activity domain in the present specification includes a transcriptional activity unit consisting of 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, or 2 to 5, linked repeat sequences. Become.
  • the “transcriptional activity unit” is the minimum unit constituting a transcriptional activity domain and consists of 50 to 150 amino acids. As a specific example of the transcriptional activity unit, it consists of the amino acid sequence represented by SEQ ID NO: 16, and is encoded by the base sequence represented by SEQ ID NO: 17. VP16 derived from herpes simplex virus, which consists of an amino acid sequence and is encoded by the base sequence represented by SEQ ID NO: 19, can be mentioned.
  • Promoter is a gene expression regulatory region capable of controlling the expression of a gene (target gene) placed under its control.
  • the “promoter” in the first expression unit can control the expression of a chimeric gene consisting of the TAL region and the transcriptional active region, which are target genes.
  • Promoters can be classified into ubiquitous promoters (systemic promoters) and site-specific promoters based on the expression location of the target gene.
  • the ubiquitous promoter is a promoter that controls the expression of a target gene in the entire host individual.
  • a site-specific promoter is a promoter that controls the expression of a target gene in a specific cell or tissue of a host.
  • the promoter in the first expression unit is not particularly limited, and may be appropriately selected according to the use.
  • promoters are classified into constitutively active promoters, expression-inducible promoters, or time-specific active promoters based on the expression time of the target gene.
  • a constitutively active promoter can constitutively express the gene of interest in the host cell.
  • An expression-inducible promoter can induce the expression of a target gene in a host cell at any time.
  • a time-specific active promoter can induce the expression of a target gene in a host cell only at a specific stage of development. Any promoter can be interpreted as an overexpression promoter because it can cause overexpression of the gene of interest in the host cell.
  • the promoter in the first expression unit is not particularly limited. What is necessary is just to select suitably according to a desired expression time in the cell to introduce
  • the donor species from which the promoter is derived is not particularly limited as long as it is operable in the recipient host cell into which it is introduced.
  • operable means that it can function as a promoter and can express a target gene or the like. That is, the promoter in the first expression unit is determined by the host cell to be introduced. Preferably, it is a promoter derived from a species belonging to the same classification as the host into which the first expression unit is introduced. Promoters derived from species belonging to the same family are more preferred, and promoters derived from species belonging to the same genus are more preferred. Most preferred is a promoter from the same species as the host.
  • the promoter used in the first expression unit is preferably a promoter from the Lepidoptera, Bombycidae. More preferably, it is derived from a species belonging to the same genus of Bombyx such as mulberry (Bombyx mandarina). In this case, the most preferred promoter is a promoter derived from the same kind of silkworm.
  • the constitutively active ubiquitous promoter include actin 3 promoter derived from actin 3 gene (A3 promoter: SEQ ID NO: 20), silkworm heat shock protein 90 (hsp90 ) Gene-derived heat shock protein 90 promoter (hsp90 promoter: SEQ ID NO: 21), silkworm elongation factor 1 ⁇ (Elongation Factor-1 ⁇ ) gene-derived elongation factor 1 promoter (EF-1 promoter: SEQ ID NO: 22), and BmNPV (Bombyx and the first gene 1 promoter (ie-1 promoter: SEQ ID NO: 23) derived from the first gene 1 (ie-1: immediate-early gene 1) of mori nuclear polyhedrosis virus).
  • Examples of the expression-inducing ubiquitous promoter include the heat shock protein 70 promoter derived from the heat shock protein 70 (hsp70) gene (hsp70 promoter: SEQ ID NO: 24). Furthermore, specific examples of site-specific promoters include a 3xP3 gene promoter (3xP3 promoter: SEQ ID NO: 25) that expresses eye-specific expression, and a sericin 3 gene promoter (Ser3) that specifically expresses in the front part of the middle silk gland.
  • hsp70 heat shock protein 70 promoter derived from the heat shock protein 70
  • site-specific promoters include a 3xP3 gene promoter (3xP3 promoter: SEQ ID NO: 25) that expresses eye-specific expression, and a sericin 3 gene promoter (Ser3) that specifically expresses in the front part of the middle silk gland.
  • Promoter SEQ ID NO: 26), promoter of sericin 1 gene expressing middle silk gland-specific expression (Ser1 promoter: SEQ ID NO: 27), promoter of fibroin H gene expressing posterior silk gland-specific expression (Fib H promoter: SEQ ID NO: 28) ), Promoter of fibroin L gene (Fib L promoter: SEQ ID NO: 29), promoter of p25 gene (p25 promoter: SEQ ID NO: 30), promoter of 30K gene for fat body-specific expression (30K promoter: SEQ ID NO: 31) And the promoter of the elav like gene that is specifically expressed in the testis (e lav like promoter: SEQ ID NO: 32) and the like.
  • the cell or tissue specificity of a site-specific promoter depends in principle on the gene that the promoter was originally regulated.
  • the Ser1 gene is specifically expressed in the middle silk gland, and thus becomes a middle silk gland-specific promoter.
  • promoters known in the art can be used depending on the host into which the first expression unit is introduced.
  • examples of operable promoters include lac, trp or tac promoters, or phage-derived T7, T3, SP6, PR or PL promoters.
  • examples of operable promoters include a yeast glycolytic gene promoter, an alcohol dehydrogenase gene promoter, a TPI1 promoter, and an ADH2-4c promoter.
  • the “mother nucleus vector” is a base part of the first expression unit and has a configuration necessary for the first expression unit to function as a vector.
  • the type of vector is not particularly limited. Examples include plasmid vectors, viral vectors, cosmids, bacmids, fosmids, BACs, YACs and the like. A plasmid vector or a viral vector is preferred.
  • the mother nucleus vector may be appropriately selected according to the host into which the first expression unit is introduced. For example, when the host is E. coli, use plasmid vectors derived from E.
  • coli such as pBI, pPZP, pSMA, pUC, pBR, and pBluescript (Agilent technologies), and ⁇ phage vectors such as ⁇ gt11 and ⁇ ZAP. can do.
  • yeast plasmid vectors such as YEp13, YEp24, and YCp50 can be used.
  • insect virus vector such as baculovirus or a bacmid can be used.
  • a known vector having a mother nucleus of a viral vector such as an adenovirus, a retrovirus, a lentivirus, an adeno-associated virus, or the like can be used.
  • shuttle vectors that can be replicated in E. coli or yeast, vectors that can be homologously or non-homologously recombined in the chromosome, or various host-specific expression vectors that are commercially available from various manufacturers may be used.
  • Labeling gene is a gene that encodes a labeling protein that is a selective component in the first expression unit and is also called a selection marker or a reporter protein.
  • Labeled protein refers to a polypeptide that can determine the presence or absence of expression of a labeled gene based on its activity. The activity may be detected directly by the activity of the labeled protein itself or indirectly by a metabolite generated by the activity of the labeled protein such as a dye. Good.
  • Detection can be biological detection (including detection by binding of peptides or nucleic acids such as antibodies and aptamers), chemical detection (including enzymatic reaction detection), physical detection (including behavioral analysis detection), or detection It can be performed by human sensory detection (including detection by sight, touch, smell, hearing, and taste).
  • the marker gene is used for the purpose of discriminating the host cell or transformant carrying the first expression unit.
  • the type of labeled protein encoded by the labeled gene is not particularly limited as long as its activity can be detected by a method known in the art.
  • it is a labeled protein with low invasiveness to the transformant upon detection.
  • tag peptides, drug resistant proteins, chromoproteins, fluorescent proteins, photoproteins and the like can be mentioned.
  • a “tag peptide” is a short peptide consisting of several tens to several tens of amino acids that can label a protein, and is used for protein detection and purification. Usually, labeling is performed by linking a base sequence encoding a tag peptide to the 5 'end side or 3' end side of a gene encoding the protein to be labeled and expressing it as a chimeric protein with the tag peptide.
  • tag peptide include FLAG, HA, His, and myc.
  • Drug-resistant protein is a protein that imparts resistance to drugs such as antibiotics added to a medium or the like to cells, and many are enzymes. For example, ⁇ -lactamase that confers resistance to ampicillin, aminoglycoside 3 ′ phosphotransferase that confers resistance to kanamycin, tetracycline efflux transporter that confers resistance to tetracycline, chloramphenicol Examples include CAT (chloramphenicol acetyltransferase) that imparts resistance.
  • Chroprotein is a protein that is involved in pigment biosynthesis, or a protein that enables chemical detection of a transformant with a pigment by providing a substrate.
  • the “dye” here is a low molecular compound or peptide capable of imparting a dye to a transformant, and the kind thereof is not limited. Examples thereof include ⁇ -galactosidase (LacZ), ⁇ -glucuronidase (GUS), melanin pigment synthesis protein, omochrome pigment, or pteridine pigment.
  • dye which appears as an external color of an individual
  • Fluorescent protein refers to a protein that emits fluorescence of a specific wavelength when irradiated with excitation light of a specific wavelength. Either a natural type or a non-natural type may be used. Further, the excitation wavelength and the fluorescence wavelength are not particularly limited. Specifically, for example, CFP, RFP, DsRed (including derivatives such as 3xP3-DsRed), YFP, PE, PerCP, APC, GFP (including derivatives such as EGFP and 3xP3-EGFP), etc. It is done.
  • photoprotein refers to a substrate protein that can emit light without the need for excitation light or an enzyme that catalyzes the light emission of the substrate protein.
  • luciferin or aequorin as a substrate protein and luciferase as an enzyme can be mentioned.
  • exocrine protein refers to a protein that is secreted extracellularly or externally, and includes exocrine enzymes, fiber proteins such as fibroin, and sericin. Exocrine enzymes include digestive enzymes in addition to enzymes that contribute to the degradation or inactivation of drugs such as blasticidin and impart drug resistance to the host.
  • the marker gene is arranged in a state that can be expressed downstream of the promoter in the first and second expression units.
  • the marker gene is arranged in a state where it can be expressed in a state of being linked upstream or downstream of the target gene or independently of the target gene.
  • Terminator is a base sequence located at the 3 ′ end side of the chimeric gene consisting of the TAL region and the transcriptional active region, preferably downstream of the stop codon, and the terminator of the chimeric gene expressed by the promoter A sequence that can terminate transcription.
  • the type of terminator is not particularly limited. Preferably, it is a terminator derived from the same species as the promoter. For example, in the case of E. coli, lipopolyprotein lpp 3 ′ terminator, trp operon terminator, amyB terminator, ADH1 gene terminator, and the like can be used.
  • an hsp70 terminator comprising the base sequence represented by SEQ ID NO: 33, an SV40 terminator comprising the base sequence represented by SEQ ID NO: 34, etc.
  • a terminator paired with the promoter on the genome in the control of single gene expression is particularly preferred.
  • 5′UTR and 3'UTR “5′UTR (5′untranslated region)” and “3′UTR (3′untranslated region)” are polynucleotides composed of untranslated regions that do not themselves encode amino acids or functional nucleic acids.
  • the base sequence that constitutes each UTR is not limited.
  • 5′UTR is arranged upstream (5 ′ end side) of the start codon of the chimeric gene, and 3′UTR is arranged downstream (3 ′ end side) of the stop codon of the chimeric gene. .
  • the 3 ′ UTR can contain a poly A signal.
  • Enhancer An “enhancer” is a selective component in the first expression unit, and consists of a base sequence that can enhance the expression efficiency of a gene or a fragment thereof in a vector.
  • the kind and base sequence are not particularly limited.
  • Insulator is a selective component of the first expression unit, and stably controls transcription of the gene sandwiched between the sequences without being affected by the chromatin of surrounding chromosomes. It is a possible nucleotide sequence. Examples include the cHS4 sequence of chicken and the gypsy sequence of Drosophila.
  • Inverted terminal repeat sequences (ITRs) of transposon are selection structures that can be included when the first expression unit is an expression vector capable of homologous recombination. Is an element. Inverted terminal repeats are usually used in pairs. As a specific example of a transposon, piggyBac, mariner, minos, etc. can be used if the host is an insect (Shimizu, K. et al., 2000, Insect Mol. Biol., 9, 277-281; Wang W. et al., 2000, Insect Mol Biol 9 (2): 145-55).
  • the second expression unit includes a TAL recognition sequence and a target gene arranged under the control thereof, and additionally includes a mother nucleus vector as an essential component. Further, if necessary, selective components such as marker genes, terminators, enhancers, 5′UTR and 3′UTR, insulators and transposon inverted terminal repeats can also be included.
  • the TAL recognition sequence and the target gene will be described.
  • the mother nucleus vector and the selective components included in the second expression unit are the same as the corresponding components described in the first expression unit, and thus the description thereof is omitted here.
  • the "TAL recognition sequence” is a base sequence specifically recognized by the TAL domain of the chimeric protein encoded by the first expression unit.
  • the TAL domain of the first expression unit and the TAL recognition sequence of the second expression unit are in a one-to-one relationship, and a set of binary gene expression systems is configured by this relationship.
  • a plurality of different second expression units include a TAL recognition sequence that can be recognized by the TAL domain of one first expression unit, a one-to-many relationship is established, and the first expression unit has a plurality of second expression units. A pair can be formed with the expression unit.
  • the binding of the chimeric protein to the TAL recognition sequence activates the expression of the target gene or the like in which the transcriptional activation domain of the chimeric protein is placed under the control of the TAL recognition sequence. Therefore, the TAL recognition sequence in this specification can be said to be a gene expression regulatory region that can function as a promoter such as a target gene linked downstream.
  • the specific structure of the TAL recognition sequence is that the target base sequence of the TAL domain encoded by the first expression unit is 5 to 25, 5 to 20, 5 to 15, 5 to 10, 5 to 9, Alternatively, it consists of a repeating sequence containing 5 to 8.
  • a base sequence containing 5 to 25 target base sequences composed of a main target base sequence consisting of 5'-terminal t (thymine) followed by the base sequence represented by SEQ ID NO: 4 is applicable.
  • a more specific example is a repeating sequence in which 5 to 25 repeating units of the GAL4 recognition sequence consisting of the base sequence represented by SEQ ID NO: 9 are linked.
  • This sequence contains a UAS consisting of the base sequence represented by SEQ ID NO: 35, and is represented by the TAL domain encoded by the first expression unit having the base sequence represented by SEQ ID NO: 7 or 8 as the main target base sequence. Be recognized.
  • Target gene or fragment thereof is any gene or fragment thereof that is contained in the second expression unit and whose expression is to be enhanced by the binary gene expression system of the present invention. It is.
  • the kind of gene is not particularly limited, and can be a nucleic acid encoding a desired protein or peptide fragment thereof, or a nucleic acid encoding a functional nucleic acid.
  • target gene is a gene encoding a target protein, and may be any of a gene derived from a genome, a gene composed of cDNA, or a chimeric gene.
  • the “target gene fragment” is a nucleic acid fragment composed of a part of the base sequence of the target gene.
  • the base length of the nucleic acid fragment is not particularly limited.
  • the target gene may be a nucleic acid fragment lacking a region encoding a signal sequence, or may be a nucleic acid fragment consisting of only one domain or one motif in the target gene.
  • target gene etc. the target gene encoding the target protein or the DNA encoding the active fragment is collectively referred to as “target gene etc.”.
  • target gene etc. the above-mentioned target genes and the like include a chimeric gene comprising a TAL region and a transcriptional active region contained in the first expression unit, a target gene contained in the second expression unit, and the like. It is a superordinate concept.
  • the biological species derived from the target gene or the like may be different from the host biological species into which the second expression unit is introduced.
  • the target protein encoded by the second expression unit is a human-derived protein
  • the host into which the second expression unit is introduced is silkworm.
  • target protein is a desired protein encoded by a target gene. Regardless of the type of target protein. Either a structural protein or a functional protein may be used. Examples of structural proteins include fiber proteins such as collagen, actin, myosin, fibroin, keratin, histone, and the like.
  • Examples of functional proteins include peptide hormones (insulin, calcitonin, paratormon, growth hormone, etc.), cytokines (epidermal growth factor (EGF), fibroblast growth factor (FGF), interleukin (IL), interferon (IFN), Tumor necrosis factor ⁇ (TNF- ⁇ ), transforming growth factor ⁇ (TGF- ⁇ ), etc.), transcription factor (including GAL4), immunoglobulin, serum albumin, hemoglobin, enzyme and the like.
  • the target protein may be either a wild type protein or a mutant protein.
  • a mutant protein such as a gain-of-function type may be used.
  • the target protein or peptide fragment thereof may or may not have activity. This is because even an inactive mutant protein can impart a dominant negative effect to a host into which the gene expression vector of this embodiment has been introduced.
  • a protein having activity or an active peptide fragment thereof is usually preferred.
  • the “functional nucleic acid” refers to a specific biological function such as an enzyme function, a catalytic function, or a biological inhibition or enhancement function (for example, inhibition or enhancement of transcription, translation) in a living body or a cell.
  • the nucleic acid molecule which has. Specific examples include RNA interference agents, nucleic acid aptamers (RNA aptamers, etc.), ribozymes, U1 adapters, transcription factor binding regions, and the like.
  • An “RNA interference agent” is a substance that induces RNA interference (RNAi) (RNAi) in vivo and suppresses (silences) the expression of the gene through degradation of the target gene transcript.
  • shRNA short hairpin RNA
  • miRNA miRNA
  • pre-miRNA pre-miRNA
  • antisense RNA can be mentioned.
  • each target gene or the like may be a gene or the like encoding the same protein, or a gene or the like encoding a different protein.
  • each target gene or the like must be located within the control region range of the TAL recognition sequence.
  • a plurality of sets of expression units consisting of one TAL recognition sequence and one target gene may exist in the second expression unit.
  • the 2nd aspect of this invention is a transformant.
  • the transformant of this aspect includes in the cell the first expression unit and / or the second expression unit constituting the binary gene expression system described in the first aspect.
  • the transformant of the present invention facilitates maintenance of a strain containing any one expression unit constituting a binary gene expression system.
  • the expression of a target gene or the like contained in the second expression unit can be enhanced.
  • the expression timing and expression location of the target gene contained in the second expression unit of each system can be individually controlled.
  • the “transformant” refers to an introducer that includes the first expression unit and / or the second expression unit constituting the binary gene expression system according to the first aspect in the cell. More specifically, the first expression unit and / or the second expression unit constituting the binary gene expression system according to the first aspect (often abbreviated as “first and / or second expression unit” in the present specification). F1 individuals comprising two expression units obtained by mating transformants containing the first generation and its second generation or later progenies or their respective generation units, The second generation and later generations fall under this category.
  • the transformant is derived from the transformant of the present invention. Excluded.
  • host refers to a cell, tissue or individual into which the first and / or second expression unit of the binary gene expression system of the present invention is introduced.
  • the host of the transformant is not particularly limited in principle. However, when the first and / or second expression unit introduced into the cell can be replicated and the first and second expression units coexist, the target gene contained in the second expression unit is expressed. It must be possible.
  • the host may be any of bacteria, fungi, and animals (cells).
  • bacteria include Escherichia coli and Bacillus bacteria.
  • fungi include filamentous fungi, basidiomycetes, and yeast.
  • animals include invertebrates (including insects and crustaceans) and vertebrates (including fish, amphibians, reptiles, birds and mammals). Insects are preferable for the host, and lepidopterous insects are particularly preferable.
  • Lepidoptera refers to insects belonging to the taxonomic Lepidoptera, butterfly or moth.
  • the butterfly includes insects belonging to Nymphalidae, Papilionidae, Pieridae, Lycaenidae, and Hesperiidae.
  • the moths include Saturniidae, Bombycidae, Brahmaeidae, Eupterotidae, Lasiocampidae, Psychidae, Geometridae, and idae , Insects belonging to Noctuidae, Pyralidae, Sphingidae and the like.
  • the “progeny” is a transformant of the second generation or later obtained from the transformant of the first generation through asexual reproduction or sexual reproduction, and the binary gene expression of the first aspect
  • An individual holding the first and / or second expression unit constituting the system For example, in the case of a single-cell microorganism, a cell newly generated by division or budding from a transformant of the first generation or later (clone body), and a cell holding the first and / or second expression unit is applicable. To do.
  • it is an organism that carries out sexual reproduction, it is an individual newly generated by mating of the first generation or later gametes, an individual holding the first or second expression unit, or a trait of the first generation or later. This is an individual newly generated by joining gametes of the transformant and holding the first and second expression units.
  • the first and second expression units constituting the binary gene expression system of the first aspect in the transformant may exist transiently in the host cell, and are stable when introduced into the chromosome. And may exist continuously. Usually, it is preferable to exist stably and continuously.
  • the first and second expression units When the first and second expression units are integrated into the host cell chromosome, the first and second expression units may be present on the same chromosome or may be present on different chromosomes. When two expression units are allowed to coexist in the same host cell by mating with a host that is a transformant, each expression unit is preferably present on a different chromosome. When present on the same chromosome, it is desirable that the two expression units be incorporated distally so as not to be linked to each other.
  • the first and second expression units have the same type and separate hosts.
  • F1 A transformant having the two expression units can be easily obtained.
  • the host into which the first or second expression unit is introduced is an individual, tissue or cell (including cell lines). Preferred hosts are individuals. When introduced into a cell or tissue, the stage of development of the collected individual is not particularly limited. When introduced into an individual, there are no particular limitations on the generation stage or sex, and any stage in the growth process may be used. Preferably, it is an embryonic time when a higher effect can be expected.
  • the method for introducing each expression unit may be performed according to a transformation method known in the art depending on the host to be introduced.
  • a heat shock method for example, a calcium ion method (for example, a calcium phosphate method), an electroporation method, or the like may be used.
  • a calcium ion method for example, a calcium phosphate method
  • an electroporation method or the like
  • yeast the lithium method, electroporation method or the like may be used.
  • each unit is a transposon inverted terminal repeat (ITRs) (Handler AM. Et al., 1998, Proc. Natl. Acad. Sci. USA 95: 7520-5)
  • ITRs transposon inverted terminal repeat
  • the method of Tamura et al. (Tamura T. et al., 2000, Nature Biotechnology, 18, 81-84) can be applied.
  • the first or second expression unit diluted to an appropriate concentration may be injected into an early embryo of a silkworm egg together with a helper vector having a transposon transferase gene.
  • a helper vector having a transposon transferase gene.
  • pHA3PIG can be used as the helper vector.
  • the target transformant can be easily selected based on the expression of the gene or the like.
  • the expression unit is integrated into the chromosome via the transposon inverted terminal repeat sequence. If necessary, this transgenic silkworm may be sibling or inbred to obtain a homozygous nuclear expression unit inserted into the chromosome.
  • the lipofectin method PNAS, 1989, Vol. 86, 6077; PNAS, 1987, Vol. 84, 7413
  • electroporation method calcium phosphate method (Virology, 1973, Vol. 52). 456-467), DEAE-Dextran method and the like are preferably used, but not limited thereto.
  • the 3rd aspect of this invention is a production method of a gene expression enhancement individual.
  • the production method of the present invention is a method for producing an F1 transformant containing both the first and second expression units in the binary gene expression system of the first embodiment.
  • the obtained transformant can enhance the expression of a target gene or the like included in the second expression unit.
  • the production method of the present invention includes a mating step and a selection step as essential steps. Hereinafter, each step will be described.
  • Mating Step is a step of mating a transformant having only the first expression unit described in the second embodiment with a transformant having only the second expression unit.
  • a transformant having the first expression unit and a transformant having the second expression unit may be crossed based on a conventional method.
  • the transformant having each expression unit is preferably subjected to sibling mating or inbred mating in advance and homozygous for each expression unit.
  • the “selection step” is a step of selecting an individual having the first and second expression units. This step can be achieved by selecting individuals having both expression units from the F1 individuals obtained after the mating step, based on the activity of the labeled protein encoded by each expression unit.
  • Example 1 Expression efficiency of target gene by first expression unit recognizing UAS (1)> (the purpose) In order to construct the binary gene expression system of the present invention, various first expression units encoding TAL domains that recognize UAS are constructed, and the expression efficiency of the target gene with respect to the second expression unit is verified.
  • TAL recognition region UASTAL1 which has this unit as the target base sequence, targets 20 bases that are shifted by 5 bases on the 3 'end side of the GAL4 recognition sequence so that the 5' end side of the target base sequence is T.
  • Cloning of the TAL region was performed in accordance with the method of Cermak et al. (Cermak T., et al., 2011, Nucleic Acids Res 39: e82) using the Golden gate assembly kit (Addgene).
  • the obtained vectors were designated as “pBlue-UASTAL1”, “pBlue-UASTAL2”, and “pBlue-UASTAL3” (in this specification, these are collectively referred to as “pBlue-UASTAL (1-3)”. To do).
  • pBlue-UASTAL (1-3) was digested with BamHI and XhoI to remove the region encoding the FokI nuclease domain.
  • a BamHI-XhoI adapter obtained by annealing BamXho_ad_U consisting of the base sequence represented by SEQ ID NO: 36 and BamXho_ad_L consisting of the base sequence represented by SEQ ID NO: 37 was inserted into the BamHI / XhoI site.
  • the obtained vector was designated as “pBlue-UASTAL (1-3) -BamHI-XhoIad”.
  • the restriction enzyme site in the N-terminal region in the TAL region was modified by PCR. Specifically, amplification was performed by PCR using TAL_N_BsmBI_U (SEQ ID NO: 38) and TAL_N_L (SEQ ID NO: 39) as primers and pBlue-TAL as a template. PCR was performed using KOD plus (TOYOBO), and the composition of the reaction solution was in accordance with the standard method described in the attached protocol. The PCR cycle conditions were 12 cycles, with 94 ° C for 30 seconds and 68 ° C for 60 seconds as one cycle.
  • the obtained amplification product was digested with SnaBI and AgeI, and then inserted into the SnaBI / AgeI site of pBlue-UASTAL (1-3) -BamHI-XhoIad.
  • the obtained vector was designated as “pBlue-Bsm-UASTAL (1-3) -BamHI-XhoIad”.
  • the full length of the transcriptional activation domain of GAL4 was linked to the C-terminus of the TAL2 region.
  • BsmBI_GAL4_U30 SEQ ID NO: 40
  • BsmBI_GAL4_L30 SEQ ID NO: 41
  • pBac Ser1-GAL4 / 3xP3-DsRed
  • the full length of the GAL4 gene was amplified by PCR.
  • the obtained amplification product was inserted into pZErO-2 (life technologies).
  • the specific method was based on the method described in Tatematsu et al. (Tatematsu K, et al., 2010; mentioned above).
  • the obtained vector was designated as “GAL4 / pZero2”.
  • GAL4 / pZero2 was digested with ClaI and XhoI to obtain GAL4AD-ClaI-XhoI containing a region encoding the GAL4 transcriptional activation domain.
  • GAL4AD-ClaI-XhoI was inserted into the ClaI / XhoI site.
  • the obtained vector was designated as “pBlue-Bsm-UASTAL (1-3) -GAL4AD”.
  • pBlue-Bsm-UASTAL (1-3) -GAL4AD was digested with SnaBI and XhoI, and the obtained SnaBI-XhoI fragment was inserted into the EcoRV / XhoI site of pIB / V5-His (life TM technologies).
  • pIB / V5-His has an OplE2 promoter and terminator, and the EcoRV / XhoI site is located between them.
  • the obtained first expression unit was designated as “UASTAL (1-3) -GAL4AD / pIB”.
  • the second expression unit used in this example has the same basic structure as the UAS line of the GAL4 / UAS system, and a luciferase gene is linked as a target gene downstream of the UAS repeat. It has a structure.
  • SerUAS cassette consisting of UAS repeat and 3'UTR of sericin 1 gene, serUASPCRU (SEQ ID NO: 42) and serPolyALSpe (SEQ ID NO: 43) as primers, pBac [SerUAS / 3xP3EGFP] (Tatematsu K, et al., 2010) , Transgenic research, 19: 473-87) was used as a template and amplified by PCR.
  • PCR was performed using KOD plus (TOYOBO), and the composition of the reaction solution was in accordance with the standard method described in the attached protocol.
  • the PCR cycle conditions were 12 cycles, with 94 ° C for 30 seconds and 68 ° C for 60 seconds as one cycle.
  • the obtained amplification product was inserted into the EcoRV site of pBluescript SKII- (Agilent Technologies). The obtained vector was designated as “pB-SerUAS”.
  • the firefly luciferase gene was amplified by PCR using Bln-luc U (SEQ ID NO: 44) and Bln-luc L (SEQ ID NO: 45) as primers and pGL3 (Promega) as a template. PCR conditions were in accordance with the above conditions. After digesting the amplified product with BlnI, the obtained BlnI fragment was inserted into the BlnI site of pB-SerUAS to obtain the second expression unit “pUAS-fLuc”.
  • Luciferase assay In order to examine the transcription activation ability of the first expression unit, a luciferase assay was performed on silkworm cultured cells.
  • the first expression unit UASTAL (1-3) -GAL4AD / pIB and the second expression unit pUAS-fLuc were transfected into silkworm cultured cells BmN4 together with pRL-TK (Promega: for internal standard).
  • pRL-TK Promega: for internal standard.
  • the transcriptional activation ability of GAL4 lines in the conventional GAL4 / UAS system was also measured.
  • the UAS line in the positive control is the same as the second expression unit.
  • luciferase activity was measured by dual-luciferase assay (Promega) according to the attached protocol.
  • the results are shown in lanes 2 to 4 of FIG.
  • the positive control (GAL4 / UAS system GAL4 line) is lane 1. It was clarified that the transcriptional activation ability decreased in all cases of UASTAL1 to 3 compared to the positive control only by linking the full-length coding region of GAL4AD to the TAL region. This may have been caused by the steric hindrance of UASTAL caused by the target recognition sequence being a simple repeat sequence.
  • Example 2 Expression efficiency of target gene by first expression unit recognizing UAS (2)> (the purpose)
  • first expression unit of Example 1 transcription activation ability exceeding the conventional GAL4 / UAS system could not be obtained.
  • a new first expression unit with a shortened transcriptional active domain is constructed, and the expression efficiency of the target gene with respect to the second expression unit is verified again.
  • ARII is the minimal active unit (transcriptional activity unit) located on the C-terminal side of the GAL4 transcriptional activation domain
  • VP16 is the transcriptional activation domain of herpes simplex virus VP16.
  • UASTAL3 which had the highest transcription activation ability in Example 1
  • UASTAL2 which had the next highest transcription activation ability
  • the amplified product was digested with BamHI, and the obtained BamHI fragment was inserted into the BamHI site of pBlue-Bsm-UASTAL (2-3) -BamHI-XhoIad prepared in Example 1.
  • the obtained vector was designated as “pBlue-Bsm-UASTAL (2-3) -ARII”.
  • the BamHI fragment was re-inserted into the BamHI site of pBlue-Bsm-UASTAL (2-3) -ARII to make ARII a tandem.
  • the obtained vector was designated as “pBlue-Bsm-UASTAL (2-3) -ARIIx2”.
  • pBlue-Bsm-UASTAL (2-3) -ARII and “pBlue-Bsm-UASTAL (2-3) -ARIIx2 were digested with SnaBI and XhoI, respectively, and the SnaBI-XhoI fragment was pIB / V5-His (life technologies)
  • the first expression units obtained by inserting into the EcoRV / XhoI site were designated as “UASTAL (2-3) -ARII / pIB” and “UASTAL (2-3) -ARIIx2 / pIB”.
  • VP16 region a region encoding VP16 consisting of the amino acid sequence represented by SEQ ID NO: 18 (VP16 region; SEQ ID NO: 19) was designated as BamHI VP16 U (SEQ ID NO: 48) and Bgl VP16operon L ( SEQ ID NO: 49) was used as a primer, and the artificially synthesized gene was used as a template to amplify by PCR. The artificially synthesized gene was commissioned to Eurofin Genomics Co., Ltd. based on the base sequence represented by SEQ ID NO: 19.
  • the positive control (GAL4 of GAL4 / UAS system) is lane 1.
  • Lanes 5 and 6 are UASTAL2-ARII / pIB and UASTAL2-ARIIx2 / pIB
  • Lanes 7 and 8 are UASTAL3-ARII / pIB and UASTAL3-ARIIx2 / pIB, respectively
  • lanes 9 and 10 are UASTAL3-VP16 / pIB, respectively.
  • UASTAL3-VP16x2 / pIB The positive control (GAL4 of GAL4 / UAS system) is lane 1.
  • Lanes 5 and 6 are UASTAL2-ARII / pIB and UASTAL2-ARIIx2 / pIB
  • lanes 7 and 8 are UASTAL3-ARII / pIB and UASTAL3-ARIIx2 / pIB, respectively
  • lanes 9 and 10 are UASTAL3-VP
  • Fig. 3 shows that UASTAL2, which recognizes the 19-base TAL region, showed only about 30% of the transcriptional activation ability of GAL4 even when two ARIIs were linked (lane 6).
  • UASTAL3, which recognizes 13 bases in the TAL region showed about 2.5 times the transcriptional activation ability of GAL4 when two ARIIs were linked (lane 8).
  • the transcriptional activation domain of VP16 was used, when two were linked, the transcriptional activation ability was 7 times or more (lane 10).
  • Example 3 Expression efficiency of target gene by first expression unit recognizing UAS (3)> (the purpose) In order to further improve the expression efficiency of the binary gene expression system of the present invention using the first expression unit constructed in Example 2, the number (repetition number) of ARII and VP16, which are transcription activity units of the first expression unit, and transcription activation Verify the relationship between Noh.
  • Each vector was digested with SnaBI and XhoI, the SnaBI-XhoI fragment was inserted into the EcoRV / XhoI site of pIB / V5-His (life technologies), and the first expression unit was “UASTAL2-ARIIx (3-6) / pIB” It was. Construction of UASTAL3-VP16 (xX) (where “X” is an integer of 3 to 6) The basic method was in accordance with the construction of Example 2 and UASTAL3-ARII (xX). The first expression unit obtained here was designated as “UASTAL2-VP16x (3-6) / pIB”.
  • the results are shown in lanes 2 to 13 of FIG.
  • the positive control (GAL4 / UAS system GAL4) is lane 1.
  • the values in the figure are relative values when the measured value of GAL4 is 1.
  • Lanes 2 to 7 are the results using the first expression unit in which one, two, three, four, five and six ARIIs are connected, and lanes 8 to 13 each have 1 VP16.
  • the results were obtained using the first, second, third, fourth, fifth and sixth linked first expression units.
  • Optimal number of bases of target base sequence> (the purpose) The relationship between the number of bases of the target base sequence of the second expression unit recognized by the TAL domain encoded by the first expression unit and the transcription activity efficiency is verified.
  • the construction of the first expression unit basically followed the method described in the first example. However, in this example, based on UASTAL3 with 14 bases in the target base sequence, the target base sequence is extended to 20 bases on the 3 ′ side on the GAL4 recognition sequence consisting of the base sequence shown in SEQ ID NO: 9 one by one. 6 kinds of TAL regions, namely UASTAL4 (15 bases of target base sequence), UASTAL5 (16), UASTAL6 (17), UASTAL7 (18), UASTAL8 (19), and A first expression unit with UASTAL2 was made. The UASTAL2 TAL region constructed in Example 1 was diverted to the first expression unit having 20 bases in the target base sequence. The same pUAS-fLuc as in Example 1 was used as the second expression unit.
  • the luciferase assay was in accordance with the method described in Example 1. As a positive control, the transcriptional activation ability of GAL4 lines in the conventional GAL4 / UAS system was also measured.
  • Example 5 Sequence specificity of binary gene expression system> (the purpose) The target base sequence specificity of the TAL domain encoded by the first expression unit is verified.
  • the first expression unit is the first expression unit containing UASTAL3-ARIIx2 constructed in Example 2, and the second expression unit is the TAL recognition sequence constructed in Example 1 as UAS.
  • the second expression unit containing UAS-fLuc whose target gene is a gene was used as a base.
  • the cloning of the TAL region was performed in the same manner as in Example 1 using the Golden gate assembly kit (Addgene) according to the method of Cermak et al. (Cermak T, Et et al, 2011, Nucleic Acids Res 39: e82).
  • the first expression units UASTAL4-ARII / pIB and UASTAL4m2-ARIIx2 / pIB containing the TAL region were in accordance with the method described in Example 2.
  • the second expression unit containing UAS4-fLuc, UAS4m2-fLuc, and UAS4m4-fLuc is represented by BsmBISer1UTR U consisting of the base sequence represented by SEQ ID NO: 19 and SEQ ID NO: 50 at the PstI-HindII site of pUAS-fLuc.
  • BsmSer1UTR adapter formed by annealing BsmBISer1UTR L consisting of the base sequence consisting of UAS4U consisting of the base sequence represented by SEQ ID NO: 51 and the base sequence represented by SEQ ID NO: 52 at the BsmBI site of the vector UAS4U / UAS4L formed by annealing UAS4L, UAS4Um2 composed of the base sequence represented by SEQ ID NO: 53, and UAS4m2L composed of the base sequence represented by SEQ ID NO: 54, UAS4m2U / UAS4m2L formed by annealing, or SEQ ID NO: 55 5 UAS4m4U / UAS4m4L, each of which is annealed from UAS4Um4 consisting of the base sequence and UAS4m4L consisting of the base sequence represented by SEQ ID NO: 56, are connected. Ri returned inserted.
  • Example 6 Expression efficiency of binary gene expression system in transgenic silkworm (1)> (the purpose) In Examples 2 to 5, the expression efficiency of the binary gene expression system of the present invention was verified using cultured silkworm cells. Therefore, in this example, the expression efficiency of the binary gene expression system of the present invention when a transgenic silkworm is used is verified.
  • PCR was performed to introduce the BsmBI site downstream of the UAS.
  • UASx5 was amplified by PCR using serUASPCRU (SEQ ID NO: 42) and BlnBsmSerKL (SEQ ID NO: 57) as primers and pBac [SerUAS / 3xP3EGFP] (described above) as a template.
  • PCR conditions were the same as in Examples 2 and 3.
  • the amplified product was digested with BglII and BlnI, and the resulting BglII-BlnI fragment was inserted into the BglII-BlnI site of pB-SerUAS (described above). This vector was designated as “Bsm-SerUAS cassette”.
  • the pBlue-Bsm-UASTAL3-ARII, pBlue-Bsm-UASTAL3-ARIIx4, and pBlue-Bsm-UASTAL3-ARIIx6 prepared in Examples 2 and 3 were digested with BsmBI and XbaI, and the obtained BsmBI-XbaI fragments were Bsm- It was inserted into the BsmBI-BlnI site of the SerUAS cassette. Subsequently, SnaBI and XbaI were digested to obtain a SnaBI-XbaI fragment containing UASTAL3-ARII and the like.
  • pBac [Ser1-GAL4 / 3xP3-DsRed] was similarly digested with SnaBI and XbaI to replace the SnaBI-XbaI fragment containing the GAL4 gene and the SnaBI-XbaI fragment containing UASTAL3-ARII and the like.
  • pBac [Ser1-UASTAL3-ARIIx4 / 3xP3-DsRed] are expressed as first expression units that specifically induce expression in the middle silk gland.
  • UASTAL3-ARIIx6 / 3xP3-DsRed] was obtained. Construction of Ser1p-UASTAL3-VP16 (xX) (where “X” is 3 or 6) A first expression unit of UASTAL3-VP16 linked to the sericin 1 promoter, which is a central silk gland specific promoter, was constructed. The basic method was performed according to the construction method of Ser1p-UASTAL3-ARII (xX).
  • UAS-EGFP second expression unit A base sequence (SEQ ID NO: 59) encoding a sericin 1 gene secretion signal (SEQ ID NO: 58) downstream of UAS, and an additional base sequence for cloning added to the 3 ′ end side thereof PBacSerUAS-ser_sigEGFP / 3xP3EGFP was constructed by binding the EGFP gene (SEQ ID NO: 62) as the target water-soluble peptide DNA and linking sericin 1 3'UTR (SEQ ID NO: 63) downstream thereof. .
  • the silkworm strain used was the w1-pnd strain of white-eye, white egg, and non-dormant strain maintained by the National Institute of Agrobiological Sciences as the host strain. Breeding conditions were in a breeding room at 25-27 ° C., and all larvae were reared with artificial feed (silk mate species 1-3 years old S, Japanese agricultural industry). The artificial diet was changed every 2-3 days (Uchino K. et al., 2006, J Insect Biotechnol Sericol, 75: 89-97).
  • transgenic silkworms were produced according to the method of Tamura et al. (Tamura T. et al., 2000,, Nature Biotechnology, 18, 81-84).
  • the middle silk gland-specific first subunit and the UAS-EGFP second subunit are respectively converted into helper plasmids pHA3PIG (Tamura T. et al., 2000,, Nature Biotechnology, 18, 81-84) expressing transposase and 1 : 1 mix and injected into silkworm eggs 2-8 hours after spawning.
  • PBac Seru U. et al.
  • PBac Seru U. et al., 2000, Nature Biotechnology, 18, 81-84
  • PBac was used as a control for the first expression vector.
  • Eggs after injection were incubated in a humidified state at 25 ° C. until hatched. The hatched larva was bred by the above method and brother-sister mating was performed.
  • the obtained eggs were selected based on the presence or absence of eye fluorescence with the 3xP3 DsRed2 marker for the first subunit and the 3xP3EGFP marker for the second subunit, and the first and second subunits of the transgenic silkworm of the present invention were selected.
  • Each line was obtained.
  • a strain having both the first subunit and the second subunit is crossed, and a strain having both expression units in one individual is selected based on the presence or absence of eye fluorescence by the 3xP3EGFP marker and the 3xP3DsRed2 marker, and the middle silk gland.
  • the concentration of EGFP protein in the water-soluble protein contained in the supernatant was measured with Reacti-Bind Anti-GFP Coated Plates (PIERCE). Specifically, 100 ⁇ L of the supernatant was added to Reacti-Bind Anti-GFP Coated Plates and allowed to stand at room temperature for 1 hour. After washing with PBS / 0.05% Tween 20 three times, horseradish peroxidase-conjugated anti-GFP antibody (Rockland Immunochemicals) was added and allowed to stand at room temperature for 1 hour.
  • PIERCE Reacti-Bind Anti-GFP Coated Plates
  • Example 7 Cytotoxicity of binary gene expression system in transgenic silkworm> (the purpose) In the GAL4 / UAS system, the first expression unit containing GAL4 is cytotoxic to the host. Therefore, the cytotoxicity of the first expression unit in the host in the binary gene expression system of the present invention is verified.
  • Example 4 w1-pnd strain having the first expression unit pBac [Ser1-GAL4 / 3xP3-DsRed] and w1-pnd strain having pBac [Ser1-UASTAL3-ARIIx4 / 3xP3-DsRed] as transgenic silkworms
  • pBac Ser1-UASTAL3-ARIIx4 / 3xP3-DsRed
  • the amount of protein in the middle silk gland of each transgenic silkworm was detected by SDS-PAGE. Specifically, the middle silk gland was extracted from the larvae of the 5th instar of each transgenic silkworm. The middle silk gland was placed in 5 mL of 20 mM Tris-HCl (pH 8.0) / 8 M urea / 2% SDS / 25 mM DTT, and shaken overnight at room temperature to extract the silk gland protein. 27.5 ⁇ L of H 2 O, 12.5 ⁇ L of NuPAGE LDS Sample Buffer (life technologies) and 5 ⁇ L of NuPAGE Sample Reducing Agent (life technologies) were added to 5 ⁇ L of silk gland protein, and heated at 70 ° C. for 10 minutes to form SDS. The SDS sample was electrophoresed on a 4% SDS-PAGE gel and then stained with CBC.
  • FIG. 8 shows the results of cocoon layer weight, management rate, and chemical yield
  • FIG. 9 shows the results of SDS-PAGE
  • FIG. 8A shows the cocoon layer weight
  • FIG. 8B shows the management rate
  • FIG. 8C shows the conversion rate.
  • GAL4 is expressed in the middle silk gland
  • the cytotoxicity of GAL4 decreases the cocoon layer weight, the yield, the chemical yield, and the expression level of sericin 1 expressed in the middle silk gland. It has been.
  • (Ser1-UASTAL3-ARIIx4) having the first expression unit pBac [Ser1-UASTAL3-ARIIx4 / 3xP3-DsRed] of the present invention compared with GAL4, has a fold layer weight, a ligation rate, a chemical yield, and It was revealed that the expression level of sericin 1 significantly recovered. This suggests that UASTAL3-ARIIx4 of the present invention is less cytotoxic to the host than GAL4.
  • the decrease in the layer thickness and the management rate is an obstacle to recovering the target protein from the paddy.
  • a decrease in the chemical yield makes it difficult to maintain the strain of the transgenic silkworm, and a decrease in the protein amount of sericin 1 means a decrease in the gene expression efficiency of the cells. Therefore, it is suggested that the first expression unit of the present invention in which these phenomena are recovered as compared with GAL4 is suitable for the expression of the recombinant gene in the transgenic silkworm.
  • Example 8 Control according to tissue of binary gene expression system in transgenic silkworm> (the purpose) It is verified that the binary gene expression system of the present invention can function for each tissue in the silkworm organism.
  • the first expression unit specific to the middle silk gland is pBac [Ser1-UASTAL4 in which UASTAL4-ARIIx4 is linked to the sericin 1 promoter, which is the middle silk gland-specific promoter. -ARIIx4 / 3xP3-DsRed].
  • the specific construction method of Ser1-UASTAL4-ARIIx4 is the same as that of Ser1-UASTAL3-ARIIx4 described in “(1) Middle silk gland specific first expression unit” in Example 6, and construction of UASTAL4 was performed. According to the method described in Example 5.
  • UASTAL4 recognizes UAS4 as shown in the result of FIG.
  • the first posterior silk gland-specific first expression unit was pBac [FibH-UASTAL4m2-ARIIx4 / A3-KMO] in which UASTAL4m2-ARIIx4 was linked to the fibroin H promoter, which is a posterior silk gland-specific promoter.
  • pBac [FibH-UASTAL4m2-ARIIx4 / A3-KMO]
  • pBac [FibH-UASTAL4m2-ARIIx4 / 3xP3-DsRed] was first prepared.
  • FibH-UASTAL4m2-ARIIx4 The specific construction method of FibH-UASTAL4m2-ARIIx4 is the same as that of Ser1-UASTAL3-ARIIx4 described in “(1) Central silk gland-specific first expression unit” in Example 6, and construction of UASTAL4 was performed. According to the method described in Example 5.
  • the fibroin H promoter was constructed based on SEQ ID NO: 28.
  • A3-KMO a selectable marker, was obtained by PCR using the A3 promoter-KMO-SV40polyA additional sequence from pBac [A3KMO, UAS] (Kobayashi I., et al., 2007, J. Insect Biotechnol Sericol, 76: 145-48). Amplified to produce A3-KMO marker.
  • the second expression unit that forms a pair with the first expression unit specific to the middle silk gland is the EGFP gene (SEQ ID NO. 62) was ligated, and pBacUAS4-EGFP / 3xP3EYFP was obtained by ligating the 3′UTR of sericin 1 (SEQ ID NO: 63) downstream thereof.
  • pBacUAS4-EGFP / 3xP3EYFP first, pBacUAS4-EGFP / 3xP3EGFP was prepared.
  • the specific construction method of pBacUAS4-EGFP was based on the method of pBacSerUAS-ser_sigEGFP / 3xP3EGFP described in “(1) Middle silk gland-specific first expression unit” in Example 6.
  • 3xP3EYFP was prepared according to the method described in Tada M. et al., 2015 ,. MAbs. 7 (6): 1138-1150. Thereafter, the 3xP3EGFP marker of pBacUAS4-EGFP / 3xP3EGFP was replaced with 3xP3EYFP to obtain the desired pBacUAS4-EGFP / 3xP3EYFP.
  • the second expression unit paired with the posterior silk gland-specific first expression unit is a pBacUAS4m2-DsRed in which the DsRed gene as the target protein gene is linked downstream of UAS4m2, and the 3'UTR of sericin 1 is linked downstream of it. / 3xP3AmCyan.
  • pBacUAS4m2-DsRed / 3xP3AmCyan first, pBacUAS4m2-DsRed / 3xP3EGFP was prepared.
  • the specific construction method of pBacUAS4m2-DsRed was based on the pBacSerUAS-ser_sigEGFP / 3xP3EGFP method described in Example 6, “(1) Middle silk gland-specific first expression unit”.
  • the specific construction method of 3xP3-AmCyan was prepared according to the method described in Tada M. et al., 2015, MAbs. 7 (6): 1138-1150. Thereafter, the 3xP3EGFP marker of pBacUAS4m2-DsRed / 3xP3EGFP was replaced with 3xP3AmCyan to obtain the target pBacUAS4m2-DsRed / 3xP3AmCyan.
  • transgenic silkworms Two sets of binary gene expression systems, ie, pBac [Ser1-UASTAL4-ARIIx4 / 3xP3-DsRed] and second expression, which are the first expression units of the middle silk gland specific binary gene expression system PBacUAS4-EGFP / 3xP3EYFP as a unit, pBac [FibH-UASTAL4m2-ARIIx4 / A3-KMO] as the first expression unit of the posterior silk gland specific binary gene expression system, and pBacUAS4m2 as the corresponding second expression unit -A total of 4 expression units of -DsRed / 3xP3AmCyan were introduced into silkworms to produce transgenic silkworms.
  • the production of the transgenic silkworm was in accordance with the method of “(3) Production of transgenic silkworm” described in Example 6.
  • RNA is prepared from each by a conventional method.
  • EGFP primer pair SEQ ID NOs: 64 and 65
  • DsRed RT-PCR was performed using a primer pair (SEQ ID NO: 66 and 67).
  • a negative control a host strain (w1-pnd strain) without a binary gene expression system was used.
  • FIG. 10-1 shows a fluorescence diagram of the silk gland of a transgenic silkworm having two sets of binary gene expression systems.
  • the middle silk gland specific binary gene expression system encoded the EGFP gene as the target protein gene
  • the posterior silk gland specific binary gene expression system encoded the DsRed gene as the target protein gene. It was confirmed that EGFP was expressed only in the middle silk gland, and DsRed was expressed only in the posterior silk gland. Furthermore, as is clear from DF and GI, the expression control of EFGP and DsRed is remarkable at the boundary between the middle and posterior silk glands, and there is a leakage of expression between the two at the fluorescence level. There wasn't.
  • Fig. 10-2 shows the results of RT-PCR. Only the amplified fragment of the EGFP gene was confirmed from the middle silk gland of lane 1, and only the amplified fragment of the DsRed gene was confirmed from the rear silk gland of lane 2. From these results, there was no leakage of EGFP and DsRed expression specifically expressed in the middle and posterior silk glands even at the gene expression level.
  • the binary gene expression system of the present invention can control the expression of each target gene of a different set in a silkworm organism in a tissue-specific manner.
  • Example 9 Expression efficiency of binary gene expression system in transgenic silkworm (2)> (the purpose)
  • Example 6 the expression efficiency in the middle silk gland by the binary gene expression system of the present invention in the silkworm organism was verified.
  • the expression efficiency in the posterior silk gland by the binary gene expression system of the present invention in the silkworm organism is verified.
  • UAS-EGFP second expression unit pBacUAS-sigEGFP / 3xP3EYFP was constructed by binding the EGFP gene downstream of UAS4 and linking sericin 1 3 ′ UTR downstream thereof.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Cell Biology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The present invention addresses the problem of developing and providing a novel gene expression system with which it is possible to improve the expression efficiency of a gene of interest and to individually control the expression of multiple introduced genes of interest in a desired timeframe and/or tissue, the gene expression system also having low cytotoxicity for the host. Provided is a binary gene expression system comprising: a first expression unit that includes a promoter, a TAL region, and a transcription activity region; and a second expression unit that includes a TAL recognition sequence and a gene of interest or fragment thereof placed under the control of the TAL recognition sequence.

Description

バイナリー遺伝子発現システムBinary gene expression system
 本発明は、バイナリー遺伝子発現システム及びそれを含む形質転換体、並びにその形質転換体を交配して得られる遺伝子発現増強個体の作出方法に関する。 The present invention relates to a binary gene expression system, a transformant containing the same, and a method for producing a gene expression enhanced individual obtained by mating the transformant.
 近年、遺伝子組換えカイコ(Bombyx mori)を用いた有用タンパク質生産、遺伝子機能解析、及び医療用モデルカイコの作出等の研究が飛躍的に進展している。例えば、カイコの絹糸腺は、大量のタンパク質を短期間に合成できる能力を有することから、その性質を利用した遺伝子組換えカイコが試薬用タンパク質、臨床検査用試薬、及び化粧品用タンパク質等の有用タンパク質生産系として既に実用化されている。また、他の生物種のフェロモンを受容できるように改変した遺伝子組換えカイコを脳神経研究用に活用する等、カイコの特性と分子生物学的技術を組み合わせた実験動物としての利用も活発化している(非特許文献1)。 In recent years, research on production of useful proteins using genetically modified silkworms (Bombyx 、 mori), gene function analysis, and creation of medical model silkworms has progressed dramatically. For example, the silk gland of silkworm has the ability to synthesize a large amount of protein in a short period of time, and therefore, genetically modified silkworms using the properties are useful proteins such as protein for reagents, reagents for clinical testing, and proteins for cosmetics. It has already been put into practical use as a production system. In addition, the use of genetically modified silkworms modified to accept pheromones of other species for cranial nerve research has been actively used as experimental animals that combine the characteristics of silkworms with molecular biological techniques. (Non-Patent Document 1).
 しかし、目的遺伝子の発現効率をさらに向上させるためや、複数の目的遺伝子の発現を個別に時間的、又は空間的に制御するためには、より高度化した遺伝子発現システムの確立が必要となっている。 However, in order to further improve the expression efficiency of the target gene or to control the expression of multiple target genes individually in time or space, it is necessary to establish a more sophisticated gene expression system. Yes.
 従来、遺伝子組換えカイコを用いて目的遺伝子を発現させる場合、主にGAL4/UASシステムが用いられてきた(非特許文献2)。このシステムは、GAL4系統とUAS系統の2系統で構成される。GAL4系統は、適当なエンハンサーやプロモーターの制御下に配置された転写因子をコードするGAL4遺伝子を有し、またUAS系統はGAL4の認識配列であるUASとその制御下に配置した目的遺伝子を有する。UAS系統は、単独では目的遺伝子を発現しないが、交配等によって一個体がこの2系統を包含した場合、GAL4系統のエンハンサーやプロモーターが活性化された細胞で、転写因子GAL4が発現し、それがUASに結合することで目的遺伝子が発現する。このGAL4/UASシステムを改良することで、現在では目的遺伝子の発現効率を10倍近くまで向上させることが可能となっている(非特許文献3)。また、このシステムでは、これまでに構築してきた種々の時期特異的又は組織特異的に発現するGAL4系統や、様々な遺伝子を発現するUAS系統が遺伝子資産として蓄積されており、一方の系統を改良した場合でも、他方の系統は、既存の系統をそのまま活用できるという利点がある。しかしながら、GAL4/UASシステムで発現効率をさらに向上させるためには、従来の方法とは全く異なる新たな改良を導入する必要がある。また、このシステムには、複数の遺伝子を導入した場合、全ての遺伝子が同時期に同組織でしか発現されないため、発現時期や発現場所を個々の遺伝子で制御することができないという問題や、GAL4系統が宿主に対して細胞毒性を示すという問題を抱えている。 Conventionally, the GAL4 / UAS system has been mainly used to express a target gene using transgenic silkworms (Non-patent Document 2). This system consists of two systems, GAL4 and UAS. The GAL4 strain has a GAL4 gene encoding a transcription factor placed under the control of an appropriate enhancer or promoter, and the UAS strain has a UAS that is a recognition sequence for GAL4 and a target gene placed under its control. The UAS line does not express the target gene by itself, but when one individual includes these two lines by mating, etc., the transcription factor GAL4 is expressed in cells in which the enhancer or promoter of the GAL4 line is activated, The target gene is expressed by binding to UAS. By improving this GAL4 / UAS system, it is now possible to improve the expression efficiency of the target gene to nearly 10 times (Non-patent Document 3). In this system, the GAL4 strains that have been constructed so far, which are expressed in various time-specific or tissue-specific ways, and the UAS strains that express various genes are accumulated as genetic assets. Even in this case, the other system has an advantage that the existing system can be used as it is. However, in order to further improve the expression efficiency in the GAL4 / UAS system, it is necessary to introduce a new improvement completely different from the conventional method. In addition, when multiple genes are introduced into this system, since all genes are expressed only in the same tissue at the same time, the expression time and location cannot be controlled by individual genes. The strain has the problem that it is cytotoxic to the host.
 本発明は、目的遺伝子の発現効率を向上させ、また導入した複数の遺伝子を個別に所望する特定の時期及び/又は組織で発現制御でき、さらに宿主に対して細胞毒性の低い新たな遺伝子発現システムを開発し、提供することを課題とする。 The present invention improves the expression efficiency of a target gene, can control the expression of a plurality of introduced genes individually at a desired specific time and / or tissue, and is a new gene expression system with low cytotoxicity to a host The issue is to develop and provide
 上記課題を解決するために、本発明者らはTALEN(Transcription Activator-Like Effector Nuclease)に着目した。ゲノム編集システムとして開発されたTALEN(Cermak T., et al., 2011, Nucleic Acids Res 39: e82、特許公表2013-513389、特許公表2012-514976)の技術は、カイコでも応用できることが明らかになっている(Daimon T., et al., 2014, Develop. Growth Differ, 56:14-25)。また、近年、TALENはゲノム編集だけでなく、TALE(TAL Effector)のDNA配列結合能を利用した任意のDNA配列に対する転写活性化及び転写抑制にも利用されている。例えば、TALEを用いた転写活性化(TALE activator)については、哺乳類細胞や植物細胞などを用いて多くの研究がなされ(Morbitzer R., et al., 2010, PNAS, 107(50):21617-21622、Zhang F., et al., 2011, Nature biotech, 29(2):149-153、Maeder M.L., et al., 2013, Nature Methods, 10(3):243-245、Crocker J.et al., 2013, Nature Methods, doi:10.1038/nmeth.2543)、主に内在性遺伝子の発現制御による分化の制御や病気の治療等に利用されている。TALE activatorは、ターゲット配列の位置や染色体のエピジェネティックな状態の違いによってその転写活性化能が変化し、ほとんど転写活性化が起こらない例も報告されている。 In order to solve the above-mentioned problems, the present inventors focused on TALEN (Transcription Activator-Like Effector Nuclease). The technology of TALEN (Cermak T., et al., 2011, Nucleic Acids Res 39: e82, patent publication 2013-513389, patent publication 2012-514976), developed as a genome editing system, can be applied to silkworms. (Daimon T., et al., 2014, Develop. Growth Differ, 56: 14-25). In recent years, TALEN has been used not only for genome editing but also for transcriptional activation and transcriptional repression of arbitrary DNA sequences using the DNA sequence binding ability of TALE (TAL Effector). For example, transcriptional activation using TALE (TALE activator) has been extensively studied using mammalian cells and plant cells (Morbitzer R., et al., 2010, PNAS, 107 (50): 21617- 21622, Zhang F., et al., 2011, Nature biotech, 29 (2): 149-153, Maeder ML, et al., 2013, Nature Methods, 10 (3): 243-245, Crocker J.et al ., 2013, Nature Methods, doi: 10.1038 / nmeth.2543), mainly used to control differentiation by controlling the expression of endogenous genes and to treat diseases. It has been reported that TALE 例 activator changes transcription activation ability depending on the position of target sequence and epigenetic state of chromosome, and transcription activation hardly occurs.
 本発明者らは、従来のGAL4/UASシステムにおけるGAL4のDNA結合ドメインに替えて、TALEのDNA結合ドメインTAL(Transcription Activator-Like)を用いてUASを認識させるTAL-GAL4/UASシステムを開発した。しかし、そのシステムは、転写活性効率を向上できないばかりか、GAL4よりも転写活性が低下するという問題があった。そこで、様々な改良を重ねた結果、特定長の塩基配列を標的塩基配列とするTALドメインと、50~150アミノ酸からなる転写活性単位を複数個含む転写活性ドメインを連結した第1発現ユニット、及び標的塩基配列が複数個連結された繰り返し配列を含むTAL認識配列を含む第2発現ユニットを用いることで、目的遺伝子の発現効率を従来のGAL4/UASシステムと比較して、培養細胞の系で最大約80倍、そして遺伝子組換えカイコ系統では最大約6倍に増加させることに成功した。本発明は、当該知見に基づくものであって、以下を提供する。 The present inventors have developed a TAL-GAL4 / UAS system that recognizes UAS using the TALE DNA binding domain TAL (Transcription Activator-Like) instead of the GAL4 DNA binding domain in the conventional GAL4 / UAS system. . However, this system has a problem that not only the transcription activity efficiency can be improved but also the transcription activity is lower than that of GAL4. Therefore, as a result of various improvements, a first expression unit in which a TAL domain having a base sequence of a specific length as a target base sequence and a transcriptional activity domain comprising a plurality of transcriptional activity units consisting of 50 to 150 amino acids, and By using a second expression unit that contains a TAL recognition sequence that includes a repetitive sequence in which multiple target base sequences are linked, the expression efficiency of the target gene is maximized in cultured cell systems compared to the conventional GAL4 / UAS system. We succeeded in increasing it by about 80 times, and up to about 6 times in transgenic silkworm strains. This invention is based on the said knowledge, Comprising: The following are provided.
(1)第1発現ユニット及び第2発現ユニットからなるバイナリー遺伝子発現システムであって、前記第1発現ユニットはプロモーター、及びその制御下に配置された、TALドメインをコードする塩基配列からなるTAL領域及びその下流に連結され、転写活性ドメインをコードする塩基配列からなる転写活性領域を発現可能な状態で含み、前記TALドメインは、標的塩基配列として配列番号1又は配列番号2で示す塩基配列を認識するN末端部位及びTAL-DNA塩基配列認識部位を含み、ここで前記標的塩基配列において、前記N末端部位は5'末端のtを、また前記TAL-DNA塩基配列認識部位は前記tに続く主要標的塩基配列を、それぞれ認識し、前記TAL-DNA塩基配列認識部位は前記主要標的塩基配列を構成するそれぞれの塩基に対して配列番号3で示すアミノ酸配列からなり、前記転写活性ドメインは50~150アミノ酸からなる転写活性単位が2~10個連結された配列からなり、かつ前記第2発現ユニットは、TAL認識配列とその制御下に配置された目的遺伝子若しくはその断片を含み、前記TAL認識配列は、前記標的塩基配列を5~25個含む塩基配列からなる、前記システム。
(2)前記主要標的塩基配列が以下の(a)~(c)のいずれかの塩基配列からなる、(1)に記載のバイナリー遺伝子発現システム。
(1) A binary gene expression system comprising a first expression unit and a second expression unit, wherein the first expression unit is a TAL region comprising a promoter and a base sequence encoding a TAL domain arranged under the control of the promoter. And a transcription active region consisting of a base sequence encoding a transcription active domain in a state capable of expression, wherein the TAL domain recognizes the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 as a target base sequence An N-terminal site and a TAL-DNA base sequence recognition site, wherein, in the target base sequence, the N-terminal site is a 5′-terminal t, and the TAL-DNA base sequence recognition site is a main sequence following the t. Recognize each target base sequence, and the TAL-DNA base sequence recognition site is the amino acid sequence represented by SEQ ID NO: 3 for each base constituting the main target base sequence The transcriptional activity domain comprises a sequence in which 2 to 10 transcriptional activity units consisting of 50 to 150 amino acids are linked, and the second expression unit comprises a TAL recognition sequence and a gene of interest arranged under its control. Alternatively, the system comprising a fragment thereof, wherein the TAL recognition sequence consists of a base sequence containing 5 to 25 target base sequences.
(2) The binary gene expression system according to (1), wherein the main target base sequence consists of any one of the following base sequences (a) to (c):
 (a)配列番号4で示す塩基配列、
 (b)配列番号5で示す塩基配列、及び
 (c)配列番号4又は5において配列番号6で示す塩基配列の1~5個の塩基が置換された塩基配列
(3)前記配列番号4で示す塩基配列が配列番号7で示す塩基配列である、(2)に記載のバイナリー遺伝子発現システム。
(4)前記配列番号5で示す塩基配列が配列番号8で示す塩基配列である、(2)に記載のバイナリー遺伝子発現システム。
(5)前記転写活性単位がARII、又はVP16である、(1)~(4)のいずれかに記載のバイナリー遺伝子発現システム。
(6)前記TAL認識配列は標的塩基配列を含む配列番号9で示す塩基配列が5~25個連結された繰り返し配列からなる、(3)~(5)のいずれかに記載のバイナリー遺伝子発現システム。
(7)(1)~(6)のいずれかに記載のバイナリー遺伝子発現システムの第1発現ユニットを含む形質転換体。
(8)(6)に記載のバイナリー遺伝子発現システムにおける第2発現ユニットを除く、(1)~(5)のいずれかに記載のバイナリー遺伝子発現システムの第2発現ユニットを含む形質転換体。
(9)(1)~(6)のいずれかに記載のバイナリー遺伝子発現システムにおける第1発現ユニット及び第2発現ユニットを含む形質転換体。
(10)前記形質転換体がチョウ目昆虫である、(7)~(9)のいずれかに記載の形質転換体。
(11)前記チョウ目昆虫がカイコである、(10)に記載の形質転換体。
(12)(7)に記載の第1発現ユニットを有する形質転換体と(8)に記載の第2発現ユニットを有する形質転換体とを交配させる工程、及び前記交配工程後に第1及び第2発現ユニットを有する個体を選択する工程を含む目的遺伝子又はその断片の発現強化個体の作出方法。
(A) the base sequence represented by SEQ ID NO: 4,
(B) a base sequence represented by SEQ ID NO: 5; and (c) a base sequence in which 1 to 5 bases of the base sequence represented by SEQ ID NO: 6 in SEQ ID NO: 4 or 5 are substituted (3) represented by SEQ ID NO: 4 The binary gene expression system according to (2), wherein the base sequence is the base sequence represented by SEQ ID NO: 7.
(4) The binary gene expression system according to (2), wherein the base sequence represented by SEQ ID NO: 5 is the base sequence represented by SEQ ID NO: 8.
(5) The binary gene expression system according to any one of (1) to (4), wherein the transcriptional activity unit is ARII or VP16.
(6) The binary gene expression system according to any one of (3) to (5), wherein the TAL recognition sequence is composed of a repetitive sequence in which 5 to 25 nucleotide sequences represented by SEQ ID NO: 9 including the target nucleotide sequence are linked. .
(7) A transformant comprising the first expression unit of the binary gene expression system according to any one of (1) to (6).
(8) A transformant comprising the second expression unit of the binary gene expression system according to any one of (1) to (5), excluding the second expression unit of the binary gene expression system according to (6).
(9) A transformant comprising the first expression unit and the second expression unit in the binary gene expression system according to any one of (1) to (6).
(10) The transformant according to any one of (7) to (9), wherein the transformant is a Lepidoptera insect.
(11) The transformant according to (10), wherein the Lepidoptera insect is a silkworm.
(12) A step of mating the transformant having the first expression unit according to (7) and the transformant having the second expression unit according to (8), and the first and second after the mating step A method for producing an individual having enhanced expression of a target gene or a fragment thereof, comprising a step of selecting an individual having an expression unit.
 本明細書は本願の優先権の基礎となる日本国特許出願番号2015-072017号の開示内容を包含する。 This specification includes the disclosure of Japanese Patent Application No. 2015-072017, which is the basis of the priority of this application.
 本発明のバイナリー遺伝子発現システムは、目的遺伝子を、従来技術のGAL4/UASシステムを超える量で発現させることができる。 The binary gene expression system of the present invention can express a target gene in an amount exceeding the conventional GAL4 / UAS system.
 本発明のバイナリー遺伝子発現システムの2つの発現ユニットを複数組有する個体では、異なる組の各目的遺伝子の発現をそれぞれ時期特異的及び/又は組織特異的に制御することができる。 In an individual having a plurality of two expression units of the binary gene expression system of the present invention, the expression of each target gene in a different set can be controlled in a time-specific and / or tissue-specific manner, respectively.
 本発明のバイナリー遺伝子発現システムを構成する第1発現ユニットは、GAL4/UASシステムのGAL系統と比較して宿主に対して細胞毒性が低いという効果を有する。 The first expression unit constituting the binary gene expression system of the present invention has an effect of low cytotoxicity to the host as compared with the GAL strain of the GAL4 / UAS system.
 本発明のバイナリー遺伝子発現システムは、第1発現ユニット及び第2発現ユニットのそれぞれを含む系統を個別に維持、管理することができる。 The binary gene expression system of the present invention can individually maintain and manage lines containing each of the first expression unit and the second expression unit.
 本発明のバイナリー遺伝子発現システムは、GAL4/UASシステムでこれまでに作製し、蓄積されたGAL4系統やUAS系統をそのまま活用できる場合がある。 The binary gene expression system of the present invention may be produced by using the GAL4 / UAS system and the accumulated GAL4 line or UAS line as it is.
本発明のバイナリー遺伝子発現システムを構成する第1発現ユニット及び第2発現ユニットの概念図である。Aは第1発現ユニットを、またBは第2発現ユニットを示している。図中、第1発現ユニットのTAL領域におけるN末端領域はTALドメインのN末端部位をコードする領域であり、TAL-DNA塩基配列認識領域はTALドメインのTAL-DNA塩基配列認識部位をコードする領域であり、またC末端領域はTALドメインのC末端部位をコードする領域である。また、転写活性領域における転写活性単位領域は転写活性ドメインの転写活性単位をコードする領域である。本図の第1発現ユニットでは、転写活性単位領域を4つ含む転写活性領域を例示している。また、第2発現ユニットでは、標的塩基配列を5つ含むTAL認識配列を例示している。It is a conceptual diagram of the 1st expression unit and the 2nd expression unit which comprise the binary gene expression system of this invention. A shows the first expression unit, and B shows the second expression unit. In the figure, the N-terminal region in the TAL region of the first expression unit is a region encoding the N-terminal site of the TAL domain, and the TAL-DNA base sequence recognition region is a region encoding the TAL-DNA base sequence recognition site of the TAL domain. The C-terminal region is a region encoding the C-terminal region of the TAL domain. The transcription active unit region in the transcription active region is a region encoding the transcription active unit of the transcription active domain. In the first expression unit of the figure, a transcription active region including four transcription active unit regions is exemplified. In the second expression unit, a TAL recognition sequence including five target base sequences is exemplified. 実施例1で用いた本発明のバイナリー遺伝子発現システムにおいて、第2発現ユニットに含まれるTAL認識配列の一部(図中の塩基配列)と、第1発現ユニットにコードされたTALドメインが認識する標的塩基配列の範囲(図中の塩基配列中、3本のバーにより示す範囲)を示す。実施例1では、TAL認識配列が、GAL4認識配列であるUASを含む単位を5回繰り返した配列で構成される。実施例1の第1発現ユニットにコードされたTALドメインは、TAL認識配列において前記単位を含む19塩基を認識するUASTAL1、TAL認識配列において最も5’末端側のT(チミン)から20塩基を認識するUASTAL2、そしてUASTAL2の認識配列の3’末端側を6塩基短くした14塩基を認識するUASTAL3からなる。In the binary gene expression system of the present invention used in Example 1, a part of the TAL recognition sequence (base sequence in the figure) contained in the second expression unit and the TAL domain encoded by the first expression unit are recognized. The range of the target base sequence (the range indicated by three bars in the base sequence in the figure) is shown. In Example 1, the TAL recognition sequence is composed of a sequence in which a unit containing UAS, which is a GAL4 recognition sequence, is repeated 5 times. The TAL domain encoded in the first expression unit of Example 1 recognizes UASTAL1, which recognizes 19 bases including the above unit in the TAL recognition sequence, and 20 bases from T (thymine) at the 5 ′ end most in the TAL recognition sequence. UASTAL2 and UASTAL3 that recognizes 14 bases with 6 bases shortened on the 3 ′ end of the UASTAL2 recognition sequence. 本発明のバイナリー遺伝子発現システムにおいて、UASの様々な範囲を認識するTAL領域(UASTAL)及びその下流に連結した転写活性領域を含む第1発現ユニットと、UASとその下流に連結したルシフェラーゼ遺伝子を含む第2発現ユニットを導入したカイコ培養細胞におけるルシフェラーゼアッセイの結果を示す図である。この図では対照用GAL4を有する第1発現ユニットを用いたときのカイコ培養細胞におけるルシフェラーゼの発現量を1とし、その相対発現量で示している。The binary gene expression system of the present invention comprises a first expression unit comprising a TAL region (UASTAL) that recognizes various regions of UAS and a transcriptional active region linked downstream thereof, and UAS and a luciferase gene linked downstream thereof It is a figure which shows the result of the luciferase assay in the silkworm cultured cell which introduce | transduced the 2nd expression unit. In this figure, the expression level of luciferase in silkworm cultured cells when the first expression unit having the control GAL4 is used is 1, and the relative expression level is shown. 本発明のバイナリー遺伝子発現システムにおいて、第1発現ユニットの転写活性単位領域の数と目的遺伝子の発現量との関係を示した図である。転写活性単位にはARII又はVP16を用い、転写活性領域内の単位領域数は1~6個とした。この図では対照用GAL4を有する第1発現ユニットを用いたときのカイコ培養細胞におけるルシフェラーゼの発現量を1とし、その相対発現量で示している。In the binary gene expression system of this invention, it is the figure which showed the relationship between the number of the transcriptional activity unit area | regions of a 1st expression unit, and the expression level of a target gene. ARII or VP16 was used as the transcription activity unit, and the number of unit regions in the transcription activity region was 1-6. In this figure, the expression level of luciferase in silkworm cultured cells when the first expression unit having the control GAL4 is used is 1, and the relative expression level is shown. 本発明のバイナリー遺伝子発現システムにおいて、第1発現ユニットの標的塩基配列の塩基数及び主要標的塩基配列の塩基数と目的遺伝子の発現量との関係を示した図である。In the binary gene expression system of this invention, it is the figure which showed the relationship between the base number of the target base sequence of a 1st expression unit, the base number of a main target base sequence, and the expression level of a target gene. 本発明のバイナリー遺伝子発現システムにおける第1発現ユニットにコードされたTALドメインの標的塩基配列に対する特異性を示す図である。上図には、第1発現ユニットが認識する標的配列、及び第2発現ユニットにおけるTAL認識配列のUAS及びUASの塩基配列に塩基置換を導入した変異UASを示している。第2発現ユニットのTAL認識配列において、大文字は第1発現ユニットの標的塩基配列を、星印は置換した塩基の位置を示す。下図は、上図に示した第1及び第2発現ユニットを組み合わせたときのカイコ培養細胞でのルシフェラーゼの発現量を示している。「-」は第1発現ユニットを導入していないことを示す。It is a figure which shows the specificity with respect to the target base sequence of the TAL domain encoded by the 1st expression unit in the binary gene expression system of this invention. The upper figure shows the target sequence recognized by the first expression unit, and the mutant UAS in which base substitution is introduced into the base sequence of UAS and UAS of the TAL recognition sequence in the second expression unit. In the TAL recognition sequence of the second expression unit, capital letters indicate the target base sequence of the first expression unit, and asterisks indicate the positions of the substituted bases. The lower figure shows the expression level of luciferase in cultured silkworm cells when the first and second expression units shown in the upper figure are combined. “-” Indicates that the first expression unit is not introduced. 本発明の中部絹糸腺特異的バイナリー遺伝子発現システムをカイコに導入したときのEGFPの発現効率を示す図である。It is a figure which shows the expression efficiency of EGFP when the middle silk gland specific binary gene expression system of this invention is introduce | transduced into a silkworm. 本発明のバイナリー遺伝子発現システムの第1発現ユニットを有する遺伝子組換えカイコにおいて、第1発現ユニットによる細胞毒性を示す図である。Aは遺伝子組換えカイコの繭層重を、Bは営繭率を、そしてCは化蛹歩合の結果を示している。対照用として、細胞毒性を示すことが知られている従来のGAL4/UASシステムにおけるGAL4を含む第1発現ユニットを用いた。各バーの上に示した数値は、サンプル数(N)を示す。It is a figure which shows the cytotoxicity by a 1st expression unit in the transgenic silkworm which has a 1st expression unit of the binary gene expression system of this invention. A shows the layer thickness of the transgenic silkworm, B shows the yield rate, and C shows the result of the conversion rate. As a control, a first expression unit containing GAL4 in a conventional GAL4 / UAS system known to exhibit cytotoxicity was used. The numerical value shown above each bar indicates the number of samples (N). 図8と同様に、本発明のバイナリー遺伝子発現システムの第1発現ユニットを有する遺伝子組換えカイコの中部絹糸腺由来のタンパク質を分析したSDS-PAGEの結果を示す。Ser1はセリシン1タンパク質の、FibHはフィブロインHタンパク質の、そしてSer3はセリシン3タンパク質の位置を示している。Similarly to FIG. 8, the result of SDS-PAGE which analyzed the protein derived from the middle silk gland of the transgenic silkworm having the first expression unit of the binary gene expression system of the present invention is shown. Ser1 indicates the position of sericin 1 protein, FibH indicates the position of fibroin H protein, and Ser3 indicates the position of sericin 3 protein. 中部絹糸腺及び後部絹糸腺のそれぞれに特異的なバイナリー遺伝子発現システムを有する遺伝子組換えカイコの絹糸腺を示す図である。A~Cは同視野の絹糸腺全体図を、D~FはA図における単一星印の白枠内の拡大図を、そしてG~IはA図における二重星印の白枠内の拡大図を示している。It is a figure which shows the silk gland of the transgenic silkworm which has a binary gene expression system specific to each of the middle silk gland and the posterior silk gland. A to C are images of the silk gland of the same field, D to F are enlarged images within the white frame of the single star in Fig. A, and G to I are within the white frame of the double star in Fig. A. An enlarged view is shown. 中部絹糸腺及び後部絹糸腺のそれぞれに特異的なバイナリー遺伝子発現システムを有する遺伝子組換えカイコの絹糸腺におけるEGFP及びDsRedの発現を示すRT-PCRの結果である。NCは陰性対照由来のRT-PCR産物を、レーン1は中部絹糸腺由来のRT-PCR産物を、レーン2は後部絹糸腺由来のRT-PCR産物を、レーン3は中部及び後部絹糸腺由来のRT-PCR産物を示す。It is the result of RT-PCR which shows the expression of EGFP and DsRed in the silk gland of the transgenic silkworm which has a binary gene expression system specific to each of the middle silk gland and the posterior silk gland. NC is the RT-PCR product from the negative control, lane 1 is the RT-PCR product from the middle silk gland, lane 2 is the RT-PCR product from the posterior silk gland, and lane 3 is from the middle and posterior silk gland. RT-PCR product is shown. 本発明の後部絹糸腺特異的バイナリー遺伝子発現システムをカイコに導入したときのEGFPの発現効率を示す図である。1~4は、遺伝子組換えカイコの作出において独立に得られた同一の後部絹糸腺特異的バイナリー遺伝子発現システムを有する異なる系統である。It is a figure which shows the expression efficiency of EGFP when the rear part silk gland specific binary gene expression system of this invention is introduce | transduced into a silkworm. 1-4 are different strains with the same posterior silk gland specific binary gene expression system obtained independently in the production of transgenic silkworms.
1.バイナリー遺伝子発現システム
1-1.概要
 本発明の第1の態様は、バイナリー遺伝子発現システムである。
1. Binary gene expression system 1-1. Overview A first aspect of the present invention is a binary gene expression system.
 「バイナリー遺伝子発現システム」とは、2つの発現ユニットで構成される一組の遺伝子発現単位である。本発明のバイナリー遺伝子発現システムは、2つの発現ユニットを有する宿主細胞内において、第1発現ユニットにコードされた転写活性ドメインの発現により、第2発現ユニットにコードされた目的の発現を誘導し、またそれを増強することができる。また、第1発現ユニットを細胞に導入しても細胞毒性を生じにくいという利点がある。 A “binary gene expression system” is a set of gene expression units composed of two expression units. The binary gene expression system of the present invention induces the target expression encoded by the second expression unit by expressing the transcriptional activation domain encoded by the first expression unit in a host cell having two expression units, You can also strengthen it. In addition, there is an advantage that even if the first expression unit is introduced into a cell, it is difficult to cause cytotoxicity.
1-2.構成
 本発明のバイナリー遺伝子発現システムは、第1発現ユニット及び第2発現ユニットの2つのユニットからなる。各発現ユニットは、対象とする遺伝子又はその活性ドメイン(以下、「対象遺伝子等」とする)を発現可能な状態で含み、その遺伝子等の発現を制御できる発現ベクターで構成される。各ユニットの構成を以下で説明する。
1-2. Configuration The binary gene expression system of the present invention comprises two units, a first expression unit and a second expression unit. Each expression unit includes a target gene or an active domain thereof (hereinafter referred to as “target gene or the like”) in a state where it can be expressed, and includes an expression vector that can control the expression of the gene or the like. The configuration of each unit will be described below.
 本明細書において「発現可能な状態」とは、ユニットを構成する塩基配列において対象遺伝子等がプロモーターの制御下に配置され、プロモーターの活性に応じて発現され得る状態にあることをいう。「プロモーターの制御下」とは、原則として下流、すなわち3’末端側である。したがって、「プロモーターの制御下に配置」するとは、対象遺伝子等をプロモーターの下流に直接的に、又はスペーサー等の介在配列を間に挟み、間接的に連結することをいう。 In this specification, the “expressible state” means that a target gene or the like is placed under the control of a promoter in a base sequence constituting a unit and can be expressed according to the activity of the promoter. “Under the control of a promoter” is in principle downstream, that is, at the 3 ′ end. Therefore, “arranged under the control of a promoter” means that the target gene or the like is linked directly downstream of the promoter or indirectly with an intervening sequence such as a spacer in between.
 本明細書で「発現ベクター」とは、対象遺伝子等を発現可能な状態で含み、その遺伝子等の発現を制御できる発現単位をいう。以下、各発現ユニットの構成について説明する。 As used herein, “expression vector” refers to an expression unit that contains a target gene in a state where it can be expressed and can control the expression of the gene or the like. Hereinafter, the configuration of each expression unit will be described.
1-2-1.第1発現ユニット
 第1発現ユニットは、図1Aに示すようにプロモーターとその制御下に配置されたTAL領域及び転写活性領域、その他に、母核ベクターを必須の構成要素として含む。また、必要に応じて標識遺伝子、ターミネーター、エンハンサー、5’UTR及び3’UTR、インスレーター及びトランスポゾンの逆位末端反復配列等の選択的構成要素を含むこともできる。以下、各構成要素について説明する。
1-2-1. First Expression Unit As shown in FIG. 1A, the first expression unit contains a promoter, a TAL region and a transcriptional active region arranged under its control, and a mother nucleus vector as essential components. Further, if necessary, selective components such as marker genes, terminators, enhancers, 5′UTR and 3′UTR, insulators and transposon inverted terminal repeats can also be included. Hereinafter, each component will be described.
(1)TAL領域及び転写活性領域
 「TAL領域及び転写活性領域」は、TALドメイン及びそのC末端側に連結された転写活性ドメインからなるキメラタンパク質(融合タンパク質)をコードするキメラ遺伝子である。
(1) TAL region and transcriptional active region The “TAL region and transcriptional active region” is a chimeric gene encoding a chimeric protein (fusion protein) comprising a TAL domain and a transcriptional active domain linked to the C-terminal side thereof.
A.TAL領域
 本明細書において「TAL(Transcription Activator-Like)領域」とは、TALドメインをコードする塩基配列からなる領域である。
A. TAL region In this specification, the “TAL (Transcription Activator-Like) region” is a region consisting of a base sequence encoding a TAL domain.
 本明細書において「TALドメイン」とは、TAL(Transcription Activator-Like)エフェクタータンパク質(Cermak T, et al., 2011, Nucleic Acids Res 39: e82)において転写活性領域(エフェクタードメイン)を欠失したDNA結合ドメインのみからなるアミノ酸部位をいう。TALドメインは、TAL-DNA塩基配列認識部位と、そのN末端側に位置するN末端部位、及びC末端側に位置するC末端部位で構成される。 In this specification, “TAL domain” means DNA that lacks the transcriptional active region (effector domain) in TAL (Transcription Activator-Like) effector protein (Cermak T, et al., 2011, Nucleic Acids Res 39: e82) An amino acid site consisting only of the binding domain. The TAL domain is composed of a TAL-DNA base sequence recognition site, an N-terminal site located on the N-terminal side, and a C-terminal site located on the C-terminal side.
 本明細書において「TAL-DNA塩基配列認識部位」とは、後述する主要標的塩基配列を直接認識する部位である。TAL-DNA塩基配列認識部位は、主要標的塩基配列の各塩基を、それぞれ配列番号3で示す34アミノ酸で構成されるアミノ酸配列からなる単位で認識する。当該単位は、N末端側から12位及び13位のアミノ酸残基がペアを構成し、DNAを構成する4種の塩基(A:アデニン、G:グアニン、C:シトシン、T:チミン)のそれぞれを特異的に認識することができる。具体的には、12位及び13位のアミノ酸残基が、A(アデニン)を認識する場合には、それぞれN及びI又はN及びNとなり、G(グアニン)を認識する場合には、それぞれN及びNとなり、C(シトシン)を認識する場合には、それぞれH及びDとなり、そして、T(チミン)を認識する場合には、それぞれN及びGとなる。したがって、TAL-DNA塩基配列認識部位は、標的塩基配列の塩基長に応じて当該単位を繰り返し含んでいる。 In this specification, the “TAL-DNA base sequence recognition site” is a site that directly recognizes a main target base sequence described later. The TAL-DNA base sequence recognition site recognizes each base of the main target base sequence in units of an amino acid sequence composed of 34 amino acids shown in SEQ ID NO: 3, respectively. The unit consists of a pair of amino acid residues at the 12th and 13th positions from the N-terminal side, and each of the four bases constituting the DNA (A: adenine, G: guanine, C: cytosine, T: thymine) Can be specifically recognized. Specifically, when the amino acid residues at positions 12 and 13 recognize A (adenine), they are N and I or N and N, respectively. When G (guanine) is recognized, N And N, when recognizing C (cytosine), they are H and D, respectively. When recognizing T (thymine), they are N and G, respectively. Therefore, the TAL-DNA base sequence recognition site repeatedly contains the unit according to the base length of the target base sequence.
 本明細書において「標的塩基配列」とは、TALドメインによって認識される塩基配列であって、後述する第2発現ユニット中に必須の構成要素として複数個が含まれる。標的塩基配列の構造は、配列番号1又は2で示す塩基配列のように、5’末端側に配置されたt(チミン)と、それに続く主要標的塩基配列で構成される、全長14塩基又は15塩基の塩基配列からなる。 In the present specification, the “target base sequence” is a base sequence recognized by the TAL domain, and a plurality of essential constituent elements are included in the second expression unit described later. The structure of the target base sequence is, as shown in SEQ ID NO: 1 or 2, t (thymine) arranged on the 5 ′ end side, followed by the main target base sequence, 14 bases in total or 15 It consists of a base sequence.
 本明細書において「主要標的塩基配列」とは、標的塩基配列に含まれる、5'末端のt(チミン)以外の塩基配列であって、13塩基又は14塩基の任意の塩基配列からなる。したがって、この主要標的塩基配列を所望の塩基配列に設計することによって、任意のDNA配列を標的塩基配列とすることができる。主要標的塩基配列の具体例として、例えば、配列番号4又は配列番号5で表される塩基配列が挙げられる。より具体的には、GAL4-UASシステムにおいてUAS(Upstream Activating Sequence)(配列番号35)を含み、配列番号9で表される塩基配列からなるGAL4認識配列の一部であって、配列番号7又は配列番号8で表される塩基配列が挙げられる。さらに、配列番号4又は配列番号5で表される塩基配列に含まれる配列番号6で示す塩基配列のうち1、2、3、4、又は5個の塩基が置換された塩基配列であってもよい。 In this specification, the “main target base sequence” is a base sequence other than t (thymine) at the 5 ′ end contained in the target base sequence, and consists of an arbitrary base sequence of 13 bases or 14 bases. Therefore, an arbitrary DNA sequence can be used as a target base sequence by designing this main target base sequence into a desired base sequence. Specific examples of the main target base sequence include, for example, the base sequence represented by SEQ ID NO: 4 or SEQ ID NO: 5. More specifically, in the GAL4-UAS system, it is a part of a GAL4 recognition sequence comprising UAS (Upstream Activating Sequence) (SEQ ID NO: 35) and consisting of a base sequence represented by SEQ ID NO: 9, An example is the base sequence represented by SEQ ID NO: 8. Furthermore, even a base sequence in which 1, 2, 3, 4, or 5 bases are substituted in the base sequence represented by SEQ ID NO: 6 included in the base sequence represented by SEQ ID NO: 4 or 5 Good.
 前述のように、TAL-DNA塩基配列認識部位は、主要標的塩基配列を構成する各塩基を配列番号3で示す34アミノ酸で構成されるアミノ酸配列からなる単位で認識する。したがって、TAL-DNA塩基配列認識部位は前記34アミノ酸からなる単位を13回又は14回繰り返した構造を有する。TAL-DNA塩基配列認識部位をコードする塩基配列の具体例として、例えば、配列番号7で表される塩基配列を主要標的塩基配列とする場合、TAL-DNA塩基配列認識部位をコードする塩基配列は配列番号10で表される塩基配列となる。また配列番号8で表される塩基配列を主要標的塩基配列とする場合、TAL-DNA塩基配列認識部位をコードする塩基配列は配列番号11で表される塩基配列となる。 As described above, the TAL-DNA base sequence recognition site recognizes each base constituting the main target base sequence in units of an amino acid sequence composed of 34 amino acids shown in SEQ ID NO: 3. Therefore, the TAL-DNA base sequence recognition site has a structure in which the unit consisting of the 34 amino acids is repeated 13 or 14 times. As a specific example of the base sequence encoding the TAL-DNA base sequence recognition site, for example, when the base sequence represented by SEQ ID NO: 7 is the main target base sequence, the base sequence encoding the TAL-DNA base sequence recognition site is: The nucleotide sequence is represented by SEQ ID NO: 10. When the base sequence represented by SEQ ID NO: 8 is used as the main target base sequence, the base sequence encoding the TAL-DNA base sequence recognition site is the base sequence represented by SEQ ID NO: 11.
 本明細書において「N末端部位」は、TALドメインの輸送シグナルを含み、また標的塩基配列の5’末端側に配置されたt(チミン)の認識に関与する部位をいう。N末端部位は、例えば、配列番号12で表されるアミノ酸配列からなり、それをコードする塩基配列として、例えば、配列番号13で表される塩基配列が挙げられる。 In the present specification, the “N-terminal site” refers to a site involved in the recognition of t (thymine) located on the 5′-terminal side of the target base sequence, including a TAL domain transport signal. The N-terminal site is composed of, for example, the amino acid sequence represented by SEQ ID NO: 12, and the base sequence encoding it includes, for example, the base sequence represented by SEQ ID NO: 13.
B.転写活性領域
 本明細書において「転写活性領域」とは、転写活性ドメインをコードする塩基配列からなる領域である。
B. Transcription active region In this specification, the “transcription active region” is a region consisting of a base sequence encoding a transcription active domain.
 本明細書において「転写活性ドメイン」とは、転写活性因子の機能ドメインであって、目的遺伝子の発現を活性化する機能を有する。本明細書における転写活性ドメインは、転写活性単位が2~10個、2~9個、2~8個、2~7個、2~6個、又は2~5個、連結された繰り返し配列からなる。 In the present specification, the “transcription activation domain” is a functional domain of a transcription activation factor and has a function of activating expression of a target gene. The transcriptional activity domain in the present specification includes a transcriptional activity unit consisting of 2 to 10, 2 to 9, 2 to 8, 2 to 7, 2 to 6, or 2 to 5, linked repeat sequences. Become.
 本明細書において「転写活性単位」とは、転写活性ドメインを構成する最小単位であって、50~150個のアミノ酸からなる。転写活性単位の具体例として、配列番号16で表されるアミノ酸配列からなり、配列番号17で表される塩基配列によってコードされる、GAL4の転写活性単位であるARII、配列番号18で表されるアミノ酸配列からなり、配列番号19で表される塩基配列によってコードされる単純ヘルペスウイルス由来のVP16が挙げられる。 In this specification, the “transcriptional activity unit” is the minimum unit constituting a transcriptional activity domain and consists of 50 to 150 amino acids. As a specific example of the transcriptional activity unit, it consists of the amino acid sequence represented by SEQ ID NO: 16, and is encoded by the base sequence represented by SEQ ID NO: 17. VP16 derived from herpes simplex virus, which consists of an amino acid sequence and is encoded by the base sequence represented by SEQ ID NO: 19, can be mentioned.
(2)プロモーター
 「プロモーター」は、その制御下に配置された遺伝子(対象遺伝子)の発現を制御することのできる遺伝子発現調節領域である。第1発現ユニットにおける「プロモーター」は、対象遺伝子であるTAL領域及び転写活性領域からなるキメラ遺伝子の発現を制御することができる。
(2) Promoter “Promoter” is a gene expression regulatory region capable of controlling the expression of a gene (target gene) placed under its control. The “promoter” in the first expression unit can control the expression of a chimeric gene consisting of the TAL region and the transcriptional active region, which are target genes.
 プロモーターは、対象遺伝子の発現場所に基づいて、ユビキタスプロモーター(全身性プロモーター)と部位特異的プロモーターに分類することができる。ユビキタスプロモーターは、宿主個体全体で対象遺伝子の発現を制御するプロモーターである。また、部位特異的プロモーターは、宿主の特定の細胞又は組織で対象遺伝子の発現を制御するプロモーターである。本発明のバイナリー遺伝子発現システムでは、第1発現ユニットにおけるプロモーターとして、細胞又は組織に特異的な部位特異的プロモーターを選択することで、宿主における特定の細胞又は組織で目的遺伝子等の発現を誘導し、増強させることができる。したがって、発現場所に関して、第1発現ユニットにおけるプロモーターは特に限定はされず、用途に合わせて適宜選択すればよい。 Promoters can be classified into ubiquitous promoters (systemic promoters) and site-specific promoters based on the expression location of the target gene. The ubiquitous promoter is a promoter that controls the expression of a target gene in the entire host individual. A site-specific promoter is a promoter that controls the expression of a target gene in a specific cell or tissue of a host. In the binary gene expression system of the present invention, by selecting a site-specific promoter specific to a cell or tissue as the promoter in the first expression unit, the expression of a target gene or the like is induced in a specific cell or tissue in the host. Can be enhanced. Therefore, regarding the expression location, the promoter in the first expression unit is not particularly limited, and may be appropriately selected according to the use.
 また、プロモーターには、対象遺伝子の発現の時期に基づいて構成的活性型プロモーター、発現誘導型プロモーター又は時期特異的活性型プロモーターに分類される。構成的活性型プロモーターは、宿主細胞内で対象遺伝子を恒常的に発現させることができる。発現誘導型プロモーターは、宿主細胞内で対象遺伝子の発現を任意の時期に誘導することができる。また、時期特異的活性型プロモーターは、宿主細胞内で対象遺伝子を発生段階の特定の時期にのみに発現誘導することができる。いずれのプロモーターも、宿主細胞内で対象遺伝子の過剰な発現をもたらし得ることから過剰発現型プロモーターと解することができる。発現時期に関しても、第1発現ユニットにおけるプロモーターは特に限定はされない。導入する細胞内において所望の発現時期に合わせて、適宜選択すればよい。 Further, promoters are classified into constitutively active promoters, expression-inducible promoters, or time-specific active promoters based on the expression time of the target gene. A constitutively active promoter can constitutively express the gene of interest in the host cell. An expression-inducible promoter can induce the expression of a target gene in a host cell at any time. In addition, a time-specific active promoter can induce the expression of a target gene in a host cell only at a specific stage of development. Any promoter can be interpreted as an overexpression promoter because it can cause overexpression of the gene of interest in the host cell. Regarding the expression time, the promoter in the first expression unit is not particularly limited. What is necessary is just to select suitably according to a desired expression time in the cell to introduce | transduce.
 第1発現ユニットにおいて、プロモーターの由来となるドナー生物種は、それが導入されるレシピエント側の宿主細胞内で作動可能である限り、特に限定はしない。ここでいう「作動可能」とは、プロモーターとしての機能を発揮し、対象遺伝子等を発現できることをいう。つまり、第1発現ユニットにおけるプロモーターは、導入すべき宿主細胞によって決定される。好ましくは第1発現ユニットを導入する宿主と分類学上で同目に属する種由来のプロモーターである。同科に属する種由来のプロモーターはより好ましく、同属に属する種由来のプロモーターはさらに好ましい。最も好ましいのは宿主と同じ種由来のプロモーターである。例えば、本発明の第1発現ユニットを導入する宿主がチョウ目昆虫のカイコ(Bombyx mori)の場合、第1発現ユニットで使用する上記プロモーターはチョウ目昆虫由来のプロモーターが好ましく、カイコガ科(Bombycidae)に属する種由来であればより好ましく、クワコ(Bombyx mandarina)のような同じBombyx属に属する種由来であればさらに好ましい。この場合、最も好ましいプロモーターは同種のカイコ由来のプロモーターである。 In the first expression unit, the donor species from which the promoter is derived is not particularly limited as long as it is operable in the recipient host cell into which it is introduced. The term “operable” as used herein means that it can function as a promoter and can express a target gene or the like. That is, the promoter in the first expression unit is determined by the host cell to be introduced. Preferably, it is a promoter derived from a species belonging to the same classification as the host into which the first expression unit is introduced. Promoters derived from species belonging to the same family are more preferred, and promoters derived from species belonging to the same genus are more preferred. Most preferred is a promoter from the same species as the host. For example, when the host into which the first expression unit of the present invention is introduced is a Bombyx mori, the promoter used in the first expression unit is preferably a promoter from the Lepidoptera, Bombycidae. More preferably, it is derived from a species belonging to the same genus of Bombyx such as mulberry (Bombyx mandarina). In this case, the most preferred promoter is a promoter derived from the same kind of silkworm.
 第1発現ユニットを導入する宿主としてカイコを用いる場合、構成的活性型ユビキタスプロモーターの具体例としては、アクチン3遺伝子由来のアクチン3プロモーター(A3プロモーター:配列番号20)、カイコ熱ショックタンパク質90(hsp90)遺伝子由来の熱ショックタンパク質90プロモーター(hsp90プロモーター:配列番号21)、カイコ伸長因子1α(Elongation Factor-1α)遺伝子由来の伸長因子1プロモーター(EF-1プロモーター:配列番号22)、及びBmNPV(Bombyx mori nuclear polyhedrosis virus)の最初期遺伝子1(ie-1:immediate-early gene 1)由来の最初期遺伝子1プロモーター(ie-1プロモーター:配列番号23)等が挙げられる。また、発現誘導型ユビキタスプロモーターとしては、熱ショックタンパク質70(hsp70)遺伝子由来の熱ショックタンパク質70プロモーター(hsp70プロモーター:配列番号24)が挙げられる。さらに、部位特異的プロモーターの具体例としては、眼特異的発現をする3xP3遺伝子のプロモーター(3xP3プロモーター:配列番号25)、中部絹糸腺の前部で特異的発現をするセリシン3遺伝子のプロモーター(Ser3プロモーター:配列番号26)、中部絹糸腺特異的発現をするセリシン1遺伝子のプロモーター(Ser1プロモーター:配列番号27)、後部絹糸腺特異的発現をするフィブロインH遺伝子のプロモーター(Fib Hプロモーター:配列番号28)、フィブロインL遺伝子のプロモーター(Fib Lプロモーター:配列番号29)、又はp25遺伝子のプロモーター(p25プロモーター:配列番号30)、脂肪体特異的発現をする30K遺伝子のプロモーター(30Kプロモーター:配列番号31)、及び精巣で特異的発現をするelav like遺伝子のプロモーター(elav likeプロモーター:配列番号32)等が挙げられる。部位特異的プロモーターの細胞又は組織特異性は、原則として、そのプロモーターが本来制御していた遺伝子に依存する。例えば、前述のSer1プロモーターであれば、Ser1遺伝子は中部絹糸腺で特異的に発現することから、中部絹糸腺特異的プロモーターとなる。 When silkworm is used as a host into which the first expression unit is introduced, specific examples of the constitutively active ubiquitous promoter include actin 3 promoter derived from actin 3 gene (A3 promoter: SEQ ID NO: 20), silkworm heat shock protein 90 (hsp90 ) Gene-derived heat shock protein 90 promoter (hsp90 promoter: SEQ ID NO: 21), silkworm elongation factor 1α (Elongation Factor-1α) gene-derived elongation factor 1 promoter (EF-1 promoter: SEQ ID NO: 22), and BmNPV (Bombyx and the first gene 1 promoter (ie-1 promoter: SEQ ID NO: 23) derived from the first gene 1 (ie-1: immediate-early gene 1) of mori nuclear polyhedrosis virus). Examples of the expression-inducing ubiquitous promoter include the heat shock protein 70 promoter derived from the heat shock protein 70 (hsp70) gene (hsp70 promoter: SEQ ID NO: 24). Furthermore, specific examples of site-specific promoters include a 3xP3 gene promoter (3xP3 promoter: SEQ ID NO: 25) that expresses eye-specific expression, and a sericin 3 gene promoter (Ser3) that specifically expresses in the front part of the middle silk gland. Promoter: SEQ ID NO: 26), promoter of sericin 1 gene expressing middle silk gland-specific expression (Ser1 promoter: SEQ ID NO: 27), promoter of fibroin H gene expressing posterior silk gland-specific expression (Fib H promoter: SEQ ID NO: 28) ), Promoter of fibroin L gene (Fib L promoter: SEQ ID NO: 29), promoter of p25 gene (p25 promoter: SEQ ID NO: 30), promoter of 30K gene for fat body-specific expression (30K promoter: SEQ ID NO: 31) And the promoter of the elav like gene that is specifically expressed in the testis (e lav like promoter: SEQ ID NO: 32) and the like. The cell or tissue specificity of a site-specific promoter depends in principle on the gene that the promoter was originally regulated. For example, in the case of the Ser1 promoter described above, the Ser1 gene is specifically expressed in the middle silk gland, and thus becomes a middle silk gland-specific promoter.
 プロモーターは、上記カイコの例以外にも第1発現ユニットを導入する宿主に応じて当該分野で公知のプロモーターを用いることができる。例えば、宿主が大腸菌であれば、作動可能なプロモーターとして、lac、trp若しくはtacプロモーター、又はファージ由来のT7、T3、SP6、PR若しくはPLプロモーター等が挙げられる。宿主が酵母であれば、作動可能なプロモーターとして、例えば、酵母解糖系遺伝子のプロモーター、アルコールデヒドロゲナーゼ遺伝子プロモーター、TPI1プロモーター、ADH2-4cプロモーター等が挙げられる。 In addition to the silkworm examples described above, promoters known in the art can be used depending on the host into which the first expression unit is introduced. For example, if the host is E. coli, examples of operable promoters include lac, trp or tac promoters, or phage-derived T7, T3, SP6, PR or PL promoters. When the host is yeast, examples of operable promoters include a yeast glycolytic gene promoter, an alcohol dehydrogenase gene promoter, a TPI1 promoter, and an ADH2-4c promoter.
(3)母核ベクター
 「母核ベクター」は、第1発現ユニットのベース部分であって、第1発現ユニットがベクターとして機能する上で必要な構成を有する。ベクターの種類は、特に限定はしない。プラスミドベクター、ウイルスベクター、コスミド、バクミド、フォスミド、BAC、YAC等が挙げられる。プラスミドベクター又はウイルスベクターが好ましい。母核ベクターは、第1発現ユニットを導入する宿主に応じて適宜選択すればよい。例えば、宿主が大腸菌の場合には、pBI系、pPZP系、pSMA系、pUC系、pBR系、及びpBluescript系(Agilent technologies)等の大腸菌由来のプラスミドベクターやλgt11及びλZAP等のλファージベクターを利用することができる。宿主が酵母の場合には、YEp13、YEp24、及びYCp50等のプラスミドベクターを利用することができる。また、宿主が昆虫細胞の場合には、バキュロウイルス等の昆虫ウイルスベクターやバクミドを用いることができる。さらに、宿主がヒト等の哺乳類動物の場合には、アデノウイルス、レトロウイルス、レンチウイルス、アデノ随伴ウイルス等のウイルスベクター、あるいは非ウイルスベクターを母核とする公知のベクターを使用することができる。さらに、この他、大腸菌又は酵母内でも複製可能なシャトルベクター、染色体中に相同又は非相同組換え可能なベクター、又は各メーカーから市販されている様々な宿主専用発現ベクターを利用してもよい。
(3) Mother Nucleus Vector The “mother nucleus vector” is a base part of the first expression unit and has a configuration necessary for the first expression unit to function as a vector. The type of vector is not particularly limited. Examples include plasmid vectors, viral vectors, cosmids, bacmids, fosmids, BACs, YACs and the like. A plasmid vector or a viral vector is preferred. The mother nucleus vector may be appropriately selected according to the host into which the first expression unit is introduced. For example, when the host is E. coli, use plasmid vectors derived from E. coli such as pBI, pPZP, pSMA, pUC, pBR, and pBluescript (Agilent technologies), and λ phage vectors such as λgt11 and λZAP. can do. When the host is yeast, plasmid vectors such as YEp13, YEp24, and YCp50 can be used. When the host is an insect cell, an insect virus vector such as baculovirus or a bacmid can be used. Furthermore, when the host is a mammal such as a human, a known vector having a mother nucleus of a viral vector such as an adenovirus, a retrovirus, a lentivirus, an adeno-associated virus, or the like can be used. In addition, shuttle vectors that can be replicated in E. coli or yeast, vectors that can be homologously or non-homologously recombined in the chromosome, or various host-specific expression vectors that are commercially available from various manufacturers may be used.
(4)標識遺伝子
 「標識遺伝子」は、第1発現ユニットにおける選択的構成要素であって、選抜マーカー又はレポータータンパク質とも呼ばれる標識タンパク質をコードする遺伝子である。「標識タンパク質」とは、その活性に基づいて標識遺伝子の発現の有無を判別することのできるポリペプチドをいう。活性の検出は、標識タンパク質の活性そのものを直接的に検出するものであってもよいし、色素のような標識タンパク質の活性によって発生する代謝物を介して間接的に検出するものであってもよい。検出は、生物学的検出(抗体、アプタマー等のペプチドや核酸の結合による検出を含む)、化学的検出(酵素反応的検出を含む)、物理的検出(行動分析的検出を含む)、又は検出者の感覚的検出(視覚、触覚、嗅覚、聴覚、味覚による検出を含む)により行うことができる。標識遺伝子は、第1発現ユニットを保有する宿主細胞又は形質転換体を判別する目的で用いられる。
(4) Labeling gene The “labeling gene” is a gene that encodes a labeling protein that is a selective component in the first expression unit and is also called a selection marker or a reporter protein. “Labeled protein” refers to a polypeptide that can determine the presence or absence of expression of a labeled gene based on its activity. The activity may be detected directly by the activity of the labeled protein itself or indirectly by a metabolite generated by the activity of the labeled protein such as a dye. Good. Detection can be biological detection (including detection by binding of peptides or nucleic acids such as antibodies and aptamers), chemical detection (including enzymatic reaction detection), physical detection (including behavioral analysis detection), or detection It can be performed by human sensory detection (including detection by sight, touch, smell, hearing, and taste). The marker gene is used for the purpose of discriminating the host cell or transformant carrying the first expression unit.
 標識遺伝子がコードする標識タンパク質の種類は、当該分野で公知の方法によりその活性を検出可能な限り、特に限定はしない。好ましくは検出に際して形質転換体に対する侵襲性の低い標識タンパク質である。例えば、タグペプチド、薬剤耐性タンパク質、色素タンパク質、蛍光タンパク質、発光タンパク質等が挙げられる。 The type of labeled protein encoded by the labeled gene is not particularly limited as long as its activity can be detected by a method known in the art. Preferably, it is a labeled protein with low invasiveness to the transformant upon detection. For example, tag peptides, drug resistant proteins, chromoproteins, fluorescent proteins, photoproteins and the like can be mentioned.
 「タグペプチド」は、タンパク質を標識化することのできる十数アミノ酸~数十アミノ酸からなる短ペプチドであって、タンパク質の検出用、精製用として用いられる。通常は、標識すべきタンパク質をコードする遺伝子の5’末端側又は3’末端側にタグペプチドをコードする塩基配列を連結し、タグペプチドとのキメラタンパク質として発現させることで標識化する。タグペプチドは、当該分野で様々な種類が開発されているが、いずれのタグペプチドを使用してもよい。タグペプチドの具体例として、FLAG、HA、His、及びmyc等が挙げられる。 A “tag peptide” is a short peptide consisting of several tens to several tens of amino acids that can label a protein, and is used for protein detection and purification. Usually, labeling is performed by linking a base sequence encoding a tag peptide to the 5 'end side or 3' end side of a gene encoding the protein to be labeled and expressing it as a chimeric protein with the tag peptide. Although various types of tag peptides have been developed in the art, any tag peptide may be used. Specific examples of the tag peptide include FLAG, HA, His, and myc.
 「薬剤耐性タンパク質」は、培地等に添加された抗生物質等の薬剤に対する抵抗性を細胞に付与するタンパク質であり、多くは酵素である。例えば、アンピシリンに対して抵抗性を付与するβラクタマーゼ、カナマイシンに対して抵抗性を付与するアミノグリコシド3’ホスホトランスフェラーゼ、テトラサイクリンに対して抵抗性を付与するテトラサイクリン排出トランスポーター、クロラムフェニコールに対して抵抗性を付与するCAT(クロラムフェニコールアセチルトランスフェラーゼ)等が挙げられる。 “Drug-resistant protein” is a protein that imparts resistance to drugs such as antibiotics added to a medium or the like to cells, and many are enzymes. For example, β-lactamase that confers resistance to ampicillin, aminoglycoside 3 ′ phosphotransferase that confers resistance to kanamycin, tetracycline efflux transporter that confers resistance to tetracycline, chloramphenicol Examples include CAT (chloramphenicol acetyltransferase) that imparts resistance.
 「色素タンパク質」は、色素の生合成に関与するタンパク質、又は基質の付与により色素による形質転換体の化学的検出を可能にするタンパク質である。ここでいう「色素」とは、形質転換体に色素を付与することができる低分子化合物又はペプチドで、その種類は問わない。例えば、β-ガラクトシダーゼ(LacZ)、β-グルクロニターゼ(GUS)、メラニン系色素合成タンパク質、オモクローム系色素、又はプテリジン系色素が挙げられる。また、個体の外部色彩として表れる色素、例えば、メラニン系色素(ドーパミンメラニンを含む)、オモクローム系色素、又はプテリジン系色素であってもよい。 “Chromoprotein” is a protein that is involved in pigment biosynthesis, or a protein that enables chemical detection of a transformant with a pigment by providing a substrate. The “dye” here is a low molecular compound or peptide capable of imparting a dye to a transformant, and the kind thereof is not limited. Examples thereof include β-galactosidase (LacZ), β-glucuronidase (GUS), melanin pigment synthesis protein, omochrome pigment, or pteridine pigment. Moreover, the pigment | dye which appears as an external color of an individual | organism | solid, for example, a melanin type pigment | dye (a dopamine melanin is included), an omochrome type pigment | dye, or a pteridine type pigment | dye may be sufficient.
 「蛍光タンパク質」は、特定波長の励起光を照射したときに特定波長の蛍光を発するタンパク質をいう。天然型及び非天然型のいずれであってもよい。また、励起波長、蛍光波長も特に限定はしない。具体的には、例えば、CFP、RFP、DsRed(3xP3-DsRedのような派生物を含む)、YFP、PE、PerCP、APC、GFP(EGFP、3xP3-EGFP等の派生物を含む)等が挙げられる。 “Fluorescent protein” refers to a protein that emits fluorescence of a specific wavelength when irradiated with excitation light of a specific wavelength. Either a natural type or a non-natural type may be used. Further, the excitation wavelength and the fluorescence wavelength are not particularly limited. Specifically, for example, CFP, RFP, DsRed (including derivatives such as 3xP3-DsRed), YFP, PE, PerCP, APC, GFP (including derivatives such as EGFP and 3xP3-EGFP), etc. It is done.
 本明細書で「発光タンパク質」とは、励起光を必要とすることなく発光することのできる基質タンパク質又はその基質タンパク質の発光を触媒する酵素をいう。例えば、基質タンパク質としてのルシフェリン又はイクオリン、酵素としてのルシフェラーゼが挙げられる。 As used herein, “photoprotein” refers to a substrate protein that can emit light without the need for excitation light or an enzyme that catalyzes the light emission of the substrate protein. For example, luciferin or aequorin as a substrate protein and luciferase as an enzyme can be mentioned.
 本明細書で「外部分泌タンパク質」とは、細胞外又は体外に分泌されるタンパク質であり、外分泌性酵素の他、フィブロインのような繊維タンパク質やセリシンが該当する。外分泌性酵素には、ブラストサイジンのような薬剤の分解又は不活化に寄与し、宿主に薬剤耐性を付与する酵素の他、消化酵素が該当する。 As used herein, “externally secreted protein” refers to a protein that is secreted extracellularly or externally, and includes exocrine enzymes, fiber proteins such as fibroin, and sericin. Exocrine enzymes include digestive enzymes in addition to enzymes that contribute to the degradation or inactivation of drugs such as blasticidin and impart drug resistance to the host.
 標識遺伝子は、第1及び第2発現ユニットにおいてプロモーターの下流に発現可能な状態で配置される。 The marker gene is arranged in a state that can be expressed downstream of the promoter in the first and second expression units.
 標識遺伝子は、第1発現ユニットにおいて、目的遺伝子の上流又は下流に連結した状態で、又は目的遺伝子とは独立して、発現可能な状態で配置される。 In the first expression unit, the marker gene is arranged in a state where it can be expressed in a state of being linked upstream or downstream of the target gene or independently of the target gene.
(5)ターミネーター
 「ターミネーター」は、前記TAL領域及び転写活性領域からなるキメラ遺伝子の3’末端側、好ましくは終止コドンの下流に配置される塩基配列であって、前記プロモーターにより発現したキメラ遺伝子の転写を終結できる配列である。ターミネーターの種類は、特に限定はしない。好ましくはプロモーターと同一生物種由来のターミネーターである。例えば、大腸菌であれば、リポポリプロテインlppの3’ターミネーター、trpオペロンターミネーター、amyBターミネーター、ADH1遺伝子のターミネーター等が使用できる。カイコ等の昆虫であれば、配列番号33で表される塩基配列からなるhsp70ターミネーター、配列番号34で表される塩基配列からなるSV40ターミネーター等が使用できる。一遺伝子発現制御においてゲノム上で前記プロモーターと対になっているターミネーターは特に好ましい。
(5) Terminator The “terminator” is a base sequence located at the 3 ′ end side of the chimeric gene consisting of the TAL region and the transcriptional active region, preferably downstream of the stop codon, and the terminator of the chimeric gene expressed by the promoter A sequence that can terminate transcription. The type of terminator is not particularly limited. Preferably, it is a terminator derived from the same species as the promoter. For example, in the case of E. coli, lipopolyprotein lpp 3 ′ terminator, trp operon terminator, amyB terminator, ADH1 gene terminator, and the like can be used. In the case of an insect such as a silkworm, an hsp70 terminator comprising the base sequence represented by SEQ ID NO: 33, an SV40 terminator comprising the base sequence represented by SEQ ID NO: 34, etc. can be used. A terminator paired with the promoter on the genome in the control of single gene expression is particularly preferred.
(6)5’UTR及び3’UTR
 「5’UTR(5’untranslated region)及び3’UTR(3’untranslated region)」は、それ自身がアミノ酸や機能性核酸をコードしない非翻訳領域からなるポリヌクレオチドである。各UTRを構成する塩基配列は、限定はしない。第1発現ユニットにおいて5’UTRは、前記キメラ遺伝子の開始コドンの上流(5’末端側)に配置され、3’UTRは、キメラ遺伝子の終止コドンの下流(3’末端側)に配置される。なお、3’UTRは、ポリAシグナルを含むことができる。
(6) 5'UTR and 3'UTR
“5′UTR (5′untranslated region)” and “3′UTR (3′untranslated region)” are polynucleotides composed of untranslated regions that do not themselves encode amino acids or functional nucleic acids. The base sequence that constitutes each UTR is not limited. In the first expression unit, 5′UTR is arranged upstream (5 ′ end side) of the start codon of the chimeric gene, and 3′UTR is arranged downstream (3 ′ end side) of the stop codon of the chimeric gene. . The 3 ′ UTR can contain a poly A signal.
(7)エンハンサー
 「エンハンサー」は、第1発現ユニットにおける選択的構成要素であって、ベクター内の遺伝子又はその断片の発現効率を増強できる塩基配列からなる。その種類及び塩基配列は、特に限定はされない。
(7) Enhancer An “enhancer” is a selective component in the first expression unit, and consists of a base sequence that can enhance the expression efficiency of a gene or a fragment thereof in a vector. The kind and base sequence are not particularly limited.
(8)インスレーター
 「インスレーター」は第1発現ユニットにおける選択的構成要素であって、周囲の染色体のクロマチンによる影響を受けることなく、その配列に挟まれた遺伝子の転写を、安定的に制御できる塩基配列である。例えば、ニワトリのcHS4配列やショウジョウバエのgypsy配列などが挙げられる。
(8) Insulator “Insulator” is a selective component of the first expression unit, and stably controls transcription of the gene sandwiched between the sequences without being affected by the chromatin of surrounding chromosomes. It is a possible nucleotide sequence. Examples include the cHS4 sequence of chicken and the gypsy sequence of Drosophila.
(9)トランスポゾンの逆位末端反復配列
 「トランスポゾンの逆位末端反復配列(ITRs:inverted terminal repeat sequence)」は、第1発現ユニットを相同組換え可能な発現ベクターとする場合に含まれ得る選択構成要素である。逆位末端反復配列は、通常は2個1組で使用される。トランスポゾンの具体例として、宿主が昆虫であれば、piggyBac、mariner、minos等を用いることができる(Shimizu,K. et al., 2000, Insect Mol. Biol., 9, 277-281;Wang W. et al.,2000, Insect Mol Biol 9(2):145-55)。
(9) Inverted terminal repeat sequence of transposon “Inverted terminal repeat sequences (ITRs) of transposon” are selection structures that can be included when the first expression unit is an expression vector capable of homologous recombination. Is an element. Inverted terminal repeats are usually used in pairs. As a specific example of a transposon, piggyBac, mariner, minos, etc. can be used if the host is an insect (Shimizu, K. et al., 2000, Insect Mol. Biol., 9, 277-281; Wang W. et al., 2000, Insect Mol Biol 9 (2): 145-55).
1-2-2.第2発現ユニット
 前記第2発現ユニットは、図1Bに示すように、TAL認識配列とその制御下に配置された目的遺伝子等を含み、その他に、母核ベクターを必須の構成要素として含む。また、必要に応じて標識遺伝子、ターミネーター、エンハンサー、5’UTR及び3’UTR、インスレーター及びトランスポゾンの逆位末端反復配列等の選択的構成要素を含むこともできる。以下、TAL認識配列、及び目的遺伝子等について説明する。なお、第2発現ユニットに含まれる母核ベクター及び選択的構成要素については、前記第1発現ユニットで説明した対応する構成要素と基本構成は同じであることから、ここでの説明は省略する。
1-2-2. Second Expression Unit As shown in FIG. 1B, the second expression unit includes a TAL recognition sequence and a target gene arranged under the control thereof, and additionally includes a mother nucleus vector as an essential component. Further, if necessary, selective components such as marker genes, terminators, enhancers, 5′UTR and 3′UTR, insulators and transposon inverted terminal repeats can also be included. Hereinafter, the TAL recognition sequence and the target gene will be described. The mother nucleus vector and the selective components included in the second expression unit are the same as the corresponding components described in the first expression unit, and thus the description thereof is omitted here.
(1)TAL認識配列
 本明細書において「TAL認識配列」とは、第1発現ユニットにコードされたキメラタンパク質のTALドメインによって特異的に認識される塩基配列である。第1発現ユニットのTALドメインと第2発現ユニットのTAL認識配列は原則として1対1の関係にあり、当該関係によって一組のバイナリー遺伝子発現システムが構成されている。ただし、1つの第1発現ユニットのTALドメインが認識し得るTAL認識配列を、複数の異なる第2発現ユニットが包含する場合には、1対複数の関係となり、第1発現ユニットが複数の第2発現ユニットと組を形成することができる。本発明のバイナリー遺伝子発現システムでは、第1及び第2発現ユニットにおける前記1対1の特異性を利用して、異なる複数組のバイナリー遺伝子発現システムを一個体に導入することによって、各組の第2発現ユニットに含まれる目的遺伝子の発現を、時期特異的及び/又は組織特異的に制御することが可能となる。
(1) TAL recognition sequence In this specification, the "TAL recognition sequence" is a base sequence specifically recognized by the TAL domain of the chimeric protein encoded by the first expression unit. In principle, the TAL domain of the first expression unit and the TAL recognition sequence of the second expression unit are in a one-to-one relationship, and a set of binary gene expression systems is configured by this relationship. However, when a plurality of different second expression units include a TAL recognition sequence that can be recognized by the TAL domain of one first expression unit, a one-to-many relationship is established, and the first expression unit has a plurality of second expression units. A pair can be formed with the expression unit. In the binary gene expression system of the present invention, by using the one-to-one specificity of the first and second expression units and introducing different sets of binary gene expression systems into one individual, 2 Expression of the target gene contained in the expression unit can be controlled in a time-specific and / or tissue-specific manner.
 当該キメラタンパク質のTAL認識配列への結合によって、キメラタンパク質の転写活性ドメインがTAL認識配列の制御下に配置された目的遺伝子等の発現を活性化する。したがって、本明細書におけるTAL認識配列は、下流に連結された目的遺伝子等プロモーターとして機能し得る遺伝子発現調節領域ということができる。 The binding of the chimeric protein to the TAL recognition sequence activates the expression of the target gene or the like in which the transcriptional activation domain of the chimeric protein is placed under the control of the TAL recognition sequence. Therefore, the TAL recognition sequence in this specification can be said to be a gene expression regulatory region that can function as a promoter such as a target gene linked downstream.
 TAL認識配列の具体的な構成は、第1発現ユニットにコードされたTALドメインの標的塩基配列が5~25個、5~20個、5~15個、5~10個、5~9個、又は5~8個含む繰り返し配列からなる。例えば、5’末端のt(チミン)及びそれに続く配列番号4で表される塩基配列からなる主要標的塩基配列で構成される標的塩基配列を5~25個含む塩基配列が該当する。より具体的な例として、配列番号9で表される塩基配列からなるGAL4認識配列の繰り返し単位が5~25個連結された繰り返し配列が挙げられる。この配列は、配列番号35で表される塩基配列からなるUASを含み、配列番号7又は配列番号8で表される塩基配列を主要標的塩基配列とする第1発現ユニットにコードされたTALドメインによって認識される。 The specific structure of the TAL recognition sequence is that the target base sequence of the TAL domain encoded by the first expression unit is 5 to 25, 5 to 20, 5 to 15, 5 to 10, 5 to 9, Alternatively, it consists of a repeating sequence containing 5 to 8. For example, a base sequence containing 5 to 25 target base sequences composed of a main target base sequence consisting of 5'-terminal t (thymine) followed by the base sequence represented by SEQ ID NO: 4 is applicable. A more specific example is a repeating sequence in which 5 to 25 repeating units of the GAL4 recognition sequence consisting of the base sequence represented by SEQ ID NO: 9 are linked. This sequence contains a UAS consisting of the base sequence represented by SEQ ID NO: 35, and is represented by the TAL domain encoded by the first expression unit having the base sequence represented by SEQ ID NO: 7 or 8 as the main target base sequence. Be recognized.
(2)目的遺伝子又はその断片
 本明細書において「目的遺伝子又はその断片」は、第2発現ユニットに含まれ、本発明のバイナリー遺伝子発現システムによって発現を増強する対象となる任意の遺伝子又はその断片である。遺伝子の種類は、特に限定されず、所望のタンパク質若しくはそのペプチド断片をコードする核酸、又は機能性核酸をコードする核酸とすることができる。
(2) Target gene or fragment thereof In this specification, “target gene or fragment thereof” is any gene or fragment thereof that is contained in the second expression unit and whose expression is to be enhanced by the binary gene expression system of the present invention. It is. The kind of gene is not particularly limited, and can be a nucleic acid encoding a desired protein or peptide fragment thereof, or a nucleic acid encoding a functional nucleic acid.
 「目的遺伝子」は、目的タンパク質をコードする遺伝子で、ゲノム由来の遺伝子、cDNAからなる遺伝子、又はキメラ遺伝子のいずれであってもよい。 The “target gene” is a gene encoding a target protein, and may be any of a gene derived from a genome, a gene composed of cDNA, or a chimeric gene.
 また、「目的遺伝子の断片」とは、目的遺伝子の塩基配列の一部で構成される核酸断片である。当該核酸断片の塩基長は特に限定しない。目的遺伝子においてシグナル配列をコードする領域を欠失した核酸断片であってもよいし、目的遺伝子における一ドメイン又は一モチーフのみからなる核酸断片であってもよい。 Also, the “target gene fragment” is a nucleic acid fragment composed of a part of the base sequence of the target gene. The base length of the nucleic acid fragment is not particularly limited. The target gene may be a nucleic acid fragment lacking a region encoding a signal sequence, or may be a nucleic acid fragment consisting of only one domain or one motif in the target gene.
 なお、本明細書では、目的タンパク質をコードする目的遺伝子又はその活性断片をコードするDNAをまとめて、しばしば「目的遺伝子等」と表記する。また、本発明のバイナリー遺伝子発現システムにおいて、前述の対象遺伝子等は、第1発現ユニットに含まれるTAL領域及び転写活性領域からなるキメラ遺伝子等や第2発現ユニットに含まれる目的遺伝子等を包含する上位の概念である。 In the present specification, the target gene encoding the target protein or the DNA encoding the active fragment is collectively referred to as “target gene etc.”. Further, in the binary gene expression system of the present invention, the above-mentioned target genes and the like include a chimeric gene comprising a TAL region and a transcriptional active region contained in the first expression unit, a target gene contained in the second expression unit, and the like. It is a superordinate concept.
 前記目的遺伝子等の由来生物種は第2発現ユニットを導入する宿主生物種と異なっていてもよい。例えば、第2発現ユニットにコードされた目的タンパク質がヒト由来のタンパク質であって、その第2発現ユニットを導入する宿主がカイコの場合が挙げられる。 The biological species derived from the target gene or the like may be different from the host biological species into which the second expression unit is introduced. For example, the target protein encoded by the second expression unit is a human-derived protein, and the host into which the second expression unit is introduced is silkworm.
 本明細書において「目的タンパク質」とは、目的遺伝子にコードされた所望のタンパク質である。目的タンパク質の種類を問わない。構造タンパク質又は機能タンパク質のいずれであってもよい。構造タンパク質の例としては、コラーゲン、アクチン、ミオシン、フィブロイン等の繊維タンパク質、ケラチン、ヒストン等が挙げられる。機能タンパク質の例としては、ペプチドホルモン(インスリン、カルシトニン、パラトルモン、成長ホルモン等)、サイトカイン(上皮成長因子(EGF)、繊維芽細胞成長因子(FGF)、インターロイキン(IL)、インターフェロン(IFN)、腫瘍壊死因子α(TNF-α)、トランスフォーミング成長因子β(TGF-β)等)、転写因子(GAL4を含む)、免疫グロブリン、血清アルブミン、ヘモグロビン、酵素等が挙げられる。また、目的タンパク質は、野生型タンパク質又は変異型タンパク質のいずれであってもよい。例えば、機能獲得型のような変異型タンパク質であってもよい。さらに、目的タンパク質又はそのペプチド断片は、その活性の有無も問わない。不活性型の変異型タンパク質であっても本態様の遺伝子発現ベクターを導入した宿主にドミナントネガティブ効果を付与することができるからである。ただし、通常は活性を有するタンパク質又はその活性ペプチド断片であることが好ましい。 In this specification, the “target protein” is a desired protein encoded by a target gene. Regardless of the type of target protein. Either a structural protein or a functional protein may be used. Examples of structural proteins include fiber proteins such as collagen, actin, myosin, fibroin, keratin, histone, and the like. Examples of functional proteins include peptide hormones (insulin, calcitonin, paratormon, growth hormone, etc.), cytokines (epidermal growth factor (EGF), fibroblast growth factor (FGF), interleukin (IL), interferon (IFN), Tumor necrosis factor α (TNF-α), transforming growth factor β (TGF-β), etc.), transcription factor (including GAL4), immunoglobulin, serum albumin, hemoglobin, enzyme and the like. The target protein may be either a wild type protein or a mutant protein. For example, a mutant protein such as a gain-of-function type may be used. Further, the target protein or peptide fragment thereof may or may not have activity. This is because even an inactive mutant protein can impart a dominant negative effect to a host into which the gene expression vector of this embodiment has been introduced. However, a protein having activity or an active peptide fragment thereof is usually preferred.
 前記「機能性核酸」とは、生体内又は細胞内において、特定の生物学的機能、例えば、酵素機能、触媒機能又は生物学的阻害若しくは亢進機能(例えば、転写、翻訳の阻害又は亢進)を有する核酸分子をいう。具体的には、例えば、RNA干渉剤、核酸アプタマー(RNAアプタマー等)、リボザイム、U1アダプター、又は転写因子結合領域等が挙げられる。「RNA干渉剤」とは、生体内においてRNA干渉(RNA inteference:RNAi)を誘導し、標的とする遺伝子の転写産物の分解を介してその遺伝子の発現を抑制(サイレンシング)することができる物質をいう。例えば、shRNA(short hairpin RNA)、miRNA(micro RNA)(pri-miRNA及びpre-miRNAを含む)又はアンチセンスRNAが挙げられる。 The “functional nucleic acid” refers to a specific biological function such as an enzyme function, a catalytic function, or a biological inhibition or enhancement function (for example, inhibition or enhancement of transcription, translation) in a living body or a cell. The nucleic acid molecule which has. Specific examples include RNA interference agents, nucleic acid aptamers (RNA aptamers, etc.), ribozymes, U1 adapters, transcription factor binding regions, and the like. An “RNA interference agent” is a substance that induces RNA interference (RNAi) (RNAi) in vivo and suppresses (silences) the expression of the gene through degradation of the target gene transcript. Say. For example, shRNA (short hairpin RNA), miRNA (microRNA) (including pri-miRNA and pre-miRNA) or antisense RNA can be mentioned.
 本態様の第2発現ユニットにおいて目的遺伝子等は、複数含まれていてもよい。この場合、各目的遺伝子等は同じタンパク質をコードする遺伝子等であってもよいし、異なるタンパク質をコードする遺伝子等であってもよい。ただし、第2発現ユニットにおいてTAL認識配列が1つしか存在しない場合、各目的遺伝子等は、そのTAL認識配列の制御領域範囲内に配置されていなければならない。一方、1つのTAL認識配列と1つの目的遺伝子等からなる1組の発現単位が、第2発現ユニットに複数存在していてもよい。 In the second expression unit of this embodiment, a plurality of target genes and the like may be included. In this case, each target gene or the like may be a gene or the like encoding the same protein, or a gene or the like encoding a different protein. However, when there is only one TAL recognition sequence in the second expression unit, each target gene or the like must be located within the control region range of the TAL recognition sequence. On the other hand, a plurality of sets of expression units consisting of one TAL recognition sequence and one target gene may exist in the second expression unit.
2.形質転換体
2-1.概要
 本発明の第2の態様は形質転換体である。本態様の形質転換体は、第1態様に記載のバイナリー遺伝子発現システムを構成する第1発現ユニット及び/又は第2発現ユニットを細胞内に包含する。本発明の形質転換体は、バイナリー遺伝子発現システムを構成するいずれか一方の発現ユニットを含む系統の維持を容易にする。また2つの発現ユニットを含む個体において、第2発現ユニットに含まれる目的遺伝子等の発現を増強させることができる。さらに複数組のバイナリー遺伝子発現システムを個体に導入することで、それぞれのシステムの第2発現ユニットに含まれる目的遺伝子の発現時期や発現場所を個別に制御することができる。
2. Transformant 2-1. Outline | summary The 2nd aspect of this invention is a transformant. The transformant of this aspect includes in the cell the first expression unit and / or the second expression unit constituting the binary gene expression system described in the first aspect. The transformant of the present invention facilitates maintenance of a strain containing any one expression unit constituting a binary gene expression system. In addition, in an individual containing two expression units, the expression of a target gene or the like contained in the second expression unit can be enhanced. Furthermore, by introducing a plurality of sets of binary gene expression systems into an individual, the expression timing and expression location of the target gene contained in the second expression unit of each system can be individually controlled.
2-2.構成
 本明細書において「形質転換体」とは、第1態様に記載のバイナリー遺伝子発現システムを構成する第1発現ユニット及び/又は第2発現ユニットを細胞内に包含する導入体をいう。より具体的には、第1態様に記載のバイナリー遺伝子発現システムを構成する第1発現ユニット及び/又は第2発現ユニット(本明細書ではしばしば「第1及び/又は第2発現ユニット」と略称する)を宿主に導入し、形質転換させた第1世代、及びその第2世代以降の後代、又はそれぞれの発現ユニットを包含する形質転換体を交配して得られる2つの発現ユニットを含むF1個体及びその第2世代以降の後代が該当する。ただし、形質転換体が包含する第2発現ユニットのTAL認識配列が配列番号9で示す塩基配列を5~25個連結した繰り返し配列からなる場合、その形質転換体は、本発明の形質転換体から除外される。
2-2. Configuration In the present specification, the “transformant” refers to an introducer that includes the first expression unit and / or the second expression unit constituting the binary gene expression system according to the first aspect in the cell. More specifically, the first expression unit and / or the second expression unit constituting the binary gene expression system according to the first aspect (often abbreviated as “first and / or second expression unit” in the present specification). F1 individuals comprising two expression units obtained by mating transformants containing the first generation and its second generation or later progenies or their respective generation units, The second generation and later generations fall under this category. However, when the TAL recognition sequence of the second expression unit included in the transformant is composed of a repetitive sequence in which 5 to 25 nucleotide sequences represented by SEQ ID NO: 9 are linked, the transformant is derived from the transformant of the present invention. Excluded.
 本明細書において「宿主(細胞)」とは、本発明のバイナリー遺伝子発現システムの第1及び/又は第2発現ユニットが導入される細胞、組織又は個体をいう。形質転換体の宿主は、原則として、特に限定されない。ただし、細胞内で導入された第1及び/又は第2発現ユニットの複製が可能であり、かつ第1及び第2発現ユニットが併存する場合に、第2発現ユニットに含まれる目的遺伝子等を発現できなければならない。前記条件を満たす限り、宿主は、細菌、真菌、又は動物(細胞)のいずれであってもよい。例として、細菌であれば、大腸菌、バチルス属(Bacillus)菌等が挙げられる。真菌であれば、糸状菌、担子菌及び酵母が挙げられる。動物であれば、無脊椎動物(昆虫、甲殻類を含む)、脊椎動物(魚類、両生類、爬虫類、鳥類、哺乳類動物を含む)が挙げられる。宿主には昆虫が好ましく、中でもチョウ目昆虫は好ましい。 In the present specification, “host (cell)” refers to a cell, tissue or individual into which the first and / or second expression unit of the binary gene expression system of the present invention is introduced. The host of the transformant is not particularly limited in principle. However, when the first and / or second expression unit introduced into the cell can be replicated and the first and second expression units coexist, the target gene contained in the second expression unit is expressed. It must be possible. As long as the above conditions are satisfied, the host may be any of bacteria, fungi, and animals (cells). Examples of bacteria include Escherichia coli and Bacillus bacteria. Examples of fungi include filamentous fungi, basidiomycetes, and yeast. Examples of animals include invertebrates (including insects and crustaceans) and vertebrates (including fish, amphibians, reptiles, birds and mammals). Insects are preferable for the host, and lepidopterous insects are particularly preferable.
 「チョウ目昆虫」とは、分類学上のチョウ目(Lepidoptera)に属する昆虫であって、チョウ又はガをいう。チョウには、タテハチョウ科(Nymphalidae)、アゲハチョウ科(Papilionidae)、シロチョウ科(Pieridae)、シジミチョウ科(Lycaenidae)、及びセセリチョウ科(Hesperiidae)に属する昆虫が含まれる。ガには、ヤママユガ科(Saturniidae)、カイコガ科(Bombycidae)、イボタガ科(Brahmaeidae)、オビガ科(Eupterotidae)、カレハガ科(Lasiocampidae)、ミノガ科(Psychidae)、シャクガ(Geometridae)、ヒトリガ科(Archtiidae)、ヤガ科(Noctuidae)、メイガ科(Pyralidae)、スズメガ科(Sphingidae)等に属する昆虫が含まれる。例えば、ガであれば、Bombyx属、Samia属、Antheraea属、Saturnia属、Attacus属、Rhodinia属に属する種、具体的には、カイコ、クワコ(Bombyx mandarina)、シンジュサン(Samia cynthia;エリサンSamia cynthia ricini及びシンジュサンとエリサンの交配種を含む)、ヤママユガ(Antheraea yamamai)、サクサン(Antheraea pernyi)、ヒメヤママユ(Saturnia japonica)、オオミズアオ(Actias gnoma)等が挙げられる。本発明の形質転換体の宿主としてのチョウ目昆虫は、これらに限定はされないが、産業上の利用可能性の高いカイコは、宿主として特に好ましい。 “Lepidoptera” refers to insects belonging to the taxonomic Lepidoptera, butterfly or moth. The butterfly includes insects belonging to Nymphalidae, Papilionidae, Pieridae, Lycaenidae, and Hesperiidae. The moths include Saturniidae, Bombycidae, Brahmaeidae, Eupterotidae, Lasiocampidae, Psychidae, Geometridae, and idae , Insects belonging to Noctuidae, Pyralidae, Sphingidae and the like. For example, in the case of moths, species belonging to the genus Bombyx, Samia, Antheraea, Saturnia, Attacus, Rhodinia, specifically silkworms, Bombyx mandarina, Shinjasan (Samia cynthia; Elysan Samia cynthia) ricini and hybrids of Shinjusan and Erisan), Antheraea yamamai, Sakusan (Antheraea pernyi), Saturnia japonica, Actias gnoma and the like. The Lepidoptera insects as the host of the transformant of the present invention are not limited to these, but silkworms with high industrial applicability are particularly preferable as the host.
 本明細書において「後代」とは、第1世代の形質転換体から無性生殖又は有性生殖を介して得られる第2世代以降の形質転換体であって、かつ第1態様のバイナリー遺伝子発現システムを構成する第1及び/又は第2発現ユニットを保持している個体をいう。例えば、単細胞微生物であれば、第1世代以降の形質転換体から分裂又は出芽等によって新たに生じた細胞(クローン体)で、第1及び/又は第2発現ユニットを保持している細胞が該当する。また、有性生殖を行う生物であれば、第1世代以降の配偶子の接合により新たに生じた個体で、第1又は第2発現ユニットを保持している個体、あるいは第1世代以降の形質転換体の配偶子どうしの接合により新たに生じた個体で、第1及び第2発現ユニットを保持している個体が該当する。 In the present specification, the “progeny” is a transformant of the second generation or later obtained from the transformant of the first generation through asexual reproduction or sexual reproduction, and the binary gene expression of the first aspect An individual holding the first and / or second expression unit constituting the system. For example, in the case of a single-cell microorganism, a cell newly generated by division or budding from a transformant of the first generation or later (clone body), and a cell holding the first and / or second expression unit is applicable. To do. In addition, if it is an organism that carries out sexual reproduction, it is an individual newly generated by mating of the first generation or later gametes, an individual holding the first or second expression unit, or a trait of the first generation or later. This is an individual newly generated by joining gametes of the transformant and holding the first and second expression units.
 形質転換体において第1態様のバイナリー遺伝子発現システムを構成する第1及び第2発現ユニットは、宿主細胞内に一過的に存在してもよいし、また染色体中に導入された状態等で安定的かつ継続的に存在してもよい。通常は、安定的かつ継続的に存在することが好ましい。 The first and second expression units constituting the binary gene expression system of the first aspect in the transformant may exist transiently in the host cell, and are stable when introduced into the chromosome. And may exist continuously. Usually, it is preferable to exist stably and continuously.
 第1及び第2発現ユニットが宿主細胞の染色体中に組み込まれている場合、第1及び第2発現ユニットは同一染色体に存在していてもよいし、異なる染色体に存在していてもよい。形質転換体である宿主の交配によって2つの発現ユニットを同一の宿主細胞内に併存させる場合には、各発現ユニットは異なる染色体に存在することが好ましい。同一染色体に存在する場合には、2つの発現ユニットが互いに連鎖しない遠位に組み込まれていることが望ましい。 When the first and second expression units are integrated into the host cell chromosome, the first and second expression units may be present on the same chromosome or may be present on different chromosomes. When two expression units are allowed to coexist in the same host cell by mating with a host that is a transformant, each expression unit is preferably present on a different chromosome. When present on the same chromosome, it is desirable that the two expression units be incorporated distally so as not to be linked to each other.
 また、第1及び第2発現ユニットは、同種で別個の宿主が有していることが好ましい。第1発現ユニットのみを(好ましくはホモ接合体で)有する系統の形質転換体と第2発現ユニットのみを(好ましくはホモ接合体で)有する系統の形質転換体とを交配させることによって、F1で前記2つの発現ユニットを有する形質転換体を容易に得ることができる。 Moreover, it is preferable that the first and second expression units have the same type and separate hosts. By crossing a transformant of a line having only the first expression unit (preferably homozygous) with a transformant of a line having only the second expression unit (preferably homozygous), F1 A transformant having the two expression units can be easily obtained.
2-3.第1又は第2発現ユニットの宿主導入方法
 各発現ユニットの宿主導入方法について、説明をする。
2-3. Host introduction method of first or second expression unit The host introduction method of each expression unit will be described.
 第1又は第2発現ユニットを導入する宿主は、個体、組織又は細胞(株化細胞を含む)である。好ましい宿主は個体である。細胞若しくは組織に導入する場合、採取された個体の発生ステージは、特に限定はしない。個体に導入する場合も、発生ステージや雌雄の限定は特になく、成長過程のいずれのステージであってもよい。好ましくは、より高い効果が期待できる胚時期である。 The host into which the first or second expression unit is introduced is an individual, tissue or cell (including cell lines). Preferred hosts are individuals. When introduced into a cell or tissue, the stage of development of the collected individual is not particularly limited. When introduced into an individual, there are no particular limitations on the generation stage or sex, and any stage in the growth process may be used. Preferably, it is an embryonic time when a higher effect can be expected.
 各発現ユニットの導入方法は、導入する宿主に応じて当該分野で公知の形質転換方法に準じて行えばよい。 The method for introducing each expression unit may be performed according to a transformation method known in the art depending on the host to be introduced.
 例えば、宿主が細菌の場合であれば、ヒートショック法、カルシウムイオン法(例えば、リン酸カルシウム法)、エレクトロポレーション法等を用いればよい。また宿主が酵母の場合には、リチウム法、エレクトロポレーション法等を用いればよい。これらの形質転換方法は、いずれも当該分野で公知であり、Green, M.R. and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New Yorkをはじめ、様々な文献に記載されているのでそれらを参考にすることができる。 For example, if the host is a bacterium, a heat shock method, a calcium ion method (for example, a calcium phosphate method), an electroporation method, or the like may be used. When the host is yeast, the lithium method, electroporation method or the like may be used. These transformation methods are all known in the art, and are described in Green, M.R. and Sambrook, J., 2012, Molecular Cloning: A Laboratory Manual Fourth Ed. , Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York and so on, so you can refer to them.
 また、宿主が昆虫、特にカイコの場合で、各ユニットがトランスポゾンの逆位末端反復配列(ITRs)(Handler AM. et al., 1998, Proc. Natl. Acad. Sci. U.S.A. 95:7520-5)を有するプラスミドであれば、Tamuraらの方法(Tamura T. et al., 2000, Nature Biotechnology, 18, 81-84)を応用することができる。簡単に説明すると、適当な濃度に希釈した第1又は第2発現ユニットを、トランスポゾン転移酵素の遺伝子を有するヘルパーベクターと共にカイコ卵の初期胚にインジェクションすればよい。ヘルパーベクターには、例えば、pHA3PIGが利用できる。発現ユニットが標識遺伝子を含む場合には、その遺伝子等の発現に基づいて目的の形質転換体を容易に選抜することができる。なお、この方法で得られた遺伝子組換えカイコは、発現ユニットがトランスポゾンの逆位末端反復配列を介して染色体中に組み込まれている。この遺伝子組換えカイコを必要に応じて兄妹交配又は同系交配を行い、染色体に挿入された核発現ユニットのホモ接合体を得てもよい。 In addition, when the host is an insect, particularly silkworm, each unit is a transposon inverted terminal repeat (ITRs) (Handler AM. Et al., 1998, Proc. Natl. Acad. Sci. USA 95: 7520-5) The method of Tamura et al. (Tamura T. et al., 2000, Nature Biotechnology, 18, 81-84) can be applied. Briefly, the first or second expression unit diluted to an appropriate concentration may be injected into an early embryo of a silkworm egg together with a helper vector having a transposon transferase gene. For example, pHA3PIG can be used as the helper vector. When the expression unit includes a marker gene, the target transformant can be easily selected based on the expression of the gene or the like. In the transgenic silkworm obtained by this method, the expression unit is integrated into the chromosome via the transposon inverted terminal repeat sequence. If necessary, this transgenic silkworm may be sibling or inbred to obtain a homozygous nuclear expression unit inserted into the chromosome.
 さらに、宿主が動物細胞の場合には、リポフェクチン法(PNAS、1989、Vol.86、6077;PNAS、1987、Vol.84、7413)、エレクトロポレーション法、リン酸カルシウム法(Virology、1973、Vol.52、456-467)、DEAE-Dextran法等が好適に用いられるが、この限りではない。 Furthermore, when the host is an animal cell, the lipofectin method (PNAS, 1989, Vol. 86, 6077; PNAS, 1987, Vol. 84, 7413), electroporation method, calcium phosphate method (Virology, 1973, Vol. 52). 456-467), DEAE-Dextran method and the like are preferably used, but not limited thereto.
3.遺伝子発現増強個体の作出方法
3-1.概要
 本発明の第3の態様は、遺伝子発現増強個体の作出方法である。本発明の作出方法は、第1態様のバイナリー遺伝子発現システムにおける第1及び第2発現ユニットの両方を含むF1形質転換体を作出する方法である。得られた形質転換体は、第2発現ユニットに包含される目的遺伝子等の発現を増強することができる。
3. 3. Method for producing individual with enhanced gene expression 3-1. Outline | summary The 3rd aspect of this invention is a production method of a gene expression enhancement individual. The production method of the present invention is a method for producing an F1 transformant containing both the first and second expression units in the binary gene expression system of the first embodiment. The obtained transformant can enhance the expression of a target gene or the like included in the second expression unit.
3-2.作出手順
 本発明の作出方法は、交配工程及び選択工程を必須工程として含む。以下、各工程について説明をする。
3-2. Production procedure The production method of the present invention includes a mating step and a selection step as essential steps. Hereinafter, each step will be described.
3-2-1.交配工程
 「交配工程」とは、第2態様に記載の第1発現ユニットのみを有する形質転換体と第2発現ユニットのみを有する形質転換体とを交配させる工程である。
3-2-1. Mating Step “Mating step” is a step of mating a transformant having only the first expression unit described in the second embodiment with a transformant having only the second expression unit.
 本工程では、第1発現ユニットを有する形質転換体と第2発現ユニットを有する形質転換体を常法に基づいて交配させればよい。それぞれの発現ユニットを有する形質転換体は、予め兄妹交配又は同系交配を行い、各発現ユニットに関してホモ接合体にしておくことが好ましい。 In this step, a transformant having the first expression unit and a transformant having the second expression unit may be crossed based on a conventional method. The transformant having each expression unit is preferably subjected to sibling mating or inbred mating in advance and homozygous for each expression unit.
3-2-2.選択工程
 「選択工程」とは、前記第1及び第2発現ユニットを有する個体を選択する工程である。本工程では、交配工程後に得られるF1個体から、それぞれの発現ユニットにコードされた標識タンパク質の活性に基づいて、両発現ユニットを有する個体を選抜することによって達成し得る。
3-2-2. Selection Step The “selection step” is a step of selecting an individual having the first and second expression units. This step can be achieved by selecting individuals having both expression units from the F1 individuals obtained after the mating step, based on the activity of the labeled protein encoded by each expression unit.
 以下に本発明の態様について、具体的な実施例を挙げて説明をするが、以下の実施例は本発明の一概念に過ぎず、本発明はこれに限定されるものではない。 Hereinafter, embodiments of the present invention will be described with specific examples. However, the following examples are merely one concept of the present invention, and the present invention is not limited thereto.
<実施例1:UASを認識する第1発現ユニットによる目的遺伝子の発現効率(1)>
(目的)
 本発明のバイナリー遺伝子発現システムを構築するために、UASを認識するTALドメインをコードする様々な第1発現ユニットを構築し、第2発現ユニットに対する目的遺伝子の発現効率を検証する。
<Example 1: Expression efficiency of target gene by first expression unit recognizing UAS (1)>
(the purpose)
In order to construct the binary gene expression system of the present invention, various first expression units encoding TAL domains that recognize UAS are constructed, and the expression efficiency of the target gene with respect to the second expression unit is verified.
(方法)
(1)第1発現ユニットの構築
 第1発現ユニットのベースとなるベクターには、Takasuら(Takasu Y., et al., 2013, PLoS ONE 8: 9, e73458. doi:10.1371/journal.pone.0073458)により構築されたカイコ用TALEN発現ベクターpBlue-TALを用いた。
(Method)
(1) Construction of the first expression unit Takasu et al. (Takasu Y., et al., 2013, PLoS ONE 8: 9, e73458. Doi: 10.1371 / journal.pone. The TALEN expression vector pBlue-TAL for silkworm constructed by (0073458) was used.
 従来のGAL4/UASシステムでは、図2で示すように、19塩基からなり、配列番号9で表されるGAL4認識配列を5回繰り返した配列をUASコンストラクトとして用いている。そこで、この単位を標的塩基配列とするTAL認識領域UASTAL1、標的塩基配列の5’末端側がTになるように前記GAL4認識配列上で3’末端側に位相を5塩基ずらしてなる20塩基を標的塩基配列とするUASTAL2、またGAL4認識配列上で標的塩基配列を5つ含む(すなわち5回繰り返す)ようにUASTAL2の3'末端側を削り、塩基数を13塩基に短縮したUASTAL3の3種類のTAL領域を作製した(図2)。TAL領域のクローニングは、Golden gate assembly kit(Addgene)を用いてCermakら(Cermak T., et al., 2011, Nucleic Acids Res 39: e82)の方法に準じた。得られたベクターをそれぞれ「pBlue-UASTAL1」、「pBlue-UASTAL2」、及び「pBlue-UASTAL3」とした(本明細書では、これらをまとめて、しばしば「pBlue-UASTAL(1-3)」と表記する)。 In the conventional GAL4 / UAS system, as shown in FIG. 2, a sequence consisting of 19 bases and having a GAL4 recognition sequence represented by SEQ ID NO: 9 repeated 5 times is used as a UAS construct. Therefore, TAL recognition region UASTAL1, which has this unit as the target base sequence, targets 20 bases that are shifted by 5 bases on the 3 'end side of the GAL4 recognition sequence so that the 5' end side of the target base sequence is T. UASTAL2, which is the base sequence, and 3 types of TAL, UASTAL3, which is trimmed to 13 bases by trimming the 3 'end of UASTAL2 to include 5 target base sequences on the GAL4 recognition sequence (ie repeat 5 times) Regions were created (FIG. 2). Cloning of the TAL region was performed in accordance with the method of Cermak et al. (Cermak T., et al., 2011, Nucleic Acids Res 39: e82) using the Golden gate assembly kit (Addgene). The obtained vectors were designated as “pBlue-UASTAL1”, “pBlue-UASTAL2”, and “pBlue-UASTAL3” (in this specification, these are collectively referred to as “pBlue-UASTAL (1-3)”. To do).
 次に、pBlue-UASTAL(1-3)をBamHI及びXhoIで消化し、FokIヌクレアーゼドメインをコードする領域を除いた。続いて、BamHI/XhoIサイトに、配列番号36で表される塩基配列からなるBamXho_ad_U及び配列番号37で表される塩基配列からなるBamXho_ad_LをアニーリングさせてなるBamHI-XhoIアダプターを挿入した。得られたベクターを「pBlue-UASTAL(1-3)-BamHI-XhoIad」とした。 Next, pBlue-UASTAL (1-3) was digested with BamHI and XhoI to remove the region encoding the FokI nuclease domain. Subsequently, a BamHI-XhoI adapter obtained by annealing BamXho_ad_U consisting of the base sequence represented by SEQ ID NO: 36 and BamXho_ad_L consisting of the base sequence represented by SEQ ID NO: 37 was inserted into the BamHI / XhoI site. The obtained vector was designated as “pBlue-UASTAL (1-3) -BamHI-XhoIad”.
 続いて、TAL領域におけるN末端領域の制限酵素サイトをPCRで改変した。具体的には、TAL_N_BsmBI_U(配列番号38)及びTAL_N_L(配列番号39)をプライマーとし、pBlue-TALを鋳型に用いてPCRにより増幅した。PCRは、KOD plus(TOYOBO)を用いて行い、反応液組成は、添付のプロトコルに記載されたスタンダードな方法に従った。PCRサイクルの条件は、94℃30秒及び68℃60秒を1サイクルとして、12サイクル行った。得られた増幅産物を、SnaBI及びAgeIで消化した後、pBlue-UASTAL(1-3)-BamHI-XhoIadのSnaBI/AgeIサイトへ挿入した。得られたベクターを「pBlue-Bsm-UASTAL(1-3)-BamHI-XhoIad」とした。 Subsequently, the restriction enzyme site in the N-terminal region in the TAL region was modified by PCR. Specifically, amplification was performed by PCR using TAL_N_BsmBI_U (SEQ ID NO: 38) and TAL_N_L (SEQ ID NO: 39) as primers and pBlue-TAL as a template. PCR was performed using KOD plus (TOYOBO), and the composition of the reaction solution was in accordance with the standard method described in the attached protocol. The PCR cycle conditions were 12 cycles, with 94 ° C for 30 seconds and 68 ° C for 60 seconds as one cycle. The obtained amplification product was digested with SnaBI and AgeI, and then inserted into the SnaBI / AgeI site of pBlue-UASTAL (1-3) -BamHI-XhoIad. The obtained vector was designated as “pBlue-Bsm-UASTAL (1-3) -BamHI-XhoIad”.
 さらに、TAL2領域のC末端にGAL4の転写活性化ドメインの全長を連結した。BsmBI_GAL4_U30(配列番号40)及びBsmBI_GAL4_L30(配列番号41)をプライマーとし、pBac[Ser1-GAL4/3xP3-DsRed](Tatematsu K, et al., 2010, Transgenic research, 19:473-87)を鋳型に用いて、GAL4遺伝子の全長をPCRで増幅した。得られた増幅産物をpZErO-2(life technologies)へ挿入した。具体的な方法は、Tatematsuら(Tatematsu K, et al., 2010;前述)に記載の方法に準じた。得られたベクターを「GAL4/pZero2」とした。 Furthermore, the full length of the transcriptional activation domain of GAL4 was linked to the C-terminus of the TAL2 region. BsmBI_GAL4_U30 (SEQ ID NO: 40) and BsmBI_GAL4_L30 (SEQ ID NO: 41) are used as primers, and pBac [Ser1-GAL4 / 3xP3-DsRed] (Tatematsu K, et al., 2010, Transgenic research, 19: 473-87) is used as a template. Thus, the full length of the GAL4 gene was amplified by PCR. The obtained amplification product was inserted into pZErO-2 (life technologies). The specific method was based on the method described in Tatematsu et al. (Tatematsu K, et al., 2010; mentioned above). The obtained vector was designated as “GAL4 / pZero2”.
 次にGAL4/pZero2をClaI及びXhoIで消化し、GAL4転写活性化ドメインをコードする領域を含むGAL4AD-ClaI-XhoIを得た。pBlue-Bsm-UASTAL(1-3)-BamHI-XhoIadをClaI及びXhoIで消化した後、前記GAL4AD-ClaI-XhoIをClaI/XhoIサイトに挿入した。得られたベクターを「pBlue-Bsm-UASTAL(1-3)-GAL4AD」とした。 Next, GAL4 / pZero2 was digested with ClaI and XhoI to obtain GAL4AD-ClaI-XhoI containing a region encoding the GAL4 transcriptional activation domain. After digesting pBlue-Bsm-UASTAL (1-3) -BamHI-XhoIad with ClaI and XhoI, the GAL4AD-ClaI-XhoI was inserted into the ClaI / XhoI site. The obtained vector was designated as “pBlue-Bsm-UASTAL (1-3) -GAL4AD”.
 最後に、pBlue-Bsm-UASTAL(1-3)-GAL4ADをSnaBI及びXhoIで消化し、得られたSnaBI-XhoI断片をpIB/V5-His(life technologies)のEcoRV/XhoIサイトへ挿入した。pIB/V5-Hisは、OplE2プロモーターとターミネーターを有し、EcoRV/XhoIサイトはこれらの間に位置する。得られた第1発現ユニットを「UASTAL(1-3)-GAL4AD/pIB」とした。 Finally, pBlue-Bsm-UASTAL (1-3) -GAL4AD was digested with SnaBI and XhoI, and the obtained SnaBI-XhoI fragment was inserted into the EcoRV / XhoI site of pIB / V5-His (life ™ technologies). pIB / V5-His has an OplE2 promoter and terminator, and the EcoRV / XhoI site is located between them. The obtained first expression unit was designated as “UASTAL (1-3) -GAL4AD / pIB”.
(2)第2発現ユニットの構築
 本実施例で使用する第2発現ユニットは、GAL4/UASシステムのUAS系統と基本構成は同じであり、UASリピートの下流に目的遺伝子としてルシフェラーゼ遺伝子が連結された構造を有する。
(2) Construction of the second expression unit The second expression unit used in this example has the same basic structure as the UAS line of the GAL4 / UAS system, and a luciferase gene is linked as a target gene downstream of the UAS repeat. It has a structure.
 まず、UASリピートとセリシン1遺伝子の3’UTRからなるSerUASカセットを、serUASPCRU(配列番号42)及びserPolyALSpe(配列番号43)をプライマーとし、pBac[SerUAS/3xP3EGFP](Tatematsu K, et al., 2010, Transgenic research, 19:473-87)を鋳型に用いて、PCRにより増幅した。PCRは、KOD plus(TOYOBO)を用いて行い、反応液組成は、添付のプロトコルに記載されたスタンダードな方法に従った。PCRサイクルの条件は、94℃30秒及び68℃60秒を1サイクルとして、12サイクル行った。得られた増幅産物をpBluescript SKII-(Agilent Technologies)のEcoRVサイトに挿入した。得られたベクターを「pB-SerUAS」とした。 First, SerUAS cassette consisting of UAS repeat and 3'UTR of sericin 1 gene, serUASPCRU (SEQ ID NO: 42) and serPolyALSpe (SEQ ID NO: 43) as primers, pBac [SerUAS / 3xP3EGFP] (Tatematsu K, et al., 2010) , Transgenic research, 19: 473-87) was used as a template and amplified by PCR. PCR was performed using KOD plus (TOYOBO), and the composition of the reaction solution was in accordance with the standard method described in the attached protocol. The PCR cycle conditions were 12 cycles, with 94 ° C for 30 seconds and 68 ° C for 60 seconds as one cycle. The obtained amplification product was inserted into the EcoRV site of pBluescript SKII- (Agilent Technologies). The obtained vector was designated as “pB-SerUAS”.
 次に、ホタルルシフェラーゼ遺伝子を、Bln-luc U(配列番号44)及びBln-luc L(配列番号45)をプライマーとし、pGL3(プロメガ)を鋳型に用いて、PCRにより増幅した。PCRの条件は上記条件に準じた。増幅産物をBlnIで消化した後、得られたBlnI断片をpB-SerUASのBlnIサイトに挿入して第2発現ユニット「pUAS-fLuc」を得た。 Next, the firefly luciferase gene was amplified by PCR using Bln-luc U (SEQ ID NO: 44) and Bln-luc L (SEQ ID NO: 45) as primers and pGL3 (Promega) as a template. PCR conditions were in accordance with the above conditions. After digesting the amplified product with BlnI, the obtained BlnI fragment was inserted into the BlnI site of pB-SerUAS to obtain the second expression unit “pUAS-fLuc”.
(3)ルシフェラーゼアッセイ
 第1発現ユニットの転写活性化能を調べるため、カイコ培養細胞でルシフェラーゼアッセイを行った。第1発現ユニットUASTAL(1-3)-GAL4AD/pIB及び第2発現ユニットpUAS-fLucをpRL-TK(プロメガ:内部標準用)と共にカイコ培養細胞BmN4にトランスフェクションした。陽性対照として従来のGAL4/UASシステムにおけるGAL4系統の転写活性化能も測定した。なお、陽性対照におけるUAS系統は第2発現ユニットと同一である。
(3) Luciferase assay In order to examine the transcription activation ability of the first expression unit, a luciferase assay was performed on silkworm cultured cells. The first expression unit UASTAL (1-3) -GAL4AD / pIB and the second expression unit pUAS-fLuc were transfected into silkworm cultured cells BmN4 together with pRL-TK (Promega: for internal standard). As a positive control, the transcriptional activation ability of GAL4 lines in the conventional GAL4 / UAS system was also measured. The UAS line in the positive control is the same as the second expression unit.
 トランスフェクション3日後に細胞を回収し、dual luciferase assay(プロメガ)によりルシフェラーゼ活性を添付のプロトコルに従い測定した。 Three days after transfection, the cells were collected, and luciferase activity was measured by dual-luciferase assay (Promega) according to the attached protocol.
(結果)
 図3のレーン2~4に結果を示す。陽性対照(GAL4/UASシステムのGAL4系統)はレーン1である。TAL領域にGAL4ADの全長コードする領域を連結するだけでは、UASTAL1~3のいずれの場合も陽性対照と比較して、転写活性化能が減少することが明らかとなった。この理由として、標的認識配列が単純なリピート配列であることに起因する、UASTALの立体障害に原因がある可能性が考えられた。
(result)
The results are shown in lanes 2 to 4 of FIG. The positive control (GAL4 / UAS system GAL4 line) is lane 1. It was clarified that the transcriptional activation ability decreased in all cases of UASTAL1 to 3 compared to the positive control only by linking the full-length coding region of GAL4AD to the TAL region. This may have been caused by the steric hindrance of UASTAL caused by the target recognition sequence being a simple repeat sequence.
<実施例2:UASを認識する第1発現ユニットによる目的遺伝子の発現効率(2)>
(目的)
 実施例1の第1発現ユニットでは、従来のGAL4/UASシステムを超える転写活性化能を得ることができなかった。そこで、UASTALの立体障害を減少させるために転写活性ドメインを短縮化した新たな第1発現ユニットを構築し、第2発現ユニットに対する目的遺伝子の発現効率を再度検証する。
<Example 2: Expression efficiency of target gene by first expression unit recognizing UAS (2)>
(the purpose)
In the first expression unit of Example 1, transcription activation ability exceeding the conventional GAL4 / UAS system could not be obtained. In order to reduce the steric hindrance of UASTAL, a new first expression unit with a shortened transcriptional active domain is constructed, and the expression efficiency of the target gene with respect to the second expression unit is verified again.
(方法)
(1)第1発現ユニットの構築
 本実施例では、第1発現ユニットにおける転写活性領域を、実施例1のGAL4転写活性化ドメインの全長に替えて、ARII又はVP16を用いた。ARIIはGAL4転写活性化ドメインのC末端側に位置する最小活性単位(転写活性単位)であり、VP16は単純ヘルペスウイルスのVP16の転写活性化ドメインである。なお、TAL領域には、実施例1で最も転写活性化能が高かったUASTAL3と次に転写活性化能が高かったUASTAL2を用いた(以下これら2つをまとめて、しばしば「UASTAL(2-3)」と表記する。
・UASTAL(2-3)-ARII(x2)の構築
 まず、GAL4遺伝子において配列番号16で表されるアミノ酸配列からなるARIIをコードする領域(ARII領域;配列番号17)を、BamHI GAL4ARII U(配列番号46)及びBgl GAL4ARII L(配列番号47)をプライマーとし、pBac[Ser1-GAL4/3xP3-DsRed]を鋳型に用いて、PCRにより増幅した。PCRは、実施例1の記載の方法に準じた。次に、増幅産物をBamHIで消化した後、得られたBamHI断片を実施例1で調製したpBlue-Bsm-UASTAL(2-3)-BamHI-XhoIadのBamHIサイトへ挿入した。得られたベクターを「pBlue-Bsm-UASTAL(2-3)-ARII」とした。
(Method)
(1) Construction of first expression unit In this example, ARII or VP16 was used in place of the transcriptional activation region in the first expression unit in place of the full length of the GAL4 transcriptional activation domain of Example 1. ARII is the minimal active unit (transcriptional activity unit) located on the C-terminal side of the GAL4 transcriptional activation domain, and VP16 is the transcriptional activation domain of herpes simplex virus VP16. For the TAL region, UASTAL3, which had the highest transcription activation ability in Example 1, and UASTAL2, which had the next highest transcription activation ability, were used (hereinafter these two were collectively referred to as “UASTAL (2-3 ) ".
・ Construction of UASTAL (2-3) -ARII (x2) First, the region encoding the ARII consisting of the amino acid sequence represented by SEQ ID NO: 16 in the GAL4 gene (ARII region; SEQ ID NO: 17) is designated as BamHI GAL4ARII U (sequence) No. 46) and Bgl GAL4ARIIL (SEQ ID NO: 47) were used as primers, and pBac [Ser1-GAL4 / 3xP3-DsRed] was used as a template for amplification by PCR. PCR was performed according to the method described in Example 1. Next, the amplified product was digested with BamHI, and the obtained BamHI fragment was inserted into the BamHI site of pBlue-Bsm-UASTAL (2-3) -BamHI-XhoIad prepared in Example 1. The obtained vector was designated as “pBlue-Bsm-UASTAL (2-3) -ARII”.
 前記BamHI断片をpBlue-Bsm-UASTAL(2-3)-ARIIのBamHIサイトに再度挿入し、ARIIをタンデムにした。得られたベクターを「pBlue-Bsm-UASTAL(2-3)-ARIIx2」とした。 The BamHI fragment was re-inserted into the BamHI site of pBlue-Bsm-UASTAL (2-3) -ARII to make ARII a tandem. The obtained vector was designated as “pBlue-Bsm-UASTAL (2-3) -ARIIx2”.
 pBlue-Bsm-UASTAL(2-3)-ARII、及び「pBlue-Bsm-UASTAL(2-3)-ARIIx2をそれぞれSnaBI及びXhoIで消化し、SnaBI-XhoI断片をpIB/V5-His(life technologies)のEcoRV/XhoIサイトへ挿入し、得られた第1発現ユニットを「UASTAL(2-3)-ARII/pIB」、及び「UASTAL(2-3)-ARIIx2/pIB」とした。
・UASTAL3-VP16(x2)の構築
 まず、配列番号18で表されるアミノ酸配列からなるVP16をコードする領域(VP16領域;配列番号19)を、BamHI VP16 U(配列番号48)及びBgl VP16operon L(配列番号49)をプライマーとし、人工合成した遺伝子を鋳型に用いて、PCRにより増幅した。人工合成遺伝子は、配列番号19で示される塩基配列に基づいて、ユーロフィンジェノミクス株式会社に合成を委託した。
pBlue-Bsm-UASTAL (2-3) -ARII and “pBlue-Bsm-UASTAL (2-3) -ARIIx2 were digested with SnaBI and XhoI, respectively, and the SnaBI-XhoI fragment was pIB / V5-His (life technologies) The first expression units obtained by inserting into the EcoRV / XhoI site were designated as “UASTAL (2-3) -ARII / pIB” and “UASTAL (2-3) -ARIIx2 / pIB”.
-Construction of UASTAL3-VP16 (x2) First, a region encoding VP16 consisting of the amino acid sequence represented by SEQ ID NO: 18 (VP16 region; SEQ ID NO: 19) was designated as BamHI VP16 U (SEQ ID NO: 48) and Bgl VP16operon L ( SEQ ID NO: 49) was used as a primer, and the artificially synthesized gene was used as a template to amplify by PCR. The artificially synthesized gene was commissioned to Eurofin Genomics Co., Ltd. based on the base sequence represented by SEQ ID NO: 19.
 他の基本的な方法は、上記UASTAL(2-3)-ARII(x2)の構築方法に準じた。ただし、TAL領域には、UASTAL3のみを使用した。得られた第1発現ユニットを「UASTAL3-VP16/pIB」、及び「UASTAL3-VP16x2/pIB」とした。 Other basic methods are based on the above UASTAL (2-3) -ARII (x2) construction method. However, only UASTAL3 was used for the TAL area. The obtained first expression units were designated as “UASTAL3-VP16 / pIB” and “UASTAL3-VP16x2 / pIB”.
(2)ルシフェラーゼアッセイ
 上記UASTAL(2-3)-ARII(x2)の培養細胞へのトランスフェクション及びルシフェラーゼアッセイについては、実施例1に記載の方法に準じた。第2発現ユニットには、実施例1で作製したpUAS-fLucを用いた。
(2) Luciferase assay Transfection of UASTAL (2-3) -ARII (x2) into cultured cells and luciferase assay were performed according to the method described in Example 1. As the second expression unit, pUAS-fLuc prepared in Example 1 was used.
(結果)
 図3のレーン5~10に結果を示す。陽性対照(GAL4/UASシステムのGAL4)はレーン1である。レーン5及び6はそれぞれUASTAL2-ARII/pIB及びUASTAL2-ARIIx2/pIBを、レーン7及び8はそれぞれUASTAL3-ARII/pIB及びUASTAL3-ARIIx2/pIBを、そしてレーン9及び10はそれぞれUASTAL3-VP16/pIB及びUASTAL3-VP16x2/pIBを示す。
(result)
The results are shown in lanes 5 to 10 of FIG. The positive control (GAL4 of GAL4 / UAS system) is lane 1. Lanes 5 and 6 are UASTAL2-ARII / pIB and UASTAL2-ARIIx2 / pIB, lanes 7 and 8 are UASTAL3-ARII / pIB and UASTAL3-ARIIx2 / pIB, respectively, and lanes 9 and 10 are UASTAL3-VP16 / pIB, respectively. And UASTAL3-VP16x2 / pIB.
 図3から、TAL領域が19塩基認識のUASTAL2では、ARIIを2個連結してもGAL4の3割程度の転写活性化能しか示さなかった(レーン6)。一方、TAL領域が13塩基認識のUASTAL3では、ARIIを2個連結した場合には、GAL4の約2.5倍の転写活性化能を示した(レーン8)。また、VP16の転写活性化ドメインを用いた場合には、2個連結すると7倍以上の転写活性化能を示した(レーン10)。 Fig. 3 shows that UASTAL2, which recognizes the 19-base TAL region, showed only about 30% of the transcriptional activation ability of GAL4 even when two ARIIs were linked (lane 6). On the other hand, UASTAL3, which recognizes 13 bases in the TAL region, showed about 2.5 times the transcriptional activation ability of GAL4 when two ARIIs were linked (lane 8). Moreover, when the transcriptional activation domain of VP16 was used, when two were linked, the transcriptional activation ability was 7 times or more (lane 10).
 以上の結果から、第1発現ユニットにおいてUASTAL3の制御下にARIIやVP16を複数個連結することで、従来のGAL4よりも目的遺伝子の発現効率を向上できることが示された。 From the above results, it was shown that the expression efficiency of the target gene can be improved over the conventional GAL4 by linking a plurality of ARII and VP16 under the control of UASTAL3 in the first expression unit.
<実施例3:UASを認識する第1発現ユニットによる目的遺伝子の発現効率(3)>
(目的)
 実施例2で構築した第1発現ユニットによる本発明のバイナリー遺伝子発現システムの発現効率をさらに向上させるため、第1発現ユニットの転写活性単位であるARIIやVP16の個数(繰り返し数)と転写活性化能の関係を検証する。
<Example 3: Expression efficiency of target gene by first expression unit recognizing UAS (3)>
(the purpose)
In order to further improve the expression efficiency of the binary gene expression system of the present invention using the first expression unit constructed in Example 2, the number (repetition number) of ARII and VP16, which are transcription activity units of the first expression unit, and transcription activation Verify the relationship between Noh.
(方法)
(1)第1発現ユニットの構築
・UASTAL3-ARII(xX)(ここで「X」は3~6の整数)の構築
 基本的な方法は、実施例2に準じた。ここでは、新たに実施例2で得られたBamHI断片をpBlue-Bsm-UASTAL3-ARIIx2のBamHIサイトに挿入し、ARIIを3連結した。また、このベクターに対して同様の操作を繰り返して、ARIIを4連結、5連結、そして6連結にした。得られたベクターをまとめて「pBlue-Bsm-UASTAL3-ARIIx(3-6)」と表記する。各ベクターをSnaBI及びXhoIで消化し、SnaBI-XhoI断片をpIB/V5-His(life technologies)のEcoRV/XhoIサイトへ挿入し、第1発現ユニットを「UASTAL2-ARIIx(3-6)/pIB」とした。
・UASTAL3-VP16(xX)(ここで「X」は3~6の整数)の構築
 基本的な方法は、実施例2、及び上記UASTAL3-ARII(xX)の構築に準じた。ここで得られた第1発現ユニットを「UASTAL2-VP16x(3-6)/pIB」とした。
(Method)
(1) Construction of the first expression unit-Construction of UASTAL3-ARII (xX) (where "X" is an integer of 3 to 6) The basic method was in accordance with Example 2. Here, the BamHI fragment newly obtained in Example 2 was inserted into the BamHI site of pBlue-Bsm-UASTAL3-ARIIx2, and three ARIIs were ligated. In addition, the same operation was repeated for this vector, so that ARII was made into 4 linkage, 5 linkage, and 6 linkage. The obtained vectors are collectively referred to as “pBlue-Bsm-UASTAL3-ARIIx (3-6)”. Each vector was digested with SnaBI and XhoI, the SnaBI-XhoI fragment was inserted into the EcoRV / XhoI site of pIB / V5-His (life technologies), and the first expression unit was “UASTAL2-ARIIx (3-6) / pIB” It was.
Construction of UASTAL3-VP16 (xX) (where “X” is an integer of 3 to 6) The basic method was in accordance with the construction of Example 2 and UASTAL3-ARII (xX). The first expression unit obtained here was designated as “UASTAL2-VP16x (3-6) / pIB”.
(2)ルシフェラーゼアッセイ
 基本的な方法は、実施例1及び2に準じた。対照用として、実施例2で構築したGAL4/pIB、及び実施例2で構築したUASTAL2-ARII/pIB、UASTAL2-ARIIx2/pIB、UASTAL3-VP16/pIB及びUASTAL3-VP16x2/pIBを用いた。
(2) Luciferase assay The basic method was based on Examples 1 and 2. As controls, GAL4 / pIB constructed in Example 2 and UASTAL2-ARII / pIB, UASTAL2-ARIIx2 / pIB, UASTAL3-VP16 / pIB and UASTAL3-VP16x2 / pIB constructed in Example 2 were used.
(結果)
 図4のレーン2~13に結果を示す。陽性対照(GAL4/UASシステムのGAL4)はレーン1である。図中の値は、GAL4の測定値を1としたときの相対値で示している。レーン2~7は、それぞれARIIを1個、2個、3個、4個、5個及び6個連結した第1発現ユニットを用いた結果であり、またレーン8~13は、それぞれVP16を1個、2個、3個、4個、5個及び6個連結した第1発現ユニットを用いた結果である。
(result)
The results are shown in lanes 2 to 13 of FIG. The positive control (GAL4 / UAS system GAL4) is lane 1. The values in the figure are relative values when the measured value of GAL4 is 1. Lanes 2 to 7 are the results using the first expression unit in which one, two, three, four, five and six ARIIs are connected, and lanes 8 to 13 each have 1 VP16. The results were obtained using the first, second, third, fourth, fifth and sixth linked first expression units.
 ARII及びVP16共に、個数(リピート数)依存的に転写活性化能が向上することが明らかとなった。 It has been clarified that the transcriptional activation ability is improved depending on the number (repeat number) of both ARII and VP16.
<実施例4:標的塩基配列の最適塩基数>
(目的)
 第1発現ユニットにコードされたTALドメインによって認識される第2発現ユニットの標的塩基配列の塩基数と転写活性効率との関係について検証する。
<Example 4: Optimal number of bases of target base sequence>
(the purpose)
The relationship between the number of bases of the target base sequence of the second expression unit recognized by the TAL domain encoded by the first expression unit and the transcription activity efficiency is verified.
(方法)
 第1発現ユニットの構築は、基本的に第1実施例の記載の方法に従った。ただし、本実施例では標的塩基配列の塩基数が14個のUASTAL3をベースとして、配列番号9で示す塩基配列からなるGAL4認識配列上で3’側に標的塩基配列を1塩基ずつ20個まで伸長させた6種類のTAL領域、すなわちUASTAL4(標的塩基配列の塩基数15個)、UASTAL5(同16個)、UASTAL6(同17個)、UASTAL7(同18個)、UASTAL8(同19個)、及びUASTAL2を有する第1発現ユニットを作製した。なお、標的塩基配列の塩基数が20個の有する第1発現ユニットには、実施例1で構築したUASTAL2のTAL領域を転用した。第2発現ユニットは、実施例1と同じpUAS-fLucを用いた。
(Method)
The construction of the first expression unit basically followed the method described in the first example. However, in this example, based on UASTAL3 with 14 bases in the target base sequence, the target base sequence is extended to 20 bases on the 3 ′ side on the GAL4 recognition sequence consisting of the base sequence shown in SEQ ID NO: 9 one by one. 6 kinds of TAL regions, namely UASTAL4 (15 bases of target base sequence), UASTAL5 (16), UASTAL6 (17), UASTAL7 (18), UASTAL8 (19), and A first expression unit with UASTAL2 was made. The UASTAL2 TAL region constructed in Example 1 was diverted to the first expression unit having 20 bases in the target base sequence. The same pUAS-fLuc as in Example 1 was used as the second expression unit.
 ルシフェラーゼアッセイは、実施例1に記載の方法に準じた。陽性対照として従来のGAL4/UASシステムにおけるGAL4系統の転写活性化能も測定した。 The luciferase assay was in accordance with the method described in Example 1. As a positive control, the transcriptional activation ability of GAL4 lines in the conventional GAL4 / UAS system was also measured.
(結果)
 図5に結果を示す。標的塩基配列の塩基数が14個又は15個の場合、陽性対照(GAL4)よりも高い転写活性を示したが、16個以上になると、転写活性が顕著に低下した。標的塩基配列の塩基数が20個のときの転写活性の低さは、実施例1の結果とも矛盾しなかった。したがって、本発明のバイナリー遺伝子発現システムにおいて、標的塩基配列の最適塩基数は14又は15塩基であることが明らかとなった。
(result)
The results are shown in FIG. When the number of bases in the target base sequence was 14 or 15, the transcriptional activity was higher than that of the positive control (GAL4). However, when the number was 16 or more, the transcriptional activity was significantly reduced. The low transcriptional activity when the number of bases in the target base sequence was 20 was consistent with the results of Example 1. Therefore, in the binary gene expression system of the present invention, it was revealed that the optimal base number of the target base sequence is 14 or 15 bases.
<実施例5:バイナリー遺伝子発現システムの配列特異性>
(目的)
 第1発現ユニットにコードされたTALドメインの標的塩基配列特異性について検証する。
<Example 5: Sequence specificity of binary gene expression system>
(the purpose)
The target base sequence specificity of the TAL domain encoded by the first expression unit is verified.
(方法)
(1)各発現ユニットの構築
 第1発現ユニットは実施例2で構築したUASTAL3-ARIIx2を含む第1発現ユニットを、また第2発現ユニットは実施例1で構築したTAL認識配列をUASとし、ルシフェラーゼ遺伝子を目的遺伝子とするUAS-fLucを含む第2発現ユニットを、それぞれベースとした。
(Method)
(1) Construction of each expression unit The first expression unit is the first expression unit containing UASTAL3-ARIIx2 constructed in Example 2, and the second expression unit is the TAL recognition sequence constructed in Example 1 as UAS. The second expression unit containing UAS-fLuc whose target gene is a gene was used as a base.
 実施例4の結果から標的塩基配列の塩基数は14個よりも15個の方がより高い発現量だったことから、本実施例では、UASTAL3の14塩基からなる標的塩基配列の3’側にシトシンを1塩基付加して15塩基としたUAS4を標的塩基配列とするUASTAL4を第1発現ユニットのTAL領域の一つとした。また、第2発現ユニットにおけるUAS4の塩基配列においてGAL4の認識に不要な塩基を2か所置換したUAS4m2(図6)及び4か所置換したUAS4m4(図6)を有するTAL認識配列を構築した。さらに、第1発現ユニットに含まれ、UAS4及びUAS4m2をそれぞれ特異的に認識できるUASTAL4-ARIIx2及びUASTAL4m2-ARIIx2をTAL領域として構築した。 From the results of Example 4, since the number of bases in the target base sequence was 15 higher than 14, the expression level was higher on the 3 ′ side of the target base sequence consisting of 14 bases of UASTAL3. UASTAL4 with UAS4 as the target base sequence, which was made by adding 1 base of cytosine to 15 bases, was taken as one of the TAL regions of the first expression unit. In addition, a TAL recognition sequence having UAS4m2 (FIG. 6) in which two bases unnecessary for GAL4 recognition were substituted in the base sequence of UAS4 in the second expression unit and UAS4m4 (FIG. 6) in which four bases were substituted was constructed. Furthermore, UASTAL4-ARIIx2 and UASTAL4m2-ARIIx2 included in the first expression unit and capable of specifically recognizing UAS4 and UAS4m2 were constructed as TAL regions.
 前記TAL領域のクローニングは、実施例1と同様にGolden gate assembly kit(Addgene)を用いてCermakら(Cermak T., et al., 2011, Nucleic Acids Res 39: e82)の方法に準じた。また、前記TAL領域含む第1発現ユニットUASTAL4-ARII/pIB及びUASTAL4m2-ARIIx2/pIBは、実施例2に記載の方法に準じた。 The cloning of the TAL region was performed in the same manner as in Example 1 using the Golden gate assembly kit (Addgene) according to the method of Cermak et al. (Cermak T, Et et al, 2011, Nucleic Acids Res 39: e82). The first expression units UASTAL4-ARII / pIB and UASTAL4m2-ARIIx2 / pIB containing the TAL region were in accordance with the method described in Example 2.
 UAS4-fLuc、UAS4m2-fLuc、及びUAS4m4-fLucを含む第2発現ユニットは、pUAS-fLucのPstI-HindIIサイトに、配列番号19で表される塩基配列からなるBsmBISer1UTR U及び配列番号50で表される塩基配列からなるBsmBISer1UTR LをアニーリングさせてなるBsmSer1UTRアダプターを挿入した後、当該ベクターのBsmBIサイトに、配列番号51で表される塩基配列からなるUAS4U及び配列番号52で表される塩基配列からなるUAS4LをアニーリングさせてなるUAS4U/UAS4L、配列番号53で表される塩基配列からなるUAS4Um2及び配列番号54で表される塩基配列からなるUAS4m2LをアニーリングさせてなるUAS4m2U/UAS4m2L、又は配列番号55で表される塩基配列からなるUAS4Um4及び配列番号56で表される塩基配列からなるUAS4m4LをアニーリングさせてなるUAS4m4U/UAS4m4Lをそれぞれ5個連結されるように繰り返し挿入した。 The second expression unit containing UAS4-fLuc, UAS4m2-fLuc, and UAS4m4-fLuc is represented by BsmBISer1UTR U consisting of the base sequence represented by SEQ ID NO: 19 and SEQ ID NO: 50 at the PstI-HindII site of pUAS-fLuc. After inserting a BsmSer1UTR adapter formed by annealing BsmBISer1UTR L consisting of the base sequence consisting of UAS4U consisting of the base sequence represented by SEQ ID NO: 51 and the base sequence represented by SEQ ID NO: 52 at the BsmBI site of the vector UAS4U / UAS4L formed by annealing UAS4L, UAS4Um2 composed of the base sequence represented by SEQ ID NO: 53, and UAS4m2L composed of the base sequence represented by SEQ ID NO: 54, UAS4m2U / UAS4m2L formed by annealing, or SEQ ID NO: 55 5 UAS4m4U / UAS4m4L, each of which is annealed from UAS4Um4 consisting of the base sequence and UAS4m4L consisting of the base sequence represented by SEQ ID NO: 56, are connected. Ri returned inserted.
(2)ルシフェラーゼアッセイ
 基本的な方法は、実施例1に記載の方法に準じた。ここでは、第1発現ユニット(GAL4/pIB、UASTAL4-ARIIx2/pIB、及びUASTAL4m2-ARIIx2/pIBと、第2発現ユニット(pUAS4-fLuc、pUAS4m2-fLuc、及びpUAS4m4-fLuc)を組み合わせてカイコ培養細胞BmN4にトランスフェクションし、ルシフェラーゼアッセイを行った。
(2) Luciferase assay The basic method was in accordance with the method described in Example 1. Here, silkworm cultured cells combining the first expression unit (GAL4 / pIB, UASTAL4-ARIIx2 / pIB, and UASTAL4m2-ARIIx2 / pIB and the second expression unit (pUAS4-fLuc, pUAS4m2-fLuc, and pUAS4m4-fLuc) BmN4 was transfected and luciferase assay was performed.
(結果)
 図6に結果を示す。第1発現ユニットがGAL4を含む場合、第2発現ユニットはUAS4、UAS4m2、及びUAS4m4のいずれに対しても転写活性化能を示した。これはGAL4のGAL4認識配列に対する配列特異性が低いことを示している。一方、本発明のバイナリー遺伝子発現システムの構成を有するUASTAL4-ARIIx2は、UASTAL4の標的塩基配列を含むUAS4に対してのみ高い転写活性化能を示した。また、同様にUASTAL4m2-ARIIx2は、UASTAL4m2の標的塩基配列を含むUAS4m2に対してのみ高い転写活性化能を示した。これらの結果は、UASTALを用いた本発明のバイナリー遺伝子発現システムは、標的塩基配列に対する配列特異性が高いことを示している。したがって、本発明のバイナリー遺伝子発現システムを用いることにより、複数の遺伝子の発現を別個に時間的又は空間的に制御可能であること、また、従来のGAL4/UASシステムとの互換性を維持していることを示唆している。
(result)
The results are shown in FIG. When the first expression unit contains GAL4, the second expression unit exhibited transcription activation ability for any of UAS4, UAS4m2, and UAS4m4. This indicates that GAL4 has low sequence specificity for the GAL4 recognition sequence. On the other hand, UASTAL4-ARIIx2 having the configuration of the binary gene expression system of the present invention showed high transcription activation ability only for UAS4 containing the target base sequence of UASTAL4. Similarly, UASTAL4m2-ARIIx2 showed high transcription activation ability only for UAS4m2 containing the target base sequence of UASTAL4m2. These results indicate that the binary gene expression system of the present invention using UASTAL has high sequence specificity for the target nucleotide sequence. Therefore, by using the binary gene expression system of the present invention, the expression of a plurality of genes can be separately controlled temporally or spatially, and compatibility with the conventional GAL4 / UAS system is maintained. Suggests that
<実施例6:遺伝子組換えカイコにおけるバイナリー遺伝子発現システムの発現効率(1)>
(目的)
 実施例2~5では、カイコの培養細胞を用いて本発明のバイナリー遺伝子発現システムの発現効率を検証した。そこで、本実施例では、遺伝子組換えカイコを用いたときの本発明のバイナリー遺伝子発現システムの発現効率を検証する。
<Example 6: Expression efficiency of binary gene expression system in transgenic silkworm (1)>
(the purpose)
In Examples 2 to 5, the expression efficiency of the binary gene expression system of the present invention was verified using cultured silkworm cells. Therefore, in this example, the expression efficiency of the binary gene expression system of the present invention when a transgenic silkworm is used is verified.
(方法)
(1)中部絹糸腺特異的第1発現ユニット
 本実施例では、カイコの中部絹糸腺におけるUASTAL3の転写活性化能について検証する。
・Ser1p-UASTAL3-ARII(xX)(ここで「X」は1、4又は6)の構築
 中部絹糸腺特異的プロモーターであるセリシン1プロモーターに連結したUASTAL3-ARIIの第1発現ユニットを構築した。
(Method)
(1) Middle silk gland-specific first expression unit In this example, the transcription activation ability of UASTAL3 in the middle silk gland of silkworms is verified.
-Construction of Ser1p-UASTAL3-ARII (xX) (where "X" is 1, 4 or 6) A first expression unit of UASTAL3-ARII linked to the sericin 1 promoter, which is a central silk gland specific promoter, was constructed.
 まず、UAS下流にBsmBIサイトを導入するためのPCRを行った。具体的には、serUASPCRU(配列番号42)及びBlnBsmSerKL(配列番号57)をプライマーとし、pBac[SerUAS/3xP3EGFP](前述)を鋳型に用いて、PCRによりUASx5を増幅した。PCRの条件は、実施例2及び3に準じた。次に、増幅産物をBglII及びBlnIで消化し、得られたBglII-BlnI断片をpB-SerUAS(前述)のBglII-BlnIサイトに挿入した。このベクターを「Bsm-SerUASカセット」とした。 First, PCR was performed to introduce the BsmBI site downstream of the UAS. Specifically, UASx5 was amplified by PCR using serUASPCRU (SEQ ID NO: 42) and BlnBsmSerKL (SEQ ID NO: 57) as primers and pBac [SerUAS / 3xP3EGFP] (described above) as a template. PCR conditions were the same as in Examples 2 and 3. Next, the amplified product was digested with BglII and BlnI, and the resulting BglII-BlnI fragment was inserted into the BglII-BlnI site of pB-SerUAS (described above). This vector was designated as “Bsm-SerUAS cassette”.
 実施例2及び3で作製したpBlue-Bsm-UASTAL3-ARII、pBlue-Bsm-UASTAL3-ARIIx4及びpBlue-Bsm-UASTAL3-ARIIx6をBsmBI及びXbaIで消化し、得られた各BsmBI-XbaI断片をBsm-SerUASカセットのBsmBI-BlnIサイトに挿入した。続いて、SnaBI及びXbaIで消化し、UASTAL3-ARII等を含むSnaBI-XbaI断片を得た。そして、pBac[Ser1-GAL4/3xP3-DsRed]を同様にSnaBI及びXbaIで消化し、GAL4遺伝子を含むSnaBI-XbaI断片とUASTAL3-ARII等を含むSnaBI-XbaI断片を置き換えた。これにより、中部絹糸腺で特異的に発現を誘導する第1発現ユニットとしてpBac[Ser1-UASTAL3-ARIIx2/3xP3-DsRed]、pBac[Ser1-UASTAL3-ARIIx4/3xP3-DsRed]、及びpBac[Ser1-UASTAL3-ARIIx6/3xP3-DsRed]を得た。
・Ser1p-UASTAL3-VP16(xX)(ここで「X」は3又は6)の構築
 中部絹糸腺特異的プロモーターであるセリシン1プロモーターに連結したUASTAL3-VP16の第1発現ユニットを構築した。基本的な方法は、前記Ser1p-UASTAL3-ARII(xX)の構築方法に準じて行った。
The pBlue-Bsm-UASTAL3-ARII, pBlue-Bsm-UASTAL3-ARIIx4, and pBlue-Bsm-UASTAL3-ARIIx6 prepared in Examples 2 and 3 were digested with BsmBI and XbaI, and the obtained BsmBI-XbaI fragments were Bsm- It was inserted into the BsmBI-BlnI site of the SerUAS cassette. Subsequently, SnaBI and XbaI were digested to obtain a SnaBI-XbaI fragment containing UASTAL3-ARII and the like. Then, pBac [Ser1-GAL4 / 3xP3-DsRed] was similarly digested with SnaBI and XbaI to replace the SnaBI-XbaI fragment containing the GAL4 gene and the SnaBI-XbaI fragment containing UASTAL3-ARII and the like. As a result, pBac [Ser1-UASTAL3-ARIIx2 / 3xP3-DsRed], pBac [Ser1-UASTAL3-ARIIx4 / 3xP3-DsRed], and pBac [Ser1-] are expressed as first expression units that specifically induce expression in the middle silk gland. UASTAL3-ARIIx6 / 3xP3-DsRed] was obtained.
Construction of Ser1p-UASTAL3-VP16 (xX) (where “X” is 3 or 6) A first expression unit of UASTAL3-VP16 linked to the sericin 1 promoter, which is a central silk gland specific promoter, was constructed. The basic method was performed according to the construction method of Ser1p-UASTAL3-ARII (xX).
(2)UAS-EGFP第2発現ユニット
 UASの下流にセリシン1遺伝子の分泌シグナル(配列番号58)をコードする塩基配列(配列番号59)と、その3’末端側に付加したクローニング用付加塩基配列(配列番号60)と目的の水溶性ペプチドDNAとしてのEGFP遺伝子(配列番号62)を結合し、その下流にセリシン1の3’UTR(配列番号63)を連結したpBacSerUAS-ser_sigEGFP/3xP3EGFPを構築した。
(2) UAS-EGFP second expression unit A base sequence (SEQ ID NO: 59) encoding a sericin 1 gene secretion signal (SEQ ID NO: 58) downstream of UAS, and an additional base sequence for cloning added to the 3 ′ end side thereof PBacSerUAS-ser_sigEGFP / 3xP3EGFP was constructed by binding the EGFP gene (SEQ ID NO: 62) as the target water-soluble peptide DNA and linking sericin 1 3'UTR (SEQ ID NO: 63) downstream thereof. .
(3)遺伝子組換えカイコの作出
 カイコの系統は、農業生物資源研究所で維持されている白眼・白卵・非休眠系統のw1-pnd系統を宿主系統として用いた。飼育条件は、25~27℃の飼育室で、幼虫の全齢を人工飼料(シルクメイト原種1-3齢S、日本農産工)で飼育した。人工飼料は2~3日毎に交換した(Uchino K. et al., 2006, J Insect Biotechnol Sericol, 75:89-97)。
(3) Production of transgenic silkworm The silkworm strain used was the w1-pnd strain of white-eye, white egg, and non-dormant strain maintained by the National Institute of Agrobiological Sciences as the host strain. Breeding conditions were in a breeding room at 25-27 ° C., and all larvae were reared with artificial feed (silk mate species 1-3 years old S, Japanese agricultural industry). The artificial diet was changed every 2-3 days (Uchino K. et al., 2006, J Insect Biotechnol Sericol, 75: 89-97).
 遺伝子組換えカイコは、Tamuraらの方法(Tamura T. et al., 2000, , Nature Biotechnology, 18, 81-84)に従って作出した。 The transgenic silkworms were produced according to the method of Tamura et al. (Tamura T. et al., 2000,, Nature Biotechnology, 18, 81-84).
 前記中部絹糸腺特異的第1サブユニット及びUAS-EGFP第2サブユニットを、それぞれトランスポゼースを発現するヘルパープラスミドpHA3PIG(Tamura T. et al., 2000, , Nature Biotechnology, 18, 81-84)と1:1 の割合で混合し、産卵後2~8時間のカイコ卵にインジェクションした。第1発現ベクターの対照用としてpBac[Ser1-GAL4/3xP3-DsRed]を用いた。インジェクション後の卵は、加湿状態、25℃で孵化するまでインキュベートした。孵化した幼虫を上記の方法で飼育し、兄妹交配を行った。得られた卵を第1サブユニットについては3xP3 DsRed2マーカー、また第2サブユニットについては3xP3EGFPマーカーによる眼の蛍光の有無で選抜し、本発明の遺伝子組換えカイコの第1及び第2サブユニットを有する系統をそれぞれ得た。第1サブユニットと第2サブユニットをそれぞれ有する系統を交配し、一個体に両方の発現ユニットを有する系統を上記と同様に3xP3EGFPマーカー及び3xP3DsRed2マーカーによる眼の蛍光の有無で選抜し、中部絹糸腺特異的に発現をする遺伝子組換えカイコを、UASTAL3-ARIIで4系統、UASTAL3-ARIIx4で3系統、及びUASTAL3-ARIIx6で4系統、UASTAL3-VP16x3で2系統、及びUASTAL3-VP16x6で1系統得た。 The middle silk gland-specific first subunit and the UAS-EGFP second subunit are respectively converted into helper plasmids pHA3PIG (Tamura T. et al., 2000,, Nature Biotechnology, 18, 81-84) expressing transposase and 1 : 1 mix and injected into silkworm eggs 2-8 hours after spawning. PBac [Ser1-GAL4 / 3xP3-DsRed] was used as a control for the first expression vector. Eggs after injection were incubated in a humidified state at 25 ° C. until hatched. The hatched larva was bred by the above method and brother-sister mating was performed. The obtained eggs were selected based on the presence or absence of eye fluorescence with the 3xP3 DsRed2 marker for the first subunit and the 3xP3EGFP marker for the second subunit, and the first and second subunits of the transgenic silkworm of the present invention were selected. Each line was obtained. A strain having both the first subunit and the second subunit is crossed, and a strain having both expression units in one individual is selected based on the presence or absence of eye fluorescence by the 3xP3EGFP marker and the 3xP3DsRed2 marker, and the middle silk gland. 4 lines of UASTAL3-ARII, 3 lines of UASTAL3-ARIIx4, 4 lines of UASTAL3-ARIIx6, 2 lines of UASTAL3-VP16x3, and 1 line of UASTAL3-VP16x6 were obtained. .
(4)EGFPの定量
 前記各遺伝子組換えカイコを飼育し、5齢6日目の吐糸直前に氷上で麻酔にかけ、背側を切開してピンセットで中部絹糸腺を傷つけないように摘出した(森靖編,カイコによる新生物学実験,三省堂, 1970,pp.249-255参照)。次に、中部絹糸腺1本当たり10 mLのPBS(pH 7.2)/1%Tween20/0.05%アジ化ナトリウムに入れて、室温で24時間振とうすることによって水溶性タンパク質を抽出した。得られた水溶性タンパク質抽出液を、2,000×gで10分間遠心し、上清を回収した。上清に含まれる水溶性タンパク質中のEGFPタンパク質濃度をReacti-Bind Anti-GFP Coated Plates(PIERCE)で測定した。具体的にはReacti-Bind Anti-GFP Coated Platesに上清液を100 μL添加し、室温で1時間静置した。PBS/0.05% Tween 20で3回洗浄した後、horseradish peroxidase-conjugated anti-GFP antibody (Rockland Immunochemicals)を添加して、室温で1時間静置した。PBS/0.05% Tween 20で3回洗浄した後、TMB Peroxidase EIA Substrate Kit (Bio-Rad)を用いて発色反応を行い、1N 硫酸を加えて反応を停止させた。発色をplate reader (SpectraMax 250; Molecular Devices)で定量した。標準曲線は、リコンビナントGFPタンパク質(タカラバイオ; Z2373N)の系列希釈液(1~400pg/μL)を用いて作製した。
(4) Quantification of EGFP Each of the transgenic silkworms was bred, and anesthetized on ice immediately before the 5th day, 6th day of spitting. The dorsal side was incised and excised with tweezers so as not to damage the middle silk gland ( Ed. Mori, New biological experiment by silkworm, Sanseido, 1970, pp.249-255). Next, 10 mL of PBS (pH 7.2) / 1% Tween20 / 0.05% sodium azide per middle silk gland was placed in the medium and shaken at room temperature for 24 hours to extract water-soluble proteins. The obtained water-soluble protein extract was centrifuged at 2,000 × g for 10 minutes, and the supernatant was collected. The concentration of EGFP protein in the water-soluble protein contained in the supernatant was measured with Reacti-Bind Anti-GFP Coated Plates (PIERCE). Specifically, 100 μL of the supernatant was added to Reacti-Bind Anti-GFP Coated Plates and allowed to stand at room temperature for 1 hour. After washing with PBS / 0.05% Tween 20 three times, horseradish peroxidase-conjugated anti-GFP antibody (Rockland Immunochemicals) was added and allowed to stand at room temperature for 1 hour. After washing 3 times with PBS / 0.05% Tween 20, a color reaction was performed using TMB Peroxidase EIA Substrate Kit (Bio-Rad), and the reaction was stopped by adding 1N sulfuric acid. Color development was quantified with a plate reader (SpectraMax 250; Molecular Devices). A standard curve was prepared using a serial dilution (1-400 pg / μL) of recombinant GFP protein (Takara Bio; Z2373N).
(結果)
 図7に結果を示す。ARIIやVP16を複数回繰り返し融合したUASTAL3第1発現ユニットでは、従来のGAL4を用いた対照用第1発現ユニットと比較して、非常に高いEGFPの発現が観察された。特にARIIの4回繰り返したUASTAL3-ARIIx4を用いた場合、最大で約6倍の発現量が得られた。この結果から、カイコ培養細胞での結果と同様に、遺伝子組換えカイコにおいても本発明のバイナリー遺伝子発現システムは、GAL4/UASシステムと比較して、目的遺伝子等の発現効率の向上に非常に有効であることが明らかになった。
(result)
The results are shown in FIG. In the UASTAL3 first expression unit in which ARII and VP16 were repeatedly fused, a very high EGFP expression was observed as compared with the control first expression unit using conventional GAL4. In particular, when UASTAL3-ARIIx4 repeated 4 times of ARII was used, an expression level of about 6 times at the maximum was obtained. From this result, similar to the result in silkworm cultured cells, the binary gene expression system of the present invention is very effective in improving the expression efficiency of the target gene etc. in the transgenic silkworm as compared with the GAL4 / UAS system. It became clear that.
<実施例7:遺伝子組換えカイコにおけるバイナリー遺伝子発現システムの細胞毒性>
(目的)
 GAL4/UASシステムではGAL4を含む第1発現ユニットが宿主に対して細胞毒性を示す。そこで、本発明のバイナリー遺伝子発現システムにおける第1発現ユニットの宿主に対する細胞毒性について検証する。
<Example 7: Cytotoxicity of binary gene expression system in transgenic silkworm>
(the purpose)
In the GAL4 / UAS system, the first expression unit containing GAL4 is cytotoxic to the host. Therefore, the cytotoxicity of the first expression unit in the host in the binary gene expression system of the present invention is verified.
(方法)
 遺伝子組換えカイコとして第1発現ユニットのpBac[Ser1-GAL4/3xP3-DsRed]を有するw1-pnd系統、及びpBac[Ser1-UASTAL3-ARIIx4/3xP3-DsRed]を有するw1-pnd系統を実施例4に記載の方法に準じて飼育し、各遺伝子組換えカイコが作った繭、蛹から、繭層重、営繭率、化蛹歩合を計算した。
(Method)
Example 4: w1-pnd strain having the first expression unit pBac [Ser1-GAL4 / 3xP3-DsRed] and w1-pnd strain having pBac [Ser1-UASTAL3-ARIIx4 / 3xP3-DsRed] as transgenic silkworms Example 4 From the cocoons and cocoons that were reared according to the method described in (1) above and made by each transgenic silkworm, the cocoon layer weight, the rate of management, and the chemical yield were calculated.
 また、各遺伝子組換えカイコの中部絹糸腺におけるタンパク質量をSDS-PAGEにより検出した。具体的には、各遺伝子組換えカイコの5齢6日目の幼虫から中部絹糸腺を摘出した。中部絹糸腺を1本あたり5 mLの20 mM Tris-HCl(pH 8.0)/8 M 尿素/2% SDS/25 mM DTTに入れ、一晩、室温で振とうし、絹糸腺タンパク質を抽出した。絹糸腺タンパク質5μLにH2O 27.5 μL、12.5μLのNuPAGE LDS Sample Buffer(life technologies)と5μLのNuPAGE Sample Reducing Agent(life technologies)を加え、70℃で10分間加温してSDS化した。SDS化したサンプルを4% SDS-PAGEゲルを用いて電気泳動した後、CBCで染色した。 The amount of protein in the middle silk gland of each transgenic silkworm was detected by SDS-PAGE. Specifically, the middle silk gland was extracted from the larvae of the 5th instar of each transgenic silkworm. The middle silk gland was placed in 5 mL of 20 mM Tris-HCl (pH 8.0) / 8 M urea / 2% SDS / 25 mM DTT, and shaken overnight at room temperature to extract the silk gland protein. 27.5 μL of H 2 O, 12.5 μL of NuPAGE LDS Sample Buffer (life technologies) and 5 μL of NuPAGE Sample Reducing Agent (life technologies) were added to 5 μL of silk gland protein, and heated at 70 ° C. for 10 minutes to form SDS. The SDS sample was electrophoresed on a 4% SDS-PAGE gel and then stained with CBC.
(結果)
 図8に繭層重、営繭率、化蛹歩合の結果を、また図9にSDS-PAGEの結果を示す。図8Aは繭層重を、図8Bは営繭率を、そして図8Cは化蛹歩合である。当該分野では、中部絹糸腺でGAL4を発現させると、GAL4による細胞毒性により、繭層重、営繭率、化蛹歩合、及び中部絹糸腺で発現するセリシン1の発現量などが低下することが知られている。
(result)
FIG. 8 shows the results of cocoon layer weight, management rate, and chemical yield, and FIG. 9 shows the results of SDS-PAGE. FIG. 8A shows the cocoon layer weight, FIG. 8B shows the management rate, and FIG. 8C shows the conversion rate. In this field, it is known that when GAL4 is expressed in the middle silk gland, the cytotoxicity of GAL4 decreases the cocoon layer weight, the yield, the chemical yield, and the expression level of sericin 1 expressed in the middle silk gland. It has been.
 一方、本発明の第1発現ユニットpBac[Ser1-UASTAL3-ARIIx4/3xP3-DsRed]を有する(Ser1-UASTAL3-ARIIx4)は、GAL4と比較して繭層重、結繭率、化蛹歩合、及びセリシン1の発現量が顕著に回復することが明らかとなった。これは、本発明のUASTAL3-ARIIx4がGAL4と比較して宿主に対する細胞毒性が低いことを示唆している。 On the other hand, (Ser1-UASTAL3-ARIIx4) having the first expression unit pBac [Ser1-UASTAL3-ARIIx4 / 3xP3-DsRed] of the present invention, compared with GAL4, has a fold layer weight, a ligation rate, a chemical yield, and It was revealed that the expression level of sericin 1 significantly recovered. This suggests that UASTAL3-ARIIx4 of the present invention is less cytotoxic to the host than GAL4.
 また、一般に繭層重や営繭率の低下は、繭から目的タンパク質を回収する場合の阻害要因となる。化蛹歩合の低下は、遺伝子組換えカイコの系統維持を困難にし、またセリシン1のタンパク質量の減少は、細胞の遺伝子発現効率の低下を意味する。したがって、これらの現象がGAL4と比較して回復した本発明の第1発現ユニットは、遺伝子組換えカイコにおける組換え遺伝子の発現に好適であることを示唆している。 In general, the decrease in the layer thickness and the management rate is an obstacle to recovering the target protein from the paddy. A decrease in the chemical yield makes it difficult to maintain the strain of the transgenic silkworm, and a decrease in the protein amount of sericin 1 means a decrease in the gene expression efficiency of the cells. Therefore, it is suggested that the first expression unit of the present invention in which these phenomena are recovered as compared with GAL4 is suitable for the expression of the recombinant gene in the transgenic silkworm.
<実施例8:遺伝子組換えカイコにおけるバイナリー遺伝子発現システムの組織別制御>
(目的)
 本発明のバイナリー遺伝子発現システムがカイコ生体内において組織ごとに機能できることを検証する。
<Example 8: Control according to tissue of binary gene expression system in transgenic silkworm>
(the purpose)
It is verified that the binary gene expression system of the present invention can function for each tissue in the silkworm organism.
(方法)
(1)中部及び後部絹糸腺特異的第1発現ユニットの構築
 中部絹糸腺特異的第1発現ユニットは、中部絹糸腺特異的プロモーターであるセリシン1プロモーターにUASTAL4-ARIIx4を連結したpBac[Ser1-UASTAL4-ARIIx4/3xP3-DsRed]とした。Ser1-UASTAL4-ARIIx4の具体的な構築方法は、実施例6の「(1)中部絹糸腺特異的第1発現ユニット」に記載のSer1-UASTAL3-ARIIx4の方法に準じ、またUASTAL4の構築は実施例5に記載の方法に準じた。なお、UASTAL4は図6の結果で示したようにUAS4を認識する。
(Method)
(1) Construction of the first expression unit specific to the middle and posterior silk glands The first expression unit specific to the middle silk gland is pBac [Ser1-UASTAL4 in which UASTAL4-ARIIx4 is linked to the sericin 1 promoter, which is the middle silk gland-specific promoter. -ARIIx4 / 3xP3-DsRed]. The specific construction method of Ser1-UASTAL4-ARIIx4 is the same as that of Ser1-UASTAL3-ARIIx4 described in “(1) Middle silk gland specific first expression unit” in Example 6, and construction of UASTAL4 was performed. According to the method described in Example 5. UASTAL4 recognizes UAS4 as shown in the result of FIG.
 後部絹糸腺特異的第1発現ユニットは、後部絹糸腺特異的プロモーターであるフィブロインHプロモーターにUASTAL4m2-ARIIx4を連結したpBac[FibH-UASTAL4m2-ARIIx4/A3-KMO]とした。pBac[FibH-UASTAL4m2-ARIIx4/A3-KMO]の構築では、まずpBac[FibH-UASTAL4m2-ARIIx4/3xP3-DsRed]を作製した。FibH-UASTAL4m2-ARIIx4の具体的な構築方法は、実施例6の「(1)中部絹糸腺特異的第1発現ユニット」に記載のSer1-UASTAL3-ARIIx4の方法に準じ、またUASTAL4の構築は実施例5に記載の方法に準じた。フィブロインHプロモーターは配列番号28に基づいて構築した。選択マーカーであるA3-KMOは、pBac[A3KMO, UAS](Kobayashi I., et al., 2007, J. Insect Biotechnol Sericol, 76:145-48)からA3プロモーター-KMO-SV40polyA付加配列をPCRで増幅してA3-KMOマーカーを作製した。最後にpBac[FibH-UASTAL4m2-ARIIx4/3xP3-DsRed]の3xP3-DsRedマーカーをA3-KMOマーカーと置換して、目的のpBac[FibH-UASTAL4m2-ARIIx4/A3-KMO]を得た。なお、UASTAL4m2は図6の結果で示したようにUAS4m2を認識する。 The first posterior silk gland-specific first expression unit was pBac [FibH-UASTAL4m2-ARIIx4 / A3-KMO] in which UASTAL4m2-ARIIx4 was linked to the fibroin H promoter, which is a posterior silk gland-specific promoter. In the construction of pBac [FibH-UASTAL4m2-ARIIx4 / A3-KMO], pBac [FibH-UASTAL4m2-ARIIx4 / 3xP3-DsRed] was first prepared. The specific construction method of FibH-UASTAL4m2-ARIIx4 is the same as that of Ser1-UASTAL3-ARIIx4 described in “(1) Central silk gland-specific first expression unit” in Example 6, and construction of UASTAL4 was performed. According to the method described in Example 5. The fibroin H promoter was constructed based on SEQ ID NO: 28. A3-KMO, a selectable marker, was obtained by PCR using the A3 promoter-KMO-SV40polyA additional sequence from pBac [A3KMO, UAS] (Kobayashi I., et al., 2007, J. Insect Biotechnol Sericol, 76: 145-48). Amplified to produce A3-KMO marker. Finally, the 3xP3-DsRed marker of pBac [FibH-UASTAL4m2-ARIIx4 / 3xP3-DsRed] was replaced with the A3-KMO marker to obtain the desired pBac [FibH-UASTAL4m2-ARIIx4 / A3-KMO]. UASTAL4m2 recognizes UAS4m2 as shown in the result of FIG.
(2)中部及び後部絹糸腺特異的第2発現ユニットの構築
 中部絹糸腺特異的第1発現ユニットと対を成す第2発現ユニットは、UAS4の下流に目的のタンパク質遺伝子としてのEGFP遺伝子(配列番号62)を連結し、その下流にセリシン1の3’UTR(配列番号63)を連結したpBacUAS4-EGFP/3xP3EYFPとした。pBacUAS4-EGFP/3xP3EYFPの構築では、まず、pBacUAS4-EGFP/3xP3EGFPを作製した。pBacUAS4-EGFPの具体的な構築方法は、実施例6の「(1)中部絹糸腺特異的第1発現ユニット」に記載のpBacSerUAS-ser_sigEGFP/3xP3EGFPの方法に準じた。また、3xP3EYFPについては、Tada M. et al., 2015,. MAbs. 7(6):1138-1150に記載の方法に従い作製した。その後、pBacUAS4-EGFP/3xP3EGFPの3xP3EGFPマーカーを3xP3EYFPに置換して、目的のpBacUAS4-EGFP/3xP3EYFPを得た。
(2) Construction of the second expression unit specific to the middle and posterior silk glands The second expression unit that forms a pair with the first expression unit specific to the middle silk gland is the EGFP gene (SEQ ID NO. 62) was ligated, and pBacUAS4-EGFP / 3xP3EYFP was obtained by ligating the 3′UTR of sericin 1 (SEQ ID NO: 63) downstream thereof. In the construction of pBacUAS4-EGFP / 3xP3EYFP, first, pBacUAS4-EGFP / 3xP3EGFP was prepared. The specific construction method of pBacUAS4-EGFP was based on the method of pBacSerUAS-ser_sigEGFP / 3xP3EGFP described in “(1) Middle silk gland-specific first expression unit” in Example 6. 3xP3EYFP was prepared according to the method described in Tada M. et al., 2015 ,. MAbs. 7 (6): 1138-1150. Thereafter, the 3xP3EGFP marker of pBacUAS4-EGFP / 3xP3EGFP was replaced with 3xP3EYFP to obtain the desired pBacUAS4-EGFP / 3xP3EYFP.
 後部絹糸腺特異的第1発現ユニットと対を成す第2発現ユニットは、UAS4m2の下流に目的のタンパク質遺伝子としてのDsRed遺伝子を連結し、その下流にセリシン1の3’UTRを連結したpBacUAS4m2-DsRed/3xP3AmCyanとした。pBacUAS4m2-DsRed/3xP3AmCyanの構築では、まず、pBacUAS4m2-DsRed/3xP3EGFPを作製した。pBacUAS4m2-DsRedの具体的な構築方法は、実施例6の「(1)中部絹糸腺特異的第1発現ユニット」に記載のpBacSerUAS-ser_sigEGFP/3xP3EGFPの方法に準じた。3xP3-AmCyanの具体的な構築方法は、Tada M. et al., 2015,. MAbs. 7(6):1138-1150に記載の方法に従い作製した。その後、pBacUAS4m2-DsRed/3xP3EGFPの3xP3EGFPマーカーを3xP3AmCyanに置換して、目的のpBacUAS4m2-DsRed/3xP3AmCyanを得た。 The second expression unit paired with the posterior silk gland-specific first expression unit is a pBacUAS4m2-DsRed in which the DsRed gene as the target protein gene is linked downstream of UAS4m2, and the 3'UTR of sericin 1 is linked downstream of it. / 3xP3AmCyan. In the construction of pBacUAS4m2-DsRed / 3xP3AmCyan, first, pBacUAS4m2-DsRed / 3xP3EGFP was prepared. The specific construction method of pBacUAS4m2-DsRed was based on the pBacSerUAS-ser_sigEGFP / 3xP3EGFP method described in Example 6, “(1) Middle silk gland-specific first expression unit”. The specific construction method of 3xP3-AmCyan was prepared according to the method described in Tada M. et al., 2015, MAbs. 7 (6): 1138-1150. Thereafter, the 3xP3EGFP marker of pBacUAS4m2-DsRed / 3xP3EGFP was replaced with 3xP3AmCyan to obtain the target pBacUAS4m2-DsRed / 3xP3AmCyan.
(3)遺伝子組換えカイコの作出
 2組のバイナリー遺伝子発現システム、すなわち中部絹糸腺特異的バイナリー遺伝子発現システムの第1発現ユニットであるpBac[Ser1-UASTAL4-ARIIx4/3xP3-DsRed]及び第2発現ユニットであるpBacUAS4-EGFP/3xP3EYFP、並びに後部絹糸腺特異的バイナリー遺伝子発現システムの第1発現ユニットであるpBac[FibH-UASTAL4m2-ARIIx4/A3-KMO]、及びそれに対応する第2発現ユニットであるpBacUAS4m2-DsRed/3xP3AmCyanの計4つの発現ユニットをカイコに導入し、遺伝子組換えカイコを作出した。遺伝子組換えカイコの作出は、実施例6に記載の「(3)遺伝子組換えカイコの作出」の方法に準じた。
(3) Production of transgenic silkworms Two sets of binary gene expression systems, ie, pBac [Ser1-UASTAL4-ARIIx4 / 3xP3-DsRed] and second expression, which are the first expression units of the middle silk gland specific binary gene expression system PBacUAS4-EGFP / 3xP3EYFP as a unit, pBac [FibH-UASTAL4m2-ARIIx4 / A3-KMO] as the first expression unit of the posterior silk gland specific binary gene expression system, and pBacUAS4m2 as the corresponding second expression unit -A total of 4 expression units of -DsRed / 3xP3AmCyan were introduced into silkworms to produce transgenic silkworms. The production of the transgenic silkworm was in accordance with the method of “(3) Production of transgenic silkworm” described in Example 6.
(4)絹糸腺の蛍光観察
 2組のバイナリー遺伝子発現システムを有する遺伝子組換えカイコは、実施例6に記載の「(3)遺伝子組換えカイコの作出」に記載の方法で飼育し、5齢6日目の吐糸直前に氷上で麻酔にかけ、背側を切開してピンセットで絹糸腺を傷つけないように摘出した。これを固定せずに蛍光顕微鏡(オリンパスSZX16、GFP HQフィルター&RFPフィルター)で観察した。
(4) Fluorescence observation of silk gland GMOs having two sets of binary gene expression systems are bred by the method described in “(3) Production of transgenic silkworms” described in Example 6, and Anesthesia was performed on ice immediately before the 6th day of threading, and the dorsal side was incised and excised with tweezers so as not to damage the silk gland. This was not fixed and observed with a fluorescence microscope (Olympus SZX16, GFP HQ filter & RFP filter).
(5)絹糸腺における目的タンパク質遺伝子の発現
 摘出した絹糸腺を中部絹糸腺と後部絹糸腺に切り分けて、それぞれから常法によりtotal RNAを調製し、EGFPプライマーペア(配列番号64及び65)及びDsRedプライマーペア(配列番号66及び67)を用いてRT-PCRを行った。陰性対照にはバイナリー遺伝子発現システムを持たない宿主系統(w1-pnd系統)を用いた。
(5) Expression of the target protein gene in the silk gland The extracted silk gland is divided into a middle silk gland and a posterior silk gland, and total RNA is prepared from each by a conventional method. EGFP primer pair (SEQ ID NOs: 64 and 65) and DsRed RT-PCR was performed using a primer pair (SEQ ID NO: 66 and 67). As a negative control, a host strain (w1-pnd strain) without a binary gene expression system was used.
(結果) 結果を図10に示す。
 図10-1は、2組のバイナリー遺伝子発現システムを有する遺伝子組換えカイコの絹糸腺の蛍光図を示す。中部絹糸腺特異的バイナリー遺伝子発現システムは、目的タンパク質の遺伝子としてEGFP遺伝子を、また後部絹糸腺特異的バイナリー遺伝子発現システムは、目的タンパク質の遺伝子としてDsRed遺伝子をコードしていたが、A~CよりEGFPは中部絹糸腺のみで、またDsRedは後部絹糸腺のみで発現していることが確認された。さらにD~F及びG~Iからも明らかなように、中部絹糸腺と後部絹糸腺の境界線においてもEFGPとDsRedの発現制御は顕著であり、蛍光レベルでは両者間で発現の漏れは見られなかった。
(Results) The results are shown in FIG.
FIG. 10-1 shows a fluorescence diagram of the silk gland of a transgenic silkworm having two sets of binary gene expression systems. The middle silk gland specific binary gene expression system encoded the EGFP gene as the target protein gene, and the posterior silk gland specific binary gene expression system encoded the DsRed gene as the target protein gene. It was confirmed that EGFP was expressed only in the middle silk gland, and DsRed was expressed only in the posterior silk gland. Furthermore, as is clear from DF and GI, the expression control of EFGP and DsRed is remarkable at the boundary between the middle and posterior silk glands, and there is a leakage of expression between the two at the fluorescence level. There wasn't.
 図10-2は、RT-PCRの結果である。レーン1の中部絹糸腺からはEGFP遺伝子の増幅断片のみが、またレーン2の後部絹糸腺からはDsRed遺伝子の増幅断片のみがそれぞれ確認された。この結果から、遺伝子発現レベルでも中部絹糸腺と後部絹糸腺において、それぞれで特異的に発現するEGFPとDsRedの発現の漏れは見られなかった。 Fig. 10-2 shows the results of RT-PCR. Only the amplified fragment of the EGFP gene was confirmed from the middle silk gland of lane 1, and only the amplified fragment of the DsRed gene was confirmed from the rear silk gland of lane 2. From these results, there was no leakage of EGFP and DsRed expression specifically expressed in the middle and posterior silk glands even at the gene expression level.
 以上の結果から本発明のバイナリー遺伝子発現システムは、異なる組の各目的遺伝子の発現をカイコ生体内においてもそれぞれ組織特異的に制御することができることが立証された。 From the above results, it was proved that the binary gene expression system of the present invention can control the expression of each target gene of a different set in a silkworm organism in a tissue-specific manner.
<実施例9:遺伝子組換えカイコにおけるバイナリー遺伝子発現システムの発現効率(2)>
(目的)
 実施例6では、カイコ生体内での本発明のバイナリー遺伝子発現システムによる中部絹糸腺での発現効率を検証した。本実施例では、カイコ生体内での本発明のバイナリー遺伝子発現システムによる後部絹糸腺での発現効率を検証する。
<Example 9: Expression efficiency of binary gene expression system in transgenic silkworm (2)>
(the purpose)
In Example 6, the expression efficiency in the middle silk gland by the binary gene expression system of the present invention in the silkworm organism was verified. In this example, the expression efficiency in the posterior silk gland by the binary gene expression system of the present invention in the silkworm organism is verified.
(方法)
(1)後部絹糸腺特異的第1発現ユニット
 後部部絹糸腺特異的プロモーターであるフィブロインHプロモーターにUASTAL3-ARIIを連結した第1発現ユニットpBac[FibH-UASTAL3-ARIIx4/3xP3-DsRed]を構築した。基本手順は、実施例6の「(1)中部絹糸腺特異的第1発現ユニット」に記載の方法に準じた。
(Method)
(1) 1st expression unit specific to the posterior silk gland The first expression unit pBac [FibH-UASTAL3-ARIIx4 / 3xP3-DsRed] was constructed by linking UASTAL3-ARII to the fibroin H promoter, a posterior silk gland-specific promoter. . The basic procedure was based on the method described in “(1) Middle silk gland-specific first expression unit” in Example 6.
(2)UAS-EGFP第2発現ユニット
 UAS4の下流にEGFP遺伝子を結合し、その下流にセリシン1の3’UTRを連結したpBacUAS-sigEGFP/3xP3EYFPを構築した。
(2) UAS-EGFP second expression unit pBacUAS-sigEGFP / 3xP3EYFP was constructed by binding the EGFP gene downstream of UAS4 and linking sericin 1 3 ′ UTR downstream thereof.
(3)遺伝子組換えカイコの作出
 基本手順は、実施例6の「(3)遺伝子組換えカイコの作出」に記載の方法に準じた。
(3) Production of transgenic silkworm The basic procedure was in accordance with the method described in “(3) Production of transgenic silkworm” in Example 6.
(4)EGFPの定量
 基本手順は、実施例6の「(4)EGFPの定量」に記載の方法に準じた。
(4) Quantification of EGFP The basic procedure was in accordance with the method described in “(4) Quantification of EGFP” in Example 6.
(結果)
 図11に結果を示す。本発明の後部絹糸腺特異的なバイナリー遺伝子発現システムによれば、従来のGAL4を用いた対照用第1発現ユニットと比較して、いずれの系統も10倍以上高いEGFPの発現が観察された。この結果から、本発明のバイナリー遺伝子発現システムは、中部絹糸腺と同様に後部絹糸腺においても従来のGAL4/UASシステムと比較して、目的遺伝子等の発現効率の向上に非常に有効であることが示された。
(result)
The results are shown in FIG. According to the posterior silk gland-specific binary gene expression system of the present invention, EGFP expression was observed to be 10 times higher in all lines as compared to the conventional first expression unit using GAL4. From this result, the binary gene expression system of the present invention is very effective in improving the expression efficiency of the target gene and the like in the posterior silk gland as well as the conventional GAL4 / UAS system as in the middle silk gland. It has been shown.
 なお、本明細書で引用した全ての刊行物、特許及び特許出願はそのまま引用により本明細書に組み入れられるものとする。 It should be noted that all publications, patents and patent applications cited in this specification are incorporated herein by reference as they are.

Claims (12)

  1.  第1発現ユニット及び第2発現ユニットからなるバイナリー遺伝子発現システムであって、
     前記第1発現ユニットはプロモーター、及びその制御下に配置された、TALドメインをコードする塩基配列からなるTAL領域及びその下流に連結され転写活性ドメインをコードする塩基配列からなる転写活性領域を含み、
      前記TALドメインは、標的塩基配列として配列番号1又は配列番号2で表される塩基配列を認識するN末端部位及びTAL-DNA塩基配列認識部位を含み、
       ここで前記標的塩基配列において、前記N末端部位は5'末端のtを、また前記TAL-DNA塩基配列認識部位は前記tに続く主要標的塩基配列を、それぞれ認識し、
       前記TAL-DNA塩基配列認識部位は前記主要標的塩基配列を構成するそれぞれの塩基に対して配列番号3で表されるアミノ酸配列からなり、
      前記転写活性ドメインは50~150アミノ酸からなる転写活性単位が2~10個連結された配列からなり、かつ
     前記第2発現ユニットは、TAL認識配列とその制御下に配置された目的遺伝子若しくはその断片を含み、
      前記TAL認識配列は、前記標的塩基配列を5~25個含む塩基配列からなる、
    前記システム。
    A binary gene expression system comprising a first expression unit and a second expression unit,
    The first expression unit includes a promoter, a TAL region composed of a base sequence encoding a TAL domain, and a transcriptional active region composed of a base sequence encoding a transcriptional active domain connected downstream thereof, arranged under the control of the promoter,
    The TAL domain includes an N-terminal site for recognizing the base sequence represented by SEQ ID NO: 1 or SEQ ID NO: 2 as a target base sequence and a TAL-DNA base sequence recognition site,
    Here, in the target base sequence, the N-terminal site recognizes t at the 5 ′ end, and the TAL-DNA base sequence recognition site recognizes the main target base sequence following the t,
    The TAL-DNA base sequence recognition site consists of an amino acid sequence represented by SEQ ID NO: 3 for each base constituting the main target base sequence,
    The transcriptional activity domain comprises a sequence in which 2 to 10 transcriptional activity units consisting of 50 to 150 amino acids are linked, and the second expression unit comprises a TAL recognition sequence and a target gene or fragment thereof arranged under its control. Including
    The TAL recognition sequence consists of a base sequence containing 5 to 25 target base sequences.
    Said system.
  2.  前記主要標的塩基配列が以下の(a)~(c)のいずれかの塩基配列からなる、請求項1に記載のバイナリー遺伝子発現システム。
     (a)配列番号4で表される塩基配列、
     (b)配列番号5で表される塩基配列、及び
     (c)配列番号4又は5において配列番号6で表される塩基配列の1~5個の塩基が置換された塩基配列
    2. The binary gene expression system according to claim 1, wherein the main target base sequence consists of any one of the following base sequences (a) to (c).
    (A) the base sequence represented by SEQ ID NO: 4,
    (B) a base sequence represented by SEQ ID NO: 5; and (c) a base sequence in which 1 to 5 bases of the base sequence represented by SEQ ID NO: 6 in SEQ ID NO: 4 or 5 are substituted.
  3.  前記配列番号4で表される塩基配列が配列番号7で表される塩基配列である、請求項2に記載のバイナリー遺伝子発現システム。 The binary gene expression system according to claim 2, wherein the base sequence represented by SEQ ID NO: 4 is the base sequence represented by SEQ ID NO: 7.
  4.  前記配列番号5で表される塩基配列が配列番号8で表される塩基配列である、請求項2に記載のバイナリー遺伝子発現システム。 The binary gene expression system according to claim 2, wherein the base sequence represented by SEQ ID NO: 5 is the base sequence represented by SEQ ID NO: 8.
  5.  前記転写活性単位がARII、又はVP16である、請求項1~4のいずれか一項に記載のバイナリー遺伝子発現システム。 The binary gene expression system according to any one of claims 1 to 4, wherein the transcriptional activity unit is ARII or VP16.
  6.  前記TAL認識配列は標的塩基配列を含む配列番号9で表される塩基配列が5~25個連結された繰り返し配列からなる、請求項3~5のいずれか一項に記載のバイナリー遺伝子発現システム。 The binary gene expression system according to any one of claims 3 to 5, wherein the TAL recognition sequence is composed of a repetitive sequence in which 5 to 25 nucleotide sequences represented by SEQ ID NO: 9 including the target nucleotide sequence are linked.
  7.  請求項1~6のいずれか一項に記載のバイナリー遺伝子発現システムにおける第1発現ユニットを含む形質転換体。 A transformant comprising the first expression unit in the binary gene expression system according to any one of claims 1 to 6.
  8.  請求項6に記載のバイナリー遺伝子発現システムにおける第2発現ユニットを除く、請求項1~5のいずれか一項に記載のバイナリー遺伝子発現システムの第2発現ユニットを含む形質転換体。 A transformant comprising the second expression unit of the binary gene expression system according to any one of claims 1 to 5, excluding the second expression unit of the binary gene expression system according to claim 6.
  9.  請求項1~6のいずれか一項に記載のバイナリー遺伝子発現システムにおける第1発現ユニット及び第2発現ユニットを含む形質転換体。 A transformant comprising the first expression unit and the second expression unit in the binary gene expression system according to any one of claims 1 to 6.
  10.  前記形質転換体がチョウ目昆虫である、請求項7~9のいずれか一項に記載の形質転換体。 The transformant according to any one of claims 7 to 9, wherein the transformant is a Lepidoptera insect.
  11.  前記チョウ目昆虫がカイコである、請求項10に記載の形質転換体。 The transformant according to claim 10, wherein the Lepidoptera insect is a silkworm.
  12.  請求項7に記載の第1発現ユニットを有する形質転換体と請求項8に記載の第2発現ユニットを有する形質転換体とを交配させる工程、及び
     前記交配工程後に第1及び第2発現ユニットを有する個体を選択する工程
    を含む目的遺伝子又はその断片の発現効率を増強した個体の作出方法。
    The step of mating the transformant having the first expression unit according to claim 7 and the transformant having the second expression unit according to claim 8, and the first and second expression units after the mating step A method for producing an individual having enhanced expression efficiency of a target gene or a fragment thereof, comprising a step of selecting an individual having the target gene.
PCT/JP2016/060443 2015-03-31 2016-03-30 Binary gene expression system WO2016159110A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017510121A JP6964843B2 (en) 2015-03-31 2016-03-30 Binary gene expression system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015072017 2015-03-31
JP2015-072017 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159110A1 true WO2016159110A1 (en) 2016-10-06

Family

ID=57006924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060443 WO2016159110A1 (en) 2015-03-31 2016-03-30 Binary gene expression system

Country Status (2)

Country Link
JP (1) JP6964843B2 (en)
WO (1) WO2016159110A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107384967A (en) * 2017-03-30 2017-11-24 浙江省农业科学院 A kind of method being inserted into foreign gene fixed point in silkworm W chromosomes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527097A (en) * 1998-10-16 2002-08-27 ノヴァルティス アクチェンゲゼルシャフト Zinc finger binding domain for GNN
JP2013529083A (en) * 2010-05-17 2013-07-18 サンガモ バイオサイエンシーズ, インコーポレイテッド Novel DNA binding protein and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002527097A (en) * 1998-10-16 2002-08-27 ノヴァルティス アクチェンゲゼルシャフト Zinc finger binding domain for GNN
JP2013529083A (en) * 2010-05-17 2013-07-18 サンガモ バイオサイエンシーズ, インコーポレイテッド Novel DNA binding protein and use thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRAND, ANDREA H. ET AL.: "Targeted gene expression as a means of altering cell fates and generatingdominant phenotypes", DEVELOPMENT, vol. 118, no. 2, 1993, pages 401 - 415, XP055315425 *
IMAMURA MORIKAZU ET AL.: "Targeted gene expression using the GAL4/UAS system in the silkworm Bombyx mori", GENETICS, vol. 165, no. 3, pages 1329 - 1340, XP002516674 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107384967A (en) * 2017-03-30 2017-11-24 浙江省农业科学院 A kind of method being inserted into foreign gene fixed point in silkworm W chromosomes
CN107384967B (en) * 2017-03-30 2020-10-13 浙江省农业科学院 Method for inserting exogenous gene into silkworm W chromosome at fixed point

Also Published As

Publication number Publication date
JPWO2016159110A1 (en) 2018-02-01
JP6964843B2 (en) 2021-11-10

Similar Documents

Publication Publication Date Title
JP6326703B2 (en) Exogenous gene expression enhancer
JP4597188B2 (en) New expression tools for multiprotein applications
JP6253109B2 (en) Rear silk gland gene expression unit and genetically modified silkworm having the same
US11299748B2 (en) Kit for constructing transposon and use thereof
KR100723565B1 (en) Process for Producing Physiologically Active Protein Using Genetically Modified Silkworm
US20130183761A1 (en) Methods for Incorporating Unnatural Amino Acids in Eukaryotic Cells
JP6497605B2 (en) Female pupal dead silkworm strain
KR20110081810A (en) Insect-derived promoters for foreign proteins expression in insect cells
JP6964843B2 (en) Binary gene expression system
WO2002086119A1 (en) Transformed silkworm producing human collagen
JP6436908B2 (en) Exogenous gene expression vector, transformant discrimination marker and transformant
CN114540421B (en) Controllable editing method for silkworm MSG and PSG expression genes
JPWO2005054463A1 (en) Development of mammalian genome modification technology using retrotransposon
JP6541173B2 (en) Cell death induction vector and site-specific cell death induction silkworm strain having the same
WO2017135452A1 (en) Transgenic silkworm having mammalian-type sugar chain attached thereto
JP4353754B2 (en) Gene transfer vector to insect and gene product production method
KR102114194B1 (en) Transgenic silkworms producing silk expressed KillerRed protein
Xue et al. Elementary research into the transformation BmN cells mediated by the piggyBac transposon vector
Sezutsu Transgenic Silkworm
KR101791576B1 (en) Binary vector composition comprising Hac1 gene and Unfolded protein response element sequence or cells transformed with the same
US20160130588A1 (en) Method for the generation of polycystronic vectors
JP2019118334A (en) Mitochondrial dysfunctional genetically modified silkworm
Torigoi Molecular bases of Chip function in gene regulation and development in Drosophila

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017510121

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772991

Country of ref document: EP

Kind code of ref document: A1