WO2016159071A1 - 環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体 - Google Patents

環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体 Download PDF

Info

Publication number
WO2016159071A1
WO2016159071A1 PCT/JP2016/060377 JP2016060377W WO2016159071A1 WO 2016159071 A1 WO2016159071 A1 WO 2016159071A1 JP 2016060377 W JP2016060377 W JP 2016060377W WO 2016159071 A1 WO2016159071 A1 WO 2016159071A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
polyethylene glycol
glycol derivative
compound
Prior art date
Application number
PCT/JP2016/060377
Other languages
English (en)
French (fr)
Inventor
拓真 粒崎
山本 裕二
Original Assignee
日油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日油株式会社 filed Critical 日油株式会社
Priority to US15/563,346 priority Critical patent/US20180078651A1/en
Priority to EP16772952.4A priority patent/EP3279236B1/en
Publication of WO2016159071A1 publication Critical patent/WO2016159071A1/ja
Priority to US16/886,056 priority patent/US11529423B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group
    • C08G65/33337Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group cyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/333Polymers modified by chemical after-treatment with organic compounds containing nitrogen
    • C08G65/33331Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group
    • C08G65/33337Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group cyclic
    • C08G65/33341Polymers modified by chemical after-treatment with organic compounds containing nitrogen containing imide group cyclic aromatic

Definitions

  • the present invention relates to a biodegradable polyethylene glycol derivative in which polyethylene glycol chains are linked by a hydrolyzable acetal linker and divided into low molecular weight polyethylene glycol chains that can be more effectively cleared from the living body.
  • the polyethylene glycol derivatives described herein are used for chemical modification of bioactive molecules such as bioactive proteins, peptides, antibodies, nucleic acids and small molecule drugs, and drug carriers such as liposomes and polymer micelles.
  • An approach to split into glycol chains has been performed. Many of the strategies utilize the in vivo environment such as the reducing environment and the action of degrading enzymes for the degradation of the linker, and one of them is a technique that uses the in vivo pH.
  • the polyethylene glycol chains are linked with a hydrolyzable acetal linker.
  • a synthesis example of a split-type polyethylene glycol derivative has been reported.
  • Patent Document 1 discloses a plurality of polyethylene glycol derivatives in which two polyethylene glycol chains are bonded via an acetal group derived from various aldehydes or ketones.
  • the acetal group is hydrolyzed in vivo and the polyethylene glycol chain is divided into two low molecular weight polyethylene glycol chains, thereby improving the clearance rate from the living body.
  • no evaluation data on the hydrolysis rate of the acetal group is shown, and there is no description about the relationship between the structure around the acetal group and the hydrolysis rate.
  • polyethylene glycol derivatives in which polyethylene glycol chains are linked by a hydrolyzable acetal linker
  • a polyethylene glycol derivative in which the hydrolysis rate of the acetal linker, that is, the splitting rate of the polyethylene glycol chain is precisely controlled There is no example so far.
  • the pH in the living body varies depending on the site, but the deviation in pH at each site is small.
  • the area around the tumor tissue is an acidic environment compared to the normal physiological environment of pH 7.4, but is weakly acidic with a pH of 6.4 to 6.9.
  • the pH inside endosomes and lysosomes in cells is lower, they are pH 5.5 to 6.0 and pH 4.5 to 5.0, respectively, and the pH bias is small.
  • the problem of the present invention is that the polyethylene glycol chain is linked with an acetal linker capable of precisely controlling the hydrolysis rate under different pH environments in the living body, and the splitting rate into a low molecular weight polyethylene glycol chain in the living body is accurately determined. It is to provide a controllable biodegradable polyethylene glycol derivative.
  • the present inventor has linked a polyethylene glycol chain with a cyclic benzylidene acetal linker capable of accurately controlling the hydrolysis rate in a different pH environment in the living body.
  • Biodegradable polyethylene glycol derivatives have been developed that can precisely control the rate of splitting into low molecular weight polyethylene glycol chains.
  • a feature of the present invention is that a plurality of polyethylene glycol chains are bonded via a cyclic benzylidene acetal linker having a substituent.
  • a desired hydrolysis rate can be imparted to the acetal linker, and after the drug or the like to which the biodegradable polyethylene glycol derivative is bound is transported to the target tissue or cell and exhibits a medicinal effect, Under the pH environment of each site, the polyethylene glycol chain can be divided into low molecular weight polyethylene glycol chains at an arbitrary rate.
  • R 1 and R 6 are each independently a hydrogen atom or a hydrocarbon group;
  • R 2 , R 3 , R 4 and R 5 are each independently an electron-withdrawing or electron-donating substituent, or a hydrogen atom;
  • P 1 is a linear or branched polyethylene glycol having 3 or more ethylene glycol units;
  • P 2 is a linear or branched polyethylene glycol having 3 or more ethylene glycol units;
  • w is the valence with which P 1 is bonded to the cyclic benzylidene acetal and is an integer from 1 to 8;
  • u is the number of structural units composed of cyclic benzylidene acetal and P 2 bonded in series, and is an integer of 1 to 40;
  • v is the number of X 1 bound to P 2 and is an integer from 1 to 4;
  • X 1 is a chemically reactive functional group; and
  • R 2 and R 5 are hydrogen atoms, R 3 in formula (1), R 4 and P 1 -Z 1 , or R 3 in formula (2),
  • R 2 and R 5 are hydrogen atoms, R 3 , R 4 and P 1 -Z 1 in formula (1), Or the biodegradable polyethylene glycol derivative of [1], wherein the sum ( ⁇ ) of substituent constants ( ⁇ ) in R 3 , R 4 and P 2 -Z 1 of formula (2) is ⁇ 0.19 ⁇ ⁇ ⁇ 0.57.
  • Y is a hydrocarbon group having 1 to 24 carbon atoms; n is an integer of 3 to 2000.
  • X 2 is a functional group capable of chemical reaction different from X 1 ;
  • Z 4 is a divalent spacer; and
  • n is an integer from 3 to 2000.
  • Y is a hydrocarbon group having 1 to 24 carbon atoms; n is an integer of 3 to 1000; and a is 0 or 2.
  • X 2 is a functional group capable of chemical reaction different from X 1 ;
  • Z 4 is a divalent spacer;
  • n is an integer from 3 to 1000; and
  • a is 0 or 2.
  • X 2 is a functional group capable of chemical reaction different from X 1 ;
  • Z 4 is a divalent spacer;
  • n is an integer from 3 to 1000; and
  • a is 0 or 2.
  • P 1 is a linear or branched polyethylene glycol having 3 to 8 terminals, and all the terminals of the polyethylene glycol constituting P 1 are Z 1 in formula (1), formula (2)
  • the biodegradable polyethylene glycol derivative is bonded to Z 2 and w is equal to the number of terminals of the polyethylene glycol.
  • n is an integer of 3 to 2000.
  • P 1 is represented by formula (r)
  • w is 2
  • P 1 is represented by formula (s)
  • w is 3
  • P 1 is represented by formula (t).
  • w is 4
  • w is 4 when P 1 is represented by formula (u)
  • w is 8 when P 1 is represented by formula (v). It is.
  • m is an integer of 3 to 1000; and b is 0 or 2.
  • v is b + 2.
  • X 1 is active ester group, active carbonate group, aldehyde group, isocyanate group, isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, dithiopyridyl group , ⁇ -haloacetyl group, alkynyl group, allyl group, vinyl group, amino group, oxyamino group, hydrazide group, and azide group, the biodegradable polyethylene according to any one of [1] to [18] Glycol derivative.
  • Z 1 , Z 2 and Z 3 are each independently an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, a single bond or an alkylene group.
  • X 2 is active ester group, active carbonate group, aldehyde group, isocyanate group, isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, dithiopyridyl group , ⁇ -haloacetyl group, alkynyl group, allyl group, vinyl group, amino group, oxyamino group, hydrazide group and azide group, [9], [12] or [14] biodegradable Polyethylene glycol derivative.
  • Z 4 is an ether bond, an ester bond, carbonate bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, a single bond or an alkylene group, [9], [12] or [14 ] Biodegradable polyethylene glycol derivatives.
  • the biodegradable polyethylene glycol derivative having a cyclic benzylidene acetal linker according to the present invention can adjust the hydrolysis rate of the cyclic benzylidene acetal linker under different pH environments in vivo. Therefore, after the drug or the like to which the biodegradable polyethylene glycol derivative is bound is transported to the target tissue or cell to express its medicinal effect, the polyethylene glycol chain can be attached at an arbitrary rate in the pH environment of each site. It can be split into low molecular weight polyethylene glycol chains.
  • FIG. 5 shows the results of hydrolysis tests at 37 ° C. in a MES heavy water buffer solution with a pD of 5.5 using the compounds of formula (41), formula (54), formula (74) and formula (76) described in Examples.
  • FIG. 6 shows the results of hydrolysis tests at 37 ° C. in a HEPES heavy water buffer solution with a pD of 7.4 using the compounds of formula (41), formula (54), formula (74) and formula (76) described in Examples.
  • acetal as used herein means both an acetal structure derived from aldehydes and an acetal structure derived from ketones, ie, a ketal structure.
  • R 1 and R 6 are a hydrogen atom or a hydrocarbon group, and the hydrocarbon group preferably has 10 or less carbon atoms, more preferably 4 or less.
  • Specific hydrocarbon groups include methyl, ethyl, propyl, isopropyl, t-butyl, phenyl and benzyl groups.
  • a preferred embodiment of R 1 is a hydrogen atom or a methyl group, more preferably a hydrogen atom.
  • the benzene ring in the formulas (1) and (2) of the present invention may have a plurality of substituents.
  • the electron density around the acetal group and the degree of steric hindrance affecting the hydrolysis rate of the cyclic acetal linker by appropriately selecting the type and position of substituents on the benzene ring and the degree of electron donating and electron withdrawing Can be adjusted. Thereby, a desired hydrolysis rate can be imparted to the cyclic acetal linker.
  • the substituent on the benzene ring in the formulas (1) and (2) is described using the “substituent constant ( ⁇ )”, which affects the reaction rate or equilibrium of the benzene derivative. It means the substituent constant in Hammett's rule that quantifies the influence of the substituent.
  • the Hammett rule applies only to para-substituted and meta-substituted benzene derivatives and cannot be applied to ortho-substituted benzene derivatives that are affected by steric hindrance. Therefore, in the case of an ortho-substituted benzene derivative, it means a substituent constant in Taft's formula that extends the Hammett rule.
  • Hammett's rule is represented by the following formula (10).
  • k is a rate constant or equilibrium constant in an arbitrary reaction of para-substituted and meta-substituted benzene derivatives
  • k 0 is a case where the benzene derivative does not have the substituent, that is, the substituent is a hydrogen atom.
  • is the reaction constant and ⁇ is the substituent constant.
  • the reaction constant ( ⁇ ) in the above formula (10) is a constant determined by the reaction conditions such as the type of reaction, temperature, and solvent, and can be calculated from the slope of the Hammett plot.
  • the formula (35), the formula (44) and the formula (45) described in the Examples are used.
  • Is calculated as “ ⁇ ⁇ 2.7”.
  • the substituent constant ( ⁇ ) in the above formula (10) is a constant determined only by the type and position of the substituent regardless of the type of reaction, and when there is no substituent, that is, the substituent is a hydrogen atom. In this case, it is “0”.
  • the term “electron withdrawing” means when ⁇ is a positive value
  • the term “electron donating” means when ⁇ is a negative value.
  • k is a rate constant or equilibrium constant in an arbitrary reaction of para-substituted and meta-substituted benzene derivatives
  • k 0 is a case where the benzene derivative does not have the substituent, that is, the substituent is a hydrogen atom.
  • ⁇ * is the reaction constant
  • ⁇ * is the substituent constant
  • Es is the positional constant of the substituent.
  • reaction constant ( ⁇ ) of para-substituted and meta-substituted benzene derivatives and the reaction constant ( ⁇ * ) of ortho-substituted benzene derivatives are approximately equal, ⁇ and ⁇ * are defined herein to be the same.
  • the ortho-position substituent constant ( ⁇ * ) is similar to the para-position substituent constant, as described in, for example, “Charton, M. Can. J. Chem. 1960, 38 2493-2499”. Therefore, the substituent constant at the ortho position in the present specification applies the substituent constant at the corresponding para position.
  • Substituent constants ( ⁇ ) at the para and meta positions are described in ⁇ Hansch, C .; Leo, A .; Taft, R. W. Chem. Rev. 1991, 91, 165-195 ''.
  • Substituents with unknown constant ( ⁇ ) can be measured and determined by the method described in “Hammett, L. P. Chem. Rev. 1935, 17 (1), 125-136”.
  • the positional constant (Es) is described in “Unger, S. H .; Hansch, C. Prog. Phys. Org. Chem. 1976, 12, 91-118”. However, Es used in the present specification defines a hydrogen atom as “0”.
  • Z 1 is bonded to the benzene ring of the cyclic benzylidene acetal, and P 1 -Z 1 and P 2 -Z 1 are also substituents of the benzene ring.
  • PZ 1 substituent constants P 2 -Z 1, for the combination of P 1 and Z 1, P 2 and Z 1, but each can be determined by measuring separately, substantially P 1 -Z 1, P
  • the substituent constant of 2 -Z 1 is greatly affected by the structure near the bond with the benzene ring, so the influence of other parts is so small that it can be ignored. Therefore, instead of measuring the substituent constants individually for P 1 -Z 1 and P 2 -Z 1 , it is possible to substitute a known substituent constant with a structure similar to the structure near the bond to the benzene ring. It is.
  • a suitable hydrolysis rate of the biodegradable polyethylene glycol derivative having a cyclic benzylidene acetal linker of the present invention is such that the hydrolysis half-life (t 1/2 ) in a buffer solution at pH 5.5 and 37 ° C. is 1 hour to 6 months. More preferably, it is in the range of 1 hour to 1 month, and more preferably in the range of 1 hour to 24 hours.
  • t 1/2 is 12 hours under the hydrolysis conditions described above, and a numerical value derived from the compound of formula (44) described in the Examples is used to obtain a 1,3-dioxolane structure.
  • the range of the sum of preferable substituent constants ( ⁇ ) is defined.
  • the substituent that can be used in the present invention includes an acetalization reaction of a cyclic benzylidene acetal linker compound in the process of synthesizing the biodegradable polyethylene glycol derivative, a coupling reaction of a cyclic benzylidene acetal linker compound and a polyethylene glycol intermediate, and a polyethylene glycol intermediate. It is a substituent that does not inhibit the terminal functional group conversion reaction and the polyethylene glycol intermediate linking reaction, and further the bond-forming reaction between the biodegradable polyethylene glycol derivative and a drug or the like.
  • an electron-withdrawing substituent or an electron-donating substituent may be used, and each may be used alone or in combination.
  • the electron-withdrawing substituent include an acyl group having 2 to 5 carbon atoms, an alkoxycarbonyl group having 2 to 5 carbon atoms, a carbamoyl group having 2 to 5 carbon atoms, an acyloxy group having 2 to 5 carbon atoms, and 2 to 2 carbon atoms.
  • acylamino groups alkoxycarbonylamino groups having 2 to 5 carbon atoms, fluorine atoms, chlorine atoms, bromine atoms, iodine atoms, alkylsulfanyl groups having 1 to 4 carbon atoms, alkylsulfonyl groups having 1 to 4 carbon atoms, carbon numbers 6-10 arylsulfonyl groups, nitro groups, trifluoromethyl groups, and cyano groups.
  • Preferred examples include acetyl groups, methoxycarbonyl groups, methylcarbamoyl groups, acetoxy groups, acetamide groups, methoxycarbonylamino groups, fluorine atoms, Chlorine, bromine, iodine, methylsulfanyl, phenylsulfonyl, nitro, trifluoromethyl and cyan Group.
  • the electron-donating substituent is an alkyl group having 1 to 4 carbon atoms, and preferred examples include a methyl group, an ethyl group, a propyl group, an isopropyl group, and a t-butyl group.
  • Substituents that are electron withdrawing at the meta position and electron donating at the para and ortho positions include alkoxy groups having 1 to 4 carbon atoms, aryl groups having 6 to 10 carbon atoms, and aryloxy groups having 6 to 10 carbon atoms.
  • Preferred examples include methoxy group, ethoxy group, propoxy group, isopropoxy group, t-butoxy group, phenyl group and phenoxy group.
  • Formula (1) and Formula (2) are 1,3-dioxolane structures and at least one of R 2 and R 5 is a substituent other than a hydrogen atom, the above substituents have the most steric hindrance effect.
  • a large phenyl group and the position constant (Es) of the smallest fluorine atom t 1/2 in a buffer solution at pH 5.5 and 37 ° C.
  • Formula (1) and Formula (2) are 1,3-dioxolane structures and R 2 and R 5 are hydrogen atoms, for example, ⁇ 0.30 ⁇ ⁇ ⁇ 0.21 when 1 hour ⁇ t 1/2 ⁇ 24 hours
  • R 3 and R 4 are hydrogen atoms, for example, ⁇ 0.30 ⁇ ⁇ ⁇ 0.21 when 1 hour ⁇ t 1/2 ⁇ 24 hours
  • the substituent shown here means R 3 and R 4 , and a structure used in place of P 1 -Z 1 and P 2 -Z 1 in accordance with the above definition.
  • One of the meta positions of the formulas (1) and (2) is a methoxy group, an ethoxy group or an acetamide group, and more preferably an ethoxy group or an acetamide group.
  • the group of formula (1), formula (2) is a methoxy group or an ethoxy group, and one of the meta positions is a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. More preferably, the para position is an ethoxy group, and one of the meta positions is a fluorine atom or a chlorine atom. In another preferred embodiment, one of the para-position and the meta-position of formula (1) and formula (2) is a methoxy group, an ethoxy group or an acetamido group, more preferably a methoxy group or an ethoxy group.
  • Formula (1) and Formula (2) are 1,3-dioxolane structures and at least one of R 2 and R 5 is a substituent other than a hydrogen atom, for example, 1 hour ⁇ t 1/2 ⁇ 24
  • R 3 and R 4 a substituent used in place of P 1 -Z 1 and P 2 -Z 1 in accordance with the above definition.
  • one of R 2 and R 5 in formula (1) and formula (2) is a fluorine atom, a methyl group or an ethyl group and the other is a hydrogen atom
  • the para position is an ethoxy group or an acetamide group.
  • R 2 and R 5 in formula (1) and formula (2) is a methoxy group and the other is a hydrogen atom
  • the para position is selected from the group consisting of a methoxymethyl group or an acetamide group It has a substituent, and more preferably an acetamide group.
  • Equation (1) the formula (2) is 1,3-dioxane structure, when R 2 and R 5 is a hydrogen atom, t 1/2 of -0.19 ⁇ ⁇ ⁇ 0.10 a long if the hydrophilic polymer derivative 1 hour ⁇ t 1/2 ⁇ 24 hours.
  • t 1/2 of -0.19 ⁇ ⁇ ⁇ 0.10 a long if the hydrophilic polymer derivative 1 hour ⁇ t 1/2 ⁇ 24 hours.
  • -0.19 ⁇ ⁇ ⁇ when 1 hour ⁇ t 1/2 ⁇ 1 month 0.41 When 1 hour ⁇ t 1/2 ⁇ 6 months, ⁇ 0.19 ⁇ ⁇ ⁇ 0.57.
  • T 1/2 in a buffer solution at pH 5.5 and 37 ° C. is 1 hour ⁇ t 1/2 ⁇ 24 hours, 1 hour ⁇ t, using the largest phenyl group and the smallest fluorine atom position constant (Es).
  • the types and positions of the appropriate substituents for imparting the desired hydrolyzability to the cyclic benzylidene acetal linker in the biodegradable polyethylene glycol derivative of the present invention are represented by the formulas (10) and (11). Therefore, it can be set rationally by performing the above calculation.
  • Compounds of formula (1), X 1 in the formula (2) is a physiologically active protein to be chemically modified, peptides, antibodies, such as nucleic acids and small molecule drugs biofunctional molecule, and such as liposomes and polymeric micelles There is no particular limitation as long as it is a functional group that reacts with a functional group present in the drug carrier to form a covalent bond.
  • Preferred examples of X 1 include active ester group, active carbonate group, aldehyde group, isocyanate group, isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, A dithiopyridyl group, an ⁇ -haloacetyl group, an alkynyl group, an allyl group, a vinyl group, an amino group, an oxyamino group, a hydrazide group and an azide group.
  • the functional group capable of reacting with an amino group of a biofunctional molecule to form a covalent bond includes an active ester group, an active carbonate group, an aldehyde group, an isocyanate group, an isothiocyanate group, an epoxy group.
  • a maleimide group, a vinylsulfone group, an acrylic group, a sulfonyloxy group, or a carboxy group, and a functional group that can react with a thiol group of a biofunctional molecule to form a covalent bond includes an active ester group, an active carbonate group Group, aldehyde group, isocyanate group, isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, dithiopyridyl group, ⁇ -haloacetyl group, alkynyl group, allyl group or A vinyl group, an aldehyde group or a
  • the functional group capable of reacting with a xy group to form a covalent bond is a thiol group, amino group, oxyamino group or hydrazide group, and reacts with an alkynyl group of a biofunctional
  • active ester refers to an activated carboxy group represented by the formula: —C ( ⁇ O) —L, and L represents a leaving group.
  • the leaving group represented by L include succinimidyloxy, phthalimidyloxy, 4-nitrophenoxy, 1-imidazolyl, pentafluorophenoxy, benzotriazol-1-yloxy and 7-aza. And benzotriazol-1-yloxy group.
  • Activated carbonate refers to an activated carbonate group represented by the formula: —O—C ( ⁇ O) —L, and L represents a leaving group as described above.
  • X 1 is a group represented by group (I), group (II), group (III), group (IV) or group (V).
  • Group (I) Functional group capable of reacting with an amino group of a biofunctional molecule to form a covalent bond
  • Group (II) Functional group capable of reacting with a thiol group of a biofunctional molecule to form a covalent bond
  • Group (III) Functional group capable of reacting with an aldehyde group or carboxy group of a biofunctional molecule to form a covalent bond (g), (k), (l) and (m) below
  • R 7 is a hydrogen atom or a sulfo group, and specific examples of the sulfo group include sodium sulfonate and potassium sulfonate, with a hydrogen atom being preferred.
  • R 8 and R 11 are a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms. Specific hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, t-butyl and pentyl. Group and the like.
  • R 9 is a hydrocarbon group having 1 to 10 carbon atoms which may contain a halogen atom, and specific hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl Group, isopentyl group, hexyl group, benzyl group, 4-methylphenyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 4- (trifluoromethoxy) phenyl group, vinyl group, chloroethyl group, bromoethyl Group, iodoethyl group, and the like, and a methyl group, vinyl group, 4-methylphenyl group, or 2,2,2-trifluoroethyl group is preferable.
  • R 10 is a halogen atom selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom.
  • Z 1 in the formulas (1) and (2) of the present invention is a divalent spacer between the benzene ring of the cyclic benzylidene acetal group and the polyethylene glycol chain
  • Z 2 is a cyclic acetal of the cyclic benzylidene acetal group
  • Z 3 is a divalent spacer between the polyethylene glycol chain
  • Z 3 is a divalent spacer between X 1 and the polyethylene glycol chain.
  • the alkylene group preferably has 1 to 24 carbon atoms.
  • preferred examples of the alkylene group include the following structures (z1).
  • Preferable examples of the alkylene group having an ether bond include the following structures (z2) or (z3).
  • Preferable examples of the alkylene group having an ester bond include the following structures (z4).
  • Preferable examples of the alkylene group having a carbonate bond include the following structures (z5).
  • Preferable examples of the alkylene group having a urethane bond include the following structures (z6).
  • Preferable examples of the alkylene group having an amide bond include the following structures (z7).
  • the alkylene group having a secondary amino group include the following structures (z8).
  • p and q are independently integers from 1 to 12.
  • at least one of Z 1 , Z 2 or Z 2 is an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary amino group or an alkylene group containing these, and a plurality of the same structural units are The number of structural units in the case of bonding is 2 or less.
  • P 1 is a linear or branched polyethylene glycol having 3 or more ethylene glycol units
  • P 2 has 3 or more ethylene glycol units. It is a linear or branched polyethylene glycol.
  • the number of ethylene glycol units constituting P 1 and P 2 is more preferably 10 or more, and particularly preferably 20 or more. Further, the number of ethylene glycol units constituting P 1 and P 2 is more preferably 2000 or less, and particularly preferably 1000 or less.
  • polyethylene glycol refers to both polyethylene glycol having a molecular weight distribution obtained by polymerization of ethylene oxide and monodisperse polyethylene glycol obtained by coupling single molecular weight oligoethylene glycols in a coupling reaction. means.
  • a biodegradable polyethylene glycol derivative in which w in Formula (1) and Formula (2) is 1 is provided.
  • P 1 in the formulas (1) and (2) is a linear polyethylene glycol having a hydrocarbon group or a chemically reactive functional group at the terminal.
  • P 1 is a linear polyethylene glycol having a hydrocarbon group at the end is represented by Formula (3).
  • n is the number of repeating units per polyethylene glycol chain, and in polyethylene glycol having a molecular weight distribution, it is calculated by performing various theoretical calculations based on the number average molecular weight (Mn) of the compound. It is defined as that.
  • Y is a hydrocarbon group having 1 to 24 carbon atoms, and specific examples thereof include methyl group, ethyl group, propyl group, isopropyl group, butyl group, t-butyl group, pentyl group, isopentyl group, hexyl.
  • heptyl group 2-ethylhexyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group, eicosyl group, heneicosyl Group, docosyl group, toycosyl group, tetracosyl group, phenyl group, benzyl group, cresyl group, butylphenyl group, dodecylphenyl group and trityl group, etc., preferably 1 to 10 carbon atoms (more preferably 1 to carbon atoms). 7) a hydrocarbon group, more preferably a methyl group or an ethyl group, still more preferably methyl It is.
  • P 1 is a linear polyethylene glycol having a chemically reactive functional group.
  • X 2 is a chemically reactive functional group different from X 1
  • Z 4 is a divalent spacer between the functional group X 2 and the polyethylene glycol chain. Since the biodegradable polyethylene glycol derivative has two different chemically reactive functional groups, X 1 and X 2 , for example, a drug is bound to X 1 and a targeting molecule is bound to X 2 Thus, a polyethylene glycol-drug conjugate having a targeting property can be provided.
  • Preferred examples of X 2 include active ester group, active carbonate group, aldehyde group, isocyanate group, isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, A dithiopyridyl group, an ⁇ -haloacetyl group, an alkynyl group, an allyl group, a vinyl group, an amino group, an oxyamino group, a hydrazide group and an azide group.
  • the functional group capable of reacting with an amino group of a biofunctional molecule to form a covalent bond includes an active ester group, an active carbonate group, an aldehyde group, an isocyanate group, an isothiocyanate group, an epoxy group.
  • a maleimide group, a vinylsulfone group, an acrylic group, a sulfonyloxy group, or a carboxy group, and a functional group that can react with a thiol group of a biofunctional molecule to form a covalent bond includes an active ester group, an active carbonate group Group, aldehyde group, isocyanate group, isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, dithiopyridyl group, ⁇ -haloacetyl group, alkynyl group, allyl group or A vinyl group, an aldehyde group or a
  • the functional group capable of reacting with a xy group to form a covalent bond is a thiol group, amino group, oxyamino group or hydrazide group, and reacts with an alkynyl group of a biofunctional
  • X 2 is a group represented by group (I), group (II), group (III), group (IV) or group (V).
  • Group (I) Functional group capable of reacting with an amino group of a biofunctional molecule to form a covalent bond
  • Group (II) Functional group capable of reacting with a thiol group of a biofunctional molecule to form a covalent bond
  • Group (III) Functional group capable of reacting with an aldehyde group or carboxy group of a biofunctional molecule to form a covalent bond (g), (k), (l) and (m) below
  • R 7 is a hydrogen atom or a sulfo group, and specific examples of the sulfo group include sodium sulfonate and potassium sulfonate, with a hydrogen atom being preferred.
  • R 8 and R 11 are a hydrogen atom or a hydrocarbon group having 1 to 5 carbon atoms. Specific hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, t-butyl and pentyl. Group and the like.
  • R 9 is a hydrocarbon group having 1 to 10 carbon atoms which may contain a halogen atom, and specific hydrocarbon groups include methyl, ethyl, propyl, isopropyl, butyl, t-butyl, pentyl Group, isopentyl group, hexyl group, benzyl group, 4-methylphenyl group, trifluoromethyl group, 2,2,2-trifluoroethyl group, 4- (trifluoromethoxy) phenyl group, vinyl group, chloroethyl group, bromoethyl Group, iodoethyl group, and the like, and a methyl group, vinyl group, 4-methylphenyl group, or 2,2,2-trifluoroethyl group is preferable.
  • R 10 is a halogen atom selected from the group consisting of a chlorine atom, a bromine atom and an iodine atom.
  • X 2 is required to be different from the X 1, as preferred combinations of X 1 and X 2, when X 1 is active ester or active carbonate group, X 2 is a maleimide group, a vinylsulfone group, alpha -A group selected from a haloacetyl group, an alkynyl group and an azide group, and when X 1 is an aldehyde group, X 2 is a group selected from a maleimide group, a vinylsulfone group, an alkynyl group and an azide group; When 1 is a maleimide group, a vinyl sulfone group or an ⁇ -haloacetyl group, X 2 is a group selected from an active ester group, an active carbonate group, an alkynyl group, and an azide group, and X 1 is an alkynyl group or an azide group.
  • X 2 is a group selected from a maleimide group, a vinyl sulfone group, an ⁇ -haloacetyl group, an active ester group, an active carbonate group, an amino group and an oxyamino group
  • X 1 is an amino group or an oxyamino group
  • X 2 is an alkynyl group, azide group, thiol group or carboxy group
  • X 1 is a thiol group
  • X 2 is an amino group, oxyamino group A group selected from a group, an azide group and a carboxy group.
  • X 1 is an active ester group or an active carbonate group
  • X 2 is a group selected from a maleimide group, an ⁇ -haloacetyl group, an alkynyl group and an azide group
  • X 1 is an aldehyde group
  • X 2 is a group selected from a maleimide group, an ⁇ -haloacetyl group, an alkynyl group and an azide group
  • X 1 is a maleimide group or an ⁇ -haloacetyl group
  • X 2 is an active ester group, an active carbonate group, An alkynyl group or an azide group
  • X 1 is an alkynyl group or an azide group
  • X 2 is a maleimide group, an ⁇ -haloacetyl group, an active ester group, an active carbonate group, an amino group, and an oxyamino group a group selected from, when X 1 is an amino group or an an amino group or an
  • Z 4 is composed of a covalent bond and is not particularly limited as long as it is more stable to acid hydrolysis than the cyclic benzylidene acetal group, but preferably an ether bond, an ester bond, a carbonate bond, a urethane bond, an amide bond, a secondary bond It is an amino group or an alkylene group containing these, a single bond or an alkylene group.
  • the alkylene group preferably has 1 to 24 carbon atoms.
  • preferred examples of the alkylene group include the following structures (z1).
  • Preferable examples of the alkylene group having an ether bond include the following structures (z2) or (z3).
  • Preferable examples of the alkylene group having an ester bond include the following structures (z4).
  • Preferable examples of the alkylene group having a carbonate bond include the following structures (z5).
  • Preferable examples of the alkylene group having a urethane bond include the following structures (z6).
  • Preferable examples of the alkylene group having an amide bond include the following structures (z7).
  • Preferable examples of the alkylene group having a secondary amino group include the following structures (z8).
  • p and q are independently integers from 1 to 12.
  • the structural unit is a combination of a plurality of the same structural units Is less than or equal to 2.
  • P 1 in the formulas (1) and (2) is a branched polyethylene glycol having a hydrocarbon group or a chemically reactive functional group at the terminal.
  • P 1 is a branched polyethylene glycol having a hydrocarbon group at the end.
  • Y is the hydrocarbon group having 1 to 24 carbon atoms, and a is 0 or 2.
  • P 1 is a branched polyethylene glycol having a functional group capable of chemically reacting at the terminal.
  • X 2 is the functional group capable of chemical reaction different from X 1
  • Z 4 is the divalent spacer
  • a is 0 or 2.
  • the polyethylene glycol derivative in which P 1 is represented by the formula (6) has one X 1 and two or four X 2 when v in the formula (1) and the formula (2) is 1, for example, When a drug is bound to X 1 and a target-directing molecule is bound to X 2 , high target-directing performance can be obtained.
  • a biodegradable polyethylene glycol derivative having w of 2 to 8 in the formulas (1) and (2) is provided.
  • P 1 in formula (1) and formula (2) is represented by formula (7).
  • X 2 is the functional group capable of chemical reaction different from X 1
  • Z 4 is the divalent spacer
  • a is 0 or 2.
  • polyethylene glycol derivatives P 1 is represented by the formula (7) has the formula (1), if v in equation (2) is 1, has two or four of X 1 and one X 2, for example, If an anti-cancer drug is bound to X 1 and an antibody is bound to X 2 with an ADC targeting cancer, the transport efficiency of the anti-cancer drug can be improved without increasing the binding point with the antibody. .
  • P 1 in the formula (1) and formula (2) is a polyethylene glycol having 2 to 8 terminals, and all the ends of the polyethylene glycol constituting P 1 are each represented by the formula In (1), Z 1 is bound, and in Formula (2), Z 2 is bound, and w is equal to the number of terminals of the polyethylene glycol.
  • P 1 in formula (1) and formula (2) is the following formula (r), formula (s), formula (t), formula (u), and formula (v): Selected from the group consisting of When P 1 is represented by formula (r), w is 2, when P 1 is represented by formula (s), w is 3, and P 1 is represented by formula (t). W is 4, w is 4 when P 1 is represented by formula (u), and w is 8 when P 1 is represented by formula (v).
  • n in the formula (3), formula (4) and formula (r) of the present invention is an integer of 3 to 2000, more preferably an integer of 20 to 1000, still more preferably 40 to 500. It is an integer.
  • the preferable range of n in the formula (5), the formula (6), the formula (7), the formula (s), the formula (t), the formula (u), and the formula (v) is an integer of 3 to 1000.
  • P 2 in the formulas (1) and (2) is represented by the formula (8).
  • v in Formula (1) and Formula (2) is 1.
  • m is the number of repeating units per polyethylene glycol chain, and in polyethylene glycol having a molecular weight distribution, it is calculated by performing various theoretical calculations based on the number average molecular weight (Mn) of the compound. It is defined as that.
  • P 2 in the formulas (1) and (2) is represented by the formula (9).
  • b 0 or 2.
  • v in the expressions (1) and (2) is b + 2.
  • the preferable range of m in the formula (8) of the present invention is an integer of 3 to 2000, more preferably an integer of 20 to 1000, and still more preferably an integer of 40 to 500.
  • a preferable range of m in the formula (9) is an integer of 3 to 1000, preferably an integer of 10 to 500, and more preferably an integer of 20 to 250.
  • Biodegradable polyethylene glycol derivative of the present invention can be synthesized by coupled to polyethylene glycol intermediate comprising a P 1, through the annular benzylidene acetal linker having a substituent, a polyethylene glycol intermediate comprising a P 2 .
  • the bond resulting from this linkage is determined by the combination of functional groups used in the reaction, and is an ether bond, ester bond, carbonate bond, urethane bond, amide contained in the divalent spacers Z 1 and Z 2.
  • the synthesized biodegradable polyethylene glycol derivative chemically converts the terminal functional group as necessary.
  • a cyclic benzylidene acetal linker compound for introducing a cyclic benzylidene acetal linker is bonded to a polyethylene glycol intermediate consisting of P 1 and then a polyethylene glycol intermediate consisting of P 2.
  • synthesizing the biodegradable polyethylene glycol derivative include the following steps. Here, a method for synthesizing the biodegradable polyethylene glycol derivative represented by the formula (1) will be described as a representative example.
  • R 1 is a hydrogen atom or a hydrocarbon group
  • R 2 , R 3 , R 4 and R 5 are each independently an electron-withdrawing or electron-donating substituent or a hydrogen atom.
  • an aprotic solvent such as xylene, acetonitrile, ethyl acetate, diethyl ether, t-butyl methyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or
  • a compound of the following formula (19) having a cyclic benzylidene acetal group is obtained.
  • the obtained compound may be purified by extraction, recrystallization, adsorbent treatment or column chromatography.
  • the corresponding acetal derivative of a lower alcohol can also be used.
  • the lower alcohol is preferably an alcohol having 1 to 5 carbon atoms, more preferably methanol or ethanol.
  • the acid catalyst may be either an organic acid or an inorganic acid, and is not particularly limited, but specific examples include p-toluenesulfonic acid, p-toluenesulfonic acid pyridinium, methanesulfonic acid, 10-camphorsulfonic acid, chloride Hydrogen, iodine, ammonium chloride, oxalic acid and boron trifluoride diethyl ether complex.
  • the “protecting group” is a component that prevents or inhibits the reaction of a specific chemically reactive functional group in a molecule under a certain reaction condition.
  • the protecting group will vary depending on the type of chemically reactive functional group being protected, the conditions used, and the presence of other functional groups or protecting groups in the molecule. Specific examples of protecting groups can be found in many common books, such as ⁇ Wuts, P. G. M .; Greene, eT. W. Protective Groups in Organic Synthesis, 4th ed.;. Wiley -Interscience: “New York, 2007”.
  • the functional group protected with a protecting group can be reprotected by deprotection using a reaction condition suitable for each protecting group, that is, a chemical reaction, thereby regenerating the original functional group. Therefore, in this specification, the functional group which is protected with a protecting group and can be deprotected by various reactions is included in the “chemically reactive functional group”. Representative deprotection conditions for protecting groups are described in the aforementioned references.
  • a functional group other than a hydroxy group can also be used. Specific examples include hydroxyalkyl groups, amino groups, aminoalkyl groups, carboxy groups, and carboxyalkyl groups.
  • the functional group may be protected with a protecting group that is stable under acidic conditions of the acetalization reaction and that can be deprotected under reaction conditions other than catalytic reduction where the cyclic benzylidene acetal group is decomposed.
  • a preferred combination of the functional group to be protected and the protective group when the functional group to be protected is a hydroxy group or a hydroxyalkyl group, for example, a silyl-type protective group and an acyl-type protective group can be mentioned.
  • t-butyl examples thereof include diphenylsilyl group, t-butyldimethylsilyl group, triisopropylsilyl group, acetyl group, and pivaloyl group.
  • the functional group to be protected is an amino group or an aminoalkyl group
  • examples thereof include an acyl-based protective group and a carbamate-based protective group.
  • the functional group to be protected is a carboxy group or a carboxyalkyl group
  • examples thereof include an alkyl ester-based protective group and a silyl ester-based protective group, and specifically include a methyl group, a 9-fluorenylmethyl group, and a t-butyl group.
  • a dimethylsilyl group etc. are mentioned.
  • Specific types of protecting groups and typical deprotection conditions are described in the above-mentioned literature, and reaction conditions suitable for each protecting group are selected, and deprotection is performed before the reaction with the hydrophilic polymer intermediate. It can be carried out.
  • a functional group other than the phthalimide group can be used as the chemically reactive functional group excluding the 1,2-diol portion of the compound of the formula (18).
  • the chemically reactive functional group is a functional group protected by a protective group
  • the protective group is stable under the acidic conditions of the acetalization reaction and can be deprotected under reaction conditions other than catalytic reduction where the benzylidene acetal group decomposes. There must be.
  • the functional group to be protected when the functional group to be protected is an amino group, for example, an acyl-type protective group and a carbamate-type protective group can be mentioned, specifically, a trifluoroacetyl group, 9- Examples include a fluorenylmethyloxycarbonyl group and a 2- (trimethylsilyl) ethyloxycarbonyl group.
  • the functional group to be protected when the functional group to be protected is a hydroxy group, examples thereof include a silyl protecting group and an acyl protecting group.
  • a t-butyldiphenylsilyl group a t-butyldimethylsilyl group, a triisopropylsilyl group Acetyl group and pivaloyl group.
  • the functional group to be protected is a carboxy group
  • examples include an alkyl ester-based protective group and a silyl ester-based protective group, such as a methyl group, a 9-fluorenylmethyl group, and a t-butyldimethylsilyl group. Is mentioned.
  • the functional group to be protected is a sulfanyl group
  • a thioether-based protective group for example, a thioether-based protective group, a thiocarbonate-based protective group, and a disulfide-based protective group
  • S-2,4-dinitrophenyl group S-9- Examples include fluorenylmethyloxycarbonyl group and St-butyl disulfide group.
  • Typical deprotection conditions for the protecting groups are described in the above-mentioned literature, and reaction conditions suitable for each protecting group can be selected.
  • the functional group capable of chemical reaction is a functional group that does not inhibit the acetalization reaction even if it is not protected by a protective group, it is not necessary to use a protective group.
  • the initiator is preferably an alcohol having a hydrocarbon group having 1 to 24 carbon atoms, and specifically includes methanol, ethanol, propanol, isopropanol, butanol, t-butanol, phenol and benzyl alcohol. Since the polyethylene glycol has a hydroxy group that is a chemically reactive functional group, it can also be used as it is for a reaction with a cyclic benzylidene acetal linker compound.
  • An aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, t-butyl methyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethylacetamide, or React with methanesulfonyl chloride in the absence of solvent in the presence of organic bases such as triethylamine, N-methylmorpholine, pyridine or 4-dimethylaminopyridine, or inorganic bases such as sodium carbonate, sodium bicarbonate, sodium acetate or potassium carbonate Thus, a polyethylene glycol intermediate of the formula (21) is obtained.
  • the organic base and inorganic base may not be used.
  • the ratio of the organic base and inorganic base used is not particularly limited, but is preferably equimolar or more with respect to the hydroxyl group of the polyethylene glycol of the formula (20).
  • An organic base may be used as a solvent.
  • the obtained compound may be purified by a purification means such as extraction, recrystallization, adsorbent treatment, reprecipitation, column chromatography or supercritical extraction.
  • chemically reactive functional group can be used as the chemically reactive functional group in the polyethylene glycol intermediate of formula (21).
  • the chemically reactive functional group include an ether bond and an ester bond in which the bond generated by the reaction of the polyethylene glycol intermediate and the cyclic benzylidene acetal linker compound is contained in the divalent spacer Z 1 of the formula (1) , Carbonate bond, urethane bond, amide bond, secondary amino group or an alkylene group containing these, a single bond or a functional group that becomes an alkylene group, specifically a halogen atom, an active ester, an active carbonate, an aldehyde group, an amino group Group, hydroxy group, carboxy group and the like.
  • the ratio of the organic base and inorganic base used is not particularly limited, but is preferably equimolar or more with respect to the chemically reactive functional group of the polyethylene glycol intermediate of formula (21).
  • An organic base may be used as a solvent.
  • the obtained compound may be purified by the aforementioned purification means.
  • the functional group capable of chemically reacting the cyclic benzylidene acetal linker compound may be subjected to functional group conversion before the reaction with the polyethylene glycol intermediate.
  • the reaction conditions for the reaction of the cyclic benzylidene acetal linker compound and the polyethylene glycol intermediate are determined by the combination of the chemically reactive functional group of the cyclic benzylidene acetal linker compound and the chemically reactive functional group of the polyethylene glycol intermediate.
  • a conventionally known method can be used, but the conditions for not decomposing the bonds contained in the cyclic benzylidene acetal group of formula (1) and formula (2) and the divalent spacers Z 1 and Z 2 are appropriately selected. There is a need to.
  • a protic solvent such as methanol or ethanol
  • an aprotic solvent such as acetonitrile, tetrahydrofuran, dimethyl sulfoxide, dimethylformamide or dimethylacetamide, or in the absence of solvent, ethylenediamine, methylhydrazine or methylamine
  • a compound of the formula (23) in which the phthalimide group is deprotected and converted to an amino group by treatment with a basic organic compound such as hydrazine, hydroxyamine or sodium hydroxide. obtain.
  • the use ratio of the basic compound is not particularly limited, but is preferably equimolar or more with respect
  • the polyethylene glycol intermediate composed of P 2 has a functional group capable of chemically reacting at at least two ends of polyethylene glycol.
  • Preferred examples include an active ester group, an active carbonate group, an aldehyde group, an isocyanate group, Isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, dithiopyridyl group, ⁇ -haloacetyl group, alkynyl group, allyl group, vinyl group, amino group, oxyamino Groups, hydrazide groups, azide groups and hydroxy groups.
  • the functional group capable of reacting with the amino group of the cyclic acetal linker to form a covalent bond includes an active ester group, an active carbonate group, an aldehyde group, an isocyanate group, an isothiocyanate group, an epoxy group,
  • a functional group that is a maleimide group, a vinyl sulfone group, an acrylic group, a sulfonyloxy group, or a carboxy group and that can react with a thiol group of a cyclic acetal linker to form a covalent bond includes an active ester group, an active carbonate group, Aldehyde group, isocyanate group, isothiocyanate group, epoxy group, maleimide group, vinyl sulfone group, acrylic group, sulfonyloxy group, carboxy group, thiol group, dithiopyridyl group, ⁇ -haloacetyl group, alkynyl group, allyl group or vinyl group
  • the functional group capable of forming a covalent bond is a thiol group or an azide group, and the functional group capable of reacting with the azide group of the cyclic acetal linker to form a covalent bond is an alkynyl group.
  • the chemically reactive functional group in the polyethylene glycol intermediate composed of P 2 may be the same or different, and is preferably a combination of two different functional groups.
  • the other is a group selected from a maleimide group, a vinylsulfone group, an ⁇ -haloacetyl group, an alkynyl group, and an azide group.
  • the other when one is an aldehyde group, the other is a group selected from a maleimide group, a vinylsulfone group, an alkynyl group and an azide group, and when one is a maleimide group, a vinylsulfone group or an ⁇ -haloacetyl group, The other is a group selected from an active ester group, an active carbonate group, an alkynyl group, and an azide group.
  • the other is a maleimide group, a vinylsulfone group, an ⁇ -haloacetyl group, Active ester group, active carbonate group, amino group, oxyamino group and hydroxy
  • the other is an alkynyl group, azide group, thiol group, hydroxy group or carboxy group, and one is a thiol group or hydroxy group
  • the other is a group selected from an amino group, an oxyamino group, an azide group and a carboxy group.
  • the other when one is an active ester group or an activated carbonate group, the other is a group selected from a maleimide group, an ⁇ -haloacetyl group, an alkynyl group and an azide group, and when one is an aldehyde group, One is a group selected from a maleimide group, an ⁇ -haloacetyl group, an alkynyl group and an azide group, and when one is a maleimide group or an ⁇ -haloacetyl group, the other is an active ester group, an active carbonate group, an alkynyl group, A group selected from an azide group, when one is an alkynyl group or an azide group, the other is a maleimide group, an ⁇ -haloacetyl group, an active ester group, an active carbonate group, an amino group, an oxyamino group, and a hydroxy group When one is an amino group or an oxyamino group, the other is an Kini
  • functional groups other than the functional group to be reacted with the cyclic acetal linker are stable under the reaction conditions of the reaction with the cyclic acetal linker and are cyclic benzylidene acetal It may be protected with a protecting group that can be deprotected under reaction conditions other than catalytic reduction where the group decomposes.
  • a functional group to be protected and a protective group when the functional group to be protected is an amino group, for example, an acyl-type protective group and a carbamate-type protective group can be mentioned, specifically, a trifluoroacetyl group, a phthalimide group.
  • the functional group to be protected is a hydroxy group
  • examples thereof include a silyl protecting group and an acyl protecting group.
  • the functional group to be protected is a carboxy group
  • examples include an alkyl ester-based protective group and a silyl ester-based protective group, such as a methyl group, a 9-fluorenylmethyl group, and a t-butyldimethylsilyl group.
  • a sulfanyl group for example, a thioether-based protective group, a thiocarbonate-based protective group, and a disulfide-based protective group can be mentioned, specifically, S-2,4-dinitrophenyl group, S-9- Examples include fluorenylmethyloxycarbonyl group and St-butyl disulfide group.
  • Typical deprotection conditions for the protecting groups are described in the above-mentioned literature, and reaction conditions suitable for each protecting group can be selected.
  • the functional group capable of chemical reaction is a functional group that does not inhibit the reaction with the cyclic acetal linker even if it is not protected by a protective group, it is not necessary to use a protective group.
  • a compound of the formula (24) having an amino group protected with a trifluoroacetyl group at one end of a linear polyethylene glycol and an N-succinimidyl carbonate as an active carbonate group at the other end Will be described.
  • Suitable examples of polyethylene glycol having a combination of two different functional groups are described in, for example, NOF Corporation (Tokyo, Japan; see www.nof.co.jp/english: Catalogue Ver. 15). It is not limited to them.
  • the organic base and inorganic base may not be used.
  • the ratio of the organic base and inorganic base used is not particularly limited, but is preferably equimolar or more with respect to the chemically reactive functional group of the compound of formula (23).
  • An organic base may be used as a solvent.
  • reaction conditions for the reaction with polyethylene glycol intermediate comprising a polyethylene glycol intermediate with P 2 consisting of P 1, the polyethylene glycol intermediate comprising a chemical functional group capable of reacting and P 2 of polyethylene glycol intermediate comprising a P 1 It is determined by a combination of chemically reactive functional groups, and a conventionally known method can be used, but the formula (1), the cyclic benzylidene acetal group of the formula (2), the divalent spacer Z 1 , It is necessary to appropriately select conditions that do not decompose the bonds contained in Z 2 and Z 3 .
  • the compound obtained here may be purified by a purification means such as extraction, recrystallization, adsorbent treatment, reprecipitation, column chromatography or supercritical extraction.
  • a purification means such as extraction, recrystallization, adsorbent treatment, reprecipitation, column chromatography or supercritical extraction.
  • an inorganic adsorbent composed of an oxide containing at least one of aluminum and silicon is preferable. Specifically, it is an oxide containing one or both of aluminum and silicon in the oxide, and more specifically, aluminum oxide, silicon dioxide, composite oxide of aluminum oxide and silicon dioxide, aluminum oxide and the other Examples thereof include composite oxides with metals and composite oxides of silicon dioxide with other metals. Other metals referred to herein include sodium, magnesium and calcium.
  • an adsorbent having an acidic substance adsorbing ability is preferable.
  • Kyowa Kagaku Kogyo Co., Ltd. Word 300 (2.5MgO ⁇ Al 2 O 3 ⁇ 0.7CO 3 ⁇ nH 2 O), Kyoto Word 500 (Mg 6 Al 2 (OH) 16 (CO 3 ) ⁇ 4H 2 O), Kyoto Word 1000 (Mg 4.5 Al 2 (OH) 13 (CO 3 ) ⁇ 3.5H 2 O).
  • These adsorbents may be used alone or in combination.
  • an adsorbent having a basic substance adsorbing ability is preferable for removing impurities having a basic functional group.
  • Kyoward 600 MgO ⁇ 3SiO 2 ⁇ nH 2 O
  • Kyoward 700 Al 2 O 3 ⁇ 9SiO 2 ⁇ nH 2 O
  • Kyoward 200B Al 2 O 3 ⁇ 2.0H 2 O
  • KYOWARD 700 Al 2 O 3 .9SiO 2 .nH 2 O
  • KYOWARD 200B Al 2 O 3 .2.0H 2 O.
  • an adsorbent having a high salt adsorbing ability is preferable for removing neutralized salts.
  • Kyoward 2000 (4.5 MgO ⁇ Al 2 O 3 ), Kyoward 200B ( Al 2 O 3 .2.0H 2 O) and the like. These adsorbents may be used alone or in combination.
  • the ratio of the basic compound used is not particularly limited, but is preferably equimolar or more with respect to the functional group capable of chemically reacting with the compound of formula (25). Moreover, you may use a basic compound as a solvent.
  • the obtained compound may be purified by the aforementioned purification means.
  • the compound of the formula (26) is converted into an aprotic solvent such as toluene, benzene, xylene, acetonitrile, ethyl acetate, diethyl ether, t-butyl methyl ether, tetrahydrofuran, chloroform, dichloromethane, dimethyl sulfoxide, dimethylformamide or dimethylacetamide, Alternatively, in the absence of solvent, 3-maleimidopropionic acid in the presence of an organic base such as triethylamine, N-methylmorpholine, pyridine or 4-dimethylaminopyridine, or an inorganic base such as sodium carbonate, sodium bicarbonate, sodium acetate or potassium carbonate By reacting with N-succinimidyl, a compound of the formula (27) having a maleimide group introduced at the terminal is obtained.
  • an organic base such as triethylamine, N-methylmorpholine, pyridine or 4-dimethylamino
  • the organic base and inorganic base may not be used.
  • the ratio of the organic base and inorganic base used is not particularly limited, but is preferably equimolar or more with respect to the functional group capable of chemically reacting with the compound of the formula (26).
  • An organic base may be used as a solvent.
  • the obtained compound may be purified by the aforementioned purification means.
  • the terminal functional group conversion of the biodegradable polyethylene glycol derivative having the cyclic benzylidene acetal linker can be performed by a conventionally known method, but the cyclic benzylidene acetal group of formula (1) or formula (2), It is necessary to appropriately select conditions that do not decompose the bonds contained in the spacers Z 1 , Z 2, and Z 3 .
  • the direction of binding of the cyclic benzylidene acetal linker to P 1 and P 2 is opposite, but the cyclic benzylidene acetal linker compound for introducing the cyclic benzylidene acetal linker is from P 1 after binding to polyethylene glycol intermediate comprising, it is conjugated with polyethylene glycol intermediate comprising a P 2, after bonding the polyethylene glycol intermediate comprising a P 2, is combined with polyethylene glycol intermediate comprising a P 1
  • the compounds represented by formula (1) and formula (2) can be synthesized by essentially the same technique.
  • the synthesis examples of the compounds represented by formula (1) and formula (2) are specifically shown in the following examples, and it will be understood by those skilled in the art that these can be synthesized by essentially the same technique. Will be done.
  • JNM-ECP400 or JNM-ECA600 manufactured by JEOL Datum was used. Use a ⁇ 5mm tube for measurement. If the deuterated solvent is CDCl 3 , CD 3 CN or CD 3 OD, use tetramethylsilane (TMS) as the internal standard substance, and if it is D 2 O, use HDO as the standard. It was.
  • TMS tetramethylsilane
  • Mn represents the number average molecular weight
  • Mw represents the weight average molecular weight
  • Mn the molecular weight distribution was calculated as Mw / Mn.
  • MES 2-morpholinoethanesulfonic acid
  • pD 7.4 HEPES 2- [4- (Hydroxyethyl) -1-piperazinyl] ethanesulfonic acid)
  • heavy water buffer used in the hydrolysis test are 0.1M each.
  • MES heavy water solution and 0.1M HEPES heavy water solution were added 0.1M sodium hydroxide heavy water solution, ⁇ Glasoe, P. K .; Long, F. A. J. Phys. Chem. 1960, 64, 188-190 It was prepared based on the following relational expression described in
  • the hydrolysis rate of the compounds of formula (41) and formula (54) was evaluated by GPC, and the peak area of polyethylene glycol (molecular weight about 10,000) that was not divided by the hydrolysis of the linker was divided by A 1 and the hydrolysis of the linker was divided.
  • the peak area of the resulting polyethylene glycol (molecular weight of about 5000) was calculated as A 2 by the following formula.
  • the hydrolysis rate of the compounds of formula (74) and formula (76) was evaluated by GPC, and the peak area of polyethylene glycol (molecular weight of about 15000) that was not divided by hydrolysis of the linker was A 1 , and the hydrolysis of the linker partially The peak area of the divided polyethylene glycol (molecular weight about 10,000) was A 2 , and the peak area of the completely divided polyethylene glycol (molecular weight about 5000) was A 3 , which was calculated by the following calculation formula.
  • Example 1 In a 200 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer, Dean-stark tube and condenser tube, 1,2,6-hexanetriol (30.0 g, 0.224 mol), acetone dimethyl acetal (25.6 g, 0.246 mol) and p-toluenesulfonic acid monohydrate (0.426 g, 2.24 mmol) were added, and the reaction was carried out for 3 hours while distilling off methanol at 80 ° C.
  • 1,2,6-hexanetriol 30.0 g, 0.224 mol
  • acetone dimethyl acetal 25.6 g, 0.246 mol
  • p-toluenesulfonic acid monohydrate 0.426 g, 2.24 mmol
  • Triethylamine (0.453 g, 4.48 mmol) was added, and the mixture was stirred for a while, diluted with ethyl acetate, and washed with 20 wt% brine. The organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography to obtain the compound of formula (28).
  • Example 2 Compound (20.0 g, 0.115 mol), triethylamine (23.3 g, 0.230 mol) and toluene (200 g) in a 500 mL four-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser was cooled to 10 ° C. or lower. While continuing cooling, methanesulfonyl chloride (19.8 g, 0.173 mol) prepared in the dropping funnel was gradually added dropwise. After completion of dropping, the reaction was carried out at 20 ° C. for 2 hours. Ethanol (7.97 g, 0.173 mol) was added and stirred for a while. After filtration, the organic layer was washed with ion-exchanged water. The organic layer was dried over anhydrous sodium sulfate and filtered, and then the solvent was distilled off under reduced pressure to obtain the compound of formula (29).
  • Example 3 A 500 mL four-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser was added to the compound of formula (29) (20.0 g, 79.3 mmol), potassium phthalimide (17.6 g, 95.2 mmol) and dehydrated dimethylformamide ( 200 g) was charged and the reaction was carried out at 60 ° C. for 2 hours. After cooling to 10 ° C. or lower, ion-exchanged water (400 g) was added and stirred for a while, and then extracted with a mixed solution of ethyl acetate / hexane (60/40, v / v). The organic layer was washed with 0.2 wt% potassium carbonate aqueous solution and then dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain a compound of formula (30).
  • Example 4 In a 1 L four-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser, compound of formula (30) (15.2 g, 50.0 mmol), p-toluenesulfonic acid monohydrate (951 mg, 5.00 mmol) and methanol (500 mL) were added, and the reaction was performed at room temperature for 4 hours. After adding triethylamine (1.01 g, 10.0 mmol) and stirring for a while, the solvent was distilled off under reduced pressure. The residue was dissolved in chloroform and washed with ion exchange water, and then the organic layer was dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain a compound of formula (31).
  • Example 5 In a 300 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer, Dean-stark tube and condenser tube, the compound of formula (31) (3.87 g, 14.7 mmol), 4-hydroxybenzaldehyde (1.20 g, 9.83) mmol), pyridinium p-toluenesulfonate (247 mg, 0.983 mmol) and toluene (180 g) were charged, and the reaction was carried out for 4 hours while removing by-product water azeotropically with toluene.
  • Example 6 A 300 mL four-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser was charged with dehydrated methanol (12.8 g, 0.400 mol), dehydrated toluene (150 g) and metal sodium 0.3 g (13 mmol). The mixture was stirred at room temperature until metallic sodium was dissolved while blowing nitrogen. This solution was charged into a 5 L autoclave, the inside of the system was purged with nitrogen, and the temperature was raised to 100 ° C. Ethylene oxide (1,987 g, 45 mol) was added at 100 to 130 ° C. and a pressure of 1 MPa or less, and the reaction was continued for another 2 hours. After removing unreacted ethylene oxide gas under reduced pressure, the mixture was cooled to 60 ° C. and adjusted to pH 7.5 with 85% aqueous phosphoric acid to obtain a compound of formula (33).
  • Example 7 A 500 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer, Dean-stark tube and condenser tube was charged with the compound of formula (33) (100 g, 20.0 mmol) and toluene (250 g), and water was added. Removed azeotropically with toluene. After cooling to 40 ° C., triethylamine (3.24 g, 32.0 mmol) was charged, and methanesulfonyl chloride (2.75 g, 24.0 mmol) prepared in the dropping funnel was gradually added dropwise. After completion of dropping, the reaction was carried out at 40 ° C. for 3 hours.
  • Example 8 In a 100 mL three-necked flask equipped with a thermometer, a nitrogen blowing tube, a stirrer and a condenser tube, a compound of the formula (34) (5.00 g, 1.00 mmol), a compound of the formula (26) (551 mg, 1.50 mmol), Potassium carbonate (691 mg, 5.00 mmol) and acetonitrile (25 g) were charged and reacted at 80 ° C. for 4 hours. After the solvent was distilled off under reduced pressure, the residue was dissolved in ethyl acetate (100 g) and filtered. Crystallization was performed by adding hexane (100 g), followed by filtration and drying under reduced pressure to obtain a compound of formula (35).
  • Example 9 Compound (2.00 g, 0.400 mmol) of formula (35), methanol (7 g) and ethylenediamine monohydrate (0.781 g) in a 50 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser. , 10.0 mmol) and reacted at 40 ° C. for 4 hours. After diluting with 20 wt% brine and extracting with dichloromethane, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (50 g), dried over anhydrous sodium sulfate, filtered, and hexane (50 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain the compound of formula (36).
  • the compound of formula (38) was obtained by removing the t-butyl group with hydrochloric acid from the compound of formula (37) synthesized by the method described in Japanese Patent Application Laid-Open No. 2010-248504.
  • Example 11 To a 100 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser, compound of formula (38) (5.00 g, 1.00 mmol), dichloromethane (30 g), and triethylamine (607 mg, 6.00 mmol) ), Trifluoroacetic anhydride (630 mg, 3.00 mmol) was added, and the reaction was carried out at 25 ° C. for 3 hours. After adding pH 7.0 phosphate buffer and stirring for a while, the dichloromethane layer was recovered and the solvent was distilled off under reduced pressure.
  • Example 12 A 100 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser was charged with the compound of formula (39) (4.50 g, 0.900 mmol) and dichloromethane (27 g), and N, N'-disc Synimidyl carbonate (692 mg, 2.70 mmol) and triethylamine (410 mg, 4.05 mmol) were added and reacted at 25 ° C. for 4 hours. After filtration, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (90 g), and hexane (90 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain the compound of formula (40).
  • Example 13 To a 100 mL three-necked flask equipped with a thermometer, a nitrogen blowing tube, a stirrer and a condenser tube, a compound of the formula (40) (4.00 g, 0.800 mmol), a compound of the formula (36) (4.20 g, 0.840 mmol) and Toluene (24 g) was charged and reacted at 50 ° C. for 2 hours. Subsequently, Kyoward 700 (1.2 g) was added, and adsorption treatment was performed at 50 ° C. for 2 hours. After filtration, hexane (24 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain the compound of formula (41).
  • Example 14 A 100 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser was charged with the compound of formula (41) (5.00 g, 0.200 mmol) and 1M aqueous potassium carbonate solution (25 g) at 25 ° C. For 2 hours. After diluting with 20 wt% brine and extracting with dichloromethane, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (100 g), dried over anhydrous sodium sulfate, filtered, and hexane (100 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain a compound of formula (42).
  • Example 15 A 50 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser was charged with the compound of formula (42) (2.00 g, 0.200 mmol) and toluene (10 g), and 3-maleimidopropionic acid N -Succinimidyl (63.9 mg, 0.240 mmol) was added, and reaction was performed at 40 degreeC for 2 hours. After filtration, it was diluted with ethyl acetate (40 g), and hexane (50 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain the compound of formula (43).
  • Example 16 A compound of formula (44) was obtained in the same manner as in Examples 1 to 8 using 3-fluoro-4-hydroxybenzaldehyde.
  • Example 17 A compound of formula (45) was obtained in the same manner as in Examples 1 to 8, using 2-bromo-5-hydroxybenzaldehyde.
  • Example 20 The compound of formula (49) was obtained by reacting the compound of formula (39) with methanesulfonyl chloride in the same manner as in Example 7.
  • Triethylamine (20.2 mg, 0.200 mmol) was added, and the mixture was stirred for a while and washed with 10 wt% brine, and then the organic layer was dried over anhydrous sodium sulfate. After filtration, the solvent was distilled off under reduced pressure to obtain the compound of formula (50).
  • Example 22 A compound of formula (51) was obtained in the same manner as in Example 8, using the compound of formula (50) and the compound of formula (49).
  • Example 23 The compound of formula (52) was obtained by reacting the compound of formula (51) with N, N′-disuccinimidyl carbonate in the same manner as in Example 12.
  • Example 25 The compound of formula (54) is deprotected in the same manner as in Example 14 and then reacted with N-succinimidyl 3-maleimidopropionate in the same manner as in Example 15. Thus, a compound of the formula (55) was obtained.
  • the compound of formula (57) is reacted with acetic anhydride in the presence of triethylamine and 4-dimethylaminopyridine to the compound of formula (56) synthesized by the method described in Japanese Patent Application Laid-Open No. 2004-197077. Got.
  • Example 28 A compound of formula (59) was obtained in the same manner as in Examples 1 to 5 and 8 using 3-fluoro-4-hydroxybenzaldehyde and a compound of formula (58).
  • Example 30 The compound of formula (59) is reacted with the compound of formula (60) after deprotecting the phthalimide group using ethylenediamine monohydrate and removing the acetyl group using an aqueous sodium hydroxide solution. Thus, a compound of the formula (61) was obtained.
  • Example 31 A compound of formula (62) was obtained by reacting the compound of formula (61) with N, N′-disuccinimidyl carbonate in the same manner as in Example 12.
  • a compound of formula (64) was obtained by reacting a compound of formula (63) synthesized by polymerizing ethylene oxide with pentaerythritol and methanesulfonyl chloride in the same manner as in Example 7.
  • Example 33 A compound of formula (65) was obtained in the same manner as in Example 8, using the compound of formula (64) and the compound of formula (50).
  • Example 34 The compound of formula (66) was obtained by reacting the compound of formula (65) with N, N′-disuccinimidyl carbonate in the same manner as in Example 12.
  • Example 35 A compound of formula (67) was obtained in the same manner as in Example 13 using the compound of formula (66) and the compound of formula (38).
  • Example 36 A 50 mL three-necked flask equipped with a thermometer, a nitrogen blowing tube and a stirrer was charged with the compound of formula (67) (4.00 g, 0.100 mmol) and dichloromethane (20 g), and glutaric anhydride (68.5 mg, 0.600). mmol), triethylamine (60.7 mg, 0.600 mmol) and 4-dimethylaminopyridine (3.7 mg, 0.030 mmol) were added, and the reaction was carried out at 25 ° C. for 6 hours. After filtration, the solvent was distilled off under reduced pressure. The residue was dissolved in ethyl acetate (100 g), and hexane (100 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain the compound of formula (68).
  • Example 37 A compound of formula (69) was obtained in the same manner as in Example 21 using 4-hydroxybenzaldehyde.
  • Example 38 A compound of formula (70) was obtained in the same manner as in Example 8, using the compound of formula (34) and the compound of formula (69).
  • Example 39 The compound of formula (71) was obtained by reacting the compound of formula (70) with N, N′-disuccinimidyl carbonate in the same manner as in Example 12.
  • Example 40 After reacting the compound of formula (49) and the compound of formula (69) in the same manner as in Example 8, the trifluoroacetyl group was deprotected in the same manner as in Example 14, A compound of formula (72) was obtained.
  • Example 41 Into a 50 mL three-necked flask equipped with a thermometer, nitrogen blowing tube, stirrer and condenser, the compound of formula (71) (2.00 g, 0.400 mmol), the compound of formula (72) (2.10 g, 0.420 mmol) and Toluene (12 g) was charged and reacted at 50 ° C. for 2 hours. Subsequently, Kyoward 200B (0.6 g) was added, and adsorption treatment was performed at 50 ° C. for 2 hours. After filtration, hexane (12 g) was added for crystallization. After filtration, it was dried under reduced pressure to obtain a compound of formula (73).
  • Example 42 After reacting the compound of formula (73) with N, N′-disuccinimidyl carbonate in the same manner as in Example 12, the compound of formula (38) in the same manner as in Example 13 To give a compound of formula (74).
  • Example 43 The compound of formula (75) was obtained by reacting the compound of formula (74) with N, N′-disuccinimidyl carbonate in the same manner as in Example 12.
  • Example 44 For the compound of formula (54), the trifluoroacetyl group was deprotected in the same manner as in Example 14, and then reacted with the compound of formula (52) in the same manner as in Example 41. Compound (76) was obtained.
  • Example 46 The compound of formula (76) is deprotected in the same manner as in Example 14 and then reacted with N-succinimidyl 3-maleimidopropionate in the same manner as in Example 15. Thus, a compound of formula (77) was obtained.
  • Example 48 The compound of formula (41), formula (54), formula (74) and formula (76) (200 mg) was converted to MES heavy water buffer (10 mL) at pD 5.5 and HEPES heavy water buffer (10 mL) at pD 7.4, respectively. And was allowed to stand in a constant temperature bath at 37 ° C.
  • FIG. 3 shows the measurement results of hydrolysis rate at pD 5.5
  • FIG. 4 shows the hydrolysis rate at pD 7.4.
  • the hydrolysis half-life (t 1/2 ) of the compounds of formula (35), formula (44), formula (45), formula (47) and formula (48) at pD 5.5, 37 ° C. Were 2 hours, 12 hours, 30 days, 24 hours and 6 months, respectively.
  • the hydrolysis half-lives (t 1/2 ) of the compounds of formula (35) and formula (44) are 65 hours and 18 days, respectively.
  • the compound of (47) showed about 17% hydrolysis on the 18th day, but the compounds of formula (45) and (48) showed no hydrolysis even after 18 days.
  • the hydrolysis half-life (t 1/2 ) at pD 5.5 and 37 ° C. of the compounds of the formula (41) and the formula (74) having the same structure of the cyclic benzylidene acetal linker is 2 hours. It was equivalent to the hydrolysis half-life (t 1/2 ) of formula (35) having the same linker structure.
  • the cyclic half-life (t 1/2 ) at 37 ° C of the compounds of formula (54) and formula (76) having the same structure of the cyclic benzylidene acetal linker is 12 hours at 37 ° C. It was equivalent to the hydrolysis half-life (t 1/2 ) of the formula (44) having a structure. As shown in FIG.
  • the hydrolysis half-life (t 1/2 ) of the compounds of the formulas (41) and (74) is 65 hours, and the formulas (54) and (76)
  • the hydrolysis half-life (t 1/2 ) of the compound was 18 days, which was equivalent to the compound of formula (35) and the compound of formula (44) each having the same linker structure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Veterinary Medicine (AREA)
  • Polyethers (AREA)
  • Medicinal Preparation (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

 生体内の異なるpH環境下における加水分解速度が的確に制御可能なアセタールリンカーでポリエチレングリコール鎖が連結され、生体内での低分子量のポリエチレングリコール鎖への分割速度が的確に制御可能な生分解性ポリエチレングリコール誘導体を提供する。式(1)または式(2)で示される。 (式(1)および式(2)中、R1~R6は水素原子等、;s=1または2、t=0または1、 かつs+t=1または2; P1 、P2は、エチレングリコール単位の数が3以上ポリエチレングリコール;w、u、vは、1等の整数;X1は、化学反応可能な官能基;Z1、Z2、Z3は、2価のスペーサーである。)

Description

環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体
 本発明は、ポリエチレングリコール鎖が加水分解可能なアセタールリンカーで連結され、生体内において、生体内からより効果的にクリアランスされ得る低分子量のポリエチレングリコール鎖に分割される生分解性ポリエチレングリコール誘導体に関する。本明細書に記載されるポリエチレングリコール誘導体は、生理活性タンパク質、ペプチド、抗体、核酸および低分子薬物などの生体機能性分子、並びにリポソームやポリマーミセルなどの薬物キャリアの化学修飾に用いられる。
 ドラッグデリバリーシステムにおいて、抗原性の低い親水性ポリマーであるポリエチレングリコールによる生体機能性分子や薬物キャリアの化学修飾は、これら薬物等の水溶解性およびバイオアベイラビリティーを増大させ、血中循環時間を延長させる有効な手法である。
 一方で、これらポリエチレングリコール誘導体を結合させた薬物等が、ターゲットとする組織や部位に輸送されて薬効を発現した後、分子量の大きなポリエチレングリコールは、生体内からのクリアランスが不十分なために長期間体内に残留する場合がある。
 このような問題に対して、ポリエチレングリコール鎖を分解性のリンカーで連結し、生体内でこのリンカーを分解させることで、ポリエチレングリコール鎖を、生体内からより効果的にクリアランスされ得る低分子量のポリエチレングリコール鎖に分割させるアプローチが行なわれている。その戦略の多くは、リンカーの分解に還元的環境や分解酵素の作用といった、生体内の環境を利用するものであり、その中の1つが生体内のpHを利用する手法である。
 生体内のpH環境下において、ポリエチレングリコール鎖を、生体内からより効果的にクリアランスされ得る低分子量のポリエチレングリコール鎖に分割させることを目的として、ポリエチレングリコール鎖を加水分解可能なアセタールリンカーで連結した、分割型のポリエチレングリコール誘導体の合成例が報告されている。
 例えば、特許文献1では、種々のアルデヒドまたはケトンから誘導されたアセタール基を介して、ポリエチレングリコール鎖が2本結合した複数のポリエチレングリコール誘導体が開示されている。ここでは、生体内でアセタール基が加水分解し、ポリエチレングリコール鎖が2本の低分子量のポリエチレングリコール鎖に分割されることで、生体内からのクリアランスの速度が改善されるとの記載がある。しかし、アセタール基の加水分解速度の評価データは全く示されておらず、アセタール基周辺の構造と加水分解速度の関連性についての記載もない。
 このように、ポリエチレングリコール鎖が加水分解可能なアセタールリンカーで連結されたポリエチレングリコール誘導体の例はあるものの、アセタールリンカーの加水分解速度、即ちポリエチレングリコール鎖の分割速度が的確に制御されたポリエチレングリコール誘導体に関しては、今までその例は無い。
国際公開第2005/108463号パンフレット
 生体内のpHは部位によって異なるが、各部位におけるpHの偏りは小さい。例えば、腫瘍組織周辺は通常の生理的環境のpH 7.4と比較して酸性環境であるが、pH 6.4~6.9の弱酸性である。また、細胞内のエンドソーム内部やリソソーム内部はよりpHが低いものの、それぞれpH 5.5~6.0とpH 4.5~5.0であり、pHの偏りは小さい。したがって、ポリエチレングリコール鎖をアセタールリンカーで連結したポリエチレングリコール誘導体を薬物等に結合し、生体内の異なるpH環境下において薬効を発現させた後、これらの各部位においてポリエチレングリコール鎖を低分子量のポリエチレングリコール鎖に分割させるためには、生体内の異なるpH環境下におけるアセタールリンカーの加水分解速度を的確に制御する必要がある。
 本発明の課題は、生体内の異なるpH環境下における加水分解速度が的確に制御可能なアセタールリンカーでポリエチレングリコール鎖が連結され、生体内での低分子量のポリエチレングリコール鎖への分割速度が的確に制御可能な生分解性ポリエチレングリコール誘導体を提供することである。
 本発明者は、上記の課題を解決すべく鋭意研究を重ねた結果、生体内の異なるpH環境下における加水分解速度が的確に制御可能な環状ベンジリデンアセタールリンカーでポリエチレングリコール鎖が連結され、生体内での低分子量のポリエチレングリコール鎖への分割速度が的確に制御可能な生分解性ポリエチレングリコール誘導体を開発した。
 本発明の特徴は、複数のポリエチレングリコール鎖が、置換基を有する環状ベンジリデンアセタールリンカーを介して結合していることにある。環状ベンジリデンアセタールリンカーのベンゼン環上における置換基の種類および位置を適切に選択することで、アセタールリンカーの加水分解速度に影響を与えるアセタール基周辺の電子密度および立体障害の度合いを調節できる。この特長により、アセタールリンカーに所望の加水分解速度を付与することができ、当該生分解性ポリエチレングリコール誘導体を結合させた薬物等がターゲットとする組織や細胞に輸送されて薬効を発現した後、これらの各部位のpH環境下において、任意の速度でポリエチレングリコール鎖を低分子量のポリエチレングリコール鎖に分割させることが可能となる。
 即ち、本発明は以下のものである。

[1] 式(1)または式(2)で示される、環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
 (式(1)および式(2)中、
 R1およびR6は、それぞれ独立して水素原子または炭化水素基であり;
 R2、R3、R4およびR5は、それぞれ独立して電子吸引性もしくは電子供与性の置換基、または水素原子であり;
 s=1または2、t=0または1、かつs+t=1または2であり;
 P1は、エチレングリコール単位の数が3以上の直鎖型または分岐型のポリエチレングリコールであり;
 P2は、エチレングリコール単位の数が3以上の直鎖型または分岐型のポリエチレングリコールであり;
 wは、P1が環状ベンジリデンアセタールと結合している価数であって、1~8の整数であり;
 uは、環状ベンジリデンアセタールとP2からなる構造単位が直列に結合している数であって、1~40の整数であり;
 vは、P2に結合しているX1の数であって、1~4の整数であり;
 X1は、化学反応可能な官能基であり;および
 Z1、Z2およびZ3は、それぞれ独立して選択された2価のスペーサーである。)
[2] s=1かつt=0であり、R2およびR5は水素原子であり、式(1)のR3、R4およびP1-Z1、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が-0.30≦Σσ≦1.05である、[1]の生分解性ポリエチレングリコール誘導体。
[3] s=1かつt=0であり、R2とR5との少なくとも一方が前記置換基であり、式(1)のR3、R4およびP1-Z1、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が-1.71≦Σσ≦0.88である、[1]の生分解性ポリエチレングリコール誘導体。
[4] s=1かつt=1、またはs=2かつt=0であり、R2およびR5は水素原子であり、式(1)のR3、R4およびP1-Z1、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が-0.19≦Σσ≦0.57である、[1]の生分解性ポリエチレングリコール誘導体。
[5] s=1かつt=1、またはs=2かつt=0であり、R2とR5との少なくとも一方が前記置換基であり、式(1)のR3、R4およびP1-Z1、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が-0.98≦Σσ≦0.48である、[1]の生分解性ポリエチレングリコール誘導体。
[6] wが1である、[1]~[5]のいずれかの生分解性ポリエチレングリコール誘導体。
[7] P1が、末端に炭化水素基または化学反応可能な官能基を有する直鎖型のポリエチレングリコールである、[6]の生分解性ポリエチレングリコール誘導体。
[8] P1が式(3)で示される、[7]の生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000013
(式(3)中、Yは炭素数1~24の炭化水素基であり;
 nは3~2000の整数である。)
[9] P1が式(4)で示される、[7]の生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000014
(式(4)中、X2は、X1と異なる化学反応可能な官能基であり;
 Z4は2価のスペーサーであり;および
 nは3~2000の整数である。)
[10] P1が末端に炭化水素基またはX1と異なる化学反応可能な官能基を有する分岐型のポリエチレングリコールである、[6]の生分解性ポリエチレングリコール誘導体。
[11] P1が式(5)で示される、[10]の生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000015
(式(5)中、Yは炭素数1~24の炭化水素基であり; nは3~1000の整数であり;および

 aは0または2である。)
[12] P1が式(6)で示される、[10]の生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000016
(式(6)中、X2は、X1と異なる化学反応可能な官能基であり;
 Z4は2価のスペーサーであり;
 nは3~1000の整数であり;および
 aは0または2である。)
[13] wが2~8である、[1]~[5]のいずれかの生分解性ポリエチレングリコール誘導体。
[14] P1が式(7)で示される、[13]の生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000017
(式(7)中、X2は、X1と異なる化学反応可能な官能基であり;
 Z4は2価のスペーサーであり;
 nは3~1000の整数であり;および
 aは0または2である。)
[15] P1が直鎖型または末端数3~8の分岐型のポリエチレングリコールであり、P1を構成するポリエチレングリコールの全ての末端がそれぞれ、式(1)ではZ1、式(2)ではZ2に対して結合しており、wが前記ポリエチレングリコールの末端数に等しい、[13]の生分解性ポリエチレングリコール誘導体。
[16] P1が、式(r)、式(s)、式(t)、式(u)および式(v)からなる群から選択される、[15]の生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000018
(式中、nは3~2000の整数である。

 ここで、P1が式(r)で表される場合にはwが2であり、P1が式(s)で表される場合にはwが3であり、P1が式(t)で表される場合にはwが4であり、P1が式(u)で表される場合にはwが4であり、P1が式(v)で表される場合にはwが8である。)
[17] P2が式(8)で示される、[1]~[16]のいずれかの生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000019
(式(8)中、mは3~2000の整数である。ここで、式(1)および式(2)において、vは1である。)
[18] P2が式(9)で示される、[1]~[16]のいずれかの生分解性ポリエチレングリコール誘導体。
Figure JPOXMLDOC01-appb-C000020
(式(9)中、mは3~1000の整数であり;および
 bは0または2である。ここで、式(1)および式(2)において、vはb+2である。)
[19] X1が活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基よりなる群から選択される、[1]~[18]のいずれかの生分解性ポリエチレングリコール誘導体。
[20] Z1、Z2およびZ3が、それぞれ独立してエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である、[1]~[19]のいずれかの生分解性ポリエチレングリコール誘導体。
[21] X2が活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基よりなる群から選択される、[9]、[12]または[14]の生分解性ポリエチレングリコール誘導体。
[22] Z4がエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である、[9]、[12]または[14]の生分解性ポリエチレングリコール誘導体。
 本発明による環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体は、生体内の異なるpH環境下において環状ベンジリデンアセタールリンカーの加水分解速度を調節できる。したがって、当該生分解性ポリエチレングリコール誘導体を結合させた薬物等がターゲットとする組織や細胞に輸送されて薬効を発現した後、これらの各部位のpH環境下において、任意の速度でポリエチレングリコール鎖を低分子量のポリエチレングリコール鎖に分割させることが可能である。これにより、従来ポリエチレングリコール修飾の欠点であった、分子量の大きなポリエチレングリコールが、生体内からのクリアランスが不十分なために長期間体内に残留する問題を、根本的に排除することができる。即ち、当該生分解性ポリエチレングリコール誘導体を薬物等の化学修飾に使用することで、水溶解性、バイオアベイラビリティーの増大および血中循環時間の延長といったポリエチレングリコール修飾による利点は元より、薬物等が薬効を発現した後、ポリエチレングリコールが生体内からのクリアランスに優れるという利点も付与することができる。
実施例に記載の式(35)、式(44)、式(45)、式(47)および式(48)の化合物を用いた、pD 5.5のMES 重水緩衝液中、37℃における加水分解試験の結果である。 実施例に記載の式(35)、式(44)、式(45)、式(47)および式(48)の化合物を用いた、pD 7.4のHEPES重水緩衝液中、37℃における加水分解試験の結果である。 実施例に記載の式(41)、式(54)、式(74)および式(76)の化合物を用いた、pD 5.5のMES 重水緩衝液中、37℃における加水分解試験の結果である。 実施例に記載の式(41)、式(54)、式(74)および式(76)の化合物を用いた、pD 7.4のHEPES重水緩衝液中、37℃における加水分解試験の結果である。
 以下、本発明を詳細に説明する。
 本明細書で使用する用語「アセタール」とは、アルデヒド類から誘導されるアセタール構造およびケトン類から誘導されるアセタール構造、即ちケタール構造の両方を意味する。
 本発明の「環状アセタール」とは、式(1)、式(2)でs=1かつt=0である5員環の1,3-ジオキソラン構造、並びに式(1)、式(2)でs=1かつt=1、またはs=2かつt=0である6員環の1,3-ジオキサン構造の両方を意味する。
 本発明の式(1)、式(2)におけるR1およびR6は、水素原子または炭化水素基であり、炭化水素基の炭素数は10以下が好ましく、4以下が更に好ましい。具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、t-ブチル基、フェニル基およびベンジル基などが挙げられる。R1の好ましい実施形態としては水素原子またはメチル基であり、更に好ましくは水素原子である。
 本発明の式(1)、式(2)におけるベンゼン環は複数の置換基を有していてよい。ベンゼン環上における置換基の種類、位置および電子供与性と電子吸引性の度合いを適切に選択することで、環状アセタールリンカーの加水分解速度に影響を与えるアセタール基周辺の電子密度および立体障害の度合いを調節できる。これにより、環状アセタールリンカーに所望の加水分解速度を付与することができる。
 本明細書において、式(1)、式(2)におけるベンゼン環上の置換基は「置換基定数(σ)」を用いて説明しているが、これはベンゼン誘導体の反応速度または平衡に及ぼす置換基の影響を定量化したHammett則における置換基定数を意味する。しかし、公知のようにHammett則はパラ置換およびメタ置換ベンゼン誘導体のみに適用され、立体障害の影響を受けるオルト置換ベンゼン誘導体には適用できない。そこで、オルト置換ベンゼン誘導体の場合には、上記Hammett則を拡張したTaftの式における置換基定数を意味する。
 上記パラ置換およびメタ置換ベンゼン誘導体において、Hammett則は下記式(10)で表わされる。
 log(k/k0)=ρσ (10)
 (式中、kは、パラ置換およびメタ置換ベンゼン誘導体の任意の反応における速度定数または平衡定数であり、k0は、上記ベンゼン誘導体が上記置換基を有さない場合、即ち置換基が水素原子である場合の速度定数または平衡定数であり、ρは反応定数であり、σは置換基定数である。)
 上記式(10)における反応定数(ρ)は、反応の種類、温度、および溶媒等の反応条件によって定まる定数であり、これはHammettプロットの傾きから算出できる。本発明の環状ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体の酸加水分解反応においては、1,3-ジオキソラン構造の場合には、実施例に記載の式(35)、式(44)および式(45)の化合物について実施した加水分解試験の結果から、「ρ=-2.7」と算出される。また、1,3-ジオキサン構造の場合には、実施例に記載の式(47)および式(48)の化合物について実施した加水分解試験の結果から、「ρ=-4.8」と算出される。
 上記式(10)における置換基定数(σ)は、反応の種類に関係なく、置換基の種類と位置によってのみ定まる定数であり、置換基を有さない場合、即ち置換基が水素原子である場合は「0」である。本明細書で使用する用語「電子吸引性」とはσが正の値である場合を意味し、用語「電子供与性」とはσが負の値である場合を意味する。
 前述のように、Hammett則はパラ置換およびメタ置換ベンゼン誘導体のみに適用され、立体障害の影響を受けるオルト置換ベンゼン誘導体の場合には適用できない。そこで、そのような立体障害の影響を位置の因子、即ち置換基の位置定数(Es)として導入し、オルト置換ベンゼン誘導体の場合にも適用できるように、Hammett則を拡張したのがTaftの式である。Taftの式は下記式(11)で表わされる。
 log(k/k0)=ρ*σ*+Es (11) 
 (式中、kは、パラ置換およびメタ置換ベンゼン誘導体の任意の反応における速度定数または平衡定数であり、k0は、上記ベンゼン誘導体が上記置換基を有さない場合、即ち置換基が水素原子である場合の速度定数または平衡定数であり、ρ*は反応定数であり、σ*は置換基定数であり、Esは置換基の位置定数である。)
 公知のように、パラ置換およびメタ置換ベンゼン誘導体の反応定数(ρ)とオルト置換ベンゼン誘導体の反応定数(ρ*)はほぼ等しいことから、本明細書ではρとρ*は同じものと定義する。また、オルト位の置換基定数(σ*)は、例えば「Charton, M. Can. J. Chem. 1960, 38 2493-2499」で述べられているように、パラ位の置換基定数に類似していることから、本明細書におけるオルト位の置換基定数は、相当するパラ位の置換基定数を適用する。
 パラ位およびメタ位における置換基定数(σ)は「Hansch, C.; Leo, A.; Taft, R. W. Chem. Rev. 1991, 91, 165-195」に記載されており、置換基定数(σ)が未知の置換基については「Hammett, L. P. Chem. Rev. 1935, 17(1), 125-136」に記載の方法で測定し求めることができる。また、位置定数(Es)は「Unger, S. H.; Hansch, C. Prog. Phys. Org. Chem. 1976, 12, 91-118」に記載されている。ただし、本明細書で使用するEsは、水素原子を「0」と定義したものである。
 式(1)、式(2)において、ベンゼン環上に複数の置換基を有する場合、それらの置換基定数(σ)および位置定数(Es)には加成性が成り立つと定義し、σの合計を「Σσ」、Esの合計を「ΣEs」とそれぞれ表わす。
 Z1は環状ベンジリデンアセタールのベンゼン環に結合しており、P1-Z1、P2-Z1もベンゼン環の置換基である。P-Z1、P2-Z1の置換基定数は、P1とZ1、P2とZ1の組み合わせについて、それぞれ個別に測定し求めることができるが、実質的にP1-Z1、P2-Z1の置換基定数はベンゼン環との結合部近傍の構造に大きく影響を受けるため、それ以外の部分の影響は無視できるほど非常に小さい。したがって、P1-Z1、P2-Z1について個別に置換基定数を測定する代わりに、ベンゼン環との結合部近傍の構造に類似した構造の既知の置換基定数で代用することが可能である。
 本明細書におけるP1-Z1、P2-Z1の置換基定数は、P1-Z1、P2-Z1の主鎖の骨格原子をベンゼン環に結合した原子から数えて、3番目の原子に結合した2番目の原子以外の原子を水素原子で置き換えた構造の置換基定数で代用できると定義する。ただし、水素原子で置き換えるとカルボキシ基になる場合は、水素原子の代わりにメチル基で置き換えた構造の置換基定数で代用できると定義する。
 P1-Z1、P2-Z1におけるベンゼン環との結合部分の構造と代用する構造の具体例を以下に示す。P1-Z1、P2-Z1のベンゼン環との結合部分がエーテル結合である下記(r1)の場合は、下記(r2)の置換基定数を適用する。P1-Z1、P2-Z1のベンゼン環との結合部分がアミド結合である下記(r3)、(r5)の場合は、それぞれ下記(r4)、(r6)の置換基定数を適用する。P1-Z1、P2-Z1のベンゼン環との結合部分がウレタン結合である下記(r7)の場合は、下記(r8)の置換基定数を適用する。
Figure JPOXMLDOC01-appb-C000021
 本発明の環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体の好適な加水分解速度は、pH 5.5、37℃の緩衝液中における加水分解半減期(t1/2)が1時間~6ヶ月の範囲であり、より好ましくは1時間~1ヶ月の範囲であり、更に好ましくは1時間~24時間の範囲である。本明細書では、上記加水分解条件でt1/2が12時間である、実施例に記載の式(44)の化合物から導出される数値を用いて、1,3-ジオキソラン構造である場合の好適な置換基定数の合計(Σσ)の範囲を規定する。式(10)を用いて、式(44)の化合物についてのlog(k/k0)を算出すると、下記式(12)が得られる。ただし、前記に定義したとおり、式(44)の化合物におけるP1-Z1はエトキシ基(CH3CH2O-)で代用する。
 log(k/k0)=-2.7×(0.34-0.24)=-0.27 (12)
 上記式(12)および式(10)を用いて、式(1)、式(2)のR2およびR5が水素原子である場合にt1/2が24時間であるときの速度定数をk’としてlog(k’/k0)を算出すると、下記式(13)が得られる。
 log(k’/k)=log{(12/24)k/k}=-0.30
 式を変形して
 log(k’/k)=log[(k’/k0)/(k/k0)]=-0.30
 log(k’/k0)-log(k/k0)=-0.30
 上記式(12)を代入すると
 log(k’/k0)-(-0.27)=-0.30
 log(k’/k0)=-0.57 (13)
 ここで、上記式(13)および式(10)を用いて置換基定数の合計(Σσ)を算出すると、下記式(14)が得られる。
log(k’/k0)=-2.7×Σσ=-0.57
Σσ=0.21 (14)
 同様に、式(1)、式(2)のR2およびR5が水素原子である場合にt1/2が1時間であるときの速度定数をk”としてlog(k”/k0)を算出すると、下記式(15)が得られる。
 log(k”/k)=log(12k/k)=1.08
 式を変形して
 log(k”/k)=log[(k”/k0)/(k/k0)]=1.08
 log(k”/k0)-log(k/k0)=1.08
 上記式(12)を代入すると
 log(k”/k0)-(-0.27)=1.08
 log(k”/k0)=0.81 (15)
 ここで、上記式(15)および式(10)を用いて置換基定数の合計(Σσ)を算出すると、下記式(16)が得られる。
 log(k”/k0)=-2.7×Σσ=0.81
 Σσ=-0.30 (16)
 式(14)および式(16)より、式(1)、式(2)が1,3-ジオキソラン構造で、R2およびR5が水素原子である場合、-0.30≦Σσ≦0.21であれば当該生分解性ポリエチレングリコール誘導体のt1/2は1時間≦t1/2≦24時間である。同様に1時間≦t1/2≦1ヶ月および1時間≦t1/2≦6ヶ月におけるΣσの範囲をそれぞれ算出すると、1時間≦t1/2≦1ヶ月のときは-0.30≦Σσ≦0.76であり、1時間≦t1/2≦6ヶ月のときは-0.30≦Σσ≦1.05である。
 本発明で使用可能な置換基は、当該生分解性ポリエチレングリコール誘導体の合成過程における環状ベンジリデンアセタールリンカー化合物のアセタール化反応、環状ベンジリデンアセタールリンカー化合物とポリエチレングリコール中間体のカップリング反応、ポリエチレングリコール中間体の末端官能基変換反応およびポリエチレングリコール中間体の連結反応、更には当該生分解性ポリエチレングリコール誘導体と薬物等との結合形成反応を阻害しない置換基である。
 上記条件を満たすものであれば、電子吸引性の置換基または電子供与性の置換基のいずれでもよく、それぞれ単独もしくは組み合わせて使用してもよい。電子吸引性の置換基としては、炭素数2~5のアシル基、炭素数2~5のアルコキシカルボニル基、炭素数2~5のカルバモイル基、炭素数2~5のアシルオキシ基、炭素数2~5のアシルアミノ基、炭素数2~5のアルコキシカルボニルアミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、炭素数1~4のアルキルスルファニル基、炭素数1~4のアルキルスルホニル基、炭素数6~10のアリールスルホニル基、ニトロ基、トリフルオロメチル基およびシアノ基であり、好ましい例としてはアセチル基、メトキシカルボニル基、メチルカルバモイル基、アセトキシ基、アセトアミド基、メトキシカルボニルアミノ基、フッ素原子、塩素原子、臭素原子、ヨウ素原子、メチルスルファニル基、フェニルスルホニル基、ニトロ基、トリフルオロメチル基およびシアノ基が挙げられる。電子供与性の置換基としては、炭素数1~4のアルキル基であり、好ましい例としてはメチル基、エチル基、プロピル基、イソプロピル基およびt-ブチル基が挙げられる。メタ位では電子吸引性、パラ位およびオルト位では電子供与性である置換基としては、炭素数1~4のアルコキシ基、炭素数6~10のアリール基および炭素数6~10のアリールオキシ基であり、好ましい例としてはメトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、t-ブトキシ基、フェニル基およびフェノキシ基が挙げられる。
 式(1)、式(2)が1,3-ジオキソラン構造で、R2とR5との少なくとも一方が水素原子以外の置換基である場合については、上記置換基で立体障害の影響が最も大きいフェニル基および最も小さいフッ素原子の位置定数(Es)を用いて、pH 5.5、37℃の緩衝液中におけるt1/2が1時間≦t1/2≦24時間、1時間≦t1/2≦1ヶ月、および1時間≦t1/2≦6ヶ月であるΣσの範囲をTaftの式(11)を用いてそれぞれ算出すると、1時間≦t1/2≦24時間のときは-1.71≦Σσ≦0.04であり、1時間≦t1/2≦1ヶ月のときは-1.71≦Σσ≦0.59であり、1時間≦t1/2≦6ヶ月のときは-1.71≦Σσ≦0.88である。
 式(1)、式(2)が1,3-ジオキソラン構造で、R2およびR5が水素原子である場合、例えば1時間≦t1/2≦24時間のときに-0.30≦Σσ≦0.21を満たす好ましい実施形態を以下に示す。ただし、ここに示す置換基はR3およびR4、並びに前述の定義にしたがってP1-Z1、P2-Z1の代わりに用いる構造を意味する。式(1)、式(2)のメタ位のうち1つがメトキシ基、エトキシ基またはアセトアミド基であり、より好ましくはエトキシ基またはアセトアミド基である。別の好ましい実施形態においては、式(1)、式(2)のパラ位がメトキシ基またはエトキシ基であり、かつメタ位の1つがフッ素原子、塩素原子、臭素原子、およびヨウ素原子よりなる群から独立して選択される置換基であり、より好ましくはパラ位がエトキシ基であり、かつメタ位の1つがフッ素原子または塩素原子である。もう一つの好ましい実施形態においては、式(1)、式(2)のパラ位およびメタ位の1つがメトキシ基、エトキシ基またはアセトアミド基であり、より好ましくはメトキシ基またはエトキシ基である。
 また、式(1)、式(2)が1,3-ジオキソラン構造で、R2とR5との少なくとも一方が水素原子以外の置換基である場合、例えば1時間≦t1/2≦24時間のときに-1.71≦Σσ≦0.04を満たす好ましい実施形態を以下に示す。ただし、ここに示す置換基はR3およびR4、並びに前述の定義にしたがってP1-Z1、P2-Z1の代わりに用いる構造を意味する。式(1)、式(2)のR2およびR5のうち一方がフッ素原子、メチル基またはエチル基であり、もう一方が水素原子であるときは、パラ位がエトキシ基またはアセトアミド基であり、より好ましくはエトキシ基である。式(1)、式(2)のR2およびR5のうち一方がメトキシ基であり、もう一方が水素原子であるときは、パラ位がメトキシメチル基またはアセトアミド基よりなる群から選択される置換基を有し、より好ましくはアセトアミド基である。
 更に、pH 5.5、37℃の緩衝液中における加水分解半減期(t1/2)が24時間である、実施例に記載の式(35)の化合物から導出される数値を用いて、式(1)、式(2)が1,3-ジオキサン構造である場合についても好適な置換基定数の合計(Σσ)の範囲を規定できる。
 式(1)、式(2)が1,3-ジオキサン構造で、R2およびR5が水素原子である場合、-0.19≦Σσ≦0.10であれば当該親水性ポリマー誘導体のt1/2は1時間≦t1/2≦24時間である。同様に1時間≦t1/2≦1ヶ月および1時間≦t1/2≦6ヶ月におけるΣσの範囲をそれぞれ算出すると、1時間≦t1/2≦1ヶ月のときは-0.19≦Σσ≦0.41であり、1時間≦t1/2≦6ヶ月のときは-0.19≦Σσ≦0.57である。
 また、式(1)、式(2)が1,3-ジオキサン構造で、R2とR5との少なくとも一方が水素原子以外の置換基である場合については、前記置換基で立体障害の影響が最も大きいフェニル基および最も小さいフッ素原子の位置定数(Es)を用いて、pH 5.5、37℃の緩衝液中におけるt1/2が1時間≦t1/2≦24時間、1時間≦t1/2≦1ヶ月、および1時間≦t1/2≦6ヶ月であるΣσの範囲をTaftの式(11)を用いてそれぞれ算出すると、1時間≦t1/2≦24時間のときは-0.98≦Σσ≦0.00であり、1時間≦t1/2≦1ヶ月のときは-0.98≦Σσ≦0.31であり、1時間≦t1/2≦6ヶ月のときは-0.98≦Σσ≦0.48である。
 このように、本発明の生分解性ポリエチレングリコール誘導体における環状ベンジリデンアセタールリンカーに所望の加水分解性を付与するための適切な置換基の種類および位置は、式(10)および式(11)を用いて上述の計算を行なうことで合理的に設定可能である。
 本発明の式(1)、式(2)におけるX1は、化学修飾の対象となる生理活性タンパク質、ペプチド、抗体、核酸および低分子薬物などの生体機能性分子、並びにリポソームやポリマーミセルなどの薬物キャリアに存在する官能基と反応して共有結合を形成する官能基であれば特に制限されない。例えば、「Harris, J. M. Poly(Ethylene Glycol) Chemistry; Plenum Press: New York, 1992」、「Hermanson, G. T. Bioconjugate Techniques, 2nd ed.; Academic Press: San Diego, CA, 2008」および「PEGylated Protein Drugs: Basic Science and Clinical Applications; Veronese, F. M., Ed.; Birkhauser: Basel, Switzerland, 2009」などに記載されている官能基が挙げられる。
 X1の好ましい例を挙げれば、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基である。
  更に具体的には、生体機能性分子のアミノ基と反応して共有結合を形成することが可能な官能基は、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基またはカルボキシ基であり、生体機能性分子のチオール基と反応して共有結合を形成することが可能な官能基は、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基またはビニル基であり、生体機能性分子のアルデヒド基またはカルボキシ基と反応して共有結合を形成することが可能な官能基は、チオール基、アミノ基、オキシアミノ基またはヒドラジド基であり、生体機能性分子のアルキニル基と反応して共有結合を形成することが可能な官能基は、チオール基またはアジド基であり、生体機能性分子のアジド基と反応して共有結合を形成することが可能な官能基はアルキニル基である。
 ここで「活性エステル」とは、式:-C(=O)-Lで表わされる活性化されたカルボキシ基を示し、Lは脱離基を示す。
  Lで表わされる脱離基としては、スクシンイミジルオキシ基、フタルイミジルオキシ基、4-ニトロフェノキシ基、1-イミダゾリル基、ペンタフルオロフェノキシ基、ベンゾトリアゾール-1-イルオキシ基および7-アザベンゾトリアゾール-1-イルオキシ基などが挙げられる。「活性カーボネート」とは、式:-O-C(=O)-Lで表わされる活性化されたカーボネート基を示し、Lは上記と同様の脱離基を示す。
 本発明の好適な実施形態において、X1は群(I)、群(II)、群(III)、群(IV)または群(V)で示される基である。
群(I):生体機能性分子のアミノ基と反応して共有結合を形成することが可能な官能基
 下記の(a)、(b)、(c)、(d)、(e)および(f)
群(II):生体機能性分子のチオール基と反応して共有結合を形成することが可能な官能基
 下記の(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)および(j)
群(III):生体機能性分子のアルデヒド基またはカルボキシ基と反応して共有結合を形成することが可能な官能基
 下記の(g)、(k)、(l)および(m)
群(IV):生体機能性分子のアルキニル基と反応して共有結合を形成することが可能な官能基
 下記の(g)、(k)、(l)、(m)および(n)
群(V):生体機能性分子のアジド基と反応して共有結合を形成することが可能な官能基
 下記の(j)
Figure JPOXMLDOC01-appb-C000022
 式中、R7は水素原子またはスルホ基であり、スルホ基として具体的にはスルホン酸ナトリウムおよびスルホン酸カリウムが挙げられるが、好ましくは水素原子である。R8、R11は水素原子または炭素数1~5の炭化水素基であり、具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基およびペンチル基などが挙げられる。R9はハロゲン原子を含んでもよい炭素数1~10の炭化水素基であり、具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ベンジル基、4-メチルフェニル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、4-(トリフルオロメトキシ)フェニル基、ビニル基、クロロエチル基、ブロモエチル基およびヨードエチル基などが挙げられるが、好ましくはメチル基、ビニル基、4-メチルフェニル基または2,2,2-トリフルオロエチル基である。R10は塩素原子、臭素原子およびヨウ素原子からなる群より選択されるハロゲン原子である。
 本発明の式(1)、式(2)におけるZ1は、環状ベンジリデンアセタール基のベンゼン環とポリエチレングリコール鎖との間の2価のスペーサーであり、Z2は環状ベンジリデンアセタール基の環状アセタールとポリエチレングリコール鎖との間の2価のスペーサーであり、Z3はX1とポリエチレングリコール鎖との間の2価のスペーサーである。これらは共有結合で構成され、環状ベンジリデンアセタール基よりも酸加水分解に対して安定であれば特に制限は無いが、好ましくはエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である。アルキレン基の炭素数は、好ましくは1~24である。説明のためであって、制限するものではないが、アルキレン基の好ましい例としては、下記の(z1)のような構造が挙げられる。エーテル結合を有するアルキレン基の好ましい例としては、下記の(z2)または(z3)のような構造が挙げられる。エステル結合を有するアルキレン基の好ましい例としては、下記の(z4)のような構造が挙げられる。カーボネート結合を有するアルキレン基の好ましい例としては、下記の(z5)のような構造が挙げられる。ウレタン結合を有するアルキレン基の好ましい例としては、下記の(z6)のような構造が挙げられる。アミド結合を有するアルキレン基の好ましい例としては、下記の(z7)のような構造が挙げられる。2級アミノ基を有するアルキレン基の好ましい例としては、下記の(z8)のような構造が挙げられる。好ましい実施形態において、pおよびqは独立して1~12の整数である。ただし、Z1、Z2またはZ2の少なくとも一つが、エーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下である。
Figure JPOXMLDOC01-appb-C000023
 本発明の式(1)、式(2)におけるP1は、エチレングリコール単位の数が3以上の直鎖型または分岐型のポリエチレングリコールであり、P2はエチレングリコール単位の数が3以上の直鎖型または分岐型のポリエチレングリコールである。P1、P2を構成するエチレングリコール単位の数は、10以上が更に好ましく、20以上が特に好ましい。また、P1、P2を構成するエチレングリコール単位の数は、2000以下が更に好ましく、1000以下が特に好ましい。
 本明細書で使用する用語「ポリエチレングリコール」は、エチレンオキシドの重合で得られる分子量分布を有するポリエチレングリコール、並びに単一分子量のオリゴエチレングリコール類をカップリング反応で結合した単分散のポリエチレングリコールの両方を意味する。
 本発明の一態様では、式(1)、式(2)におけるwが1の生分解性ポリエチレングリコール誘導体を与える。
 この態様の好ましい実施形態では、式(1)、式(2)におけるP1は、末端に炭化水素基または化学反応可能な官能基を有する直鎖型のポリエチレングリコールである。
 P1が末端に炭化水素基を有する直鎖型のポリエチレングリコールである具体的な例は、式(3)で示される。
Figure JPOXMLDOC01-appb-C000024
 式中、nはポリエチレングリコール鎖1本あたりの繰り返しユニット数であり、分子量分布を有するポリエチレングリコールにおいては、化合物の数平均分子量(Mn)に基づいて、各種理論的な計算をすることにより算出することと定義する。
 式中、Yは炭素数1~24の炭化水素基であり、具体的な例としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ヘプチル基、2-エチルヘキシル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基、エイコシル基、ヘンエイコシル基、ドコシル基、トイコシル基、テトラコシル基、フェニル基、ベンジル基、クレジル基、ブチルフェニル基、ドデシルフェニル基およびトリチル基などが挙げられ、好ましくは炭素数1~10(更に好ましくは炭素数1~7)の炭化水素基、より好ましくはメチル基またはエチル基であり、更に好ましくはメチル基である。
 P1が、化学反応可能な官能基を有する直鎖型のポリエチレングリコールである具体的な例は、式(4)で示される。
Figure JPOXMLDOC01-appb-C000025
 式中、X2は、X1と異なる化学反応可能な官能基であり、Z4は、官能基X2とポリエチレングリコール鎖との間の2価のスペーサーである。当該生分解性ポリエチレングリコール誘導体は、X1とX2の2つの異なる化学反応可能な官能基を有しているため、例えばX1に薬物を結合させ、X2に標的指向性分子を結合させることで、標的指向性を有するポリエチレングリコール-薬物結合体を提供することができる。
 X2の好ましい例を挙げれば、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基である。
  更に具体的には、生体機能性分子のアミノ基と反応して共有結合を形成することが可能な官能基は、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基またはカルボキシ基であり、生体機能性分子のチオール基と反応して共有結合を形成することが可能な官能基は、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基またはビニル基であり、生体機能性分子のアルデヒド基またはカルボキシ基と反応して共有結合を形成することが可能な官能基は、チオール基、アミノ基、オキシアミノ基またはヒドラジド基であり、生体機能性分子のアルキニル基と反応して共有結合を形成することが可能な官能基は、チオール基またはアジド基であり、生体機能性分子のアジド基と反応して共有結合を形成することが可能な官能基はアルキニル基である。
 本発明の好適な実施形態において、X2は群(I)、群(II)、群(III)、群(IV)または群(V)で示される基である。
群(I):生体機能性分子のアミノ基と反応して共有結合を形成することが可能な官能基
 下記の(a)、(b)、(c)、(d)、(e)および(f)
群(II):生体機能性分子のチオール基と反応して共有結合を形成することが可能な官能基
 下記の(a)、(b)、(c)、(d)、(e)、(f)、(g)、(h)、(i)および(j)
群(III):生体機能性分子のアルデヒド基またはカルボキシ基と反応して共有結合を形成することが可能な官能基
 下記の(g)、(k)、(l)および(m)
群(IV):生体機能性分子のアルキニル基と反応して共有結合を形成することが可能な官能基
 下記の(g)、(k)、(l)、(m)および(n)
群(V):生体機能性分子のアジド基と反応して共有結合を形成することが可能な官能基
 下記の(j)
Figure JPOXMLDOC01-appb-C000026
 式中、R7は水素原子またはスルホ基であり、スルホ基として具体的にはスルホン酸ナトリウムおよびスルホン酸カリウムが挙げられるが、好ましくは水素原子である。R8、R11は水素原子または炭素数1~5の炭化水素基であり、具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基およびペンチル基などが挙げられる。R9はハロゲン原子を含んでもよい炭素数1~10の炭化水素基であり、具体的な炭化水素基としてはメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、イソペンチル基、ヘキシル基、ベンジル基、4-メチルフェニル基、トリフルオロメチル基、2,2,2-トリフルオロエチル基、4-(トリフルオロメトキシ)フェニル基、ビニル基、クロロエチル基、ブロモエチル基およびヨードエチル基などが挙げられるが、好ましくはメチル基、ビニル基、4-メチルフェニル基または2,2,2-トリフルオロエチル基である。R10は塩素原子、臭素原子およびヨウ素原子からなる群より選択されるハロゲン原子である。
 X2はX1と異なっていることが必要であり、X1と X2の好ましい組み合わせとして、X1が活性エステル基または活性カーボネート基のときは、X2はマレイミド基、ビニルスルホン基、α-ハロアセチル基、アルキニル基およびアジド基から選択される基であり、X1がアルデヒド基のときは、X2はマレイミド基、ビニルスルホン基、アルキニル基およびアジド基から選択される基であり、X1がマレイミド基、ビニルスルホン基またはα-ハロアセチル基のときは、X2は活性エステル基、活性カーボネート基、アルキニル基、アジド基から選択される基であり、X1がアルキニル基またはアジド基のときは、X2はマレイミド基、ビニルスルホン基、α-ハロアセチル基、活性エステル基、活性カーボネート基、アミノ基およびオキシアミノ基から選択される基であり、X1がアミノ基またはオキシアミノ基のときは、X2はアルキニル基、アジド基、チオール基またはカルボキシ基であり、X1がチオール基のときは、X2はアミノ基、オキシアミノ基、アジド基およびカルボキシ基から選択される基である。より好ましくは、X1が活性エステル基または活性カーボネート基のときは、X2はマレイミド基、α-ハロアセチル基、アルキニル基およびアジド基から選択される基であり、X1がアルデヒド基のときは、X2はマレイミド基、α-ハロアセチル基、アルキニル基およびアジド基から選択される基であり、X1がマレイミド基またはα-ハロアセチル基のときは、X2は活性エステル基、活性カーボネート基、アルキニル基、アジド基から選択される基であり、X1がアルキニル基またはアジド基のときは、X2はマレイミド基、α-ハロアセチル基、活性エステル基、活性カーボネート基、アミノ基およびオキシアミノ基から選択される基であり、X1がアミノ基またはオキシアミノ基のときは、X2はアルキニル基、アジド基またはチオール基であり、X1がチオール基のときは、X2はアミノ基、オキシアミノ基およびアジド基から選択される基である。
 Z4は共有結合で構成され、環状ベンジリデンアセタール基よりも酸加水分解に対して安定であれば特に制限は無いが、好ましくはエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である。アルキレン基の炭素数は、好ましくは1~24である。説明のためであって、制限するものではないが、アルキレン基の好ましい例としては、下記の(z1)のような構造が挙げられる。エーテル結合を有するアルキレン基の好ましい例としては、下記の(z2)または(z3)のような構造が挙げられる。エステル結合を有するアルキレン基の好ましい例としては、下記の(z4)のような構造が挙げられる。カーボネート結合を有するアルキレン基の好ましい例としては、下記の(z5)のような構造が挙げられる。ウレタン結合を有するアルキレン基の好ましい例としては、下記の(z6)のような構造が挙げられる。アミド結合を有するアルキレン基の好ましい例としては、下記の(z7)のような構造が挙げられる。2級アミノ基を有するアルキレン基の好ましい例としては、下記の(z8)のような構造が挙げられる。好ましい実施形態において、pおよびqは独立して1~12の整数である。ただし、Z3が、エーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基であって、複数の同一構造単位が結合している場合における前記構造単位の数は2以下である。
Figure JPOXMLDOC01-appb-C000027
 この態様のもう1つの好ましい実施形態では、式(1)、式(2)におけるP1は、末端に炭化水素基または化学反応可能な官能基を有する分岐型のポリエチレングリコールである。
 P1が末端に炭化水素基を有する分岐型のポリエチレングリコールである具体的な例は、式(5)で示される。
Figure JPOXMLDOC01-appb-C000028
 式中、Yは炭素数1~24の前記炭化水素基であり、aは0または2である。
 aが0の場合は2本のポリエチレングリコール鎖を有し、aが2の場合は4本のポリエチレングリコール鎖を有する。一般にポリエチレングリコールによる生体関連物質の化学修飾では、必要以上にポリエチレングリコールとの結合点を導入すると生体関連物質の活性点を潰し、その機能を低下させるため、ポリエチレングリコールの分子量を大きくして効果を高める試みが行われている。しかし、分子量の増大にともなって粘度も増大するため、例えば注射製剤のような水溶液製剤での取り扱いが困難となる。当該ポリエチレングリコール誘導体は分岐型構造であるため、同一分子量の直鎖型のポリエチレングリコール誘導体と比較して粘度が低く、水溶液製剤などの用途で有用である。
 P1が末端に化学反応可能な官能基を有する分岐型のポリエチレングリコールである具体的な例は、式(6)で示される。
Figure JPOXMLDOC01-appb-C000029

 式中、X2はX1と異なる化学反応可能な前記官能基であり、Z4は前記2価のスペーサーであり、aは0または2である。
 P1が式(6)で示されるポリエチレングリコール誘導体は、式(1)、式(2)におけるvが1の場合、1つのX1と2つまたは4つのX2を有しており、例えばX1に薬物を結合させ、X2に標的指向性分子を結合させれば、高い標的指向性能を得ることができる。
 本発明の別の一態様では、式(1)、式(2)におけるwが2~8の生分解性ポリエチレングリコール誘導体を与える。
 この態様の好ましい実施形態では、式(1)、式(2)におけるP1は、式(7)で示される。
Figure JPOXMLDOC01-appb-C000030
 式中、X2はX1と異なる化学反応可能な前記官能基であり、Z4は前記2価のスペーサーであり、aは0または2である。
 抗体-薬物複合体(ADC)関連分野においては、薬物の運搬効率を上げるために抗体に対して複数の薬物を結合させることが好ましいが、抗体に複数の結合点を導入すると抗原との親和性の低下が問題となる。P1が式(7)で示されるポリエチレングリコール誘導体は、式(1)、式(2)におけるvが1の場合、2つまたは4つのX1と1つのX2を有しており、例えばガンを標的としたADCでX1に抗ガン剤を結合させ、X2に抗体を結合させれば、抗体との結合点を増加させずに、抗ガン剤の運搬効率を向上させることができる。
 この態様のもう1つの好ましい実施形態では、式(1)、式(2)におけるP1が末端数2~8のポリエチレングリコールであり、P1を構成するポリエチレングリコールの全ての末端がそれぞれ、式(1)ではZ1、式(2)ではZ2に対して結合しており、wが前記ポリエチレングリコールの末端数に等しい。
 この実施形態の具体的な例は、式(1)、式(2)におけるP1が、下記の式(r)、式(s)、式(t)、式(u)および式(v)からなる群から選択される。P1が式(r)で表される場合にはwが2であり、P1が式(s)で表される場合にはwが3であり、P1が式(t)で表される場合にはwが4であり、P1が式(u)で表される場合にはwが4であり、P1が式(v)で表される場合にはwが8である。
Figure JPOXMLDOC01-appb-C000031
 本発明の式(3)、式(4)および式(r)におけるnの好適な範囲は3~2000の整数であり、より好ましくは20~1000の整数であり、更に好ましくは40~500の整数である。また、式(5)、式(6)、式(7)、式(s)、式(t)、式(u)および式(v)におけるnの好適な範囲は3~1000の整数であり、好ましくは10~500の整数であり、更に好ましくは20~250の整数である。
 本発明の一態様では、式(1)、式(2)におけるP2は、式(8)で示される。ここで、式(1)、式(2)におけるvは1である。
Figure JPOXMLDOC01-appb-C000032
 式中、mはポリエチレングリコール鎖1本あたりの繰り返しユニット数であり、分子量分布を有するポリエチレングリコールにおいては、化合物の数平均分子量(Mn)に基づいて、各種理論的な計算をすることにより算出することと定義する。
 本発明の別の一態様では、式(1)、式(2)におけるP2は、式(9)で示される。
Figure JPOXMLDOC01-appb-C000033
 式中、bは0または2である。ここで、式(1)、式(2)におけるvはb+2である。
 本発明の式(8)におけるmの好適な範囲は3~2000の整数であり、より好ましくは20~1000の整数であり、更に好ましくは40~500の整数である。また、式(9)におけるmの好適な範囲は3~1000の整数であり、好ましくは10~500の整数であり、更に好ましくは20~250の整数である。
 本発明の生分解性ポリエチレングリコール誘導体は、P1からなるポリエチレングリコール中間体に対して、置換基を有する環状ベンジリデンアセタールリンカーを介して、P2からなるポリエチレングリコール中間体を連結することにより合成できる。この連結によって生じる結合は、反応に使用される官能基の組み合わせによって決定されるものであり、前記2価のスペーサーZ1およびZ2に含まれるエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である。合成した当該生分解性ポリエチレングリコール誘導体は、必要に応じて末端官能基を化学変換する。この官能基変換に用いられる反応は、従来公知の方法を用いることができるが、式(1)、式(2)の環状ベンジリデンアセタール基、前記2価のスペーサーZ1、Z2、Z3およびZ4に含まれる結合を分解しない条件を適切に選択しなければならない。なお、当該生分解性ポリエチレングリコール誘導体の合成において、環状ベンジリデンアセタールリンカーを導入するための環状ベンジリデンアセタールリンカー化合物は、P1からなるポリエチレングリコール中間体と結合させた後、P2からなるポリエチレングリコール中間体と結合させても、P2からなるポリエチレングリコール中間体と結合させた後、P1からなるポリエチレングリコール中間体と結合させてもいずれでもよい。当該生分解性ポリエチレングリコール誘導体を合成する典型的な例としては、以下のような工程が挙げられる。ここでは、式(1)で表される生分解性ポリエチレングリコール誘導体の合成方法を代表例として説明する。
(A) 環状ベンジリデンアセタールリンカー化合物
Figure JPOXMLDOC01-appb-C000034
(式中、R1は水素原子または炭化水素基であり;

 R2、R3、R4およびR5は、それぞれ独立して電子吸引性もしくは電子供与性の置換基、または水素原子である。)
Figure JPOXMLDOC01-appb-C000035
 化学反応可能な官能基であるヒドロキシ基を有する式(17)のカルボニル化合物、およびアミノ基がフタロイル基で保護されたフタルイミド基を有する式(18)の1,2-ジオール誘導体をトルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、ジエチルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、クロロホルム、ジクロロメタン、ジメチルスルホキシド、ジメチルホルムアミドまたはジメチルアセトアミドなどの非プロトン性溶媒、もしくは無溶媒中、酸触媒存在下、反応させることで、環状ベンジリデンアセタール基を有する下記式(19)の化合物を得る。得られた化合物は、抽出、再結晶、吸着剤処理またはカラムクロマトグラフィーなどで精製してもよい。カルボニル化合物の代わりに、対応する低級アルコールのアセタール誘導体を使用することもできる。低級アルコールは好ましくは炭素数1~5のアルコールであり、更に好ましくはメタノールまたはエタノールである。酸触媒は有機酸または無機酸のいずれでもよく、特に制限は無いが、具体的な例を挙げればp-トルエンスルホン酸、p-トルエンスルホン酸ピリジニウム、メタンスルホン酸、10-カンファースルホン酸、塩化水素、ヨウ素、塩化アンモニウム、シュウ酸および三フッ化ホウ素ジエチルエーテル錯体などである。
Figure JPOXMLDOC01-appb-C000036
 ここで「保護基」とは、ある反応条件下で分子中の特定の化学反応可能な官能基の反応を防止または阻止する成分である。保護基は、保護される化学反応可能な官能基の種類、使用される条件および分子中の他の官能基もしくは保護基の存在により変化する。保護基の具体的な例は多くの一般的な成書に見出すことができるが、例えば「Wuts, P. G. M.; Greene, T. W. Protective Groups in Organic Synthesis, 4th ed.; Wiley-Interscience: New York, 2007」に記載されている。また、保護基で保護された官能基は、それぞれの保護基に適した反応条件を用いて脱保護、すなわち化学反応させることで、元の官能基を再生させることができる。したがって、本明細書では、保護基で保護されており、各種反応によって脱保護が可能な官能基は「化学反応可能な官能基」に含む。保護基の代表的な脱保護条件は前述の文献に記載されている。
 式(17)の化合物の化学反応可能な官能基は、ヒドロキシ基以外の官能基も用いることができる。具体的な例としては、ヒドロキシアルキル基、アミノ基、アミノアルキル基、カルボキシ基およびカルボキシアルキル基などが挙げられる。また、上記官能基は、アセタール化反応の酸性条件で安定、かつ環状ベンジリデンアセタール基が分解する接触還元以外の反応条件で脱保護可能な保護基で保護されていてもよい。保護される官能基と保護基の好ましい組み合わせとして、保護される官能基がヒドロキシ基またはヒドロキシアルキル基のときは、例えばシリル系保護基およびアシル系保護基が挙げられ、具体的にはt-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、アセチル基およびピバロイル基などが挙げられる。保護される官能基がアミノ基またはアミノアルキル基のときは、例えばアシル系保護基およびカーバメート系保護基が挙げられ、具体的にはトリフルオロアセチル基、9-フルオレニルメチルオキシカルボニル基および2-(トリメチルシリル)エチルオキシカルボニル基などが挙げられる。保護される官能基がカルボキシ基またはカルボキシアルキル基のときは、例えばアルキルエステル系保護基およびシリルエステル系保護基が挙げられ、具体的にはメチル基、9-フルオレニルメチル基およびt-ブチルジメチルシリル基などが挙げられる。具体的な保護基の種類および代表的な脱保護条件は前述の文献に記載されており、それぞれの保護基に適した反応条件を選択し、親水性ポリマー中間体との反応前に脱保護を行うことができる。
 また、式(18)の化合物の1,2-ジオール部分を除く化学反応可能な官能基には、フタルイミド基以外の官能基も用いることができる。化学反応可能な官能基が保護基で保護された官能基である場合は、保護基はアセタール化反応の酸性条件で安定、かつベンジリデンアセタール基が分解する接触還元以外の反応条件で脱保護可能である必要がある。
  保護される官能基と保護基の好ましい組み合わせとして、保護される官能基がアミノ基のときは、例えばアシル系保護基およびカーバメート系保護基が挙げられ、具体的にはトリフルオロアセチル基、9-フルオレニルメチルオキシカルボニル基および2-(トリメチルシリル)エチルオキシカルボニル基などが挙げられる。また、保護される官能基がヒドロキシ基のときは、例えばシリル系保護基およびアシル系保護基が挙げられ、具体的にはt-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、アセチル基およびピバロイル基などが挙げられる。保護される官能基がカルボキシ基のときは、例えばアルキルエステル系保護基およびシリルエステル系保護基が挙げられ、具体的にはメチル基、9-フルオレニルメチル基およびt-ブチルジメチルシリル基などが挙げられる。保護される官能基がスルファニル基のときは、例えばチオエーテル系保護基、チオカーボネート系保護基およびジスルフィド系保護基が挙げられ、具体的にはS-2,4-ジニトロフェニル基、S-9-フルオレニルメチルオキシカルボニル基およびS-t-ブチルジスルフィド基などが挙げられる。保護基の代表的な脱保護条件は前述の文献に記載されており、それぞれの保護基に適した反応条件を選択することができる。ただし、化学反応可能な官能基が、保護基で保護されていなくてもアセタール化反応を阻害しない官能基の場合は、保護基を使用する必要は無い。
(B) P1からなるポリエチレングリコール中間体
 開始剤であるメタノールをトルエン中もしくは無溶媒で、金属ナトリウム、金属カリウム、水素化ナトリウムまたは水素化カリウムなどのアルカリ条件下、エチレンオキシドをメタノールに対して3~2000モル当量重合させ、式(20)のポリエチレングリコールを得る。開始剤としては炭素数1~24の炭化水素基を有するアルコールが好ましく、具体的にはメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、t-ブタノール、フェノールおよびベンジルアルコールなどが挙げられる。当該ポリエチレングリコールは、化学反応可能な官能基であるヒドロキシ基を有するため、そのまま環状ベンジリデンアセタールリンカー化合物との反応に用いることもできる。
Figure JPOXMLDOC01-appb-C000037
 式(20)のポリエチレングリコールをトルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、ジエチルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、クロロホルム、ジクロロメタン、ジメチルスルホキシド、ジメチルホルムアミドまたはジメチルアセトアミドなどの非プロトン性溶媒、もしくは無溶媒中、トリエチルアミン、N-メチルモルホリン、ピリジンまたは4-ジメチルアミノピリジンなどの有機塩基、もしくは炭酸ナトリウム、炭酸水素ナトリウム、酢酸ナトリウムまたは炭酸カリウムなどの無機塩基の存在下、塩化メタンスルホニルと反応させることで、式(21)のポリエチレングリコール中間体を得る。上記有機塩基、無機塩基は用いなくとも良い。有機塩基、無機塩基の使用割合は、特に制限はないが、式(20)のポリエチレングリコールの水酸基に対して等モル以上が好ましい。また、有機塩基を溶媒として用いてもよい。得られた化合物は、抽出、再結晶、吸着剤処理、再沈殿、カラムクロマトグラフィーまたは超臨界抽出等の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000038
 式(21)のポリエチレングリコール中間体における化学反応可能な官能基は他の官能基も用いることができる。化学反応可能な官能基の好ましい例としては、当該ポリエチレングリコール中間体と前記環状ベンジリデンアセタールリンカー化合物の反応によって生じる結合が、式(1)の2価のスペーサーZ1に含まれるエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基となる官能基であり、具体的にはハロゲン原子、活性エステル、活性カーボネート、アルデヒド基、アミノ基、ヒドロキシ基およびカルボキシ基などが挙げられる。
(C) 環状ベンジリデンアセタールリンカー化合物とP1からなるポリエチレングリコール中間体の反応
 式(19)のベンジリデンアセタールリンカー化合物と式(21)のポリエチレングリコール中間体をトルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、ジエチルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、クロロホルム、ジクロロメタン、ジメチルスルホキシド、ジメチルホルムアミドまたはジメチルアセトアミドなどの非プロトン性溶媒、もしくは無溶媒中、トリエチルアミン、N-メチルモルホリン、t-ブトキシカリウムまたはヘキサメチルジシラザンナトリウムなどの有機塩基、もしくは炭酸カリウム、水酸化カリウムまたは水素化ナトリウムなどの無機塩基の存在下、反応させることで、式(22)の化合物を得る。有機塩基、無機塩基の使用割合は、特に制限はないが、式(21)のポリエチレングリコール中間体の化学反応可能な官能基に対して等モル以上が好ましい。また、有機塩基を溶媒として用いてもよい。得られた化合物は、前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000039
 環状ベンジリデンアセタールリンカー化合物の化学反応可能な官能基は、ポリエチレングリコール中間体との反応の前に官能基変換を行ってもよい。環状ベンジリデンアセタールリンカー化合物とポリエチレングリコール中間体との反応の反応条件は、環状ベンジリデンアセタールリンカー化合物の化学反応可能な官能基およびポリエチレングリコール中間体の化学反応可能な官能基の組み合わせによって決定されるものであり、従来公知の方法を用いることができるが、式(1)、式(2)の環状ベンジリデンアセタール基、前記2価のスペーサーZ1およびZ2に含まれる結合を分解しない条件を適切に選択する必要がある。
 式(22)の化合物を水、メタノールまたはエタノールなどのプロトン性溶媒、もしくはアセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、ジメチルホルムアミドまたはジメチルアセトアミドなどの非プロトン性溶媒、もしくは無溶媒中、エチレンジアミン、メチルヒドラジンまたはメチルアミンなどの塩基性有機化合物、もしくはヒドラジン、ヒドロキシアミンまたは水酸化ナトリウムなどの塩基性無機化合物を用いて処理することで、フタルイミド基が脱保護されてアミノ基に変換された式(23)の化合物を得る。塩基性化合物の使用割合は、特に制限はないが、式(22)の化合物の化学反応可能な官能基に対して等モル以上が好ましい。また、塩基性化合物を溶媒として用いてもよい。得られた化合物は、前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000040
(D) P2からなるポリエチレングリコール中間体
P2からなるポリエチレングリコール中間体は、ポリエチレングリコールの少なくとも2つの末端に化学反応可能な官能基を有しており、好ましい例を挙げれば、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基、アジド基およびヒドロキシ基である。更に具体的には、環状アセタールリンカーのアミノ基と反応して共有結合を形成することが可能な官能基は、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基またはカルボキシ基であり、環状アセタールリンカーのチオール基と反応して共有結合を形成することが可能な官能基は、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基またはビニル基であり、環状アセタールリンカーのアルデヒド基またはカルボキシ基と反応して共有結合を形成することが可能な官能基は、チオール基、アミノ基、オキシアミノ基、ヒドラジド基またはヒドロキシ基であり、環状アセタールリンカーのアルキニル基と反応して共有結合を形成することが可能な官能基は、チオール基またはアジド基であり、環状アセタールリンカーのアジド基と反応して共有結合を形成することが可能な官能基はアルキニル基である。
 P2からなるポリエチレングリコール中間体における化学反応可能な官能基は、同一でも異なっていてもよく、好ましくは2種類の異なる官能基の組み合わせである。
  2種類の異なる官能基の好ましい組み合わせとして、一方が活性エステル基または活性カーボネート基のときは、もう一方はマレイミド基、ビニルスルホン基、α-ハロアセチル基、アルキニル基およびアジド基から選択される基であり、一方がアルデヒド基のときは、もう一方はマレイミド基、ビニルスルホン基、アルキニル基およびアジド基から選択される基であり、一方がマレイミド基、ビニルスルホン基またはα-ハロアセチル基のときは、もう一方は活性エステル基、活性カーボネート基、アルキニル基、アジド基から選択される基であり、一方がアルキニル基またはアジド基のときは、もう一方はマレイミド基、ビニルスルホン基、α-ハロアセチル基、活性エステル基、活性カーボネート基、アミノ基、オキシアミノ基およびヒドロキシ基から選択される基であり、一方がアミノ基またはオキシアミノ基のときは、もう一方はアルキニル基、アジド基、チオール基、ヒドロキシ基またはカルボキシ基であり、一方がチオール基またはヒドロキシ基のときは、もう一方はアミノ基、オキシアミノ基、アジド基およびカルボキシ基から選択される基である。より好ましくは、一方が活性エステル基または活性カーボネート基のときは、もう一方はマレイミド基、α-ハロアセチル基、アルキニル基およびアジド基から選択される基であり、一方がアルデヒド基のときは、もう一方はマレイミド基、α-ハロアセチル基、アルキニル基およびアジド基から選択される基であり、一方がマレイミド基またはα-ハロアセチル基のときは、もう一方は活性エステル基、活性カーボネート基、アルキニル基、アジド基から選択される基であり、一方がアルキニル基またはアジド基のときは、もう一方はマレイミド基、α-ハロアセチル基、活性エステル基、活性カーボネート基、アミノ基、オキシアミノ基およびヒドロキシ基から選択される基であり、一方がアミノ基またはオキシアミノ基のときは、もう一方はアルキニル基、アジド基、ヒドロキシ基またはチオール基であり、一方がチオール基またはヒドロキシ基のときは、もう一方はアミノ基、オキシアミノ基およびアジド基から選択される基である。
 また、P2からなるポリエチレングリコール中間体における化学反応可能な官能基のうち、環状アセタールリンカーと反応させる官能基以外の官能基は、環状アセタールリンカーとの反応の反応条件で安定、かつ環状ベンジリデンアセタール基が分解する接触還元以外の反応条件で脱保護可能な保護基で保護されていてもよい。保護される官能基と保護基の好ましい組み合わせとして、保護される官能基がアミノ基のときは、例えばアシル系保護基およびカーバメート系保護基が挙げられ、具体的にはトリフルオロアセチル基、フタルイミド基、9-フルオレニルメチルオキシカルボニル基および2-(トリメチルシリル)エチルオキシカルボニル基などが挙げられる。また、保護される官能基がヒドロキシ基のときは、例えばシリル系保護基およびアシル系保護基が挙げられ、具体的にはt-ブチルジフェニルシリル基、t-ブチルジメチルシリル基、トリイソプロピルシリル基、アセチル基およびピバロイル基などが挙げられる。保護される官能基がカルボキシ基のときは、例えばアルキルエステル系保護基およびシリルエステル系保護基が挙げられ、具体的にはメチル基、9-フルオレニルメチル基およびt-ブチルジメチルシリル基などが挙げられる。保護される官能基がスルファニル基のときは、例えばチオエーテル系保護基、チオカーボネート系保護基およびジスルフィド系保護基が挙げられ、具体的にはS-2,4-ジニトロフェニル基、S-9-フルオレニルメチルオキシカルボニル基およびS-t-ブチルジスルフィド基などが挙げられる。保護基の代表的な脱保護条件は前述の文献に記載されており、それぞれの保護基に適した反応条件を選択することができる。ただし、化学反応可能な官能基が、保護基で保護されていなくても環状アセタールリンカーとの反応を阻害しない官能基の場合は、保護基を使用する必要は無い。
 ここでは、直鎖型のポリエチレングリコールの一方の末端にトリフルオロアセチル基で保護されたアミノ基、もう一方の末端に活性カーボネート基であるN-スクシンイミジルカーボネートを有する式(24)の化合物を用いて説明する。2種類の異なる官能基の組み合わせを有するポリエチレングリコールの好適な例は、例えばNOF Corporation (Tokyo, Japan; see www.nof.co.jp/english: Catalogue Ver. 15).に記載されているが、それらに限定されない。
Figure JPOXMLDOC01-appb-C000041
(E) 環状ベンジリデンアセタールリンカーを有するP1からなるポリエチレングリコール中間体とP2からなるポリエチレングリコール中間体の反応
 式(23)の化合物をトルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、ジエチルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、クロロホルム、ジクロロメタン、ジメチルスルホキシド、ジメチルホルムアミドまたはジメチルアセトアミドなどの非プロトン性溶媒、もしくは無溶媒中、トリエチルアミン、N-メチルモルホリン、ピリジンまたは4-ジメチルアミノピリジンなどの有機塩基、もしくは炭酸ナトリウム、炭酸水素ナトリウム、酢酸ナトリウムまたは炭酸カリウムなどの無機塩基の存在下、式(24)の化合物と反応させることで、環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体である式(25)の化合物を得る。上記有機塩基、無機塩基は用いなくとも良い。有機塩基、無機塩基の使用割合は、特に制限はないが、式(23)の化合物の化学反応可能な官能基に対して等モル以上が好ましい。また、有機塩基を溶媒として用いてもよい。
Figure JPOXMLDOC01-appb-C000042
 P1からなるポリエチレングリコール中間体とP2からなるポリエチレングリコール中間体との反応の反応条件は、P1からなるポリエチレングリコール中間体の化学反応可能な官能基およびP2からなるポリエチレングリコール中間体の化学反応可能な官能基の組み合わせによって決定されるものであり、従来公知の方法を用いることができるが、式(1)、式(2)の環状ベンジリデンアセタール基、前記2価のスペーサーZ1、Z2およびZ3に含まれる結合を分解しない条件を適切に選択する必要がある。
 ここで得られた化合物は、抽出、再結晶、吸着剤処理、再沈殿、カラムクロマトグラフィーまたは超臨界抽出等の精製手段にて精製してもよい。
 吸着剤処理で精製する場合の吸着剤としては、アルミニウムとケイ素との少なくとも一方を含む酸化物からなる無機系吸着剤が好ましい。具体的には酸化物中にアルミニウムとケイ素との一方または両方を含む酸化物であり、より具体的には酸化アルミニウム、二酸化ケイ素、酸化アルミニウムと二酸化ケイ素との複合酸化物、酸化アルミニウムと他の金属との複合酸化物および二酸化ケイ素と他の金属との複合酸化物が挙げられる。ここで言う他の金属としては、ナトリウム、マグネシウムおよびカルシウムが挙げられる。
 上述の吸着精製において、酸性官能基を有する不純物を取り除くためには、酸性物質吸着能を有する吸着剤が好ましく、具体的な例を挙げれば、協和化学工業(株)製のキョーワードシリーズのキョーワード300(2.5MgO・Al2O3・0.7CO3・nH2O)、キョーワード500(Mg6Al2(OH)16(CO3)・4H2O)、キョーワード1000(Mg4.5Al2(OH)13(CO3)・3.5H2O)などが挙げられる。なお、これらの吸着剤は、単独もしくは組み合わせて使用してもよい。
 また、上述の吸着精製において、塩基性官能基を有する不純物を取り除くためには塩基性物質吸着能を有する吸着剤が好ましく、具体的な例を挙げれば、キョーワード600(MgO・3SiO2・nH2O)、キョーワード700(Al2O3・9SiO2・nH2O)、キョーワード200B(Al2O3・2.0H2O)などの塩基性物質吸着能を有する吸着剤であり、好ましくはキョーワード700(Al2O3・9SiO2・nH2O)およびキョーワード200B(Al2O3・2.0H2O)である。なお、これらの吸着剤は、単独もしくは他の吸着剤と組み合わせて使用してもよい。
 さらに、上述の吸着精製において、中和塩を取り除くためには塩吸着能の高い吸着剤が好ましく、具体的な例としては、キョーワード2000(4.5MgO・Al2O3)、キョーワード200B(Al2O3・2.0H2O)などが挙げられる。なお、これらの吸着剤は、単独もしくは組み合わせて使用してもよい。
(F) 環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体の末端官能基変換
 式(25)の化合物を水、メタノールまたはエタノールなどのプロトン性溶媒、もしくはアセトニトリル、テトラヒドロフラン、ジメチルスルホキシド、ジメチルホルムアミドまたはジメチルアセトアミドなどの非プロトン性溶媒、もしくは無溶媒中、エチレンジアミン、メチルヒドラジンまたはメチルアミンなどの塩基性有機化合物、もしくはヒドラジン、ヒドロキシアミン、炭酸カリウムまたは水酸化ナトリウムなどの塩基性無機化合物を用いて処理することで、トリフルオロアセチル基が脱保護されてアミノ基に変換された式(26)の化合物を得る。塩基性化合物の使用割合は、特に制限はないが、式(25)の化合物の化学反応可能な官能基に対して等モル以上が好ましい。また、塩基性化合物を溶媒として用いてもよい。得られた化合物は、前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000043
 更に、式(26)の化合物をトルエン、ベンゼン、キシレン、アセトニトリル、酢酸エチル、ジエチルエーテル、t-ブチルメチルエーテル、テトラヒドロフラン、クロロホルム、ジクロロメタン、ジメチルスルホキシド、ジメチルホルムアミドまたはジメチルアセトアミドなどの非プロトン性溶媒、もしくは無溶媒中、トリエチルアミン、N-メチルモルホリン、ピリジンまたは4-ジメチルアミノピリジンなどの有機塩基、もしくは炭酸ナトリウム、炭酸水素ナトリウム、酢酸ナトリウムまたは炭酸カリウムなどの無機塩基の存在下、3-マレイミドプロピオン酸 N-スクシンイミジルと反応させることで、末端にマレイミド基が導入された式(27)の化合物を得る。上記有機塩基、無機塩基は用いなくとも良い。有機塩基、無機塩基の使用割合は、特に制限はないが、式(26)の化合物の化学反応可能な官能基に対して等モル以上が好ましい。また、有機塩基を溶媒として用いてもよい。得られた化合物は、前述の精製手段にて精製してもよい。
Figure JPOXMLDOC01-appb-C000044
 当該環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体の末端官能基変換は、従来公知の方法を用いることができるが、式(1)、式(2)の環状ベンジリデンアセタール基、前記2価のスペーサーZ1、Z2およびZ3に含まれる結合を分解しない条件を適切に選択する必要がある。
 式(1)と式(2)は、P1とP2に対する環状ベンジリデンアセタールリンカーの結合の向きが反対であるが、環状ベンジリデンアセタールリンカーを導入するための環状ベンジリデンアセタールリンカー化合物は、P1からなるポリエチレングリコール中間体と結合させた後、P2からなるポリエチレングリコール中間体と結合させても、P2からなるポリエチレングリコール中間体と結合させた後、P1からなるポリエチレングリコール中間体と結合させてもいずれでもよく、式(1)と式(2)で表される化合物は、本質的に同じ手法により合成することが可能である。なお、式(1)と式(2)で表される化合物の合成例については、以下の実施例で具体的に示しており、これらが本質的に同じ手法により合成できることは、当業者によって理解されるであろう。
 以下に実施例を挙げて本発明を更に具体的に説明するが、本発明はこれに限定されるものではない。
 1H-NMR分析では日本電子データム(株)製JNM-ECP400またはJNM-ECA600を使用した。測定にはφ5mmチューブを用い、重水素化溶媒がCDCl3、CD3CNまたはCD3ODの場合は、内部標準物質としてテトラメチルシラン(TMS)を使用し、D2Oの場合はHDOを基準とした。
 ゲル浸透クロマトグラフィー(GPC)分析では、GPCシステムとしてSHODEX GPC SYSTEM-11、検出器である示唆屈折計としてSHODEX RIX8、GPCカラムとしてSHODEX KF801L、KF803L、KF804L(φ8mm×300mm)を3本直列に繋ぎ、カラムオーブンの温度を40℃とした。溶離液としてはテトラヒドロフランを用い、流速は1ml/分とし、試料の濃度は0.1wt%とし、注入容量は0.1mLとして測定を行った。検量線は関東化学(株)製のエチレングリコール、ジエチレングリコール、トリエチレングリコール、並びにPolymer Laboratory製の分子量600~70000のポリエチレングリコールまたはポリエチレンオキシドのGPC用Polymer Standardsを用いて作成したものを用いた。データの解析はBORWIN GPC計算プログラムを使用した。Mnは数平均分子量、Mwは重量平均分子量を表わし、分子量分布はMw/Mnとしてその計算値を示した。
 加水分解試験で使用するpD 5.5のMES(2-morpholinoethanesulfonic acid)重水緩衝液とpD 7.4のHEPES(2-[4-(Hydroxyethyl)-1-piperazinyl]ethanesulfonic acid])重水緩衝液は、それぞれ0.1MのMES重水溶液と0.1MのHEPES重水溶液に0.1Mの水酸化ナトリウム重水溶液を加え、「Glasoe, P. K.; Long, F. A. J. Phys. Chem. 1960, 64, 188-190」に記載されている以下の関係式に基づいて調製した。
 pD=pHメーターの測定値+0.40
 式(35)、式(44)、式(45)、式(47)および式(48)の化合物の加水分解率は1H-NMRで評価し、アセタール基の水素の積分値をI1、加水分解で生成するアルデヒド基の水素の積分値をI2として、次の計算式により算出した。
 加水分解率(%)=[I2/(I1+I2)]×100
 式(41)および式(54)の化合物の加水分解率はGPCで評価し、リンカーの加水分解で分割されていないポリエチレングリコール(分子量約10000)のピーク面積をA1、リンカーの加水分解で分割されたポリエチレングリコール(分子量約5000)のピーク面積をA2として、次の計算式により算出した。
 加水分解率(%)=[A2/(A1+A2)]×100
 式(74)および式(76)の化合物の加水分解率はGPCで評価し、リンカーの加水分解で分割されていないポリエチレングリコール(分子量約15000)のピーク面積をA1、リンカーの加水分解で一部分割されたポリエチレングリコール(分子量約10000)のピーク面積をA2、完全に分割されたポリエチレングリコール(分子量約5000)のピーク面積をA3として、次の計算式により算出した。
 加水分解率(%)=[A3/(A1+A2+A3)]×100
(実施例1)
 温度計、窒素吹き込み管、攪拌機、Dean-stark管および冷却管を装備した200 mLの三つ口フラスコに1,2,6-ヘキサントリオール(30.0 g, 0.224 mol)、アセトンジメチルアセタール(25.6 g, 0.246 mol)およびp-トルエンスルホン酸一水和物(0.426 g, 2.24 mmol)を仕込み、80℃にてメタノールの留去を行いながら、3時間反応を行った。トリエチルアミン(0.453 g, 4.48 mmol)を加えてしばらく攪拌し、酢酸エチルで希釈後、20wt%食塩水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、濾過後、溶媒を減圧留去した。残渣をシリカゲルカラムクロマトグラフィーにて精製し、式(28)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.35(3H, s, -CH 3 ), 1.41(3H, s, -CH 3 ), 1.49-1.67(6H, m, >CHCH 2 CH 2 CH 2 -), 2.07(1H, brs, -OH), 3.51(1H, t, -OCH 2CH<), 3.64(2H, t, -CH 2 OH), 4.04(1H, dd, -OCH 2CH<), 4.07-4.10(1H, m, -OCH2CH<)
Figure JPOXMLDOC01-appb-C000045
(実施例2)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した500 mLの四つ口フラスコに式(28)の化合物(20.0 g, 0.115 mol)、トリエチルアミン(23.3 g, 0.230 mol)およびトルエン(200 g)を仕込み、10℃以下に冷却した。冷却を続けながら、滴下漏斗に準備した塩化メタンスルホニル(19.8 g, 0.173 mol)を徐々に滴下した。滴下終了後、20℃で2時間反応を行った。エタノール(7.97 g, 0.173 mol)を加えてしばらく攪拌し、濾過後、有機層をイオン交換水で洗浄した。有機層を無水硫酸ナトリウムで乾燥し、濾過後、溶媒を減圧留去して式(29)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.35(3H, s, -CH 3 ), 1.40(3H, s, -CH 3 ), 1.44-1.83(6H, m, >CHCH 2 CH 2 CH 2 -), 3.01(3H, s, -OSO2CH 3 ), 3.51(1H, t, -OCH 2CH<), 4.03-4.11(2H, m, -OCH 2CH<, -OCH2CH<), 4.24(2H, t, -CH 2OSO2CH3)
Figure JPOXMLDOC01-appb-C000046
(実施例3)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した500 mLの四つ口フラスコに式(29)の化合物(20.0 g, 79.3 mmol)、フタルイミドカリウム(17.6 g, 95.2 mmol)および脱水ジメチルホルムアミド(200 g)を仕込み、60℃で2時間反応を行った。10℃以下に冷却し、イオン交換水(400 g)を加えてしばらく攪拌した後、酢酸エチル/ヘキサン(60/40, v/v)混合溶液で抽出した。有機層を0.2wt%炭酸カリウム水溶液で洗浄した後、無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去して式(30)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.34(3H, s, -CH 3 ), 1.39(3H, s, -CH 3 ), 1.44-1.75(6H, m, >CHCH 2 CH 2 CH 2 -), 3.50(1H, t, -OCH 2CH<), 3.69(2H, t, -CH 2 -phthalimide), 4.01-4.09(2H, m, -OCH 2CH<, -OCH2CH<), 7.71-7.85(4H, m, -phthalimide)
Figure JPOXMLDOC01-appb-C000047
(実施例4)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した1 Lの四つ口フラスコに式(30)の化合物(15.2 g, 50.0 mmol)、p-トルエンスルホン酸一水和物(951 mg, 5.00 mmol)およびメタノール(500 mL)を仕込み、室温で4時間反応を行った。トリエチルアミン(1.01 g, 10.0 mmol)を加えてしばらく攪拌した後、溶媒を減圧留去した。残渣をクロロホルムに溶解し、イオン交換水で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去して式(31)の化合物を得た。
1H-NMR(CD3CN, 内部標準TMS); δ(ppm):
1.24-1.61(6H, m, >CHCH 2 CH 2 CH 2 -), 2.69(1H, t, -OH), 2.75(1H, d, -OH), 3.17-3.21(1H, m, -OCH 2CH<), 3.31-3.37(1H, m, -OCH 2CH<), 3.39-3.43(1H, m, -OCH2CH<), 3.54(2H, t, -CH 2 -phthalimide), 7.67-7.75(4H, m, -phthalimide)
Figure JPOXMLDOC01-appb-C000048
(実施例5)
 温度計、窒素吹き込み管、攪拌機、Dean-stark管および冷却管を装備した300 mLの三つ口フラスコに式(31)の化合物(3.87 g, 14.7 mmol)、4-ヒドロキシベンズアルデヒド(1.20 g, 9.83 mmol)、p-トルエンスルホン酸ピリジニウム(247 mg, 0.983 mmol)およびトルエン(180 g)を仕込み、副生する水をトルエンで共沸除去しながら4時間反応を行った。トリエチルアミン(199 mg, 1.97 mmol)を加えてしばらく攪拌した後、溶媒を減圧留去した。残渣をクロロホルムに溶解し、20wt%食塩水、イオン交換水の順で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去して式(32)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.41-1.80(6H, m, >CHCH 2 CH 2 CH 2 -), 3.57-4.26(5H, m, -OCH 2 CH<, -CH 2 -phthalimide), 5.71(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.79-6.82(2H, m, arom. H), 7.31-7.35(2H, m, arom. H), 7.70-7.86(4H, m, -phthalimide)
Figure JPOXMLDOC01-appb-C000049
(実施例6)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した300 mLの四つ口フラスコに脱水メタノール(12.8 g, 0.400 mol)、脱水トルエン(150 g)および金属ナトリウム0.3 g(13 mmol)を仕込み、窒素を吹き込みながら金属ナトリウムが溶解するまで室温で攪拌した。この溶液を5 Lオートクレーブへ仕込み、系内を窒素置換後、100℃に昇温した。100~130℃、1 MPa以下の圧力でエチレンオキシド(1,987 g, 45 mol)を加えた後、更に2時間反応を続けた。減圧にて未反応のエチレンオキシドガスを除去後、60℃に冷却し、85%リン酸水溶液でpH 7.5に調整して式(33)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
2.68(1H, t, OH), 3.38(3H, s, CH 3 O-), 3.49-3.85(450H, m, -(OCH 2 CH 2 )n-)
GPC分析;
  数平均分子量(Mn): 5119, 重量平均分子量(Mw): 5226, 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000050
(実施例7)
 温度計、窒素吹き込み管、攪拌機、Dean-stark管および冷却管を装備した500 mLの三つ口フラスコに式(33)の化合物(100 g, 20.0 mmol)とトルエン(250g)を仕込み、水をトルエンで共沸除去した。40℃へ冷却後、トリエチルアミン(3.24 g, 32.0 mmol)を仕込み、滴下漏斗に準備した塩化メタンスルホニル(2.75 g, 24.0 mmol)を徐々に滴下した。滴下終了後、40℃で3時間反応を行った。エタノール(1.11 g, 24.0 mmol)を加えてしばらく攪拌し、濾過後、酢酸エチル(200 g)で希釈した。ヘキサン(500 g)を添加して晶析を行い、濾過後、結晶を酢酸エチル(500 g)に溶解させた。ヘキサン(500g)を添加して再度晶析を行い、濾過後、減圧下で乾燥して式(34)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
3.08(3H, s, -OSO2CH 3 ), 3.38(3H, s, CH 3 O-), 3.52-3.85(448H, m, -(OCH 2 CH 2 )n-OCH 2 -), 4.37-4.39(2H, m, -CH 2 OSO2CH3)
GPC分析;
  数平均分子量(Mn): 5197, 重量平均分子量(Mw): 5306, 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000051
(実施例8)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した100 mLの三つ口フラスコに式(34)の化合物(5.00 g, 1.00 mmol)、式(26)の化合物(551 mg, 1.50 mmol)、炭酸カリウム(691 mg, 5.00 mmol)およびアセトニトリル(25 g)を仕込み、80℃で4時間反応を行った。溶媒を減圧留去した後、残渣を酢酸エチル(100 g)に溶解し、濾過を行った。ヘキサン(100 g)を添加して晶析を行い、濾過後、減圧下で乾燥して式(35)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 3.38(3H, s, CH 3 O-), 3.52-4.25(455H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<, -CH 2 -phthalimide), 5.72(0.6H, s, >CH-), 5.84(0.4H, s, >CH-), 6.89-6.91(2H, m, arom. H), 7.35-7.39(2H, m, arom. H), 7.70-7.86(4H, m, -phthalimide)
GPC分析;
  数平均分子量(Mn): 5462, 重量平均分子量(Mw): 5582, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000052
 (実施例9)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコに式(35)の化合物(2.00 g, 0.400 mmol)、メタノール(7 g)およびエチレンジアミン一水和物(0.781 g, 10.0 mmol)を仕込み、40℃にて4時間反応を行った。20wt%食塩水で希釈し、ジクロロメタンで抽出後、溶媒を減圧留去した。残渣を酢酸エチル(50 g)に溶解して無水硫酸ナトリウムで乾燥し、濾過後、ヘキサン(50 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(36)の化合物を得た。
1H-NMR(CD3OD, 内部標準TMS); δ(ppm):
1.43-1.79(6H, m, >CHCH 2 CH 2 CH 2 -), 2.77(2H, t, -CH 2 -NH2), 3.36(3H, s, CH 3 O-), 3.50-4.29(453H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<), 5.70(0.6H, s, >CH-), 5.81(0.4H, s, >CH-), 6.93-6.98(2H, m, arom. H), 7.33-7.41(2H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 5332, 重量平均分子量(Mw): 5454, 多分散度(Mw/Mn): 1.023
Figure JPOXMLDOC01-appb-C000053
(実施例10)
Figure JPOXMLDOC01-appb-C000054
 日本国特開2010-248504号公報に記載の方法で合成した式(37)の化合物に対して、塩酸を用いてt-ブチル基を除去することで、式(38)の化合物を得た。
1H-NMR(D2O, 内部標準TMS); δ(ppm):
3.14(2H, t, -CH 2 NH2), 3.40-4.00(452H, m, -(OCH 2 CH 2 )m-)
Figure JPOXMLDOC01-appb-C000055
 (実施例11)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した100 mLの三つ口フラスコへ式(38)の化合物(5.00 g, 1.00 mmol)、ジクロロメタン(30 g)、およびトリエチルアミン(607 mg, 6.00 mmol)を仕込み、トリフルオロ酢酸無水物(630 mg, 3.00 mmol)を加えて25℃にて3時間反応を行った。pH 7.0のリン酸緩衝液を加えてしばらく攪拌した後、ジクロロメタン層を回収して、溶媒を減圧留去した。残渣を酢酸エチル(100 g)に溶解して無水硫酸マグネシウムで乾燥し、濾過後、ヘキサン(100 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(39)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
2.58(1H, t, -OH), 3.40-3.95(450H, m, -(OCH 2 CH 2 )m-), 7.34(1H, brs, -HNCOCF3)
Figure JPOXMLDOC01-appb-C000056
 (実施例12)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した100 mLの三つ口フラスコへ式(39)の化合物(4.50 g, 0.900 mmol)とジクロロメタン(27 g)を仕込み、N,N’-ジスクシンイミジルカーボネート(692 mg, 2.70 mmol)およびトリエチルアミン(410 mg, 4.05 mmol)を加えて25℃にて4時間反応を行った。濾過後、溶媒を減圧留去した。残渣を酢酸エチル(90 g)に溶解した後、ヘキサン(90 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(40)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
2.84(4H, s, -succinimide), 3.40-3.95(448H, m, -(OCH 2 CH 2 )m-OCH 2 -), 4.44-4.48(2H, m, -CH 2 O-COO-succinimide), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 5241, 重量平均分子量(Mw): 5356, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000057
 (実施例13)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した100 mLの三つ口フラスコへ式(40)の化合物(4.00 g, 0.800 mmol)、式(36)の化合物(4.20 g, 0.840 mmol)およびトルエン(24 g)を仕込み、50℃にて2時間反応を行った。続いて、キョーワード700(1.2 g)を加えて、50℃にて2時間吸着処理を行った。濾過後、ヘキサン(24 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(41)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 3.31-3.34(2H, m, -CH 2 -HNCOO-), 3.38(3H, s, CH 3 O-), 3.52-4.25(903H, m, -(OCH 2 CH 2 )n-, -(OCH 2 CH 2 )m-, -OCH 2 CH<), 5.19(1H, brs, -HNCOO-), 5.72(0.6H, s, >CH-), 5.84(0.4H, s, >CH-), 6.89-6.91(2H, m, arom. H), 7.35-7.39(2H, m, arom. H), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 10458, 重量平均分子量(Mw): 11180, 多分散度(Mw/Mn): 1.069
Figure JPOXMLDOC01-appb-C000058
 (実施例14)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した100 mLの三つ口フラスコへ式(41)の化合物(5.00 g, 0.200 mmol)、1M炭酸カリウム水溶液(25 g)を仕込み、25℃にて2時間反応を行った。20wt%食塩水で希釈し、ジクロロメタンで抽出後、溶媒を減圧留去した。残渣を酢酸エチル(100 g)に溶解して無水硫酸ナトリウムで乾燥し、濾過後、ヘキサン(100 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(42)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 2.86(2H, t, -CH 2 -NH2), 3.31-3.34(2H, m, -CH 2 -HNCOO-), 3.38(3H, s, CH 3 O-), 3.52-4.25(901H, m, -(OCH 2 CH 2 )n-, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<), 5.19(1H, brs, -HNCOO-), 5.72(0.6H, s, >CH-), 5.84(0.4H, s, >CH-), 6.89-6.91(2H, m, arom. H), 7.35-7.39(2H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 10309, 重量平均分子量(Mw): 11021, 多分散度(Mw/Mn): 1.069
Figure JPOXMLDOC01-appb-C000059
 (実施例15)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコへ式(42)の化合物(2.00 g, 0.200 mmol)とトルエン(10 g)を仕込み、3-マレイミドプロピオン酸 N-スクシンイミジル(63.9 mg, 0.240 mmol)を加えて40℃にて2時間反応を行った。濾過後、酢酸エチル(40 g)で希釈し、ヘキサン(50 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(43)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 2.44(2H, t, -CH 2 CH2-maleimide), 3.27-3.34(4H, m, -CH 2 -HNCOO-, -CH 2 -NHCOCH2-), 3.38(3H, s, CH 3 O-), 3.52-4.25(903H, m, -(OCH 2 CH 2 )n-, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -CH2CH 2 -maleimide), 5.19(1H, brs, -HNCOO-), 5.72(0.6H, s, >CH-), 5.84(0.4H, s, >CH-), 6.70(2H, s, -maleimide), 6.89-6.91(2H, m, arom. H), 7.35-7.39(2H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 10513, 重量平均分子量(Mw): 11249, 多分散度(Mw/Mn): 1.070
Figure JPOXMLDOC01-appb-C000060
 (実施例16)
 3-フルオロ-4-ヒドロキシベンズアルデヒドを用いて、実施例1~8と同様の方法にて式(44)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.38-1.80(6H, m, >CHCH 2 CH 2 CH 2 -), 3.38(3H, s, CH 3 O-), 3.52-4.23(455H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<, -CH 2 -phthalimide), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.95-7.21(3H, m, arom. H), 7.70-7.86(4H, m, -phthalimide)
GPC分析;
  数平均分子量(Mn): 5485, 重量平均分子量(Mw): 5606, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000061
 (実施例17)
 2-ブロモ-5-ヒドロキシベンズアルデヒドを用いて、実施例1~8と同様の方法にて式(45)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.38-1.80(6H, m, >CHCH 2 CH 2 CH 2 -), 3.38(3H, s, CH 3 O-), 3.52-4.23(455H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<, -CH 2 -phthalimide), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.95-7.21(3H, m, arom. H), 7.70-7.86(4H, m, -phthalimide)
GPC分析;
  数平均分子量(Mn): 5548, 重量平均分子量(Mw): 5670, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000062
(実施例18)
Figure JPOXMLDOC01-appb-C000063
 実施例1~4と類似の方法にて式(46)の化合物を合成した後、3-フルオロ-4-ヒドロキシベンズアルデヒドを用いて、実施例5~8と同様の方法にて式(47)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.89 (2H, m, -CH 2 CH2-phthalimide), 3.19(1H, m, -OCH2CH<), 3.38(3H, s, CH 3 O-), 3.52-4.41(456H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<, -CH 2 CH2CH 2 -phthalimide), 5.34(0.8H, s, >CH-), 5.42(0.2H, s, >CH-), 6.95-7.25(3H, m, arom. H), 7.70-7.86(4H, m, -phthalimide)
GPC分析;
  数平均分子量(Mn): 5498, 重量平均分子量(Mw): 5619, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000064
(実施例19)
 式(46)の化合物と2-ブロモ-5-ヒドロキシベンズアルデヒドを用いて、実施例5~8と同様の方法にて式(48)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.89 (2H, m, -CH 2 CH2-phthalimide), 3.19(1H, m, -OCH2CH<), 3.38(3H, s, CH 3 O-), 3.52-4.41(456H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<, -CH 2 CH2CH 2 -phthalimide), 5.61(0.8H, s, >CH-), 5.68(0.2H, s, >CH-), 6.78-7.40(3H, m, arom. H), 7.70-7.86(4H, m, -phthalimide)
GPC分析;
  数平均分子量(Mn): 5564, 重量平均分子量(Mw): 5686, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000065
 (実施例20)
 式(39)の化合物に対して、実施例7と類似の方法にて塩化メタンスルホニルを反応させることで、式(49)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
3.08(3H, s, -OSO2CH 3 ), 3.40-3.95(448H, m, -(OCH 2 CH 2 )m-OCH 2 -), 4.37-4.39(2H, m, -CH 2 OSO2CH3), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 5193, 重量平均分子量(Mw): 5302, 多分散度(Mw/Mn): 1.021
Figure JPOXMLDOC01-appb-C000066
 (実施例21)
 温度計、窒素吹き込み管、攪拌機、Dean-stark管および冷却管を装備した300 mLの三つ口フラスコに1,2,6-ヘキサントリオール(2.01 g, 15.0 mmol)、3-フルオロ-4-ヒドロキシベンズアルデヒド(1.40 g, 10.0 mmol)、p-トルエンスルホン酸一水和物(19.0 mg, 0.100 mmol)およびトルエン(183 g)を仕込み、副生する水をトルエンで共沸除去しながら4時間反応を行った。トリエチルアミン(20.2 mg, 0.200 mmol)を加えてしばらく攪拌し、10wt%食塩水で洗浄した後、有機層を無水硫酸ナトリウムで乾燥した。濾過後、溶媒を減圧留去して式(50)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.32-1.80(6H, m, >CHCH 2 CH 2 CH 2 -), 3.50-4.24(5H, m, -OCH 2 CH<, -CH 2 -OH), 5.71(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.73-7.24(3H, m, arom. H)
Figure JPOXMLDOC01-appb-C000067
(実施例22)
 式(50)の化合物と式(49)の化合物を用いて、実施例8と同様の方法にて式(51)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 3.40-4.25(455H, m, -(OCH 2 CH 2 )m-, -OCH 2 CH<, -CH 2 -OH), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.95-7.21(3H, m, arom. H), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 5239, 重量平均分子量(Mw): 5354, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000068
 (実施例23)
 式(51)の化合物に対して、実施例12と同様の方法にてN,N’-ジスクシンイミジルカーボネートを反応させることで、式(52)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 2.84(4H, s, -succinimide), 3.40-4.25(453H, m, -(OCH 2 CH 2 )m-, -OCH 2 CH<), 4.33(2H, dd, -CH 2 O-COO-succinimide), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.95-7.21(3H, m, arom. H), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 5354, 重量平均分子量(Mw): 5472, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000069
(実施例24)
Figure JPOXMLDOC01-appb-C000070
 日本国特開2010-248504号公報に記載の方法で合成した式(53)の化合物と式(52)の化合物を用いて、実施例13と同様の方法にて式(54)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 3.27-3.29(2H, m, -CH 2 -HNCOO-), 3.38(3H, s, CH 3 O-), 3.52-4.25(903H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )m-, -OCH 2 CH<, -HNCOO-CH 2 -), 5.19(1H, brs, -HNCOO-), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.95-7.21(3H, m, arom. H), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 10138, 重量平均分子量(Mw): 10685, 多分散度(Mw/Mn): 1.054
Figure JPOXMLDOC01-appb-C000071
 (実施例25)
 式(54)の化合物に対して、実施例14と同様の方法にてトリフルオロアセチル基を脱保護した後、実施例15と同様の方法にて3-マレイミドプロピオン酸 N-スクシンイミジルを反応させることで、式(55)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 2.44(2H, t, -CH 2 CH2-maleimide), 3.27-3.29(4H, m, -CH 2 -HNCOO-, -CH 2 -NHCOCH2-), 3.38(3H, s, CH 3 O-), 3.52-4.25(903H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -HNCOO-CH 2 -, -CH2CH 2 -maleimide), 5.19(1H, brs, -HNCOO-), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.15(1H, brs, -HNCOCH2-), 6.70(2H, s, -maleimide), 6.95-7.21(3H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 10291, 重量平均分子量(Mw): 10847, 多分散度(Mw/Mn): 1.054
Figure JPOXMLDOC01-appb-C000072
(実施例26)
Figure JPOXMLDOC01-appb-C000073
 日本国特開2004-197077号公報に記載の方法で合成した式(56)の化合物に対して、トリエチルアミンおよび4-ジメチルアミノピリジン存在下、無水酢酸を反応させることで、式(57)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
2.08(6H, s, CH 3 CO-), 3.40-4.00(901H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )n-OCH<, -CH 2 OCH2Ph), 4.22(4H, t, CH3CO2CH 2 -), 4.54(2H, s, -CH2OCH 2 Ph), 7.27-7.38(5H, m, -CH2OCH2 Ph)
Figure JPOXMLDOC01-appb-C000074
 (実施例27)
式(57)の化合物に対して、日本国特開2004-197077号公報に記載の方法でベンジル基を除去した後、実施例7と類似の方法にて塩化メタンスルホニルを反応させることで、式(58)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
2.08(6H, s, CH 3 CO-), 3.08(3H, s, -OSO2CH 3 ), 3.40-4.00(899H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )n-OCH<), 4.22(4H, t, CH3CO2CH 2 -), 4.26-4.42(2H, m, -CH 2 OSO2CH3)
Figure JPOXMLDOC01-appb-C000075
(実施例28)
 3-フルオロ-4-ヒドロキシベンズアルデヒドと式(58)の化合物を用いて、実施例1~5および8と同様の方法にて式(59)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.38-1.80(6H, m, >CHCH 2 CH 2 CH 2 -), 2.08(6H, s, CH 3 CO-), 3.40-4.23(910H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )n-OCH<, -OCH 2 CH<, -CH 2 -phthalimide, CH3CO2CH 2 -), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.95-7.21(3H, m, arom. H), 7.70-7.86(4H, m, -phthalimide)
GPC分析;
  数平均分子量(Mn): 10223, 重量平均分子量(Mw): 10458, 多分散度(Mw/Mn): 1.023
Figure JPOXMLDOC01-appb-C000076
(実施例29)
 式(38)の化合物を5-アジドペンタン酸無水物と反応させ、続いてN,N’-ジスクシンイミジルカーボネートと反応させることで、式(60)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.60-1.74(4H, m, -CH2CH 2 CH 2 CH2N3), 2.18(2H, t, -CH 2 CH2CH2CH2N3), 2.84(4H, s, -succinimide), 3.29(2H, t, -CH2CH2CH2CH 2 N3), 3.40-3.85(448H, m, -(OCH 2 CH 2 )m-OCH 2 -), 4.44-4.48(2H, m, -CH 2 O-COO-succinimide), 6.30(1H, brs, -HNCOCH2-)
GPC分析;
  数平均分子量(Mn): 5532, 重量平均分子量(Mw): 5665, 多分散度(Mw/Mn): 1.024
Figure JPOXMLDOC01-appb-C000077
 (実施例30)
 式(59)の化合物に対して、エチレンジアミン一水和物を用いたフタルイミド基の脱保護と水酸化ナトリウム水溶液を用いたアセチル基の除去を行った後、式(60)の化合物を反応させることで、式(61)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(10H, m, >CHCH 2 CH 2 CH 2 -, -CH2CH 2 CH 2 CH2N3), 2.18(2H, t, -CH 2 CH2CH2CH2N3), 3.29(2H, t, -CH2CH2CH2CH 2 N3), 3.31-3.34(2H, m, -CH 2 -HNCOO-), 3.40-4.23(1353H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )n-OCH<, -OCH 2 CH<), 5.19(1H, brs, -HNCOO-), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.30(1H, brs, -HNCOCH2-), 6.95-7.21(3H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 14728, 重量平均分子量(Mw): 15582, 多分散度(Mw/Mn): 1.058
Figure JPOXMLDOC01-appb-C000078
(実施例31)
 式(61)の化合物に対して、実施例12と同様の方法にてN,N’-ジスクシンイミジルカーボネートを反応させることで、式(62)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(10H, m, >CHCH 2 CH 2 CH 2 -, -CH2CH 2 CH 2 CH2N3), 2.18(2H, t, -CH 2 CH2CH2CH2N3), 2.84(8H, s, -succinimide), 3.29(2H, t, -CH2CH2CH2CH 2 N3), 3.31-3.34(2H, m, -CH 2 -HNCOO-), 3.40-4.23(1349H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )n-OCH<, -OCH 2 CH<), 4.44-4.48(4H, m, -CH 2 O-COO-succinimide), 5.19(1H, brs, -HNCOO-), 5.70(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.30(1H, brs, -HNCOCH2-), 6.95-7.21(3H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 14958, 重量平均分子量(Mw): 15855, 多分散度(Mw/Mn): 1.060
Figure JPOXMLDOC01-appb-C000079
(実施例32)
Figure JPOXMLDOC01-appb-C000080
 ペンタエリスリトールにエチレンオキシドを重合させて合成した式(63)の化合物に対して、実施例7と同様の方法にて塩化メタンスルホニルを反応させることで、式(64)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
3.08(12H, s, -OSO2CH 3 ), 3.47-3.85(1800H, m, -(OCH 2 CH 2 )n-OCH 2 -), 4.37-4.39(8H, m, -CH 2 OSO2CH3)
Figure JPOXMLDOC01-appb-C000081
(実施例33)
 式(64)の化合物と式(50)の化合物を用いて、実施例8と同様の方法にて式(65)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(24H, m, >CHCH 2 CH 2 CH 2 -), 3.52-4.23(1828H, m, -(OCH 2 CH 2 )n-OCH 2 -, -OCH 2 CH<, -CH 2 -OH), 5.70(2.4H, s, >CH-), 5.82(1.6H, s, >CH-), 6.95-7.21(12H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 19078, 重量平均分子量(Mw): 19574, 多分散度(Mw/Mn): 1.026
Figure JPOXMLDOC01-appb-C000082
(実施例34)
 式(65)の化合物に対して、実施例12と同様の方法にてN,N’-ジスクシンイミジルカーボネートを反応させることで、式(66)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(24H, m, >CHCH 2 CH 2 CH 2 -), 2.84(16H, s, -succinimide), 3.52-4.23(1820H, m, -(OCH 2 CH 2 )n-OCH 2 -, -OCH 2 CH<), 4.33(8H, dd, -CH 2 O-COO-succinimide), 5.70(2.4H, s, >CH-), 5.82(1.6H, s, >CH-), 6.95-7.21(12H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 19538, 重量平均分子量(Mw): 20046, 多分散度(Mw/Mn): 1.026
Figure JPOXMLDOC01-appb-C000083
(実施例35)
 式(66)の化合物と式(38)の化合物を用いて、実施例13と同様の方法にて式(67)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(24H, m, >CHCH 2 CH 2 CH 2 -), 3.27-3.29(8H, m, -CH 2 -HNCOO-), 3.52-4.23(3620H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -HNCOO-CH 2 -), 5.19(4H, brs, -HNCOO-), 5.70(2.4H, s, >CH-), 5.82(1.6H, s, >CH-), 6.95-7.21(12H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 37096, 重量平均分子量(Mw): 39878, 多分散度(Mw/Mn): 1.075
Figure JPOXMLDOC01-appb-C000084
(実施例36)
 温度計、窒素吹き込み管および攪拌機を装備した50 mLの三つ口フラスコに式(67)の化合物(4.00 g, 0.100 mmol)とジクロロメタン(20 g)を仕込み、グルタル酸無水物(68.5 mg, 0.600 mmol)、トリエチルアミン(60.7 mg, 0.600 mmol)および4-ジメチルアミノピリジン(3.7 mg, 0.030 mmol)を加えて、25℃にて6時間反応を行った。濾過後、溶媒を減圧留去した。残渣を酢酸エチル(100 g)に溶解した後、ヘキサン(100 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(68)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(24H, m, >CHCH 2 CH 2 CH 2 -), 1.97(8H, quin, -CH2CH 2 CH2COOH), 2.38-2.46(16H, m, -CH 2 CH2CH 2 COOH), 3.27-3.29(8H, m, -CH 2 -HNCOO-), 3.52-4.23(3620H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -HNCOO-CH 2 -, -CH 2 O-COCH2-), 5.19(4H, brs, -HNCOO-), 5.70(2.4H, s, >CH-), 5.82(1.6H, s, >CH-), 6.95-7.21(12H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 38021, 重量平均分子量(Mw): 40873, 多分散度(Mw/Mn): 1.075
Figure JPOXMLDOC01-appb-C000085
(実施例37)
 4-ヒドロキシベンズアルデヒドを用いて、実施例21と同様の方法にて式(69)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.32-1.80(6H, m, >CHCH 2 CH 2 CH 2 -), 3.50-4.24(5H, m, -OCH 2 CH<, -CH 2 -OH), 5.71(0.6H, s, >CH-), 5.82(0.4H, s, >CH-), 6.79-6.82(2H, m, arom. H), 7.31-7.35(2H, m, arom. H)
Figure JPOXMLDOC01-appb-C000086
(実施例38)
 式(34)の化合物と式(69)の化合物を用いて、実施例8と同様の方法にて式(70)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 3.38(3H, s, CH 3 O-), 3.40-4.25(455H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<, -CH 2 -OH), 5.72(0.6H, s, >CH-), 5.84(0.4H, s, >CH-), 6.89-6.91(2H, m, arom. H), 7.35-7.39(2H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 5142, 重量平均分子量(Mw): 5255, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000087
(実施例39)
 式(70)の化合物に対して、実施例12と同様の方法にてN,N’-ジスクシンイミジルカーボネートを反応させることで、式(71)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 2.84(4H, s, -succinimide), 3.38(3H, s, CH 3 O-), 3.40-4.25(453H, m, -(OCH 2 CH 2 )n-, -OCH 2 CH<), 4.33(2H, dd, -CH 2 O-COO-succinimide), 5.72(0.6H, s, >CH-), 5.84(0.4H, s, >CH-), 6.89-6.91(2H, m, arom. H), 7.35-7.39(2H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 5257, 重量平均分子量(Mw): 5373, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000088
(実施例40)
 式(49)の化合物と式(69)の化合物を用いて、実施例8と同様の方法にて反応させた後、実施例14と同様の方法にてトリフルオロアセチル基を脱保護して、式(72)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(6H, m, >CHCH 2 CH 2 CH 2 -), 2.86(2H, t, -CH 2 -NH2), 3.40-4.25(453H, m, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -CH 2 -OH), 5.72(0.6H, s, >CH-), 5.84(0.4H, s, >CH-), 6.89-6.91(2H, m, arom. H), 7.35-7.39(2H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 5126, 重量平均分子量(Mw): 5239, 多分散度(Mw/Mn): 1.022
Figure JPOXMLDOC01-appb-C000089
(実施例41)
 温度計、窒素吹き込み管、攪拌機および冷却管を装備した50 mLの三つ口フラスコへ式(71)の化合物(2.00 g, 0.400 mmol)、式(72)の化合物(2.10 g, 0.420 mmol)およびトルエン(12 g)を仕込み、50℃にて2時間反応を行った。続いて、キョーワード200B(0.6 g)を加えて、50℃にて2時間吸着処理を行った。濾過後、ヘキサン(12 g)を添加して晶析を行った。濾過後、減圧下で乾燥して式(73)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(12H, m, >CHCH 2 CH 2 CH 2 -), 3.27-3.29(2H, m, -CH 2 -HNCOO-), 3.38(3H, s, CH 3 O-), 3.52-4.25(908H, m, -(OCH 2 CH 2 )n-, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -CH 2 -OH, -HNCOO-CH 2 -), 5.72(1.2H, s, >CH-), 5.84(0.8H, s, >CH-), 6.89-6.91(4H, m, arom. H), 7.35-7.39(4H, m, arom. H), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 10268, 重量平均分子量(Mw): 10812, 多分散度(Mw/Mn): 1.053
Figure JPOXMLDOC01-appb-C000090
(実施例42)
 式(73)の化合物に対して、実施例12と同様の方法にてN,N’-ジスクシンイミジルカーボネートを反応させた後、実施例13と同様の方法にて式(38)の化合物と反応させて、式(74)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(12H, m, >CHCH 2 CH 2 CH 2 -), 3.27-3.29(4H, m, -CH 2 -HNCOO-), 3.38(3H, s, CH 3 O-), 3.52-4.25(1356H, m, -(OCH 2 CH 2 )n-, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -HNCOO-CH 2 -), 5.72(1.2H, s, >CH-), 5.84(0.8H, s, >CH-), 6.89-6.91(4H, m, arom. H), 7.35-7.39(4H, m, arom. H), 7.34(2H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 15296, 重量平均分子量(Mw): 16856, 多分散度(Mw/Mn): 1.102
Figure JPOXMLDOC01-appb-C000091
(実施例43)
 式(74)の化合物に対して、実施例12と同様の方法にてN,N’-ジスクシンイミジルカーボネートを反応させることで、式(75)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(12H, m, >CHCH 2 CH 2 CH 2 -), 2.84(4H, s, -succinimide), 3.27-3.29(4H, m, -CH 2 -HNCOO-), 3.38(3H, s, CH 3 O-), 3.52-4.25(1354H, m, -(OCH 2 CH 2 )n-, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -HNCOO-CH 2 -), 4.44-4.48(2H, m, -CH 2 O-COO-succinimide), 5.72(1.2H, s, >CH-), 5.84(0.8H, s, >CH-), 6.89-6.91(4H, m, arom. H), 7.35-7.39(4H, m, arom. H), 7.34(2H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 15439, 重量平均分子量(Mw): 17014, 多分散度(Mw/Mn): 1.102
Figure JPOXMLDOC01-appb-C000092
 (実施例44)
 式(54)の化合物に対して、実施例14と同様の方法にてトリフルオロアセチル基を脱保護した後、実施例41と同様の方法にて式(52)の化合物と反応させて、式(76)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(12H, m, >CHCH 2 CH 2 CH 2 -), 3.27-3.29(4H, m, -CH 2 -HNCOO-), 3.38(3H, s, CH 3 O-), 3.52-4.25(1359H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -HNCOO-CH 2 -), 5.19(2H, brs, -HNCOO-), 5.70(1.2H, s, >CH-), 5.82(0.8H, s, >CH-), 6.95-7.21(6H, m, arom. H), 7.34(1H, brs, -HNCOCF3)
GPC分析;
  数平均分子量(Mn): 15279, 重量平均分子量(Mw): 16822, 多分散度(Mw/Mn): 1.101
Figure JPOXMLDOC01-appb-C000093
 (実施例46)
 式(76)の化合物に対して、実施例14と同様の方法にてトリフルオロアセチル基を脱保護した後、実施例15と同様の方法にて3-マレイミドプロピオン酸 N-スクシンイミジルを反応させることで、式(77)の化合物を得た。
1H-NMR(CDCl3, 内部標準TMS); δ(ppm):
1.40-1.81(12H, m, >CHCH 2 CH 2 CH 2 -), 2.44(2H, t, -CH 2 CH2-maleimide), 3.27-3.29(4H, m, -CH 2 -HNCOO-, -CH 2 -NHCOCH2-), 3.38(3H, s, CH 3 O-), 3.52-4.25(1359H, m, -(OCH 2 CH 2 )n-OCH 2 -, -(OCH 2 CH 2 )m-OCH 2 -, -OCH 2 CH<, -HNCOO-CH 2 -, -CH2CH 2 -maleimide), 5.19(2H, brs, -HNCOO-), 5.70(1.2H, s, >CH-), 5.82(0.8H, s, >CH-), 6.15(1H, brs, -HNCOCH2-), 6.70(2H, s, -maleimide), 6.95-7.21(6H, m, arom. H)
GPC分析;
  数平均分子量(Mn): 15334, 重量平均分子量(Mw): 16883, 多分散度(Mw/Mn): 1.101
Figure JPOXMLDOC01-appb-C000094
 (実施例47)
 式(35)、式(44)、式(45)、式(47)および式(48)の化合物(20 mg)をそれぞれpD 5.5のMES重水緩衝液(1 mL)とpD 7.4のHEPES重水緩衝液(1 mL)に溶解し、37℃の恒温槽で静置した。図1はpD 5.5、図2はpD 7.4における加水分解率の測定結果である。
 (実施例48)
 式(41)、式(54)、式(74)および式(76)の化合物(200 mg)をそれぞれpD 5.5のMES重水緩衝液(10 mL)とpD 7.4のHEPES重水緩衝液(10 mL)に溶解し、37℃の恒温槽で静置した。図3はpD 5.5、図4はpD 7.4における加水分解率の測定結果である。

 図1に示すように、式(35)、式(44)、式(45)、式(47)および式(48)の化合物のpD 5.5、37℃における加水分解半減期(t1/2)は、それぞれ2時間、12時間、30日、24時間および6ヶ月であった。また、図2に示すようにpD 7.4、37℃においては、式(35)および式(44)の化合物の加水分解半減期(t1/2)は、それぞれ65時間および18日であり、式(47)の化合物は18日で17%程度の加水分解が見られたが、式(45)および式(48)の化合物は18日後でも加水分解は見られなかった。
 図3に示すように、環状ベンジリデンアセタールリンカーの構造が同じである式(41)と式(74)の化合物のpD 5.5、37℃における加水分解半減期(t1/2)はいずれも2時間であり、同じリンカー構造を有する式(35)の加水分解半減期(t1/2)と同等であった。また、環状ベンジリデンアセタールリンカーの構造が同じである式(54)と式(76)の化合物のpD 5.5、37℃における加水分解半減期(t1/2)はいずれも12時間であり、同じリンカー構造を有する式(44)の加水分解半減期(t1/2)と同等であった。図4に示すようにpD 7.4、37℃においては、式(41)と式(74)の化合物の加水分解半減期(t1/2)は65時間、式(54)と式(76)の化合物の加水分解半減期(t1/2)は18日であり、それぞれ同じリンカー構造を有する式(35)の化合物、式(44)の化合物と同等であった。
 以上より、環状ベンジリデンアセタールリンカーの構造が同じであれば、連結するポリエチレングリコールの数に関係無く、加水分解速度が同じであることが示された。
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本願は、2015年3月31日付で出願された日本国特許出願(2015-070659)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。

Claims (22)

  1.  式(1)または式(2)で示される、環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000001
    Figure JPOXMLDOC01-appb-C000002
    (式(1)および式(2)中、
     R1およびR6は、それぞれ独立して水素原子または炭化水素基であり;
     R2、R3、R4およびR5は、それぞれ独立して電子吸引性もしくは電子供与性の置換基、または水素原子であり;
     s=1または2、t=0または1、かつs+t=1または2であり;
     P1は、エチレングリコール単位の数が3以上の直鎖型または分岐型のポリエチレングリコールであり;
     P2は、エチレングリコール単位の数が3以上の直鎖型または分岐型のポリエチレングリコールであり;
     wは、1~8の整数であり;
     uは、1~40の整数であり;
     vは、1~4の整数であり;
     X1は、化学反応可能な官能基であり;および
     Z1、Z2およびZ3は、それぞれ独立して選択された2価のスペーサーである。)
  2.  s=1かつt=0であり、R2およびR5は水素原子であり、式(1)のR3、R4およびP1-Z1における置換基定数(σ)の合計(Σσ)、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が
    -0.30≦Σσ≦1.05である、請求項1に記載の生分解性ポリエチレングリコール誘導体。
  3.  s=1かつt=0であり、R2とR5との少なくとも一方が前記置換基であり、式(1)のR3、R4およびP1-Z1における置換基定数(σ)の合計(Σσ)、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が-1.71≦Σσ≦0.88である、請求項1に記載の生分解性ポリエチレングリコール誘導体。
  4.  s=1かつt=1、またはs=2かつt=0であり、R2およびR5は水素原子であり、式(1)のR3、R4およびP1-Z1における置換基定数(σ)の合計(Σσ)、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が-0.19≦Σσ≦0.57である、請求項1に記載の生分解性ポリエチレングリコール誘導体。
  5.  s=1かつt=1、またはs=2かつt=0であり、R2とR5との少なくとも一方が前記置換基であり、式(1)のR3、R4およびP1-Z1における置換基定数(σ)の合計(Σσ)、または式(2)のR3、R4およびP2-Z1における置換基定数(σ)の合計(Σσ)が-0.98≦Σσ≦0.48である、請求項1に記載の生分解性ポリエチレングリコール誘導体。
  6.  wが1である、請求項1~5のいずれか一つの請求項に記載の生分解性ポリエチレングリコール誘導体。
  7.  P1が、末端に炭化水素基または化学反応可能な官能基を有する直鎖型のポリエチレングリコールである、請求項6に記載の生分解性ポリエチレングリコール誘導体。
  8.  P1が式(3)で示される、請求項7に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000003
    (式(3)中、
     Yは炭素数1~24の炭化水素基であり;
     nは3~2000の整数である。)
  9.  P1が式(4)で示される、請求項7に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000004
    (式(4)中、
     X2は、X1と異なる化学反応可能な官能基であり;
     Z4は2価のスペーサーであり;および
     nは3~2000の整数である。)
  10.  P1が、末端に炭化水素基またはX1と異なる化学反応可能な官能基を有する分岐型のポリエチレングリコールである、請求項6に記載の生分解性ポリエチレングリコール誘導体。
  11.  P1が式(5)で示される、請求項10に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000005
    (式(5)中、
     Yは炭素数1~24の炭化水素基であり; nは3~1000の整数であり;および

     aは0または2である。)
  12.  P1が式(6)で示される、請求項10に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000006
    (式(6)中、
     X2は、X1と異なる化学反応可能な官能基であり;
     Z4は2価のスペーサーであり;
     nは3~1000の整数であり;および
     aは0または2である。)
  13.  wが2~8である、請求項1~5のいずれか一つの請求項に記載の生分解性ポリエチレングリコール誘導体。
  14.  P1が式(7)で示される、請求項13に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000007
    (式(7)中、
     X2は、X1と異なる化学反応可能な官能基であり;
     Z4は2価のスペーサーであり;
     nは3~1000の整数であり;および
     aは0または2である。)
  15.  P1が、直鎖型または末端数3~8の分岐型のポリエチレングリコールであり、P1を構成するポリエチレングリコールの全ての末端がそれぞれ、式(1)ではZ1、式(2)ではZ2に対して結合しており、wが前記ポリエチレングリコールの末端数に等しい、請求項13に記載の生分解性ポリエチレングリコール誘導体。
  16. P1が、式(r)、式(s)、式(t)、式(u)および式(v)からなる群から選択される、請求項15に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000008
    (式中、nは3~2000の整数である。

     ここで、P1が式(r)で表される場合にはwが2であり、P1が式(s)で表される場合にはwが3であり、P1が式(t)で表される場合にはwが4であり、P1が式(u)で表される場合にはwが4であり、P1が式(v)で表される場合にはwが8である。)
  17.  P2が式(8)で示される、請求項1~16のいずれか一つの請求項に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000009
    (式(8)中、mは3~2000の整数である。
     ここで、式(1)および式(2)中、vは1である。)
  18.  P2が式(9)で示される、請求項1~16のいずれか一つの請求項に記載の生分解性ポリエチレングリコール誘導体。
    Figure JPOXMLDOC01-appb-C000010
    (式(9)中、
     mは3~1000の整数であり;および
     bは0または2である。
     ここで、式(1)および式(2)中、vはb+2である。)
  19.  X1が、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基よりなる群から選択される、請求項1~18のいずれか一つの請求項に記載の生分解性ポリエチレングリコール誘導体。
  20.  Z1、Z2およびZ3が、それぞれ独立してエーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である、請求項1~19のいずれか一つの請求項に記載の生分解性ポリエチレングリコール誘導体。
  21.  X2が、活性エステル基、活性カーボネート基、アルデヒド基、イソシアネート基、イソチオシアネート基、エポキシ基、マレイミド基、ビニルスルホン基、アクリル基、スルホニルオキシ基、カルボキシ基、チオール基、ジチオピリジル基、α-ハロアセチル基、アルキニル基、アリル基、ビニル基、アミノ基、オキシアミノ基、ヒドラジド基およびアジド基よりなる群から選択される、請求項9、12または14に記載の生分解性ポリエチレングリコール誘導体。
  22.  Z4が、エーテル結合、エステル結合、カーボネート結合、ウレタン結合、アミド結合、2級アミノ基もしくはこれらを含むアルキレン基、単結合またはアルキレン基である、請求項9、12または14に記載の生分解性ポリエチレングリコール誘導体。 
PCT/JP2016/060377 2015-03-31 2016-03-30 環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体 WO2016159071A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/563,346 US20180078651A1 (en) 2015-03-31 2016-03-30 Biodegradable polyethylene glycol derivative having cyclic benzylidene acetal linker
EP16772952.4A EP3279236B1 (en) 2015-03-31 2016-03-30 Biodegradable polyethylene glycol derivative having cyclic benzylidene acetal linker
US16/886,056 US11529423B2 (en) 2015-03-31 2020-05-28 Biodegradable polyethylene glycol derivative having cyclic benzylidene acetal linker

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-070659 2015-03-31
JP2015070659 2015-03-31

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/563,346 A-371-Of-International US20180078651A1 (en) 2015-03-31 2016-03-30 Biodegradable polyethylene glycol derivative having cyclic benzylidene acetal linker
US16/886,056 Continuation US11529423B2 (en) 2015-03-31 2020-05-28 Biodegradable polyethylene glycol derivative having cyclic benzylidene acetal linker

Publications (1)

Publication Number Publication Date
WO2016159071A1 true WO2016159071A1 (ja) 2016-10-06

Family

ID=57007176

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060377 WO2016159071A1 (ja) 2015-03-31 2016-03-30 環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体

Country Status (4)

Country Link
US (2) US20180078651A1 (ja)
EP (1) EP3279236B1 (ja)
JP (1) JP6784932B2 (ja)
WO (1) WO2016159071A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357514A4 (en) * 2015-09-30 2019-04-03 NOF Corporation LIPID DERIVATIVES WITH HYDROPHILIC POLYMERS BOUND BY CYCLIC BENZYLIDES-ACETAL-LINKER
CN111936550A (zh) * 2018-03-29 2020-11-13 日油株式会社 分解性聚乙二醇衍生物
EP3604384A4 (en) * 2017-03-30 2021-01-27 NOF Corporation HYDROPHILIC POLYMER DERIVATIVE WITH SELF-IMMOLATIVE ACETAL LINKER AND COMPOSITE

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6723509B2 (ja) 2014-10-24 2020-07-15 日油株式会社 環状ベンジリデンアセタールリンカーを有する抗体―薬物複合体
JP6925579B2 (ja) 2016-03-31 2021-08-25 日油株式会社 環状ベンジリデンアセタール構造を有する生分解性ヒドロゲル
WO2020077289A2 (en) * 2018-10-11 2020-04-16 Nektar Therapeutics Method of making releasable polymeric reagents

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157150A1 (ja) * 2013-03-25 2014-10-02 日油株式会社 ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体
WO2015152182A1 (ja) * 2014-03-31 2015-10-08 日油株式会社 環状ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005108463A2 (en) 2004-05-03 2005-11-17 Nektar Therapeutics Al, Corporation Branched polyethylen glycol derivates comprising an acetal or ketal branching point
US9896522B2 (en) * 2010-08-27 2018-02-20 The Texas A&M University System Solid phase fluorescence labeling reagents and uses thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014157150A1 (ja) * 2013-03-25 2014-10-02 日油株式会社 ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体
WO2015152182A1 (ja) * 2014-03-31 2015-10-08 日油株式会社 環状ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHEN, WEI ET AL.: "pH-Responsive Biodegradable Micelles Based on Acid-Labile Polycarbonate Hydrophobe: Synthesis and Triggered Drug Release", BIOMACROMOLECULES, vol. 10, no. 7, 13 July 2009 (2009-07-13), pages 1727 - 1735, XP055062990 *
GILLIES, ELIZABETH R. ET AL.: "pH-responsive copolymer assemblies for controlled release of doxorubicin", BIOCONJUGATE CHEMISTRY, vol. 16, no. 2, 2005, pages 361 - 368, XP055118301 *
HUANG,X. ET AL.: "pH-labile sheddable block copolymers by RAFT polymerization: Synthesis and potential use as siRNA conjugates", EUROPEAN POLYMER JOURNAL, vol. 49, no. 10, 2013, pages 2895 - 2905, XP028711629 *
SEDLAK, MILOS ET AL.: "Synthesis of pH-sensitive amphotericin B-poly(ethylene glycol) conjugates and study of their controlled release in vitro", BIOORGANIC & MEDICINAL CHEMISTRY, vol. 15, no. 12, 5 May 2007 (2007-05-05), pages 4069 - 4076, XP022062539 *
See also references of EP3279236A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3357514A4 (en) * 2015-09-30 2019-04-03 NOF Corporation LIPID DERIVATIVES WITH HYDROPHILIC POLYMERS BOUND BY CYCLIC BENZYLIDES-ACETAL-LINKER
US10626217B2 (en) 2015-09-30 2020-04-21 Nof Corporation Lipid derivative in which hydrophilic polymer is bound through cyclic benzylidene acetal linker
EP3604384A4 (en) * 2017-03-30 2021-01-27 NOF Corporation HYDROPHILIC POLYMER DERIVATIVE WITH SELF-IMMOLATIVE ACETAL LINKER AND COMPOSITE
US11319408B2 (en) 2017-03-30 2022-05-03 Nof Corporation Hydrophilic polymer derivative having self-immolative acetal linker and conjugate using same
CN111936550A (zh) * 2018-03-29 2020-11-13 日油株式会社 分解性聚乙二醇衍生物
CN111936550B (zh) * 2018-03-29 2023-11-28 日油株式会社 分解性聚乙二醇衍生物

Also Published As

Publication number Publication date
JP2016194057A (ja) 2016-11-17
US11529423B2 (en) 2022-12-20
JP6784932B2 (ja) 2020-11-18
US20200289656A1 (en) 2020-09-17
EP3279236B1 (en) 2021-01-06
US20180078651A1 (en) 2018-03-22
EP3279236A4 (en) 2018-12-05
EP3279236A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
WO2016159071A1 (ja) 環状ベンジリデンアセタールリンカーを有する生分解性ポリエチレングリコール誘導体
WO2015152182A1 (ja) 環状ベンジリデンアセタールリンカーを有する親水性ポリマー誘導体
US10633489B2 (en) Hydrophilic polymer derivative having benzylidene acetal linker
EP2554565B1 (en) Multifunctional polyoxyalkylene compound, method for producing same and intermediate of same
US9029568B2 (en) Branched hetero polyfunctional polyoxyalkylene compound and intermediate thereof
JP6850417B2 (ja) 環状ベンジリデンアセタールリンカーを介して親水性ポリマーが結合した脂質誘導体
CA3094055A1 (en) Branched monodispersed polyethylene glycol, intermediate and methods for producing same
US11041052B2 (en) Biodegradable hydrogel having cyclic benzylidene acetal structure
WO2023204256A1 (ja) アセタール型リリーサブルポリオキシエチレン誘導体、その製造方法及びアセタール型リリーサブルポリオキシエチレン結合体
JP7101939B2 (ja) ジスルフィドリンカーを有する分解性ポリエチレングリコール誘導体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772952

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016772952

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15563346

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE