WO2016159055A1 - Glass material for press molding, glass optical element, and method for producing same - Google Patents

Glass material for press molding, glass optical element, and method for producing same Download PDF

Info

Publication number
WO2016159055A1
WO2016159055A1 PCT/JP2016/060346 JP2016060346W WO2016159055A1 WO 2016159055 A1 WO2016159055 A1 WO 2016159055A1 JP 2016060346 W JP2016060346 W JP 2016060346W WO 2016159055 A1 WO2016159055 A1 WO 2016159055A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
press molding
oxide
film
coating layer
Prior art date
Application number
PCT/JP2016/060346
Other languages
French (fr)
Japanese (ja)
Inventor
法一 西村
山本 英明
剛志 石嶺
Original Assignee
Hoya株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015243700A external-priority patent/JP6633904B2/en
Application filed by Hoya株式会社 filed Critical Hoya株式会社
Priority to CN201680013300.0A priority Critical patent/CN107406306B/en
Priority to KR1020177031031A priority patent/KR102503080B1/en
Publication of WO2016159055A1 publication Critical patent/WO2016159055A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B11/00Pressing molten glass or performed glass reheated to equivalent low viscosity without blowing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements

Definitions

  • the present invention relates to a glass material for press molding, a glass optical element, and a manufacturing method thereof.
  • optical element such as a glass lens
  • a method of press molding a glass material for press molding using an upper mold and a lower mold having opposed molding surfaces is known. It has been.
  • the glass material for press molding and the molding surface of the mold are in close contact with each other at a high temperature, so that a chemical reaction occurs at the interface between them, so Reaction traces or the like may occur, and the optical performance of the optical element obtained by press molding may deteriorate.
  • One aspect of the present invention provides a means for suppressing the generation of bubbles in a glass optical element after press molding.
  • Oxide glass hereinafter also referred to as “glass”
  • a coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition
  • An intermediate layer provided between the oxide glass and the coating layer; With In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature.
  • a further aspect of the present invention provides: It has a pressing process to press-mold a glass material for press molding to form a press-molded body, The method for producing a glass optical element, wherein the glass material for press molding is the glass material for press molding described above, About.
  • a further aspect of the present invention provides: Oxide glass, A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition; An intermediate layer provided between the oxide glass and the coating layer; With In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass optics, About.
  • the inventors of the present invention applied the above-mentioned coating on the oxide glass via the intermediate layer in the glass material for press molding. It led to providing a layer.
  • the above-described coating layer is a metal oxide film, it is in a state where oxygen is deficient from the stoichiometric composition, so that it is in a state where oxygen is easily taken in to approach the stoichiometric composition which is a more stable state. Therefore, if it is a metal oxide film in this state, it is possible to suppress the generation of bubbles by taking in oxygen that is generated in glass during press molding and causes foaming.
  • the rate at which oxygen atoms contained in the oxide glass diffuse at a temperature equal to or higher than the glass transition temperature of the oxide glass is such that the metal atoms contained in the metal oxide film at the temperature are Faster than spreading speed.
  • the coating layer can efficiently take in oxygen atoms from the oxide glass into the coating layer without suppressing effective film thickness reduction or film disappearance, and suppress the generation of bubbles. Moreover, the above-described coating layer and intermediate layer that have been subjected to a pressing step are present in the optical element thus obtained. Since the coating layer included in this optical element takes in oxygen atoms diffused from the oxide glass during press molding, the content of oxygen atoms relative to metal atoms is higher than that contained in the glass material for press molding. However, as a result of the study by the present inventors, it has been clarified that in one embodiment, the coating layer included in the optical element is still in a state where oxygen is lost from the stoichiometric composition.
  • FIG. 1 shows the rate of diffusion of oxygen atoms contained in oxide glass at a temperature equal to or higher than the glass transition temperature of oxide glass in the intermediate layer (T1) and the diffusion of metal atoms contained in the metal oxide film at this temperature. It is a model figure which shows the relationship with the speed (T2) to perform.
  • FIG. 2 is a schematic cross-sectional view illustrating a press-molding glass material according to one embodiment of the present invention.
  • FIG. 3 is a diagram illustrating an example of a press molding apparatus.
  • FIG. 4 is a diagram showing the depth direction analysis result of secondary ionic strength by TOF-SIMS before press molding (glass material for press molding) in Example 1.
  • FIG. 5 is a diagram showing the depth direction analysis results of secondary ion intensity by TOF-SIMS before press molding (glass material for press molding) in Example 2.
  • the relationship with the speed (T2) to be performed will be described.
  • the relationship between T1 and T2 refers to the relationship between T1 and T2 at the same temperature that is equal to or higher than the glass transition temperature of the oxide glass.
  • FIG. 1 shows the rate of diffusion of oxygen atoms contained in oxide glass at a temperature equal to or higher than the glass transition temperature of oxide glass in the intermediate layer (T1) and the diffusion of metal atoms contained in the metal oxide film at this temperature. It is a model figure which shows the relationship with the speed (T2) to perform.
  • the oxide glass and the intermediate layer are in contact with each other. Further, the intermediate layer and the coating layer are in contact with each other.
  • the diffusion of oxygen atoms from the oxide glass moves toward the coating layer
  • the covering layer covers oxygen atoms from the oxide glass at a temperature higher than the glass transition temperature of the oxide glass, which is a temperature at which press molding is normally performed, without causing an effective decrease in film thickness or loss of the film. It is possible to efficiently incorporate into the layer and suppress the generation of bubbles.
  • the present inventors consider the reason why it is possible to suppress the generation of bubbles in the glass by performing press molding using the above glass material for press molding.
  • the above description includes inferences by the present inventors, and the present invention is not limited to these inferences.
  • it can confirm that the intermediate
  • preform glass material for press molding
  • FIG. 2 is a schematic cross-sectional view illustrating a press-molding glass material according to one embodiment of the present invention.
  • the glass material PF for press molding for concave meniscus lenses is shown as an example.
  • the glass material for press molding shown in FIG. 2 includes an oxide glass 1, a coating layer 3 that covers at least a part of the surface of the oxide glass 1 and is a metal oxide film in which oxygen is lost from the stoichiometric composition, And an intermediate layer 2 provided between the oxide glass 1 and the coating layer 3.
  • the coating layer 3 and the intermediate layer 2 only need to cover at least part of the surface of the oxide glass 1.
  • the oxide glass 1 may have an uncoated portion where the coating layer 3 and the intermediate layer 2 are not coated on a part of the surface, or the entire surface may be coated.
  • a glass optical element is formed by press-molding a glass material for press molding, at least a portion of the oxide glass that will form the optical functional surface of the optical element can be covered.
  • the optical functional surface means, for example, a region within the effective diameter in the optical element.
  • oxygen atoms can be taken from the oxide glass as long as the covering layer 3 is present at least in any part of the surface of the glass material for press molding, and thus is not limited to the above-described embodiment.
  • the covering layer, the intermediate layer, and the oxide glass constituting the glass material for press molding will be sequentially described.
  • the coating layer covering the oxide glass is a metal oxide film in which oxygen is lost from the stoichiometric composition. Therefore, the coating layer may be formed by a film formation method that can form such a metal oxide film. For example, after forming an intermediate layer, which will be described later, on the surface of a glass lump made of oxide glass, sputtering (vacuum deposition), CVD (Chemical Vapor Deposition) in a non-oxidizing atmosphere using a metal (single metal) as a target ) Method or the like, a metal oxide film deficient in oxygen from the stoichiometric composition can be formed.
  • the non-oxidizing atmosphere refers to an atmosphere made of a gas other than oxygen such as an inert gas such as argon gas or nitrogen gas.
  • an inert gas such as argon gas or nitrogen gas.
  • the presence of oxygen derived from a trace amount of oxygen unintentionally mixed as an impurity in the atmospheric gas is allowed.
  • the lower limit of the film forming temperature (the temperature of the glass lump) is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher.
  • the upper limit is preferably less than the glass transition temperature of the oxide glass.
  • the upper limit temperature is, for example, 450 ° C. or less.
  • a plurality of oxide glasses formed with an intermediate layer are arranged in a tray and placed in a vacuum chamber, and the oxide glass is heated to about 300 ° C. by a heater while evacuating the vacuum chamber. Heat to temperature.
  • argon (Ar) gas is introduced, and the atmosphere gas in the vacuum chamber is replaced with Ar gas, and then a high frequency is applied to the target substrate. Then, the raw material is turned into plasma, and a coating layer is formed on the surface of the oxide glass on which the intermediate layer is formed.
  • the film thickness of the coating layer can be controlled to a desired film thickness by adjusting the pressure (vacuum degree) in the vacuum chamber, the power source power, and the film formation time.
  • the coating layer should just cover at least one part of the surface of oxide glass. This point is as described above.
  • the coating layer may be a metal oxide film in which oxygen is lost from the stoichiometric composition, and the metal constituting the metal oxide is not particularly limited. Specific examples of the metal constituting the coating layer include zirconium, yttrium, tantalum, niobium, and tungsten. However, the metal which is not illustrated here may be sufficient. In the present invention, the term “metal” is used to include those classified as semi-metals. For example, as an example, silicon (Si) is also included in the metal in the present invention.
  • the film thickness of the coating layer is preferably 0.5 nm or more and more preferably 1.5 nm or more in order to efficiently take in oxygen from the oxide glass.
  • the thickness of the coating layer is preferably 15 nm or less, and more preferably 10 nm or less.
  • the coating layer described above is in a state where oxygen is lost from the stoichiometric composition.
  • the stoichiometric composition is ZrO 2
  • the coating layer is a zirconium oxide film
  • the composition is ZrOx (x ⁇ 2).
  • x may be less than 2, and is not particularly limited. The same applies to other metal oxide films.
  • the intermediate layer is provided between the coating layer and the oxide glass.
  • the glass material for press molding only needs to have a coating layer on at least a part of the surface of the oxide glass via an intermediate layer, and a part of the surface of the oxide glass is covered only with the intermediate layer. There may be a portion that is covered, or there may be a portion that is covered only with the covering layer.
  • the rate (T1) at which the oxygen atoms contained in the oxide glass diffuse in the intermediate layer at a temperature equal to or higher than the glass transition temperature of the oxide glass is that the metal atoms contained in the metal oxide film (coating layer) diffuse. Faster than speed (T2).
  • the material and film thickness of the intermediate layer are not limited.
  • the intermediate layer can be formed using a compound of one or more metal elements and one or more elements selected from the group consisting of oxygen, nitrogen, carbon, and fluorine.
  • the intermediate layer is, for example, a metal oxide film, and examples of the metal oxide film include zirconium, yttrium, scandium, and lanthanoid oxide films.
  • lanthanoids include lanthanum, cerium, praseodymium, samarium, and ytterbium. These are merely examples and are not limited to the materials described above.
  • the film thickness of the intermediate layer can be, for example, in the range of 1 to 15 nm, but it is sufficient that the relationship of T1> T2 is satisfied at a temperature equal to or higher than the glass transition temperature of the oxide glass, and the film thickness is outside this range. May be.
  • the intermediate layer may be a single layer or a multilayer structure having two or more layers. In the case of a multilayer structure, the film thickness of the intermediate layer refers to the total film thickness of the multilayer.
  • the intermediate layer of the multilayer structure only needs to satisfy the relationship of T1> T2 in the entire multilayer structure.
  • the intermediate layer As a method for forming the intermediate layer, a known film forming method such as a sputtering method or a vacuum evaporation method can be used.
  • the intermediate layer can be formed on at least a part of the surface of the oxide glass by a sputtering method using argon gas.
  • the film forming conditions that have been confirmed to have no significant decrease in the film thickness of the coating layer or disappearance of the film are actually It can employ
  • oxide glass examples include optical glasses having various compositions that are usually used in the production of optical elements.
  • optical glass include boric acid-rare earth glass such as lanthanum borate glass, phosphate glass, and silicate glass.
  • an oxide glass containing a relatively large amount of Nb 2 O 5 , TiO 2 , WO 3 , and Ta 2 O 5 as high refractive index imparting components can be mentioned. These metal oxides are considered to be more easily reduced than the other metal oxides at the glass transition temperature or higher.
  • the glass optical element includes one or more high refractive index imparting components selected from the group consisting of Nb 2 O 5 , TiO 2 , WO 3 and Ta 2 O 5 , and high An oxide glass having a total content of refractive index imparting components (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) of 10% by mass or more may be press-molded after providing the above intermediate layer and coating layer. it can. Thereby, a homogeneous optical element in which the generation of bubbles after pressing is suppressed can be obtained.
  • the total content (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) is more preferably 15% by mass or more.
  • the total content (N b O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) is 50% by mass or less, which suppresses the increase in the press temperature due to a significant increase in the glass transition temperature and the yield point, and the glass. From the viewpoint of ease of conversion, it is preferably 45% by mass or less.
  • the press temperature Since the press temperature is usually performed at a temperature equal to or higher than the glass transition temperature of the oxide glass, the press temperature tends to be higher as the glass has a higher glass transition temperature. On the other hand, a significant increase in the press temperature may promote the generation of bubbles. Therefore, as a preferable specific embodiment of the oxide glass, an oxide glass containing an appropriate amount of one or more glass components having an action of lowering the glass transition temperature can be exemplified.
  • the glass component having an action of lowering the glass transition temperature include ZnO and an alkali metal oxide selected from the group consisting of Li 2 O, Na 2 O and K 2 O.
  • the total content of ZnO and alkali metal oxide is preferably 5% by mass or more, and more preferably 10% by mass or more.
  • the total content (ZnO + Li 2 O + Na 2 O + K 2 O) is preferably 25% by mass or less, and more preferably 20% by mass or less.
  • Specific examples of the oxide glass include an optical glass having a refractive index nd of 1.70 to 2.10 and an Abbe number ⁇ d of 20 to 55 from the viewpoint of the usefulness of the optical element. Further, as another specific embodiment, an optical glass satisfying one or both of a glass transition temperature of 630 ° C.
  • the method for manufacturing an optical element according to one embodiment of the present invention is not limited to the specific embodiment described above.
  • the optical glass that can be an oxide glass
  • the following glasses I, II, and III can be mentioned.
  • the composition of the oxide glass is not particularly limited. Glasses I, II, and III are all suitable as optical glasses for producing glass optical elements. According to one embodiment of the present invention, such an optical glass can be press-molded to provide a high-quality glass optical element free from bubbles in the glass.
  • the glass I is a high refractive index glass, it can exhibit a low glass transition temperature, and thus is suitable as a glass for precision press molding.
  • the glass transition temperature is 650 ° C. or lower.
  • Optical glass having a glass transition temperature of 650 ° C. or lower can maintain the glass temperature during precision press molding in a relatively low temperature range, suppresses the reaction between the glass during press molding and the press molding surface, and is precise.
  • the press formability can be maintained in a good state.
  • the glass transition temperature is preferably 640 ° C. or less, more preferably 630 ° C. or less, further preferably 620 ° C. or less, further preferably 610 ° C. or less, and 600 ° C.
  • the glass transition temperature is preferably 500 ° C. or higher, and preferably 520 ° C. or higher. More preferably, it is 540 ° C. or more, further preferably 560 ° C. or more, and further preferably 570 ° C. or more.
  • B 2 O 3 , La 2 O 3 and ZnO are included, and expressed in mol%, B 2 O 3 20 to 60%, SiO 2 0 to 20%, ZnO 22 to 42%, La 2 O 3 5 to 24%, Gd 2 O 3 0 ⁇ 20% ( provided that the total of La 2 O 3 and Gd 2 O 3 is 10 ⁇ 24%), ZrO 2 0 ⁇ 10%, Ta 2 O 5 0 ⁇ 10%, WO 3 0 ⁇ 10%, Nb 2 O 5 0-10%, TiO 2 0-10%, Bi 2 O 3 0-10%, GeO 2 0-10%, Ga 2 O 3 0-10%, Al 2 O 3 0- 10%, BaO 0 to 10%, Y 2 O 3 0 to 10% and Yb 2 O 3 0 to 10%, and an Abbe number ( ⁇ d ) of 40 or more and substantially free of lithium Glass.
  • ⁇ d Abbe number
  • substantially free of lithium means that the amount of Li 2 O introduced is suppressed to a level that does not cause spiders or burns that hinder the use of the glass surface as an optical element. It is. Specifically, it means that the content is reduced to less than 0.5 mol% in terms of the amount of Li 2 O. Since the risk of spider and burns can be reduced as the amount of lithium is reduced, the amount of Li 2 O is preferably suppressed to 0.4 mol% or less, and more preferably to 0.1 mol% or less. Preferably, it is more preferable not to introduce.
  • Glass II is suitable for precision press molding, and it is preferable that the glass transition temperature is low in order to prevent wear of the press mold and damage to the release film formed on the molding surface of the mold. It is preferable that it is 630 degrees C or less, and it is more preferable that it is 620 degrees C or less.
  • the glass transition temperature is more preferably 530 ° C. or higher, and further preferably 540 ° C. or higher.
  • Glass III exhibits a low-temperature softening property with a glass transition temperature of 650 ° C. or lower.
  • a more preferable range of the glass transition temperature of the glass III is 640 ° C. or lower, more preferably 630 ° C. or lower, more preferably 620 ° C. or lower, and still more preferably 610 ° C.
  • the glass transition temperature is excessively decreased, it is difficult to achieve higher refractive index and lower dispersion and / or the stability and chemical durability of the glass tend to decrease.
  • the preferable range of the yield point of the glass III is 700 ° C. or less, more preferably 690 ° C. or less, further preferably 680 ° C. or less, more preferably 670 ° C. or less, and still more preferably 660 ° C. or less.
  • the yield point is preferably 550 ° C. or higher, more preferably 580 ° C. or higher, even more preferably 600 ° C. or higher, and even more preferably 620 ° C. or higher.
  • the oxide glass can be formed into a shape known as a glass material for press molding by a method known as a method for forming a glass material for press molding.
  • a method for forming a glass material for press molding for example, paragraphs 0087 to 0106 of JP2011-1259A and description of Examples, JP2004250295A (the entire description is specifically incorporated herein by reference) Reference may be made to paragraphs 0040-0044 and the description of the examples.
  • the glass material for press molding according to one embodiment of the present invention can be obtained by performing a film forming process for forming the above-described intermediate layer and coating layer on the oxide glass described above.
  • one or more layers can be arbitrarily formed on the above-described coating layer.
  • Such a coating is effective in enhancing the mold releasability of the glass from the mold during press molding.
  • a carbon-containing film can be exemplified.
  • a glass material for press molding hereinafter also referred to as “glass material”
  • the carbon-containing film provides sufficient slipperiness with the mold and the glass material is molded. It enables smooth movement to a predetermined position (center position) of the mold. Can help.
  • the press-molded body is cooled to a predetermined temperature after pressing, it is useful in that the glass is easily separated from the surface of the mold and assists the mold release.
  • laminating a carbon-containing film on the above-described coating layer is also effective in suppressing the occurrence of cracking during press molding.
  • a film containing carbon as a main component is preferable, but a film containing a component other than carbon such as a hydrocarbon film may be used.
  • a method for forming the carbon-containing film a known film forming method such as vacuum deposition using a carbon raw material, sputtering, ion plating method, plasma CVD (Chemical Vapor Deposition) can be used.
  • a carbon-containing film may be formed by thermal decomposition of a carbon-containing material such as hydrocarbon.
  • Glass optical element manufacturing method of glass optical element
  • One embodiment of the present invention provides: Oxide glass, A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition; An intermediate layer provided between the oxide glass and the coating layer; With In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass optics, About.
  • the press-molded glass material described above is prepared and then press-molded to obtain a press-molded body itself or by subjecting the press-molded body to a post-process such as film formation.
  • a glass optical element can be obtained.
  • Press molding can be performed by a known press molding method as a method for molding an optical element.
  • a known press molding method as a method for molding an optical element.
  • a precision material made of a dense material having sufficient heat resistance and rigidity can be used.
  • examples include metals such as silicon carbide, silicon nitride, tungsten carbide, aluminum oxide, titanium carbide, and stainless steel, or those whose surfaces are coated with a film of carbon, refractory metal, noble metal alloy, carbide, nitride, boride, etc. be able to.
  • a film covering the molding surface a film containing carbon is preferable from the viewpoint that a glass material for press molding can be molded into a glass optical element without fusing, spidering, scratching, or the like. JP, 2011-1259, A paragraph 0116 can be referred to about a carbon content film.
  • FIG. 3 is a diagram showing an example of a press molding apparatus.
  • the oxide glass 1 is coated with an intermediate layer 2 and a coating layer 3 in a molding die 7 including an upper die 4, a lower die 5 and a body die 6.
  • a glass material PF is supplied and the temperature is raised to a temperature range suitable for pressing.
  • the heating temperature of the glass material PF for press molding is appropriately set depending on the type of the oxide glass 1, but is set to a temperature range in which the viscosity of the oxide glass 1 is 10 5 to 10 10 dPa ⁇ s. It is preferable to perform press molding in the temperature range.
  • Pressing temperature for example, set oxide glass 1 temperature more preferably to be 10 7.2 dPa ⁇ s corresponds longitudinal 10 6 ⁇ 10 8 dPa ⁇ s, as oxide glass 1 is 10 7.2 dPa ⁇ s corresponds More preferably.
  • the press temperature is set to a temperature equal to or higher than the glass transition temperature of the oxide glass.
  • press molding in which oxide glass is coated with a coating layer, which is a metal oxide film in which oxygen is lost from the stoichiometric composition, and an intermediate layer satisfying the relationship of T1> T2 at such a temperature.
  • a coating layer which is a metal oxide film in which oxygen is lost from the stoichiometric composition
  • an intermediate layer satisfying the relationship of T1> T2 at such a temperature By performing press molding of the glass material, it is possible to prevent bubbles from being generated in the press-molded body obtained by press molding by incorporating oxygen atoms that cause foam generation into the metal oxide film.
  • the press temperature and the heating temperature related to the press refer to the temperature of the atmosphere in which press molding is performed. Press molding can be performed by applying a predetermined load to the upper die 4.
  • the glass material PF for press molding is supplied to the mold 7 and both the glass material PF for press molding PF and the mold 7 may be heated to a predetermined range, or the glass material PF for press molding PF and molding may be used.
  • the glass material PF for press molding may be placed in the molding die 7 after the molds 7 are heated to a predetermined temperature range. Further, the glass material PF for press molding is heated to a temperature equivalent to 10 5 to 10 9 dPa ⁇ s, and the mold 6 is heated to a temperature corresponding to 10 9 to 10 12 dPa ⁇ s in terms of glass viscosity.
  • a method may be employed in which the material is placed in the mold 7 and press-molded immediately.
  • the mold temperature can be relatively lowered, the temperature increase / decrease cycle time of the molding apparatus can be shortened, and deterioration of the mold 7 due to heat can be suppressed, which is preferable.
  • cooling is started at or after the start of press molding, and the temperature is lowered while applying an appropriate load application schedule and maintaining close contact between the molding surface and the glass material PF. Then, it molds and takes out a press molding.
  • the mold release temperature is preferably 10 12.5 to 10 13.5 dPa ⁇ s.
  • the release-molded press-molded body is more than before press molding.
  • a coating layer having a high oxygen content that is, a metal oxide film in which the oxygen atom content to metal atoms is higher than the coating layer provided in the glass material for press molding before press molding.
  • the metal oxide film is in a state where oxygen is deficient rather than the stoichiometric composition.
  • the press-molded body after press molding is provided between the oxide glass, a coating layer covering at least part of the surface of the oxide glass, and the oxide glass and the coating layer. An intermediate layer.
  • the coating layer included in the press-molded body is a metal oxide film in a state where oxygen is lost from the stoichiometric composition.
  • the rate at which oxygen atoms contained in the oxide glass diffuse at a temperature equal to or higher than the glass transition temperature of the oxide glass is determined by the metal oxide film at the temperature. Faster than the diffusion rate of metal atoms contained in.
  • various aspects other than the above aspects are also included in the present invention as one aspect of the present invention.
  • the press-molded body that has been press-molded can be shipped as an optical element as a final product as it is, or post-processing such as centering and film formation that forms an optical functional film such as an antireflection film on the surface. It can also be made the final product after applying.
  • a desired shape can be obtained by appropriately forming a material such as Al 2 O 3 , ZrO 2 —TiO 2 , or MgF 2 on a press-molded body having the above-described coating layer after press molding, as a single layer or by stacking.
  • An antireflection film can be formed.
  • the antireflection film can be formed by a known method such as vapor deposition, ion-assisted vapor deposition, ion plating, or sputtering.
  • the vapor deposition material is heated by an electron beam, direct energization or arc in a vacuum atmosphere of about 10 ⁇ 4 Torr using a vapor deposition apparatus, and the material generated by evaporation and sublimation from the material is used.
  • the antireflection film can be formed by transporting the vapor onto the substrate and condensing / depositing it.
  • the heating temperature of the press-molded product can be about room temperature to about 400 ° C. However, when the glass transition temperature of the oxide glass constituting the press-formed body is 450 ° C. or lower, the upper limit temperature for heating the press-formed body is preferably set to the glass transition temperature ⁇ 50 ° C.
  • An optical element is a small-diameter, thin-walled small-mass lens, for example, a small imaging system lens, a communication lens, an optical pickup objective lens, a collimator lens, and the like mounted on a portable imaging device.
  • the lens shape is not particularly limited, and various shapes such as a convex meniscus lens, a concave meniscus lens, a biconvex lens, and a biconcave lens can be taken.
  • the glass transition temperature and yield point described below are values measured at a heating rate of 4 ° C./min with a thermomechanical analyzer of Rigaku Corporation.
  • the refractive index nd and the Abbe number ⁇ d were measured for the optical glass obtained at a slow cooling rate of ⁇ 30 ° C./hour.
  • the glass material for press molding produced in the above (1) was press molded in a nitrogen gas atmosphere by a precision press molding apparatus.
  • the oxide glass was heated to a temperature at which the viscosity of the oxide glass was 10 7.2 dPa ⁇ s, and supplied to a mold heated to a temperature equivalent to 10 8.5 dPa ⁇ s as the viscosity of the oxide glass.
  • the glass material for press molding is pressed between the upper and lower molds (press temperature 675 ° C.), and the glass material for press molding and the upper and lower molds are kept in close contact with each other up to a temperature below the annealing temperature of the oxide glass.
  • the press-molded body was taken out from the mold.
  • the outer diameter of the press-molded body was 26.0 mm, and the center wall thickness was 4.0 mm.
  • the outer peripheral portion of the press-molded body was centered by grinding to obtain a biconvex aspherical glass lens having a diameter of 22 mm.
  • Example 1 instead of the SiO 2 film of Comparative Example 1, a zirconium oxide film (film thickness: about 5 nm) was formed as a coating layer on the ZrO 2 film. Film formation was performed by sputtering using metal zirconium (Zr) as a target in an Ar 100% atmosphere at a film formation temperature of 300 ° C., and the film thickness was adjusted by sputtering conditions. The ZrO 2 film as an intermediate layer was directly formed on the oxide glass. The zirconium oxide film as the coating film was directly formed on the ZrO 2 film as the intermediate layer.
  • the glass material for press molding thus obtained has a zirconium oxide film as a coating layer and a ZrO 2 film as an intermediate layer. Using this glass material for press molding, an aspheric glass lens was obtained by the same method as described above.
  • Example 2 A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal yttrium (Y) instead of metal zirconium. Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
  • Y metal yttrium
  • Example 2 A glass material for press molding was obtained in the same manner as in Example 2 except that the intermediate layer was not formed. Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
  • Example 3 A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal tantalum (Ta) instead of metal zirconium. Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
  • Example 4 A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal niobium (Nb) instead of metal zirconium. Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
  • Nb metal niobium
  • Example 5 A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal tungsten (W) instead of metal zirconium. Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
  • W metal tungsten
  • Example 6 A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal titanium (Ti) instead of metal zirconium. Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
  • Appearance evaluation of optical element When observed with an optical microscope at a magnification of 10 to 50 times, bubbles with a diameter of 50 ⁇ m or more are less than 1 bubble, bubbles with a diameter of 25 ⁇ m or more are less than 2 bubbles, or bubbles with a diameter of 10 ⁇ m or more That the number of bubbles is less than 5 and the total diameter of the bubbles does not exceed 50 ⁇ m can be used as an index (hereinafter referred to as “appearance index 1”) that is a homogeneous optical element in which the generation of bubbles is suppressed.
  • the number of bubbles having a diameter of 25 ⁇ m or more is less than 1 or the number of bubbles having a diameter of 10 ⁇ m or more is less than 3 when observed with an optical microscope at a magnification of 10 to 50 times, and the total diameter of the bubbles That does not exceed 25 ⁇ m can be used as an index (hereinafter referred to as “appearance index 2”) that is a homogeneous optical element without bubbles.
  • the total diameter of the bubbles is, for example, 100 ⁇ m if there are two bubbles having a diameter of 50 ⁇ m.
  • the diameter here refers to the diameter when the bubble is a circular bubble, the distance in the longitudinal direction when the bubble is elliptical, and the longest possible distance when the bubble is irregular. To do.
  • Each lens produced in Examples and Comparative Examples was observed with an optical microscope at a magnification of 50 times, and appearance index 1 and appearance index 2 were evaluated. For each appearance index, the results are shown in Table 2 with ⁇ being satisfied and ⁇ being not satisfied.
  • Example 1 the appearance indices 1 and 2 were both good, whereas in Comparative Examples 1 to 3, both the appearance indices 1 and 2 were x. Since the coating layers of Examples 1 to 6 are metal oxide films formed in a non-oxidizing atmosphere using a single metal, oxygen is deficient from the stoichiometric composition, whereas Comparative Example 1 This coating layer is a SiO 2 film, that is, a silicon oxide film having a stoichiometric composition as described in JP-A-2011-1259. Moreover, the comparative example 2 differs from Example 2 by the presence or absence of an intermediate layer.
  • the coating layer of Comparative Example 3 is a yttrium oxide film having a stoichiometric composition, that is, a Y 2 O 3 film, as will be described in detail later.
  • a stoichiometric composition that is, a Y 2 O 3 film
  • the intermediate layers of Examples 1 to 6 satisfy the relationship of T1> T2.
  • Table 2 since Examples 1 to 6 were superior to Comparative Examples 1 to 3 in appearance evaluation evaluation results, metal oxide films in a state where oxygen was deficient from the stoichiometric composition were obtained. It can be confirmed that by providing the oxide glass through an intermediate layer satisfying T1> T2, it is possible to suppress the generation of bubbles in the glass during press molding.
  • TOF-SIMS Time-of-flight secondary ion mass spectrometer
  • FIG. 4 is a diagram showing the depth direction analysis result of secondary ionic strength by TOF-SIMS before press molding (glass material for press molding) in Example 1.
  • the film thickness of the zirconium oxide film formed as the coating layer on the oxide glass in Example 1 and the ZrO 2 film formed as the intermediate layer are both about 5 nm.
  • FIG. 4 shows ZrO 2 and simple Zr (“Zr” in FIG. 4) as secondary ions derived from the zirconium oxide film and the ZrO 2 film. Although omitted in FIG. 4, ZrO derived from the zirconium oxide film and the ZrO 2 film is also detected.
  • the single Zr is not derived from the metal Zr but is considered to be derived from the zirconium oxide film and the ZrO 2 film.
  • FIG. 4 there are peaks in the ZrO 2 spectrum in the region from the surface (depth 0 nm) to the depth of about 5 nm and from the depth of about 5 nm to about 10 nm, and in the region after the depth of about 10 nm. Since WO 3 derived from the oxide glass is detected, it can be confirmed that two layers of an intermediate layer provided on the oxide glass and a coating layer provided on the intermediate layer are formed.
  • the ZrO 2 concentration is higher than the region after the depth of about 10 nm.
  • WO 3 was detected in a region where the peak intensity was high and the depth was about 10 nm or more. From this result, it can be confirmed that the coating layer is present on the oxide glass without causing a large decrease in film thickness or disappearance of the film even after press molding. From this result, it can also be confirmed that the intermediate layer satisfies the relationship of T1> T2.
  • the secondary ion intensity ratio of ZrO 2 / Zr ( Hereinafter, it is described as “ZrO 2 / Zr intensity ratio”.
  • the ZrO 2 / Zr intensity ratio is an index indicating the degree of oxidation in the zirconium oxide film. If zirconium oxide is in the state of oxygen than the stoichiometric composition is deficient, stoichiometric composition, i.e. from ZrO 2, ZrO 2 / Zr intensity ratio becomes smaller.
  • the ZrO 2 / Zr strength ratio was smaller in the region corresponding to the coating layer than in the case of ZrO 2 . From this result, it can be confirmed that the zirconium oxide film which is the coating layer of the glass material for press molding of Example 1 is in a state where oxygen is deficient from the stoichiometric composition. Further, it was confirmed that the ZrO 2 / Zr strength ratio was larger after press molding than before press molding in the region corresponding to the coating layer. That is, it was confirmed that the oxygen content of the coating layer increased after press molding. The present inventors consider that this result indicates that the coating layer has taken in oxygen from the oxide glass.
  • FIG. 5 is a diagram showing the depth direction analysis results of secondary ion intensity by TOF-SIMS before press molding (glass material for press molding) in Example 2.
  • the film thickness of the yttrium oxide film formed as the coating layer on the oxide glass in Example 2 and the ZrO 2 film formed as the intermediate layer are both about 5 nm.
  • FIG. 5 shows YO 2 and YO as secondary ions derived from the yttrium oxide film.
  • a single Y is also slightly detected.
  • Y 2 since Y 2 is not detected, it is considered that the single Y does not originate from the metal Y but originates from the yttrium oxide film.
  • FIG. 5 shows YO 2 and YO as secondary ions derived from the yttrium oxide film.
  • YO 2 and YO spectral peaks are present in the surface (depth 0 nm) to about 5 nm depth, and ZrO 2 spectra are present in the depth range of about 5 nm to about 10 nm.
  • the intermediate layer (ZrO 2 film) provided on the oxide glass and the intermediate layer are provided. It can be confirmed that two layers of the coating layer (yttrium oxide film) are formed.
  • Example 2 and Comparative Example 3 from the results of depth direction analysis of secondary ionic strength by TOF-SIMS before press molding (glass material for press molding) and after press molding (optical element), before press molding and press molding.
  • Secondary ion intensity ratio of YO 2 / YO at positions 2.5 nm, 3.0 nm, 3.5 nm, and 4.0 nm deep from the subsequent surface hereinafter referred to as “YO 2 / YO intensity ratio” Asked.
  • the results obtained for Example 2 are shown in Table 3, and the results obtained for Comparative Example 3 are shown in Table 4.
  • the YO 2 / YO intensity ratio is an index indicating the degree of oxidation in the yttrium oxide film. If the yttrium oxide is in a state where oxygen is deficient from the stoichiometric composition, the YO 2 / YO intensity ratio becomes smaller than the stoichiometric composition, that is, Y 2 O 3 . From the YO 2 / YO intensity ratios shown in Tables 3 and 4, the following points can be confirmed.
  • Table 4 YO 2 / YO intensity ratio at each position of the covering layer of Comparative Example 3 before press-forming showing the yttrium oxide of stoichiometric composition, i.e., the same as the YO 2 / YO intensity ratio of Y 2 O 3 is there. From this result, it can be confirmed that the coating layer of Comparative Example 3 is a yttrium oxide film having a stoichiometric composition, that is, a Y 2 O 3 film.
  • the present inventors consider that the result shows that the coating layer has taken in oxygen from the oxide glass.
  • the YO 2 / YO intensity ratio at each position after press molding of the coating layer of Example 2 is smaller than the YO 2 / YO intensity ratio of yttrium oxide (Y 2 O 3 ) having a stoichiometric composition. From this result, even after press molding, it can be confirmed that the coating layer of Example 2 is in a state where oxygen is lost from the stoichiometric composition.
  • Table 4 in the coating layer of Comparative Example 3, no significant difference in the YO 2 / YO strength ratio was observed before and after press molding at each position.
  • the coating layer of the glass material for press molding of Comparative Example 3 is a Y 2 O 3 film having a stoichiometric composition as described above. Since such a metal oxide film is chemically stable, it is considered that oxygen derived from oxide glass cannot be taken into the film during press molding. This is presumed to be the reason why a significant difference in the YO 2 / YO strength ratio was not observed before and after press forming as shown in Table 4.
  • a metal oxide film specifically a zirconium oxide film, was formed as the intermediate layer.
  • the intermediate layer only needs to satisfy the relationship of T1> T2, and is limited to the embodiment shown in the examples. is not.
  • Oxide glass A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition; An intermediate layer provided between the oxide glass and the coating layer; With In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature.
  • Oxide glass A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition; An intermediate layer provided between the oxide glass and the coating layer; With In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature.
  • It has a pressing process to press-mold a glass material for press molding to form a press-molded body,
  • the press-molded body includes the coating layer that has undergone the pressing step, and the coating layer that has undergone the pressing step is a metal oxide film having a higher oxygen content than the coating layer before the pressing step.
  • the metal oxide film included in the press-formed body is in a state where oxygen is deficient due to the stoichiometric composition.
  • the press-molded body after press molding may be applied as it is to an imaging camera or the like as an optical element, or may be applied as an optical element after its end is removed by a centering process. In the latter case, part of the coating layer (metal oxide film) is removed by the centering step.
  • the above-mentioned oxide glass contains one or more high refractive index imparting components selected from the group consisting of Nb 2 O 5 , TiO 2 , WO 3 and Ta 2 O 5 .
  • the total content (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) of the high refractive index imparting component is preferably 10% by mass or more and 50% by mass or less.
  • the above oxide glass contains one or more selected from the group consisting of ZnO and alkali metal oxides (Li 2 O, Na 2 O, K 2 O).
  • the total content of ZnO and alkali metal oxide (ZnO + Li 2 O + Na 2 O + K 2 O) is 5% by mass or more and 25% by mass or less.
  • heating during press molding is performed at a heating temperature of 650 ° C. or higher. According to the method for manufacturing an optical element described above, the generation of bubbles in press molding at such a high temperature can be suppressed.
  • the present invention is useful in the field of manufacturing optical elements such as glass lenses.

Abstract

Provided are the following: a glass optical element which is provided with an oxide glass, a covering layer that covers at least a part of a surface of the oxide glass and that is a metal oxide film which is oxygen-deficient relative to the stoichiometric composition, and an intermediate layer provided between the oxide glass and the covering layer, wherein, in the intermediate layer, the speed at which oxygen atoms contained in the oxide glass diffuse at a temperature that is not lower than the glass transition temperature of the oxide glass is greater than the speed at which metal atoms contained in the metal oxide film diffuse at this temperature; a glass material for press molding; and a method for producing a glass optical element using the glass material for press molding.

Description

プレス成形用ガラス素材、ガラス光学素子およびその製造方法Glass material for press molding, glass optical element, and manufacturing method thereof 関連出願の相互参照Cross-reference of related applications
 本出願は、2015年3月31日出願の日本特願2015-73862号および2015年12月15日出願の日本特願2015-243700号公報の優先権を主張し、それらの全記載は、ここに特に開示として援用される。 This application claims the priority of Japanese Patent Application No. 2015-73862 filed on March 31, 2015 and Japanese Patent Application No. 2015-243700 filed on December 15, 2015, all of which are described here. Specifically incorporated by reference.
 本発明は、プレス成形用ガラス素材、ガラス光学素子およびその製造方法に関する。 The present invention relates to a glass material for press molding, a glass optical element, and a manufacturing method thereof.
 ガラスレンズ等のガラス光学素子(以下、「光学素子」とも記載する。)を製造する方法として、対向する成形面を有する上型と下型により、プレス成形用ガラス素材をプレス成形する方法が知られている。 As a method of manufacturing a glass optical element such as a glass lens (hereinafter also referred to as “optical element”), a method of press molding a glass material for press molding using an upper mold and a lower mold having opposed molding surfaces is known. It has been.
 プレス成形によって光学素子を成形する際には、プレス成形用ガラス素材と成形型の成形面とが高温状態下で密着するため、それらの界面で化学反応が生じ、融着、クモリ、キズ状の反応痕等が発生しプレス成形により得られる光学素子の光学性能が低下することがある。 When molding an optical element by press molding, the glass material for press molding and the molding surface of the mold are in close contact with each other at a high temperature, so that a chemical reaction occurs at the interface between them, so Reaction traces or the like may occur, and the optical performance of the optical element obtained by press molding may deteriorate.
 従来、上記反応痕の発生を防止するための手段として、プレス成形用ガラス素材の表面に被膜を一層以上設け、成形型とガラスとの反応を抑制することが提案されていた(例えば、特開2011-1259号公報(その全記載は、ここに特に開示として援用される)参照)。 Conventionally, as a means for preventing the occurrence of the reaction mark, it has been proposed to provide one or more coatings on the surface of a glass material for press molding to suppress the reaction between the mold and the glass (for example, JP No. 2011-1259 (the entire description is specifically incorporated herein by reference).
 ところで、本発明者らの検討の結果、プレス成形によるガラス光学素子の製造において、プレス成形後にガラス中に微小な泡が生じること(発泡すること)により、光学素子の均質性が低下することが明らかとなった。高い光学性能を有する光学素子を提供するためには、ガラス中の発泡を抑制することが望まれる。
 そこで、本発明者らはガラス中の発泡を抑制する手段を見出すために、泡の発生原因について鋭意検討を重ねた。その結果、プレス成形後の光学素子に発生する泡は、非酸化性雰囲気でプレス成形を行ったとしても多くの酸素を含んでいるという、予想外の現象を見出した。非酸化性雰囲気でのプレス成形における酸素の発生原因は酸化物ガラスのみであるため、酸化物ガラス由来の酸素が泡の発生に関与していると考えられる。
By the way, as a result of the study by the present inventors, in the production of a glass optical element by press molding, the homogeneity of the optical element may be lowered due to the formation of fine bubbles (foaming) in the glass after press molding. It became clear. In order to provide an optical element having high optical performance, it is desired to suppress foaming in glass.
Therefore, the present inventors have intensively studied the cause of generation of bubbles in order to find a means for suppressing foaming in glass. As a result, an unexpected phenomenon was found in which bubbles generated in the optical element after press molding contained a large amount of oxygen even when press molding was performed in a non-oxidizing atmosphere. Since the cause of oxygen generation in press molding in a non-oxidizing atmosphere is only oxide glass, it is considered that oxygen derived from oxide glass is involved in the generation of bubbles.
 本発明の一態様は、プレス成形後のガラス光学素子に泡が発生することを抑制するための手段を提供する。 One aspect of the present invention provides a means for suppressing the generation of bubbles in a glass optical element after press molding.
 本発明の一態様は、
 酸化物ガラス(以下、「ガラス」とも記載する。)と、
 上記酸化物ガラスの表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層と、
 上記酸化物ガラスと被覆層との間に設けられた中間層と、
を備え、
 上記中間層において、上記酸化物ガラスのガラス転移温度以上の温度における上記酸化物ガラスに含まれる酸素原子が拡散する速度は、上記温度における上記金属酸化物膜に含まれる金属原子が拡散する速度より速い、プレス成形用ガラス素材、
 に関する。
One embodiment of the present invention provides:
Oxide glass (hereinafter also referred to as “glass”);
A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition;
An intermediate layer provided between the oxide glass and the coating layer;
With
In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass material for press molding,
About.
 本発明の更なる一態様は、
 プレス成形用ガラス素材をプレス成形しプレス成形体を形成するプレス工程を備え、
 上記プレス成形用ガラス素材が、上述のプレス成形用ガラス素材である、ガラス光学素子の製造方法、
 に関する。
A further aspect of the present invention provides:
It has a pressing process to press-mold a glass material for press molding to form a press-molded body,
The method for producing a glass optical element, wherein the glass material for press molding is the glass material for press molding described above,
About.
 本発明の更なる一態様は、
 酸化物ガラスと、
 上記酸化物ガラスの表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層と、
 上記酸化物ガラスと被覆層との間に設けられた中間層と、
を備え、
 上記中間層において、上記酸化物ガラスのガラス転移温度以上の温度における上記酸化物ガラスに含まれる酸素原子が拡散する速度は、上記温度における上記金属酸化物膜に含まれる金属原子が拡散する速度より速い、ガラス光学素子、
 に関する。
A further aspect of the present invention provides:
Oxide glass,
A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition;
An intermediate layer provided between the oxide glass and the coating layer;
With
In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass optics,
About.
 本発明者らは酸化物ガラス由来の酸素によるガラス中の発泡を抑制するために鋭意検討を重ねた結果、プレス成形用ガラス素材において、酸化物ガラス上に、上記中間層を介して上述の被覆層を設けることに至った。
 上述の被覆層は金属酸化物膜であるが、化学量論組成より酸素が欠損した状態にあるため、より安定な状態である化学量論組成に近づこうと酸素を取り込みやすい状態にある。したがって、この状態の金属酸化物膜であれば、プレス成形時にガラス中で発生して発泡を引き起こす酸素を取り込み、泡の発生を抑制することができる。
 但し、プレス成形時には、被覆層から酸化物ガラス側へ向かって、被覆層に含まれる金属原子の移動(拡散)も起こり得る。この拡散により被覆層の実効的な膜厚の減少や膜の消失が生じてしまうと、被覆層によって泡の発生を抑制することは困難となる。
 これに対し、上記中間層では、上記酸化物ガラスのガラス転移温度以上の温度における上記酸化物ガラスに含まれる酸素原子が拡散する速度は、上記温度における上記金属酸化物膜に含まれる金属原子が拡散する速度より速い。これにより、酸化物ガラスからの酸素原子の拡散(被覆層側へ向かう移動)は、被覆層からの金属原子の拡散に優先して進行する。そのため、被覆層は、実効的な膜厚の減少や膜の消失を起こすことなく、酸素原子を酸化物ガラスから被覆層へ効率的に取り込み、泡の発生を抑制することができる。
 また、こうして得られる光学素子には、プレス工程を経た上述の被覆層および中間層が存在している。この光学素子に含まれる被覆層は、プレス成形時に酸化物ガラスから拡散した酸素原子を取り込むため、プレス成形用ガラス素材に含まれていた状態より金属原子に対する酸素原子の含有率は高い。ただし、一態様では、光学素子に含まれる被覆層は依然として化学量論組成より酸素が欠損した状態にあることも、本発明者らの検討の結果、明らかとなった。
As a result of intensive studies to suppress foaming in glass due to oxygen derived from oxide glass, the inventors of the present invention applied the above-mentioned coating on the oxide glass via the intermediate layer in the glass material for press molding. It led to providing a layer.
Although the above-described coating layer is a metal oxide film, it is in a state where oxygen is deficient from the stoichiometric composition, so that it is in a state where oxygen is easily taken in to approach the stoichiometric composition which is a more stable state. Therefore, if it is a metal oxide film in this state, it is possible to suppress the generation of bubbles by taking in oxygen that is generated in glass during press molding and causes foaming.
However, during press molding, migration (diffusion) of metal atoms contained in the coating layer can also occur from the coating layer toward the oxide glass side. If the effective thickness reduction or disappearance of the coating layer occurs due to this diffusion, it is difficult to suppress the generation of bubbles by the coating layer.
In contrast, in the intermediate layer, the rate at which oxygen atoms contained in the oxide glass diffuse at a temperature equal to or higher than the glass transition temperature of the oxide glass is such that the metal atoms contained in the metal oxide film at the temperature are Faster than spreading speed. Thereby, the diffusion of oxygen atoms from the oxide glass (movement toward the coating layer side) proceeds in preference to the diffusion of metal atoms from the coating layer. Therefore, the coating layer can efficiently take in oxygen atoms from the oxide glass into the coating layer without suppressing effective film thickness reduction or film disappearance, and suppress the generation of bubbles.
Moreover, the above-described coating layer and intermediate layer that have been subjected to a pressing step are present in the optical element thus obtained. Since the coating layer included in this optical element takes in oxygen atoms diffused from the oxide glass during press molding, the content of oxygen atoms relative to metal atoms is higher than that contained in the glass material for press molding. However, as a result of the study by the present inventors, it has been clarified that in one embodiment, the coating layer included in the optical element is still in a state where oxygen is lost from the stoichiometric composition.
 本発明の一態様によれば、プレス成形においてガラス内部に泡が発生することを抑制することが可能な光学素子の製造方法を提供することができる。
 更に、本発明の一態様によれば、泡の発生のない均質な光学素子を提供することができる。
According to one embodiment of the present invention, it is possible to provide a method for manufacturing an optical element capable of suppressing the generation of bubbles in glass during press molding.
Furthermore, according to one embodiment of the present invention, it is possible to provide a homogeneous optical element that does not generate bubbles.
図1は、中間層における、酸化物ガラスのガラス転移温度以上の温度における酸化物ガラスに含まれる酸素原子が拡散する速度(T1)と、この温度における金属酸化物膜に含まれる金属原子が拡散する速度(T2)との関係を示すモデル図である。FIG. 1 shows the rate of diffusion of oxygen atoms contained in oxide glass at a temperature equal to or higher than the glass transition temperature of oxide glass in the intermediate layer (T1) and the diffusion of metal atoms contained in the metal oxide film at this temperature. It is a model figure which shows the relationship with the speed (T2) to perform. 図2は、本発明の一態様にかかるプレス成形用ガラス素材を示す断面模式図である。FIG. 2 is a schematic cross-sectional view illustrating a press-molding glass material according to one embodiment of the present invention. 図3は、プレス成形装置の一例を示す図である。FIG. 3 is a diagram illustrating an example of a press molding apparatus. 図4は、実施例1に関するプレス成形前(プレス成形用ガラス素材)のTOF-SIMSによる2次イオン強度の深さ方向分析結果を示す図である。FIG. 4 is a diagram showing the depth direction analysis result of secondary ionic strength by TOF-SIMS before press molding (glass material for press molding) in Example 1. 図5は、実施例2に関するプレス成形前(プレス成形用ガラス素材)のTOF-SIMSによる2次イオン強度の深さ方向分析結果を示す図である。FIG. 5 is a diagram showing the depth direction analysis results of secondary ion intensity by TOF-SIMS before press molding (glass material for press molding) in Example 2.
 以下、本発明について、更に詳細に説明する。以下において、図面を参照し具体的態様を説明することがあるが、本発明は図面に示す態様に限定されるものではない。 Hereinafter, the present invention will be described in more detail. Hereinafter, specific embodiments may be described with reference to the drawings, but the present invention is not limited to the embodiments shown in the drawings.
 初めに、中間層において、上記酸化物ガラスのガラス転移温度以上の温度における酸化物ガラスに含まれる酸素原子が拡散する速度(T1)と、上記温度における金属酸化物膜に含まれる金属原子が拡散する速度(T2)との関係について説明する。なおT1とT2との関係は、上記酸化物ガラスのガラス転移温度以上の同じ温度におけるT1とT2との関係をいう。
 図1は、中間層における、酸化物ガラスのガラス転移温度以上の温度における酸化物ガラスに含まれる酸素原子が拡散する速度(T1)と、この温度における金属酸化物膜に含まれる金属原子が拡散する速度(T2)との関係を示すモデル図である。上記プレス成形用ガラス素材では、図1に示すように、酸化物ガラスと中間層とは、接している。また、中間層と被覆層とは、接している。このモデル図に示すように、中間層において、T1>T2の関係を満たしていれば、酸化物ガラスからの酸素原子の拡散(被覆層側へ向かう移動)は、被覆層からの金属原子の拡散に優先して進行する。これにより、被覆層は、プレス成形が通常行われる温度である酸化物ガラスのガラス転移温度以上において、実効的な膜厚の減少や膜の消失を起こすことなく、酸素原子を酸化物ガラスから被覆層へ効率的に取り込み、泡の発生を抑制することができる。
 本発明者らは、上記プレス成形用ガラス素材を用いてプレス成形を行うことにより、ガラス内部に泡が発生することを抑制することができる理由を、以上のように考えている。但し、上記記載は本発明者らによる推察を含むものであり、本発明はそれら推察に何ら限定されるものではない。
 なお、中間層がT1>T2の関係を満たすことは、プレス成形後に被覆層の膜厚の実効的な減少や膜の消失が発生しないことにより確認することができる。
First, in the intermediate layer, the oxygen atom contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass (T1) and the metal atom contained in the metal oxide film at the above temperature diffused. The relationship with the speed (T2) to be performed will be described. The relationship between T1 and T2 refers to the relationship between T1 and T2 at the same temperature that is equal to or higher than the glass transition temperature of the oxide glass.
FIG. 1 shows the rate of diffusion of oxygen atoms contained in oxide glass at a temperature equal to or higher than the glass transition temperature of oxide glass in the intermediate layer (T1) and the diffusion of metal atoms contained in the metal oxide film at this temperature. It is a model figure which shows the relationship with the speed (T2) to perform. In the press-molding glass material, as shown in FIG. 1, the oxide glass and the intermediate layer are in contact with each other. Further, the intermediate layer and the coating layer are in contact with each other. As shown in this model diagram, if the relationship of T1> T2 is satisfied in the intermediate layer, the diffusion of oxygen atoms from the oxide glass (movement toward the coating layer) is the diffusion of metal atoms from the coating layer. Proceeds with priority. As a result, the covering layer covers oxygen atoms from the oxide glass at a temperature higher than the glass transition temperature of the oxide glass, which is a temperature at which press molding is normally performed, without causing an effective decrease in film thickness or loss of the film. It is possible to efficiently incorporate into the layer and suppress the generation of bubbles.
The present inventors consider the reason why it is possible to suppress the generation of bubbles in the glass by performing press molding using the above glass material for press molding. However, the above description includes inferences by the present inventors, and the present invention is not limited to these inferences.
In addition, it can confirm that the intermediate | middle layer satisfy | fills the relationship of T1> T2 by the effective reduction | decrease of the film thickness of a coating layer, or the loss | disappearance of a film | membrane not generating after press molding.
 以下に、上記プレス成形用ガラス素材(「プリフォーム」(PF)ともいう。)について、更に詳細に説明する。 Hereinafter, the glass material for press molding (also referred to as “preform” (PF)) will be described in more detail.
[プレス成形用ガラス素材]
 図2は、本発明の一態様にかかるプレス成形用ガラス素材を示す断面模式図である。図2では、一例として、凹メニスカスレンズ用のプレス成形用ガラス素材PFを示している。
 図2に示すプレス成形用ガラス素材は、酸化物ガラス1と、酸化物ガラス1の表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層3と、酸化物ガラス1と被覆層3との間に設けられた中間層2と、を備える。被覆層3および中間層2は、酸化物ガラス1の表面の少なくとも一部を覆っていればよい。即ち、酸化物ガラス1は、その表面の一部に被覆層3および中間層2が被覆されていない未被覆の部分があってもよく、表面の全面が被覆されていてもよい。一実施形態では、プレス成形用ガラス素材をプレス成形してガラス光学素子を成形したときに、光学素子の光学機能面を形成することになる酸化物ガラスの部位を少なくとも被覆することができる。光学機能面とは、例えば光学素子においては有効径内の領域を意味する。但し、被覆層3がプレス成形用ガラス素材表面のどの部位にせよ少なくとも一部に存在すれば酸化物ガラスから酸素原子を取り込むことができるため、上述の実施形態に限定されるものではない。
[Glass material for press molding]
FIG. 2 is a schematic cross-sectional view illustrating a press-molding glass material according to one embodiment of the present invention. In FIG. 2, the glass material PF for press molding for concave meniscus lenses is shown as an example.
The glass material for press molding shown in FIG. 2 includes an oxide glass 1, a coating layer 3 that covers at least a part of the surface of the oxide glass 1 and is a metal oxide film in which oxygen is lost from the stoichiometric composition, And an intermediate layer 2 provided between the oxide glass 1 and the coating layer 3. The coating layer 3 and the intermediate layer 2 only need to cover at least part of the surface of the oxide glass 1. That is, the oxide glass 1 may have an uncoated portion where the coating layer 3 and the intermediate layer 2 are not coated on a part of the surface, or the entire surface may be coated. In one embodiment, when a glass optical element is formed by press-molding a glass material for press molding, at least a portion of the oxide glass that will form the optical functional surface of the optical element can be covered. The optical functional surface means, for example, a region within the effective diameter in the optical element. However, oxygen atoms can be taken from the oxide glass as long as the covering layer 3 is present at least in any part of the surface of the glass material for press molding, and thus is not limited to the above-described embodiment.
 以下に、プレス成形用ガラス素材を構成する被覆層、中間層、酸化物ガラスについて、順次説明する。 Hereinafter, the covering layer, the intermediate layer, and the oxide glass constituting the glass material for press molding will be sequentially described.
<被覆層>
 酸化物ガラスを覆う被覆層は、化学量論組成より酸素が欠損した状態にある金属酸化物膜である。したがって、被覆層は、かかる金属酸化物膜が形成可能な成膜法により形成すればよい。例えば、酸化物ガラスからなるガラス塊の表面に後述する中間層を形成した後、ターゲットとして金属(金属の単体)を用いて非酸化性雰囲気中でスパッタ法、真空蒸着法、CVD(Chemical Vapor Deposition)法等の公知の成膜法により成膜することで、化学量論組成より酸素が欠損した金属酸化物膜を形成することができる。ここで非酸化性雰囲気とは、アルゴンガス、窒素ガス等の不活性ガス等の酸素以外のガスからなる雰囲気をいう。但し雰囲気ガスに意図せず不純物として混入している微量酸素に由来する酸素の存在は許容されるものとする。
<Coating layer>
The coating layer covering the oxide glass is a metal oxide film in which oxygen is lost from the stoichiometric composition. Therefore, the coating layer may be formed by a film formation method that can form such a metal oxide film. For example, after forming an intermediate layer, which will be described later, on the surface of a glass lump made of oxide glass, sputtering (vacuum deposition), CVD (Chemical Vapor Deposition) in a non-oxidizing atmosphere using a metal (single metal) as a target ) Method or the like, a metal oxide film deficient in oxygen from the stoichiometric composition can be formed. Here, the non-oxidizing atmosphere refers to an atmosphere made of a gas other than oxygen such as an inert gas such as argon gas or nitrogen gas. However, the presence of oxygen derived from a trace amount of oxygen unintentionally mixed as an impurity in the atmospheric gas is allowed.
 成膜温度(ガラス塊の温度)は、下限は150℃以上であることが好ましく、200℃以上であることが更に好ましい。上限は酸化物ガラスのガラス転移温度未満であることが好ましい。上限温度は、例えば450℃以下である。 The lower limit of the film forming temperature (the temperature of the glass lump) is preferably 150 ° C. or higher, and more preferably 200 ° C. or higher. The upper limit is preferably less than the glass transition temperature of the oxide glass. The upper limit temperature is, for example, 450 ° C. or less.
 具体的態様としては、中間層を形成した複数の酸化物ガラスをトレーに配列して真空チャンバー内に配置し、真空チャンバー内を真空排気しながら、加熱ヒーターにより酸化物ガラスが約300℃になる温度に加熱する。真空チャンバー内の真空度が1×10-5Torr以下になるまで排気した後、アルゴン(Ar)ガスを導入し、真空チャンバー内の雰囲気ガスをArガスに置換した後にターゲット基材に高周波を印加して、原料をプラズマ化し、中間層が形成された酸化物ガラスの表面に被覆層を成膜する。被覆層の膜厚は、真空チャンバー内の圧力(真空度)、電源パワー、成膜時間を調整することによって所望の膜厚に制御することができる。なお、被覆層は、酸化物ガラスの表面の少なくとも一部を覆っていればよい。この点については、上述の通りである。 As a specific embodiment, a plurality of oxide glasses formed with an intermediate layer are arranged in a tray and placed in a vacuum chamber, and the oxide glass is heated to about 300 ° C. by a heater while evacuating the vacuum chamber. Heat to temperature. After evacuating until the degree of vacuum in the vacuum chamber becomes 1 × 10 −5 Torr or less, argon (Ar) gas is introduced, and the atmosphere gas in the vacuum chamber is replaced with Ar gas, and then a high frequency is applied to the target substrate. Then, the raw material is turned into plasma, and a coating layer is formed on the surface of the oxide glass on which the intermediate layer is formed. The film thickness of the coating layer can be controlled to a desired film thickness by adjusting the pressure (vacuum degree) in the vacuum chamber, the power source power, and the film formation time. In addition, the coating layer should just cover at least one part of the surface of oxide glass. This point is as described above.
 被覆層は、化学量論組成より酸素が欠損した状態にある金属酸化物膜であればよく、金属酸化物を構成する金属は特に限定されるものではない。被覆層を構成する金属の具体例としては、ジルコニウム、イットリウム、タンタル、ニオブ、タングステンを挙げることができる。但し、ここに例示しない金属であってもよい。なお、本発明において、金属とは、半金属に分類されるものも包含する意味で用いるものとする。例えば一例として、ケイ素(Si)も、本発明における金属に含まれる。 The coating layer may be a metal oxide film in which oxygen is lost from the stoichiometric composition, and the metal constituting the metal oxide is not particularly limited. Specific examples of the metal constituting the coating layer include zirconium, yttrium, tantalum, niobium, and tungsten. However, the metal which is not illustrated here may be sufficient. In the present invention, the term “metal” is used to include those classified as semi-metals. For example, as an example, silicon (Si) is also included in the metal in the present invention.
 被覆層の膜厚は、酸化物ガラスから酸素を効率的に取り込むためには0.5nm以上とすることが好ましく、1.5nm以上とすることがより好ましい。一方、クモリ防止の観点からは、被覆層の膜厚は、15nm以下とすることが好ましく、10nm以下とすることが更に好ましい。 The film thickness of the coating layer is preferably 0.5 nm or more and more preferably 1.5 nm or more in order to efficiently take in oxygen from the oxide glass. On the other hand, from the viewpoint of preventing spiders, the thickness of the coating layer is preferably 15 nm or less, and more preferably 10 nm or less.
 以上説明した被覆層は、上述の通り、化学量論組成より酸素が欠損した状態にある。例えばジルコニウム酸化物であれば、化学量論組成はZrO2であるため、被覆層がジルコニウム酸化物膜である場合、その組成はZrOx(x<2)となる。ここでxは2未満であればよく、特に限定されるものではない。他の金属酸化物膜についても、同様である。 As described above, the coating layer described above is in a state where oxygen is lost from the stoichiometric composition. For example, in the case of zirconium oxide, since the stoichiometric composition is ZrO 2 , when the coating layer is a zirconium oxide film, the composition is ZrOx (x <2). Here, x may be less than 2, and is not particularly limited. The same applies to other metal oxide films.
<中間層>
 中間層は、被覆層と酸化物ガラスとの間に設けられる。なお、プレス成形用ガラス素材は、酸化物ガラスの表面の少なくとも一部に、中間層を介して被覆層を備えるものであればよく、酸化物ガラス表面の一部に、中間層のみで被覆されている部分があってもよく、被覆層のみで被覆されている部分があってもよい。上記酸化物ガラスのガラス転移温度以上の温度で、中間層において、酸化物ガラスに含まれる酸素原子が拡散する速度(T1)は、金属酸化物膜(被覆層)に含まれる金属原子が拡散する速度(T2)より速い。このように、上記酸化物ガラスのガラス転移温度以上の温度で、中間層においてT1>T2の関係を満たす限り、中間層の材料や膜厚は限定されるものではない。例えば、中間層は、一種以上の金属元素と、酸素、窒素、炭素、およびフッ素からなる群から選ばれる一種以上の元素との化合物を用いて形成することができる。中間層は、例えば、金属酸化物膜であり、金属酸化物膜としては、ジルコニウム、イットリウム、スカンジウム、ランタノイドの酸化物膜を挙げることができる。ランタノイドとしては、ランタン、セリウム、プラセオジム、サマリウム、イッテルビウムを挙げることができる。これらは例示に過ぎず、上述の材料に限定されるものではない。中間層の膜厚は、例えば1~15nmの範囲とすることができるが、上記酸化物ガラスのガラス転移温度以上の温度においてT1>T2の関係を満たせばよく、膜厚がこの範囲外であってもよい。なお、中間層は、単層であってもよく、二層以上の多層構造のものでもよい。多層構造の場合、上記の中間層の膜厚とは、多層の合計膜厚をいう。多層構造の中間層は、多層構造全体でT1>T2の関係を満たすものであればよい。
<Intermediate layer>
The intermediate layer is provided between the coating layer and the oxide glass. Note that the glass material for press molding only needs to have a coating layer on at least a part of the surface of the oxide glass via an intermediate layer, and a part of the surface of the oxide glass is covered only with the intermediate layer. There may be a portion that is covered, or there may be a portion that is covered only with the covering layer. The rate (T1) at which the oxygen atoms contained in the oxide glass diffuse in the intermediate layer at a temperature equal to or higher than the glass transition temperature of the oxide glass is that the metal atoms contained in the metal oxide film (coating layer) diffuse. Faster than speed (T2). Thus, as long as the relationship of T1> T2 is satisfied in the intermediate layer at a temperature equal to or higher than the glass transition temperature of the oxide glass, the material and film thickness of the intermediate layer are not limited. For example, the intermediate layer can be formed using a compound of one or more metal elements and one or more elements selected from the group consisting of oxygen, nitrogen, carbon, and fluorine. The intermediate layer is, for example, a metal oxide film, and examples of the metal oxide film include zirconium, yttrium, scandium, and lanthanoid oxide films. Examples of lanthanoids include lanthanum, cerium, praseodymium, samarium, and ytterbium. These are merely examples and are not limited to the materials described above. The film thickness of the intermediate layer can be, for example, in the range of 1 to 15 nm, but it is sufficient that the relationship of T1> T2 is satisfied at a temperature equal to or higher than the glass transition temperature of the oxide glass, and the film thickness is outside this range. May be. The intermediate layer may be a single layer or a multilayer structure having two or more layers. In the case of a multilayer structure, the film thickness of the intermediate layer refers to the total film thickness of the multilayer. The intermediate layer of the multilayer structure only needs to satisfy the relationship of T1> T2 in the entire multilayer structure.
 中間層の成膜方法としては、スパッタ法、真空蒸着法等の公知の成膜法を用いることができる。例えば、アルゴンガスを用いたスパッタ法によって、酸化物ガラス表面の少なくとも一部に、中間層を形成することができる。適宜、予備実験を行うことにより、T1>T2の関係を満たす中間層を形成するための成膜条件を決定することができる。例えば、予備実験を行いテスト用プレス成形用ガラス素材を作製し、テストプレスを行った後に、被覆層の膜厚の顕著な減少や膜の消失がないことが確認された成膜条件を、実際のプレス成形に用いるプレス成形用ガラス素材の中間層を形成するための成膜条件として採用することができる。 As a method for forming the intermediate layer, a known film forming method such as a sputtering method or a vacuum evaporation method can be used. For example, the intermediate layer can be formed on at least a part of the surface of the oxide glass by a sputtering method using argon gas. By performing preliminary experiments as appropriate, it is possible to determine the film forming conditions for forming the intermediate layer satisfying the relationship of T1> T2. For example, after carrying out a preliminary experiment to produce a test press-molding glass material and performing a test press, the film forming conditions that have been confirmed to have no significant decrease in the film thickness of the coating layer or disappearance of the film are actually It can employ | adopt as film-forming conditions for forming the intermediate | middle layer of the glass material for press moldings used for this press molding.
<酸化物ガラス>
 酸化物ガラスとしては、光学素子の作製に通常使用される各種組成の光学ガラスを挙げることができる。そのような光学ガラスの具体的態様としては、ホウ酸ランタン系ガラス等のホウ酸-希土類系ガラス、リン酸塩ガラス、ケイ酸塩ガラスを挙げることができる。
<Oxide glass>
Examples of the oxide glass include optical glasses having various compositions that are usually used in the production of optical elements. Specific examples of such optical glass include boric acid-rare earth glass such as lanthanum borate glass, phosphate glass, and silicate glass.
 ところで、光学ガラスの中で、プレスにより発泡が生じる傾向が高い組成としては、高屈折率付与成分であるNb25、TiO2、WO3、Ta25を比較的多く含む酸化物ガラスを挙げることができる。これらの金属酸化物は、ガラス転移温度以上において、他の金属酸化物に比べて還元されやすいためと考えられる。本発明の一態様にかかるガラス光学素子の製造方法では、例えばNb25、TiO2、WO3およびTa25からなる群から選択される高屈折率付与成分を一種以上含み、かつ高屈折率付与成分の合計含有量(Nb25+TiO2+WO3+Ta25)が10質量%以上の酸化物ガラスに、上述の中間層および被覆層を設けたうえでプレス成形することができる。これによりプレス後の泡の発生が抑制された均質な光学素子を得ることができる。合計含有量(Nb25+TiO2+WO3+Ta25)は、より好ましくは15質量%以上である。なお合計含有量(Nb5+TiO2+WO3+Ta25)は、50質量%以下であることが、ガラス転移温度および屈伏点の顕著な上昇によるプレス温度の高温化の抑制、ならびにガラス化の容易性の観点から好ましく、45質量%以下であることがより好ましい。 By the way, as a composition in which foaming tends to be caused by pressing in the optical glass, an oxide glass containing a relatively large amount of Nb 2 O 5 , TiO 2 , WO 3 , and Ta 2 O 5 as high refractive index imparting components. Can be mentioned. These metal oxides are considered to be more easily reduced than the other metal oxides at the glass transition temperature or higher. In the method for producing a glass optical element according to one aspect of the present invention, for example, the glass optical element includes one or more high refractive index imparting components selected from the group consisting of Nb 2 O 5 , TiO 2 , WO 3 and Ta 2 O 5 , and high An oxide glass having a total content of refractive index imparting components (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) of 10% by mass or more may be press-molded after providing the above intermediate layer and coating layer. it can. Thereby, a homogeneous optical element in which the generation of bubbles after pressing is suppressed can be obtained. The total content (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) is more preferably 15% by mass or more. The total content (N b O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) is 50% by mass or less, which suppresses the increase in the press temperature due to a significant increase in the glass transition temperature and the yield point, and the glass. From the viewpoint of ease of conversion, it is preferably 45% by mass or less.
 プレス温度は通常、酸化物ガラスのガラス転移温度以上の温度で行われるため、高ガラス転移温度のガラスであるほどプレス温度が高くなる傾向がある。一方、プレス温度の顕著な上昇は、泡の発生を助長する場合がある。したがって、酸化物ガラスの好ましい具体的態様としては、ガラス転移温度を低下させる作用のあるガラス成分の一種以上を適量含む酸化物ガラスを挙げることができる。ガラス転移温度を低下させる作用のあるガラス成分としては、ZnO、ならびにLi2O、Na2OおよびK2Oからなる群から選択されるアルカリ金属酸化物を挙げることができる。ZnOとアルカリ金属酸化物との合計含有量(ZnO+Li2O+Na2O+K2O)は、5質量%以上であることが好ましく、10質量%以上であることが好ましい。一方、ガラス化の容易性の観点からは、合計含有量(ZnO+Li2O+Na2O+K2O)は、25質量%以下であることが好ましく、20質量%以下であることがより好ましい。酸化物ガラスとしては、光学素子の有用性の観点から、屈折率ndが1.70~2.10、アッベ数νdが20~55の光学ガラスを具体的態様として例示することができる。また、他の具体的態様としては、プレス成形性、特に精密プレス成形性に優れるガラスとして、ガラス転移温度が630℃以下、屈伏点が680℃以下のいずれか一方または両方を満たす光学ガラスを例示することもできる。但し、本発明の一態様にかかる光学素子の製造方法は、上述の具体的態様に限定されるものではない。  Since the press temperature is usually performed at a temperature equal to or higher than the glass transition temperature of the oxide glass, the press temperature tends to be higher as the glass has a higher glass transition temperature. On the other hand, a significant increase in the press temperature may promote the generation of bubbles. Therefore, as a preferable specific embodiment of the oxide glass, an oxide glass containing an appropriate amount of one or more glass components having an action of lowering the glass transition temperature can be exemplified. Examples of the glass component having an action of lowering the glass transition temperature include ZnO and an alkali metal oxide selected from the group consisting of Li 2 O, Na 2 O and K 2 O. The total content of ZnO and alkali metal oxide (ZnO + Li 2 O + Na 2 O + K 2 O) is preferably 5% by mass or more, and more preferably 10% by mass or more. On the other hand, from the viewpoint of ease of vitrification, the total content (ZnO + Li 2 O + Na 2 O + K 2 O) is preferably 25% by mass or less, and more preferably 20% by mass or less. Specific examples of the oxide glass include an optical glass having a refractive index nd of 1.70 to 2.10 and an Abbe number νd of 20 to 55 from the viewpoint of the usefulness of the optical element. Further, as another specific embodiment, an optical glass satisfying one or both of a glass transition temperature of 630 ° C. or lower and a yield point of 680 ° C. or lower is exemplified as a glass excellent in press moldability, particularly precision press moldability. You can also However, the method for manufacturing an optical element according to one embodiment of the present invention is not limited to the specific embodiment described above.
 酸化物ガラスとなり得る光学ガラスのより具体的な態様としては、例えば、下記ガラスI、II、IIIを挙げることができる。但し、酸化物ガラスの組成は特に限定されるものではない。ガラスI、II、IIIは、いずれもガラス光学素子を作製するための光学ガラスとして好適なものである。本発明の一態様によれば、このような光学ガラスをプレス成形し、ガラス中に泡のない高品質なガラス光学素子を提供することができる。 As a more specific aspect of the optical glass that can be an oxide glass, for example, the following glasses I, II, and III can be mentioned. However, the composition of the oxide glass is not particularly limited. Glasses I, II, and III are all suitable as optical glasses for producing glass optical elements. According to one embodiment of the present invention, such an optical glass can be press-molded to provide a high-quality glass optical element free from bubbles in the glass.
(ガラスI)
カチオン%表示で、
3+およびSi4+を合計で5~60%(但し、B3+を5~50%)、
Zn2+およびMg2+を合計で5%以上、
La3+、Gd3+、Y3+およびYb3+を合計で10~50%、
Ti4+、Nb5+、Ta5+、W6+およびBi3+を合計で6~45%(但し、Ti4+およびTa5+の合計含有量が0%超、かつW6+の含有量が5%超)、
含み、
3+の含有量に対するSi4+の含有量のカチオン比(Si4+/B3+)が0.70以下であり、
Ti4+およびTa5+の合計含有量に対するTa5+の含有量のカチオン比(Ta5+/(Ti4++Ta5+))が0.23以上であり、
Nb5+およびW6+の合計含有量に対するW6+の含有量のカチオン比(W6+/(Nb5++W6+))が0.30以上であり、
3+およびSi4+の合計含有量に対するTi4+、Nb5+、Ta5+、W6+およびBi3+の合計含有量のカチオン比((Ti4++Nb5++Ta5++W6++Bi3+)/(B3++Si4+))が0.37を超え3.00以下であり、
La3+、Gd3+、Y3+およびYb3+の合計含有量に対するZn2+、Mg2+およびLi+の合計含有量のカチオン比((Zn2++Mg2++Li+)/(La3++Gd3++Y3++Yb3+))が0.40以上であり、
屈折率ndが1.90~2.00であり、かつアッベ数νdが下記(1)式:
   25≦νd<(3.91-nd)/0.06   ・・・(1)
を満たす酸化物ガラス。
(Glass I)
In cation% display,
B 3+ and Si 4+ in total 5 to 60% (however, B 3+ is 5 to 50%),
Zn 2+ and Mg 2+ in total 5% or more,
La 3+ , Gd 3+ , Y 3+ and Yb 3+ in total 10 to 50%,
Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ in total 6 to 45% (provided that the total content of Ti 4+ and Ta 5+ exceeds 0% and W 6+ Content over 5%),
Including
The cation ratio of the Si 4+ content to the B 3+ content (Si 4+ / B 3+ ) is 0.70 or less,
Ti 4+ and Ta 5+ content of the cation ratio of Ta 5+ to the total content of (Ta 5+ / (Ti 4+ + Ta 5+)) is not less 0.23 or more,
The cation ratio of the W 6+ content to the total content of Nb 5+ and W 6+ (W 6+ / (Nb 5+ + W 6+ )) is 0.30 or more,
Cation ratio of the total content of Ti 4+ , Nb 5+ , Ta 5+ , W 6+ and Bi 3+ to the total content of B 3+ and Si 4+ ((Ti 4+ + Nb 5+ + Ta 5+ + W 6+ + Bi 3+ ) / (B 3+ + Si 4+ )) is more than 0.37 and not more than 3.00,
Cation ratio of the total content of Zn 2+ , Mg 2+ and Li + to the total content of La 3+ , Gd 3+ , Y 3+ and Yb 3+ ((Zn 2+ + Mg 2+ + Li + ) / ( La 3+ + Gd 3+ + Y 3+ + Yb 3+ )) is 0.40 or more,
The refractive index nd is 1.90 to 2.00, and the Abbe number νd is the following formula (1):
25 ≦ νd <(3.91−nd) /0.06 (1)
An oxide glass that meets the requirements.
 ガラスIは高屈折率ガラスでありながら、低いガラス転移温度を示すことができるため、精密プレス成形用のガラスとして好適である。好ましい態様において、ガラス転移温度は650℃以下である。ガラス転移温度が650℃以下の光学ガラスは、精密プレス成形時のガラスの温度を比較的低い温度範囲に維持することができ、プレス成形時のガラスとプレス成形面との反応を抑制し、精密プレス成形性を良好な状態に維持することができる。このような観点からガラス転移温度は640℃以下であることが好ましく、630℃以下であることがより好ましく、620℃以下であることが更に好ましく、610℃以下であることが一層好ましく、600℃以下であることがより一層好ましい。
 なお、ガラス転移温度を過剰に低下させるとガラスの安定性が低下したり、屈折率が低下する傾向を示すため、ガラス転移温度は500℃以上であることが好ましく、520℃以上であることがより好ましく、540℃以上であることが更に好ましく、560℃以上であることが一層好ましく、570℃以上であることがより一層好ましい。
Although the glass I is a high refractive index glass, it can exhibit a low glass transition temperature, and thus is suitable as a glass for precision press molding. In a preferred embodiment, the glass transition temperature is 650 ° C. or lower. Optical glass having a glass transition temperature of 650 ° C. or lower can maintain the glass temperature during precision press molding in a relatively low temperature range, suppresses the reaction between the glass during press molding and the press molding surface, and is precise. The press formability can be maintained in a good state. From such a viewpoint, the glass transition temperature is preferably 640 ° C. or less, more preferably 630 ° C. or less, further preferably 620 ° C. or less, further preferably 610 ° C. or less, and 600 ° C. More preferably, it is the following.
It should be noted that if the glass transition temperature is excessively decreased, the stability of the glass decreases or the refractive index tends to decrease. Therefore, the glass transition temperature is preferably 500 ° C. or higher, and preferably 520 ° C. or higher. More preferably, it is 540 ° C. or more, further preferably 560 ° C. or more, and further preferably 570 ° C. or more.
(ガラスII)
23、La23およびZnOを含み、モル%表示で、B23 20~60%、SiO2 0~20%、ZnO 22~42%、La23 5~24%、Gd23 0~20%(但し、La23とGd23の合計量が10~24%)、ZrO2 0~10%、Ta25 0~10%、WO3 0~10%、Nb25 0~10%、TiO2 0~10%、Bi23 0~10%、GeO2 0~10%、Ga23 0~10%、Al23 0~10%、BaO 0~10%、Y23 0~10%およびYb23 0~10%、を含み、かつアッベ数(νd)が40以上で、実質的にリチウムを含まない酸化物ガラス。
(Glass II)
B 2 O 3 , La 2 O 3 and ZnO are included, and expressed in mol%, B 2 O 3 20 to 60%, SiO 2 0 to 20%, ZnO 22 to 42%, La 2 O 3 5 to 24%, Gd 2 O 3 0 ~ 20% ( provided that the total of La 2 O 3 and Gd 2 O 3 is 10 ~ 24%), ZrO 2 0 ~ 10%, Ta 2 O 5 0 ~ 10%, WO 3 0 ~ 10%, Nb 2 O 5 0-10%, TiO 2 0-10%, Bi 2 O 3 0-10%, GeO 2 0-10%, Ga 2 O 3 0-10%, Al 2 O 3 0- 10%, BaO 0 to 10%, Y 2 O 3 0 to 10% and Yb 2 O 3 0 to 10%, and an Abbe number (ν d ) of 40 or more and substantially free of lithium Glass.
 ガラスIIに関し、実質的にリチウムを含まないとは、ガラス表面に光学素子としての使用に支障が生じるクモリやヤケが発生しないレベルの含有量にLi2Oの導入量を抑えることを意味するものである。具体的には、Li2Oの量に換算して0.5モル%未満の含有量に抑えることを意味する。リチウムの量を少なくするほどクモリ、ヤケ発生のリスクを低減することができるので、Li2Oの量で0.4モル%以下に抑えることが好ましく、0.1モル%以下に抑えることがより好ましく、導入しないことが更に好ましい。 Concerning Glass II, “substantially free of lithium” means that the amount of Li 2 O introduced is suppressed to a level that does not cause spiders or burns that hinder the use of the glass surface as an optical element. It is. Specifically, it means that the content is reduced to less than 0.5 mol% in terms of the amount of Li 2 O. Since the risk of spider and burns can be reduced as the amount of lithium is reduced, the amount of Li 2 O is preferably suppressed to 0.4 mol% or less, and more preferably to 0.1 mol% or less. Preferably, it is more preferable not to introduce.
 ガラスIIは精密プレス成形用に適するものであり、プレス成形型の消耗や型の成形面に形成する離型膜の損傷を防止する上から、ガラス転移温度が低いことが好ましく、ガラス転移温度は630℃以下であることが好ましく、620℃以下であることがより好ましい。一方、ガラス表面のクモリやヤケを防ぐ上から、ガラス中のリチウム量を上記のように制限するため、ガラス転移温度を過剰に低下させようとすると、屈折率が低下したり、ガラスの安定性が低下するなどの問題が発生しやすくなる。そのため、ガラス転移温度は530℃以上であることが更に好ましく、540℃以上であることがより一層好ましい。 Glass II is suitable for precision press molding, and it is preferable that the glass transition temperature is low in order to prevent wear of the press mold and damage to the release film formed on the molding surface of the mold. It is preferable that it is 630 degrees C or less, and it is more preferable that it is 620 degrees C or less. On the other hand, in order to prevent spiders and burns on the glass surface, in order to limit the amount of lithium in the glass as described above, if the glass transition temperature is excessively lowered, the refractive index decreases or the stability of the glass Problems such as lowering of the Therefore, the glass transition temperature is more preferably 530 ° C. or higher, and further preferably 540 ° C. or higher.
 ガラスIIの詳細については、特開2006-137662号公報(その全記載は、ここに特に開示として援用される)の段落0013~0039を参照できる。 For details of the glass II, reference can be made to paragraphs 0013 to 0039 of JP-A-2006-137661 (the entire description is specifically incorporated herein by reference).
(ガラスIII)
モル%表示で、
SiO2 0~20%、
23 5~40%、
SiO2+B23=15~50%、
Li2O 0~10%、
ZnO 12~36%、
但し、3×Li2O+ZnO≧18%、
La23 5~30%、
Gd23 0~20%、
23 0~10%、
La23+Gd23=10~30%、
La23/ΣRE23=0.67~0.95%、
(但し、ΣRE23=La23+Gd23+Y23+Yb23+Sc23+Lu23
ZrO2 0.5~10%、
Ta25 1~15%、
WO3 1~20%、
Ta25/WO3≦2.5(モル比)
Nb25 0~8%、
TiO2 0~8%
を含み、
屈折率ndが1.87以上、
アッベ数νdが35以上40未満
の酸化物ガラス。
(Glass III)
In mol%
SiO 2 0-20%,
B 2 O 3 5-40%,
SiO 2 + B 2 O 3 = 15-50%,
Li 2 O 0-10%,
ZnO 12-36%,
However, 3 × Li 2 O + ZnO ≧ 18%,
La 2 O 3 5-30%,
Gd 2 O 3 0-20%,
Y 2 O 3 0-10%,
La 2 O 3 + Gd 2 O 3 = 10-30%,
La 2 O 3 / ΣRE 2 O 3 = 0.67 to 0.95%,
(However, ΣRE 2 O 3 = La 2 O 3 + Gd 2 O 3 + Y 2 O 3 + Yb 2 O 3 + Sc 2 O 3 + Lu 2 O 3 )
ZrO 2 0.5-10%,
Ta 2 O 5 1-15%,
WO 3 1-20%,
Ta 2 O 5 / WO 3 ≦ 2.5 (molar ratio)
Nb 2 O 5 0-8%,
TiO 2 0-8%
Including
Refractive index nd is 1.87 or more,
An oxide glass having an Abbe number νd of 35 or more and less than 40.
 ガラスIIIは、ガラス転移温度が650℃以下の低温軟化性を示す。ガラスIIIが有するガラス転移温度のより好ましい範囲は640℃以下、更に好ましくは630℃以下、一層好ましくは620℃以下、なお一層好ましくは610℃である。一方、ガラス転移温度を過剰に低下させるとより一層の高屈折率化、低分散化が困難になり、かつ/またはガラスの安定性や化学的耐久性が低下する傾向を示すため、ガラス転移温度は510℃以上、好ましくは540℃以上、より好ましくは560℃以上、一層好ましくは580℃以上であることが望ましい。 Glass III exhibits a low-temperature softening property with a glass transition temperature of 650 ° C. or lower. A more preferable range of the glass transition temperature of the glass III is 640 ° C. or lower, more preferably 630 ° C. or lower, more preferably 620 ° C. or lower, and still more preferably 610 ° C. On the other hand, if the glass transition temperature is excessively decreased, it is difficult to achieve higher refractive index and lower dispersion and / or the stability and chemical durability of the glass tend to decrease. Is 510 ° C. or higher, preferably 540 ° C. or higher, more preferably 560 ° C. or higher, and even more preferably 580 ° C. or higher.
 更に、ガラスIIIが有する屈伏点の好ましい範囲は、700℃以下、より好ましくは690℃以下、更に好ましくは680℃以下、一層好ましくは670℃以下、より一層好ましくは660℃以下である。屈伏点を過剰に低下させるとより一層の高屈折率化、低分散化が困難になり、かつ/またはガラスの安定性や化学的耐久性が低下する傾向を示す。したがって、屈伏点は550℃以上であることが好ましく、580℃以上であることがより好ましく、600℃以上であることが一層好ましく、620℃以上であることがより一層好ましい。 Furthermore, the preferable range of the yield point of the glass III is 700 ° C. or less, more preferably 690 ° C. or less, further preferably 680 ° C. or less, more preferably 670 ° C. or less, and still more preferably 660 ° C. or less. When the yield point is excessively lowered, it is difficult to achieve higher refractive index and lower dispersion, and / or the stability and chemical durability of the glass tend to be lowered. Therefore, the yield point is preferably 550 ° C. or higher, more preferably 580 ° C. or higher, even more preferably 600 ° C. or higher, and even more preferably 620 ° C. or higher.
 ガラスIIIの詳細については、特開2008-201661号公報(その全記載は、ここに特に開示として援用される)の段落0016~0065を参照できる。 For details of the glass III, reference can be made to paragraphs 0016 to 0065 of JP-A-2008-201661 (the entire description is specifically incorporated herein by reference).
(酸化物ガラスの成形)
 酸化物ガラスは、プレス成形用ガラス素材として公知の形状に、プレス成形用ガラス素材の成形法として公知の方法により成形することができる。酸化物ガラスの形状および成形方法については、例えば、特開2011-1259号公報の段落0087~0106および実施例の記載、特開2004-250295号公報(その全記載は、ここに特に開示として援用される)の段落0040~0044および実施例の記載を参照できる。
(Formation of oxide glass)
The oxide glass can be formed into a shape known as a glass material for press molding by a method known as a method for forming a glass material for press molding. Regarding the shape and forming method of the oxide glass, for example, paragraphs 0087 to 0106 of JP2011-1259A and description of Examples, JP2004250295A (the entire description is specifically incorporated herein by reference) Reference may be made to paragraphs 0040-0044 and the description of the examples.
<任意の被膜>
 本発明の一態様にかかるプレス成形用ガラス素材は、以上説明した酸化物ガラスに、上述の中間層および被覆層を形成する成膜処理を行うことで得ることができる。プレス成形用ガラス素材には、上述の被覆層上に、更に一層以上の被膜を任意に形成することができる。そのような被膜は、プレス成形において成形型からのガラスの離型性を高めること等に有効である。
<Arbitrary film>
The glass material for press molding according to one embodiment of the present invention can be obtained by performing a film forming process for forming the above-described intermediate layer and coating layer on the oxide glass described above. In the glass material for press molding, one or more layers can be arbitrarily formed on the above-described coating layer. Such a coating is effective in enhancing the mold releasability of the glass from the mold during press molding.
 上述の任意の被膜の一態様としては、炭素含有膜を挙げることができる。炭素含有膜は、プレスに先立ってプレス成形用ガラス素材(以下、「ガラス素材」とも記載する。)が成形型に供給される際、成形型との充分な滑り性をもたらし、ガラス素材が成形型の所定位置(中心位置)に滑らかに移動できるようにするとともに、プレスによってガラス素材が軟化し、変形するときに、ガラス素材の表面上でガラス変形に従って伸び、ガラス素材の成形型表面における延展を助けることができる。更に、プレス後にプレス成形体が所定温度に冷却されたときに、ガラスが成形型表面と離れやすくし、離型を助ける点で有用である。また、上述の被覆層に炭素含有膜を積層することは、プレス成形においてワレが発生することを抑制するうえでも有効である。 As an aspect of the above-mentioned arbitrary coating, a carbon-containing film can be exemplified. When a glass material for press molding (hereinafter also referred to as “glass material”) is supplied to the mold prior to pressing, the carbon-containing film provides sufficient slipperiness with the mold and the glass material is molded. It enables smooth movement to a predetermined position (center position) of the mold. Can help. Furthermore, when the press-molded body is cooled to a predetermined temperature after pressing, it is useful in that the glass is easily separated from the surface of the mold and assists the mold release. Moreover, laminating a carbon-containing film on the above-described coating layer is also effective in suppressing the occurrence of cracking during press molding.
 炭素含有膜としては、炭素を主成分とするものが好ましいが、炭化水素膜など、炭素以外の成分を含有するものでもよい。炭素含有膜の成膜方法としては、炭素原料を用いた真空蒸着、スパッタリング、イオンプレーティング法、プラズマCVD(Chemical Vapor Deposition)など、公知の成膜方法を用いることができる。また、炭化水素等、炭素含有物の熱分解によって炭素含有膜を成膜してもよい。 As the carbon-containing film, a film containing carbon as a main component is preferable, but a film containing a component other than carbon such as a hydrocarbon film may be used. As a method for forming the carbon-containing film, a known film forming method such as vacuum deposition using a carbon raw material, sputtering, ion plating method, plasma CVD (Chemical Vapor Deposition) can be used. Further, a carbon-containing film may be formed by thermal decomposition of a carbon-containing material such as hydrocarbon.
[ガラス光学素子、ガラス光学素子の製造方法]
 本発明の一態様は、
 酸化物ガラスと、
 上記酸化物ガラスの表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層と、
 上記酸化物ガラスと被覆層との間に設けられた中間層と、
を備え、
 上記中間層において、上記酸化物ガラスのガラス転移温度以上の温度における上記酸化物ガラスに含まれる酸素原子が拡散する速度は、上記温度における上記金属酸化物膜に含まれる金属原子が拡散する速度より速い、ガラス光学素子、
 に関する。
[Glass optical element, manufacturing method of glass optical element]
One embodiment of the present invention provides:
Oxide glass,
A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition;
An intermediate layer provided between the oxide glass and the coating layer;
With
In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass optics,
About.
 以上説明したプレス成形用ガラス素材を準備し、次いでプレス成形することにより得られたプレス成形体そのものとして、またはプレス成形体に被膜形成等の後工程を施すことにより、本発明の一態様にかかるガラス光学素子を得ることができる。 According to one aspect of the present invention, the press-molded glass material described above is prepared and then press-molded to obtain a press-molded body itself or by subjecting the press-molded body to a post-process such as film formation. A glass optical element can be obtained.
 プレス成形は、光学素子の成形方法として公知のプレス成形法により行うことができる。以下、具体的態様について説明するが、本発明は下記態様に限定されるものではない。 Press molding can be performed by a known press molding method as a method for molding an optical element. Hereinafter, although a specific aspect is demonstrated, this invention is not limited to the following aspect.
 プレス成形に用いる成形型としては、充分な耐熱性、剛性を有し、緻密な材料を精密加工したものを用いることができる。例えば、炭化ケイ素、窒化ケイ素、炭化タングステン、酸化アルミニウムや炭化チタン、ステンレス等金属、あるいはこれらの表面に炭素、耐熱金属、貴金属合金、炭化物、窒化物、硼化物などの膜を被覆したものを挙げることができる。成形面を被覆する膜としては、プレス成形用ガラス素材を、融着、クモリ、キズ等をともなうことなくガラス光学素子に成形できるという観点から、炭素を含有する膜が好ましい。炭素含有膜については、特開2011-1259号公報段落0116を参照できる。成形型として、成形面に炭素含有離型膜を有する成形型を用いることより、成形面とガラス素材との滑り性が高まり、成形性がより一層向上するという利点がある。 As a mold used for press molding, a precision material made of a dense material having sufficient heat resistance and rigidity can be used. Examples include metals such as silicon carbide, silicon nitride, tungsten carbide, aluminum oxide, titanium carbide, and stainless steel, or those whose surfaces are coated with a film of carbon, refractory metal, noble metal alloy, carbide, nitride, boride, etc. be able to. As the film covering the molding surface, a film containing carbon is preferable from the viewpoint that a glass material for press molding can be molded into a glass optical element without fusing, spidering, scratching, or the like. JP, 2011-1259, A paragraph 0116 can be referred to about a carbon content film. By using a molding die having a carbon-containing release film on the molding surface as the molding die, there is an advantage that the slipperiness between the molding surface and the glass material is increased and the moldability is further improved.
 図3は、プレス成形装置の一例を示す図である。プレス成形にあたっては、図3に示すように、上型4、下型5および胴型6を含む成形型7内に、酸化物ガラス1が中間層2および被覆層3により被覆されたプレス成形用ガラス素材PFを供給し、プレスに適した温度域に昇温する。 FIG. 3 is a diagram showing an example of a press molding apparatus. In press molding, as shown in FIG. 3, the oxide glass 1 is coated with an intermediate layer 2 and a coating layer 3 in a molding die 7 including an upper die 4, a lower die 5 and a body die 6. A glass material PF is supplied and the temperature is raised to a temperature range suitable for pressing.
 例えば、プレス成形用ガラス素材PFの加熱温度は、酸化物ガラス1の種類によって適宜設定されるが、酸化物ガラス1の粘度が105~1010dPa・sになる温度域に設定し、この温度域においてプレス成形を行うことが好ましい。プレス温度は、例えば、酸化物ガラス1が107.2dPa・s相当前後の106~108dPa・sとなる温度が更に好ましく、酸化物ガラス1が107.2dPa・s相当となるように設定することがより好ましい。通常、プレス温度は酸化物ガラスのガラス転移温度以上の温度に設定される。このような温度において、化学量論組成より酸素が欠損した状態にある金属酸化物膜である被覆層と、T1>T2の関係を満たす中間層と、により酸化物ガラスが被覆されたプレス成形用ガラス素材のプレス成形を行うことにより、泡の発生原因となる酸素原子を金属酸化物膜に取り込むことで、プレス成形により得られるプレス成形体に泡が発生することを防ぐことができる。なお、プレス温度およびプレスに関する加熱温度とは、プレス成形を行う雰囲気の温度をいうものとする。プレス成形は、上型4に対し、所定の荷重を印加することにより行うことができる。 For example, the heating temperature of the glass material PF for press molding is appropriately set depending on the type of the oxide glass 1, but is set to a temperature range in which the viscosity of the oxide glass 1 is 10 5 to 10 10 dPa · s. It is preferable to perform press molding in the temperature range. Pressing temperature, for example, set oxide glass 1 temperature more preferably to be 10 7.2 dPa · s corresponds longitudinal 10 6 ~ 10 8 dPa · s, as oxide glass 1 is 10 7.2 dPa · s corresponds More preferably. Usually, the press temperature is set to a temperature equal to or higher than the glass transition temperature of the oxide glass. For press molding in which oxide glass is coated with a coating layer, which is a metal oxide film in which oxygen is lost from the stoichiometric composition, and an intermediate layer satisfying the relationship of T1> T2 at such a temperature. By performing press molding of the glass material, it is possible to prevent bubbles from being generated in the press-molded body obtained by press molding by incorporating oxygen atoms that cause foam generation into the metal oxide film. Note that the press temperature and the heating temperature related to the press refer to the temperature of the atmosphere in which press molding is performed. Press molding can be performed by applying a predetermined load to the upper die 4.
 プレス成形は、プレス成形用ガラス素材PFを成形型7に供給し、プレス成形用ガラス素材PFと成形型7をともに所定の範囲に昇温してもよく、またはプレス成形用ガラス素材PFと成形型7をそれぞれ所定の温度範囲に昇温してから、プレス成形用ガラス素材PFを成形型7内に配置してもよい。更に、プレス成形用ガラス素材PFを105~109dPa・s粘度相当、成形型6をガラス粘度で109~1012dPa・s相当の温度にそれぞれ昇温し、プレス成形用ガラス素材PFを成形型7に配置して直ちにプレス成形する方法を採用してもよい。この場合、成形型温度を相対的に低くすることができるため、成形装置の昇温/降温サイクルタイムを短縮できるとともに、成形型7の熱による劣化を抑制できる効果があり、好ましい。いずれの場合も、プレス成形開始時、または開始後に冷却を開始し、適切な荷重印加スケジュールを適用しつつ、成形面とガラス素材PFとの密着を維持しながら、降温する。この後、離型してプレス成形体を取り出す。離型温度は、1012.5~1013.5dPa・s相当で行うことが好ましい。 In press molding, the glass material PF for press molding is supplied to the mold 7 and both the glass material PF for press molding PF and the mold 7 may be heated to a predetermined range, or the glass material PF for press molding PF and molding may be used. The glass material PF for press molding may be placed in the molding die 7 after the molds 7 are heated to a predetermined temperature range. Further, the glass material PF for press molding is heated to a temperature equivalent to 10 5 to 10 9 dPa · s, and the mold 6 is heated to a temperature corresponding to 10 9 to 10 12 dPa · s in terms of glass viscosity. Alternatively, a method may be employed in which the material is placed in the mold 7 and press-molded immediately. In this case, since the mold temperature can be relatively lowered, the temperature increase / decrease cycle time of the molding apparatus can be shortened, and deterioration of the mold 7 due to heat can be suppressed, which is preferable. In either case, cooling is started at or after the start of press molding, and the temperature is lowered while applying an appropriate load application schedule and maintaining close contact between the molding surface and the glass material PF. Then, it molds and takes out a press molding. The mold release temperature is preferably 10 12.5 to 10 13.5 dPa · s.
 一態様では、離型されたプレス成形体には、プレス成形用ガラス素材PFに設けられていた被覆層(金属酸化物膜)が、酸化物ガラスから酸素原子を取り込んだため、プレス成形前よりも酸素含有率の高い被覆層、即ち、金属原子に対する酸素原子の含有率が、プレス成形前のプレス成形用ガラス素材が備える被覆層より高い金属酸化物膜が存在している。一態様では、この金属酸化物膜は、化学量論組成よりも酸素が欠損した状態にある。また、一態様では、プレス成形後のプレス成形体は、酸化物ガラスと、この酸化物ガラスの表面の少なくとも一部を覆う被覆層と、この酸化物ガラスと被覆層との間に設けられた中間層と、を備える。ここで一態様では、プレス成形体が備える上記被覆層は、化学量論組成より酸素が欠損した状態にある金属酸化物膜である。また、一態様では、プレス成形体が備える中間層において、上記酸化物ガラスのガラス転移温度以上の温度における上記酸化物ガラスに含まれる酸素原子が拡散する速度は、上記温度における上記金属酸化物膜に含まれる金属原子が拡散する速度より速い。
 但し、上記態様以外の各種態様も、本発明の一態様として、本発明に包含される。
In one aspect, since the coated layer (metal oxide film) provided on the press-molding glass material PF has taken in oxygen atoms from the oxide glass, the release-molded press-molded body is more than before press molding. In addition, there is a coating layer having a high oxygen content, that is, a metal oxide film in which the oxygen atom content to metal atoms is higher than the coating layer provided in the glass material for press molding before press molding. In one embodiment, the metal oxide film is in a state where oxygen is deficient rather than the stoichiometric composition. In one embodiment, the press-molded body after press molding is provided between the oxide glass, a coating layer covering at least part of the surface of the oxide glass, and the oxide glass and the coating layer. An intermediate layer. Here, in one aspect, the coating layer included in the press-molded body is a metal oxide film in a state where oxygen is lost from the stoichiometric composition. In one embodiment, in the intermediate layer provided in the press-molded product, the rate at which oxygen atoms contained in the oxide glass diffuse at a temperature equal to or higher than the glass transition temperature of the oxide glass is determined by the metal oxide film at the temperature. Faster than the diffusion rate of metal atoms contained in.
However, various aspects other than the above aspects are also included in the present invention as one aspect of the present invention.
 プレス成形されたプレス成形体は、そのまま最終製品である光学素子として出荷することができ、または、芯取り加工や表面に反射防止膜等の光学的機能膜を形成する成膜処理等の後加工を施した後に最終製品とすることもできる。例えば、プレス成形後の上記被覆層を備えるプレス成形体に、Al23、ZrO2-TiO2、MgF2などの材料を単層で、または積層して適宜成膜することによって、所望の反射防止膜を形成することができる。反射防止膜の成膜方法は、蒸着法、イオンアシスト蒸着法、イオンプレーティング法、スパッタ法など、公知の方法で行うことができる。例えば、蒸着法による場合には、蒸着装置を用いて、10-4Torr程度の真空雰囲気中で、蒸着材料を電子ビーム、直接通電またはアークにより加熱し、材料から蒸発および昇華により発生する材料の蒸気を基材の上に輸送し凝縮・析出させることにより反射防止膜を形成することができる。プレス成形体の加熱温度は室温~400℃程度とすることができる。但し、プレス成形体を構成する酸化物ガラスのガラス転移温度が450℃以下の場合、プレス成形体加熱の上限温度は、ガラス転移温度-50℃とすることが好ましい。 The press-molded body that has been press-molded can be shipped as an optical element as a final product as it is, or post-processing such as centering and film formation that forms an optical functional film such as an antireflection film on the surface. It can also be made the final product after applying. For example, a desired shape can be obtained by appropriately forming a material such as Al 2 O 3 , ZrO 2 —TiO 2 , or MgF 2 on a press-molded body having the above-described coating layer after press molding, as a single layer or by stacking. An antireflection film can be formed. The antireflection film can be formed by a known method such as vapor deposition, ion-assisted vapor deposition, ion plating, or sputtering. For example, in the case of the vapor deposition method, the vapor deposition material is heated by an electron beam, direct energization or arc in a vacuum atmosphere of about 10 −4 Torr using a vapor deposition apparatus, and the material generated by evaporation and sublimation from the material is used. The antireflection film can be formed by transporting the vapor onto the substrate and condensing / depositing it. The heating temperature of the press-molded product can be about room temperature to about 400 ° C. However, when the glass transition temperature of the oxide glass constituting the press-formed body is 450 ° C. or lower, the upper limit temperature for heating the press-formed body is preferably set to the glass transition temperature −50 ° C.
 本発明の一態様にかかる光学素子は、小径、薄肉の小質量レンズ、例えば、携帯撮像機器などに搭載する小型撮像系用レンズ、通信用レンズ、光ピックアップ用の対物レンズ、コリメータレンズ等とすることができる。レンズ形状は特に限定されるものではなく、凸メニスカスレンズ、凹メニスカスレンズ、両凸レンズ、両凹レンズなど各種の形状をとることができる。 An optical element according to one embodiment of the present invention is a small-diameter, thin-walled small-mass lens, for example, a small imaging system lens, a communication lens, an optical pickup objective lens, a collimator lens, and the like mounted on a portable imaging device. be able to. The lens shape is not particularly limited, and various shapes such as a convex meniscus lens, a concave meniscus lens, a biconvex lens, and a biconcave lens can be taken.
 以下、本発明を実施例に基づき更に説明する。但し本発明は、実施例に示す態様に限定されるものではない。 Hereinafter, the present invention will be further described based on examples. However, the present invention is not limited to the embodiment shown in the examples.
 以下に記載のガラス転移温度および屈伏点は、理学電機株式会社の熱機械分析装置により昇温速度を4℃/分にして測定した値である。
 屈折率ndおよびアッベ数νdは、徐冷降温速度を-30℃/時にして得られた光学ガラスについて測定した。
The glass transition temperature and yield point described below are values measured at a heating rate of 4 ° C./min with a thermomechanical analyzer of Rigaku Corporation.
The refractive index nd and the Abbe number νd were measured for the optical glass obtained at a slow cooling rate of −30 ° C./hour.
1.プレス成形用ガラス素材の作製および光学素子の作製 1. Production of glass materials for press molding and production of optical elements
[比較例1]
(1)プレス成形用ガラス素材の作製
 プレス成形用ガラス素材の酸化物ガラスとして、前述のガラスIIIに属する表1に記載した光学ガラスIII-1を用いた。
 まず、酸化物ガラスを、熔融状態から受け型に滴下、冷却し、一面および他面を凸面とした形状のガラス塊を予備成形した。この予備成形されたガラス塊に対して、特開2011-1259号公報の実施例1~6における表面層であるZrO2膜(膜厚:約5nm)とSiO2膜(膜厚:約5nm)をこの順に、同公報に記載の方法で成膜してプレス成形用ガラス素材を得た。得られたプレス成形用ガラス素材の外形寸法は17~18mm、中心部肉厚は7~8mmであった。
[Comparative Example 1]
(1) Production of glass material for press molding As the oxide glass of the glass material for press molding, optical glass III-1 described in Table 1 belonging to the glass III described above was used.
First, an oxide glass was dropped from a molten state onto a receiving mold and cooled, and a glass lump having a shape with one surface and the other surface as a convex surface was preformed. A ZrO 2 film (film thickness: about 5 nm) and a SiO 2 film (film thickness: about 5 nm), which are surface layers in Examples 1 to 6 of JP 2011-1259 A, are applied to the preformed glass block. Were formed in this order by the method described in the publication to obtain a glass material for press molding. The external dimensions of the obtained glass material for press molding were 17 to 18 mm, and the center thickness was 7 to 8 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(2)精密プレス成形によるプレス成形体の作製
 次いで、上述の(1)で作製したプレス成形用ガラス素材を精密プレス成形装置により窒素ガス雰囲気下でプレス成形した。即ち、成形面にスパッタ法による炭素含有離型膜を形成したSiC製の上下型と、胴型からなる成形型を用い、成形装置のチャンバー内雰囲気を非酸化性のN2ガスで充満してから、酸化物ガラスの粘度が107.2dPa・sとなる温度に加熱し、酸化物ガラスの粘度で108.5dPa・s相当の温度に加熱した成形型に供給した。そして、供給直後に上下型間でプレス成形用ガラス素材をプレスし(プレス温度675℃)、プレス成形用ガラス素材と上下型の密着を維持したまま、酸化物ガラスの徐冷温度以下の温度まで冷却し、成形型内からプレス成形体を取り出した。プレス成形体の外径寸法は26.0mm、中心肉厚は4.0mmであった。次いで、プレス成形体の外周部を研削加工により芯取りを行い、φ22mmの両凸形状の非球面ガラスレンズを得た。
(2) Production of Press Molded Body by Precision Press Molding Next, the glass material for press molding produced in the above (1) was press molded in a nitrogen gas atmosphere by a precision press molding apparatus. In other words, a SiC upper and lower mold in which a carbon-containing release film is formed on the molding surface by a sputtering method and a molding mold consisting of a barrel mold, and the atmosphere in the chamber of the molding apparatus is filled with non-oxidizing N 2 gas. The oxide glass was heated to a temperature at which the viscosity of the oxide glass was 10 7.2 dPa · s, and supplied to a mold heated to a temperature equivalent to 10 8.5 dPa · s as the viscosity of the oxide glass. Immediately after the supply, the glass material for press molding is pressed between the upper and lower molds (press temperature 675 ° C.), and the glass material for press molding and the upper and lower molds are kept in close contact with each other up to a temperature below the annealing temperature of the oxide glass. After cooling, the press-molded body was taken out from the mold. The outer diameter of the press-molded body was 26.0 mm, and the center wall thickness was 4.0 mm. Next, the outer peripheral portion of the press-molded body was centered by grinding to obtain a biconvex aspherical glass lens having a diameter of 22 mm.
[実施例1]
 比較例1のSiO2膜に変えて、ZrO2膜上に被覆層としてジルコニウム酸化物膜(膜厚:約5nm)を成膜した。成膜は、金属ジルコニウム(Zr)をターゲットに用いてAr100%の雰囲気中で成膜温度300℃でスパッタ法により行い、膜厚はスパッタ条件により調整した。中間層であるZrO2膜は、酸化物ガラス上に直接成膜した。また、被覆膜であるジルコニウム酸化物膜は、中間層であるZrO2膜上に直接成膜した。
 こうして得られたプレス成形用ガラス素材は、被覆層としてジルコニウム酸化物膜を有し、中間層としてZrO2膜を有する。このプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Example 1]
Instead of the SiO 2 film of Comparative Example 1, a zirconium oxide film (film thickness: about 5 nm) was formed as a coating layer on the ZrO 2 film. Film formation was performed by sputtering using metal zirconium (Zr) as a target in an Ar 100% atmosphere at a film formation temperature of 300 ° C., and the film thickness was adjusted by sputtering conditions. The ZrO 2 film as an intermediate layer was directly formed on the oxide glass. The zirconium oxide film as the coating film was directly formed on the ZrO 2 film as the intermediate layer.
The glass material for press molding thus obtained has a zirconium oxide film as a coating layer and a ZrO 2 film as an intermediate layer. Using this glass material for press molding, an aspheric glass lens was obtained by the same method as described above.
[実施例2]
 金属ジルコニウムに変えて金属イットリウム(Y)を用いて膜厚約5nmの被覆層を成膜した点以外、実施例1と同様にプレス成形用ガラス素材を得た。
 こうして得られたプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Example 2]
A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal yttrium (Y) instead of metal zirconium.
Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
[比較例2]
 中間層を形成しなかった点以外、実施例2と同様にプレス成形用ガラス素材を得た。
 こうして得られたプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Comparative Example 2]
A glass material for press molding was obtained in the same manner as in Example 2 except that the intermediate layer was not formed.
Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
[実施例3]
 金属ジルコニウムに変えて金属タンタル(Ta)を用いて膜厚約5nmの被覆層を成膜した点以外、実施例1と同様にプレス成形用ガラス素材を得た。
 こうして得られたプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Example 3]
A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal tantalum (Ta) instead of metal zirconium.
Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
[実施例4]
 金属ジルコニウムに変えて金属ニオブ(Nb)を用いて膜厚約5nmの被覆層を成膜した点以外、実施例1と同様にプレス成形用ガラス素材を得た。
 こうして得られたプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Example 4]
A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal niobium (Nb) instead of metal zirconium.
Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
[実施例5]
 金属ジルコニウムに変えて金属タングステン(W)を用いて膜厚約5nmの被覆層を成膜した点以外、実施例1と同様にプレス成形用ガラス素材を得た。
 こうして得られたプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Example 5]
A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal tungsten (W) instead of metal zirconium.
Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
[実施例6]
 金属ジルコニウムに変えて金属チタン(Ti)を用いて膜厚約5nmの被覆層を成膜した点以外、実施例1と同様にプレス成形用ガラス素材を得た。
 こうして得られたプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Example 6]
A glass material for press molding was obtained in the same manner as in Example 1 except that a coating layer having a thickness of about 5 nm was formed using metal titanium (Ti) instead of metal zirconium.
Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
[比較例3]
 金属ジルコニウムに変えてY23を用いて膜厚約5nmのY23膜を被覆層として成膜した点以外、実施例1と同様にプレス成形用ガラス素材を得た。
 こうして得られたプレス成形用ガラス素材を用いて、上記と同様の方法により非球面ガラスレンズを得た。
[Comparative Example 3]
Except that deposited as a coating layer Y 2 O 3 film having a thickness of about 5nm by using Y 2 O 3 instead of the metal zirconium was obtained in the same manner as the glass material for press molding as in Example 1.
Using the glass material for press molding thus obtained, an aspheric glass lens was obtained by the same method as described above.
2.光学素子の外観評価
 光学顕微鏡を用いて、倍率10~50倍で観察した場合に、直径50μm以上の泡が1ケ未満、または直径25μm以上の泡が2ケ未満、または直径10μm以上の泡が5ケ未満であり、かつ泡の直径の合計が50μmを超えないことを、泡の発生が抑制された均質な光学素子である指標(以下、「外観指標1」)とすることができる。
 より好ましくは、光学顕微鏡を用いて、倍率10~50倍で観察した場合に、直径25μm以上の泡が1ケ未満、または直径10μm以上の泡が3ケ未満であり、かつ泡の直径の合計が25μmを超えないことを、泡のない均質な光学素子である指標(以下、「外観指標2」)とすることができる。
 ここで、泡の直径の合計とは、例えば直径50μmの泡が2個存在するならば100μmとなる。また、ここでの直径とは泡が円形状の泡である場合は直径を指し、楕円形状の泡の場合は長手方向の距離、不定形状の泡の場合は取り得る最長の距離を指すものとする。
 実施例、比較例で作製した各レンズを光学顕微鏡で倍率50倍で観察し、外観指標1および外観指標2について評価した。各外観指標について、満たすものを○、満たさないものを×として、結果を表2に示す。
2. Appearance evaluation of optical element When observed with an optical microscope at a magnification of 10 to 50 times, bubbles with a diameter of 50 μm or more are less than 1 bubble, bubbles with a diameter of 25 μm or more are less than 2 bubbles, or bubbles with a diameter of 10 μm or more That the number of bubbles is less than 5 and the total diameter of the bubbles does not exceed 50 μm can be used as an index (hereinafter referred to as “appearance index 1”) that is a homogeneous optical element in which the generation of bubbles is suppressed.
More preferably, the number of bubbles having a diameter of 25 μm or more is less than 1 or the number of bubbles having a diameter of 10 μm or more is less than 3 when observed with an optical microscope at a magnification of 10 to 50 times, and the total diameter of the bubbles That does not exceed 25 μm can be used as an index (hereinafter referred to as “appearance index 2”) that is a homogeneous optical element without bubbles.
Here, the total diameter of the bubbles is, for example, 100 μm if there are two bubbles having a diameter of 50 μm. In addition, the diameter here refers to the diameter when the bubble is a circular bubble, the distance in the longitudinal direction when the bubble is elliptical, and the longest possible distance when the bubble is irregular. To do.
Each lens produced in Examples and Comparative Examples was observed with an optical microscope at a magnification of 50 times, and appearance index 1 and appearance index 2 were evaluated. For each appearance index, the results are shown in Table 2 with ◯ being satisfied and × being not satisfied.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1~6では、外観指標1、2とも○であったが、比較例1~3は外観指標1、2とも×であった。
 実施例1~6の被覆層は、金属単体を用いて非酸化性雰囲気で成膜された金属酸化物膜であるため化学量論組成から酸素が欠損した状態にあるのに対し、比較例1の被覆層は特開2011-1259号公報に記載の通りSiO2膜、即ち化学量論組成のケイ素酸化物膜である。
 また、比較例2は、実施例2と中間層の有無で相違する。
 比較例3の被覆層は、詳細を後述するように化学量論組成のイットリウム酸化物膜、即ちY23膜である。
 なお実施例1~6では、光学顕微鏡等による観察の結果から、プレス前後で被覆層の膜厚の大きな減少や膜の消失はなかったことが確認された。この結果から、実施例1~6の中間層は、T1>T2の関係を満たすものであることが確認できる。
 表2に示すように、実施例1~6が比較例1~3と比べて外観評価の評価結果に優れていたことから、化学量論組成より酸素が欠損した状態にある金属酸化物膜を、T1>T2を満たす中間層を介して酸化物ガラス上に設けることにより、プレス成形においてガラス内部に泡が発生することを抑制することができることが確認できる。
As shown in Table 2, in Examples 1 to 6, the appearance indices 1 and 2 were both good, whereas in Comparative Examples 1 to 3, both the appearance indices 1 and 2 were x.
Since the coating layers of Examples 1 to 6 are metal oxide films formed in a non-oxidizing atmosphere using a single metal, oxygen is deficient from the stoichiometric composition, whereas Comparative Example 1 This coating layer is a SiO 2 film, that is, a silicon oxide film having a stoichiometric composition as described in JP-A-2011-1259.
Moreover, the comparative example 2 differs from Example 2 by the presence or absence of an intermediate layer.
The coating layer of Comparative Example 3 is a yttrium oxide film having a stoichiometric composition, that is, a Y 2 O 3 film, as will be described in detail later.
In Examples 1 to 6, it was confirmed from the results of observation with an optical microscope or the like that there was no significant decrease in the film thickness of the coating layer or disappearance of the film before and after pressing. From this result, it can be confirmed that the intermediate layers of Examples 1 to 6 satisfy the relationship of T1> T2.
As shown in Table 2, since Examples 1 to 6 were superior to Comparative Examples 1 to 3 in appearance evaluation evaluation results, metal oxide films in a state where oxygen was deficient from the stoichiometric composition were obtained. It can be confirmed that by providing the oxide glass through an intermediate layer satisfying T1> T2, it is possible to suppress the generation of bubbles in the glass during press molding.
3.泡中の気体組成の確認
 比較例1で作製したレンズ中の泡中の気体組成を、質量分析法(Mass Spectrometry)により分析したところ、窒素ガス雰囲気下でプレス成形を行ったにもかかわらず、10%超もの酸素が検出された。この結果は、先に説明した通り、酸化物ガラス由来の酸素が泡の発生原因となっていることを裏付けるものである。
 比較例1において被覆層は、化学量論組成のSiO2膜である。このような金属酸化物膜は、化学的に安定なため、プレス成形時に酸化物ガラスに由来する酸素を膜中に取り込むことはできないと考えられる。その結果、ガラス中で発泡を引き起こすと推察される。
3. Confirmation of the gas composition in the foam When the gas composition in the foam in the lens produced in Comparative Example 1 was analyzed by mass spectrometry, the press molding was performed in a nitrogen gas atmosphere. Over 10% oxygen was detected. This result confirms that the oxygen derived from the oxide glass is the cause of the generation of bubbles, as described above.
In Comparative Example 1, the coating layer is a SiO 2 film having a stoichiometric composition. Since such a metal oxide film is chemically stable, it is considered that oxygen derived from oxide glass cannot be taken into the film during press molding. As a result, it is assumed that foaming is caused in the glass.
4.TOF-SIMSによる分析(1)
 実施例1と同じ条件で作製したプレス成形用ガラス素材および光学素子について、以下の方法によりTOF―SIMS(Time-of-flight secondary ion mass spectrometer:飛行時間型2次イオン質量分析法)により、表面から深さ方向の組成分析を行った。
 TOF-SIMSによる深さ方向分析
 ION-TOF社製TOF-SIMS300を用いて、深さ方向測定を実施した。TOF-SIMSは、パルス化された一次イオンを照射し、発生した二次イオンを検出する手法である。TOF-SIMSの深さ方向分析では、(i)一次イオンを照射、(ii)発生した二次イオンを計測、(iii)スパッタイオンを照射、以下(i)~(iii)の繰り返しでデータを取得する。
 一次イオン源にはBi3 ++を用い、一次イオン源のカラムにかかる電圧は25kVとした。一次イオン源の電流を0.2pAとして測定を行った。一次イオン源の照射面積(=二次イオンを検出する測定領域)は100μm角とし、二次イオンは負イオンを検出した。
 スパッタイオン源にはCsを用いた。スパッタイオン源の加速は1kV、電流値は75.4nAで調整を行った。スパッタイオン源の面積は400μm角でスパッタを行った。
4). Analysis by TOF-SIMS (1)
About the glass material for press molding and the optical element produced under the same conditions as in Example 1, the surface was analyzed by TOF-SIMS (Time-of-flight secondary ion mass spectrometer) by the following method. The composition analysis in the depth direction was performed.
Depth direction analysis by TOF-SIMS Depth direction measurement was performed using TOF-SIMS300 manufactured by ION-TOF. TOF-SIMS is a technique for irradiating pulsed primary ions and detecting the generated secondary ions. In the depth direction analysis of TOF-SIMS, (i) irradiation with primary ions, (ii) measurement of secondary ions generated, (iii) irradiation with sputtered ions, and data obtained by repeating steps (i) to (iii) below. get.
Bi 3 ++ was used as the primary ion source, and the voltage applied to the column of the primary ion source was 25 kV. The measurement was performed with the primary ion source current set to 0.2 pA. The irradiation area of the primary ion source (= measurement region for detecting secondary ions) was 100 μm square, and negative ions were detected as secondary ions.
Cs was used for the sputter ion source. The acceleration of the sputter ion source was adjusted to 1 kV and the current value was adjusted to 75.4 nA. Sputtering was performed with a sputter ion source area of 400 μm square.
 図4は、実施例1に関するプレス成形前(プレス成形用ガラス素材)のTOF-SIMSによる2次イオン強度の深さ方向分析結果を示す図である。
 実施例1で酸化物ガラスに被覆層として形成したジルコニウム酸化物膜および中間層として形成したZrO2膜の膜厚は、いずれも約5nmである。図4には、ジルコニウム酸化物膜およびZrO2膜に由来する2次イオンとして、ZrO2と単体のZr(図4中、「Zr」)を記載している。また、図4では省略しているがジルコニウム酸化物膜およびZrO2膜に由来するZrOも検出されている。Zr2が検出されていないため、単体のZrは金属Zrに由来するものではなく、ジルコニウム酸化物膜およびZrO2膜に由来するものと考えられる。
 図4中、表面(深さ0nm)~深さ約5nmの領域と深さ約5nm~約10nmの領域に、それぞれZrO2のスペクトルにピークが存在することと、深さ約10nm以降の領域で酸化物ガラスに由来するWO3が検出されていることから、酸化物ガラス上に設けられた中間層と中間層上に設けられた被覆層の二層が形成されていることが確認できる。
 プレス成形後(光学素子)のTOF-SIMSによる2次イオン強度の深さ方向分析結果では、表面(深さ0nm)~深さ約10nmの領域では、深さ約10nm以降の領域よりZrO2のピーク強度が高く、かつ深さ約10nm以降の領域ではWO3が検出された。この結果から、プレス成形後にも被覆層は膜厚の大きな減少や膜の消失を起こすことなく、酸化物ガラス上に存在することが確認できる。この結果から、中間層がT1>T2の関係を満たすことも確認できる。
FIG. 4 is a diagram showing the depth direction analysis result of secondary ionic strength by TOF-SIMS before press molding (glass material for press molding) in Example 1.
The film thickness of the zirconium oxide film formed as the coating layer on the oxide glass in Example 1 and the ZrO 2 film formed as the intermediate layer are both about 5 nm. FIG. 4 shows ZrO 2 and simple Zr (“Zr” in FIG. 4) as secondary ions derived from the zirconium oxide film and the ZrO 2 film. Although omitted in FIG. 4, ZrO derived from the zirconium oxide film and the ZrO 2 film is also detected. Since Zr 2 is not detected, the single Zr is not derived from the metal Zr but is considered to be derived from the zirconium oxide film and the ZrO 2 film.
In FIG. 4, there are peaks in the ZrO 2 spectrum in the region from the surface (depth 0 nm) to the depth of about 5 nm and from the depth of about 5 nm to about 10 nm, and in the region after the depth of about 10 nm. Since WO 3 derived from the oxide glass is detected, it can be confirmed that two layers of an intermediate layer provided on the oxide glass and a coating layer provided on the intermediate layer are formed.
In the depth direction analysis result of secondary ion intensity by TOF-SIMS after press molding (optical element), in the region from the surface (depth 0 nm) to the depth of about 10 nm, the ZrO 2 concentration is higher than the region after the depth of about 10 nm. WO 3 was detected in a region where the peak intensity was high and the depth was about 10 nm or more. From this result, it can be confirmed that the coating layer is present on the oxide glass without causing a large decrease in film thickness or disappearance of the film even after press molding. From this result, it can also be confirmed that the intermediate layer satisfies the relationship of T1> T2.
 実施例1に関するプレス成形前(プレス成形用ガラス素材)およびプレス成形後(光学素子)のTOF-SIMSによる2次イオン強度の深さ方向分析結果から、ZrO2/Zrの2次イオン強度比(以降、「ZrO2/Zr強度比」と記載する。)を求めた。ZrO2/Zr強度比は、ジルコニウム酸化物膜中の酸化の度合いを示す指標となるものである。ジルコニウム酸化物が化学量論組成より酸素が欠損した状態にあるならば、化学量論組成、即ちZrO2より、ZrO2/Zr強度比は小さくなる。
 プレス成形前(プレス成形用ガラス素材)について求めた結果から、被覆層に相当する領域において、ZrO2/Zr強度比がZrO2である場合と比べて小さくなっていることが確認された。この結果から、実施例1のプレス成形用ガラス素材の被覆層であるジルコニウム酸化物膜は、化学量論組成より酸素が欠損した状態にあることが確認できる。
 また、被覆層に相当する領域においてプレス成形後にプレス成形前と比べてZrO2/Zr強度比が大きくなったことが確認された。即ち、プレス成形後に被覆層の酸素含有率が高くなったことが確認された。この結果は、被覆層が酸化物ガラスから酸素を取り込んだことを示す結果と本発明者らは考えている。
From the results of depth direction analysis of secondary ion intensity by TOF-SIMS before press molding (glass material for press molding) and after press molding (optical element) in Example 1, the secondary ion intensity ratio of ZrO 2 / Zr ( Hereinafter, it is described as “ZrO 2 / Zr intensity ratio”. The ZrO 2 / Zr intensity ratio is an index indicating the degree of oxidation in the zirconium oxide film. If zirconium oxide is in the state of oxygen than the stoichiometric composition is deficient, stoichiometric composition, i.e. from ZrO 2, ZrO 2 / Zr intensity ratio becomes smaller.
From the result obtained for the press molding (glass material for press molding), it was confirmed that the ZrO 2 / Zr strength ratio was smaller in the region corresponding to the coating layer than in the case of ZrO 2 . From this result, it can be confirmed that the zirconium oxide film which is the coating layer of the glass material for press molding of Example 1 is in a state where oxygen is deficient from the stoichiometric composition.
Further, it was confirmed that the ZrO 2 / Zr strength ratio was larger after press molding than before press molding in the region corresponding to the coating layer. That is, it was confirmed that the oxygen content of the coating layer increased after press molding. The present inventors consider that this result indicates that the coating layer has taken in oxygen from the oxide glass.
5.TOF-SIMSによる分析(2)
 実施例2、比較例3と同じ条件で作製したプレス成形用ガラス素材および光学素子について、上記4.と同様の方法によりTOF―SIMSにより、表面から深さ方向の組成分析を行った。
5. Analysis by TOF-SIMS (2)
Regarding the glass material for press molding and the optical element produced under the same conditions as in Example 2 and Comparative Example 3, the above 4. In the same manner as above, composition analysis in the depth direction from the surface was performed by TOF-SIMS.
 図5は、実施例2に関するプレス成形前(プレス成形用ガラス素材)のTOF-SIMSによる2次イオン強度の深さ方向分析結果を示す図である。
 実施例2で酸化物ガラスに被覆層として形成したイットリウム酸化物膜および中間層として形成したZrO2膜の膜厚は、いずれも約5nmである。図5には、イットリウム酸化物膜に由来する2次イオンとして、YO2とYOを記載している。また、図5では省略しているが単体のYもわずかに検出されている。他方、Y2が検出されていないため、単体のYは金属Yに由来するものではなく、イットリウム酸化物膜に由来するものと考えられる。
 図5中、表面(深さ0nm)~深さ約5nmの領域にYO2およびYOのスペクトルのピークが存在すること、深さ約5nm~約10nmの領域にZrO2のスペクトルにピークが存在すること、および深さ約10nm以降の領域で酸化物ガラスに由来するWO3が検出されていることから、酸化物ガラス上に設けられた中間層(ZrO2膜)と中間層上に設けられた被覆層(イットリウム酸化物膜)の二層が形成されていることが確認できる。
 プレス成形後(光学素子)のTOF-SIMSによる2次イオン強度の深さ方向分析結果でも、表面(深さ0nm)~深さ約5nmの領域にYO2およびYOのスペクトルのピークが存在し、深さ約5nm~約10nmの領域にZrO2のスペクトルにピークが存在し、かつ深さ約10nm以降の領域で酸化物ガラスに由来するWO3が検出された。この結果から、プレス成形後にも被覆層は膜厚の大きな減少や膜の消失を起こすことなく、酸化物ガラス上に存在することが確認できる。この結果から、中間層がT1>T2の関係を満たすことも確認できる。
FIG. 5 is a diagram showing the depth direction analysis results of secondary ion intensity by TOF-SIMS before press molding (glass material for press molding) in Example 2.
The film thickness of the yttrium oxide film formed as the coating layer on the oxide glass in Example 2 and the ZrO 2 film formed as the intermediate layer are both about 5 nm. FIG. 5 shows YO 2 and YO as secondary ions derived from the yttrium oxide film. Although not shown in FIG. 5, a single Y is also slightly detected. On the other hand, since Y 2 is not detected, it is considered that the single Y does not originate from the metal Y but originates from the yttrium oxide film.
In FIG. 5, YO 2 and YO spectral peaks are present in the surface (depth 0 nm) to about 5 nm depth, and ZrO 2 spectra are present in the depth range of about 5 nm to about 10 nm. In addition, since WO 3 derived from the oxide glass is detected in a region having a depth of about 10 nm or more, the intermediate layer (ZrO 2 film) provided on the oxide glass and the intermediate layer are provided. It can be confirmed that two layers of the coating layer (yttrium oxide film) are formed.
Even in the depth direction analysis result of secondary ion intensity by TOF-SIMS after press molding (optical element), there are peaks of the spectrum of YO 2 and YO in the region from the surface (depth 0 nm) to the depth of about 5 nm, A peak exists in the spectrum of ZrO 2 in the region having a depth of about 5 nm to about 10 nm, and WO 3 derived from the oxide glass was detected in a region having a depth of about 10 nm or more. From this result, it can be confirmed that the coating layer is present on the oxide glass without causing a large decrease in film thickness or disappearance of the film even after press molding. From this result, it can also be confirmed that the intermediate layer satisfies the relationship of T1> T2.
 実施例2、比較例3に関して、プレス成形前(プレス成形用ガラス素材)およびプレス成形後(光学素子)のTOF-SIMSによる2次イオン強度の深さ方向分析結果から、プレス成形前およびプレス成形後の表面から深さ2.5nm、3.0nm、3.5nm、4.0nmの位置におけるYO2/YOの2次イオン強度比(以降、「YO2/YO強度比」と記載する。)を求めた。実施例2に関して求めた結果を表3に、比較例3に関して求めた結果を表4に示す。 Regarding Example 2 and Comparative Example 3, from the results of depth direction analysis of secondary ionic strength by TOF-SIMS before press molding (glass material for press molding) and after press molding (optical element), before press molding and press molding. Secondary ion intensity ratio of YO 2 / YO at positions 2.5 nm, 3.0 nm, 3.5 nm, and 4.0 nm deep from the subsequent surface (hereinafter referred to as “YO 2 / YO intensity ratio”) Asked. The results obtained for Example 2 are shown in Table 3, and the results obtained for Comparative Example 3 are shown in Table 4.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 YO2/YO強度比は、イットリウム酸化物膜中の酸化の度合いを示す指標となるものである。イットリウム酸化物が化学量論組成より酸素が欠損した状態にあるならば、化学量論組成、即ちY23より、YO2/YO強度比は小さくなる。表3、表4に示すYO2/YO強度比から、以下の点が確認できる。
 表4に示すプレス成形前の比較例3の被覆層の各位置におけるYO2/YO強度比は、化学量論組成のイットリウム酸化物、即ちY23のYO2/YO強度比と同様である。この結果から、比較例3の被覆層が化学量論組成のイットリウム酸化物膜、即ちY23膜であることが確認できる。
 これに対し、表3に示すプレス成形前の実施例2の被覆層の各位置におけるYO2/YO強度比は、化学量論組成のイットリウム酸化物(Y23)のYO2/YO強度比と比べて小さい。この結果から、実施例2のプレス成形用ガラス素材の被覆層であるイットリウム酸化物膜は、化学量論組成より酸素が欠損した状態にあることが確認できる。
 また、表3に示すように、実施例2の被覆層では、各位置においてプレス成形後にプレス成形前と比べてYO2/YO強度比が大きくなっている。即ち、プレス成形後に被覆層の酸素含有率が高くなったことが確認された。この結果について、被覆層が酸化物ガラスから酸素を取り込んだことを示す結果と本発明者らは考えている。ただし実施例2の被覆層のプレス成形後の各位置におけるYO2/YO強度比は、化学量論組成のイットリウム酸化物(Y23)のYO2/YO強度比と比べて小さい。この結果から、プレス成形後においても、実施例2の被覆層は化学量論組成より酸素が欠損した状態にあることが確認できる。
 これに対し、表4に示すように、比較例3の被覆層では、各位置においてプレス成形前後でYO2/YO強度比の有意な差は見られない。比較例3のプレス成形用ガラス素材の被覆層は、上記の通り、化学量論組成のY23膜である。このような金属酸化物膜は、化学的に安定なため、プレス成形時に酸化物ガラスに由来する酸素を膜中に取り込むことはできないと考えられる。このことが、表4に示すようにプレス成形前後でYO2/YO強度比の有意な差が見られなかった理由と推察される。
The YO 2 / YO intensity ratio is an index indicating the degree of oxidation in the yttrium oxide film. If the yttrium oxide is in a state where oxygen is deficient from the stoichiometric composition, the YO 2 / YO intensity ratio becomes smaller than the stoichiometric composition, that is, Y 2 O 3 . From the YO 2 / YO intensity ratios shown in Tables 3 and 4, the following points can be confirmed.
Table 4 YO 2 / YO intensity ratio at each position of the covering layer of Comparative Example 3 before press-forming showing the yttrium oxide of stoichiometric composition, i.e., the same as the YO 2 / YO intensity ratio of Y 2 O 3 is there. From this result, it can be confirmed that the coating layer of Comparative Example 3 is a yttrium oxide film having a stoichiometric composition, that is, a Y 2 O 3 film.
In contrast, YO 2 / YO strength of YO 2 / YO intensity ratio at each position of the covering layer of Example 2 before press-forming as shown in Table 3, the yttrium oxide of stoichiometric composition (Y 2 O 3) Small compared to the ratio. From this result, it can be confirmed that the yttrium oxide film, which is the coating layer of the press-molding glass material of Example 2, is in a state in which oxygen is lost from the stoichiometric composition.
Moreover, as shown in Table 3, in the coating layer of Example 2, the YO 2 / YO strength ratio is larger after press molding than before press molding at each position. That is, it was confirmed that the oxygen content of the coating layer increased after press molding. The present inventors consider that the result shows that the coating layer has taken in oxygen from the oxide glass. However, the YO 2 / YO intensity ratio at each position after press molding of the coating layer of Example 2 is smaller than the YO 2 / YO intensity ratio of yttrium oxide (Y 2 O 3 ) having a stoichiometric composition. From this result, even after press molding, it can be confirmed that the coating layer of Example 2 is in a state where oxygen is lost from the stoichiometric composition.
On the other hand, as shown in Table 4, in the coating layer of Comparative Example 3, no significant difference in the YO 2 / YO strength ratio was observed before and after press molding at each position. The coating layer of the glass material for press molding of Comparative Example 3 is a Y 2 O 3 film having a stoichiometric composition as described above. Since such a metal oxide film is chemically stable, it is considered that oxygen derived from oxide glass cannot be taken into the film during press molding. This is presumed to be the reason why a significant difference in the YO 2 / YO strength ratio was not observed before and after press forming as shown in Table 4.
 なお実施例では、中間層として金属酸化物膜、詳しくはジルコニウム酸化物膜を形成したが、中間層はT1>T2の関係を満たすものであればよく、実施例に示す態様に限定されるものではない。 In the examples, a metal oxide film, specifically a zirconium oxide film, was formed as the intermediate layer. However, the intermediate layer only needs to satisfy the relationship of T1> T2, and is limited to the embodiment shown in the examples. is not.
 最後に、前述の各態様を総括する。 Finally, the above aspects will be summarized.
 一態様によれば、
 酸化物ガラスと、
 上記酸化物ガラスの表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層と、
 上記酸化物ガラスと被覆層との間に設けられた中間層と、
を備え、
 上記中間層において、上記酸化物ガラスのガラス転移温度以上の温度における上記酸化物ガラスに含まれる酸素原子が拡散する速度は、上記温度における上記金属酸化物膜に含まれる金属原子が拡散する速度より速い、ガラス光学素子、
 が提供される。
According to one aspect,
Oxide glass,
A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition;
An intermediate layer provided between the oxide glass and the coating layer;
With
In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass optics,
Is provided.
 一態様によれば、
 酸化物ガラスと、
 上記酸化物ガラスの表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層と、
 上記酸化物ガラスと被覆層との間に設けられた中間層と、
を備え、
 上記中間層において、上記酸化物ガラスのガラス転移温度以上の温度における上記酸化物ガラスに含まれる酸素原子が拡散する速度は、上記温度における上記金属酸化物膜に含まれる金属原子が拡散する速度より速い、プレス成形用ガラス素材、
 が提供される。
According to one aspect,
Oxide glass,
A coating layer that is a metal oxide film that covers at least a part of the surface of the oxide glass and in which oxygen is lost from the stoichiometric composition;
An intermediate layer provided between the oxide glass and the coating layer;
With
In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass material for press molding,
Is provided.
 一態様によれば、
 プレス成形用ガラス素材をプレス成形しプレス成形体を形成するプレス工程を備え、
 上記プレス成形用ガラス素材が、上述のプレス成形用ガラス素材である、ガラス光学素子の製造方法、
 が提供される。
According to one aspect,
It has a pressing process to press-mold a glass material for press molding to form a press-molded body,
The method for producing a glass optical element, wherein the glass material for press molding is the glass material for press molding described above,
Is provided.
 上述のプレス成形用ガラス素材を用いる光学素子の製造方法によれば、泡の発生が抑制された均質な光学素子を提供することができる。 According to the method for producing an optical element using the above-described glass material for press molding, it is possible to provide a homogeneous optical element in which the generation of bubbles is suppressed.
 一態様では、
 上記製造方法により得られたガラス光学素子、
 が提供される。
In one aspect,
A glass optical element obtained by the above production method,
Is provided.
 また、一態様では、
 上記の光学素子の製造方法において、
 上記プレス成形体は、上記プレス工程を経た上記被覆層を含み、かつ
 上記プレス工程を経た被覆層は、プレス工程前の上記被覆層より酸素含有率が高い金属酸化物膜である。
In one aspect,
In the manufacturing method of the optical element,
The press-molded body includes the coating layer that has undergone the pressing step, and the coating layer that has undergone the pressing step is a metal oxide film having a higher oxygen content than the coating layer before the pressing step.
 更に、一態様では、上記プレス成形体が備える金属酸化物膜は、化学量論組成より酸素が欠損した状態にある。 Furthermore, in one aspect, the metal oxide film included in the press-formed body is in a state where oxygen is deficient due to the stoichiometric composition.
 なおプレス成形後のプレス成形体は、そのまま光学素子として撮像カメラ等に適用される場合と、その端部を芯取り工程により除去した後に光学素子として適用される場合と、がある。後者の場合は、上記被覆層(金属酸化物膜)は、芯取り工程により一部が除去される。 Note that the press-molded body after press molding may be applied as it is to an imaging camera or the like as an optical element, or may be applied as an optical element after its end is removed by a centering process. In the latter case, part of the coating layer (metal oxide film) is removed by the centering step.
 一態様では、上述の酸化物ガラスは、Nb25、TiO2、WO3およびTa25からなる群から選択される高屈折率付与成分を一種以上含む。この高屈折率付与成分の合計含有量(Nb25+TiO2+WO3+Ta25)は、好ましくは10質量%以上50質量%以下である。 In one aspect, the above-mentioned oxide glass contains one or more high refractive index imparting components selected from the group consisting of Nb 2 O 5 , TiO 2 , WO 3 and Ta 2 O 5 . The total content (Nb 2 O 5 + TiO 2 + WO 3 + Ta 2 O 5 ) of the high refractive index imparting component is preferably 10% by mass or more and 50% by mass or less.
 一態様では、上述酸化物ガラスは、ZnOおよびアルカリ金属酸化物(Li2O、Na2O、K2O)からなる群から選択される一種以上を含む。好ましくは、ZnOとアルカリ金属酸化物との合計含有量(ZnO+Li2O+Na2O+K2O)は、5質量%以上25質量%以下である。 In one embodiment, the above oxide glass contains one or more selected from the group consisting of ZnO and alkali metal oxides (Li 2 O, Na 2 O, K 2 O). Preferably, the total content of ZnO and alkali metal oxide (ZnO + Li 2 O + Na 2 O + K 2 O) is 5% by mass or more and 25% by mass or less.
 一態様では、プレス成形時の加熱を、650℃以上の加熱温度で行う。上述の光学素子の製造方法によれば、このような高温でのプレス成形における泡の発生を抑制することができる。 In one aspect, heating during press molding is performed at a heating temperature of 650 ° C. or higher. According to the method for manufacturing an optical element described above, the generation of bubbles in press molding at such a high temperature can be suppressed.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 本発明は、ガラスレンズ等の光学素子の製造分野において有用である。 The present invention is useful in the field of manufacturing optical elements such as glass lenses.

Claims (9)

  1. 酸化物ガラスと、
    前記酸化物ガラスの表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層と、
    前記酸化物ガラスと前記被覆層との間に設けられた中間層と、
    を備え、
    前記中間層において、前記酸化物ガラスのガラス転移温度以上の温度における前記酸化物ガラスに含まれる酸素原子が拡散する速度は、前記温度における前記金属酸化物膜に含まれる金属原子が拡散する速度より速い、ガラス光学素子。
    Oxide glass,
    A coating layer that covers at least part of the surface of the oxide glass and is a metal oxide film in which oxygen is lost from the stoichiometric composition;
    An intermediate layer provided between the oxide glass and the coating layer;
    With
    In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass optical element.
  2. 前記金属酸化物は、ジルコニウム、イットリウム、タンタル、ニオブ、タングステンおよびチタンからなる群から選択される金属の酸化物である請求項1に記載のガラス光学素子。 The glass optical element according to claim 1, wherein the metal oxide is an oxide of a metal selected from the group consisting of zirconium, yttrium, tantalum, niobium, tungsten, and titanium.
  3. 前記中間層は、金属酸化物膜である請求項1または2に記載のガラス光学素子。 The glass optical element according to claim 1, wherein the intermediate layer is a metal oxide film.
  4. 前記中間層は、ジルコニウム酸化物膜である請求項3に記載のガラス光学素子。 The glass optical element according to claim 3, wherein the intermediate layer is a zirconium oxide film.
  5. 酸化物ガラスと、
    前記酸化物ガラスの表面の少なくとも一部を覆い、化学量論組成より酸素が欠損した金属酸化物膜である被覆層と、
    前記酸化物ガラスと前記被覆層との間に設けられた中間層と、
    を備え、
    前記中間層において、前記酸化物ガラスのガラス転移温度以上の温度における前記酸化物ガラスに含まれる酸素原子が拡散する速度は、前記温度における前記金属酸化物膜に含まれる金属原子が拡散する速度より速い、プレス成形用ガラス素材。
    Oxide glass,
    A coating layer that covers at least part of the surface of the oxide glass and is a metal oxide film in which oxygen is lost from the stoichiometric composition;
    An intermediate layer provided between the oxide glass and the coating layer;
    With
    In the intermediate layer, the rate of diffusion of oxygen atoms contained in the oxide glass at a temperature equal to or higher than the glass transition temperature of the oxide glass is greater than the rate of diffusion of metal atoms contained in the metal oxide film at the temperature. Fast, glass material for press molding.
  6. 前記金属酸化物は、ジルコニウム、イットリウム、タンタル、ニオブ、タングステンおよびチタンからなる群から選択される金属の酸化物である請求項5に記載のプレス成形用ガラス素材。 The glass material for press molding according to claim 5, wherein the metal oxide is an oxide of a metal selected from the group consisting of zirconium, yttrium, tantalum, niobium, tungsten and titanium.
  7. 前記中間層は、金属酸化物膜である請求項5または6に記載のプレス成形用ガラス素材。 The press-molding glass material according to claim 5 or 6, wherein the intermediate layer is a metal oxide film.
  8. 前記中間層は、ジルコニウム酸化物膜である請求項7に記載のプレス成形用ガラス素材。 The glass material for press molding according to claim 7, wherein the intermediate layer is a zirconium oxide film.
  9. プレス成形用ガラス素材をプレス成形しプレス成形体を形成するプレス工程を備え、
    前記プレス成形用ガラス素材が、請求項5~8のいずれか1項に記載のプレス成形用ガラス素材である、ガラス光学素子の製造方法。
    It has a pressing process to press-mold a glass material for press molding to form a press-molded body,
    A method for producing a glass optical element, wherein the glass material for press molding is the glass material for press molding according to any one of claims 5 to 8.
PCT/JP2016/060346 2015-03-31 2016-03-30 Glass material for press molding, glass optical element, and method for producing same WO2016159055A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680013300.0A CN107406306B (en) 2015-03-31 2016-03-30 Glass material for press molding, glass optical element and method for producing same
KR1020177031031A KR102503080B1 (en) 2015-03-31 2016-03-30 Glass material for press molding, glass optical element and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-073862 2015-03-31
JP2015073862 2015-03-31
JP2015243700A JP6633904B2 (en) 2015-03-31 2015-12-15 Glass material for press molding, glass optical element and method for producing the same
JP2015-243700 2015-12-15

Publications (1)

Publication Number Publication Date
WO2016159055A1 true WO2016159055A1 (en) 2016-10-06

Family

ID=57005849

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060346 WO2016159055A1 (en) 2015-03-31 2016-03-30 Glass material for press molding, glass optical element, and method for producing same

Country Status (1)

Country Link
WO (1) WO2016159055A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001259A (en) * 2009-05-20 2011-01-06 Hoya Corp Glass material for press forming, method for manufacturing glass optical element using the same, and optical element
JP2011008076A (en) * 2009-06-26 2011-01-13 Asahi Glass Co Ltd Optical element and method for producing the same
JP2013006746A (en) * 2011-06-27 2013-01-10 Hoya Corp Press molding glass material, manufacturing method thereof, and manufacturing method of optical element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011001259A (en) * 2009-05-20 2011-01-06 Hoya Corp Glass material for press forming, method for manufacturing glass optical element using the same, and optical element
JP2011008076A (en) * 2009-06-26 2011-01-13 Asahi Glass Co Ltd Optical element and method for producing the same
JP2013006746A (en) * 2011-06-27 2013-01-10 Hoya Corp Press molding glass material, manufacturing method thereof, and manufacturing method of optical element

Similar Documents

Publication Publication Date Title
JP4958991B2 (en) Glass material for press molding, method for producing glass optical element using the glass material, and glass optical element
KR101348051B1 (en) Glass material for press forming, method for manufacturing glass optical element using same, and glass optical element
JP5085049B2 (en) Glass material for mold press, method for producing glass material, and method for producing glass optical element
JP4785047B2 (en) Lens and manufacturing method thereof
JP2007269613A (en) Method of manufacturing glass optical device
JP5364568B2 (en) Glass material for press molding, method for manufacturing glass material for press molding, and method for manufacturing optical element
JP5081385B2 (en) Manufacturing method of glass optical lens
JP6218536B2 (en) Optical element and manufacturing method thereof
JP6633904B2 (en) Glass material for press molding, glass optical element and method for producing the same
WO2016159055A1 (en) Glass material for press molding, glass optical element, and method for producing same
JP5547777B2 (en) Manufacturing method of glass optical element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772936

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177031031

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 16772936

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 07.12.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 16772936

Country of ref document: EP

Kind code of ref document: A1