WO2016158918A1 - Gasification furnace, method of operating gasification furnace and biomass gasification treatment method - Google Patents

Gasification furnace, method of operating gasification furnace and biomass gasification treatment method Download PDF

Info

Publication number
WO2016158918A1
WO2016158918A1 PCT/JP2016/060047 JP2016060047W WO2016158918A1 WO 2016158918 A1 WO2016158918 A1 WO 2016158918A1 JP 2016060047 W JP2016060047 W JP 2016060047W WO 2016158918 A1 WO2016158918 A1 WO 2016158918A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
region
oxygen gas
biomass
reaction
Prior art date
Application number
PCT/JP2016/060047
Other languages
French (fr)
Japanese (ja)
Inventor
弘也 加納
陽介 釜田
聖之 小寺
Original Assignee
株式会社クボタ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015070001A external-priority patent/JP6454583B2/en
Priority claimed from JP2015069993A external-priority patent/JP6454582B2/en
Application filed by 株式会社クボタ filed Critical 株式会社クボタ
Publication of WO2016158918A1 publication Critical patent/WO2016158918A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/46Gasification of granular or pulverulent flues in suspension
    • C10J3/48Apparatus; Plants

Definitions

  • the present invention relates to a gasification furnace for obtaining a gas as a raw material of energy from biomass, a gasification furnace operation method, and a biomass gasification treatment method.
  • Biomass refers to renewable organic organic resources excluding fossil resources. CO 2 the biomass is discharged by burning is inherently since it is CO 2 absorbed from the atmosphere by photosynthesis in organisms growth process, not cause material to global warming, renewable energy sources It is attracting attention as.
  • the water gas reaction that generates carbon monoxide and hydrogen from biomass and water vapor is an endothermic reaction, and it is necessary to maintain the furnace temperature of the gasification furnace at 500 ° C. to 1200 ° C. in order to promote the reaction.
  • Patent Document 1 discloses a biomass gasification furnace that aims to provide a biomass gasification furnace that can perform clean and highly efficient gasification and achieve complete gasification of biomass.
  • the biomass gasification furnace includes biomass supply means for supplying a pulverized biomass having an average particle diameter of 0.05 ⁇ D ⁇ 5 mm, and combustion oxidant supply means for supplying a combustion oxidant of a mixture of oxygen and water vapor.
  • the molar ratio of oxygen [O 2 ] / carbon [C] is in the range of 0.1 ⁇ O 2 /C ⁇ 1.0, and the molar ratio of water vapor [H 2 O] / carbon [C] is 1 ⁇
  • the combustion oxidant supply means has a plurality of stages so as to supply the combustion oxidant from a plurality of locations along the gas flow. It is provided and is configured to operate at a furnace pressure of 1 to 30 atmospheres. If the pressure in the furnace is 30 atm, the superficial velocity is lowered and the apparatus can be made compact.
  • the gasification furnace supplies coal as fossil fuel so as to form an auxiliary combustion part in the lower part of the furnace body, forms a high-temperature field by burning fossil fuel, and inputs biomass therein.
  • the aspect comprised so that pyrolysis gasification may be performed efficiently, without burning biomass is also disclosed.
  • Patent Document 2 for the same purpose as described above, gas is circulated inside from one side in the vertical direction to the other side, and a high-temperature reaction field is formed on the one side inside, and the one side inside and A gasification furnace body in which a gasification reaction field is formed with the other side, biomass supply means for supplying biomass to the high-temperature reaction field inside the gasification furnace body, and inside the gasification furnace body
  • biomass gasification furnace comprising a combustion oxidant supply means for supplying oxygen to the high temperature reaction field and a steam supply means for supplying steam to the inside of the gasification furnace main body
  • the steam supply means comprises the gas A biomass gasification furnace configured to supply water vapor separately to the high-temperature reaction field and the gasification reaction field in the main body of the gasification furnace and operated at an internal pressure of 1 to 30 atm is disclosed. Yes.
  • Patent Document 3 includes a plurality of gas supply units that supply an oxidizing gas containing oxygen and steam to the fluidized bed unit and the freeboard unit, respectively, and the biomass is oxidized in the fluidized bed unit at 500 ° C. to 750 ° C.
  • a part of the biomass oxidized in the previous stage is heated to a temperature of 800 ° C. to 850 ° C. on the upstream side of the free board part, and a part of the biomass oxidized in the previous stage is 900 on the downstream side of the free board part.
  • a fluidized bed gasification furnace that is operated at a furnace pressure of about 10 atm.
  • the gasification furnace disclosed in Patent Document 1 recognizes that the ratio H 2 / CO of hydrogen gas to carbon monoxide gas does not exceed 2 when ordinary biomass is simply gasified.
  • a combustion oxidant supply means for supplying a combustion oxidant mixed with oxygen and water vapor so that the ratio H 2 / CO of carbon monoxide gas to 2 or more necessary for methanol synthesis is provided upstream of the furnace, or upstream
  • the oxygen [O 2 ] / carbon [C] molar ratio is adjusted to a range of 0.1 ⁇ O 2 /C ⁇ 1.0, and water vapor [H 2 O] /
  • This is a technique for adjusting the molar ratio of carbon [C] to a range of 1 ⁇ H 2 O / C, promoting water gas reaction with water vapor supplied from the combustion oxidant supply means, and simultaneously supplying water gas with oxygen supplied
  • the carbon monoxide gas generated in the reaction is partially oxidized to form an aqueous gas It is configured to maintain a suitable temperature 700 ⁇ 1200
  • the combustion oxidant is charged into the furnace and the carbon monoxide gas is partially burned (CO + 1 / 2O 2 ⁇ CO 2 ) to be used as heat, and CO 2 is removed in a subsequent process by removing [H 2 O ] / [CO] is a technique for improving the ratio, and a CO shift reaction apparatus for adjusting the composition of H 2 and CO gas in the gas is provided separately after the gasification furnace.
  • the gasification furnace disclosed in Patent Document 2 has a ratio H 2 / CO of hydrogen gas to carbon monoxide gas of 2 or more necessary for methanol synthesis. It is the intended gasifier.
  • the gas is avoided while avoiding a temperature drop in the high temperature reaction field. It is configured to increase the yield of hydrogen gas in the chemical reaction field.
  • the fuel obtained by FT synthesis of the gas obtained by the water gas reaction is not limited to methanol, and the ratio H 2 / CO of hydrogen gas to carbon monoxide gas must be adjusted to 2 or more without fail.
  • the ratio H 2 / CO of hydrogen gas to carbon monoxide gas must be adjusted to 2 or more without fail.
  • the ratio H 2 / CO of hydrogen gas to carbon monoxide gas it is preferable to adjust the ratio H 2 / CO of hydrogen gas to carbon monoxide gas to 1.
  • the catalyst is different, the ratio H 2 / CO between the preferred hydrogen gas and carbon monoxide gas will be different. In such a case, the gasification furnace disclosed in Patent Documents 1 and 2 cannot be easily handled.
  • Patent Documents 1 and 2 are configured to supply oxygen gas and / or water vapor in multiple stages, the gas flow rate increases and the flow velocity increases toward the downstream side. Therefore, there is also a problem that the gasifier becomes large in order to ensure a sufficient reaction time. From such a viewpoint, the same applies to the gasification furnace disclosed in Patent Document 3.
  • an object of the present invention is a gasification furnace having a high degree of freedom capable of obtaining a desired ratio of synthesis gas while suppressing the use of an external heat source, an operation method of the gasification furnace, and biomass gas. It is in the point which provides the conversion processing method.
  • the first characteristic configuration of the gasification furnace according to the present invention includes a biomass supply unit, a steam supply unit, and the steam supply as described in claim 1 of the claims.
  • a supply amount adjusting mechanism for adjusting the amount.
  • a spouted bed in which the biomass supplied from the biomass supply section flows with the steam supplied from the steam supply section is formed in the first region of the reaction tower, and the gas in the reaction tower is gasified while the biomass flows in the first region. Flows in the second region downstream in the flow direction. Biomass or part of the gas is combusted by supplying oxygen gas from the oxygen gas supply section provided in each of the first region and the second region, and the combustion heat is necessary for the gasification reaction in each region. At the same time as the temperature is secured, the composition of the gas changes due to combustion.
  • the supply amount adjusting mechanism individually adjusts the oxygen gas supply amount to the first region and the oxygen gas supply amount to the second region, the temperature and the gas component in each region are adjusted, and as a result, the external The use of the heat source can be suppressed, and the components of the product gas can be adjusted in each region.
  • a water gas reaction is mainly performed in the first region, and a water-based reaction is mainly performed in the second region.
  • a gas shift reaction is performed, and the supply amount adjusting mechanism is configured to adjust the composition of the gas flowing out from the reaction tower by adjusting the water gas reaction and the water gas shift reaction.
  • the water gas reaction In the first region where the water gas reaction is mainly performed, a part of biomass mainly composed of carbon is burned and heated by the oxygen gas supplied from the oxygen gas supply unit, and the endothermic reaction is performed by the heat of combustion.
  • a gas reaction that is, a reaction in which carbon monoxide gas and hydrogen gas are generated from carbon and water vapor is promoted.
  • the water gas shift reaction in which hydrogen gas is generated from the water vapor and carbon monoxide gas that have not been used for the water gas reaction out of the water vapor supplied from the water vapor supply unit proceeds, and is supplied from the oxygen gas supply unit. Part of the carbon monoxide gas is burned by the oxygen gas.
  • the combustion reaction of biomass becomes the main reaction, and the yield of carbon monoxide relatively increases and the yield of hydrogen gas decreases.
  • the amount of oxygen gas supplied to the second region increases, the water gas shift reaction is promoted by the combustion heat of carbon monoxide. As a result, the yield of hydrogen gas relatively increases and the yield of carbon monoxide decreases. Therefore, by adjusting the oxygen gas supply amount to the first region and the second region, the component ratio of the hydrogen gas can be freely adjusted from the carbon monoxide gas finally generated.
  • the amount of gas does not increase because carbon monoxide is merely carbon dioxide. Therefore, the flow velocity of the gas flowing from the first region to the second region does not vary greatly. Therefore, there is no need to increase the gas flow length in the reaction tower in order to ensure a reaction opportunity for the water gas shift reaction, or to increase the gas passage cross-sectional area in order to reduce the gas flow rate.
  • the supply amount adjusting mechanism is configured to supply each oxygen gas from the composition and supply amount of biomass to be supplied.
  • the oxygen gas supply amount to the supply unit is calculated to adjust the oxygen gas supply amount.
  • the composition and supply amount of biomass supplied to the first region that is, carbon C, hydrogen H, oxygen O and moisture H 2 O contained in the biomass supplied to the reaction tower, water gas in the first region
  • the degree of reaction, the degree of water gas shift reaction in the second region, and the amount of oxygen gas necessary to maintain the temperature in the region at that time at the desired temperature are calculated stoichiometrically by the supply amount adjusting mechanism, Since the supply amount of oxygen gas to be supplied from each oxygen gas supply unit is adjusted based on the result, a gas having a desired composition can be obtained with high efficiency while suppressing the use of an external heat source.
  • the supply amount adjusting mechanism adjusts the composition of the gas flowing out of the reaction tower. On the basis of this, the ratio of the oxygen gas supply amount from each oxygen gas supply unit is adjusted under a constant total supply amount of oxygen gas.
  • the ratio of the oxygen gas supply amount from each oxygen gas supply unit is adjusted under a constant total supply amount of oxygen gas by the supply amount adjustment mechanism based on the composition of the gas flowing out from the reaction tower. Therefore, even if the biomass composition fluctuates, it becomes possible to flexibly cope with the synthesis gas having a desired composition with high accuracy.
  • the supply amount adjusting mechanism further includes a steam supply amount from a steam supply unit. It is in the point comprised so that it may adjust.
  • the supply amount adjustment mechanism adjusts the water vapor supply amount in accordance with the oxygen gas supply amount from each oxygen gas supply unit, so that the degree of the water gas reaction and the water gas shift reaction can be adjusted. It becomes easy to obtain a synthesis gas having a composition.
  • the sixth characteristic configuration is supplied from the biomass supply unit in a spouted bed formed by a biomass supply unit, a water vapor supply unit, and water vapor supplied from the water vapor supply unit.
  • a reaction zone in which a first region for flowing the biomass and a second region into which the gas generated in the first region flows are formed along a gas flow direction; and the first region of the reaction tower A plurality of oxygen gas supply units that supply oxygen gas to each of the second regions, a communication unit that allows the generated gas and biomass or biomass residue to move between the first region and the second region, and a second It is in the point provided with the exhaust port which discharges
  • a spouted bed in which the biomass supplied from the biomass supply part flows with the steam supplied from the steam supply part is formed in the first region of the reaction tower, and the biomass is gasified while flowing in the first region, via the communication part Then, it flows to the second region on the downstream side in the gas flow direction of the reaction tower.
  • Biomass or part of the gas is combusted by supplying oxygen gas from the oxygen gas supply section provided in each of the first region and the second region, and the combustion heat is necessary for the gasification reaction in each region. At the same time it is used to ensure temperature, the gas component changes.
  • the supply amount adjusting mechanism individually adjusts the oxygen gas supply amount to the first region and the oxygen gas supply amount to the second region, the temperature and the gas component in each region are adjusted, and as a result, the external The use of the heat source can be suppressed, and the components of the product gas can be adjusted in each region.
  • the biomass supplied to the reaction tower is gasified into light ash and then exhausted from the exhaust port together with the gas.
  • the water gas reaction In the first region where the water gas reaction is mainly performed, a part of biomass mainly composed of carbon is burned and heated by the oxygen gas supplied from the oxygen gas supply unit, and the endothermic reaction is caused by the combustion heat.
  • a certain water gas reaction that is, a reaction in which carbon monoxide gas and hydrogen gas are generated from carbon and water vapor is promoted.
  • the water gas shift reaction in which hydrogen gas is generated from the water vapor and carbon monoxide gas that have not been used for the water gas reaction out of the water vapor supplied from the water vapor supply unit proceeds, and is supplied from the oxygen gas supply unit. Part of the carbon monoxide gas is burned by the oxygen gas.
  • the first region where the water gas reaction is mainly performed in the reaction tower and the second region where the water gas shift reaction is mainly performed are formed along the gas flow, and the gasified lightweight ash is secondly formed.
  • the gasified lightweight ash is secondly formed.
  • the water vapor supply unit is arranged upstream of the biomass supply unit. There is in point.
  • the upward flow of water vapor supplied from the water vapor supply unit acts on the biomass that is input to the reaction tower and falls downward, and effectively suppresses the biomass from falling to the bottom. A spouted bed of biomass is formed.
  • the eighth feature configuration is the oxygen gas corresponding to the first region in the oxygen gas supply section, in addition to any one of the first to seventh feature configurations described above.
  • a supply part exists in the point arrange
  • the water gas reaction that occurs mainly between biomass and water vapor generated in the first region is an endothermic reaction, and the water gas reaction is suppressed when the temperature decreases due to the reaction.
  • the oxygen gas supply unit corresponding to the first region is disposed at least upstream of the biomass supply unit, the opportunity for contact between the biomass and oxygen gas increases, and the combustion reaction is likely to occur.
  • the combustion reaction is used as a heat source inside the reaction tower, and the use of the external heat source can be effectively suppressed.
  • the oxygen gas supply unit corresponding to the first region of the oxygen gas supply unit may include the biomass. It exists in the point arrange
  • Carbon monoxide generated by the water gas reaction is combusted by oxygen gas supplied from the downstream side of the biomass supply unit. Therefore, a temperature decrease on the downstream side of the biomass supply unit is suppressed, the water gas reaction is further promoted, and the generated gas can flow down to the second region at a sufficient temperature.
  • the water vapor supply unit is disposed upstream of any oxygen gas supply unit. It is in the point.
  • oxygen gas is supplied to the biomass on which the spouted bed is formed. Therefore, the contact opportunity between the biomass and water vapor or oxygen gas increases, and the total amount of H 2 and CO can be easily increased.
  • the gas flow rate in the second region is changed to the gas flow rate in the first region. It is in the point provided with the gas flow rate adjustment part which makes it fall rather.
  • the gas flow rate in the second region becomes slower than the gas flow rate in the first region, and unreacted biomass having a large specific gravity that has not been gasified in the first region reaches the second region. It is not possible to stay in the second area and it is returned to the first area. The biomass returned to the first region will again have the opportunity for water gas reaction and combustion reaction, and will continue to remain in the first region until it becomes ash with a small specific gravity. Moreover, since the time required for the water gas shift reaction in the second region can be obtained, the gas flow direction size of the reaction tower can be reduced, and as a result, the conversion rate of biomass into the water gas reaction is also improved. Furthermore, the residue having a small specific gravity cannot remain in the first region due to the gas flow rate faster than that in the second region, moves to the second region, and is discharged from the exhaust port.
  • the gas flow velocity adjusting unit has an average cross-sectional area perpendicular to an internal gas flow in the first characteristic configuration.
  • the second region is embodied by the shape of the reaction tower formed so as to be larger than the first region.
  • the gas flow rate in the first region is set to a flow rate at which biomass floats.
  • the gas flow rate in the second region is set to a flow rate at which biomass falls into the first region.
  • the spouted bed of biomass is formed in the first region, and the water gas reaction is favorably promoted. Even if the biomass in an unreacted and unreacted state of the water gas reaction reaches the second region, it cannot stay and falls to the first region, and an opportunity for a water gas reaction or a combustion reaction is obtained again.
  • the biomass becomes ash, it flows along with the gas into the second region and is discharged from the exhaust port. Therefore, it is converted from biomass to gas at a high conversion rate in the first region.
  • the oxygen gas from each oxygen gas supply unit is based on the composition of the gas flowing out from the reaction tower.
  • the supply amount adjusting mechanism for adjusting the supply amount is provided.
  • the composition and supply amount of biomass supplied to the first region that is, carbon C, hydrogen H, oxygen O and moisture H 2 O contained in the biomass supplied to the reaction tower, water gas in the first region
  • the degree of reaction, the degree of water gas shift reaction in the second region, and the amount of oxygen gas necessary to maintain the temperature in the region at that time at the desired temperature are calculated stoichiometrically by the supply amount adjusting mechanism, Since the supply amount of oxygen gas to be supplied from each oxygen gas supply unit is adjusted based on the result, a gas having a desired composition can be obtained with high efficiency while suppressing the use of an external heat source.
  • the fifteenth feature configuration is the total supply of oxygen gas based on the composition of the gas flowing out from the reaction tower in addition to the sixth or fourteenth feature configuration described above, as described in claim 15.
  • a supply amount adjusting mechanism that adjusts the ratio of the oxygen gas supply amount from each oxygen gas supply unit under a constant amount is provided.
  • the ratio of the oxygen gas supply amount from each oxygen gas supply unit is adjusted by the supply amount adjustment mechanism under a constant total supply amount of oxygen gas based on the composition of the gas flowing out from the reaction tower. Therefore, even if the biomass composition or the like varies, the synthesis gas having a desired composition can be flexibly handled so as to be obtained with high accuracy.
  • the first characteristic configuration of the operation method of the gasifier according to the present invention is any one of the above-described first, second, sixth, fourteenth or fifteenth characteristic configurations as described in claim 16.
  • a gasification furnace operating method comprising the steps of: measuring a composition of gas flowing out from the reaction tower; and measuring the first gas from the oxygen gas supply unit so that the measured gas composition becomes a target gas composition. In addition, the supply amount of oxygen gas supplied to each of the second regions is adjusted.
  • the second characteristic configuration is any one of the first, second, sixth, fourteenth or fifteenth described above.
  • the first characteristic configuration of the biomass gasification method according to the present invention is that, as described in claim 18, water vapor is supplied to the biomass on the upstream side of the reaction tower to form a spouted bed, and the water gas reaction is mainly performed.
  • the oxygen gas supply step of adjusting the composition of the gas flowing out from the reaction tower by adjusting the ratio of the oxygen gas supplied to each of the water gas shift reaction promotion step and adjusting the ratio of the oxygen gas supplied to each of the water gas shift reaction promotion step is there.
  • the oxygen gas supply step is performed in each of the water gas reaction promotion step and the water gas shift reaction promotion step. This is a step of adjusting the composition of the gas flowing out from the reaction tower by adjusting the ratio of the oxygen gas supply amount while keeping the total amount of oxygen gas to be supplied constant.
  • a highly flexible gasifier, a gasifier operating method, and a biomass gasification process that can obtain a desired ratio of synthesis gas while suppressing the use of an external heat source. It became possible to provide a method.
  • FIG. 1 is a partially cutaway explanatory view of a gasification furnace according to the present invention.
  • FIG. 2 (a) is an explanatory view of the main part of the gasification furnace according to the present invention
  • FIG. 2 (b) is a sectional view taken along the line AA of FIG.
  • FIG. 3 is an explanatory diagram of the supply amount control mechanism.
  • 4A, 4B, and 4C are explanatory diagrams of biomass gasification reactions
  • FIG. 4D is a table showing experimental results.
  • 5 (a), (b), (c), and (d) are explanatory views of main parts of a gasification furnace according to the present invention showing another embodiment.
  • FIG. 6 is an explanatory view of a biomass liquid fuel conversion system incorporating a gasification furnace according to the present invention.
  • FIG. 7 is an explanatory diagram of an energy generation system incorporating a gasification furnace according to the present invention.
  • a gasification furnace 10 is a gasification furnace that can be incorporated into a liquid fuel conversion system 100 that generates liquid fuel from synthesis gas generated from biomass as a raw material.
  • generated in the said gasification furnace 10 can be utilized also as an electric power generation or another heat source.
  • the liquid fuel conversion system 100 removes solids such as ash, hydrogen sulfide gas, hydrogen chloride gas, ammonia, and the like from the gasification furnace 10 that generates synthesis gas that is a raw material for liquid fuel from biomass.
  • An FT synthesis device 104 is provided that synthesizes fuel from synthesis gas purified through a gas purification device 204 including a cyclone, a scrubber, an activated carbon adsorption tower, and the like.
  • the gasification furnace 10 includes a reaction tower that generates synthesis gas (H 2 , CO) by reducing and heating biomass with steam or superheated steam at a high temperature of 500 ° C. or more and 1000 ° C. or less.
  • the synthesis gas obtained in the reaction tower is purified by the gas purification device 204 in the subsequent stage, and after impurities are removed, it is heated to a high temperature and pressurized to a high pressure via a heater and a compressor, and then is introduced into the FT synthesis device 104. .
  • FT synthesis is an abbreviation for Fischer-Tropsch synthesis and refers to a series of synthetic reaction processes in which liquid hydrocarbons are synthesized from carbon monoxide and hydrogen using a catalytic reaction.
  • the synthesis gas charged into the FT synthesizer 104 is charged into a solvent in which the catalyst is dispersed and synthesized into a desired hydrocarbon.
  • the ratio of hydrogen to carbon monoxide H 2 / CO is about 2 although it varies depending on the type and properties of the catalyst.
  • the ratio H 2 / CO of hydrogen to carbon monoxide is preferably about 1.
  • the ratio H 2 / CO of hydrogen and carbon monoxide is adjusted, and this ratio is FT even when the same kind of hydrocarbon is obtained. It also depends on the type of catalyst used in the synthesis.
  • a highly versatile gasification furnace 10 capable of obtaining synthesis gas with various ratios H 2 / CO is desired, and a compact gasification furnace 10 with a high synthesis gas yield is desired.
  • FIG. 1 shows an example of a gasification furnace 10 according to the present invention.
  • the gasification furnace 10 is supported by a frame and is a vertical cylindrical reaction tower 4 made of a corrosion-resistant metal, a biomass supply device 2 for supplying biomass to the reaction tower 4, and water vapor for causing a water gas reaction Is supplied to the reaction tower 4, and the oxygen gas supply section 5 (5 a, 5 a, 5) is used to heat the reaction tower 4 to a desired temperature and adjust the ratio H 2 / CO of hydrogen and carbon monoxide as synthesis gas. 5b, 5c).
  • water vapor and biomass heated to about 500 ° C. at normal pressure by high-frequency heating or the like undergo a water gas reaction or a water gas shift reaction inside the reaction tower 4 and are exhausted from the exhaust port 40 at the top of the reaction tower 4.
  • the gas is led to the gas purification device 204 (see FIG. 6) through the exhaust pipe.
  • the water gas reaction mainly occurs in the lower part of the reaction tower 4, and the water gas shift reaction mainly occurs in the process of raising the reaction tower 4.
  • the gas purification apparatus 204 (see FIG. 6) is provided with an induction fan, the inside of the reaction tower 4 is maintained at a negative pressure, and the gas generated in the reaction tower 4 is attracted to the gas purification apparatus 204 (see FIG. 6). And purified.
  • the biomass supply device 2 is configured by a screw conveyor including a cylindrical casing 20 having one end flange-connected to the lower side of the reaction tower 4 and screw blades 21 accommodated in the cylindrical casing 20. (Hereinafter simply referred to as “casing”) is provided with a biomass inlet 22 on the other end side.
  • a conveyance path 70 having a substantially vertical posture is connected to the insertion port 22, and a hopper 7 having a quantitative supply mechanism 71 is provided at the upper end of the conveyance path 70.
  • Dry biomass such as rice straw, rice husk, wheat straw, and corn stover is preferably used as the raw material biomass. These dry biomass crushed to about several mm is filled in the hopper 7 and conveyed to the inlet 22 through the conveyance path 70. The biomass charged into the charging port 22 is conveyed compactly by the screw blades 21 and charged into the reaction tower 4. That is, the space between the outside air and the inside of the reaction tower 4 is sealed with the biomass filled in the casing 20 and consolidated.
  • a first oxygen gas supply unit 5 (5a) is provided below the biomass supply device 2, and a water vapor supply unit 3 is provided below the first oxygen gas supply unit 5 (5a).
  • a plurality of other oxygen gas supply sections 5 (5b, 5c) are provided above the biomass supply apparatus 2 at different vertical positions.
  • a heat insulating wall W is provided so as to surround the reaction tower 4 in order to maintain the temperature in the tower.
  • a plurality of heaters H are embedded inside the heat insulating wall W, particularly below the reaction tower 4 in order to maintain the reaction tower 4 at a desired temperature (see FIG. 2B).
  • the biomass B supplied from the biomass supply unit 2 to the inside of the reaction tower 4 is generated by the steam injected from the nozzle 30 provided at the tip of the water vapor supply unit 3.
  • a spouted bed 8 that flows inside is formed.
  • the opening 30a of the nozzle 30 is sprayed toward the bottom 41 of the reaction tower 4, and is dropped toward the bottom 41 or blown upward while winding up the falling biomass.
  • the region where the spouted bed 8 at the lower part of the reaction tower 4 is formed is a first region R1 where water gas reaction is mainly performed. Further, a second region R2 (see FIG. 1) in which a water gas shift reaction is mainly performed is formed above the first region.
  • the water gas reaction is an endothermic reaction in which carbon monoxide CO and hydrogen H 2 are generated from solid carbon C and steam H 2 O as biomass in a high temperature environment of 500 ° C. or higher as shown in the following formula. . C + H 2 O ⁇ CO + H 2
  • the water gas shift reaction is an exothermic reaction in which carbon dioxide CO 2 and hydrogen H 2 are generated from carbon monoxide CO and water vapor H 2 O in a high temperature environment of 800 ° C. or higher as shown in the following equation.
  • part of the biomass B flowing in the first region R1 is burned by the oxygen gas supplied from the first oxygen gas supply unit 5 (5a) to become carbon dioxide.
  • a high ambient temperature is maintained by the reaction. It is the biomass which the particle
  • a second oxygen gas supply unit 5 (5b) is also provided above the biomass supply unit 2 in the first region R1, and the biomass is partially burned by oxygen supplied from the second oxygen gas supply unit 5 (5b).
  • the high ambient temperature is maintained.
  • the amount of oxygen gas supplied from these oxygen gas supply sections 5 is sufficient for a stable water gas reaction to occur, and is not such an amount that most of the biomass burns.
  • Biomass B supplied from the biomass supply device 2 is supplied to the reaction tower 4 without being heated and falls downward in the reaction tower 4, so that the temperature near the lowermost part of the spouted bed is lowest. Therefore, it is important that the first oxygen gas supply unit 5 (5a) is disposed in the vicinity thereof. Further, the position of the second oxygen gas supply unit 5 (5b) is also important in order to maintain a sufficient environmental temperature even above the biomass supply device 2 in the first region. This is because the heater H is basically used as a heat source at start-up, and thereafter, the environmental temperature is maintained by the combustion reaction of oxygen gas and biomass B.
  • the water vapor supply unit 3 is arranged upstream (downward in FIG. 2) from the biomass supply device 2 along the gas flow direction.
  • the oxygen gas supply unit 5 a corresponding to the first region R ⁇ b> 1 in the oxygen gas supply unit 5 is disposed at least upstream of the biomass supply device 2.
  • the oxygen gas supply unit 5 b corresponding to the first region R ⁇ b> 1 in the oxygen gas supply unit 5 is further arranged on the downstream side of the biomass supply unit 2, and the water vapor supply unit 3 is upstream of any oxygen gas supply unit 5. Is arranged.
  • the third oxygen gas supply unit 5 (5c) is disposed at the inlet of the second region R2 such that the tip is directed downward, and the oxygen gas supplied from the third oxygen gas supply unit 5 (5c) is used for water gas reaction. A part of the produced carbon monoxide burns. CO + 1/2 ⁇ O 2 ⁇ CO 2
  • the oxygen gas supplied from the third oxygen gas supply unit 5 (5c) is generated by the water gas reaction rather than maintaining the environmental temperature.
  • the significance of adjusting the ratio of carbon oxide and hydrogen is significant.
  • the ratio H 2 / CO between hydrogen and carbon monoxide is because the ratio of hydrogen gas increases as the combustion amount of carbon monoxide increases.
  • steam required for a water gas shift reaction is supplied from the water vapor
  • the gas and biomass or char and ash generated in the first region are configured to be movable between the first region R1 and the second region R2 via the communication portion 43.
  • the water vapor supplied from the water vapor supply unit 3 supplies water vapor necessary for the water gas reaction and the water gas shift reaction, and the flow rate of water vapor is adjusted so that a spouted bed of biomass is formed in the first region. Has been.
  • a gas flow rate adjusting part c that lowers the gas flow rate in the second region R2 than the gas flow rate in the first region R1 is formed in the communication part 43.
  • the gas flow rate adjusting unit c has an average cross-sectional area perpendicular to the internal gas flow (in FIG. 1, the area of the reaction tower in a plane perpendicular to the paper surface) larger in the second region R2 than in the first region R1. This is embodied by the shape of the reaction tower 4 having an enlarged diameter.
  • This diameter expansion is carried out at an acute angle so that the gas flow from the first region R1 to the second region R2 is not disturbed, and the diameter is smoothly expanded without reducing the diameter, and so that biomass and residues are not deposited on the expanded portion. It is formed to stand up.
  • the first region R1 in which the water gas reaction is mainly performed in the reaction tower 4 and the second region R2 in which the water gas shift reaction is mainly performed are formed along the gas flow, and the light ash is secondly formed.
  • the first region R1 and the second region R2 are configured as one unit instead of separate devices, and a compact gasification furnace can be obtained.
  • a process control unit 60 is further provided for managing and controlling the biomass gasification process that proceeds in the gasification furnace 10 described above.
  • the process control unit 60 includes a general-purpose computer, a control program installed in the general-purpose computer, and an expansion board.
  • the expansion board includes a first temperature sensor S3 installed in the first region R1, a second temperature sensor S4 installed in the second region R2, a hydrogen gas sensor S1 installed in the exhaust pipe 42, and a carbon monoxide gas sensor S2.
  • An input circuit to which a detection signal is input, a drive signal to a motor that controls rotation of the screw blades 21 of the biomass supply unit 2, a control valve V1 that adjusts a flow rate of water vapor supplied from the water supply source to the water vapor supply unit 3, oxygen
  • An output circuit is provided for outputting opening adjustment signals of the control valves Va, Vb, Vc for adjusting the amount of oxygen gas supplied from the gas source to each oxygen gas supply unit 5 (5a, 5b, 5c).
  • the process control unit 60 incorporates a supply amount adjustment mechanism 50 that individually adjusts and controls the supply amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c). Based on the detection signals from the hydrogen gas sensor S1 and the carbon monoxide gas sensor S2 that measure the composition of the gas flowing out from the reaction tower 4, the supply amount adjusting mechanism 50 adjusts the gas composition to the target gas composition, that is, hydrogen and The oxygen gas supply amount supplied from the oxygen gas supply unit 5 to each of the first region R1 and the second region R2 is adjusted so that the carbon monoxide ratio H 2 / CO becomes a desired ratio. ing.
  • the oxygen gas supplied from the first oxygen gas supply unit 5a provided in the first region R1 mainly burns biomass, that is, solids to compensate for the temperature that decreases due to the water gas reaction. Expended in burning carbon. The resulting combustion temperature increases the environmental temperature and promotes the water gas reaction. However, since the concentration of carbon monoxide CO and carbon dioxide CO 2 generated by the combustion of solid carbon also increases, the ratio H 2 / CO of hydrogen and carbon monoxide becomes relatively small. This tendency becomes stronger as the amount of oxygen supplied from the first oxygen gas supply unit 5a increases.
  • the oxygen gas supplied from the second oxygen gas supply unit 5b provided on the downstream side of the first region R1 is supplied to compensate for the temperature that decreases due to the water gas reaction generated on the upstream side.
  • a mechanism similar to that of the oxygen gas supplied from the first oxygen gas supply unit 5a works, but the water gas shift reaction that occurs between carbon monoxide and water vapor that has already occurred in the water gas reaction is also promoted to some extent. That is, the balance between the combustion of solid carbon and the water gas shift reaction is adjusted by the amount of oxygen gas supplied from the second oxygen gas supply unit 5b.
  • the oxygen gas supplied from the third oxygen gas supply unit 5c provided in the second region R2 is mainly oxidized by the water gas reaction performed in the first region R1. It is consumed for combustion of carbon CO or carbon monoxide CO generated by combustion reaction and water gas shift reaction. As a result, the environmental temperature rises and the water gas shift reaction is promoted. As a result, since the hydrogen gas H 2 concentration is increased, the ratio H 2 / CO of hydrogen and carbon monoxide is relatively increased. This tendency becomes stronger as the supply amount of oxygen is increased.
  • the ratio H 2 / CO of hydrogen to carbon monoxide is reduced.
  • the desired ratio can be adjusted.
  • FIG. 4 (d) as a result of variously adjusting the amount of oxygen gas supplied from the three oxygen gas supply units 5 (5a, 5b, 5c) using the gasification furnace 10 described above, The type and amount of gas produced is indicated.
  • Run 1 shows the result of supplying an equal ratio to each gas supply unit under a constant total amount of oxygen gas supplied to the gasification furnace 10, and Run 2 shows a third gas supply unit under a constant total amount of supplied oxygen gas.
  • the result is shown in which the supply amount to 5c is relatively increased, and Run 3 increases the supply amount to the second gas supply unit 5b relatively while the total amount of supply oxygen gas is constant.
  • the supply result is shown, and Run 4 is supplied so that the supply amount to the first gas supply unit 5a is relatively increased while the total amount of supply oxygen gas is constant.
  • the ratio H 2 / CO is larger in Run 2 in which the supply amount to the third gas supply unit 5 c is relatively increased than in Run 1 that is supplied uniformly.
  • the ratio H 2 / CO is smaller than that in the evenly supplied Run 1, and the supply to the second gas supply unit 5b is performed. It can be confirmed that in Run 3 with a relatively large amount, the ratio H 2 / CO is smaller than in Run 1 supplied uniformly, and the same tendency as in Run 4 appears.
  • the supply amount adjusting mechanism 50 maintains the total amount of oxygen gas supplied from the oxygen gas supply unit 5 so that the measured gas composition becomes the target gas composition, while maintaining the first region and the second region. It is comprised so that the ratio of the supply amount supplied to each of these may be adjusted.
  • the amount of heat input is calculated by calculating the amount of heat input required to maintain the inside of the reaction tower 4 at the environmental temperature required to promote the water gas reaction and the water gas shift reaction.
  • the total amount of oxygen gas is determined so as to be obtained by the combustion heat of biomass and / or the combustion heat of carbon monoxide for each region R1, R2, and while maintaining the determined total amount constant, The ratio of the supply amount supplied to each is adjusted.
  • the supply amount adjusting mechanism 50 provided in the gasification furnace 10 according to the present invention has a first region R1 and / or a second region R2 detected by the first temperature sensor S3 and the second temperature sensor S4 in addition to the control mode described above. It is also possible to adjust the amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c) so that the temperature becomes a predetermined environmental temperature. Also in this case, the amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c) is adjusted so that the gas composition measured by the hydrogen gas sensor S1 and the carbon monoxide gas sensor S2 becomes the target gas composition. It is a prerequisite.
  • the process control unit 60 is configured to supply the biomass supply unit when the gas amount cannot be controlled by the supply amount adjusting mechanism 50 so that the gas composition becomes the target gas composition or when the gas amount decreases even when the gas composition reaches the target gas composition.
  • the supply amount of biomass supplied from 2 and / or the supply amount of steam supplied from the steam supply unit 3 is adjusted to increase or decrease.
  • the supply amount adjusting mechanism 50 is configured to adjust the required oxygen gas supply amount and the ratio of the supply amount based on fluctuations in the biomass supply amount and / or the steam supply amount.
  • water vapor is supplied to the biomass on the upstream side of the reaction tower to form a spouted bed, and a water gas reaction promotion step that mainly promotes a water gas reaction;
  • oxygen gas is supplied to each of the water gas shift reaction promotion step for promoting the water gas shift reaction mainly on the downstream side of the reaction tower, the water gas reaction promotion step, and the water gas shift reaction promotion step.
  • a biomass gasification method including an oxygen gas supply step of adjusting the composition of the gas flowing out from the reaction tower by adjusting the ratio of the oxygen gas supplied to each of them is supplied.
  • the ratio of the supply amount is adjusted while maintaining the total amount of oxygen gas supplied to each of the water gas reaction promotion step and the water gas shift reaction promotion step, so that the gas flowing out of the reaction tower A step of adjusting the composition is included.
  • the ratio H 2 / CO of hydrogen to carbon monoxide is about 2 by adjusting the amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c). Or a synthesis gas having a hydrogen to carbon monoxide ratio H 2 / CO of about 1.
  • the reaction tower 4 may have an elliptical cylinder shape or a rectangular tube shape.
  • a tapered portion that gradually increases in diameter from the first region R1 to the second region R2 is formed in the enlarged diameter portion that becomes the gas flow rate adjusting portion c formed in the communication portion 43.
  • the angle is preferably formed at an acute angle. This is because when the diameter is rapidly expanded, a separation flow is generated and ash or the like is accumulated in the stepped portion, which may hinder a decrease in gas flow velocity.
  • the spouted bed type gasification furnace has been described.
  • the present invention can also be applied to a fluidized bed type gasification furnace.
  • water gas reaction will be accelerated
  • the heater as the external heat source may be used to promote the water gas reaction. Even in this case, the power cost required for the heater can be significantly reduced by providing the oxygen gas supply unit.
  • the operation of the gasifier can be performed only by biomass without additional energy input from the outside such as a heater as an external heat source.
  • gas supply mechanism 5 is configured by three systems. However, as indicated by a broken line in FIG.
  • a gas supply mechanism 5d may be provided not only in the first region R1 but also in the second region R2.
  • oxygen gas is supplied vertically from one place of the peripheral wall of the reaction tower 4 from the first and second gas supply functions 5a and 5b, and oxygen gas is supplied from the third gas supply function 5c to the reaction tower 4.
  • the aspect supplied diagonally downward from one place of a surrounding wall was demonstrated, it is not restricted to such an aspect.
  • the gas supply mechanism 5 is provided with a header pipe 50 so as to surround the reaction tower 4, and the inner wall of the reaction tower 4 is formed from a plurality of gas supply pipes 51 formed in the header pipe 50.
  • the oxygen gas may be supplied in the direction in which the swirling flow is generated along the direction.
  • oxygen gas may be supplied from a plurality of gas supply pipes 51 in the direction of collision toward the center of the reaction tower 4.
  • oxygen gas may be supplied downward or upward with respect to the axial direction of the reaction tower 4.
  • the mode of FIG. 5 (c) is the same as the third gas supply function 5c shown in FIG. 1, but this may be combined with the mode shown in FIGS. 5 (a) and 5 (b).
  • the aspect of FIG. 5D is the same, and is particularly suitable for the first gas supply mechanism 5a.
  • oxygen-enriched gas obtained by adding oxygen to the atmosphere can be used in addition to high-purity oxygen gas.
  • the temperature distribution in the reaction tower 4 is adjusted according to the temperature required for each of the water gas reaction and the water gas shift reaction. You may have it. That is, the temperature distribution may be different between the first region R1 in which the water gas reaction is mainly performed and the second region R2 in which the water gas shift reaction is mainly performed. In this way, the temperature required for each reaction can be secured and energy consumption can be suppressed.
  • the system for synthesizing liquid fuel by generating synthesis gas from biomass as raw material has been described.
  • the synthesis gas purified by the gasification furnace can be used as gas fuel for power generation and the like. Any method may be used.
  • the example in which the exhaust port 40 is provided at the top of the reaction tower 4 that connects the space (second region) above the reaction tower 4 has been described.
  • the exhaust port 40 is connected to the second region.
  • it may be provided on the upper side of the reaction tower 4.
  • the char generated from the gasification furnace is used for the water gas reaction in the gasification furnace.
  • the char generated from the gasification furnace 10 is composed of a cyclone or the like.
  • a waste heat boiler 203 that generates steam by heating the hot water with the heat stored in the synthesis gas is generated by separating it with the char separator 201 and generating hot water in a combustion furnace 202 using the separated char as fuel. You may make it improve energy efficiency as the whole system, such as utilizing the produced water vapor for the gasification furnace 10.
  • Reference numeral 204 denotes a gas purification device
  • reference numeral 205 denotes a power generation device or an FT synthesis device.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A gasification furnace 10 that can obtain a synthetic gas comprises the following: a biomass supplying unit 2; a water vapor supplying unit 3; a reaction tower 4 in which a first region R1 and a second region R2 are formed along the gas flow direction and in which biomass supplied from the biomass supplying unit 2 is caused to flow in the first region R1 by an entrained bed formed by the water vapor supplied from the water vapor supplying unit 3 and gas generated in the first region R1 is caused to flow into the second region R2; a plurality of oxygen gas supplying units 5 (5a, 5b, 5c) that supply oxygen gas to the first region R1 and the second region R2 of the reaction tower 4; and a supply amount adjusting mechanism that adjusts the amounts of oxygen gas supplied from the oxygen gas supplying units 5 (5a, 5b, 5c).

Description

ガス化炉、ガス化炉の運転方法、及びバイオマスガス化処理方法Gasification furnace, gasification furnace operating method, and biomass gasification processing method
 本発明は、バイオマスからエネルギーの原料となるガスを得るガス化炉、ガス化炉の運転方法、及びバイオマスガス化処理方法に関する。 The present invention relates to a gasification furnace for obtaining a gas as a raw material of energy from biomass, a gasification furnace operation method, and a biomass gasification treatment method.
 バイオマスは再生可能な生物由来の有機性資源で化石資源を除いたものをいう。バイオマスが燃焼することにより放出されるCOは、本来、生物の成長過程で光合成により大気中から吸収したCOであることから、地球温暖化の原因物質とはならず、再生可能なエネルギー源として注目されている。 Biomass refers to renewable organic organic resources excluding fossil resources. CO 2 the biomass is discharged by burning is inherently since it is CO 2 absorbed from the atmosphere by photosynthesis in organisms growth process, not cause material to global warming, renewable energy sources It is attracting attention as.
 従来、さとうきびやトウモロコシ等の食料となる原料を発酵、ろ過してアルコールに転換し、代替燃料として利用する技術が確立されていた。しかし、そのために食料の不足や価格の高騰を招く等の虞がある。そのため、近年、稲わら、もみ殻、木くず等の食料にならない原料をガス化炉に投入して水性ガス反応によりガス化し、得られたガスをFT合成により液体燃料化する技術が注目されている。 Conventionally, a technology has been established in which raw materials for food such as sugar cane and corn are fermented, filtered, converted to alcohol, and used as an alternative fuel. However, this may lead to food shortages and high prices. Therefore, in recent years, attention has been paid to a technology for introducing raw materials that do not become food, such as rice straw, rice husks, and wood scraps, into a gasification furnace, gasifying them by a water gas reaction, and converting the resulting gas into a liquid fuel by FT synthesis .
 一般に、バイオマスと水蒸気から一酸化炭素と水素を生成する水性ガス反応は吸熱反応であり、当該反応を促進するためにガス化炉の炉内温度を500℃~1200℃に維持する必要がある。 Generally, the water gas reaction that generates carbon monoxide and hydrogen from biomass and water vapor is an endothermic reaction, and it is necessary to maintain the furnace temperature of the gasification furnace at 500 ° C. to 1200 ° C. in order to promote the reaction.
 そのため、水蒸気を加熱して炉内に投入する構成、ガス化炉を電気ヒータ等の外部熱源で加熱する構成、加熱源として炉内に石炭等の化石燃料を投入する構成、或いは炉内に酸素を供給してバイオマスの一部の燃焼熱を加熱源に用いる等の様々な構成が採用されているが、エネルギー効率の良いガス化炉の実現という点で未だ多くの課題が残されている。 Therefore, a configuration in which steam is heated and charged into the furnace, a gasification furnace is heated with an external heat source such as an electric heater, a configuration in which fossil fuel such as coal is input into the furnace as a heating source, or an oxygen in the furnace However, many problems still remain in terms of realizing an energy efficient gasification furnace, such as using a part of the combustion heat of biomass as a heating source.
 特許文献1には、クリーンで高効率なガス化を行い、バイオマスの完全ガス化を図ることができるバイオマスガス化炉を提供することを目的とするバイオマスガス化炉が開示されている。 Patent Document 1 discloses a biomass gasification furnace that aims to provide a biomass gasification furnace that can perform clean and highly efficient gasification and achieve complete gasification of biomass.
 当該バイオマスガス化炉は、平均粒径が0.05≦D≦5mmのバイオマス粉砕物を供給するバイオマス供給手段と、酸素と水蒸気の混合物の燃焼酸化剤を供給する燃焼酸化剤供給手段とを備え、酸素[O]/炭素[C]のモル比率を0.1≦O/C<1.0の範囲とすると共に、水蒸気[HO]/炭素[C]のモル比率を1≦HO/Cの範囲とし、温度を700~1200℃とする噴流床型のガス化炉で、燃焼酸化剤をガス流れに沿って複数箇所から供給するように燃焼酸化剤供給手段が複数段設けられ、炉内圧力が1~30気圧で運転されるように構成されている。炉内圧力が30気圧であれば、空塔速度が低くなり装置のコンパクト化が可能になる。 The biomass gasification furnace includes biomass supply means for supplying a pulverized biomass having an average particle diameter of 0.05 ≦ D ≦ 5 mm, and combustion oxidant supply means for supplying a combustion oxidant of a mixture of oxygen and water vapor. The molar ratio of oxygen [O 2 ] / carbon [C] is in the range of 0.1 ≦ O 2 /C<1.0, and the molar ratio of water vapor [H 2 O] / carbon [C] is 1 ≦ In a spouted bed type gasification furnace with a H 2 O / C range and a temperature of 700 to 1200 ° C., the combustion oxidant supply means has a plurality of stages so as to supply the combustion oxidant from a plurality of locations along the gas flow. It is provided and is configured to operate at a furnace pressure of 1 to 30 atmospheres. If the pressure in the furnace is 30 atm, the superficial velocity is lowered and the apparatus can be made compact.
 また、当該ガス化炉は、炉本体の下側部分で助燃部分を形成するように、化石燃料である石炭を供給して化石燃料の燃焼により高温場を形成し、そこにバイオマスを投入することで、バイオマスを燃焼させることなく熱分解ガス化を効率よく行うように構成された態様も開示されている。 Also, the gasification furnace supplies coal as fossil fuel so as to form an auxiliary combustion part in the lower part of the furnace body, forms a high-temperature field by burning fossil fuel, and inputs biomass therein. And the aspect comprised so that pyrolysis gasification may be performed efficiently, without burning biomass is also disclosed.
 特許文献2には、上述と同様の目的で、鉛直方向一方側から他方側へ向って内部でガスを流通させると共に内部の前記一方側に高温反応場が形成されて内部の前記一方側と前記他方側との間にガス化反応場が形成されるガス化炉本体と、前記ガス化炉本体の内部の前記高温反応場へバイオマスを供給するバイオマス供給手段と、前記ガス化炉本体の内部の前記高温反応場へ酸素を供給する燃焼酸化剤供給手段と、前記ガス化炉本体の内部へ水蒸気を供給する水蒸気供給手段とを備えているバイオマスガス化炉において、前記水蒸気供給手段が、前記ガス化炉本体の内部の前記高温反応場と前記ガス化反応場とへそれぞれ別々に水蒸気を供給するように構成され、炉内圧力が1~30気圧で運転されるバイオマスガス化炉が開示されている。 In Patent Document 2, for the same purpose as described above, gas is circulated inside from one side in the vertical direction to the other side, and a high-temperature reaction field is formed on the one side inside, and the one side inside and A gasification furnace body in which a gasification reaction field is formed with the other side, biomass supply means for supplying biomass to the high-temperature reaction field inside the gasification furnace body, and inside the gasification furnace body In a biomass gasification furnace comprising a combustion oxidant supply means for supplying oxygen to the high temperature reaction field and a steam supply means for supplying steam to the inside of the gasification furnace main body, the steam supply means comprises the gas A biomass gasification furnace configured to supply water vapor separately to the high-temperature reaction field and the gasification reaction field in the main body of the gasification furnace and operated at an internal pressure of 1 to 30 atm is disclosed. Yes.
 特許文献3には、流動床部及びフリーボード部に夫々酸素とスチームを含む酸化性ガスを供給する複数段のガス供給部を備え、流動床部でバイオマスを酸化して500℃~750℃の温度に加熱し、前段で酸化されたバイオマスの一部をフリーボード部上流側で800℃~850℃の温度に加熱し、さらに前段で酸化されたバイオマスの一部をフリーボード部下流側で900℃~1000℃の温度に加熱して合成ガスを生成する炉内圧力が10気圧程度で運転される流動床式のガス化炉が開示されている。 Patent Document 3 includes a plurality of gas supply units that supply an oxidizing gas containing oxygen and steam to the fluidized bed unit and the freeboard unit, respectively, and the biomass is oxidized in the fluidized bed unit at 500 ° C. to 750 ° C. A part of the biomass oxidized in the previous stage is heated to a temperature of 800 ° C. to 850 ° C. on the upstream side of the free board part, and a part of the biomass oxidized in the previous stage is 900 on the downstream side of the free board part. There is disclosed a fluidized bed gasification furnace that is operated at a furnace pressure of about 10 atm.
特許第4938920号公報Japanese Patent No. 49389920 特許第4388245号公報Japanese Patent No. 4388245 特許第5576394号公報Japanese Patent No. 5576394
 特許文献1に開示されたガス化炉は、通常バイオマスを単にガス化した場合に水素ガスと一酸化炭素ガスの比率H/COが2を超えることが無いとの認識の下で、水素ガスと一酸化炭素ガスの比率H/COがメタノール合成に必要な2以上となるように、酸素と水蒸気を混合した燃焼酸化剤を供給する燃焼酸化剤供給手段を炉の上流に設け、或いは上流側から下流側に向けて多段に設け、酸素[O]/炭素[C]のモル比率を0.1≦O/C<1.0の範囲に調整し、水蒸気[HO]/炭素[C]のモル比率を1≦HO/Cの範囲に調整する技術であり、燃焼酸化剤供給手段から供給される水蒸気により水性ガス反応を促進し、同時に供給される酸素により水性ガス反応でせられた一酸化炭素ガスを部分酸化して水性ガス反応に好適な温度700~1200℃に維持するように構成されている。 The gasification furnace disclosed in Patent Document 1 recognizes that the ratio H 2 / CO of hydrogen gas to carbon monoxide gas does not exceed 2 when ordinary biomass is simply gasified. And a combustion oxidant supply means for supplying a combustion oxidant mixed with oxygen and water vapor so that the ratio H 2 / CO of carbon monoxide gas to 2 or more necessary for methanol synthesis is provided upstream of the furnace, or upstream The oxygen [O 2 ] / carbon [C] molar ratio is adjusted to a range of 0.1 ≦ O 2 /C<1.0, and water vapor [H 2 O] / This is a technique for adjusting the molar ratio of carbon [C] to a range of 1 ≦ H 2 O / C, promoting water gas reaction with water vapor supplied from the combustion oxidant supply means, and simultaneously supplying water gas with oxygen supplied The carbon monoxide gas generated in the reaction is partially oxidized to form an aqueous gas It is configured to maintain a suitable temperature 700 ~ 1200 ° C. the reaction.
 つまり、炉内に燃焼酸化剤を投入して一酸化炭素ガスを部分燃焼(CO+1/2O→CO)させることで熱として利用し、後工程でCOを除去することで[HO]/[CO]の比率を向上させる技術であり、ガス化炉の後段にガス中のHとCOガスの組成を調整するCOシフト反応装置が別途設けられている。 In other words, the combustion oxidant is charged into the furnace and the carbon monoxide gas is partially burned (CO + 1 / 2O 2 → CO 2 ) to be used as heat, and CO 2 is removed in a subsequent process by removing [H 2 O ] / [CO] is a technique for improving the ratio, and a CO shift reaction apparatus for adjusting the composition of H 2 and CO gas in the gas is provided separately after the gasification furnace.
 特許文献2に開示されたガス化炉も特許文献1に開示されたガス化炉と同様に、水素ガスと一酸化炭素ガスの比率H/COがメタノール合成に必要な2以上となることを目的としたガス化炉である。ガス化炉本体の水性ガス反応が行なわれる高温反応場と、水性シフト反応が行なわれるガス化反応場とへそれぞれ別々に水蒸気を供給することで、高温反応場での温度低下を回避しながらガス化反応場で水素ガスの収量を上昇させるように構成されている。 Similarly to the gasification furnace disclosed in Patent Document 1, the gasification furnace disclosed in Patent Document 2 has a ratio H 2 / CO of hydrogen gas to carbon monoxide gas of 2 or more necessary for methanol synthesis. It is the intended gasifier. By supplying water vapor separately to the high temperature reaction field where the water gas reaction of the gasification furnace main body is performed and the gasification reaction field where the water shift reaction is performed, the gas is avoided while avoiding a temperature drop in the high temperature reaction field. It is configured to increase the yield of hydrogen gas in the chemical reaction field.
 しかし、水性ガス反応により得られたガスをFT合成して得られる燃料はメタノールに限るものではなく、必ず水素ガスと一酸化炭素ガスの比率H/COを2以上に調整しなければならないということはない。例えば、鉄系の触媒を用いて水素ガスと一酸化炭素ガスから軽油を合成する場合、水素ガスと一酸化炭素ガスの比率H/COを1に調整することが好ましい。しかし、同じ軽油を合成する場合でも触媒が異なれば好適な水素ガスと一酸化炭素ガスの比率H/COが異なる値になる。そのような場合に、特許文献1,2に開示されたガス化炉では容易に対応できなかった。 However, the fuel obtained by FT synthesis of the gas obtained by the water gas reaction is not limited to methanol, and the ratio H 2 / CO of hydrogen gas to carbon monoxide gas must be adjusted to 2 or more without fail. There is nothing. For example, when gas oil is synthesized from hydrogen gas and carbon monoxide gas using an iron-based catalyst, it is preferable to adjust the ratio H 2 / CO of hydrogen gas to carbon monoxide gas to 1. However, even when synthesizing the same light oil, if the catalyst is different, the ratio H 2 / CO between the preferred hydrogen gas and carbon monoxide gas will be different. In such a case, the gasification furnace disclosed in Patent Documents 1 and 2 cannot be easily handled.
 また、原料となるバイオマスの種類や含水率を含む組成が異なると、水性ガス反応の好適な条件も異なり、生成される水素ガスと一酸化炭素ガスの比率H/COもに変動する。そのため、原料の変動や目標とする生成ガスの比率H/COの変動に対応して容易に目標とする比率H/COで生成ガスを得ることができる柔軟なガス化炉が望まれていた。 In addition, when the composition including the type of biomass as a raw material and the water content is different, suitable conditions for the water gas reaction are also different, and the ratio H 2 / CO of the generated hydrogen gas and carbon monoxide gas also varies. Therefore, not flexible gasifier capable of obtaining the product gas in a ratio H 2 / CO to easily target in response to variations in the ratio H 2 / CO in the product gas to vary or the target of the material is desired It was.
 さらに、特許文献1,2に開示されたガス化炉は、多段に酸素ガス及び/または水蒸気を供給する構成であるため、下流側ほどガスの流量が増して流速が上昇する。そのため、十分な反応時間を確保するためにガス化炉が大きくなるという問題もあった。そのような観点では特許文献3に開示されたガス化炉も同様である。 Furthermore, since the gasification furnaces disclosed in Patent Documents 1 and 2 are configured to supply oxygen gas and / or water vapor in multiple stages, the gas flow rate increases and the flow velocity increases toward the downstream side. Therefore, there is also a problem that the gasifier becomes large in order to ensure a sufficient reaction time. From such a viewpoint, the same applies to the gasification furnace disclosed in Patent Document 3.
 上述した従来のガス化炉は何れも加圧化で運転される炉であるため、厳重なシール性を確保する必要があり、設備費用が嵩むという問題もあり、大気圧または負圧下で運転する場合にはさらにガス化炉が大型化するという問題もあった。 Since all the conventional gasification furnaces described above are furnaces that are operated by pressurization, it is necessary to ensure a strict sealing property, and there is a problem that equipment costs increase, and the operation is performed under atmospheric pressure or negative pressure. In some cases, there was a problem that the gasification furnace was further enlarged.
 さらに、特許文献1,2,3には詳述されていないが、ガス化炉を700~1200℃の高温に保つためにはヒータ等の外部熱源で加熱したり、石炭等の化石燃料の燃焼熱で加熱したりする必要があり、カーボンニュートラルなバイオマスと異なり地球温暖化への配慮が必要であるという問題もあった。 Furthermore, although not described in detail in Patent Documents 1, 2, and 3, in order to keep the gasification furnace at a high temperature of 700 to 1200 ° C., it is heated by an external heat source such as a heater or combustion of fossil fuel such as coal. There is also a problem that it is necessary to consider global warming unlike carbon neutral biomass.
 本発明の目的は、上述した問題点に鑑み、外部熱源の利用を抑制しつつ所望の比率の合成ガスを得ることができる自由度の高いガス化炉、ガス化炉の運転方法、及びバイオマスガス化処理方法を提供する点にある。 In view of the above-described problems, an object of the present invention is a gasification furnace having a high degree of freedom capable of obtaining a desired ratio of synthesis gas while suppressing the use of an external heat source, an operation method of the gasification furnace, and biomass gas. It is in the point which provides the conversion processing method.
 上述の目的を達成するため、本発明によるガス化炉の第一の特徴構成は、特許請求の範囲の書類の請求項1に記載した通り、バイオマス供給部と、水蒸気供給部と、前記水蒸気供給部から供給される水蒸気により形成される噴流床で前記バイオマス供給部から供給されたバイオマスを流動させる第1領域と、前記第1領域で生成されたガスが流入する第2領域とが、ガスの流れ方向に沿って形成される反応塔と、前記反応塔の前記第1領域及び第2領域の夫々に酸素ガスを供給する複数の酸素ガス供給部と、各酸素ガス供給部からの酸素ガス供給量を調整する供給量調整機構と、を備えている点にある。 In order to achieve the above-described object, the first characteristic configuration of the gasification furnace according to the present invention includes a biomass supply unit, a steam supply unit, and the steam supply as described in claim 1 of the claims. A first region in which the biomass supplied from the biomass supply unit flows in a spouted bed formed by water vapor supplied from the unit, and a second region into which the gas generated in the first region flows, A reaction tower formed along the flow direction, a plurality of oxygen gas supply sections for supplying oxygen gas to each of the first region and the second region of the reaction tower, and an oxygen gas supply from each oxygen gas supply section And a supply amount adjusting mechanism for adjusting the amount.
 バイオマス供給部から供給されたバイオマスが水蒸気供給部から供給される水蒸気によって流動する噴流床が反応塔の第1領域に形成され、第1領域でバイオマスが流動しながらガス化され、反応塔のガスの流れ方向下流側の第2領域に流れる。第1領域及び第2領域の夫々に設けられた酸素ガス供給部から酸素ガスが供給されることによりバイオマスまたはガスの一部が燃焼し、その燃焼熱が各領域でガス化の反応に必要な温度の確保に用いられると同時に燃焼によりそのガスの成分が変化する。供給量調整機構によって第1領域への酸素ガス供給量及び第2領域への酸素ガス供給量が個別に調整されるので、それぞれの領域での温度及びガスの成分が調整され、その結果、外部熱源の利用を抑制することができ、各領域での生成ガスの成分調整もできるようになる。 A spouted bed in which the biomass supplied from the biomass supply section flows with the steam supplied from the steam supply section is formed in the first region of the reaction tower, and the gas in the reaction tower is gasified while the biomass flows in the first region. Flows in the second region downstream in the flow direction. Biomass or part of the gas is combusted by supplying oxygen gas from the oxygen gas supply section provided in each of the first region and the second region, and the combustion heat is necessary for the gasification reaction in each region. At the same time as the temperature is secured, the composition of the gas changes due to combustion. Since the supply amount adjusting mechanism individually adjusts the oxygen gas supply amount to the first region and the oxygen gas supply amount to the second region, the temperature and the gas component in each region are adjusted, and as a result, the external The use of the heat source can be suppressed, and the components of the product gas can be adjusted in each region.
 同第二の特徴構成は、同請求項2に記載した通り、上述の第一の特徴構成に加えて、前記第1領域では主に水性ガス反応が行なわれ、前記第2領域では主に水性ガスシフト反応が行なわれ、前記供給量調整機構は水性ガス反応と水性ガスシフト反応とを調整することで反応塔から流出するガスの組成を調整するように構成されている点にある。 In the second characteristic configuration, as described in claim 2, in addition to the first characteristic configuration described above, a water gas reaction is mainly performed in the first region, and a water-based reaction is mainly performed in the second region. A gas shift reaction is performed, and the supply amount adjusting mechanism is configured to adjust the composition of the gas flowing out from the reaction tower by adjusting the water gas reaction and the water gas shift reaction.
 主に水性ガス反応が行なわれる第1領域では、酸素ガス供給部から供給される酸素ガスによって主にカーボンからなるバイオマスの一部が燃焼して昇温され、その燃焼熱により吸熱反応である水性ガス反応、つまりカーボンと水蒸気から一酸化炭素ガスと水素ガスが生成される反応が促進される。第2領域では水蒸気供給部から供給された水蒸気のうち水性ガス反応に使われなかった水蒸気と一酸化炭素ガスとから水素ガスが生成される水性ガスシフト反応が進むとともに、酸素ガス供給部から供給される酸素ガスによって一部の一酸化炭素ガスが燃焼する。 In the first region where the water gas reaction is mainly performed, a part of biomass mainly composed of carbon is burned and heated by the oxygen gas supplied from the oxygen gas supply unit, and the endothermic reaction is performed by the heat of combustion. A gas reaction, that is, a reaction in which carbon monoxide gas and hydrogen gas are generated from carbon and water vapor is promoted. In the second region, the water gas shift reaction in which hydrogen gas is generated from the water vapor and carbon monoxide gas that have not been used for the water gas reaction out of the water vapor supplied from the water vapor supply unit proceeds, and is supplied from the oxygen gas supply unit. Part of the carbon monoxide gas is burned by the oxygen gas.
 しかし、第1領域に供給される酸素ガス量が増えるとバイオマスの燃焼反応が主反応となって相対的に一酸化炭素の収量が増えて水素ガスの収量が低下する。また、第2領域に供給される酸素ガス量が増えると一酸化炭素の燃焼熱で水性ガスシフト反応が促進される。その結果、相対的に水素ガスの収量が増えて一酸化炭素の収量が低下する。従って、第1領域及び第2領域への酸素ガス供給量を調整することによって最終的に生成される一酸化炭素ガスとから水素ガスの成分比率が自在に調整できるようになる。 However, when the amount of oxygen gas supplied to the first region increases, the combustion reaction of biomass becomes the main reaction, and the yield of carbon monoxide relatively increases and the yield of hydrogen gas decreases. Further, when the amount of oxygen gas supplied to the second region increases, the water gas shift reaction is promoted by the combustion heat of carbon monoxide. As a result, the yield of hydrogen gas relatively increases and the yield of carbon monoxide decreases. Therefore, by adjusting the oxygen gas supply amount to the first region and the second region, the component ratio of the hydrogen gas can be freely adjusted from the carbon monoxide gas finally generated.
 さらに、第2領域に供給される酸素ガスが燃焼しても一酸化炭素が二酸化炭素となるだけなので、ガス量が増加することはない。よって、第1領域から第2領域にかけて流れるガスの流速が大きく変動することもない。従って、水性ガスシフト反応の反応機会を確保するために反応塔のガスの流れる長さを長くしたり、ガスの流速を下げるためガス通過断面積を大きくするような必要がない。 Furthermore, even if the oxygen gas supplied to the second region is combusted, the amount of gas does not increase because carbon monoxide is merely carbon dioxide. Therefore, the flow velocity of the gas flowing from the first region to the second region does not vary greatly. Therefore, there is no need to increase the gas flow length in the reaction tower in order to ensure a reaction opportunity for the water gas shift reaction, or to increase the gas passage cross-sectional area in order to reduce the gas flow rate.
 同第三の特徴構成は、同請求項3に記載した通り、上述の第一または第二の特徴構成に加えて、前記供給量調整機構は供給されるバイオマスの組成と供給量から各酸素ガス供給部への必要な酸素ガス供給量を演算し、酸素ガス供給量を調整するように構成されている点にある。 In the third feature configuration, as described in claim 3, in addition to the first or second feature configuration described above, the supply amount adjusting mechanism is configured to supply each oxygen gas from the composition and supply amount of biomass to be supplied. The oxygen gas supply amount to the supply unit is calculated to adjust the oxygen gas supply amount.
 第1領域へ供給されるバイオマスの組成と供給量、すなわち反応塔内に供給されるカーボンC、水素H、酸素O及びバイオマスに含まれる水分HOに基づいて、第1領域での水性ガス反応の程度、第2領域での水性ガスシフト反応の程度、その時の領域内の温度を所望の温度に維持するために必要な酸素ガス量が、供給量調整機構によって化学量論的に演算され、その結果に基づいて各酸素ガス供給部から供給すべき酸素ガスの供給量が調整されるので、外部熱源の利用を抑制しながらも所望の組成のガスが高効率で得られるようになる。 Based on the composition and supply amount of biomass supplied to the first region, that is, carbon C, hydrogen H, oxygen O and moisture H 2 O contained in the biomass supplied to the reaction tower, water gas in the first region The degree of reaction, the degree of water gas shift reaction in the second region, and the amount of oxygen gas necessary to maintain the temperature in the region at that time at the desired temperature are calculated stoichiometrically by the supply amount adjusting mechanism, Since the supply amount of oxygen gas to be supplied from each oxygen gas supply unit is adjusted based on the result, a gas having a desired composition can be obtained with high efficiency while suppressing the use of an external heat source.
 同第四の特徴構成は、同請求項4に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記供給量調整機構は前記反応塔から流出するガスの組成に基づいて酸素ガスの総供給量一定の下で各酸素ガス供給部からの酸素ガス供給量の比率を調整するように構成されている点にある。 In the fourth feature configuration, as described in claim 4, in addition to any one of the first to third feature configurations described above, the supply amount adjusting mechanism adjusts the composition of the gas flowing out of the reaction tower. On the basis of this, the ratio of the oxygen gas supply amount from each oxygen gas supply unit is adjusted under a constant total supply amount of oxygen gas.
 上述の構成によれば、反応塔から流出するガスの組成に基づいて、供給量調整機構により酸素ガスの総供給量一定の下で各酸素ガス供給部からの酸素ガス供給量の比率が調整されるため、バイオマスの組成に変動が生じても所望の組成の合成ガスが精度よく得られるように柔軟に対応できるようになる。 According to the above-described configuration, the ratio of the oxygen gas supply amount from each oxygen gas supply unit is adjusted under a constant total supply amount of oxygen gas by the supply amount adjustment mechanism based on the composition of the gas flowing out from the reaction tower. Therefore, even if the biomass composition fluctuates, it becomes possible to flexibly cope with the synthesis gas having a desired composition with high accuracy.
 同第五の特徴構成は、同請求項5に記載した通り、上述の第一から第三の何れかの特徴構成に加えて、前記供給量調整機構は、さらに水蒸気供給部からの水蒸気供給量を調整するように構成されている点にある。 In the fifth feature configuration, in addition to any one of the first to third feature configurations described above, the supply amount adjusting mechanism further includes a steam supply amount from a steam supply unit. It is in the point comprised so that it may adjust.
 上述の構成によれば、供給量調整機構によって各酸素ガス供給部からの酸素ガス供給量に合った水蒸気供給量に調整されるので、水性ガス反応及び水性ガスシフト反応の程度を調整でき、所望の組成の合成ガスを得やすくなる。 According to the above configuration, the supply amount adjustment mechanism adjusts the water vapor supply amount in accordance with the oxygen gas supply amount from each oxygen gas supply unit, so that the degree of the water gas reaction and the water gas shift reaction can be adjusted. It becomes easy to obtain a synthesis gas having a composition.
 同第六の特徴構成は、同請求項6に記載した通り、バイオマス供給部と、水蒸気供給部と、前記水蒸気供給部から供給される水蒸気により形成される噴流床で前記バイオマス供給部から供給されたバイオマスを流動させる第1領域と、前記第1領域で生成されたガスが流入する第2領域とが、ガスの流れ方向に沿って形成される反応塔と、前記反応塔の前記第1領域及び第2領域の夫々に酸素ガスを供給する複数の酸素ガス供給部と、生成したガスとバイオマスまたはバイオマス残渣を第1領域と第2領域との間を移動可能とする連通部と、第2領域から生成されたガスと残渣を排出する排気口とを備えている点にある。 As described in the sixth aspect, the sixth characteristic configuration is supplied from the biomass supply unit in a spouted bed formed by a biomass supply unit, a water vapor supply unit, and water vapor supplied from the water vapor supply unit. A reaction zone in which a first region for flowing the biomass and a second region into which the gas generated in the first region flows are formed along a gas flow direction; and the first region of the reaction tower A plurality of oxygen gas supply units that supply oxygen gas to each of the second regions, a communication unit that allows the generated gas and biomass or biomass residue to move between the first region and the second region, and a second It is in the point provided with the exhaust port which discharges | emits the gas produced | generated from the area | region and the residue.
 バイオマス供給部から供給されたバイオマスが水蒸気供給部から供給される水蒸気によって流動する噴流床が反応塔の第1領域に形成され、第1領域でバイオマスが流動しながらガス化され、連通部を経由して反応塔のガスの流れ方向下流側の第2領域に流れる。第1領域及び第2領域の夫々に設けられた酸素ガス供給部から酸素ガスが供給されることによりバイオマスまたはガスの一部が燃焼し、その燃焼熱が各領域でガス化の反応に必要な温度の確保に用いられると同時にそのガスの成分が変化する。供給量調整機構によって第1領域への酸素ガス供給量及び第2領域への酸素ガス供給量が個別に調整されるので、それぞれの領域での温度及びガスの成分が調整され、その結果、外部熱源の利用を抑制することができ、各領域での生成ガスの成分調整もできるようになる。反応塔に供給されたバイオマスはガス化されて軽量の灰になった後にガスとともに排気口から排気される。 A spouted bed in which the biomass supplied from the biomass supply part flows with the steam supplied from the steam supply part is formed in the first region of the reaction tower, and the biomass is gasified while flowing in the first region, via the communication part Then, it flows to the second region on the downstream side in the gas flow direction of the reaction tower. Biomass or part of the gas is combusted by supplying oxygen gas from the oxygen gas supply section provided in each of the first region and the second region, and the combustion heat is necessary for the gasification reaction in each region. At the same time it is used to ensure temperature, the gas component changes. Since the supply amount adjusting mechanism individually adjusts the oxygen gas supply amount to the first region and the oxygen gas supply amount to the second region, the temperature and the gas component in each region are adjusted, and as a result, the external The use of the heat source can be suppressed, and the components of the product gas can be adjusted in each region. The biomass supplied to the reaction tower is gasified into light ash and then exhausted from the exhaust port together with the gas.
 尚、主に水性ガス反応が行なわれる第1領域では、酸素ガス供給部から供給される酸素ガスによって主にカーボンからなるバイオマスの一部が燃焼して昇温され、その燃焼熱により吸熱反応である水性ガス反応、つまりカーボンと水蒸気から一酸化炭素ガスと水素ガスが生成される反応が促進される。第2領域では水蒸気供給部から供給された水蒸気のうち水性ガス反応に使われなかった水蒸気と一酸化炭素ガスとから水素ガスが生成される水性ガスシフト反応が進むとともに、酸素ガス供給部から供給される酸素ガスによって一部の一酸化炭素ガスが燃焼する。このように反応塔内に主に水性ガス反応が行なわれる第1領域と、主に水性ガスシフト反応が行なわれる第2領域をガス流れに沿って形成し、ガス化された軽量の灰を第2領域からガスとともに排出することでコンパクトなガス化炉となる。 In the first region where the water gas reaction is mainly performed, a part of biomass mainly composed of carbon is burned and heated by the oxygen gas supplied from the oxygen gas supply unit, and the endothermic reaction is caused by the combustion heat. A certain water gas reaction, that is, a reaction in which carbon monoxide gas and hydrogen gas are generated from carbon and water vapor is promoted. In the second region, the water gas shift reaction in which hydrogen gas is generated from the water vapor and carbon monoxide gas that have not been used for the water gas reaction out of the water vapor supplied from the water vapor supply unit proceeds, and is supplied from the oxygen gas supply unit. Part of the carbon monoxide gas is burned by the oxygen gas. Thus, the first region where the water gas reaction is mainly performed in the reaction tower and the second region where the water gas shift reaction is mainly performed are formed along the gas flow, and the gasified lightweight ash is secondly formed. By discharging together with gas from the area, it becomes a compact gasification furnace.
 同第七の特徴構成は、同請求項7に記載した通り、上述の第一から第六の何れかの特徴構成に加えて、前記水蒸気供給部は前記バイオマス供給部より上流側に配置されている点にある。 In the seventh feature configuration, in addition to any one of the first to sixth feature configurations described above, the water vapor supply unit is arranged upstream of the biomass supply unit. There is in point.
 上述の構成によれば、反応塔に投入され下方に落下するバイオマスに対して、水蒸気供給部から供給される水蒸気の上昇流が作用し、バイオマスが底部に落下することを抑制して効果的にバイオマスの噴流床が形成されるようになる。 According to the above-described configuration, the upward flow of water vapor supplied from the water vapor supply unit acts on the biomass that is input to the reaction tower and falls downward, and effectively suppresses the biomass from falling to the bottom. A spouted bed of biomass is formed.
 同第八の特徴構成は、同請求項8に記載した通り、上述の第一から第七の何れかの特徴構成に加えて、前記酸素ガス供給部のうち前記第1領域に対応する酸素ガス供給部は、少なくとも前記バイオマス供給部より上流側に配置されている点にある。 The eighth feature configuration is the oxygen gas corresponding to the first region in the oxygen gas supply section, in addition to any one of the first to seventh feature configurations described above. A supply part exists in the point arrange | positioned at least upstream from the said biomass supply part.
 主に第1領域で発生するバイオマスと水蒸気との間に生じる水性ガス反応は吸熱反応であり、当該反応によって温度が低下すると水性ガス反応が抑制される。しかし、第1領域に対応する酸素ガス供給部が少なくともバイオマス供給部より上流側に配置されていれば、バイオマスと酸素ガスとの接触機会が増して燃焼反応が起きやすくなる。それにより、反応塔内部の熱源として燃焼反応が利用されることになり、外部熱源の利用を効果的に抑制することができるようになる。 The water gas reaction that occurs mainly between biomass and water vapor generated in the first region is an endothermic reaction, and the water gas reaction is suppressed when the temperature decreases due to the reaction. However, if the oxygen gas supply unit corresponding to the first region is disposed at least upstream of the biomass supply unit, the opportunity for contact between the biomass and oxygen gas increases, and the combustion reaction is likely to occur. Thereby, the combustion reaction is used as a heat source inside the reaction tower, and the use of the external heat source can be effectively suppressed.
 同第九の特徴構成は、同請求項9に記載した通り、上述の第八の特徴構成に加えて、前記酸素ガス供給部のうち前記第1領域に対応する酸素ガス供給部は、前記バイオマス供給部のさらに下流側に配置されている点にある。 In the ninth feature configuration, in addition to the eighth feature configuration described above, the oxygen gas supply unit corresponding to the first region of the oxygen gas supply unit may include the biomass. It exists in the point arrange | positioned further downstream of the supply part.
 水性ガス反応で生じた一酸化炭素がバイオマス供給部の下流側から供給された酸素ガスによって燃焼する。そのため、バイオマス供給部の下流側での温度低下が抑制され、水性ガス反応がさらに促進されるようになり、生成されたガスを十分な温度で第2領域に流下することができるようになる。 Carbon monoxide generated by the water gas reaction is combusted by oxygen gas supplied from the downstream side of the biomass supply unit. Therefore, a temperature decrease on the downstream side of the biomass supply unit is suppressed, the water gas reaction is further promoted, and the generated gas can flow down to the second region at a sufficient temperature.
 同第十の特徴構成は、同請求項10に記載した通り、上述の第七から第九の何れかの特徴構成に加えて、前記水蒸気供給部は何れの酸素ガス供給部より上流側に配置されている点にある。 In the tenth feature configuration, as described in claim 10, in addition to any of the seventh to ninth feature configurations described above, the water vapor supply unit is disposed upstream of any oxygen gas supply unit. It is in the point.
 上述の構成によれば、噴流床が形成されたバイオマスに酸素ガスが供給されるので、バイオマスと水蒸気や酸素ガスとの接触機会が増して、HとCOのトータル量を増加させやすくなる。 According to the above-described configuration, oxygen gas is supplied to the biomass on which the spouted bed is formed. Therefore, the contact opportunity between the biomass and water vapor or oxygen gas increases, and the total amount of H 2 and CO can be easily increased.
 同第十一の特徴構成は、同請求項11に記載した通り、上述の第一から第十の何れかの特徴構成に加えて、前記第2領域のガス流速を前記第1領域のガス流速よりも低下させるガス流速調整部を備えている点にある。 In the eleventh feature configuration, as described in claim 11, in addition to any of the first to tenth feature configurations described above, the gas flow rate in the second region is changed to the gas flow rate in the first region. It is in the point provided with the gas flow rate adjustment part which makes it fall rather.
 上述の構成によれば、第2領域のガス流速が第1領域のガス流速よりも遅くなり、第1領域でガス化していない比重の大きな未反応のバイオマスは第2領域に到達しても第2領域に留まることはできず第1領域に戻される。第1領域に戻されたバイオマスは、再度水性ガス反応や燃焼反応の機会を得ることになり、比重の小さな灰になるまで第1領域に留まり続ける。また、第2領域での水性ガスシフト反応に要する時間が稼げるので、反応塔のガスの流れ方向サイズを小型にでき、結果としてバイオマスの水性ガス反応への変換率も向上する。さらに、比重の小さい残渣は第2領域より早いガス流速により第1領域に留まることができず、第2領域へ移動し排気口から排出される。 According to the configuration described above, the gas flow rate in the second region becomes slower than the gas flow rate in the first region, and unreacted biomass having a large specific gravity that has not been gasified in the first region reaches the second region. It is not possible to stay in the second area and it is returned to the first area. The biomass returned to the first region will again have the opportunity for water gas reaction and combustion reaction, and will continue to remain in the first region until it becomes ash with a small specific gravity. Moreover, since the time required for the water gas shift reaction in the second region can be obtained, the gas flow direction size of the reaction tower can be reduced, and as a result, the conversion rate of biomass into the water gas reaction is also improved. Furthermore, the residue having a small specific gravity cannot remain in the first region due to the gas flow rate faster than that in the second region, moves to the second region, and is discharged from the exhaust port.
 同第十二の特徴構成は、同請求項12に記載した通り、上述の第十一の特徴構成に加えて、前記ガス流速調整部は、内部のガス流に直交する平均断面積が前記第1領域より前記第2領域の方が大きくなるように形成された前記反応塔の形状により具現化されている点にある。 According to the twelfth characteristic configuration, in addition to the eleventh characteristic configuration described above, the gas flow velocity adjusting unit has an average cross-sectional area perpendicular to an internal gas flow in the first characteristic configuration. The second region is embodied by the shape of the reaction tower formed so as to be larger than the first region.
 同第十三の特徴構成は、同請求項13に記載した通り、上述の第十一または第十二の特徴構成に加えて、前記第1領域のガス流速はバイオマスが浮遊する流速に設定され、前記第2領域のガス流速はバイオマスが第1領域に落下する流速に設定されている点にある。 In the thirteenth feature configuration, in addition to the eleventh or twelfth feature configuration described above, the gas flow rate in the first region is set to a flow rate at which biomass floats. The gas flow rate in the second region is set to a flow rate at which biomass falls into the first region.
 上述の構成によれば、第1領域でバイオマスの噴流床が形成されて良好に水性ガス反応が促進される。水性ガス反応が不十分で未反応の状態のバイオマスが第2領域に到達しても留まることはできず第1領域に落下し、再度水性ガス反応や燃焼反応の機会が得られる。バイオマスは灰になると、ガスと同伴して第2領域に流下して排気口から排出される。従って、第1領域でバイオマスからガスへ高い変換率で変換されるようになる。 According to the above configuration, the spouted bed of biomass is formed in the first region, and the water gas reaction is favorably promoted. Even if the biomass in an unreacted and unreacted state of the water gas reaction reaches the second region, it cannot stay and falls to the first region, and an opportunity for a water gas reaction or a combustion reaction is obtained again. When the biomass becomes ash, it flows along with the gas into the second region and is discharged from the exhaust port. Therefore, it is converted from biomass to gas at a high conversion rate in the first region.
 同第十四の特徴構成は、同請求項14に記載した通り、上述の第六の特徴構成に加えて、前記反応塔から流出するガスの組成に基づいて各酸素ガス供給部からの酸素ガス供給量を調整する供給量調整機構を備えている点にある。 According to the fourteenth feature configuration, as described in claim 14, in addition to the sixth feature configuration described above, the oxygen gas from each oxygen gas supply unit is based on the composition of the gas flowing out from the reaction tower. The supply amount adjusting mechanism for adjusting the supply amount is provided.
 第1領域へ供給されるバイオマスの組成と供給量、すなわち反応塔内に供給されるカーボンC、水素H、酸素O及びバイオマスに含まれる水分HOに基づいて、第1領域での水性ガス反応の程度、第2領域での水性ガスシフト反応の程度、その時の領域内の温度を所望の温度に維持するために必要な酸素ガス量が、供給量調整機構によって化学量論的に演算され、その結果に基づいて各酸素ガス供給部から供給すべき酸素ガスの供給量が調整されるので、外部熱源の利用を抑制しながらも所望の組成のガスが高効率で得られるようになる。 Based on the composition and supply amount of biomass supplied to the first region, that is, carbon C, hydrogen H, oxygen O and moisture H 2 O contained in the biomass supplied to the reaction tower, water gas in the first region The degree of reaction, the degree of water gas shift reaction in the second region, and the amount of oxygen gas necessary to maintain the temperature in the region at that time at the desired temperature are calculated stoichiometrically by the supply amount adjusting mechanism, Since the supply amount of oxygen gas to be supplied from each oxygen gas supply unit is adjusted based on the result, a gas having a desired composition can be obtained with high efficiency while suppressing the use of an external heat source.
 同第十五の特徴構成は、同請求項15に記載した通り、上述の第六または第十四の特徴構成に加えて、前記反応塔から流出するガスの組成に基づいて酸素ガスの総供給量一定の下で各酸素ガス供給部からの酸素ガス供給量の比率を調整する供給量調整機構を備えている点にある。 The fifteenth feature configuration is the total supply of oxygen gas based on the composition of the gas flowing out from the reaction tower in addition to the sixth or fourteenth feature configuration described above, as described in claim 15. A supply amount adjusting mechanism that adjusts the ratio of the oxygen gas supply amount from each oxygen gas supply unit under a constant amount is provided.
 上述の構成によれば、反応塔から流出するガスの組成に基づいて、酸素ガスの総供給量一定の下で供給量調整機構により各酸素ガス供給部からの酸素ガス供給量の比率が調整されるため、バイオマスの組成等に変動が生じても所望の組成の合成ガスが精度よく得られるように柔軟に対応できるようになる。 According to the above-described configuration, the ratio of the oxygen gas supply amount from each oxygen gas supply unit is adjusted by the supply amount adjustment mechanism under a constant total supply amount of oxygen gas based on the composition of the gas flowing out from the reaction tower. Therefore, even if the biomass composition or the like varies, the synthesis gas having a desired composition can be flexibly handled so as to be obtained with high accuracy.
 本発明によるガス化炉の運転方法の第一の特徴構成は、同請求項16に記載した通り、上述の第一、第二、第六、第十四または第十五の何れかの特徴構成を備えたガス化炉の運転方法であって、前記反応塔から流出するガスの組成を測定し、測定されたガス組成が目標ガス組成になるように、前記酸素ガス供給部から前記第1領域及び第2領域の夫々に供給する酸素ガスの供給量を調整する点にある。 The first characteristic configuration of the operation method of the gasifier according to the present invention is any one of the above-described first, second, sixth, fourteenth or fifteenth characteristic configurations as described in claim 16. A gasification furnace operating method comprising the steps of: measuring a composition of gas flowing out from the reaction tower; and measuring the first gas from the oxygen gas supply unit so that the measured gas composition becomes a target gas composition. In addition, the supply amount of oxygen gas supplied to each of the second regions is adjusted.
 同第二の特徴構成は、同請求項17に記載した通り、上述の第一の特徴構成に加えて、上述の第一、第二、第六、第十四または第十五の何れかの特徴構成を備えたガス化炉の運転方法であって、測定されたガス組成が目標ガス組成になるように、前記酸素ガス供給部から供給される酸素ガスの総量を一定に維持しながら、前記第1領域及び第2領域の夫々に供給する酸素ガスの供給量の比率を調整する点にある。 In addition to the first characteristic configuration described above, the second characteristic configuration is any one of the first, second, sixth, fourteenth or fifteenth described above. An operation method of a gasifier having a characteristic configuration, wherein the total amount of oxygen gas supplied from the oxygen gas supply unit is maintained constant so that the measured gas composition becomes a target gas composition, This is in that the ratio of the supply amount of oxygen gas supplied to each of the first region and the second region is adjusted.
 本発明によるバイオマスガス化処理方法の第一の特徴構成は、同請求項18に記載した通り、反応塔の上流側でバイオマスに水蒸気を供給して噴流床を形成し、主に水性ガス反応を促す水性ガス反応促進工程と、前記水性ガス反応工程で生成されたガスに対して、前記反応塔の下流側で主に水性ガスシフト反応を促す水性ガスシフト反応促進工程と、前記水性ガス反応促進工程及び水性ガスシフト反応促進工程の夫々に酸素ガスを供給するとともに、夫々に供給する酸素ガスの比率を調整することにより、反応塔から流出するガスの組成を調整する酸素ガス供給工程と、を含む点にある。 The first characteristic configuration of the biomass gasification method according to the present invention is that, as described in claim 18, water vapor is supplied to the biomass on the upstream side of the reaction tower to form a spouted bed, and the water gas reaction is mainly performed. An accelerating water gas reaction accelerating step, a water gas shift reaction accelerating step mainly urging a water gas shift reaction downstream of the reaction tower with respect to the gas produced in the water gas reaction step, the water gas reaction accelerating step, and The oxygen gas supply step of adjusting the composition of the gas flowing out from the reaction tower by adjusting the ratio of the oxygen gas supplied to each of the water gas shift reaction promotion step and adjusting the ratio of the oxygen gas supplied to each of the water gas shift reaction promotion step is there.
 同第二の特徴構成は、同請求項19に記載した通り、上述の第一の特徴構成に加えて、前記酸素ガス供給工程は、前記水性ガス反応促進工程及び水性ガスシフト反応促進工程の夫々に供給する酸素ガスの総量を一定に維持しながら酸素ガス供給量の比率を調整して、反応塔から流出するガスの組成を調整する工程である点にある。 In the second feature configuration, as described in claim 19, in addition to the first feature configuration described above, the oxygen gas supply step is performed in each of the water gas reaction promotion step and the water gas shift reaction promotion step. This is a step of adjusting the composition of the gas flowing out from the reaction tower by adjusting the ratio of the oxygen gas supply amount while keeping the total amount of oxygen gas to be supplied constant.
 以上説明した通り、本発明によれば、外部熱源の利用を抑制しつつ所望の比率の合成ガスを得ることができる自由度の高いガス化炉、ガス化炉の運転方法、及びバイオマスガス化処理方法を提供することができるようになった。 As described above, according to the present invention, a highly flexible gasifier, a gasifier operating method, and a biomass gasification process that can obtain a desired ratio of synthesis gas while suppressing the use of an external heat source. It became possible to provide a method.
図1は本発明によるガス化炉の一部切欠き説明図である。FIG. 1 is a partially cutaway explanatory view of a gasification furnace according to the present invention. 図2(a)は本発明によるガス化炉の要部説明図、図2(b)は図2(a)のA-A線断面図である。FIG. 2 (a) is an explanatory view of the main part of the gasification furnace according to the present invention, and FIG. 2 (b) is a sectional view taken along the line AA of FIG. 図3は供給量制御機構の説明図である。FIG. 3 is an explanatory diagram of the supply amount control mechanism. 図4(a),(b),(c)はバイオマスのガス化反応の説明図、(d)は実験結果を示す表である。4A, 4B, and 4C are explanatory diagrams of biomass gasification reactions, and FIG. 4D is a table showing experimental results. 図5(a),(b),(c),(d)は別実施形態を示す本発明によるガス化炉の要部説明図である。5 (a), (b), (c), and (d) are explanatory views of main parts of a gasification furnace according to the present invention showing another embodiment. 図6は本発明によるガス化炉が組み込まれたバイオマスの液体燃料化システムの説明図である。FIG. 6 is an explanatory view of a biomass liquid fuel conversion system incorporating a gasification furnace according to the present invention. 図7は本発明によるガス化炉が組み込まれたエネルギー生成システムの説明図である。FIG. 7 is an explanatory diagram of an energy generation system incorporating a gasification furnace according to the present invention.
 以下、本発明によるガス化炉、ガス化炉の運転方法、及びバイオマスガス化処理方法の実施形態を説明する。
 図6に示すように、本発明によるガス化炉10は、バイオマスを原料にして生成される合成ガスから液体燃料を生成する液体燃料化システム100に組み込まれることが可能なガス化炉である。尚、当該ガス化炉10で生成される合成ガスは、発電や他の熱源としても利用可能である。
Hereinafter, embodiments of the gasification furnace, the operation method of the gasification furnace, and the biomass gasification processing method according to the present invention will be described.
As shown in FIG. 6, a gasification furnace 10 according to the present invention is a gasification furnace that can be incorporated into a liquid fuel conversion system 100 that generates liquid fuel from synthesis gas generated from biomass as a raw material. In addition, the synthesis gas produced | generated in the said gasification furnace 10 can be utilized also as an electric power generation or another heat source.
 液体燃料化システム100は、バイオマスから液体燃料の原料となる合成ガスを生成するガス化炉10、生成された合成ガスから灰分等の固形物、硫化水素ガスや塩化水素ガス、アンモニア等を除去するサイクロン、スクラバー、活性炭吸着塔等からなるガス精製装置204を経て精製された合成ガスから燃料を合成するFT合成装置104を備えている。 The liquid fuel conversion system 100 removes solids such as ash, hydrogen sulfide gas, hydrogen chloride gas, ammonia, and the like from the gasification furnace 10 that generates synthesis gas that is a raw material for liquid fuel from biomass. An FT synthesis device 104 is provided that synthesizes fuel from synthesis gas purified through a gas purification device 204 including a cyclone, a scrubber, an activated carbon adsorption tower, and the like.
 ガス化炉10は、炉温が500℃以上1000℃以下の高温下で、バイオマスを水蒸気或いは過熱水蒸気で還元加熱して合成ガス(H、CO)を生成する反応塔を備えている。反応塔で得られた合成ガスが後段のガス精製装置204で精製され、不純物が除去された後にヒータ及び圧縮機を介して高温に加熱及び高圧に加圧されてFT合成装置104に投入される。 The gasification furnace 10 includes a reaction tower that generates synthesis gas (H 2 , CO) by reducing and heating biomass with steam or superheated steam at a high temperature of 500 ° C. or more and 1000 ° C. or less. The synthesis gas obtained in the reaction tower is purified by the gas purification device 204 in the subsequent stage, and after impurities are removed, it is heated to a high temperature and pressurized to a high pressure via a heater and a compressor, and then is introduced into the FT synthesis device 104. .
 FT合成とは、Fischer-Tropsch合成の略で、一酸化炭素と水素から触媒反応を用いて液体炭化水素を合成する一連の合成反応プロセスを指す。FT合成装置104に投入された合成ガスは、触媒が分散された溶媒中に投入されて所望の炭化水素に合成される。触媒の種類や性状により変化するが、例えば、メタノールを合成する場合には、水素と一酸化炭素の比率H/COは約2であることが好ましい場合もある。また本実施形態で軽油を合成する場合には水素と一酸化炭素の比率H/COは約1であることが好ましい。 FT synthesis is an abbreviation for Fischer-Tropsch synthesis and refers to a series of synthetic reaction processes in which liquid hydrocarbons are synthesized from carbon monoxide and hydrogen using a catalytic reaction. The synthesis gas charged into the FT synthesizer 104 is charged into a solvent in which the catalyst is dispersed and synthesized into a desired hydrocarbon. For example, in the case of synthesizing methanol, it may be preferable that the ratio of hydrogen to carbon monoxide H 2 / CO is about 2 although it varies depending on the type and properties of the catalyst. In addition, when synthesizing light oil in this embodiment, the ratio H 2 / CO of hydrogen to carbon monoxide is preferably about 1.
 つまり、FT合成で所望の炭化水素を効率的に得るために、水素と一酸化炭素の比率H/COが調整されていることが好ましく、この比率は同じ種類の炭化水素を得る場合でもFT合成で使用される触媒の種類にも依存する。 That is, in order to efficiently obtain a desired hydrocarbon in the FT synthesis, it is preferable that the ratio H 2 / CO of hydrogen and carbon monoxide is adjusted, and this ratio is FT even when the same kind of hydrocarbon is obtained. It also depends on the type of catalyst used in the synthesis.
 従って、様々な比率H/COの合成ガスが得られる汎用性の高いガス化炉10が望まれ、また合成ガスの収率が高くコンパクトなガス化炉10が望まれている。 Accordingly, a highly versatile gasification furnace 10 capable of obtaining synthesis gas with various ratios H 2 / CO is desired, and a compact gasification furnace 10 with a high synthesis gas yield is desired.
 図1には、本発明によるガス化炉10の一例が示されている。
 ガス化炉10は、フレームで支持され、耐食性の金属で構成された縦形円筒形状の反応塔4と、反応塔4にバイオマスを供給するバイオマス供給装置2と、水性ガス反応を生起するための水蒸気を反応塔4に供給する水蒸気供給部3と、反応塔4を所望の温度に加熱するとともに合成ガスである水素と一酸化炭素の比率H/COを調整する酸素ガス供給部5(5a,5b,5c)とが設けられている。
FIG. 1 shows an example of a gasification furnace 10 according to the present invention.
The gasification furnace 10 is supported by a frame and is a vertical cylindrical reaction tower 4 made of a corrosion-resistant metal, a biomass supply device 2 for supplying biomass to the reaction tower 4, and water vapor for causing a water gas reaction Is supplied to the reaction tower 4, and the oxygen gas supply section 5 (5 a, 5 a, 5) is used to heat the reaction tower 4 to a desired temperature and adjust the ratio H 2 / CO of hydrogen and carbon monoxide as synthesis gas. 5b, 5c).
 例えば高周波加熱等により常圧で約500℃程度に加熱された水蒸気とバイオマスとが反応塔4の内部で水性ガス反応や、水性ガスシフト反応して、反応塔4上部の排気口40から排気され、排気管42を経て上述したガス精製装置204(図6参照)に導かれる。水性ガス反応は主に反応塔4の下部で、水性ガスシフト反応は主に反応塔4を上昇する過程で生じる。ガス精製装置204(図6参照)には誘引送風機が設けられ、反応塔4内部が負圧に維持され、反応塔4内で生成されたガスがガス精製装置204(図6参照)に誘引されて精製される。 For example, water vapor and biomass heated to about 500 ° C. at normal pressure by high-frequency heating or the like undergo a water gas reaction or a water gas shift reaction inside the reaction tower 4 and are exhausted from the exhaust port 40 at the top of the reaction tower 4. The gas is led to the gas purification device 204 (see FIG. 6) through the exhaust pipe. The water gas reaction mainly occurs in the lower part of the reaction tower 4, and the water gas shift reaction mainly occurs in the process of raising the reaction tower 4. The gas purification apparatus 204 (see FIG. 6) is provided with an induction fan, the inside of the reaction tower 4 is maintained at a negative pressure, and the gas generated in the reaction tower 4 is attracted to the gas purification apparatus 204 (see FIG. 6). And purified.
 バイオマス供給装置2は一端が反応塔4の下方にフランジ接続された筒状のケーシング20と筒状のケーシング20に収容されたスクリュー羽根21とを備えたスクリューコンベアで構成され、筒状のケーシング20(以下、単に「ケーシング」と記す。)の他端側にバイオマスの投入口22が設けられている。投入口22には略鉛直姿勢の搬送路70が接続され、その搬送路70の上端に定量供給機構71を備えたホッパー7が設けられている。 The biomass supply device 2 is configured by a screw conveyor including a cylindrical casing 20 having one end flange-connected to the lower side of the reaction tower 4 and screw blades 21 accommodated in the cylindrical casing 20. (Hereinafter simply referred to as “casing”) is provided with a biomass inlet 22 on the other end side. A conveyance path 70 having a substantially vertical posture is connected to the insertion port 22, and a hopper 7 having a quantitative supply mechanism 71 is provided at the upper end of the conveyance path 70.
 原料となるバイオマスとして稲わら、もみ殻、麦わら、トウモロコシの茎葉等の乾燥系のバイオマスが好適に用いられる。数mm程度に破砕されたこれらの乾燥系のバイオマスがホッパー7に充填され、搬送路70を介して投入口22に搬送される。投入口22に投入されたバイオマスはスクリュー羽根21で圧密に搬送されて反応塔4に投入される。つまり、ケーシング20内に充填され圧密化されたバイオマスで外気と反応塔4内部との間がシールされる。 Dry biomass such as rice straw, rice husk, wheat straw, and corn stover is preferably used as the raw material biomass. These dry biomass crushed to about several mm is filled in the hopper 7 and conveyed to the inlet 22 through the conveyance path 70. The biomass charged into the charging port 22 is conveyed compactly by the screw blades 21 and charged into the reaction tower 4. That is, the space between the outside air and the inside of the reaction tower 4 is sealed with the biomass filled in the casing 20 and consolidated.
 バイオマス供給装置2の下方に第1酸素ガス供給部5(5a)が設けられ、第1酸素ガス供給部5(5a)の下方に水蒸気供給部3が設けられている。バイオマス供給装置2の上方にはさらに他の複数の酸素ガス供給部5(5b,5c)が上下方向の位置を異ならせて設けられている。 A first oxygen gas supply unit 5 (5a) is provided below the biomass supply device 2, and a water vapor supply unit 3 is provided below the first oxygen gas supply unit 5 (5a). A plurality of other oxygen gas supply sections 5 (5b, 5c) are provided above the biomass supply apparatus 2 at different vertical positions.
 反応塔4には、塔内温度を維持するために反応塔4を囲むように断熱壁Wが設置されている。断熱壁Wの内側、特に反応塔4の下方には反応塔4を所望の温度に維持するために複数のヒータHが埋め込まれている(図2(b)参照)。 In the reaction tower 4, a heat insulating wall W is provided so as to surround the reaction tower 4 in order to maintain the temperature in the tower. A plurality of heaters H are embedded inside the heat insulating wall W, particularly below the reaction tower 4 in order to maintain the reaction tower 4 at a desired temperature (see FIG. 2B).
 図2(a)に示すように、バイオマス供給部2から反応塔4の内部に供給されたバイオマスBは水蒸気供給部3の先端部に設けられたノズル30から噴射される水蒸気により反応塔4の内部で流動する噴流床8が形成される。 As shown in FIG. 2 (a), the biomass B supplied from the biomass supply unit 2 to the inside of the reaction tower 4 is generated by the steam injected from the nozzle 30 provided at the tip of the water vapor supply unit 3. A spouted bed 8 that flows inside is formed.
 ノズル30の開口30aが反応塔4の底部41に向かって噴射され、底部41に向かって落下、または落下中のバイオマスを巻き上げながら上方に吹き上げる。反応塔4の下部の噴流床8が形成される領域が主に水性ガス反応が行なわれる第1領域R1となる。更に第1領域の上方に主に水性ガスシフト反応が行なわれる第2領域R2(図1参照)が形成される。 The opening 30a of the nozzle 30 is sprayed toward the bottom 41 of the reaction tower 4, and is dropped toward the bottom 41 or blown upward while winding up the falling biomass. The region where the spouted bed 8 at the lower part of the reaction tower 4 is formed is a first region R1 where water gas reaction is mainly performed. Further, a second region R2 (see FIG. 1) in which a water gas shift reaction is mainly performed is formed above the first region.
 水性ガス反応とは、次式に示すように、500℃以上の高温環境下でバイオマスである固体炭素Cと水蒸気HOとから一酸化炭素COと水素Hが生成される吸熱反応をいう。
C+HO → CO+H
The water gas reaction is an endothermic reaction in which carbon monoxide CO and hydrogen H 2 are generated from solid carbon C and steam H 2 O as biomass in a high temperature environment of 500 ° C. or higher as shown in the following formula. .
C + H 2 O → CO + H 2
 水性ガスシフト反応とは、次式に示すように、800℃以上の高温環境下で一酸化炭素COと水蒸気HOとから二酸化炭素COと水素Hが生成される発熱反応をいう。
CO+HO → CO+H
The water gas shift reaction is an exothermic reaction in which carbon dioxide CO 2 and hydrogen H 2 are generated from carbon monoxide CO and water vapor H 2 O in a high temperature environment of 800 ° C. or higher as shown in the following equation.
CO + H 2 O → CO 2 + H 2
 吸熱反応である水性ガス反応が500℃以上の高温環境下で促進されるために加熱源が必要になる。そのため、上述したヒータH及び酸素ガス供給部5(5a)が設けられている。 Since a water gas reaction that is an endothermic reaction is promoted in a high temperature environment of 500 ° C. or higher, a heating source is required. Therefore, the heater H and the oxygen gas supply unit 5 (5a) described above are provided.
 図2(b)に示すように、反応塔4が断熱壁Wで囲まれた状態でヒータHを通電することにより、反応塔4の内部が500℃以上に加熱される。 2B, when the heater H is energized while the reaction tower 4 is surrounded by the heat insulating wall W, the inside of the reaction tower 4 is heated to 500 ° C. or higher.
 図2(a)に戻り、その後、第1酸素ガス供給部5(5a)から供給される酸素ガスにより第1領域R1で流動しているバイオマスBの一部が燃焼して二酸化炭素になる発熱反応によって高温の環境温度が維持されるようになる。図2(a)で黒く塗りつぶされた粒子が燃焼したバイオマスである。つまり、ヒータHからの外部加熱やバイオマスBの一部の燃焼による内部加熱により温度が維持される。
C+O → CO 
C+1/2・O → CO 
Returning to FIG. 2A, after that, part of the biomass B flowing in the first region R1 is burned by the oxygen gas supplied from the first oxygen gas supply unit 5 (5a) to become carbon dioxide. A high ambient temperature is maintained by the reaction. It is the biomass which the particle | grains painted black in FIG. 2 (a) burned. That is, the temperature is maintained by external heating from the heater H or internal heating by partial combustion of the biomass B.
C + O 2 → CO 2
C + 1/2 · O 2 → CO
 第1領域R1のうちバイオマス供給部2の上方にも第2酸素ガス供給部5(5b)が設けられ、第2酸素ガス供給部5(5b)から供給される酸素によってもバイオマスが部分燃焼して高温の環境温度が維持される。もちろんこれらの酸素ガス供給部5から供給される酸素ガス量は安定した水性ガス反応が行なわれるために十分な量でありバイオマスの殆どが燃焼するような量ではない。 A second oxygen gas supply unit 5 (5b) is also provided above the biomass supply unit 2 in the first region R1, and the biomass is partially burned by oxygen supplied from the second oxygen gas supply unit 5 (5b). The high ambient temperature is maintained. Of course, the amount of oxygen gas supplied from these oxygen gas supply sections 5 is sufficient for a stable water gas reaction to occur, and is not such an amount that most of the biomass burns.
 バイオマス供給装置2から供給されたバイオマスBは加熱されることなく反応塔4に供給され、反応塔4内の下方へ落下するので、噴流床の最下部近傍の温度が最も低くなる。そのため、この近傍に第1酸素ガス供給部5(5a)が配置されることが重要となる。また、第1領域内のバイオマス供給装置2の上方でも十分な環境温度を維持するため第2酸素ガス供給部5(5b)の位置も重要となる。何故なら、基本的にヒータHは立上げ時の熱源として用いられ、その後は酸素ガスとバイオマスBの燃焼反応で環境温度が維持されるように構成されているからである。 Biomass B supplied from the biomass supply device 2 is supplied to the reaction tower 4 without being heated and falls downward in the reaction tower 4, so that the temperature near the lowermost part of the spouted bed is lowest. Therefore, it is important that the first oxygen gas supply unit 5 (5a) is disposed in the vicinity thereof. Further, the position of the second oxygen gas supply unit 5 (5b) is also important in order to maintain a sufficient environmental temperature even above the biomass supply device 2 in the first region. This is because the heater H is basically used as a heat source at start-up, and thereafter, the environmental temperature is maintained by the combustion reaction of oxygen gas and biomass B.
 つまり、水蒸気供給部3はガスの流れ方向に沿ってバイオマス供給装置2より上流側(図2では下方)に配置されている。酸素ガス供給部5のうち第1領域R1に対応する酸素ガス供給部5aは、少なくともバイオマス供給装置2より上流側に配置されている。 That is, the water vapor supply unit 3 is arranged upstream (downward in FIG. 2) from the biomass supply device 2 along the gas flow direction. The oxygen gas supply unit 5 a corresponding to the first region R <b> 1 in the oxygen gas supply unit 5 is disposed at least upstream of the biomass supply device 2.
 さらに、酸素ガス供給部5のうち第1領域R1に対応する酸素ガス供給部5bは、バイオマス供給部2の下流側にさらに配置され、水蒸気供給部3は何れの酸素ガス供給部5より上流側に配置されている。 Furthermore, the oxygen gas supply unit 5 b corresponding to the first region R <b> 1 in the oxygen gas supply unit 5 is further arranged on the downstream side of the biomass supply unit 2, and the water vapor supply unit 3 is upstream of any oxygen gas supply unit 5. Is arranged.
 第1領域R1でバイオマスから生成された合成ガス及びチャーや灰はそのガス流れ方向下流側の第2領域R2に上昇して上述した水性ガスシフト反応が促進される。第2領域R2の入口部に先端が下方を向くように第3酸素ガス供給部5(5c)が配置され、第3酸素ガス供給部5(5c)から供給される酸素ガスにより水性ガス反応で生成された一酸化炭素の一部が燃焼する。
CO+1/2・O → CO 
The synthesis gas, char and ash generated from the biomass in the first region R1 rise to the second region R2 on the downstream side in the gas flow direction, and the water gas shift reaction described above is promoted. The third oxygen gas supply unit 5 (5c) is disposed at the inlet of the second region R2 such that the tip is directed downward, and the oxygen gas supplied from the third oxygen gas supply unit 5 (5c) is used for water gas reaction. A part of the produced carbon monoxide burns.
CO + 1/2 · O 2 → CO 2
 第2領域で主に行われる水性ガスシフト反応は発熱反応であるため、第3酸素ガス供給部5(5c)から供給される酸素ガスは環境温度の維持よりもむしろ水性ガス反応で生成される一酸化炭素と水素の比率の調整の意義が大きい。水素と一酸化炭素の比率H/COは、一酸化炭素の燃焼量が増せばそれだけ水素ガスの比率が大きくなるためである。 Since the water gas shift reaction mainly performed in the second region is an exothermic reaction, the oxygen gas supplied from the third oxygen gas supply unit 5 (5c) is generated by the water gas reaction rather than maintaining the environmental temperature. The significance of adjusting the ratio of carbon oxide and hydrogen is significant. The ratio H 2 / CO between hydrogen and carbon monoxide is because the ratio of hydrogen gas increases as the combustion amount of carbon monoxide increases.
 尚、水性ガスシフト反応に必要な水蒸気は水蒸気供給部3から供給され、第1領域で水性ガス反応に寄与しなかった水蒸気が消費される。また、第3酸素ガス供給部5(5c)から供給される酸素ガスにより一酸化炭素は燃焼して二酸化炭素になるだけであるため、反応塔4を上昇するガスの流量は大きく変化することが無い。 In addition, the water vapor | steam required for a water gas shift reaction is supplied from the water vapor | steam supply part 3, and the water vapor | steam which did not contribute to the water gas reaction in the 1st area | region is consumed. Further, since the carbon monoxide is merely burned into carbon dioxide by the oxygen gas supplied from the third oxygen gas supply unit 5 (5c), the flow rate of the gas rising up the reaction tower 4 may change greatly. No.
 第1領域で生成されたガスとバイオマスまたはチャーや灰は第1領域R1と第2領域R2との間で連通部43を介して移動可能に構成されている。 The gas and biomass or char and ash generated in the first region are configured to be movable between the first region R1 and the second region R2 via the communication portion 43.
 上述したように水蒸気供給部3から供給される水蒸気により水性ガス反応と水性ガスシフト反応に必要な水蒸気が供給されるとともに、第1領域でバイオマスの噴流床が形成されるように水蒸気の流量が調整されている。 As described above, the water vapor supplied from the water vapor supply unit 3 supplies water vapor necessary for the water gas reaction and the water gas shift reaction, and the flow rate of water vapor is adjusted so that a spouted bed of biomass is formed in the first region. Has been.
 具体的に、第2領域R2のガス流速を第1領域R1のガス流速よりも低下させるガス流速調整部cが連通部43に形成されている。ガス流速調整部cは、内部のガス流に直交する平均断面積(図1においては紙面に直交する平面の反応塔の面積)が第1領域R1より第2領域R2の方が大きくなるように拡径形成された反応塔4の形状により具現化されている。 Specifically, a gas flow rate adjusting part c that lowers the gas flow rate in the second region R2 than the gas flow rate in the first region R1 is formed in the communication part 43. The gas flow rate adjusting unit c has an average cross-sectional area perpendicular to the internal gas flow (in FIG. 1, the area of the reaction tower in a plane perpendicular to the paper surface) larger in the second region R2 than in the first region R1. This is embodied by the shape of the reaction tower 4 having an enlarged diameter.
 この拡径は第1領域R1から第2領域R2へのガス流れを乱さないように、縮径することなく滑らかに拡径するとともに、拡径部にバイオマスや残渣が堆積しないように、鋭角に立ち上がるように形成されている。 This diameter expansion is carried out at an acute angle so that the gas flow from the first region R1 to the second region R2 is not disturbed, and the diameter is smoothly expanded without reducing the diameter, and so that biomass and residues are not deposited on the expanded portion. It is formed to stand up.
 第1領域R1で生成されたガスが第2領域に到達すると、拡径形成された反応塔4の形状により、ガスの上昇速度が低下し、ガスに同伴した未反応のバイオマスがバイオマス自体の重量で第1領域に落下するように設定されている。つまり、未反応のバイオマスの殆どが第1領域R1で水性ガス反応の原料となり、或いは酸素ガスにより燃焼して灰化される。灰化されると比重が小さくなり、水蒸気供給部3からの水蒸気により生じる噴流床でこの灰化したバイオマスの残渣も巻き上げられ、ガスに同伴して第2領域R2に上昇して排気口40からガスとともに排出される。従って、排気口40以外に残渣を取り出す専用の残差排出部を設ける必要がない。 When the gas generated in the first region R1 reaches the second region, due to the shape of the reaction tower 4 formed with an enlarged diameter, the rising rate of the gas decreases, and the unreacted biomass accompanying the gas is the weight of the biomass itself. Is set to fall into the first area. That is, most of the unreacted biomass becomes a raw material for the water gas reaction in the first region R1, or burns with oxygen gas and is ashed. When incinerated, the specific gravity is reduced, and the residue of the incinerated biomass is also rolled up in the spouted bed generated by the water vapor from the water vapor supply unit 3 and rises to the second region R2 along with the gas from the exhaust port 40. It is discharged with gas. Therefore, it is not necessary to provide a dedicated residual discharge unit for taking out the residue other than the exhaust port 40.
 上述したガス流速調整部cにより第2領域R2を流れるガスの流速は十分に低下するため、水性ガスシフト反応のための時間は十分に確保できるようになる。従って、第2領域R2の長さをそれほど長くする必要がなく、反応塔4がコンパクトに構成できるようになる。 Since the flow rate of the gas flowing through the second region R2 is sufficiently lowered by the gas flow rate adjusting unit c described above, a sufficient time for the water gas shift reaction can be secured. Therefore, it is not necessary to lengthen the length of the second region R2 so much, and the reaction tower 4 can be configured compactly.
 このように、反応塔4内に主に水性ガス反応が行なわれる第1領域R1と、主に水性ガスシフト反応が行なわれる第2領域R2をガス流れに沿って形成し、軽量の灰を第2領域から排出することで、第1領域R1と第2領域R2とが別の装置でなく一体で構成され、コンパクトなガス化炉を得ることができる。 Thus, the first region R1 in which the water gas reaction is mainly performed in the reaction tower 4 and the second region R2 in which the water gas shift reaction is mainly performed are formed along the gas flow, and the light ash is secondly formed. By discharging from the region, the first region R1 and the second region R2 are configured as one unit instead of separate devices, and a compact gasification furnace can be obtained.
 図3に示すように、上述したガス化炉10で進行するバイオマスのガス化プロセスを管理して制御するプロセス制御部60がさらに設けられている。プロセス制御部60は汎用コンピュータと、汎用コンピュータにインストールされた制御プログラムと、拡張ボードを備えて構成されている。拡張ボードには第1領域R1に設置された第1温度センサS3、第2領域R2に設置された第2温度センサS4、排気管42に設置された水素ガスセンサS1及び一酸化炭素ガスセンサS2からの検出信号が入力される入力回路、バイオマス供給部2のスクリュー羽根21を回転制御するモータへの駆動信号、水蒸気の供給源から水蒸気供給部3に供給される水蒸気流量を調整する制御バルブV1、酸素ガス源から各酸素ガス供給部5(5a,5b,5c)へ供給される酸素ガス量を調整する制御バルブVa,Vb,Vcの開度調整信号が出力される出力回路が設けられている。 As shown in FIG. 3, a process control unit 60 is further provided for managing and controlling the biomass gasification process that proceeds in the gasification furnace 10 described above. The process control unit 60 includes a general-purpose computer, a control program installed in the general-purpose computer, and an expansion board. The expansion board includes a first temperature sensor S3 installed in the first region R1, a second temperature sensor S4 installed in the second region R2, a hydrogen gas sensor S1 installed in the exhaust pipe 42, and a carbon monoxide gas sensor S2. An input circuit to which a detection signal is input, a drive signal to a motor that controls rotation of the screw blades 21 of the biomass supply unit 2, a control valve V1 that adjusts a flow rate of water vapor supplied from the water supply source to the water vapor supply unit 3, oxygen An output circuit is provided for outputting opening adjustment signals of the control valves Va, Vb, Vc for adjusting the amount of oxygen gas supplied from the gas source to each oxygen gas supply unit 5 (5a, 5b, 5c).
 プロセス制御部60には、各酸素ガス供給部5(5a,5b,5c)から供給される酸素ガスの供給量を個別に調整制御する供給量調整機構50が組み込まれている。供給量調整機構50は、反応塔4から流出するガスの組成を測定する水素ガスセンサS1及び一酸化炭素ガスセンサS2からの検出信号に基づいて、ガス組成が目標ガス組成になるように、つまり水素と一酸化炭素の比率H/COが所望の比率になるように、酸素ガス供給部5から第1領域R1及び第2領域R2の夫々に供給する酸素ガスの供給量を調整するように構成されている。 The process control unit 60 incorporates a supply amount adjustment mechanism 50 that individually adjusts and controls the supply amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c). Based on the detection signals from the hydrogen gas sensor S1 and the carbon monoxide gas sensor S2 that measure the composition of the gas flowing out from the reaction tower 4, the supply amount adjusting mechanism 50 adjusts the gas composition to the target gas composition, that is, hydrogen and The oxygen gas supply amount supplied from the oxygen gas supply unit 5 to each of the first region R1 and the second region R2 is adjusted so that the carbon monoxide ratio H 2 / CO becomes a desired ratio. ing.
 図4(a)に示すように、第1領域R1に備えた第1酸素ガス供給部5aから供給される酸素ガスは、水性ガス反応により低下する温度を補うために主にバイオマスの燃焼つまり固体炭素の燃焼に費やされる。その結果発生する燃焼温度により環境温度が上昇して水性ガス反応が促進される。しかし、固体炭素の燃焼により発生する一酸化炭素CO及び二酸化炭素CO濃度も上昇するため、相対的に水素と一酸化炭素の比率H/COが小さくなる。この傾向は第1酸素ガス供給部5aからの酸素の供給量を増すほど強くなる。 As shown in FIG. 4 (a), the oxygen gas supplied from the first oxygen gas supply unit 5a provided in the first region R1 mainly burns biomass, that is, solids to compensate for the temperature that decreases due to the water gas reaction. Expended in burning carbon. The resulting combustion temperature increases the environmental temperature and promotes the water gas reaction. However, since the concentration of carbon monoxide CO and carbon dioxide CO 2 generated by the combustion of solid carbon also increases, the ratio H 2 / CO of hydrogen and carbon monoxide becomes relatively small. This tendency becomes stronger as the amount of oxygen supplied from the first oxygen gas supply unit 5a increases.
 第1領域R1の下流側に備えた第2酸素ガス供給部5bから供給される酸素ガスは、上流側で生じた水性ガス反応により低下する温度を補うために供給される。第1酸素ガス供給部5aから供給される酸素ガスと同様のメカニズムが働くが、既に水性ガス反応で生じた一酸化炭素と水蒸気との間で生じる水性ガスシフト反応もある程度促進される。つまり、第2酸素ガス供給部5bから供給される酸素ガス供給量により固体炭素の燃焼と水性ガスシフト反応との間のバランスが調整される。 The oxygen gas supplied from the second oxygen gas supply unit 5b provided on the downstream side of the first region R1 is supplied to compensate for the temperature that decreases due to the water gas reaction generated on the upstream side. A mechanism similar to that of the oxygen gas supplied from the first oxygen gas supply unit 5a works, but the water gas shift reaction that occurs between carbon monoxide and water vapor that has already occurred in the water gas reaction is also promoted to some extent. That is, the balance between the combustion of solid carbon and the water gas shift reaction is adjusted by the amount of oxygen gas supplied from the second oxygen gas supply unit 5b.
 図4(b)に示すように、第2領域R2に備えた第3酸素ガス供給部5cから供給される酸素ガスは、主に第1領域R1で行われた水性ガス反応で生じた一酸化炭素CO、または燃焼反応で生じた一酸化炭素COの燃焼や水性ガスシフト反応に費やされる。その結果、環境温度が上昇して水性ガスシフト反応が促進される。結果、水素ガスH濃度が上昇するため、相対的に水素と一酸化炭素の比率H/COが大きくなる。この傾向は酸素の供給量を増すほど強くなる。 As shown in FIG. 4B, the oxygen gas supplied from the third oxygen gas supply unit 5c provided in the second region R2 is mainly oxidized by the water gas reaction performed in the first region R1. It is consumed for combustion of carbon CO or carbon monoxide CO generated by combustion reaction and water gas shift reaction. As a result, the environmental temperature rises and the water gas shift reaction is promoted. As a result, since the hydrogen gas H 2 concentration is increased, the ratio H 2 / CO of hydrogen and carbon monoxide is relatively increased. This tendency becomes stronger as the supply amount of oxygen is increased.
 図4(c)に示すように、3系統の酸素ガス供給部5(5a,5b,5c)から供給される酸素ガス量を調整することにより、水素と一酸化炭素の比率H/COを所望の比率に調整できるようになる。 As shown in FIG. 4 (c), by adjusting the amount of oxygen gas supplied from the three systems of oxygen gas supply units 5 (5a, 5b, 5c), the ratio H 2 / CO of hydrogen to carbon monoxide is reduced. The desired ratio can be adjusted.
 尚、図4(a),(b),(c)に示すガス組成を囲む円の面積は、生成されるガスの概略の比率が示されている。 Note that the area of the circle surrounding the gas composition shown in FIGS. 4A, 4B, and 4C indicates the approximate ratio of the generated gas.
 図4(d)には、上述したガス化炉10を用いて3系統の酸素ガス供給部5(5a,5b,5c)から供給される酸素ガス量を様々に調整して操炉した結果、生成されたガスの種類及びその量が示されている。 In FIG. 4 (d), as a result of variously adjusting the amount of oxygen gas supplied from the three oxygen gas supply units 5 (5a, 5b, 5c) using the gasification furnace 10 described above, The type and amount of gas produced is indicated.
 Run1はガス化炉10への供給酸素ガスの総量一定の下で、各ガス供給部へ均等比率で供給した結果が示され、Run2は供給酸素ガスの総量一定の下で、第3ガス供給部5cへの供給量を相対的に増加するように供給した結果が示され、Run3は供給酸素ガスの総量一定の下で、第2ガス供給部5bへの供給量を相対的に増加するように供給した結果が示され、Run4は供給酸素ガスの総量一定の下で、第1ガス供給部5aへの供給量を相対的に増加するように供給した結果が示されている。 Run 1 shows the result of supplying an equal ratio to each gas supply unit under a constant total amount of oxygen gas supplied to the gasification furnace 10, and Run 2 shows a third gas supply unit under a constant total amount of supplied oxygen gas. The result is shown in which the supply amount to 5c is relatively increased, and Run 3 increases the supply amount to the second gas supply unit 5b relatively while the total amount of supply oxygen gas is constant. The supply result is shown, and Run 4 is supplied so that the supply amount to the first gas supply unit 5a is relatively increased while the total amount of supply oxygen gas is constant.
 水素と一酸化炭素の比率H/COに注目すると、第3ガス供給部5cへの供給量を相対的に多くしたRun2では、均等に供給したRun1に比べて比率H/COが大きくなり、第1ガス供給部5aへの供給量を相対的に多くしたRun4では、均等に供給したRun1に比べて比率H/COが小さくなることが確認され、第2ガス供給部5bへの供給量を相対的に多くしたRun3では、均等に供給したRun1に比べて比率H/COが小さくなり、Run4と同様の傾向が表れることが確認できる。 When attention is paid to the ratio H 2 / CO of hydrogen and carbon monoxide, the ratio H 2 / CO is larger in Run 2 in which the supply amount to the third gas supply unit 5 c is relatively increased than in Run 1 that is supplied uniformly. In the Run 4 in which the supply amount to the first gas supply unit 5a is relatively increased, it is confirmed that the ratio H 2 / CO is smaller than that in the evenly supplied Run 1, and the supply to the second gas supply unit 5b is performed. It can be confirmed that in Run 3 with a relatively large amount, the ratio H 2 / CO is smaller than in Run 1 supplied uniformly, and the same tendency as in Run 4 appears.
 つまり、供給量調整機構50は、測定されたガス組成が目標ガス組成になるように、酸素ガス供給部5から供給される酸素ガスの総量を一定に維持しながら、第1領域及び第2領域の夫々に供給する供給量の比率を調整するように構成されている。 That is, the supply amount adjusting mechanism 50 maintains the total amount of oxygen gas supplied from the oxygen gas supply unit 5 so that the measured gas composition becomes the target gas composition, while maintaining the first region and the second region. It is comprised so that the ratio of the supply amount supplied to each of these may be adjusted.
 具体的には、第2領域R2への酸素ガス供給量を増やすと水素を相対的に増やすことができ、第1領域R1への酸素ガス供給量、さらに言えば第1領域R1の上流側への酸素ガス供給量を増やすと一酸化炭素を相対的に増やすことができる。 Specifically, when the amount of oxygen gas supplied to the second region R2 is increased, hydrogen can be relatively increased, and the amount of oxygen gas supplied to the first region R1, more specifically, upstream of the first region R1. When the amount of oxygen gas supplied is increased, carbon monoxide can be relatively increased.
 例えば、バイオマスの組成や含水率に基づいて、反応塔4内を水性ガス反応及び水性ガスシフト反応を促進するために必要な環境温度に維持するために必要な入熱量を算出して、その入熱量が領域R1,R2毎にバイオマスの燃焼熱及び/または一酸化炭素の燃焼熱で得られるように酸素ガスの総量を定め、定めた総量を一定に維持しながら、第1領域及び第2領域の夫々に供給する供給量の比率を調整するのである。 For example, based on the biomass composition and moisture content, the amount of heat input is calculated by calculating the amount of heat input required to maintain the inside of the reaction tower 4 at the environmental temperature required to promote the water gas reaction and the water gas shift reaction. The total amount of oxygen gas is determined so as to be obtained by the combustion heat of biomass and / or the combustion heat of carbon monoxide for each region R1, R2, and while maintaining the determined total amount constant, The ratio of the supply amount supplied to each is adjusted.
 本発明によるガス化炉10に備えた供給量調整機構50は、上述した制御態様以外に第1温度センサS3及び第2温度センサS4により検出される第1領域R1及び/または第2領域R2の温度が所定の環境温度になるように各酸素ガス供給部5(5a,5b,5c)から供給される酸素ガス量を調整することも可能である。この場合も、水素ガスセンサS1、一酸化炭素ガスセンサS2で測定されたガス組成が目標ガス組成になるように各酸素ガス供給部5(5a,5b,5c)から供給される酸素ガス量が調整されることが前提となる。 The supply amount adjusting mechanism 50 provided in the gasification furnace 10 according to the present invention has a first region R1 and / or a second region R2 detected by the first temperature sensor S3 and the second temperature sensor S4 in addition to the control mode described above. It is also possible to adjust the amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c) so that the temperature becomes a predetermined environmental temperature. Also in this case, the amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c) is adjusted so that the gas composition measured by the hydrogen gas sensor S1 and the carbon monoxide gas sensor S2 becomes the target gas composition. It is a prerequisite.
 尚、温度センサやガスセンサは数を増やすことで、より精度良く酸素ガス量の調整が可能になり、温度や水素、一酸化炭素と比率の調整も精度良くできるようになる。 In addition, by increasing the number of temperature sensors and gas sensors, it becomes possible to adjust the amount of oxygen gas with higher accuracy, and the temperature, hydrogen, and carbon monoxide can be adjusted with high accuracy.
 プロセス制御部60は、供給量調整機構50によりガス組成が目標ガス組成になるように制御できない場合や、ガス組成が目標ガス組成になってもガス量が低下するような場合に、バイオマス供給部2から供給されるバイオマスの供給量及び/または水蒸気供給部3から供給される水蒸気供給量を増減調整するように構成されている。 The process control unit 60 is configured to supply the biomass supply unit when the gas amount cannot be controlled by the supply amount adjusting mechanism 50 so that the gas composition becomes the target gas composition or when the gas amount decreases even when the gas composition reaches the target gas composition. The supply amount of biomass supplied from 2 and / or the supply amount of steam supplied from the steam supply unit 3 is adjusted to increase or decrease.
 そして、供給量調整機構50はバイオマスの供給量及び/または水蒸気供給量の変動に基づいて必要な酸素ガス供給量や供給量の比率を調整するように構成されている。 The supply amount adjusting mechanism 50 is configured to adjust the required oxygen gas supply amount and the ratio of the supply amount based on fluctuations in the biomass supply amount and / or the steam supply amount.
 以上説明した通り、本発明のガス化炉10を用いることにより、反応塔の上流側でバイオマスに水蒸気を供給して噴流床を形成し、主に水性ガス反応を促す水性ガス反応促進工程と、水性ガス反応工程で生成されたガスに対して、反応塔の下流側で主に水性ガスシフト反応を促す水性ガスシフト反応促進工程と、水性ガス反応促進工程及び水性ガスシフト反応促進工程の夫々に酸素ガスを供給するとともに、夫々に供給する酸素ガスの比率を調整することにより、反応塔から流出するガスの組成を調整する酸素ガス供給工程と、を含むバイオマスガス化処理方法が実行される。 As described above, by using the gasification furnace 10 of the present invention, water vapor is supplied to the biomass on the upstream side of the reaction tower to form a spouted bed, and a water gas reaction promotion step that mainly promotes a water gas reaction; For the gas produced in the water gas reaction step, oxygen gas is supplied to each of the water gas shift reaction promotion step for promoting the water gas shift reaction mainly on the downstream side of the reaction tower, the water gas reaction promotion step, and the water gas shift reaction promotion step. A biomass gasification method including an oxygen gas supply step of adjusting the composition of the gas flowing out from the reaction tower by adjusting the ratio of the oxygen gas supplied to each of them is supplied.
 尚、酸素ガス供給工程は、水性ガス反応促進工程及び水性ガスシフト反応促進工程の夫々に供給する酸素ガスの総量を一定に維持しながら供給量の比率を調整して、反応塔から流出するガスの組成を調整する工程が含まれる。 In the oxygen gas supply step, the ratio of the supply amount is adjusted while maintaining the total amount of oxygen gas supplied to each of the water gas reaction promotion step and the water gas shift reaction promotion step, so that the gas flowing out of the reaction tower A step of adjusting the composition is included.
 本発明によるガス化炉を用いると、各酸素ガス供給部5(5a,5b,5c)から供給される酸素ガス量を調整することにより、水素と一酸化炭素の比率H/COが約2の合成ガスや、水素と一酸化炭素の比率H/COが約1の合成ガスが得られるようになる。 When the gasification furnace according to the present invention is used, the ratio H 2 / CO of hydrogen to carbon monoxide is about 2 by adjusting the amount of oxygen gas supplied from each oxygen gas supply unit 5 (5a, 5b, 5c). Or a synthesis gas having a hydrogen to carbon monoxide ratio H 2 / CO of about 1.
 以下、本発明によるガス化炉の別実施形態を説明する。
 上述した実施形態では反応塔4が縦形円筒形状に構成された例を説明したが、反応塔4が縦形であれば楕円筒状であっても角筒状であってもよい。
Hereinafter, another embodiment of the gasifier according to the present invention will be described.
In the above-described embodiment, the example in which the reaction tower 4 is configured in a vertical cylindrical shape has been described. However, as long as the reaction tower 4 is vertical, the reaction tower 4 may have an elliptical cylinder shape or a rectangular tube shape.
 上述した実施形態では連通部43に形成されたガス流速調整部cとなる拡径部に、第1領域R1から第2領域R2に次第に拡径するテーパー部を形成しているが、テーパー部の角度は鋭角に形成されることが好ましい。急激に拡径すると剥離流が生じて段差部に灰等が蓄積されてガスの流速の低下が妨げられる虞があるためである。 In the embodiment described above, a tapered portion that gradually increases in diameter from the first region R1 to the second region R2 is formed in the enlarged diameter portion that becomes the gas flow rate adjusting portion c formed in the communication portion 43. The angle is preferably formed at an acute angle. This is because when the diameter is rapidly expanded, a separation flow is generated and ash or the like is accumulated in the stepped portion, which may hinder a decrease in gas flow velocity.
 上述した実施形態は、噴流床式のガス化炉について説明したが、流動床式のガス化炉に適用することも可能である。また、噴流床式のガス化炉であっても噴流床に僅かに珪砂やセラミック粒子を混入し、噴流床でバイオマスが破砕されるように構成することで水性ガス反応が促進されるようになる。 In the above-described embodiment, the spouted bed type gasification furnace has been described. However, the present invention can also be applied to a fluidized bed type gasification furnace. Moreover, even if it is a spouted bed type gasification furnace, water gas reaction will be accelerated | stimulated by comprising so that silica sand and a ceramic particle may be mixed in a spouted bed slightly and biomass may be crushed with a spouted bed. .
 上述した実施形態では、外部熱源であるヒータを炉の立上げ時に使用する例を説明したが、水性ガス反応を促進するために外部熱源であるヒータを使用してもよい。この場合でも酸素ガス供給部を備えることにより、ヒータに要する電力コストは大幅に低減できる。 In the above-described embodiment, the example in which the heater as the external heat source is used at the time of starting up the furnace has been described. However, the heater as the external heat source may be used to promote the water gas reaction. Even in this case, the power cost required for the heater can be significantly reduced by providing the oxygen gas supply unit.
 尚、外部熱源であるヒータ等外部から追加のエネルギー投入を無くし、バイオマスのみでガス化炉の運転ができるのがより良い形態である。 In addition, it is a better mode that the operation of the gasifier can be performed only by biomass without additional energy input from the outside such as a heater as an external heat source.
 上述した実施形態では、ガス供給機構5が3系統で構成された例を説明したが、図1に破線で示したように、さらに別系統のガス供給機構5dを備えてもよい。このようなガス供給機構5dは第1領域R1のみならず第2領域R2に備えてもよい。ガス供給機構を増やすことで、より細かな反応塔4内の温度調整と水素と一酸化炭素の成分比の制御が可能になる。 In the above-described embodiment, the example in which the gas supply mechanism 5 is configured by three systems has been described. However, as indicated by a broken line in FIG. Such a gas supply mechanism 5d may be provided not only in the first region R1 but also in the second region R2. By increasing the number of gas supply mechanisms, finer temperature adjustment in the reaction tower 4 and control of the component ratio of hydrogen and carbon monoxide can be achieved.
 上述した実施形態では、第1及び第2ガス供給機能5a,5bから酸素ガスが反応塔4の周壁の一か所から垂直に供給され、第3ガス供給機能5cから酸素ガスが反応塔4の周壁の一か所から斜め下方に供給される態様を説明したが、このような態様に限るものではない。 In the above-described embodiment, oxygen gas is supplied vertically from one place of the peripheral wall of the reaction tower 4 from the first and second gas supply functions 5a and 5b, and oxygen gas is supplied from the third gas supply function 5c to the reaction tower 4. Although the aspect supplied diagonally downward from one place of a surrounding wall was demonstrated, it is not restricted to such an aspect.
 例えば、図5(a)に示すように、ガス供給機構5に反応塔4を囲繞するようにヘッダー管50を備え、ヘッダー管50に形成された複数のガス供給管51から反応塔4の内壁に沿って旋回流を生起させる向きに酸素ガスを供給するように構成してもよい。また、図5(b)に示すように、複数のガス供給管51から反応塔4の中心に向けて衝突する向きに酸素ガスを供給するように構成してもよい。 For example, as shown in FIG. 5A, the gas supply mechanism 5 is provided with a header pipe 50 so as to surround the reaction tower 4, and the inner wall of the reaction tower 4 is formed from a plurality of gas supply pipes 51 formed in the header pipe 50. The oxygen gas may be supplied in the direction in which the swirling flow is generated along the direction. Further, as shown in FIG. 5B, oxygen gas may be supplied from a plurality of gas supply pipes 51 in the direction of collision toward the center of the reaction tower 4.
 また、図5(c),(d)に示すように、反応塔4の軸心方向に対して下方または上方に向けて酸素ガスを供給するように構成してもよい。図5(c)の態様は、図1に示した第3ガス供給機能5cと同じであるが、これと図5(a),(b)で示した態様とを組み合わせてもよい。図5(d)の態様も同様であり、特に第1ガス供給機構5aに好適な態様となる。 Further, as shown in FIGS. 5C and 5D, oxygen gas may be supplied downward or upward with respect to the axial direction of the reaction tower 4. The mode of FIG. 5 (c) is the same as the third gas supply function 5c shown in FIG. 1, but this may be combined with the mode shown in FIGS. 5 (a) and 5 (b). The aspect of FIG. 5D is the same, and is particularly suitable for the first gas supply mechanism 5a.
 ガス供給機構5から供給される酸素ガスは純度の高い酸素ガス以外に、例えば大気に酸素を加えた酸素富化ガスを用いることも可能である。 As the oxygen gas supplied from the gas supply mechanism 5, for example, oxygen-enriched gas obtained by adding oxygen to the atmosphere can be used in addition to high-purity oxygen gas.
 上述した実施形態では、水蒸気は常圧での過熱水蒸気を用いる例を説明したが、加圧された水蒸気でもよく、飽和水蒸気でもよい。尚、上述したような常圧の反応塔の場合は、常圧の過熱水蒸気が反応塔の内部での水蒸気の膨張や水蒸気製造のコストを考えると良い。 In the embodiment described above, an example of using superheated steam at normal pressure has been described, but pressurized steam or saturated steam may be used. In the case of a normal pressure reaction tower as described above, normal pressure superheated steam may be considered in consideration of the expansion of steam inside the reaction tower and the cost of steam production.
 上述した実施形態では、反応塔4の内部が一律に500℃以上に維持される態様を説明したが、水性ガス反応と水性ガスシフト反応それぞれで必要な温度に合わせ、反応塔4内に温度分布を持たせてもよい。つまり主に水性ガス反応が行なわれる第1領域R1と主に水性ガスシフト反応が行なわれる第2領域R2で異なる温度分布になるように構成してもよい。このようにすると各反応に必要な温度が確保できるとともにエネルギーの消費を抑えることができる。 In the above-described embodiment, the aspect in which the inside of the reaction tower 4 is uniformly maintained at 500 ° C. or more has been described. However, the temperature distribution in the reaction tower 4 is adjusted according to the temperature required for each of the water gas reaction and the water gas shift reaction. You may have it. That is, the temperature distribution may be different between the first region R1 in which the water gas reaction is mainly performed and the second region R2 in which the water gas shift reaction is mainly performed. In this way, the temperature required for each reaction can be secured and energy consumption can be suppressed.
 上述した実施形態では、バイオマスを原料にして合成ガスを生成して液体燃料を合成するシステムを説明したが、ガス化炉で精製された合成ガスはガス燃料として発電等に利用でき、合成ガスの利用方法はどのようなものであってもよい。 In the embodiment described above, the system for synthesizing liquid fuel by generating synthesis gas from biomass as raw material has been described. However, the synthesis gas purified by the gasification furnace can be used as gas fuel for power generation and the like. Any method may be used.
 上述した実施形態では、排気口40を反応塔4の上部の空間(第2領域)に繋がる反応塔4の頂部に備えた例を説明したが、排気口40は第2領域に繋がっていればよく、例えば反応塔4の上部側方に設けてもよい。 In the above-described embodiment, the example in which the exhaust port 40 is provided at the top of the reaction tower 4 that connects the space (second region) above the reaction tower 4 has been described. However, if the exhaust port 40 is connected to the second region. For example, it may be provided on the upper side of the reaction tower 4.
 上述した実施形態では、原料となるバイオマスとして稲わら、もみ殻、麦わら、トウモロコシの茎葉等の乾燥系のバイオマスを用いる例を説明したが、木くず、バーク、竹等を用いることも可能である。ちなみに、もみ殻は比重約0.1、含水率約10%、バークは比重約0.6、含水率約60%、竹は比重約0.7、含水率約25%である。つまり、上述した実施形態のガス化炉は様々な性状のバイオマスに対応できる。 In the above-described embodiment, an example in which dry biomass such as rice straw, rice husk, wheat straw, corn stover and the like is used as the raw material biomass has been described, but wood waste, bark, bamboo, or the like can also be used. Incidentally, rice husk has a specific gravity of about 0.1 and a water content of about 10%, bark has a specific gravity of about 0.6 and a water content of about 60%, and bamboo has a specific gravity of about 0.7 and a water content of about 25%. That is, the gasification furnace of the above-described embodiment can cope with biomass having various properties.
 上述した実施形態では、ガス化炉から発生するチャーはガス化炉内で水性ガス反応に利用されるのであるが、図7に示すように、ガス化炉10から発生するチャーをサイクロン等からなるチャー分離装置201で分離し、分離したチャーを燃料に用いた燃焼炉202で温水を発生させ、その温水を合成ガスの保有熱で加熱して蒸気を生成する廃熱ボイラ203を設けて、得られた水蒸気をガス化炉10に利用する等、システム全体としてエネルギー効率を向上するようにしてもよい。尚、符号204はガス精製装置であり、符号205は発電装置またはFT合成装置等を示す。 In the embodiment described above, the char generated from the gasification furnace is used for the water gas reaction in the gasification furnace. However, as shown in FIG. 7, the char generated from the gasification furnace 10 is composed of a cyclone or the like. A waste heat boiler 203 that generates steam by heating the hot water with the heat stored in the synthesis gas is generated by separating it with the char separator 201 and generating hot water in a combustion furnace 202 using the separated char as fuel. You may make it improve energy efficiency as the whole system, such as utilizing the produced water vapor for the gasification furnace 10. Reference numeral 204 denotes a gas purification device, and reference numeral 205 denotes a power generation device or an FT synthesis device.
 上述した様々な実施形態は、本発明によるガス化炉、ガス化炉の運転方法、及びバイオマスガス化処理方法の一具体例を説明したに過ぎず、当該記載により本発明の範囲が限定されるものではなく、各部の具体的構成は本発明の作用効果が奏される範囲で適宜変更設計可能であることはいうまでもない。 The various embodiments described above merely describe one specific example of the gasification furnace, the operation method of the gasification furnace, and the biomass gasification processing method according to the present invention, and the scope of the present invention is limited by the description. It is needless to say that the specific configuration of each part can be appropriately changed and designed within the range where the effects of the present invention can be achieved.
2:バイオマス供給部
3:水蒸気供給部
4:反応塔
5:酸素ガス供給部
5a:第1酸素ガス供給部
5b:第2酸素ガス供給部
5c:第3酸素ガス供給部
10:ガス化炉
20:筒状のケーシング
21:スクリュー羽根
40:排気口
43:連通部
104:FT合成装置
201:チャー分離装置
204:ガス精製装置
c:ガス流速調整部
H:ヒータ
R1:第1領域
R2:第2領域
 
2: biomass supply unit 3: steam supply unit 4: reaction tower 5: oxygen gas supply unit 5a: first oxygen gas supply unit 5b: second oxygen gas supply unit 5c: third oxygen gas supply unit 10: gasifier 20 : Cylindrical casing 21: Screw blade 40: Exhaust port 43: Communication part 104: FT synthesizer 201: Char separator 204: Gas purifier c: Gas flow rate adjuster H: Heater R1: First region R2: Second region

Claims (19)

  1.   バイオマス供給部と、
      水蒸気供給部と、
      前記水蒸気供給部から供給される水蒸気により形成される噴流床で前記バイオマス供給部から供給されたバイオマスを流動させる第1領域と、前記第1領域で生成されたガスが流入する第2領域とが、ガスの流れ方向に沿って形成される反応塔と、
      前記反応塔の前記第1領域及び第2領域の夫々に酸素ガスを供給する複数の酸素ガス供給部と、
      各酸素ガス供給部からの酸素ガス供給量を調整する供給量調整機構と、
    を備えているガス化炉。
    A biomass supply department;
    A water vapor supply unit;
    A first region in which the biomass supplied from the biomass supply unit flows in a spouted bed formed by water vapor supplied from the water vapor supply unit, and a second region into which the gas generated in the first region flows. A reaction tower formed along the gas flow direction;
    A plurality of oxygen gas supply units for supplying oxygen gas to each of the first region and the second region of the reaction tower;
    A supply amount adjustment mechanism for adjusting the oxygen gas supply amount from each oxygen gas supply unit;
    Gasification furnace equipped with.
  2.   前記第1領域では主に水性ガス反応が行なわれ、前記第2領域では主に水性ガスシフト反応が行なわれ、
      前記供給量調整機構は水性ガス反応と水性ガスシフト反応とを調整することで反応塔から流出するガスの組成を調整するように構成されている請求項1記載のガス化炉。
    A water gas reaction is mainly performed in the first region, and a water gas shift reaction is mainly performed in the second region.
    The gasifier according to claim 1, wherein the supply amount adjusting mechanism is configured to adjust a composition of a gas flowing out from the reaction tower by adjusting a water gas reaction and a water gas shift reaction.
  3.   前記供給量調整機構は供給されるバイオマスの組成と供給量から各酸素ガス供給部への必要な酸素ガス供給量を演算し、酸素ガス供給量を調整するように構成されている請求項1または2記載のガス化炉 The said supply amount adjustment mechanism is comprised so that the required oxygen gas supply amount to each oxygen gas supply part may be calculated from the composition and supply amount of biomass supplied, and oxygen gas supply amount may be adjusted. 2. Gasification furnace described in 2
  4.   前記供給量調整機構は前記反応塔から流出するガスの組成に基づいて酸素ガスの総供給量一定の下で各酸素ガス供給部からの酸素ガス供給量の比率を調整するように構成されている請求項1から3の何れかに記載のガス化炉。 The supply amount adjusting mechanism is configured to adjust the ratio of the oxygen gas supply amount from each oxygen gas supply unit under a constant total supply amount of oxygen gas based on the composition of the gas flowing out from the reaction tower. The gasification furnace in any one of Claim 1 to 3.
  5.   前記供給量調整機構は、さらに水蒸気供給部からの水蒸気供給量を調整するように構成されている請求項1から3の何れかに記載のガス化炉。 The gasification furnace according to any one of claims 1 to 3, wherein the supply amount adjusting mechanism is further configured to adjust the amount of water vapor supplied from the water vapor supply unit.
  6.   バイオマス供給部と、
      水蒸気供給部と、
      前記水蒸気供給部から供給される水蒸気により形成される噴流床で前記バイオマス供給部から供給されたバイオマスを流動させる第1領域と、前記第1領域で生成されたガスが流入する第2領域とが、ガスの流れ方向に沿って形成される反応塔と、
      前記反応塔の前記第1領域及び第2領域の夫々に酸素ガスを供給する複数の酸素ガス供給部と、
      生成したガスとバイオマスまたはバイオマス残渣を第1領域と第2領域との間を移動可能とする連通部と、
      第2領域から生成されたガスと残渣を排出する排気口と、
    を備えているガス化炉。
    A biomass supply department;
    A water vapor supply unit;
    A first region in which the biomass supplied from the biomass supply unit flows in a spouted bed formed by water vapor supplied from the water vapor supply unit, and a second region into which the gas generated in the first region flows. A reaction tower formed along the gas flow direction;
    A plurality of oxygen gas supply units for supplying oxygen gas to each of the first region and the second region of the reaction tower;
    A communication part that allows the generated gas and biomass or biomass residue to move between the first region and the second region;
    An exhaust port for discharging the gas and residue generated from the second region;
    Gasification furnace equipped with.
  7.   前記水蒸気供給部は前記バイオマス供給部より上流側に配置されている請求項1から6の何れかに記載のガス化炉。 ガ ス The gasifier according to any one of claims 1 to 6, wherein the water vapor supply unit is disposed upstream of the biomass supply unit.
  8.   前記酸素ガス供給部のうち前記第1領域に対応する酸素ガス供給部は、少なくとも前記バイオマス供給部より上流側に配置されている請求項1から7の何れかに記載のガス化炉。 The gasifier according to any one of claims 1 to 7, wherein an oxygen gas supply unit corresponding to the first region in the oxygen gas supply unit is disposed at least upstream of the biomass supply unit.
  9.   前記酸素ガス供給部のうち前記第1領域に対応する酸素ガス供給部は、前記バイオマス供給部の下流側にさらに配置されている請求項8記載のガス化炉。 The gasification furnace according to claim 8, wherein an oxygen gas supply unit corresponding to the first region of the oxygen gas supply unit is further arranged downstream of the biomass supply unit.
  10.   前記水蒸気供給部は何れの酸素ガス供給部より上流側に配置されている請求項7から9記載のガス化炉。 The gasifier according to any one of claims 7 to 9, wherein the water vapor supply unit is disposed upstream of any oxygen gas supply unit.
  11.   前記第2領域のガス流速を前記第1領域のガス流速よりも低下させるガス流速調整部を備えている請求項1から10の何れかに記載のガス化炉。 The gasification furnace according to any one of claims 1 to 10, further comprising a gas flow rate adjusting unit that lowers the gas flow rate in the second region than the gas flow rate in the first region.
  12.   前記ガス流速調整部は、内部のガス流に直交する平均断面積が前記第1領域より前記第2領域の方が大きくなるように形成された前記反応塔の形状により具現化されている請求項11記載のガス化炉。 The gas flow rate adjusting unit is embodied by a shape of the reaction tower formed such that an average cross-sectional area orthogonal to an internal gas flow is larger in the second region than in the first region. 11. A gasification furnace according to 11.
  13.   前記第1領域のガス流速はバイオマスが浮遊する流速に設定され、前記第2領域のガス
    流速はバイオマスが第1領域に落下する流速に設定されている請求項11または12記載のガス化炉。
    The gasification furnace according to claim 11 or 12, wherein the gas flow rate in the first region is set to a flow rate at which biomass floats, and the gas flow rate in the second region is set to a flow rate at which biomass falls to the first region.
  14.   前記反応塔から流出するガスの組成に基づいて各酸素ガス供給部からの酸素ガス供給量を調整する供給量調整機構を備えている請求項6に記載のガス化炉。 The gasification furnace according to claim 6, further comprising a supply amount adjusting mechanism for adjusting an oxygen gas supply amount from each oxygen gas supply unit based on a composition of gas flowing out from the reaction tower.
  15.   前記反応塔から流出するガスの組成に基づいて酸素ガスの総供給量一定の下で各酸素ガス供給部からの酸素ガス供給量の比率を調整する供給量調整機構を備えている請求項6または14に記載のガス化炉。 7. A supply amount adjusting mechanism for adjusting a ratio of oxygen gas supply amounts from the respective oxygen gas supply units under a constant total supply amount of oxygen gas based on a composition of gas flowing out from the reaction tower. 14. A gasification furnace as described in 14.
  16.   請求項1、2、6,14または15の何れかに記載のガス化炉の運転方法であって、
      前記反応塔から流出するガスの組成を測定し、
      測定されたガス組成が目標ガス組成になるように、前記酸素ガス供給部から前記第1領域及び第2領域の夫々に供給する酸素ガスの供給量を調整するガス化炉の運転方法。
    A method for operating a gasifier according to any one of claims 1, 2, 6, 14, or 15,
    Measuring the composition of the gas flowing out of the reaction tower;
    An operation method of a gasification furnace in which an oxygen gas supply amount supplied from the oxygen gas supply unit to each of the first region and the second region is adjusted so that a measured gas composition becomes a target gas composition.
  17.   測定されたガス組成が目標ガス組成になるように、前記酸素ガス供給部から供給される酸素ガスの総量を一定に維持しながら、前記第1領域及び第2領域の夫々に供給する酸素ガス供給量の比率を調整する請求項16記載のガス化炉の運転方法。 Oxygen gas supply supplied to each of the first region and the second region while keeping the total amount of oxygen gas supplied from the oxygen gas supply unit constant so that the measured gas composition becomes the target gas composition The method of operating a gasifier according to claim 16, wherein the ratio of the amounts is adjusted.
  18.   反応塔の上流側でバイオマスに水蒸気を供給して噴流床を形成し、主に水性ガス反応を促す水性ガス反応促進工程と、
      前記水性ガス反応工程で生成された水性ガスに対して、前記反応塔の下流側で主に水性ガスシフト反応を促す水性ガスシフト反応促進工程と、
      前記水性ガス反応促進工程及び水性ガスシフト反応促進工程の夫々に酸素ガスを供給するとともに、夫々に供給する酸素ガスの比率を調整することにより、反応塔から流出するガスの組成を調整する酸素ガス供給工程と、
    を含むバイオマスガス化処理方法。
    A water gas reaction promotion step that mainly supplies water gas reaction by supplying water vapor to the biomass upstream of the reaction tower to form a spouted bed,
    A water gas shift reaction promoting step that mainly promotes a water gas shift reaction on the downstream side of the reaction tower with respect to the water gas generated in the water gas reaction step;
    Oxygen gas supply for adjusting the composition of the gas flowing out from the reaction tower by supplying oxygen gas to each of the water gas reaction promotion step and the water gas shift reaction promotion step and adjusting the ratio of the oxygen gas supplied to each Process,
    A biomass gasification treatment method comprising:
  19.   前記酸素ガス供給工程は、前記水性ガス反応促進工程及び水性ガスシフト反応促進工程の夫々に供給する酸素ガスの総量を一定に維持しながら酸素ガス供給量の比率を調整して、反応塔から流出するガスの組成を調整する工程である請求項18記載のバイオマスガス化処理方法。
     
    In the oxygen gas supply step, the ratio of the oxygen gas supply amount is adjusted while maintaining the total amount of oxygen gas supplied to each of the water gas reaction promotion step and the water gas shift reaction promotion step to flow out of the reaction tower. The biomass gasification processing method according to claim 18, which is a step of adjusting a gas composition.
PCT/JP2016/060047 2015-03-30 2016-03-29 Gasification furnace, method of operating gasification furnace and biomass gasification treatment method WO2016158918A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-070001 2015-03-30
JP2015-069993 2015-03-30
JP2015070001A JP6454583B2 (en) 2015-03-30 2015-03-30 Gasification furnace and operation method of gasification furnace
JP2015069993A JP6454582B2 (en) 2015-03-30 2015-03-30 Gasification furnace, gasification furnace operating method, and biomass gasification processing method

Publications (1)

Publication Number Publication Date
WO2016158918A1 true WO2016158918A1 (en) 2016-10-06

Family

ID=57004359

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060047 WO2016158918A1 (en) 2015-03-30 2016-03-29 Gasification furnace, method of operating gasification furnace and biomass gasification treatment method

Country Status (1)

Country Link
WO (1) WO2016158918A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172494A (en) * 1987-12-28 1989-07-07 Mitsubishi Heavy Ind Ltd Coal gasification equipment
JP2001139303A (en) * 1999-11-04 2001-05-22 Hitachi Ltd Method and device for producing hydrogen/carbon monoxide mixed gas, and fuel/power combination plant provided with the device
US20130312328A1 (en) * 2010-11-29 2013-11-28 Synthesis Energy Systems, Inc. Method and apparatus for particle recycling in multiphase chemical reactors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01172494A (en) * 1987-12-28 1989-07-07 Mitsubishi Heavy Ind Ltd Coal gasification equipment
JP2001139303A (en) * 1999-11-04 2001-05-22 Hitachi Ltd Method and device for producing hydrogen/carbon monoxide mixed gas, and fuel/power combination plant provided with the device
US20130312328A1 (en) * 2010-11-29 2013-11-28 Synthesis Energy Systems, Inc. Method and apparatus for particle recycling in multiphase chemical reactors

Similar Documents

Publication Publication Date Title
US7819070B2 (en) Method and apparatus for generating combustible synthesis gas
JP4986080B2 (en) Biomass gasifier
Song et al. Experimental investigation on hydrogen production from biomass gasification in interconnected fluidized beds
JP4888551B2 (en) Fluidized bed gasification method
DK2129749T3 (en) Gasification method with a reduction method in a stable floating bed
CN107090315A (en) A kind of biomass double bed gasification and pyrolysis coupled electricity-generation system and method
CN105026725B (en) Material gasification method and apparatus
US20180305627A1 (en) Industrial furnace integrated with biomass gasification system
EP4112592A1 (en) Device and method for treating feed material
WO2010120495A2 (en) Two stage dry feed gasification system and process
JP5450799B2 (en) Coal gasification system and coal gasification method
JP6454583B2 (en) Gasification furnace and operation method of gasification furnace
CN1900241B (en) Process for making combustable gas by external high temperature CO2 and biomass reducing reaction
CN107001957B (en) Reactor for producing product gas from fuel
JP6454582B2 (en) Gasification furnace, gasification furnace operating method, and biomass gasification processing method
WO2016158918A1 (en) Gasification furnace, method of operating gasification furnace and biomass gasification treatment method
JP6552857B2 (en) Gasification furnace
JP2007231062A (en) Gasification system
JP2011122490A (en) Coal gasification compound power generation equipment
JP2009040886A (en) Gasification method and gasification system
CN101054537A (en) Chilling device for up coal gas of high temperature
JP6590359B1 (en) Hydrogen production method using biomass as raw material
KR20130131068A (en) Process for the preparation of synthetic gas using steam plasma coal gasfication system
Rokhman Modeling and numerical investigation of the process of vapor-oxygen gasification of solid fuels in a vertical flow reactor under pressure
GB2472610A (en) Gasification Reactor with vertical grates

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772799

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772799

Country of ref document: EP

Kind code of ref document: A1