WO2016158875A1 - Structure having hydrophobic surface, and method for manufacturing same - Google Patents

Structure having hydrophobic surface, and method for manufacturing same Download PDF

Info

Publication number
WO2016158875A1
WO2016158875A1 PCT/JP2016/059965 JP2016059965W WO2016158875A1 WO 2016158875 A1 WO2016158875 A1 WO 2016158875A1 JP 2016059965 W JP2016059965 W JP 2016059965W WO 2016158875 A1 WO2016158875 A1 WO 2016158875A1
Authority
WO
WIPO (PCT)
Prior art keywords
wax
layer
fine particles
resin
molded body
Prior art date
Application number
PCT/JP2016/059965
Other languages
French (fr)
Japanese (ja)
Inventor
慶 荒木
洋介 阿久津
晋也 岩本
Original Assignee
東罐興業株式会社
東洋製罐グループホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015204690A external-priority patent/JP6725232B2/en
Priority claimed from JP2016029525A external-priority patent/JP6734661B2/en
Application filed by 東罐興業株式会社, 東洋製罐グループホールディングス株式会社 filed Critical 東罐興業株式会社
Priority to KR1020177029483A priority Critical patent/KR102011448B1/en
Priority to EP16772756.9A priority patent/EP3275644B1/en
Priority to US15/561,555 priority patent/US10513099B2/en
Priority to CA2980099A priority patent/CA2980099C/en
Priority to AU2016240764A priority patent/AU2016240764C1/en
Priority to CN201680019188.1A priority patent/CN107428115B/en
Priority to RU2017134372A priority patent/RU2675145C1/en
Publication of WO2016158875A1 publication Critical patent/WO2016158875A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/048Forming gas barrier coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/16Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer formed of particles, e.g. chips, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D65/00Wrappers or flexible covers; Packaging materials of special type or form
    • B65D65/38Packaging materials of special type or form
    • B65D65/40Applications of laminates for particular packaging purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D85/00Containers, packaging elements or packages, specially adapted for particular articles or materials
    • B65D85/70Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for
    • B65D85/72Containers, packaging elements or packages, specially adapted for particular articles or materials for materials not otherwise provided for for edible or potable liquids, semiliquids, or plastic or pasty materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings

Definitions

  • the present invention relates to a structure having a hydrophobic surface, and more particularly, to a structure in which a hydrophobic uneven surface is formed by fine particles being distributed on the surface. Also relates to its production method.
  • Plastics are easy to mold and can be easily molded into various forms, and thus are widely used for various applications.
  • various viscous beverages, cooking oils, seasonings, or yogurt It is suitably used as a container for storing various foods, and liquid detergents and pastes.
  • Means for enhancing non-adhesion and sliding properties include distributing hydrophobic fine particles on the surface in contact with the contents, Means such as coating with a solid wax is known (see, for example, Patent Documents 1 to 3). That is, these well-known means provide excellent slipperiness to the contents containing moisture by allowing hydrophobic fine particles and solid wax to be present on the surface in contact with the contents. It is. In particular, when the hydrophobic fine particles are distributed on the surface, irregularities are formed on the surface, thereby greatly improving the slipperiness with respect to the contents.
  • the present invention in a structure including a molded body having a surface formed of a resin layer and fine particles distributed on the resin layer on the surface of the molded body, A structure is provided in which wax is distributed together with fine particles on the surface of the resin layer, and a part of the wax is absorbed in the resin layer.
  • the molded body means that the surface is formed of a resin layer (underlying resin layer), and the structure means that fine particles and wax are distributed in the resin layer on the surface of the molded body. Further, it means that the surface resin layer absorbs wax.
  • the following aspects are preferably employed.
  • the three-dimensional metaball layer has a ball-connected structure having a diameter of 20 to 200 nm as observed with a scanning electron microscope.
  • the fine particles have an average primary particle size of 4 nm to 1 ⁇ m.
  • the melting point of the wax is in the range of 40 ° C to 110 ° C.
  • the resin forming the resin layer has an SP value difference of 1.5 (MPa) 1/2 or less from the wax.
  • the resin forming the resin layer is an acyclic olefin resin, and the wax is at least one of paraffin wax, microcrystalline wax, or polyethylene wax.
  • the molded body has the form of a container, and the fine particles and wax are distributed on the inner surface on the side in contact with the contents contained in the container.
  • the container is a bottle made of olefin resin.
  • the molded body has a form of a lid material applied to the container mouth by heat sealing, and the fine particles and the wax are distributed on the surface in contact with the contents contained in the container. Doing things.
  • a step of preparing a non-solvent coating composition containing fine particles and molten wax, and a molded body having a surface formed of a layer of a wax-absorbing resin A coating step of coating the non-solvent coating composition on the surface of the molded body; Next, the surface of the molded body is heated to a temperature equal to or higher than the melting point of the wax to maintain the state in which the wax is melted, whereby the wax-absorbing resin layer on the surface absorbs the wax. and, A cooling step of solidifying the molten wax by cooling the surface of the molded body after the wax absorption step; A method for producing a structure having a hydrophobic surface is provided.
  • the wax-absorbing resin has a difference in SP value from the wax of 1.5 (MPa) 1/2 or less
  • a molded body having a surface formed by the wax-absorbing resin layer is produced by extrusion molding using the wax-absorbing resin, it is adjacent to the wax-absorbing resin layer.
  • a method for producing a structure having a hydrophobic surface is provided by coextruding a non-solvent composition containing fine particles and molten wax at a position on the surface side.
  • wax is absorbed in a resin layer (hereinafter referred to as an underlayer) on the surface of the molded body, and fine particles are distributed on such an underlayer, and are derived from such fine particles.
  • an underlayer a resin layer
  • fine particles are distributed on such an underlayer, and are derived from such fine particles.
  • a hydrophobic uneven surface is formed on the surface of the structure, and thereby the slipperiness with respect to the moisture-containing substance is greatly improved.
  • the hydrophobic uneven surface formed on the wax-absorbing underlayer as described above can be formed without using an organic solvent, which is the greatest advantage of the present invention.
  • a molded body having a surface formed of a wax-absorbing resin is molded, and a coating composition in which fine particles are dispersed in a molten wax is applied on the surface, and then the wax Heat above the melting point.
  • the wax is absorbed in the base layer on the surface of the molded body, and the fine particles adhere to the surface and are distributed.
  • the degree of unevenness of the hydrophobic uneven surface formed on the surface of the base resin layer can be adjusted by adjusting the heating time, heating temperature and the like. For example, the longer the heating time or the higher the heating temperature, the greater the amount of wax absorbed from the coating composition into the wax-absorbing underlayer.
  • a thin wax layer is formed on the surface of the undercoat layer, and fine particles protrude from the thin wax layer.
  • An uneven surface is formed.
  • the fine particles protruding from the thin wax layer may be exposed in some cases, or in some cases, may protrude with the wax layer formed on the particle surface.
  • the degree of unevenness of the surface greatly depends on the particle size of the fine particles.
  • a metaball solid layer in which the wax is continuous in a metaball shape is formed on the underlayer. Can do.
  • Fine particles are distributed inside such a metaball three-dimensional layer, and a hydrophobic uneven surface is formed by such a metaball three-dimensional layer. On such a hydrophobic uneven surface, a plurality of fine particles are distributed inside one metaball connected to each other. In the present invention, the highest slipping property is exhibited.
  • a hydrophobic uneven surface in which fine particles are distributed on the surface of the base layer in which the wax is absorbed can be formed by utilizing coextrusion. That is, when forming a molded body having the resin layer on the surface by extrusion molding by extruding a wax-absorbing resin melt, the wax melt is placed in a position adjacent to the resin layer and on the surface side. A non-solvent composition in which fine particles are dispersed is coextruded. As a result, the wax, which is a dispersion medium for the fine particles, is absorbed in the adjacent resin layer (underlying layer), and a hydrophobic uneven surface having fine particles distributed on the surface can be formed. Also by such a method, a hydrophobic uneven surface can be formed without using an organic solvent. In the hydrophobic uneven surface thus formed, the hydrophobic uneven surface is formed by the metaball solid layer in which fine particles are distributed in the same manner as described above.
  • the hydrophobic irregular surface due to the fine particles of the structure of the present invention described above can be formed without using an organic solvent, and this is the collection of the organic solvent that evaporates upon heating. This eliminates the need for such a burden, greatly increases production efficiency and reduces costs, avoids adverse effects on the environment, and is extremely advantageous for industrial implementation. Moreover, the hydrophobicity of the surface is further enhanced by using hydrophobic fine particles to which hydrophobicity is imparted as the fine particles.
  • Example 1 The schematic sectional drawing which shows the most suitable hydrophobic uneven
  • Example 1 the three-dimensional image obtained by implementing surface shape measurement using an atomic force microscope before a heating process.
  • Example 1 the three-dimensional image obtained by implementing surface shape measurement using an atomic force microscope after a heating process.
  • Example 1 the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope before a heating process.
  • the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope before a heating process.
  • Example 1 the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process.
  • the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process.
  • Example 2 the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process.
  • the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process.
  • Example 2 the observation image obtained by implementing cross-sectional observation using a transmission electron microscope after a heating process.
  • Example 3 the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process.
  • Example 3 the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process.
  • the measurement result of the endothermic peak in Experiment 1 is shown.
  • the measurement result of the endothermic peak in Experiment 2 is shown.
  • the measurement result of the endothermic peak in Experiment 3 is shown.
  • the structure 10 as a whole has a wax-absorbing property formed on the surface of a molded body molded into a predetermined shape.
  • a base resin layer 1 (base layer) made of a resin is included.
  • the base layer 1 absorbs the wax 3, and the metaball solid layer is formed on the base layer 1 in which the wax 3 is absorbed. 5 is formed.
  • This metaball three-dimensional layer 5 has a form in which spherical metaballs 5a formed of the wax 3 are connected in a three-dimensional manner, and as can be understood from FIG. 1, in one metaball 5a, A plurality of fine particles 7 are distributed.
  • a hydrophobic uneven surface is formed by such a metaball solid layer 5.
  • the diameter (equivalent circle diameter) of the metaball 5a in the metaball solid layer 5 is preferably in the range of 20 to 200 nm, particularly 50 to 150 nm as measured with a scanning electron microscope.
  • the three-dimensional layer 5 is formed by connecting the metaballs 5a, there are voids 9 inside.
  • Such a metaball three-dimensional layer 5 has an uneven surface with a high degree of unevenness including voids inside, and is formed of the hydrophobic wax 3, thus exhibiting high hydrophobicity, a water-containing substance and a hydrophilic substance. Exhibits extremely high slipperiness against substances.
  • the above-described metaball three-dimensional layer 5 uses a non-solvent coating composition (that is, does not contain a solvent) containing fine particles 7 and a wax 3 in a molten state, and the composition is coated on the underlayer 1.
  • the surface of the underlayer 1 is heated so that the molten state of the wax 3 is maintained, and a part of the wax 3 is absorbed by the underlayer 1 and then cooled.
  • the metaball three-dimensional layer 5 forming the hydrophobic uneven surface is formed for the first time by absorbing the wax 3 in the base resin layer 1 in a state where the fine particles 7 coexist with the wax 3 in a molten state. It is a very specific structure.
  • the melted wax 3 exists in a state of containing a plurality of fine particles 7, and the wax 3 is absorbed by the underlayer 1 in this state. 3 is preferentially absorbed by the underlayer 1, and the wax 3 located in the vicinity of the fine particles 7 remains on the underlayer 1 together with the fine particles 7.
  • the three-dimensional metaball layer 5 formed on the base layer 1 in which the wax 3 is absorbed has a structure including the wax 3 and the gap 9.
  • the shape of such a metaball is similar to, for example, a space-filling model widely used for spatially indicating the chemical structure of a substance. Formation of the metaball three-dimensional layer 5 can be confirmed by an atomic force microscope or a scanning electron microscope, as shown in the examples described later.
  • the coating of the non-solvent coating composition containing the fine particles 7 and the wax 3 in a molten state is further heated after the metaball three-dimensional layer 5 is formed,
  • the molten wax 3 present around the fine particles 7 falls to the surface side of the underlayer 1.
  • a thin layer 3a of the wax 3 is formed on the base layer 1 absorbing the wax 3, and the fine particles 7 are distributed in a state of protruding from the thin layer 3a. Will be.
  • the surface of the fine particle 7 is exposed or a minute amount of wax 3 is present covering the surface.
  • the thickness of the thin layer 3a is preferably in the range of about 2 nm to 1 ⁇ m from the viewpoint of ensuring slipperiness and retention of the fine particles 7.
  • the wax 3 when the wax 3 is continuously heated from the state shown in FIG. 2 and kept in a molten state, the wax 3 forming the thin layer 3a is also absorbed by the base resin layer 1, and as a result, Only the fine particles 7 remain on the surface of the underlayer 1. Even in this state, the hydrophobic uneven surface is formed by the fine particles 7 distributed on the surface, and the surface of the underlayer 1 includes the wax 3 exhibiting hydrophobicity. Compared with the embodiment of FIG. 2, the fine particles 7 are likely to fall off and are not suitable for exhibiting slipperiness over a long period of time.
  • the wax 3 When a coating composition using an organic solvent is used, the wax 3 is deposited simultaneously with the volatilization of the organic solvent. Therefore, the wax 3 is not absorbed by the underlayer 1, and as a result, as shown in FIG. As shown, the surface layer 5 in which the fine particles 7 are distributed in the wax 3 is merely formed on the underlayer 1, and there are no voids in the surface layer 5. As compared with the structure 10 of the present invention which does not have an uneven surface and therefore has the surface structure shown in FIGS. 1 and 2, its hydrophobicity is extremely inferior.
  • the underlayer 1 is capable of absorbing wax (hydrocarbon wax, ester wax, etc.).
  • the wax absorptivity of the underlayer 1 can be determined whether or not there is absorptivity by melting the wax to be used and applying it on the underlayer 1 and confirming the absorbency (volume change).
  • the resin used for the underlayer 1 can be selected according to the type of wax used. Also, the type of wax can be selected according to the type of resin used for the underlayer 1.
  • the hydrophobicity is high (for example, the contact angle with water (measured at 23 ° C.) is 70 degrees or more, particularly preferably 85 degrees or more), and the molecular chain contains a polar group.
  • the underlayer 1 it is preferable to form the underlayer 1 using a thermoplastic resin having a relatively loose structure and not having a crosslinked structure, specifically, an olefin-based or polyester-based resin. is there.
  • olefin-based and polyester-based resins examples include low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, or ethylene, propylene, 1-butene, 4-methyl- Random or block copolymers of ⁇ -olefins such as 1-pentene, (meth) acrylic acid, (meth) acrylic acid ester, vinyl acetate, cyclic olefin copolymers, and polyester resins include polyethylene terephthalate, polybutylene Examples thereof include terephthalate, polyethylene naphthalate, and polylactic acid, and these can be blended and used as necessary.
  • the resin forming the underlayer 1 has a molecular weight that can form at least a film, but an extremely high molecular weight (such as ultra-high molecular weight polyethylene) has almost no absorbency of wax. It will stop showing. Therefore, it is generally better to use one having a normal extrusion grade melt flow rate (MFR).
  • MFR melt flow rate
  • the resin for forming the underlayer 1 among the above-described various thermoplastic resins, those having an SP value difference with the wax 3 of 1.5 (MPa) 1/2 or less are particularly preferred. It is best to use.
  • This SP value is an index called a solubility parameter - ⁇ calculated by the calculation method proposed by Small, calculated from the molar traction force constant and molecular volume of the atoms or atomic groups constituting the molecule and their bond type. (PAJ Small: J. Appl Chem., 3, 71 (1953)).
  • SP value is widely used as a scale for evaluating the compatibility between substances. The smaller this difference is, the higher the affinity between both substances is, and the higher the compatibility is. ing.
  • SP values of paraffin wax and typical thermoplastic resins are as follows. SP value (MPa) 1/2 Difference in SP value Paraffin wax 17.3 0 Polyethylene (LDPE) 17.9 0.6 Polyethylene (HDPE) 18.7 1.4 Homopolypropylene (h-PP) 16.4 0.9 Cyclic olefin copolymer (COC) 13.8 3.5 Ethylene vinyl alcohol copolymer (EVOH) 18.9 1.6 Polyethylene terephthalate (PET) 22.7 5.4 PET-G 20.4 3.1 PET-G is amorphous polyethylene terephthalate, which is a copolymerized polyethylene terephthalate containing a copolymer component.
  • an acyclic olefin resin such as polyethylene or polypropylene can be suitably used as the resin for forming the base layer 1 on the surface of the molded body.
  • the resin having a difference in SP value with respect to the wax 3 in the above range varies depending on the type of the wax 3 to be used, but since the SP value of the wax 3 is substantially the same as that of the paraffin wax, in general, Acyclic olefin resins such as low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene, (meta Examples thereof include random or block copolymers of ⁇ -olefins such as acrylic acid, (meth) acrylic acid ester, and vinyl acetate.
  • Acyclic olefin resins such as low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene, (meta Examples thereof include random or block copolymers of ⁇ -olefins such as acrylic acid, (me
  • the resin for the underlayer 1 can be used.
  • the thickness of the wax-absorbing underlayer 1 as described above is not particularly limited, but in general, it preferably has a thickness of about 5 to 200 ⁇ m, particularly about 10 to 100 ⁇ m. If this thickness is too thin, the amount of absorption of the wax 3 decreases, and as a result, the metaball three-dimensional layer 5 becomes difficult to be formed, and the hydrophobic effect due to surface irregularities may be reduced. Further, when the thickness of the underlayer 1 is larger than necessary, almost all of the used wax 3 is easily absorbed by the underlayer 1, and for example, a structure as shown in FIG. 1 or FIG. 2 is formed. It may be difficult to control. That is, the structure in which the fine particles 7 are distributed directly on the surface of the underlayer 1 tends to be reduced, the holding power of the fine particles 7 is reduced, the particles 7 are liable to fall off, and it is difficult to ensure stable slipperiness. .
  • the crystallinity is 60% under a temperature condition in which the underlayer 1 absorbs the wax 3 in a molten state.
  • a resin that is preferably 50% or less and use it as the resin for the base layer 1 (base resin).
  • the wax 1 in the molten state is absorbed by the base layer 1 at a temperature lower than the melting point of the base resin while maintaining the crystallinity within such a range.
  • the base layer 1 absorbs the molten wax 3 in a state where the crystallinity of the base resin is high, even if the resin has good compatibility with the wax 3, the crystal component is Since there are many, the absorbability of the wax 3 is reduced, the amount of absorbed wax is insufficient, the formation of the metaball three-dimensional layer 5 as shown in FIG. 1 is difficult, and the thin wax 3 as shown in FIG.
  • the structure in which the fine particles 7 protrude from the layer 3a may not be formed.
  • the crystallinity of the base resin can be measured from the DSC temperature rise curve of the resin. Therefore, based on this curve, the crystallinity is in the temperature range where the crystallinity falls within the above range and below the melting point of the resin.
  • the wax 3 may be absorbed by the underlayer 1 at a temperature.
  • the wax 3 used in the present invention is used as a dispersion medium for the fine particles 7. At the same time, even in the form distributed on the surface of the underlayer 1, the wax 3 exhibits hydrophobicity and does not inhibit its slipperiness. It has characteristics.
  • paraffin wax is a white solid at normal temperature produced from a petroleum refining process, and is mainly composed of linear paraffin having about 20 to 30 carbon atoms and a small amount of isoparaffin.
  • carnauba wax is a light yellow to light brown solid collected from carnabay palm, and mainly contains a hydroxy acid ester having 16 to 34 carbon atoms.
  • those having a melting point in the range of 50 to 100 ° C. are particularly suitable. That is, if the melting point of the wax 3 is too low, the wax 3 flows during the use of the structure 10 in summer and the like, and at the same time, the metaball three-dimensional layer 5 in FIG. 1 and the wax 3 shown in FIG. The thin layer 3a may fall off. On the other hand, if the melting point of the wax 3 is too high, the heating temperature for absorbing the wax 3 into the base layer 1 must be high, and the operation is limited to extrusion molding, or the base layer of the wax 3 It may be difficult to effectively absorb 1.
  • synthetic hydrocarbon waxes, plant waxes, animal waxes, mineral waxes and the like can also be used on the condition that the melting point is within the above range.
  • the wax 3 used in the present invention is preferably paraffin wax, polyethylene wax, or microcrystalline wax, for example, when an acyclic olefin resin is used for the underlayer 1. That is, these waxes have a difference in SP value from the non-cyclic olefin resin as the base resin in the above-described range, and show high compatibility with the base layer 1. Further, since the speed at which the wax 3 is absorbed by the underlayer 1 is a diffusion process, the absorption speed is slower as the molecular weight is larger, depending on the molecular weight of the wax 3.
  • the average molecular weight (Mn) of the wax 3 used in the present invention is 10,000 or less, preferably 5000 or less, and most preferably 1000 or less.
  • the wax 3 is absorbed in the underlayer 1 by comparing the DSC temperature rise curve of the underlayer 1 with that of the underlayer resin alone. That is, when the wax 3 is absorbed in the underlayer 1, an endothermic peak (which may appear as a shoulder depending on the amount of absorption) is formed in a lower temperature range than the melting point of the underlayer resin alone. Can be confirmed. Moreover, it can also confirm by performing extraction from the base layer 1 using a solvent.
  • Fine particles 7 are used as a roughening material, and are an essential material for forming the metaball-shaped wax layer 5. That is, if the base layer 1 only absorbs the wax 3 and forms the wax layer 5 on the base layer 1, such a fine particle 7 is not blended, and the melt of the wax 3 is added to the base layer 1. Just apply. However, in this case, since the wax layer 3 does not have a metaball shape, the surface of the wax layer 5 does not become an uneven surface. Therefore, it is necessary to form an uneven surface by post-treatment such as blasting or etching. Although it is possible to ensure slipperiness by such means, in this case, a special apparatus for post-processing is required, and the wax layer 5 is formed without using an organic solvent.
  • the advantage of the present invention that the cost can be reduced is diminished.
  • the molded body provided with the base layer 1 must have a form suitable for post-processing.
  • post-processing is performed. Becomes difficult.
  • a metaball shape having voids 9 therein is not formed, so that the slipperiness is also inferior to the wax layer 5 in the form of FIG. It becomes a thing. Therefore, in the present invention, it is most preferable to use the fine particles 7 as a roughening material to form a metaball-shaped wax layer 5 as shown in FIG.
  • the fine particles 7 used as the roughening material are blended into the melt of the wax 3 and when the melt is applied to the base layer 1, the particulate layer 7 maintains the granular shape in the base layer 1.
  • particles of inorganic oxides such as silica, titanium oxide, and alumina, and particles of carbonates such as calcium carbonate are suitable. used.
  • the primary particle size (or minimum structural unit) is desirably in the range of 3 nm to 1 ⁇ m, preferably 5 nm to 500 nm, more preferably 10 nm to 200 nm.
  • the fine particles 7 act as a core of the metaball 5a forming the metaball-shaped wax layer 5, and the size of the metaball is considered to depend on the primary particle size of the fine particles 7 to be used. Because it is.
  • the metaball-shaped wax layer 5 exhibiting excellent slipperiness with respect to the content containing moisture, it is preferable to use fine particles 7 having an average primary particle diameter in the above range.
  • the average primary particle diameter of the fine particles 7 can be measured by observation with a scanning electron microscope.
  • the surface of the fine particles 7 as described above is a functional group having a critical surface tension of 30 mN / m or less, for example, an alkyl group such as a methyl group, an alkylsilyl group such as a methylsilyl group, a fluoroalkyl group, or a fluoroalkylsilyl group. It is preferably modified to be hydrophobized.
  • a hydrophobic functional group for example, when the fine particles 7 are dispersed in the wax 3 in a molten state, good dispersion is obtained, and the wax 3 is retained in the vicinity of the fine particles 7, and the The wax layer 5 having a shape can be easily formed, and the wax layer 5 having no partial defects can be formed uniformly.
  • the angle of the surface where the pure water slides down is as follows.
  • the defined falling angle can be 5 ° or less, and the slipperiness with respect to the viscous content containing moisture can be remarkably enhanced.
  • hydrophobic functional groups include coupling using a hydrophobizing agent having these functional groups (for example, silane compounds, siloxane compounds, silazane compounds, titanium alkoxide compounds, etc.), fatty acids, metal soaps, etc. This is done by the coating used.
  • a hydrophobizing agent having these functional groups for example, silane compounds, siloxane compounds, silazane compounds, titanium alkoxide compounds, etc.
  • the hydrophobic fine particles 7 that are particularly preferably used are hydrophobic silica fine particles and calcium carbonate fine particles due to cost and availability, and are surface-modified with dimethylsilyl groups or trimethylsilyl groups, or silicone oils. Hydrophobic silica fine particles that are surface-coated with, or calcium carbonate fine particles that are surface-coated with a fatty acid or metal soap are most preferred.
  • the fine particles 7 described above are distributed in the metaballs 5a forming the wax layer 5 as shown in FIG. 1, but such a surface structure can be easily formed.
  • the amount of surface distribution varies depending on the primary particle size, but generally 30 to 900 mg / m 2 , particularly 300 to 600 mg / m 2 . It is preferable to be in the range.
  • the hydrophobic uneven surface forming the surface structure of the structure 10 of the present invention described above is a non-solvent coating composition (hereinafter referred to as a wax composition) containing fine particles 7 and a melted wax 3 as described above. (Referred to as an object). That is, a molded body having a wax-absorbing base layer 1 on the surface is molded in advance, and a wax composition containing the wax 3 in a molten state is sprayed on the surface of the molded body, spray coating, roller coating, knife coating, etc.
  • a wax composition containing fine particles 7 and a melted wax 3 as described above.
  • the structure 10 having the target surface structure can be obtained by further heating and holding the surface so that the molten state of the wax is maintained, and absorbing the wax 3 in the surface underlayer 1 on the surface. (Hereinafter, this method is referred to as a coating method).
  • the heating temperature for absorbing the wax 3 in the molten state into the base layer 1 is not less than the melting point of the wax 3, and in particular, the glass transition temperature (Tg) of the base resin layer 1. It is preferable that the temperature is lower than the melting point of the base resin. However, as described above, the temperature at which the crystallinity of the base resin is not more than a predetermined range is preferable.
  • the heating temperature Y is expressed by the following conditional expression: X-5 ⁇ Y ⁇ X-50 It is more preferable to set so as to satisfy the above, and it is more preferable to heat and hold the wax melt at such a temperature for 5 seconds to 10 minutes, particularly for about 10 seconds to 5 minutes. That is, if the heating temperature Y ° C. is too low with respect to the melting point X ° C. of the base resin, many crystals remain in the base layer 1, and the remaining crystals inhibit the absorption of the wax 3 into the base layer 1. In addition, it takes a long time to form the wax layer 5 having the form shown in FIG. 1, which tends to be disadvantageous in terms of productivity.
  • the crystallinity of the base resin under a heating condition that satisfies the above conditions is 60% or less, particularly 5 to 50%.
  • the crystallinity of the base resin under such heating conditions can be calculated from, for example, a crystal melting peak obtained from a DSC temperature rise curve.
  • this heating can also be performed after the wax in the wax composition applied to the surface is cooled and solidified.
  • the surface structure as described above can be easily formed on the entire surface of the structure 10 (molded body).
  • the structure The surface structure as described above can be formed only on a part of the surface of the body 10.
  • the surface structure described above can also be formed by a coextrusion method.
  • the above-described surface structure and the underlayer 1 are coextruded with the wax-absorbing base resin and the wax composition so that the wax composition is adjacent to the surface side of the base resin layer. It is possible to perform molding of the molded body provided with In this case, since both the wax 3 and the base resin in the wax composition are adjacent to each other in a molten state, the wax 3 is quickly absorbed into the base layer 1, and the wax 3 is used as the base layer. 1 has the advantage that no special heat treatment is required for absorption. However, in this method, as shown in FIG.
  • the concentration of the hydrophobic fine particles 7 in the wax composition to be used can be easily applied or co-extruded using this composition.
  • the surface structure of FIG. 2 is set so as to be easily formed, and is usually 50 parts by mass or less, particularly 3.0 to 10.0 parts by mass, most preferably 5.0 to 8. About 0 parts by mass.
  • a predetermined surface structure can be formed without using an organic solvent by any of the above methods.
  • the wax 3 described above is absorbed in the base layer 1 on the surface of the molded body formed into a predetermined shape, and the surface structure shown in FIG. 1 or 2 is formed on the surface of the base layer 1. As long as it is formed, it can take various forms.
  • the above-mentioned molded body is a single-layer structure made only of the base resin that forms the base layer 1, and the surface structure shown in FIG. 1 or 2 may be formed on the surface of the single-layer structure. It is also possible to use a structure in which the underlayer 1 is formed on the surface of glass, metal foil, paper, or the like as a molded body. In particular, when the structure 10 of the present invention is used as a lid for a container, a structure in which the base layer 1 is laminated on paper or metal foil is often used as a molded body.
  • a multilayer structure in which the base layer 1 is laminated with another resin layer can be used as a molded body, and the surface structure shown in FIGS. 1 and 2 can be formed on the surface thereof.
  • a multilayer structure for example, a layer structure in which an oxygen barrier layer and an oxygen absorption layer are appropriately laminated on one surface of the base resin layer 1 through an adhesive resin layer, and the same kind as the resin layer 1 is used.
  • stacked the layer of polyester resins, such as these resin and polyethylene terephthalate, can be illustrated.
  • Such a multilayer structure is particularly applied when the structure 10 is used in the form of a container.
  • the oxygen barrier layer in such a multilayer structure is formed of, for example, an oxygen barrier resin such as ethylene-vinyl alcohol copolymer or polyamide. As long as the oxygen barrier property is not impaired, Other thermoplastic resins may be blended.
  • the oxygen absorbing layer is a layer containing an oxidizing polymer and a transition metal catalyst, as described in JP-A No. 2002-240813, etc., and the oxidizing polymer is oxygenated by the action of the transition metal catalyst. As a result, the oxygen is absorbed and the permeation of oxygen is blocked.
  • an oxidizable polymer and a transition metal catalyst are described in detail in the above-mentioned JP-A No.
  • oxidizable polymer examples include Olefin resins having tertiary carbon atoms (eg, polypropylene, polybutene-1, etc., or copolymers thereof), thermoplastic polyesters or aliphatic polyamides; xylylene group-containing polyamide resins; ethylenically unsaturated group-containing polymers ( For example, a polymer derived from a polyene such as butadiene).
  • the inorganic salt, organic acid salt, or complex salt of transition metals, such as iron, cobalt, and nickel are typical.
  • the adhesive resin used for adhesion of each layer is known per se, for example, olefin graft-modified with carboxylic acids such as maleic acid, itaconic acid, fumaric acid or anhydrides thereof, amides, esters, etc. Resins; ethylene-acrylic acid copolymers; ion-crosslinked olefin copolymers; ethylene-vinyl acetate copolymers; and the like are used as adhesive resins.
  • the thickness of each layer described above may be set to an appropriate thickness according to the characteristics required for each layer.
  • structure 10 can have various forms, it can improve slipperiness (that is, non-adhesiveness and slipping property) particularly for viscous substances containing moisture, so that it can be used for packaging containers and lids. It is preferably used in the form of a packaging material such as a material or a cap.
  • the base layer 1 is often in a form of being laminated on paper or metal foil.
  • the above-described surface structure is formed on the inner surface of the lid material. This is advantageous in that it prevents adhesion of a gel-like or pudding-like product such as yogurt.
  • the underlayer 1 absorbs the wax 3, the softening point is lowered or the thin layer 3 a of the wax 3 is formed on the underlayer 1, so that the heat sealability is improved. There is also.
  • the form of the container to which the present invention is suitably applied is not particularly limited, and may be a cup or cup shape, bottle shape, bag shape (pouch), syringe shape, acupoint shape, tray, paper plate, paper tray shape, or the like. It may have a form corresponding to the material and may be stretch-molded. Other than the form of containers, there are dishes such as spoons, forks, and lotus roots, kitchenware, and lids.
  • a preformed article having the above-described underlayer 1 is formed by a method known per se, and this is applied to a film by heat sealing, vacuum forming such as plug assist molding, blow molding or the like. It is subjected to processing to form a container. Further, as described above, depending on the form, wax that has been heated and heated by spraying or coextrusion is used by spraying or using a roller or knife coater. By applying to the inner surface of the inner surface, as described in Japanese Patent Application No.
  • FIG. 4 shows a direct blow bottle which is the most preferable form of the structure 10 of the present invention. That is, in FIG. 4, the bottle-shaped structure indicated by 10 as a whole has a neck portion 11 provided with a thread, a trunk wall 15 connected to the neck portion 11 via a shoulder portion 13, and a lower end of the trunk wall 15.
  • the bottle 10 has a closed bottom wall 17, and the inner surface of the bottle 10 is formed of the resin layer 1 in which the wax 3 is absorbed as described above. A distributed surface structure in which the fine particles 7 protrude from the thin layer 3a is formed.
  • a structure 10 has a high slipperiness with respect to a moisture-containing viscous substance, in particular, a viscous content (25 ° C.) of 100 mPa ⁇ s or more, for example, ketchup, aqueous paste, honey, It is most suitable as a filling bottle for viscous contents such as various sauces, mayonnaise, mustard, dressing, jam, chocolate syrup, milky lotion, liquid detergent, shampoo, rinse and the like.
  • Crystallinity degree of each resin was computed from the result of the endothermic peak obtained by provision of said heat history using the following formula
  • Crystallinity of base resin (%) ( ⁇ H 0 / ⁇ Hm °) ⁇ 100
  • ⁇ H 0 Heat of fusion of the base resin obtained by measurement (J / g)
  • ⁇ Hm ° Heat of fusion of complete crystal of each base resin (J / g)
  • ⁇ Hm ° (J / g)
  • ⁇ Base resin> A film having a thickness of about 400 ⁇ m was prepared using each material, and used as a test piece. (However, PET was evaluated using a biaxially stretched film (thickness: 100 ⁇ m).)
  • Low density polyethylene (LDPE) Melting point: 108 ° C Crystallinity: 30% Glass transition point (Tg): -78 ° C SP value ( ⁇ 2): 17.9 (MPa) 1/2 Difference in SP value from paraffin wax: 0.6
  • High density polyethylene (HDPE) Melting point: 132 ° C Crystallinity: 55% Glass transition point (Tg): -78 ° C SP value ( ⁇ 2): 18.7 (MPa) 1/2 Difference in SP value from paraffin wax: 1.4
  • Homo polypropylene (h-PP) Melting point: 164 ° C Crystallinity: 42% Glass transition point (Tg): about 5 ° C SP value ( ⁇ 2): 16.4 (MPa) 1/2 Difference in SP value from paraffin wax: 0.9 Cyc
  • Example 1 As the wax, paraffin wax was used, and hydrophobic wet silica was used as the surface roughening fine particles. Also, low density polyethylene (LDPE) was used as the base resin, and the base layer (thickness 20 ⁇ m) of this polyethylene was used as a general base paper ( 250 g / m 2 ), and used as a molded body for forming an uneven surface.
  • LDPE low density polyethylene
  • Paraffin wax (melting point: 50 to 52 ° C.) was supplied to a vial having a capacity of 50 ml, heated and melted at 90 ° C., and hydrophobic wet silica was added to prepare a wax composition (non-solvent coating composition).
  • a wax composition non-solvent coating composition
  • the mixing ratio of wax to hydrophobic wet silica is 93: 7 (weight ratio).
  • a wax coater (# 3) heated to about 70 ° C. with stirring this wax composition while being heated at 90 ° C. is used as an underlayer (LDPE layer having a thickness of 20 ⁇ m) on the surface of the molded body.
  • the multilayer structure was prepared by coating.
  • the multilayer structure was heated in an oven at 90 ° C. for 5 minutes to maintain the molten state of the wax component contained in the coating layer of the wax composition, and then cooled at room temperature.
  • Table 1 shows the layer structure, the composition of the wax composition used, and the type of the base resin for the multilayer structure.
  • Table 2 shows values of the sliding angle and the specific surface area of the uneven structure.
  • three-dimensional images obtained by measuring the surface shape are shown in FIGS. 5 and 6, respectively.
  • observation images obtained by morphological observation of the rugged surface structure by SEM are shown in FIG. 7, FIG. 8, FIG. 9, and FIG.
  • Example 2 A wax composition was prepared in the same manner as in Example 1 except that the hydrophobic dry silica described above was used in place of the hydrophobic wet silica as the roughening fine particles, and a multilayer structure was prepared in the same manner.
  • Table 1 shows the layer structure, the composition of the wax composition used, and the type of the base resin for this multilayer structure.
  • Table 2 shows various measurement results before and after oven heating. Further, FIG. 11 and FIG. 12 show observation images obtained from the results of morphological observation, and FIG. 13 shows images obtained by cross-sectional observation.
  • Table 1 shows the layer structure, the composition of the wax composition used, and the type of the base resin for this multilayer structure.
  • Table 2 shows various measurement results before and after oven heating. Further, FIGS. 14 and 15 show observation images obtained as a result of morphological observation.
  • the basic layer structure of the multilayer structure manufactured in Examples 1 to 3 is as follows, with the formation surface of the hydrophobic uneven structure as the inner surface.
  • the above solvent coating composition is applied to the surface of the base layer (LDPE, 20 ⁇ m) formed on the base material layer (base paper), and a multilayer structure having the following basic composition Was made.
  • Solvent coating layer / underlying resin layer (LDPE, 20 ⁇ m) / base material layer (base paper) The prepared multilayer structure was heated using an oven at 90 ° C. for 5 minutes to melt the binder component contained in the solvent coating layer, and then cooled at room temperature.
  • Table 1 shows the layer structure, the composition of the solvent coating composition used, and the type of the base resin for this multilayer structure.
  • Table 2 shows various measurement results before and after oven heating.
  • Example 2 A wax composition was applied to the underlayer in the same manner as in Example 1 except that a PET film (film thickness 100 ⁇ m) was used as the underlayer, and a non-solvent coating layer (wax composition) / PET film (100 ⁇ m) A multilayer structure was created. This multilayer structure was heated using an oven at 90 ° C. for 5 minutes to melt the wax component contained in the non-solvent coated product layer, and then the multilayer structure was cooled at room temperature. Table 1 shows the layer structure, the composition of the non-solvent coating composition (wax composition) used, and the type of the base resin for this multilayer structure. Table 2 shows various measurement results before and after oven heating.
  • Example 1 From the results of Tables 1 and 2, the specific surface area of the multilayer structure of Example 1 is 1.10 before the heating step (FIG. 5) and 1.28 after the heating step (FIG. 6). Thus, it can be seen that the specific surface area of the multilayer structure has increased. Regarding the sliding angle of the viscous contents, the sample before the heating process had a sliding angle value of 90 ° (not sliding), whereas the sample after the heating process had a sliding angle value of 6 °. . Therefore, it can be seen that as the specific surface area of the sample surface increases, the sliding property is greatly improved. Examples 2 and 3 are examples in which hydrophobic dry silica and hydrophobic calcium carbonate are used as the roughening material fine particles, respectively. However, the viscous content slides down before the heating step as in Example 1. The result shows that the viscous content slides down after the heating step, whereas the state does not.
  • FIG. 7 and 8 show the results of observing the surface state of the sample before the heating step in Example 1, and the fine particles form a layer mixed with wax, and the uneven structure of the fine particles is completely observed. A state of smoothness was seen.
  • FIG. 9 which is the result of observing the state of the sample after the heating process in Example 1, a concavo-convex structure was formed on the surface, and it was seen that the surface structure was changed by heating. .
  • FIG. 10 shows the result of further enlarging the surface and observing, but a metabol solid layer is formed, and one spherical metaball forming this solid layer is about 100 nm. It was confirmed that it has an equivalent circle diameter.
  • FIG. 11 and 12 show the results of observing the surface morphology of the multilayer structure after the heating process in Example 2.
  • FIG. As in Example 1, it was observed that wax was coated around the fine particles, a metabol solid layer was formed, and the equivalent circle diameter of one metaball was about 50 nm.
  • FIG. 13 is a result of observing a cross section of the uneven surface structure of Example 2.
  • the notation: A (black) indicates hydrophobic particles
  • the notation: B indicates the presence of wax. Therefore, it was confirmed that the surface uneven structure in the surface layer was formed by hydrophobic particles and wax.
  • FIG. 14 and 15 are the results of observing the surface state of Example 3.
  • FIG. 14 and 15 are the results of observing the surface state of Example 3.
  • the surface of the fine particles was covered with wax to form a metabol solid layer, and the equivalent circle diameter of the metaball was about 100 nm. Therefore, it was verified that the same uneven structure can be formed even if the fine particles are other than hydrophobic silica.
  • Example 1 all the samples having good liquid repellency, as in Example 1, Example 2 and Example 3, have the roughening material fine particles dispersed in the wax and contain the solvent.
  • An uneven surface structure is formed by a method in which a coating composition that has not been coated is coated and cooled on a base layer made of a resin compatible with wax and then the wax component is melted by a heating process. Assuming the formation of the uneven surface structure in the present invention, the formed uneven surface structure is an uneven shape having a smooth curved surface, and hydrophobic fine particles having an average primary particle size of nano order are dispersed inside the unevenness. is doing.
  • the unevenness of the formed surface has a scale of about 100 nm.
  • Paraffin wax (melting point: 50 to 52 ° C.) is supplied as a wax melt to a 50 ml capacity vial, heated and melted at 70 ° C., added with the above-described hydrophobic dry silica, and a wax composition in which fine particles are dispersed (non-coated) Solvent coating composition) was prepared.
  • the mixing ratio of wax to hydrophobic dry silica (wax: silica) is 93: 7 (weight ratio).
  • This multilayer structure is heated using an oven under three conditions of 60 ° C.-5 min, 90 ° C.-5 min, and 120 ° C.-5 min to melt the wax component contained in the coating layer of the wax composition, and then at room temperature. Cooled down.
  • the above-mentioned measurement of the sliding angle of distilled water and surface observation were performed on the multilayer structure samples before and after oven heating.
  • the obtained sliding angle value and the presence or absence of the uneven structure are shown in Table 3 together with the type of the base resin used to create the multilayer structure and its physical properties (melting point, SP value, difference in SP value from wax ⁇ SP). It was.
  • corrugated surface structure by SEM was also performed.
  • the obtained observation image is shown in FIG.
  • the crystallinity of the base layer under each heating condition was evaluated, and the change in the endothermic peak of the sample was measured.
  • the result is shown in FIG.
  • the amount of heat of fusion ⁇ H T of the resin under each heating temperature condition was determined from the results of FIG. 17 to calculate the crystallinity.
  • Table 5 The results are shown in Table 5.
  • the heating temperature in Experiment 2 60 ° C., 90 ° C., 120 ° C., 150 ° C.
  • the crystallinity ⁇ H 60 , ⁇ H 90 , ⁇ H 120 , ⁇ H 150
  • the surface state tended not to change.
  • the test piece when heated at 90 ° C. is in a state where the resin crystallinity is not changed ( ⁇ H 90 ⁇ H 0 ), and the surface structure does not change, and there is a tendency that the uneven structure is not formed. It was.
  • amorphous portion gradually increases with increasing temperature. Thereafter, since the peak reaches the peak at 164 ° C., 164 ° C. is the melting point, and it can be evaluated that the crystalline portion is completely melted and amorphous in a temperature range higher than that.
  • test piece when heated at 120 ° C. was in a state where the crystallinity of the resin was not changed ( ⁇ H 120 ⁇ H 0 ), and a tendency that the surface structure did not change was observed.
  • the test piece is heated at 150 ° C. that is, when all of the crystal part of the resin is melted ( ⁇ H 150 ⁇ H 0 )
  • the concavo-convex structure of the metaball shape obtained under these conditions is a three-dimensionally stacked structure and has a large amount of fine voids. It is considered that a particularly high liquid repellency is expressed. The reason why such a structure is formed is that when the multilayer structure is heated, the paraffin wax used as a dispersion medium diffuses into the base resin and is absorbed. it is conceivable that.
  • a combination of a base resin and a wax having good compatibility with each other is selected, and coating is performed on the surface in a state where fine particles are dispersed in the wax, and the crystal portion of the base resin is sufficiently melted. Further, by heating the multilayer structure under the condition that the crystal part remains, it is presumed that a metaball-shaped structure is rapidly formed on the surface by the wax component being absorbed into the base resin.

Abstract

A structure including: a molded body, the surface of which being formed from a base resin layer 1; and microparticles distributed on the base resin layer 1 on the surface of the molded body, wherein the structure is characterized in that wax 3 is distributed on the surface of the base resin layer 1 together with microparticles 7, and some of the wax 3 is absorbed into the base resin layer 1.

Description

疎水性表面を有する構造体及びその製造方法Structure having hydrophobic surface and method for producing the same
 本発明は、疎水性表面を有する構造体に関するものであり、より詳細には、微粒子が表面に分布していることにより、疎水性の凹凸面が形成されている構造体に関するものであり、さらには、その製造方法にも関する。 The present invention relates to a structure having a hydrophobic surface, and more particularly, to a structure in which a hydrophobic uneven surface is formed by fine particles being distributed on the surface. Also relates to its production method.
 プラスチックは、成形が容易であり、種々の形態に容易に成形できることなどから、各種の用途に広く使用されており、例えば、各種飲料、食油、調味液、或いはヨーグルトのようなゲル状の粘稠な食品、さらには液体洗剤や糊などを収容するための容器として好適に使用されている。 Plastics are easy to mold and can be easily molded into various forms, and thus are widely used for various applications. For example, various viscous beverages, cooking oils, seasonings, or yogurt It is suitably used as a container for storing various foods, and liquid detergents and pastes.
 ところで、液状の内容物或いはゲル状の内容物が収容されている容器では、内容物の容器内面への付着残存を有効に防止し(内容物の非付着性)、或いは内容物を容器から速やかに排出すること(内容物の滑落性)が求められる場合が多い。 By the way, in a container in which liquid contents or gel-like contents are stored, it is possible to effectively prevent the contents from remaining on the inner surface of the container (non-adhesiveness of the contents), or to quickly remove the contents from the container. In many cases, it is required to be discharged (sliding property of contents).
 内容物に対する非付着性や滑落性(以下、これらの特性を滑り性と呼ぶことがある)を高めるための手段としては、内容物と接触する表面に、疎水性微粒子を分布させたり、該表面を固体ワックスで被覆するなどの手段が知られている(例えば、特許文献1~3参照)。
 即ち、これらの公知の手段は、内容物と接触する表面に、疎水性微粒子や固体ワックスを存在させておくことにより、水分を含有する内容物に対して、優れた滑り性を付与するというものである。特に、疎水性微粒子が表面に分布している場合には、表面に凹凸が形成され、これにより、内容物に対する滑り性が大きく向上するものとなっている。即ち、凹凸の表面を内容物が移動する場合、凹凸間に存在する空気と接触しながら内容物が移動するが、空気は最も撥水性が大きい。従って、疎水性微粒子が示す撥水性と凹凸による撥水性とが相俟って内容物に対する滑り性が大きく増大するわけである。
Means for enhancing non-adhesion and sliding properties (hereinafter, these properties may be referred to as slipperiness) to the contents include distributing hydrophobic fine particles on the surface in contact with the contents, Means such as coating with a solid wax is known (see, for example, Patent Documents 1 to 3).
That is, these well-known means provide excellent slipperiness to the contents containing moisture by allowing hydrophobic fine particles and solid wax to be present on the surface in contact with the contents. It is. In particular, when the hydrophobic fine particles are distributed on the surface, irregularities are formed on the surface, thereby greatly improving the slipperiness with respect to the contents. That is, when the contents move on the uneven surface, the contents move while in contact with the air existing between the unevenness, but the air has the highest water repellency. Therefore, the water repellency exhibited by the hydrophobic fine particles and the water repellency due to the unevenness are combined to greatly increase the slipperiness to the contents.
特開2012-228787JP2012-228787A 特許第5490574号Patent No. 5490574 特許第4348401号Patent No. 4348401
 しかしながら、疎水性微粒子や固体ワックスを用いた従来公知の手段は、何れも、これらの成分を有機溶媒に溶解した塗布液を使用し、この塗布液を表面に塗布し、乾燥するという手段を使用しているため、溶媒除去のために環境に対する負荷が大きいという問題があった。 However, all of the conventionally known means using hydrophobic fine particles or solid wax use a coating solution in which these components are dissolved in an organic solvent, and this coating solution is applied to the surface and dried. Therefore, there has been a problem that the burden on the environment is great for removing the solvent.
 従って、本発明の目的は、微粒子とワックスとを使用するが、有機溶媒を全く使用せずに形成された疎水性表面を有する構造体を提供することにある。
 本発明の他の目的は、上記のような疎水性表面が形成されている構造体の製造方法を提供することにある。
Accordingly, it is an object of the present invention to provide a structure having a hydrophobic surface formed using fine particles and wax but without using any organic solvent.
Another object of the present invention is to provide a method for producing a structure having a hydrophobic surface as described above.
 本発明によれば、表面が樹脂層で形成されている成形体と、該成形体の表面の樹脂層上に分布している微粒子とを含む構造体において、
 前記樹脂層の表面には、微粒子と共にワックスが分布していると共に、該樹脂層中に前記ワックスの一部が吸収されていることを特徴とする構造体が提供される。
 尚、本明細書において、成形体とは、表面が樹脂層(下地樹脂層)で形成されているものを意味し、構造体とは、成形体表面の樹脂層に微粒子及びワックスが分布しており、さらには該表面樹脂層にワックスが吸収されているものを意味する。
According to the present invention, in a structure including a molded body having a surface formed of a resin layer and fine particles distributed on the resin layer on the surface of the molded body,
A structure is provided in which wax is distributed together with fine particles on the surface of the resin layer, and a part of the wax is absorbed in the resin layer.
In this specification, the molded body means that the surface is formed of a resin layer (underlying resin layer), and the structure means that fine particles and wax are distributed in the resin layer on the surface of the molded body. Further, it means that the surface resin layer absorbs wax.
 本発明の構造体においては、以下の態様が好適に採用される。
(1)前記微粒子として疎水性微粒子を使用すること、
(2)前記樹脂層の上に、前記ワックスがメタボール状に連なったメタボール立体層が形成されており、該メタボール立体層の内部に、前記微粒子が分布していること。
(3)前記メタボール立体層は、走査型電子顕微鏡で観察して、20~200nmの径のボールの連結構造を有していること。
(4)前記微粒子は、4nm~1μmの平均一次粒径を有していること。
(5)前記ワックスの融点が40℃~110℃の範囲にあること。
(6)前記樹脂層を形成している樹脂が、前記ワックスとのSP値の差が1.5(MPa)1/2以下のものであること。
(7)前記樹脂層を形成している樹脂が非環状のオレフィン系樹脂であり、前記ワックスが、パラフィンワックス、マイクロクリスタリンワックス、或いはポリエチレンワックスの少なくとも1種であること。
(8)前記成形体が容器の形態を有しており、容器に収容される内容物と接触する側の内面に、前記微粒子及びワックスが分布していること。
(9)前記容器がオレフィン系樹脂製のボトルであること。
(9)前記成形体が、容器口部にヒートシールにより施される蓋材の形態を有しており、容器に収容されている内容物と接触する側の面に、前記微粒子及びワックスが分布していること。
In the structure of the present invention, the following aspects are preferably employed.
(1) using hydrophobic fine particles as the fine particles,
(2) A metaball solid layer in which the wax is continuous in a metaball shape is formed on the resin layer, and the fine particles are distributed inside the metaball solid layer.
(3) The three-dimensional metaball layer has a ball-connected structure having a diameter of 20 to 200 nm as observed with a scanning electron microscope.
(4) The fine particles have an average primary particle size of 4 nm to 1 μm.
(5) The melting point of the wax is in the range of 40 ° C to 110 ° C.
(6) The resin forming the resin layer has an SP value difference of 1.5 (MPa) 1/2 or less from the wax.
(7) The resin forming the resin layer is an acyclic olefin resin, and the wax is at least one of paraffin wax, microcrystalline wax, or polyethylene wax.
(8) The molded body has the form of a container, and the fine particles and wax are distributed on the inner surface on the side in contact with the contents contained in the container.
(9) The container is a bottle made of olefin resin.
(9) The molded body has a form of a lid material applied to the container mouth by heat sealing, and the fine particles and the wax are distributed on the surface in contact with the contents contained in the container. Doing things.
 また、本発明によれば、微粒子及び溶融したワックスを含む非溶媒塗布組成物と、表面がワックス吸収性樹脂の層により形成された成形体とを用意する工程;
 前記非溶媒塗布組成物を、前記成形体の表面に塗布する塗布工程;
 次いで、前記成形体の表面を、前記ワックスの融点以上の温度に加熱して該ワックスが溶融した状態を維持させることにより、表面のワックス吸収性樹脂層に前記ワックスを吸収させるワックス吸収工程;
および、
 前記ワックス吸収工程後に、前記成形体表面を冷却して溶融したワックスを固化させる冷却工程;
を含むことを特徴とする疎水性表面を有する構造体の製造方法が提供される。
Moreover, according to the present invention, a step of preparing a non-solvent coating composition containing fine particles and molten wax, and a molded body having a surface formed of a layer of a wax-absorbing resin;
A coating step of coating the non-solvent coating composition on the surface of the molded body;
Next, the surface of the molded body is heated to a temperature equal to or higher than the melting point of the wax to maintain the state in which the wax is melted, whereby the wax-absorbing resin layer on the surface absorbs the wax.
and,
A cooling step of solidifying the molten wax by cooling the surface of the molded body after the wax absorption step;
A method for producing a structure having a hydrophobic surface is provided.
 上記の製造方法においては、
(1)前記ワックス吸収性樹脂が、前記ワックスとのSP値の差が1.5(MPa)1/2以下のものであること、
(2)前記ワックス吸収工程において、前記ワックス吸収性樹脂の融点をX℃としたとき、前記ワックスを溶融状態に維持するための加熱を、下記条件式;
   X-5≧Y≧X-50
を満足する温度Yで、5秒~10分間行うこと、
が好適である。
In the above manufacturing method,
(1) The wax-absorbing resin has a difference in SP value from the wax of 1.5 (MPa) 1/2 or less,
(2) In the wax absorption step, when the melting point of the wax-absorbing resin is X ° C., heating for maintaining the wax in a molten state is performed by the following conditional formula:
X-5 ≧ Y ≧ X-50
For 5 seconds to 10 minutes at a temperature Y satisfying
Is preferred.
 本発明によれば、さらに、ワックス吸収性樹脂を用いての押出成形により、表面が該ワックス吸収性樹脂の層により形成された成形体を製造するに際し、該ワックス吸収性樹脂の層に隣接し且つ表面側となる位置に、微粒子及び溶融したワックスを含む非溶媒組成物を共押出することを特徴とする疎水性表面を有する構造体の製造方法が提供される。 According to the present invention, when a molded body having a surface formed by the wax-absorbing resin layer is produced by extrusion molding using the wax-absorbing resin, it is adjacent to the wax-absorbing resin layer. A method for producing a structure having a hydrophobic surface is provided by coextruding a non-solvent composition containing fine particles and molten wax at a position on the surface side.
 本発明の構造体では、成形体表面の樹脂層(以下、下地層と呼ぶ)にワックスが吸収されており、このような下地層の上に微粒子が分布しており、このような微粒子に由来して、この構造体表面には、疎水性の凹凸面が形成され、これにより、水分含有の物質に対する滑り性が大きく向上している。 In the structure of the present invention, wax is absorbed in a resin layer (hereinafter referred to as an underlayer) on the surface of the molded body, and fine particles are distributed on such an underlayer, and are derived from such fine particles. In addition, a hydrophobic uneven surface is formed on the surface of the structure, and thereby the slipperiness with respect to the moisture-containing substance is greatly improved.
 上記のようなワックス吸収下地層上に形成される疎水性の凹凸面は、有機溶媒を用いずに形成することができ、これが本発明の最大の利点である。
 具体的には、ワックス吸収性の樹脂により形成された表面を有する成形体を成形し、この表面上に、溶融状態のワックスに微粒子が分散されている塗布組成物を塗布し、次いで、このワックスの融点以上に加熱する。これにより、ワックスは、成形体表面の下地層中に吸収され、微粒子が表面に付着して分布した構造となる。
The hydrophobic uneven surface formed on the wax-absorbing underlayer as described above can be formed without using an organic solvent, which is the greatest advantage of the present invention.
Specifically, a molded body having a surface formed of a wax-absorbing resin is molded, and a coating composition in which fine particles are dispersed in a molten wax is applied on the surface, and then the wax Heat above the melting point. As a result, the wax is absorbed in the base layer on the surface of the molded body, and the fine particles adhere to the surface and are distributed.
 上記の方法によれば、加熱時間や加熱温度等を調整することにより、下地樹脂層の表面に形成される疎水性凹凸面の凹凸の程度を調整することができる。例えば、加熱時間を長くし或いは加熱温度を高くするほど、塗布組成物からワックス吸収性の下地層へのワックスの吸収量が多くなる。 According to the above method, the degree of unevenness of the hydrophobic uneven surface formed on the surface of the base resin layer can be adjusted by adjusting the heating time, heating temperature and the like. For example, the longer the heating time or the higher the heating temperature, the greater the amount of wax absorbed from the coating composition into the wax-absorbing underlayer.
 即ち、塗布組成物中のワックスのほとんどを下地層中に吸収させた場合には、下地層の表面に薄いワックス層が形成され、このような薄いワックス層から微粒子が突出しており、これにより疎水性凹凸面が形成されることとなる。薄いワックス層から突出した微粒子は、該粒子自体が露出していることもあるし、場合によっては、粒子表面にワックス層が形成された状態で突出していることもあり、このような疎水性凹凸面の凹凸の程度は、微粒子の粒径に大きく依存している。
 また、用いる疎水性微粒子の粒径を小さなものとし、下地層へのワックスの吸収量をある程度制限することにより、下地層の上に、前記ワックスがメタボール状に連なったメタボール立体層を形成することができる。このようなメタボール立体層の内部には、微粒子が分布しており、このようなメタボール立体層により疎水性凹凸面が形成される。かかる疎水性凹凸面では、互いに連結している一つのメタボールの内部に複数の微粒子が分布しており、本発明では、最も高い滑り性を発揮する。
That is, when most of the wax in the coating composition is absorbed in the undercoat layer, a thin wax layer is formed on the surface of the undercoat layer, and fine particles protrude from the thin wax layer. An uneven surface is formed. The fine particles protruding from the thin wax layer may be exposed in some cases, or in some cases, may protrude with the wax layer formed on the particle surface. The degree of unevenness of the surface greatly depends on the particle size of the fine particles.
In addition, by forming the hydrophobic fine particles to be small in size and limiting the amount of wax absorbed into the underlayer to some extent, a metaball solid layer in which the wax is continuous in a metaball shape is formed on the underlayer. Can do. Fine particles are distributed inside such a metaball three-dimensional layer, and a hydrophobic uneven surface is formed by such a metaball three-dimensional layer. On such a hydrophobic uneven surface, a plurality of fine particles are distributed inside one metaball connected to each other. In the present invention, the highest slipping property is exhibited.
 また、本発明では、共押出を利用して、ワックスが吸収された下地層の表面に微粒子が分布した疎水性凹凸面を形成することができる。
 即ち、ワックス吸収性の樹脂の溶融物を押出しての押出成形により表面に該樹脂層を有する成形体を成形するに際して、この樹脂層に隣接し且つ表面側となる位置に、ワックスの溶融物に微粒子が分散された非溶媒組成物を共押出する。これにより、微粒子の分散媒であるワックスは、隣接する樹脂層(下地層)中に吸収され、表面に微粒子が分布した疎水性凹凸面を形成することができる。
 このような方法によっても、有機溶媒を用いることなく、疎水性凹凸面を形成することができる。このようにして形成される疎水性凹凸面では、やはり、上記と同様、内部に微粒子が分布したメタボール立体層により疎水性凹凸面が形成される。
Further, in the present invention, a hydrophobic uneven surface in which fine particles are distributed on the surface of the base layer in which the wax is absorbed can be formed by utilizing coextrusion.
That is, when forming a molded body having the resin layer on the surface by extrusion molding by extruding a wax-absorbing resin melt, the wax melt is placed in a position adjacent to the resin layer and on the surface side. A non-solvent composition in which fine particles are dispersed is coextruded. As a result, the wax, which is a dispersion medium for the fine particles, is absorbed in the adjacent resin layer (underlying layer), and a hydrophobic uneven surface having fine particles distributed on the surface can be formed.
Also by such a method, a hydrophobic uneven surface can be formed without using an organic solvent. In the hydrophobic uneven surface thus formed, the hydrophobic uneven surface is formed by the metaball solid layer in which fine particles are distributed in the same manner as described above.
 このように、前述した本発明の構造体が有している微粒子による疎水性の凹凸面は、有機溶媒を使用せずに形成することができ、これは、加熱に際して揮散する有機溶媒の捕集等のための負担が完全に不要となり、生産効率の大幅な上昇やコストの低減を図り、環境に対する悪影響も回避することができ、工業的実施に極めて有利となる。
 また、前記微粒子として疎水性が付与されている疎水性微粒子を使用することにより、表面の疎水性はより高められる。
As described above, the hydrophobic irregular surface due to the fine particles of the structure of the present invention described above can be formed without using an organic solvent, and this is the collection of the organic solvent that evaporates upon heating. This eliminates the need for such a burden, greatly increases production efficiency and reduces costs, avoids adverse effects on the environment, and is extremely advantageous for industrial implementation.
Moreover, the hydrophobicity of the surface is further enhanced by using hydrophobic fine particles to which hydrophobicity is imparted as the fine particles.
本発明の構造体の表面に形成されているもっとも好適な疎水性凹凸面を示す概略断面図。The schematic sectional drawing which shows the most suitable hydrophobic uneven | corrugated surface currently formed in the surface of the structure of this invention. 本発明の構造体の表面に形成される疎水性凹凸面の他の例を示す概略断面図。The schematic sectional drawing which shows the other example of the hydrophobic uneven surface formed in the surface of the structure of this invention. 本発明の構造体の表面に形成される疎水性凹凸面とは異なる形態の疎水性面の例を示す概略断面図。The schematic sectional drawing which shows the example of the hydrophobic surface of a form different from the hydrophobic uneven | corrugated surface formed in the surface of the structure of this invention. 本発明の構造体の好適な形態であるダイレクトブローボトルの形態を示す図。The figure which shows the form of the direct blow bottle which is a suitable form of the structure of this invention. 実施例1において、加熱工程前に原子間力顕微鏡を用いて表面形状の測定を実施することによって得られた3次元像。In Example 1, the three-dimensional image obtained by implementing surface shape measurement using an atomic force microscope before a heating process. 実施例1において、加熱工程後に原子間力顕微鏡を用いて表面形状の測定を実施することによって得られた3次元像。In Example 1, the three-dimensional image obtained by implementing surface shape measurement using an atomic force microscope after a heating process. 実施例1において、加熱工程前に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(10,000倍)。In Example 1, the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope before a heating process. 実施例1において、加熱工程前に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(100,000倍)。In Example 1, the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope before a heating process. 実施例1において、加熱工程後に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(10,000倍)。In Example 1, the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process. 実施例1において、加熱工程後に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(100,000倍)。In Example 1, the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process. 実施例2において、加熱工程後に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(10,000倍)。In Example 2, the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process. 実施例2において、加熱工程後に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(100,000倍)。In Example 2, the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process. 実施例2において、加熱工程後に透過型電子顕微鏡を用いて、断面観察を実施することによって得られた観察画像。In Example 2, the observation image obtained by implementing cross-sectional observation using a transmission electron microscope after a heating process. 実施例3において、加熱工程後に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(10,000倍)。In Example 3, the observation image (10,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process. 実施例3において、加熱工程後に走査型電子顕微鏡を用いて、表面観察を実施することによって得られた観察画像(100,000倍)。In Example 3, the observation image (100,000 times) obtained by implementing surface observation using a scanning electron microscope after a heating process. 各実験で作製された凹凸表面構造のSEM写真。The SEM photograph of the uneven | corrugated surface structure produced in each experiment. 実験1における吸熱ピークの測定結果を示す。The measurement result of the endothermic peak in Experiment 1 is shown. 実験2における吸熱ピークの測定結果を示す。The measurement result of the endothermic peak in Experiment 2 is shown. 実験3における吸熱ピークの測定結果を示す。The measurement result of the endothermic peak in Experiment 3 is shown.
<構造体の表面構造>
 本発明の構造体が有する最も好適な表面構造を示す図1を参照して、全体として10で示す構造体は、所定形状に成形されている成形体の表面に形成されているワックス吸収性の樹脂からなる下地樹脂層1(下地層)を有しており、この下地層1には、ワックス3が吸収されており、さらに、ワックス3が吸収されている下地層1上に、メタボール立体層5が形成されている。
 このメタボール立体層5は、ワックス3により形成された球形状のメタボール5aが3次元状に連結した形態を有するものであり、図1から理解されるように、1個のメタボール5aの内部に、複数の微粒子7が分布している。このようなメタボール立体層5により疎水性凹凸面が形成されるわけである。
 かかるメタボール立体層5におけるメタボール5aの径(円相当径)は、走査型電子顕微鏡で測定して20~200nm、特に50~150nmの範囲にあることが好適である。また、かかる立体層5は、メタボール5aの連結により形成されているため、その内部には、空隙9が存在している。このようなメタボール立体層5は、内部に空隙を含んだ凹凸度の高い凹凸面となり、しかも、疎水性のワックス3により形成されているため、高い疎水性を示し、水分含有物質や親水性の物質に対して極めて高い滑り性を示す。
<Surface structure of structure>
Referring to FIG. 1 showing the most preferable surface structure of the structure of the present invention, the structure 10 as a whole has a wax-absorbing property formed on the surface of a molded body molded into a predetermined shape. A base resin layer 1 (base layer) made of a resin is included. The base layer 1 absorbs the wax 3, and the metaball solid layer is formed on the base layer 1 in which the wax 3 is absorbed. 5 is formed.
This metaball three-dimensional layer 5 has a form in which spherical metaballs 5a formed of the wax 3 are connected in a three-dimensional manner, and as can be understood from FIG. 1, in one metaball 5a, A plurality of fine particles 7 are distributed. A hydrophobic uneven surface is formed by such a metaball solid layer 5.
The diameter (equivalent circle diameter) of the metaball 5a in the metaball solid layer 5 is preferably in the range of 20 to 200 nm, particularly 50 to 150 nm as measured with a scanning electron microscope. Further, since the three-dimensional layer 5 is formed by connecting the metaballs 5a, there are voids 9 inside. Such a metaball three-dimensional layer 5 has an uneven surface with a high degree of unevenness including voids inside, and is formed of the hydrophobic wax 3, thus exhibiting high hydrophobicity, a water-containing substance and a hydrophilic substance. Exhibits extremely high slipperiness against substances.
 上記のようなメタボール立体層5は、微粒子7と溶融した状態のワックス3とを含む非溶媒塗布組成物(即ち、溶媒を含んでいない)を用い、該組成物を下地層1上に塗布し、ワックス3の溶融状態が維持されるように下地層1の表面を加熱して、ワックス3の一部を下地層1に吸収させた後、冷却することにより形成される。 The above-described metaball three-dimensional layer 5 uses a non-solvent coating composition (that is, does not contain a solvent) containing fine particles 7 and a wax 3 in a molten state, and the composition is coated on the underlayer 1. The surface of the underlayer 1 is heated so that the molten state of the wax 3 is maintained, and a part of the wax 3 is absorbed by the underlayer 1 and then cooled.
 即ち、疎水性凹凸面を形成しているメタボール立体層5は、微粒子7を溶融状態にあるワックス3と共存させた状態で、下地樹脂層1中にワックス3を吸収させることにより初めて形成される極めて特異的な構造である。複数個の微粒子7を内部に含んだ状態で溶融したワックス3が存在しており、この状態でワックス3が下地層1に吸収されていくため、微粒子7から離れた部分に存在しているワックス3が優先的に下地層1に吸収されていき、微粒子7の近傍に位置するワックス3は微粒子7と共に下地層1上に残る。
 従って、この状態で溶融したワックス3が冷却固化することにより、滑らかな面を有する球形もしくは球形に近い形のワックス3のメタボール5aの連結構造が形成される。しかも、このメタボール5aの内部には、複数個の微粒子7が分布しており、メタボール5a間には空隙9が形成されている。このようにワックス3が吸収されている下地層1上に形成されているメタボール立体層5は、ワックス3と空隙9とを含んだ構造を有している。このようなメタボールの形状は、例えば、物質の化学構造を空間的に示す際に広く用いられている空間充填モデル(Space-filing model)に似ている。
 メタボール立体層5の形成は、後述する実施例に示されているように、原子間力顕微鏡や走査型電子顕微鏡により確認することができる。
That is, the metaball three-dimensional layer 5 forming the hydrophobic uneven surface is formed for the first time by absorbing the wax 3 in the base resin layer 1 in a state where the fine particles 7 coexist with the wax 3 in a molten state. It is a very specific structure. The melted wax 3 exists in a state of containing a plurality of fine particles 7, and the wax 3 is absorbed by the underlayer 1 in this state. 3 is preferentially absorbed by the underlayer 1, and the wax 3 located in the vicinity of the fine particles 7 remains on the underlayer 1 together with the fine particles 7.
Accordingly, when the wax 3 melted in this state is cooled and solidified, a connection structure of the metaballs 5a of the wax 3 having a smooth surface or a spherical shape having a smooth surface is formed. In addition, a plurality of fine particles 7 are distributed inside the metaball 5a, and voids 9 are formed between the metaballs 5a. Thus, the three-dimensional metaball layer 5 formed on the base layer 1 in which the wax 3 is absorbed has a structure including the wax 3 and the gap 9. The shape of such a metaball is similar to, for example, a space-filling model widely used for spatially indicating the chemical structure of a substance.
Formation of the metaball three-dimensional layer 5 can be confirmed by an atomic force microscope or a scanning electron microscope, as shown in the examples described later.
 また、上記の説明から理解されるように、微粒子7と溶融した状態のワックス3とを含む非溶媒塗布組成物のコーティングを、メタボール立体層5が形成された後もさらに加熱していくと、微粒子7の周りに存在している溶融したワックス3が下地層1の表面側に落下していく。この結果、図2に示されているように、ワックス3を吸収している下地層1上に、ワックス3の薄層3aが形成され、微粒子7は、この薄層3aから突出した状態で分布することとなる。この微粒子7の薄層3aから突出している部分では、微粒子7の表面が露出しているか或いは微量のワックス3が表面を覆う形で存在している。
 このような表面構造においても、疎水性凹凸面が形成されており、前述したメタボール立体層5と比較すると、凹凸の程度が低く且つ内部に空隙9を含んでいないため、滑り性という観点では劣ったものとなるが、微粒子7を安定に保持することができ、その滑り性を長期にわたって安定に発揮することができる。かかる薄層3aの厚みは、通常、滑り性及び微粒子7の保持性を確保するという観点で、2nm~1μm程度の範囲にあることが望ましい。
Further, as understood from the above description, when the coating of the non-solvent coating composition containing the fine particles 7 and the wax 3 in a molten state is further heated after the metaball three-dimensional layer 5 is formed, The molten wax 3 present around the fine particles 7 falls to the surface side of the underlayer 1. As a result, as shown in FIG. 2, a thin layer 3a of the wax 3 is formed on the base layer 1 absorbing the wax 3, and the fine particles 7 are distributed in a state of protruding from the thin layer 3a. Will be. In the portion of the fine particle 7 protruding from the thin layer 3a, the surface of the fine particle 7 is exposed or a minute amount of wax 3 is present covering the surface.
Even in such a surface structure, a hydrophobic uneven surface is formed, and compared with the above-described metaball three-dimensional layer 5, the degree of unevenness is low and the void 9 is not included therein, so that it is inferior in terms of slipperiness. However, the fine particles 7 can be stably held, and the slipperiness can be stably exhibited over a long period of time. In general, the thickness of the thin layer 3a is preferably in the range of about 2 nm to 1 μm from the viewpoint of ensuring slipperiness and retention of the fine particles 7.
 尚、上記のような図2の状態から引き続いて加熱してワックス3を溶融状態に保持していくと、薄層3aを形成しているワックス3も下地樹脂層1に吸収され、この結果、下地層1の表面には、微粒子7のみが残る。この状態でも表面に分布した微粒子7により疎水性凹凸面が形成されており、しかも下地層1の表面が疎水性を示すワックス3を含んでいるため、ある程度の滑り性を示すが、図1や図2の形態と比較すると、微粒子7の脱落を生じ易く、滑り性を長期にわたって発揮させるには適当でない。 In addition, when the wax 3 is continuously heated from the state shown in FIG. 2 and kept in a molten state, the wax 3 forming the thin layer 3a is also absorbed by the base resin layer 1, and as a result, Only the fine particles 7 remain on the surface of the underlayer 1. Even in this state, the hydrophobic uneven surface is formed by the fine particles 7 distributed on the surface, and the surface of the underlayer 1 includes the wax 3 exhibiting hydrophobicity. Compared with the embodiment of FIG. 2, the fine particles 7 are likely to fall off and are not suitable for exhibiting slipperiness over a long period of time.
 尚、有機溶媒を用いた塗布組成物を用いた場合には、有機溶媒の揮散と同時にワックス3が析出してしまうため、ワックス3が下地層1に吸収されず、この結果、図3に示されているように、下地層1上には、単にワックス3に微粒子7が分布している表面層5が形成されるに過ぎず、この表面層5内には空隙は存在していないし、また凹凸面を形成されず、従って、図1や図2に示されている表面構造を有している本発明の構造体10に比して、その疎水性は極めて劣ったものとなる。 When a coating composition using an organic solvent is used, the wax 3 is deposited simultaneously with the volatilization of the organic solvent. Therefore, the wax 3 is not absorbed by the underlayer 1, and as a result, as shown in FIG. As shown, the surface layer 5 in which the fine particles 7 are distributed in the wax 3 is merely formed on the underlayer 1, and there are no voids in the surface layer 5. As compared with the structure 10 of the present invention which does not have an uneven surface and therefore has the surface structure shown in FIGS. 1 and 2, its hydrophobicity is extremely inferior.
ワックス吸収性の下地樹脂層(下地層)1;
 本発明において、下地層1は、ワックス(炭化水素系ワックス、エステル系ワックスなど)を吸収し得るものである。下地層1のワックス吸収性は、用いるワックスを溶融して下地層1上に塗布し、その吸収性(体積変化)を確認することにより、吸収性の有無を判断することができるので、これを利用して下地層1に用いる樹脂を、用いるワックスの種類に応じて選択することができる。また、下地層1に用いる樹脂の種類に応じてワックスの種類を選択することもできる。
Wax-absorbing base resin layer (base layer) 1;
In the present invention, the underlayer 1 is capable of absorbing wax (hydrocarbon wax, ester wax, etc.). The wax absorptivity of the underlayer 1 can be determined whether or not there is absorptivity by melting the wax to be used and applying it on the underlayer 1 and confirming the absorbency (volume change). The resin used for the underlayer 1 can be selected according to the type of wax used. Also, the type of wax can be selected according to the type of resin used for the underlayer 1.
 本発明においては、一般的には、疎水性が高く(例えば、水に対する接触角(23℃で測定)が70度以上、特に好ましくは85度以上)、分子鎖には極性基を含んでおらず、しかも、比較的ルーズな構造を有しており、架橋構造を有していない熱可塑性樹脂、具体的には、オレフィン系もしくはポリエステル系樹脂を用いて下地層1を形成することが好適である。 In the present invention, generally, the hydrophobicity is high (for example, the contact angle with water (measured at 23 ° C.) is 70 degrees or more, particularly preferably 85 degrees or more), and the molecular chain contains a polar group. In addition, it is preferable to form the underlayer 1 using a thermoplastic resin having a relatively loose structure and not having a crosslinked structure, specifically, an olefin-based or polyester-based resin. is there.
 このようなオレフィン系及びポリエステル系樹脂としては、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンあるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、(メタ)アクリル酸、(メタ)アクリル酸エステル、酢酸ビニル等のα-オレフィン同士のランダムあるいはブロック共重合体、環状オレフィン共重合体、ポリエステル系樹脂としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートやポリ乳酸などを例示することができ、必要に応じてこれらをブレンドして使用することもできる。 Examples of such olefin-based and polyester-based resins include low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene, or ethylene, propylene, 1-butene, 4-methyl- Random or block copolymers of α-olefins such as 1-pentene, (meth) acrylic acid, (meth) acrylic acid ester, vinyl acetate, cyclic olefin copolymers, and polyester resins include polyethylene terephthalate, polybutylene Examples thereof include terephthalate, polyethylene naphthalate, and polylactic acid, and these can be blended and used as necessary.
 また、下地層1を形成する樹脂は、少なくともフィルムを形成し得る程度の分子量を有しているが、その分子量が極端に高いもの(例えば超高分子量ポリエチレンなど)は、ワックスの吸収性をほとんど示さなくなってしまう。従って、一般的には、通常の押出グレードのメルトフローレート(MFR)を有するものを用いるのがよい。 The resin forming the underlayer 1 has a molecular weight that can form at least a film, but an extremely high molecular weight (such as ultra-high molecular weight polyethylene) has almost no absorbency of wax. It will stop showing. Therefore, it is generally better to use one having a normal extrusion grade melt flow rate (MFR).
 さらに、本発明においては、下地層1を形成する樹脂としては、上述した種々の熱可塑性樹脂の中でも特に、ワックス3とのSP値の差が1.5(MPa)1/2以下のものを使用することが最適である。
 このSP値とは、Smallにより提唱された算出方法で計算される溶解度パラメータ―δと呼ばれる指数であり、分子を構成する原子または原子団とその結合型などについてのモル牽引力定数、分子容から算出された値である(P.A.J.Small:J.Appl Chem.,3,71(1953))。因みに、このようなSP値は、物質同士の相溶性を評価するための尺度として広く利用されており、この差が小さいほど、両物質は高い親和性を示し、相溶性が高いことを意味している。
 即ち、ワックス3とのSP値が上記のように近い範囲にある樹脂を用いた場合には、ワックス3との親和性が極めて高いため、容易に下地層1内ワックス3を吸収することができ、前述したメタボール立体層5を形成する上で極めて好適である。
Furthermore, in the present invention, as the resin for forming the underlayer 1, among the above-described various thermoplastic resins, those having an SP value difference with the wax 3 of 1.5 (MPa) 1/2 or less are particularly preferred. It is best to use.
This SP value is an index called a solubility parameter -δ calculated by the calculation method proposed by Small, calculated from the molar traction force constant and molecular volume of the atoms or atomic groups constituting the molecule and their bond type. (PAJ Small: J. Appl Chem., 3, 71 (1953)). By the way, such SP value is widely used as a scale for evaluating the compatibility between substances. The smaller this difference is, the higher the affinity between both substances is, and the higher the compatibility is. ing.
That is, when a resin having an SP value close to that of the wax 3 as described above is used, the affinity with the wax 3 is extremely high, so that the wax 3 in the underlayer 1 can be easily absorbed. It is extremely suitable for forming the above-described three-dimensional metaball layer 5.
 因みに、パラフィンワックス及び代表的な熱可塑性樹脂のSP値は、以下のとおりである。
                SP値(MPa)1/2 SP値の差
 パラフィンワックス       17.3       0
 ポリエチレン(LDPE)    17.9       0.6
 ポリエチレン(HDPE)    18.7       1.4
 ホモポリプロピレン(h-PP) 16.4       0.9
 環状オレフィン共重合体(COC)13.8       3.5
 エチレンビニルアルコール共重合体(EVOH)
                 18.9       1.6
 ポリエチレンテレフタレート(PET)
                 22.7       5.4
 PET-G           20.4       3.1
 尚、PET-Gは、非晶性のポリエチレンテレフタレートであり、共重合成分を含む共重合ポリエチレンテレフタレートである。
Incidentally, SP values of paraffin wax and typical thermoplastic resins are as follows.
SP value (MPa) 1/2 Difference in SP value Paraffin wax 17.3 0
Polyethylene (LDPE) 17.9 0.6
Polyethylene (HDPE) 18.7 1.4
Homopolypropylene (h-PP) 16.4 0.9
Cyclic olefin copolymer (COC) 13.8 3.5
Ethylene vinyl alcohol copolymer (EVOH)
18.9 1.6
Polyethylene terephthalate (PET)
22.7 5.4
PET-G 20.4 3.1
PET-G is amorphous polyethylene terephthalate, which is a copolymerized polyethylene terephthalate containing a copolymer component.
 従って、ワックス3としてパラフィンワックスが使用されるとき、成形体表面の下地層1を形成する樹脂として、ポリエチレン、ポリプロピレン等の非環状構造のオレフィン系樹脂を好適に使用することができる。 Therefore, when paraffin wax is used as the wax 3, an acyclic olefin resin such as polyethylene or polypropylene can be suitably used as the resin for forming the base layer 1 on the surface of the molded body.
 また、ワックス3に対してSP値の差が上記範囲にある樹脂としては、用いるワックス3の種類によっても異なるが、ワックス3のSP値が上記のパラフィンワックスとほぼ同じであることから、一般に、非環状オレフィン系樹脂、例えば、低密度ポリエチレン、高密度ポリエチレン、ポリプロピレン、ポリ1-ブテン、ポリ4-メチル-1-ペンテンあるいはエチレン、プロピレン、1-ブテン、4-メチル-1-ペンテン、(メタ)アクリル酸、(メタ)アクリル酸エステル、酢酸ビニル等のα-オレフィン同士のランダムあるいはブロック共重合体などを例示することができる。
 また、環状オレフィン共重合体(COC)のように、ワックス3とのSP値の差が大きな樹脂であっても、SP値の差が小さい樹脂とブレンドし、ブレンドした状態でのSP値の差が1.5(MPa)1/2以下とすることにより、下地層1用の樹脂として使用することができる。
Further, the resin having a difference in SP value with respect to the wax 3 in the above range varies depending on the type of the wax 3 to be used, but since the SP value of the wax 3 is substantially the same as that of the paraffin wax, in general, Acyclic olefin resins such as low density polyethylene, high density polyethylene, polypropylene, poly 1-butene, poly 4-methyl-1-pentene or ethylene, propylene, 1-butene, 4-methyl-1-pentene, (meta Examples thereof include random or block copolymers of α-olefins such as acrylic acid, (meth) acrylic acid ester, and vinyl acetate.
Further, even if the resin has a large SP value difference with the wax 3 such as a cyclic olefin copolymer (COC), it is blended with a resin having a small SP value difference, and the difference in the SP value in a blended state. Is 1.5 (MPa) 1/2 or less, the resin for the underlayer 1 can be used.
 上記のようなワックス吸収性の下地層1の厚みは、特に制限されるものではないが、一般的には、5~200μm、特に10~100μm程度の厚みを有していることが好ましい。この厚みが薄すぎると、ワックス3の吸収量が少なくなってしまい、この結果、メタボール立体層5が形成されにくくなってしまい、表面の凹凸による疎水性効果が低減してしまうおそれがある。また、下地層1の厚みが必要以上に厚いと、用いたワックス3のほとんど全てが下地層1に吸収されてしまい易く、例えば図1或いは図2に示されているような構造が形成されるようにコントロールすることが困難となるおそれがある。即ち、微粒子7が直接下地層1の表面に分布した構造となり易く、微粒子7の保持力が低下してしまい、その脱落を生じ易く、安定した滑り性を確保することが困難となる傾向がある。 The thickness of the wax-absorbing underlayer 1 as described above is not particularly limited, but in general, it preferably has a thickness of about 5 to 200 μm, particularly about 10 to 100 μm. If this thickness is too thin, the amount of absorption of the wax 3 decreases, and as a result, the metaball three-dimensional layer 5 becomes difficult to be formed, and the hydrophobic effect due to surface irregularities may be reduced. Further, when the thickness of the underlayer 1 is larger than necessary, almost all of the used wax 3 is easily absorbed by the underlayer 1, and for example, a structure as shown in FIG. 1 or FIG. 2 is formed. It may be difficult to control. That is, the structure in which the fine particles 7 are distributed directly on the surface of the underlayer 1 tends to be reduced, the holding power of the fine particles 7 is reduced, the particles 7 are liable to fall off, and it is difficult to ensure stable slipperiness. .
 さらに、本発明においては、上述のワックス吸収性の下地層1のワックス吸収能を有効に活用するため、溶融状態にあるワックス3を下地層1に吸収させる温度条件での結晶化度が60%以下、好ましくは50%以下となる樹脂を選択して、下地層1用の樹脂(下地樹脂)として用いることが好ましい。換言すると、結晶化度がかかる範囲内に維持されている状態で且つ下地樹脂の融点未満の温度で、溶融状態のワックス3を下地層1に吸収させることが好適である。即ち、下地樹脂の結晶化度が高い状態で溶融状態にあるワックス3を下地層1に吸収させようとすると、該樹脂がワックス3との相容性が良好であったとしても、結晶成分が多く存在するため、ワックス3の吸収性が低下し、ワックス吸収量が不十分となり、図1に示すようなメタボール立体層5の形成が困難となり、また、図2に示すようなワックス3の薄層3aから微粒子7が突出した構造も形成されなくなってしまうおそれがある。
 尚、下地樹脂の結晶化度は、該樹脂のDSC昇温曲線より測定することができるので、この曲線に基づき、結晶化度が上記範囲となるような温度領域で且つ該樹脂の融点未満の温度で、ワックス3を下地層1に吸収させればよい。
Furthermore, in the present invention, in order to effectively utilize the wax-absorbing ability of the wax-absorbing underlayer 1 described above, the crystallinity is 60% under a temperature condition in which the underlayer 1 absorbs the wax 3 in a molten state. In the following, it is preferable to select a resin that is preferably 50% or less and use it as the resin for the base layer 1 (base resin). In other words, it is preferable that the wax 1 in the molten state is absorbed by the base layer 1 at a temperature lower than the melting point of the base resin while maintaining the crystallinity within such a range. That is, if the base layer 1 absorbs the molten wax 3 in a state where the crystallinity of the base resin is high, even if the resin has good compatibility with the wax 3, the crystal component is Since there are many, the absorbability of the wax 3 is reduced, the amount of absorbed wax is insufficient, the formation of the metaball three-dimensional layer 5 as shown in FIG. 1 is difficult, and the thin wax 3 as shown in FIG. The structure in which the fine particles 7 protrude from the layer 3a may not be formed.
The crystallinity of the base resin can be measured from the DSC temperature rise curve of the resin. Therefore, based on this curve, the crystallinity is in the temperature range where the crystallinity falls within the above range and below the melting point of the resin. The wax 3 may be absorbed by the underlayer 1 at a temperature.
ワックス3;
 本発明において用いるワックス3は、微粒子7の分散媒として使用されるものであるが、同時に、下地層1の表面に分布している形態においても、疎水性を示し、その滑り性を阻害しないという特性を有している。
 例えば、パラフィンワックスの場合、石油の精製工程から製造される常温で白色の固体であり、炭素数が20~30程度の直鎖状のパラフィンを主成分とし、少量のイソパラフィンを含むものである。
 植物系ワックスの例としてカルナバワックスを挙げると、カルナバヤシから採取される淡黄色~淡褐色の固体であり、炭素数が16~34のヒドロキシ酸エステルを主成分とするものである。
Wax 3;
The wax 3 used in the present invention is used as a dispersion medium for the fine particles 7. At the same time, even in the form distributed on the surface of the underlayer 1, the wax 3 exhibits hydrophobicity and does not inhibit its slipperiness. It has characteristics.
For example, paraffin wax is a white solid at normal temperature produced from a petroleum refining process, and is mainly composed of linear paraffin having about 20 to 30 carbon atoms and a small amount of isoparaffin.
As an example of the plant wax, carnauba wax is a light yellow to light brown solid collected from carnabay palm, and mainly contains a hydroxy acid ester having 16 to 34 carbon atoms.
 本発明においては、このようなワックス3の中でも、融点が50~100℃の範囲にあるものが特に好適である。即ち、ワックス3の融点が低すぎると、夏場等において、この構造体10の使用中にワックス3が流れてしまい、これと共に、図1におけるメタボール立体層5や図2で示されているワックス3の薄層3aが脱落してしまうおそれがある。また、ワックス3の融点が高すぎると、ワックス3を下地層1に吸収させるための加熱温度を高温としなければならず、その作業が押出成形に限定されてしまったり、或いはワックス3の下地層1への吸収を効果的に行うことが困難となる恐れもある。
 また、本発明においては、融点が上記範囲内であることを条件として、合成炭化水素ワックス、植物系ワックス、動物系ワックス、鉱物系ワックス等も使用することができる。
In the present invention, among such waxes 3, those having a melting point in the range of 50 to 100 ° C. are particularly suitable. That is, if the melting point of the wax 3 is too low, the wax 3 flows during the use of the structure 10 in summer and the like, and at the same time, the metaball three-dimensional layer 5 in FIG. 1 and the wax 3 shown in FIG. The thin layer 3a may fall off. On the other hand, if the melting point of the wax 3 is too high, the heating temperature for absorbing the wax 3 into the base layer 1 must be high, and the operation is limited to extrusion molding, or the base layer of the wax 3 It may be difficult to effectively absorb 1.
In the present invention, synthetic hydrocarbon waxes, plant waxes, animal waxes, mineral waxes and the like can also be used on the condition that the melting point is within the above range.
 さらに、本発明で用いるワックス3は、例えば下地層1に非環状のオレフィン系樹脂を用いた場合はパラフィンワックス、ポリエチレンワックス、マイクロクリスタリンワックスが好適である。即ち、これらのワックスは、下地樹脂である非環状のオレフィン系樹脂とのSP値の差が前述した範囲にあり、下地層1に対して高い相容性を示すからである。また、ワックス3が下地層1に吸収されていく際の速度は拡散工程となるため、ワックス3の分子量に依存し、分子量が大きいほど、吸収速度は遅くなる。本発明で用いるワックス3の平均分子量(Mn)としては、10000以下、好適には5000以下、最も好適には1000以下である。 Furthermore, the wax 3 used in the present invention is preferably paraffin wax, polyethylene wax, or microcrystalline wax, for example, when an acyclic olefin resin is used for the underlayer 1. That is, these waxes have a difference in SP value from the non-cyclic olefin resin as the base resin in the above-described range, and show high compatibility with the base layer 1. Further, since the speed at which the wax 3 is absorbed by the underlayer 1 is a diffusion process, the absorption speed is slower as the molecular weight is larger, depending on the molecular weight of the wax 3. The average molecular weight (Mn) of the wax 3 used in the present invention is 10,000 or less, preferably 5000 or less, and most preferably 1000 or less.
 尚、本発明において、下地層1にワックス3が吸収されていることは、下地層1についてのDSC昇温曲線を、下地樹脂単体のものと比較することにより確認することができる。即ち、下地層1にワックス3が吸収されている場合には、下地樹脂単体の融点よりも低温域に、吸熱ピーク(吸収量によっては、ショルダーとして現れることもある)が形成されていることから確認することができる。また、溶剤を用いて下地層1からの抽出を行うことによっても確認することができる。 In the present invention, it can be confirmed that the wax 3 is absorbed in the underlayer 1 by comparing the DSC temperature rise curve of the underlayer 1 with that of the underlayer resin alone. That is, when the wax 3 is absorbed in the underlayer 1, an endothermic peak (which may appear as a shoulder depending on the amount of absorption) is formed in a lower temperature range than the melting point of the underlayer resin alone. Can be confirmed. Moreover, it can also confirm by performing extraction from the base layer 1 using a solvent.
微粒子7;
 図1中の微粒子7は、粗面化材として使用されるものであり、メタボール形状のワックス層5を形成させるためには必須の材料である。即ち、下地層1にワックス3を吸収させ且つ下地層1の上にワックス層5を形成させるだけであるならば、このような微粒子7を配合せず、ワックス3の溶融物を下地層1に塗布するのみでよい。しかしながら、この場合には、ワックス層3がメタボール形状を有していないため、ワックス層5の表面は凹凸面とならない。従って、ブラスト処理、エッチング等の後処理により凹凸面を形成する必要がある。このような手段でも滑り性を確保することは可能であるが、この場合には、後処理のための格別の装置が必要となってしまい、有機溶媒を使用せずにワックス層5を形成することによりコストダウンが可能となるという本発明の利点が希薄となってしまう。また、下地層1を備えた成形体が後処理に適した形態を有していなければならないという制約を受け、例えば、この成形体がボトルのような形態を有している場合には後処理が困難となってしまう。さらには、凹凸面を有するワックス層5を形成することができたとしても、内部に空隙9を有するメタボール形状は形成されないため、滑り性に関しても、図1の形態のワックス層5と比較すると劣ったものとなってしまう。
 従って、本発明においては、微粒子7を粗面化材として使用し、図1に示されるようなメタボール形状のワックス層5を形成することが最も好適である。
Fine particles 7;
The fine particles 7 in FIG. 1 are used as a roughening material, and are an essential material for forming the metaball-shaped wax layer 5. That is, if the base layer 1 only absorbs the wax 3 and forms the wax layer 5 on the base layer 1, such a fine particle 7 is not blended, and the melt of the wax 3 is added to the base layer 1. Just apply. However, in this case, since the wax layer 3 does not have a metaball shape, the surface of the wax layer 5 does not become an uneven surface. Therefore, it is necessary to form an uneven surface by post-treatment such as blasting or etching. Although it is possible to ensure slipperiness by such means, in this case, a special apparatus for post-processing is required, and the wax layer 5 is formed without using an organic solvent. As a result, the advantage of the present invention that the cost can be reduced is diminished. In addition, there is a restriction that the molded body provided with the base layer 1 must have a form suitable for post-processing. For example, when the molded body has a form like a bottle, post-processing is performed. Becomes difficult. Furthermore, even if the wax layer 5 having an uneven surface can be formed, a metaball shape having voids 9 therein is not formed, so that the slipperiness is also inferior to the wax layer 5 in the form of FIG. It becomes a thing.
Therefore, in the present invention, it is most preferable to use the fine particles 7 as a roughening material to form a metaball-shaped wax layer 5 as shown in FIG.
 このような粗面化材として使用される微粒子7は、ワックス3の溶融物に配合し、該溶融物を下地層1に塗布したときに、粒状形状を維持したままの状態で下地層1に吸収されずに下地層1上に残存するようなものであればよく、一般的には、シリカ、酸化チタン、アルミナ等の無機酸化物の粒子や、炭酸カルシウムなどの炭酸塩の粒子が好適に使用される。 The fine particles 7 used as the roughening material are blended into the melt of the wax 3 and when the melt is applied to the base layer 1, the particulate layer 7 maintains the granular shape in the base layer 1. As long as it remains on the underlying layer 1 without being absorbed, in general, particles of inorganic oxides such as silica, titanium oxide, and alumina, and particles of carbonates such as calcium carbonate are suitable. used.
 また、メタボール5aの径(円相当径)が前述した範囲(20~200nm、特に50~150nm)にあるようなメタボール形状のワックス層5を形成するためには、上記のような微粒子7の中でも、その一次粒径(あるいは、最小構成単位)が3nm~1μm、好ましくは5nm~500nm、より好ましくは10nm~200nmの範囲にあることが望ましい。本発明において、微粒子7はメタボ-ル形状のワックス層5を形成しているメタボール5aのコアのようなものとして働くと推察され、メタボールのサイズは、用いる微粒子7の一次粒径に依存すると考えられるためである。したがって、本発明において、水分を含有する内容物に対して優れた滑り性を示すメタボール形状のワックス層5を形成するためには、平均一次粒子径が上記範囲にある微粒子7を用いることが好ましい。
 尚、微粒子7の平均一次粒子径は、走査型電子顕微鏡観察に測定することができる。
In order to form the metaball-shaped wax layer 5 in which the diameter (equivalent circle diameter) of the metaball 5a is in the above-mentioned range (20 to 200 nm, particularly 50 to 150 nm), among the fine particles 7 as described above, The primary particle size (or minimum structural unit) is desirably in the range of 3 nm to 1 μm, preferably 5 nm to 500 nm, more preferably 10 nm to 200 nm. In the present invention, it is presumed that the fine particles 7 act as a core of the metaball 5a forming the metaball-shaped wax layer 5, and the size of the metaball is considered to depend on the primary particle size of the fine particles 7 to be used. Because it is. Therefore, in the present invention, in order to form the metaball-shaped wax layer 5 exhibiting excellent slipperiness with respect to the content containing moisture, it is preferable to use fine particles 7 having an average primary particle diameter in the above range. .
The average primary particle diameter of the fine particles 7 can be measured by observation with a scanning electron microscope.
 また、上記のような微粒子7の表面は、30mN/m以下の臨界表面張力を示す官能基、例えば、メチル基等のアルキル基、メチルシリル基などのアルキルシリル基、フルオロアルキル基、フルオロアルキルシリル基などによって修飾されて、疎水化されていることが好ましい。このような疎水性官能基の導入により、例えば、この微粒子7を溶融状態のワックス3に分散させた際に、良好な分散が得られ、微粒子7の近傍にワックス3が保持され、メタボ-ル形状のワックス層5の形成が容易となり、また、部分的な欠陥のないワックス層5を均等に形成することができる。
 例えば、本発明において、このような疎水化された微粒子7を含むメタボール5aの連結により形成されるワックス層5の表面に純水20μLを滴下したとき、この純水が滑落する該表面の角度として定義される転落角が5°以下とすることができ、水分を含有する粘稠な内容物に対する滑り性を著しく高めることができる。
The surface of the fine particles 7 as described above is a functional group having a critical surface tension of 30 mN / m or less, for example, an alkyl group such as a methyl group, an alkylsilyl group such as a methylsilyl group, a fluoroalkyl group, or a fluoroalkylsilyl group. It is preferably modified to be hydrophobized. By introducing such a hydrophobic functional group, for example, when the fine particles 7 are dispersed in the wax 3 in a molten state, good dispersion is obtained, and the wax 3 is retained in the vicinity of the fine particles 7, and the The wax layer 5 having a shape can be easily formed, and the wax layer 5 having no partial defects can be formed uniformly.
For example, in the present invention, when 20 μL of pure water is dropped on the surface of the wax layer 5 formed by the connection of the metaballs 5 a including the hydrophobic fine particles 7, the angle of the surface where the pure water slides down is as follows. The defined falling angle can be 5 ° or less, and the slipperiness with respect to the viscous content containing moisture can be remarkably enhanced.
 このような疎水性官能基による修飾は、これらの官能基を有する疎水化剤(例えばシラン化合物、シロキサン化合物、シラザン化合物、チタンアルコキシド化合物など)を用いてのカップリングや、脂肪酸・金属石鹸等を用いたコーティングにより行われる。 Such modifications with hydrophobic functional groups include coupling using a hydrophobizing agent having these functional groups (for example, silane compounds, siloxane compounds, silazane compounds, titanium alkoxide compounds, etc.), fatty acids, metal soaps, etc. This is done by the coating used.
 本発明において、特に好適に使用される疎水性の微粒子7は、コストや入手のし易さから、疎水性シリカ微粒子や炭酸カルシウム微粒子であり、ジメチルシリル基、トリメチルシリル基で表面修飾、あるいはシリコーンオイルで表面被覆されている疎水性シリカ微粒子、あるいは、脂肪酸や金属石鹸で表面被覆されている炭酸カルシウム微粒子が最も好ましい。 In the present invention, the hydrophobic fine particles 7 that are particularly preferably used are hydrophobic silica fine particles and calcium carbonate fine particles due to cost and availability, and are surface-modified with dimethylsilyl groups or trimethylsilyl groups, or silicone oils. Hydrophobic silica fine particles that are surface-coated with, or calcium carbonate fine particles that are surface-coated with a fatty acid or metal soap are most preferred.
 尚、上述した微粒子7は、図1に示されているようにワックス層5を形成しているメタボール5aの内部に分布して存在しているが、このような表面構造を容易に形成することができ、また優れた滑り性を発揮させるという点で、その表面分布量は、その一次粒径によっても若干異なるが、一般的には30~900mg/m、特に300~600mg/mの範囲にあることが好適である。 The fine particles 7 described above are distributed in the metaballs 5a forming the wax layer 5 as shown in FIG. 1, but such a surface structure can be easily formed. The amount of surface distribution varies depending on the primary particle size, but generally 30 to 900 mg / m 2 , particularly 300 to 600 mg / m 2 . It is preferable to be in the range.
疎水性凹凸面を有する表面構造の形成;
 上述した本発明の構造体10の表面構造を形成する疎水性凹凸面は、先にも述べたように、微粒子7と溶融した状態のワックス3とを含む非溶媒塗布組成物(以下、ワックス組成物と呼ぶ)を用いて形成される。即ち、予め、表面にワックス吸収性の下地層1を備えた成形体を成形し、この成形体の表面に、溶融状態にあるワックス3を含むワックス組成物をスプレー噴霧、ローラコーティング、ナイフコーティング等により塗布し、さらに、ワックスの溶融状態が維持されるように表面を加熱保持し、表面の下地層1にワックス3を吸収させることにより、目的とする表面構造を有する構造体10を得ることができる(以下、この方法を塗布法と呼ぶ)。
Formation of a surface structure having a hydrophobic uneven surface;
The hydrophobic uneven surface forming the surface structure of the structure 10 of the present invention described above is a non-solvent coating composition (hereinafter referred to as a wax composition) containing fine particles 7 and a melted wax 3 as described above. (Referred to as an object). That is, a molded body having a wax-absorbing base layer 1 on the surface is molded in advance, and a wax composition containing the wax 3 in a molten state is sprayed on the surface of the molded body, spray coating, roller coating, knife coating, etc. Further, the structure 10 having the target surface structure can be obtained by further heating and holding the surface so that the molten state of the wax is maintained, and absorbing the wax 3 in the surface underlayer 1 on the surface. (Hereinafter, this method is referred to as a coating method).
 上記の塗布法において、溶融状態にあるワックス3を下地層1中に吸収させるための加熱温度は、ワックス3の融点以上であることは必須であり、特に下地樹脂層1のガラス転移温度(Tg)以上且つ下地樹脂の融点よりも低い温度であることが好適であるが、下地樹脂の結晶化度が所定の範囲以下となる程度の温度が好ましいことは、先にも述べたとおりである。
 具体的には、下地樹脂の融点をX℃としたとき、その加熱温度Yを、下記条件式;
   X-5≧Y≧X-50
を満足するように設定することがより好ましく、このような温度で5秒~10分間、特に10秒~5分間程度、ワックス溶融物を加熱保持することがより好適である。即ち、加熱温度Y℃が、下地樹脂の融点X℃に対して低すぎると、下地層1中に多くの結晶が残しており、残存する結晶により、下地層1へのワックス3の吸収が阻害され、図1に示される形態のワックス層5を形成するために、長時間要するようになり、生産性の点で不利となる傾向がある。また、加熱温度Y℃が下地樹脂の融点X℃に近い状態で行われると、ワックス3の吸収速度が速すぎ、溶融物中のワックス3のほとんどが下地層1中に短時間で吸収されてしまい、結果として、図1に示されるような形態のワックス層5を形成させるために必要な下地層1上のワックス3の量を確保することが困難となる傾向があるからである。因みに、上記条件を満足するような加熱条件での下地樹脂の結晶化度は60%以下、特に5~50%となっている。このような加熱条件での下地樹脂の結晶化度は、例えばDSCの昇温曲線により求められる結晶融解ピークから算出することができる。
In the above coating method, it is essential that the heating temperature for absorbing the wax 3 in the molten state into the base layer 1 is not less than the melting point of the wax 3, and in particular, the glass transition temperature (Tg) of the base resin layer 1. It is preferable that the temperature is lower than the melting point of the base resin. However, as described above, the temperature at which the crystallinity of the base resin is not more than a predetermined range is preferable.
Specifically, when the melting point of the base resin is X ° C., the heating temperature Y is expressed by the following conditional expression:
X-5 ≧ Y ≧ X-50
It is more preferable to set so as to satisfy the above, and it is more preferable to heat and hold the wax melt at such a temperature for 5 seconds to 10 minutes, particularly for about 10 seconds to 5 minutes. That is, if the heating temperature Y ° C. is too low with respect to the melting point X ° C. of the base resin, many crystals remain in the base layer 1, and the remaining crystals inhibit the absorption of the wax 3 into the base layer 1. In addition, it takes a long time to form the wax layer 5 having the form shown in FIG. 1, which tends to be disadvantageous in terms of productivity. When the heating temperature Y ° C. is performed in a state close to the melting point X ° C. of the base resin, the absorption speed of the wax 3 is too high, and most of the wax 3 in the melt is absorbed into the base layer 1 in a short time. Consequently, as a result, it tends to be difficult to ensure the amount of the wax 3 on the base layer 1 necessary for forming the wax layer 5 having the form shown in FIG. Incidentally, the crystallinity of the base resin under a heating condition that satisfies the above conditions is 60% or less, particularly 5 to 50%. The crystallinity of the base resin under such heating conditions can be calculated from, for example, a crystal melting peak obtained from a DSC temperature rise curve.
 尚、この加熱は、一旦、表面に塗布されたワックス組成物中のワックスが冷却されて固化した後に行うことも可能である。 Note that this heating can also be performed after the wax in the wax composition applied to the surface is cooled and solidified.
 このような塗布方法では、構造体10(成形体)の全表面に上記のような表面構造を容易に形成することができるが、ワックス組成物の塗布位置を選択的に設定することにより、構造体10の表面の一部に限定して、上記のような表面構造を形成することもできる。 In such a coating method, the surface structure as described above can be easily formed on the entire surface of the structure 10 (molded body). However, by selectively setting the application position of the wax composition, the structure The surface structure as described above can be formed only on a part of the surface of the body 10.
 また、本発明においては、共押出法によっても前述した表面構造を形成することができる。
 この方法では、ワックス吸収性の下地樹脂と上記ワックス組成物とを、下地樹脂の層の表面側にワックス組成物が隣接するようにして共押出しを行うことにより、前述した表面構造と下地層1を備えた成形体の成形とを一挙に行うことができる。この場合には、ワックス組成物中のワックス3と下地樹脂との何れもが溶融した状態で隣接しているため、ワックス3の下地層1への吸収が速やかに行われ、ワックス3を下地層1に吸収させるために格別の熱処理を必要としないという利点を有している。ただ、この方法は、図2に示されているように、ワックス3の薄層3aから疎水性微粒子7が突出して分布している表面構造の形成は容易であるが、図1に示されているようなメタボール立体層5の形成には難がある。押し出し後の温度コントロールが難しいからである。
In the present invention, the surface structure described above can also be formed by a coextrusion method.
In this method, the above-described surface structure and the underlayer 1 are coextruded with the wax-absorbing base resin and the wax composition so that the wax composition is adjacent to the surface side of the base resin layer. It is possible to perform molding of the molded body provided with In this case, since both the wax 3 and the base resin in the wax composition are adjacent to each other in a molten state, the wax 3 is quickly absorbed into the base layer 1, and the wax 3 is used as the base layer. 1 has the advantage that no special heat treatment is required for absorption. However, in this method, as shown in FIG. 2, it is easy to form a surface structure in which hydrophobic fine particles 7 protrude and are distributed from the thin layer 3 a of the wax 3. It is difficult to form such a metaball three-dimensional layer 5. This is because it is difficult to control the temperature after extrusion.
 尚、上記の塗布による方法及び共押出しによる方法において、用いるワックス組成物における疎水性微粒子7の濃度は、この組成物を用いての塗布或いは共押出を容易に行うことができ、前述した図1或いは図2の表面構造が容易に形成されるように設定され、通常、ワックス100質量部当り、50質量部以下、特に3.0~10.0質量部、最も好ましくは5.0~8.0質量部程度である。
 本発明では、上記の何れの方法によるも、有機溶媒を用いずに所定の表面構造を形成することができる。
In the above-described coating method and co-extrusion method, the concentration of the hydrophobic fine particles 7 in the wax composition to be used can be easily applied or co-extruded using this composition. Alternatively, the surface structure of FIG. 2 is set so as to be easily formed, and is usually 50 parts by mass or less, particularly 3.0 to 10.0 parts by mass, most preferably 5.0 to 8. About 0 parts by mass.
In the present invention, a predetermined surface structure can be formed without using an organic solvent by any of the above methods.
構造体10の層構造;
 本発明の構造体10は、上述したワックス3が所定形状に成形されている成形体表面の下地層1に吸収されており且つ該下地層1の表面に図1或いは図2に示す表面構造が形成されている限りにおいて、種々の形態を取ることができる。
A layer structure of the structure 10;
In the structure 10 of the present invention, the wax 3 described above is absorbed in the base layer 1 on the surface of the molded body formed into a predetermined shape, and the surface structure shown in FIG. 1 or 2 is formed on the surface of the base layer 1. As long as it is formed, it can take various forms.
 例えば、上記の成形体が下地層1を形成する下地樹脂のみからなる単層構造体であり、この単層構造体の表面に図1或いは図2に示す表面構造が形成されていてもよいし、ガラスや金属箔、或いは紙等の表面に下地層1が形成されている構造体を成形体として用いることも可能である。特に、容器の蓋材として本発明の構造体10を用いる場合には、下地層1が紙や金属箔に積層された形態のものを成形体として使用する場合が多い。 For example, the above-mentioned molded body is a single-layer structure made only of the base resin that forms the base layer 1, and the surface structure shown in FIG. 1 or 2 may be formed on the surface of the single-layer structure. It is also possible to use a structure in which the underlayer 1 is formed on the surface of glass, metal foil, paper, or the like as a molded body. In particular, when the structure 10 of the present invention is used as a lid for a container, a structure in which the base layer 1 is laminated on paper or metal foil is often used as a molded body.
 さらに、本発明では、下地層1を他の樹脂層と積層した多層構造体を成形体とし、そこの表面に図1、図2に示された表面構造を形成することも可能である。
 このような多層構造としては、例えば、下地樹脂層1の一方側の面に適宜接着剤樹脂の層を介して酸素バリア層や酸素吸収層が積層された層構造とし、さらに樹脂層1と同種の樹脂やポリエチレンテレフタレート等のポリエステル樹脂の層を積層した構造を例示することができる。このような多層構造は、特に構造体10を容器の形態で使用するときに適用される。
Furthermore, in the present invention, a multilayer structure in which the base layer 1 is laminated with another resin layer can be used as a molded body, and the surface structure shown in FIGS. 1 and 2 can be formed on the surface thereof.
As such a multilayer structure, for example, a layer structure in which an oxygen barrier layer and an oxygen absorption layer are appropriately laminated on one surface of the base resin layer 1 through an adhesive resin layer, and the same kind as the resin layer 1 is used. The structure which laminated | stacked the layer of polyester resins, such as these resin and polyethylene terephthalate, can be illustrated. Such a multilayer structure is particularly applied when the structure 10 is used in the form of a container.
 かかる多層構造での酸素バリア層は、例えばエチレン-ビニルアルコール共重合体やポリアミドなどの酸素バリア性樹脂により形成されるものであり、その酸素バリア性が損なわれない限りにおいて、酸素バリア性樹脂に他の熱可塑性樹脂がブレンドされていてもよい。
 また、酸素吸収層は、特開2002-240813号等に記載されているように、酸化性重合体及び遷移金属系触媒を含む層であり、遷移金属系触媒の作用により酸化性重合体が酸素による酸化を受け、これにより、酸素を吸収して酸素の透過を遮断する。このような酸化性重合体及び遷移金属系触媒は、上記の特開2002-240813号等に詳細に説明されているので、その詳細は省略するが、酸化性重合体の代表的な例は、第3級炭素原子を有するオレフィン系樹脂(例えばポリプロピレンやポリブテン-1等、或いはこれらの共重合体)、熱可塑性ポリエステル若しくは脂肪族ポリアミド;キシリレン基含有ポリアミド樹脂;エチレン系不飽和基含有重合体(例えばブタジエン等のポリエンから誘導される重合体);などである。また、遷移金属系触媒としては、鉄、コバルト、ニッケル等の遷移金属の無機塩、有機酸塩或いは錯塩が代表的である。
 さらに、各層の接着のために使用される接着剤樹脂はそれ自体公知であり、例えば、マレイン酸、イタコン酸、フマル酸などのカルボン酸もしくはその無水物、アミド、エステルなどでグラフト変性されたオレフィン樹脂;エチレン-アクリル酸共重合体;イオン架橋オレフィン系共重合体;エチレン-酢酸ビニル共重合体;などが接着性樹脂として使用される。
 上述した各層の厚みは、各層に要求される特性に応じて、適宜の厚みに設定されればよい。
 さらに、上記のような多層構造の構造体10を成形する際に発生するバリ等のスクラップをオレフィン系樹脂等のバージンの樹脂とブレンドとしたリグライド層を内層として設けることも可能である。
The oxygen barrier layer in such a multilayer structure is formed of, for example, an oxygen barrier resin such as ethylene-vinyl alcohol copolymer or polyamide. As long as the oxygen barrier property is not impaired, Other thermoplastic resins may be blended.
The oxygen absorbing layer is a layer containing an oxidizing polymer and a transition metal catalyst, as described in JP-A No. 2002-240813, etc., and the oxidizing polymer is oxygenated by the action of the transition metal catalyst. As a result, the oxygen is absorbed and the permeation of oxygen is blocked. Such an oxidizable polymer and a transition metal catalyst are described in detail in the above-mentioned JP-A No. 2002-240813, etc., and details thereof are omitted, but typical examples of the oxidizable polymer are as follows: Olefin resins having tertiary carbon atoms (eg, polypropylene, polybutene-1, etc., or copolymers thereof), thermoplastic polyesters or aliphatic polyamides; xylylene group-containing polyamide resins; ethylenically unsaturated group-containing polymers ( For example, a polymer derived from a polyene such as butadiene). Moreover, as a transition metal type catalyst, the inorganic salt, organic acid salt, or complex salt of transition metals, such as iron, cobalt, and nickel, are typical.
Further, the adhesive resin used for adhesion of each layer is known per se, for example, olefin graft-modified with carboxylic acids such as maleic acid, itaconic acid, fumaric acid or anhydrides thereof, amides, esters, etc. Resins; ethylene-acrylic acid copolymers; ion-crosslinked olefin copolymers; ethylene-vinyl acetate copolymers; and the like are used as adhesive resins.
The thickness of each layer described above may be set to an appropriate thickness according to the characteristics required for each layer.
Furthermore, it is also possible to provide as an inner layer a ligide layer obtained by blending scraps such as burrs generated when molding the multilayer structure 10 as described above with a virgin resin such as an olefin resin.
構造体10の形態;
 本発明の構造体10は、種々の形態を有することができるが、特に水分含む粘稠な物質に対する滑り性(即ち、非付着性や滑落性)を向上させることができることから、包装容器や蓋材、キャップなどの包装材の形態で使用されることが好ましい。
Form of structure 10;
Although the structure 10 of the present invention can have various forms, it can improve slipperiness (that is, non-adhesiveness and slipping property) particularly for viscous substances containing moisture, so that it can be used for packaging containers and lids. It is preferably used in the form of a packaging material such as a material or a cap.
 特に蓋材では、先に述べたように、下地層1が紙や金属箔に積層された形態となる場合が多いが、蓋材の内面に前述した表面構造が形成されている態様は、粘稠なゲル状或いはプリン状の製品、例えばヨーグルトなどの付着を防止し得る上で有利である。また、かかる態様では、下地層1がワックス3を吸収することで軟化点が低下し或いは下地層1上にワックス3の薄層3aが形成されるため、ヒートシール性が向上しているという利点もある。 In particular, as described above, in the case of the lid material, the base layer 1 is often in a form of being laminated on paper or metal foil. However, the above-described surface structure is formed on the inner surface of the lid material. This is advantageous in that it prevents adhesion of a gel-like or pudding-like product such as yogurt. Moreover, in this aspect, since the underlayer 1 absorbs the wax 3, the softening point is lowered or the thin layer 3 a of the wax 3 is formed on the underlayer 1, so that the heat sealability is improved. There is also.
 さらに、本発明が好適に適用される容器の形態は特に制限されず、カップ乃至コップ状、ボトル状、袋状(パウチ)、シリンジ状、ツボ状、トレイ、紙皿、紙トレイ状等、容器材質に応じた形態を有していてよく、延伸成形されていてもよい。容器の形態以外ではスプーン、フォーク、レンゲなどの食器類、キッチン用品、蓋などがある。 Furthermore, the form of the container to which the present invention is suitably applied is not particularly limited, and may be a cup or cup shape, bottle shape, bag shape (pouch), syringe shape, acupoint shape, tray, paper plate, paper tray shape, or the like. It may have a form corresponding to the material and may be stretch-molded. Other than the form of containers, there are dishes such as spoons, forks, and lotus roots, kitchenware, and lids.
 このような容器は、前述した下地層1を有する前成形体をそれ自体公知の方法により成形し、これを、ヒートシールによるフィルムの貼り付け、プラグアシスト成形等の真空成形、ブロー成形などの後加工に付して容器の形態とする。
 さらに、先にも述べたように、その形態に応じて、スプレー噴霧による塗布法や共押出法により、加熱されて液状となっているワックスを、スプレー噴霧、或いはローラやナイフコーターなどを用いての塗布により、内面の下地表面に施すこと、また、特願2013-91244(PCT/JP2014/61565)に記載のようにブロー流体と共にブロー流体用の供給管からミスト状に供給することや、下地を構成する樹脂と共押出して内面に供給することにより、図1や図2に示す表面構造が内面に形成された容器の形態とすることができる。
In such a container, a preformed article having the above-described underlayer 1 is formed by a method known per se, and this is applied to a film by heat sealing, vacuum forming such as plug assist molding, blow molding or the like. It is subjected to processing to form a container.
Further, as described above, depending on the form, wax that has been heated and heated by spraying or coextrusion is used by spraying or using a roller or knife coater. By applying to the inner surface of the inner surface, as described in Japanese Patent Application No. 2013-91244 (PCT / JP2014 / 61565), supplying the blow fluid together with the blow fluid from a supply pipe for the blow fluid, By co-extrusion with the resin that constitutes and supplying the inner surface to the inner surface, the surface structure shown in FIG. 1 or FIG.
 図4には、本発明の構造体10の最も好適な形態であるダイレクトブローボトルが示されている。
 即ち、図4において、全体として10で示されるこのボトル形態の構造体は、螺条を備えた首部11、肩部13を介して首部11に連なる胴部壁15及び胴部壁15の下端を閉じている底壁17を有しており、このようなボトル10の内面が、前述したワックス3が吸収された樹脂層1により形成されており、この内面にメタボ-ル立体層5或いはワックス3の薄層3aから微粒子7が突出した分布した表面構造が形成されている。
FIG. 4 shows a direct blow bottle which is the most preferable form of the structure 10 of the present invention.
That is, in FIG. 4, the bottle-shaped structure indicated by 10 as a whole has a neck portion 11 provided with a thread, a trunk wall 15 connected to the neck portion 11 via a shoulder portion 13, and a lower end of the trunk wall 15. The bottle 10 has a closed bottom wall 17, and the inner surface of the bottle 10 is formed of the resin layer 1 in which the wax 3 is absorbed as described above. A distributed surface structure in which the fine particles 7 protrude from the thin layer 3a is formed.
 このような構造体10は、水分含有の粘稠な物質に対する滑り性が大きいため、特に、粘度(25℃)が100mPa・s以上の粘稠な内容物、例えば、ケチャップ、水性糊、蜂蜜、各種ソース類、マヨネーズ、マスタード、ドレッシング、ジャム、チョコレートシロップ、乳液等の化粧液、液体洗剤、シャンプー、リンス等の粘稠な内容物の充填ボトルとして最も好適である。 Since such a structure 10 has a high slipperiness with respect to a moisture-containing viscous substance, in particular, a viscous content (25 ° C.) of 100 mPa · s or more, for example, ketchup, aqueous paste, honey, It is most suitable as a filling bottle for viscous contents such as various sauces, mayonnaise, mustard, dressing, jam, chocolate syrup, milky lotion, liquid detergent, shampoo, rinse and the like.
 本発明を次の実施例にて説明する。
 尚、以下の実施例等で行った各種の特性、物性等の測定方法及び構造体の材料に用いた樹脂等は次の通りである。
The invention is illustrated in the following examples.
In addition, the resin etc. which were used for the measurement method of various characteristics performed in the following Examples etc., a physical property, etc. and the material of a structure are as follows.
1.粘性内容物の滑落角の測定
 後述の方法で作成した多層構造体から30mm×50mmの試験片を切り出した。
 23℃―50%RHの条件下にて、固液界面解析システムDropMaster700(協和界面化学(株)製)を用い、試験片の凹凸表面構造の形成側が上になるように固定し、30mgの内容物を試験片にのせ、試験片を1°/minの速度で徐々に傾けた際に内容物の滑落が発生した角度、すなわち滑落角を測定した。この滑落角の値が小さい程、内容物の滑落性が優れている。用いた粘性内容物は下記の通りである。
  用いた粘性内容物; いちごジャム
1. Measurement of sliding angle of viscous content A test piece of 30 mm x 50 mm was cut out from a multilayer structure prepared by the method described later.
Using a solid-liquid interface analysis system DropMaster700 (manufactured by Kyowa Interface Chemical Co., Ltd.) under the condition of 23 ° C.-50% RH, the test piece is fixed so that the uneven surface structure side is on top, and the content of 30 mg The object was placed on the test piece, and the angle at which the contents slipped when the test piece was gradually tilted at a rate of 1 ° / min, that is, the sliding angle was measured. The smaller the sliding angle value, the better the sliding properties of the contents. The viscous contents used are as follows.
Viscous content used; strawberry jam
2.蒸留水の滑落角の測定(応用実験1~7)
 後述の方法で作成した積層構造体から20mm×50mmの試験片を切り出した。
 23℃-50%RHの条件下にて、固液界面解析システムDropMaster700(協和界面科学(株)製)を用い、試験片の凹凸表面構造の形成側が上になるように固定し、30mgの蒸留水を試験片にのせ、試験片を1°/sec.の速度で徐々に傾けた際に蒸留水の滑落が発生した角度、すなわち滑落角を測定した。この滑落角の値が小さい程、試験片の滑落性が優れていると評価する。
2. Measurement of sliding angle of distilled water (applied experiments 1-7)
A test piece of 20 mm × 50 mm was cut out from the laminated structure produced by the method described later.
Using a solid-liquid interface analysis system DropMaster700 (manufactured by Kyowa Interface Science Co., Ltd.) under the condition of 23 ° C.-50% RH, the test piece was fixed so that the formation side of the uneven surface structure was on top, and 30 mg of distilled Water is placed on the test piece, and the test piece is placed at 1 ° / sec. The angle at which distilled water slipped when it was gradually tilted at a speed of, i.e., the sliding angle was measured. It is evaluated that the smaller the sliding angle value, the better the sliding property of the test piece.
3.原子間顕微鏡による表面形状の測定
 後述の方法で作成した多層構造体から10mm×10mmの試験片を切り出した。
 凹凸表面構造(疎水性凹凸面)の形成側を測定面とし、原子間力顕微鏡(NanoScopeIII、Digital Instruments社製)を用いて多層構造体の表面形状の測定を行った。測定条件を下記に示す。
  カンチレバー:共振周波数f=363~392kHz
  バネ定数k=20~80N/m
  測定モード:タッピングモード
  スキャン範囲:50μm×50μm
  スキャンライン数:256
 得られた3次元形状のデータから、前記原子間力顕微鏡に付属のソフトウェア(Nanoscope:version5.30r2)を用いて、スキャン範囲(2500μm)の表面積Sを求め、比表面積rを算出した。比表面積rは下記式(1)で与えられる。
   r=S/S      (1)
  式中、
   Sは表面形状プロファイルから得られる表面積であり、
   Sは走査範囲面積(2500μm)である。
3. Measurement of surface shape by atomic microscope A test piece of 10 mm × 10 mm was cut out from a multilayer structure prepared by the method described later.
The formation side of the uneven surface structure (hydrophobic uneven surface) was used as a measurement surface, and the surface shape of the multilayer structure was measured using an atomic force microscope (NanoScope III, manufactured by Digital Instruments). The measurement conditions are shown below.
Cantilever: Resonance frequency f 0 = 363 to 392 kHz
Spring constant k = 20-80N / m
Measurement mode: Tapping mode Scan range: 50 μm × 50 μm
Number of scan lines: 256
From the obtained three-dimensional shape data, the surface area S in the scan range (2500 μm 2 ) was determined using the software (Nanoscope: version 5.30r2) attached to the atomic force microscope, and the specific surface area r was calculated. The specific surface area r is given by the following formula (1).
r = S / S 0 (1)
Where
S is the surface area obtained from the surface profile,
S 0 is the scanning range area (2500 μm 2 ).
4.SEMによる凹凸表面構造の形態観察
 後述の方法で作成した多層構造体から30mm×50mmの試験片を切り出した。
 凹凸表面構造の形成面が上になるように固定し、イオンスパッター(E-1045形立イオンスパッター、日立ハイテクノロジーズ製)を用いて放電電流20mA、処理時間40sec.の条件で、試験片表面にPtの金属薄膜コーティングを行った。
 その後、試験片の凹凸表面構造の形態を、電界放出型走査型電子顕微鏡(S-4800、日立ハイテクノロジーズ製)を用いて、実施例1~3及び比較例1,2で作製された各サンプルについて、10000倍率及び100000倍率で観察し、凹凸表面構造の形態を確認した。また、応用実験1~7で作製された各サンプルについては、50000倍の倍率で表面観察を行った。
4). Morphological observation of uneven surface structure by SEM A test piece of 30 mm × 50 mm was cut out from a multilayer structure prepared by the method described later.
The surface of the uneven surface structure is fixed so that the surface is facing upward, and discharge current is 20 mA, treatment time is 40 sec. Using ion sputtering (E-1045 vertical ion sputtering, manufactured by Hitachi High-Technologies). Under these conditions, the surface of the test piece was coated with a thin metal film of Pt.
Thereafter, each sample produced in Examples 1 to 3 and Comparative Examples 1 and 2 using a field emission scanning electron microscope (S-4800, manufactured by Hitachi High-Technologies) was used to form the uneven surface structure of the test piece. Were observed at 10,000 magnifications and 100,000 magnifications to confirm the morphology of the uneven surface structure. Further, the surface of each sample prepared in the applied experiments 1 to 7 was observed at a magnification of 50000 times.
5.TEMによる凹凸表面構造の断面観察
 後述の方法で作成した多層構造体を包埋樹脂で固定後凍結させ、厚さ約100nmの薄片を切り出した。この薄片を透過型電子顕微鏡(TEM)で観察した。
5. Cross-sectional observation of uneven surface structure by TEM A multilayer structure prepared by the method described later was frozen with an embedding resin, and a slice having a thickness of about 100 nm was cut out. The flakes were observed with a transmission electron microscope (TEM).
6.各加熱条件下における下地層の結晶性の評価(応用実験1~7)
 下地樹脂に用いた材料(後述のフィルム)から重量約3~5mgの薄片を切り出し、アルミニウム製のクリンプセルへ入れ蓋をして圧着し、測定用のサンプルを作成した。作成したサンプルに関して、示差走査熱量計(DiamondDSC、PerkinElmer社製)を用いて、サンプルの昇温過程におけるプロファイルから、各温度条件下における下地樹脂の結晶性について評価した。各種の下地樹脂へ付与した昇温条件を以下に示す。
<LDPE、HDPE、h-PP>
  -50℃から200℃まで10℃/minで昇温
<COC、EVOH、PET-G>
  -50℃から300℃まで10℃/minで昇温
6). Evaluation of crystallinity of the underlayer under each heating condition (applied experiments 1-7)
A thin piece having a weight of about 3 to 5 mg was cut out from the material (film described later) used for the base resin, put into an aluminum crimp cell, and then crimped to prepare a sample for measurement. Regarding the prepared sample, the crystallinity of the base resin under each temperature condition was evaluated from the profile in the temperature rising process of the sample using a differential scanning calorimeter (Diamond DSC, manufactured by PerkinElmer). The temperature raising conditions given to various base resins are shown below.
<LDPE, HDPE, h-PP>
Temperature rise from -50 ° C to 200 ° C at 10 ° C / min <COC, EVOH, PET-G>
Temperature rise from -50 ℃ to 300 ℃ at 10 ℃ / min
 また、上記の熱履歴の付与により得られた吸熱ピークの結果から、各樹脂の結晶化度を以下の式を用いて算出した。
  下地樹脂の結晶化度(%)=(ΔH/ΔHm°)×100
  式中、
   ΔH:測定によって得られた下地樹脂の融解熱量(J/g)
   ΔHm°:各下地樹脂の完全結晶体の融解熱量(J/g)
 尚、ΔHm°(J/g)の値に関しては、文献値を参照し、以下の値を適用した。
  LDPE及びHDPE; ΔHm°=293J/g
  h-P; ΔHm°=207J/g
  PET; ΔHm°=140J/g
 また、比較対象として、各樹脂の吸熱ピークと実施例における加熱温度条件下における融解熱量ΔH、すなわち60℃、90℃、120℃、150℃、180℃における樹脂の融解熱量 ΔH60、ΔH90、ΔH120、ΔH150を求め、その値からそれぞれの加熱温度条件下における残存結晶化度を算出した。
Moreover, the crystallinity degree of each resin was computed from the result of the endothermic peak obtained by provision of said heat history using the following formula | equation.
Crystallinity of base resin (%) = (ΔH 0 / ΔHm °) × 100
Where
ΔH 0 : Heat of fusion of the base resin obtained by measurement (J / g)
ΔHm °: Heat of fusion of complete crystal of each base resin (J / g)
For the value of ΔHm ° (J / g), the following values were applied with reference to literature values.
LDPE and HDPE; ΔHm ° = 293 J / g
h−P; ΔHm ° = 207 J / g
PET; ΔHm ° = 140 J / g
Further, as comparative objects, the endothermic peak of each resin and the heat of fusion ΔH T under the heating temperature conditions in the examples, that is, the heat of fusion of the resin at 60 ° C., 90 ° C., 120 ° C., 150 ° C., 180 ° C. ΔH 60 , ΔH 90 , ΔH 120 and ΔH 150 were calculated, and the residual crystallinity under each heating temperature condition was calculated from the values.
<ワックス>
  パラフィンワックス
    融点:50~52℃
    SP値(δ1):17.3(MPa)1/2
    平均分子量:280
<Wax>
Paraffin wax Melting point: 50-52 ° C
SP value (δ1): 17.3 (MPa) 1/2
Average molecular weight: 280
<下地樹脂>
 各材料を用いて厚さ約400μmのフィルムを作製し、試験片とした。
 (但し、PETに関しては、二軸延伸のフィルム(厚さ100μm)を用いて評価を行った。)
  低密度ポリエチレン(LDPE)
    融点:108℃
    結晶化度:30%
    ガラス転移点(Tg):-78℃
    SP値(δ2):17.9(MPa)1/2 
    パラフィンワックスとのSP値の差:0.6
  高密度ポリエチレン(HDPE)
    融点:132℃
    結晶化度:55%
    ガラス転移点(Tg):-78℃
    SP値(δ2):18.7(MPa)1/2 
    パラフィンワックスとのSP値の差:1.4
  ホモポリプロピレン(h-PP)
    融点:164℃
    結晶化度:42%
    ガラス転移点(Tg):約5℃
    SP値(δ2):16.4(MPa)1/2 
    パラフィンワックスとのSP値の差:0.9
  環状オレフィン共重合体(COC)
    結晶化度:非結晶
    ガラス転移点(Tg):80℃
    SP値(δ2):13.8(MPa)1/2
    パラフィンワックスとのSP値の差:3.5
  エチレンビニルアルコール共重合体(EVOH)
    融点:190℃
    ガラス転移点(Tg):60℃
    SP値(δ2):18.9(MPa)1/2
    パラフィンワックスとのSP値の差:1.6
  ポリエチレンテレフタレート(PET)
    融点:265℃
    ガラス転移点(Tg):80℃
    SP値(δ2):22.7(MPa)1/2
    パラフィンワックスとのSP値の差:5.4
  PET-G
    結晶化度:非結晶
    ガラス転移点(Tg):80℃
    SP値(δ2):20.4(MPa)1/2
    パラフィンワックスとのSP値の差:3.1
<Base resin>
A film having a thickness of about 400 μm was prepared using each material, and used as a test piece.
(However, PET was evaluated using a biaxially stretched film (thickness: 100 μm).)
Low density polyethylene (LDPE)
Melting point: 108 ° C
Crystallinity: 30%
Glass transition point (Tg): -78 ° C
SP value (δ2): 17.9 (MPa) 1/2
Difference in SP value from paraffin wax: 0.6
High density polyethylene (HDPE)
Melting point: 132 ° C
Crystallinity: 55%
Glass transition point (Tg): -78 ° C
SP value (δ2): 18.7 (MPa) 1/2
Difference in SP value from paraffin wax: 1.4
Homo polypropylene (h-PP)
Melting point: 164 ° C
Crystallinity: 42%
Glass transition point (Tg): about 5 ° C
SP value (δ2): 16.4 (MPa) 1/2
Difference in SP value from paraffin wax: 0.9
Cyclic olefin copolymer (COC)
Crystallinity: Amorphous Glass transition point (Tg): 80 ° C
SP value (δ2): 13.8 (MPa) 1/2
Difference in SP value from paraffin wax: 3.5
Ethylene vinyl alcohol copolymer (EVOH)
Melting point: 190 ° C
Glass transition point (Tg): 60 ° C
SP value (δ2): 18.9 (MPa) 1/2
Difference in SP value from paraffin wax: 1.6
Polyethylene terephthalate (PET)
Melting point: 265 ° C
Glass transition point (Tg): 80 ° C
SP value (δ2): 22.7 (MPa) 1/2
Difference in SP value from paraffin wax: 5.4
PET-G
Crystallinity: Amorphous Glass transition point (Tg): 80 ° C
SP value (δ2): 20.4 (MPa) 1/2
Difference in SP value from paraffin wax: 3.1
<粗面化材微粒子>
  疎水性湿式シリカ
   平均粒径2.8μm、BET比表面積500m/g
  疎水性乾式シリカ
   平均一次粒径7nm、BET比表面積220m/g
  疎水性炭酸カルシウム(脂肪酸による表面処理)
   平均一次粒径30nm、BET比表面積30m/g
<Roughening material fine particles>
Hydrophobic wet silica, average particle size 2.8 μm, BET specific surface area 500 m 2 / g
Hydrophobic dry silica Average primary particle size 7 nm, BET specific surface area 220 m 2 / g
Hydrophobic calcium carbonate (surface treatment with fatty acid)
Average primary particle size 30 nm, BET specific surface area 30 m 2 / g
<その他の材料>
 下地層形成用基材
   一般原紙(坪量250g/m
 バインダー樹脂(比較例1)
   水性ポリエチレンエマルジョン
     組成:樹脂成分/溶剤/蒸留水=25/20/55(重量比)
     樹脂成分:融点=81℃、分子量=約6万
<Other materials>
Base material for base layer formation General base paper (basis weight 250g / m 2 )
Binder resin (Comparative Example 1)
Aqueous polyethylene emulsion Composition: resin component / solvent / distilled water = 25/20/55 (weight ratio)
Resin component: melting point = 81 ° C., molecular weight = approximately 60,000
<実施例1>
 ワックスとして、パラフィンワックスを使用し、粗面化剤微粒子として疎水性湿式シリカを使用した
 また、下地樹脂として低密度ポリエチレン(LDPE)を使用し、このポリエチレンによる下地層(厚み20μm)を一般原紙(250g/m)の表面に形成し、凹凸表面形成用の成形体として用いた。
<Example 1>
As the wax, paraffin wax was used, and hydrophobic wet silica was used as the surface roughening fine particles. Also, low density polyethylene (LDPE) was used as the base resin, and the base layer (thickness 20 μm) of this polyethylene was used as a general base paper ( 250 g / m 2 ), and used as a molded body for forming an uneven surface.
 容量50mlのバイアル瓶に、パラフィンワックス(融点50~52℃)を供給し、90℃の条件で加熱溶融させ、疎水性湿式シリカを加え、ワックス組成物(非溶媒塗布組成物)を調製した。このワックス組成物において、ワックスと疎水性湿式シリカとの混合比(ワックス:シリカ)は93:7(重量比)である。
 このワックス組成物を90℃の条件で加熱しながら撹拌したものを、約70℃に加熱したバーコーター(#3)を用いて、上記の成形体表面の下地層(厚み20μmのLDPE層)に塗布し、多層構造体を作成した。
Paraffin wax (melting point: 50 to 52 ° C.) was supplied to a vial having a capacity of 50 ml, heated and melted at 90 ° C., and hydrophobic wet silica was added to prepare a wax composition (non-solvent coating composition). In this wax composition, the mixing ratio of wax to hydrophobic wet silica (wax: silica) is 93: 7 (weight ratio).
A wax coater (# 3) heated to about 70 ° C. with stirring this wax composition while being heated at 90 ° C. is used as an underlayer (LDPE layer having a thickness of 20 μm) on the surface of the molded body. The multilayer structure was prepared by coating.
 この多層構造体を、90℃-5minの条件でオーブン加熱し、ワックス組成物の塗布層に含まれるワックス成分の溶融状態を維持させた後、室温下で冷却した。
 かかる多層構造体に関して、層構成、用いたワックス組成物の組成、下地樹脂の種類を表1に示した。
 また、オーブン加熱前後での多層構造体について、それぞれ前述の粘性内容物の滑落角の測定、表面形状の測定、SEMによる凹凸表面構造の形態観察を行った。得られた滑落角の値及び凹凸構造の比表面積の値を表2に示す。
 また、表面形状の測定によって得られた3次元像をそれぞれ図5及び図6に示す。さらに、SEMによる凹凸表面構造の形態観察によって得られた観察画像を図7、図8、図9、図10に示す。
The multilayer structure was heated in an oven at 90 ° C. for 5 minutes to maintain the molten state of the wax component contained in the coating layer of the wax composition, and then cooled at room temperature.
Table 1 shows the layer structure, the composition of the wax composition used, and the type of the base resin for the multilayer structure.
In addition, for the multilayer structure before and after oven heating, the sliding angle of the above-mentioned viscous content, the measurement of the surface shape, and the morphology observation of the uneven surface structure by SEM were performed. Table 2 shows values of the sliding angle and the specific surface area of the uneven structure.
In addition, three-dimensional images obtained by measuring the surface shape are shown in FIGS. 5 and 6, respectively. Furthermore, observation images obtained by morphological observation of the rugged surface structure by SEM are shown in FIG. 7, FIG. 8, FIG. 9, and FIG.
<実施例2>
 粗面化材微粒子として、疎水性湿式シリカの代わりに、前述した疎水性乾式シリカを使用した以外は、実施例1と同様の操作を行ってワックス組成物を作成し且つ同様にして多層構造体を作製した。
 この多層構造体について、層構成、用いたワックス組成物の組成、下地樹脂の種類を表1に示した。また、オーブン加熱前後での各種測定結果を表2に示した。さらに、形態観察の結果によって得られた観察画像を図11、図12、断面観察によって得られた画像を図13に示す。
<Example 2>
A wax composition was prepared in the same manner as in Example 1 except that the hydrophobic dry silica described above was used in place of the hydrophobic wet silica as the roughening fine particles, and a multilayer structure was prepared in the same manner. Was made.
Table 1 shows the layer structure, the composition of the wax composition used, and the type of the base resin for this multilayer structure. Table 2 shows various measurement results before and after oven heating. Further, FIG. 11 and FIG. 12 show observation images obtained from the results of morphological observation, and FIG. 13 shows images obtained by cross-sectional observation.
<実施例3>
 粗面化材微粒子として、炭酸カルシウムを使用し、ワックス組成物の組成を、パラフィンワックス:疎水性炭酸カルシウム=55:45(重量比)とした以外は、実施例1と同様の操作を行い、多層構造体を作製した。
 この多層構造体について、層構成、用いたワックス組成物の組成、下地樹脂の種類を表1に示した。また、オーブン加熱前後での各種測定結果を表2に示した。さらに、形態観察の結果によって得られた観察画像を図14、図15に示す。
<Example 3>
As roughening material fine particles, calcium carbonate is used and the composition of the wax composition is paraffin wax: hydrophobic calcium carbonate = 55: 45 (weight ratio). A multilayer structure was produced.
Table 1 shows the layer structure, the composition of the wax composition used, and the type of the base resin for this multilayer structure. Table 2 shows various measurement results before and after oven heating. Further, FIGS. 14 and 15 show observation images obtained as a result of morphological observation.
 尚、上記の実施例1~3で作製された多層構造体の基本層構成は、疎水性凹凸構造の形成面を内面として、以下の通りである。
  非溶媒塗布層/下地樹脂層(LDPE,20μm)/基材層(原紙)
The basic layer structure of the multilayer structure manufactured in Examples 1 to 3 is as follows, with the formation surface of the hydrophobic uneven structure as the inner surface.
Non-solvent coating layer / underlying resin layer (LDPE, 20 μm) / base material layer (base paper)
<比較例1>
 容量50mlのバイアル瓶に、分散媒としてエタノール及び蒸留水を入れ、さらに、疎水性湿式シリカ(粗面化材微粒子)及び水性ポリエチレンエマルジョン(バインダー)を供給し、下記組成の溶媒塗布組成物を調製した。
  エタノール/蒸留水/疎水性シリカ/水性ポリエチレンエマルジョン中
  の樹脂成分=45/45/5/5(重量比)
<Comparative Example 1>
Put ethanol and distilled water as a dispersion medium into a 50 ml vial, and further supply hydrophobic wet silica (roughening material fine particles) and aqueous polyethylene emulsion (binder) to prepare a solvent coating composition having the following composition. did.
Resin component in ethanol / distilled water / hydrophobic silica / aqueous polyethylene emulsion = 45/45/5/5 (weight ratio)
 上記の溶媒塗布組成物を、バーコーター(#3)を用いて、基材層(原紙)上に形成されている下地層(LDPE,20μm)の表面に塗布し、下記基本組成の多層構造体を作製した。
  溶媒塗布層/下地樹脂層(LDPE,20μm)/基材層(原紙)
 作成した多層構造体を、オーブンを用いて90℃-5minの条件で加熱し、溶媒塗布層に含まれるバインダー成分を溶融させた後、室温下で冷却した。
 この多層構造体について、層構成、用いた溶媒塗布組成物の組成、下地樹脂の種類を表1に示した。また、オーブン加熱前後での各種測定結果を表2に示した。
Using the bar coater (# 3), the above solvent coating composition is applied to the surface of the base layer (LDPE, 20 μm) formed on the base material layer (base paper), and a multilayer structure having the following basic composition Was made.
Solvent coating layer / underlying resin layer (LDPE, 20 μm) / base material layer (base paper)
The prepared multilayer structure was heated using an oven at 90 ° C. for 5 minutes to melt the binder component contained in the solvent coating layer, and then cooled at room temperature.
Table 1 shows the layer structure, the composition of the solvent coating composition used, and the type of the base resin for this multilayer structure. Table 2 shows various measurement results before and after oven heating.
<比較例2>
 下地層としてPETフィルム(膜厚100μm)を使用した以外は、実施例1と同様の方法でワックス組成物を下地層に塗布し、非溶媒塗布層(ワックス組成物)/PETフィルム(100μm)の多層構造体を作成した。
 この多層構造体を、オーブンを用いて90℃-5minの条件で加熱し、非溶媒塗布生成物層に含まれるワックス成分を溶融させた後、多層構造体を室温下で冷却した。
 この多層構造体について、層構成、用いた非溶媒塗布組成物(ワックス組成物)の組成、下地樹脂の種類を表1に示した。また、オーブン加熱前後での各種測定結果を表2に示した。
<Comparative example 2>
A wax composition was applied to the underlayer in the same manner as in Example 1 except that a PET film (film thickness 100 μm) was used as the underlayer, and a non-solvent coating layer (wax composition) / PET film (100 μm) A multilayer structure was created.
This multilayer structure was heated using an oven at 90 ° C. for 5 minutes to melt the wax component contained in the non-solvent coated product layer, and then the multilayer structure was cooled at room temperature.
Table 1 shows the layer structure, the composition of the non-solvent coating composition (wax composition) used, and the type of the base resin for this multilayer structure. Table 2 shows various measurement results before and after oven heating.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
<考察>
 表1及び表2の結果から、実施例1の多層構造体の比表面積に関しては、加熱工程前(図5)が1.10であるのに対し、加熱工程後(図6)は1.28となり、多層構造体の比表面積が増加したことがわかる。
 また、粘性内容物の滑落角に関しては、加熱工程前のサンプルは滑落角の値が90°(滑落しない)であるのに対し、加熱工程後のサンプルは滑落角の値が6°であった。したがって、サンプル表面の比表面積が増加するに伴い、滑落性が大幅に向上したことがわかる。
 実施例2及び実施例3に関しては、粗面化材微粒子として、それぞれ疎水性乾式シリカ及び疎水性炭酸カルシウムを使用した例であるが、実施例1と同様に加熱工程前は粘性内容物が滑落しない状態であるのに対し、加熱工程後は粘性内容物が滑落する状態となる結果が示されている。
<Discussion>
From the results of Tables 1 and 2, the specific surface area of the multilayer structure of Example 1 is 1.10 before the heating step (FIG. 5) and 1.28 after the heating step (FIG. 6). Thus, it can be seen that the specific surface area of the multilayer structure has increased.
Regarding the sliding angle of the viscous contents, the sample before the heating process had a sliding angle value of 90 ° (not sliding), whereas the sample after the heating process had a sliding angle value of 6 °. . Therefore, it can be seen that as the specific surface area of the sample surface increases, the sliding property is greatly improved.
Examples 2 and 3 are examples in which hydrophobic dry silica and hydrophobic calcium carbonate are used as the roughening material fine particles, respectively. However, the viscous content slides down before the heating step as in Example 1. The result shows that the viscous content slides down after the heating step, whereas the state does not.
 一方、比較例1に関しては、多層構造体の比表面積は加熱工程の前後で1.18から1.30へ増加したのに対し、粘性内容物の滑落角に関しては、加熱工程の前後ともに90°であり、加熱の有無にかかわらず滑落性は向上しないことがわかる。これは、バインダーとして使用した樹脂成分の分子量が数万と高いため、下地層中に十分に拡散されず、空隙が十分に形成されなかったためと推察される。
 さらに、比較例2では、多層構造体の比表面積が加熱工程の前後で変化せず、粘性内容物の滑落角も加熱工程の前後ともに90°であり、滑落性も向上しないことがわかる。また、表面観察の結果からは、加熱工程後に関しても、疎水性微粒子とワックスが混合した層が形成されており、疎水性微粒子の形状が明確には確認できない様子が見られた。
On the other hand, for Comparative Example 1, the specific surface area of the multilayer structure increased from 1.18 to 1.30 before and after the heating step, while the sliding angle of the viscous content was 90 ° both before and after the heating step. It can be seen that the sliding property is not improved regardless of the presence or absence of heating. This is presumably because the resin component used as the binder had a high molecular weight of several tens of thousands, so that it was not sufficiently diffused into the underlayer and voids were not sufficiently formed.
Furthermore, in Comparative Example 2, it can be seen that the specific surface area of the multilayer structure does not change before and after the heating step, the sliding angle of the viscous content is 90 ° both before and after the heating step, and the sliding property is not improved. From the results of surface observation, it was found that even after the heating step, a layer in which hydrophobic fine particles and wax were mixed was formed, and the shape of the hydrophobic fine particles could not be clearly confirmed.
 図7及び図8は、実施例1における、加熱工程前のサンプルの表面状態を観察した結果であるが、微粒子がワックスと混合した層を成しており、微粒子の有する凹凸構造が全く観測されず、平滑な状態である様子が見られた。
 これに対し、実施例1における加熱工程後のサンプルの状態を観察した結果である図9に関しては、表面に凹凸構造が形成されており、加熱により表面構造が変化している様子が見られた。また、図10ではこの表面をさらに拡大し観察を行った結果を示しているが、メタボ-ル立体層が形成されており、この立体層を形成している1個の球形状メタボールは約100nmの円相当径を有していることが確認された。
7 and 8 show the results of observing the surface state of the sample before the heating step in Example 1, and the fine particles form a layer mixed with wax, and the uneven structure of the fine particles is completely observed. A state of smoothness was seen.
On the other hand, with respect to FIG. 9, which is the result of observing the state of the sample after the heating process in Example 1, a concavo-convex structure was formed on the surface, and it was seen that the surface structure was changed by heating. . Further, FIG. 10 shows the result of further enlarging the surface and observing, but a metabol solid layer is formed, and one spherical metaball forming this solid layer is about 100 nm. It was confirmed that it has an equivalent circle diameter.
 図11及び図12は、実施例2での加熱工程後の多層構造体の表面形態を観察した結果である。実施例1と同様に微粒子周囲にワックスが被覆している様子が見られ、メタボ-ル立体層が形成されており、1個のメタボールの円相当径は約50nmであった。 11 and 12 show the results of observing the surface morphology of the multilayer structure after the heating process in Example 2. FIG. As in Example 1, it was observed that wax was coated around the fine particles, a metabol solid layer was formed, and the equivalent circle diameter of one metaball was about 50 nm.
 図13に関しては、実施例2の凹凸表面構造の断面を観察した結果である。図中において、表記:A(黒色)の部分が疎水性粒子、表記:Bの部分がワックスの存在を示している。したがって、表層における表面凹凸構造が疎水性粒子及びワックスにより形成されていることが確認された。 FIG. 13 is a result of observing a cross section of the uneven surface structure of Example 2. In the figure, the notation: A (black) indicates hydrophobic particles, and the notation: B indicates the presence of wax. Therefore, it was confirmed that the surface uneven structure in the surface layer was formed by hydrophobic particles and wax.
 図14及び図15に関しては、実施例3の表面状態を観察した結果である。実施例1と同様に、微粒子表面がワックスに覆われ、メタボ-ル立体層が形成されており、メタボールの円相当径は約100nmであった。したがって、微粒子が疎水性シリカ以外であっても、同様の凹凸構造の形成が可能であることを検証された。 14 and 15 are the results of observing the surface state of Example 3. FIG. In the same manner as in Example 1, the surface of the fine particles was covered with wax to form a metabol solid layer, and the equivalent circle diameter of the metaball was about 100 nm. Therefore, it was verified that the same uneven structure can be formed even if the fine particles are other than hydrophobic silica.
 これらの結果をまとめると、良好な撥液性が得られたサンプル何れも、実施例1、実施例2及び実施例3のように、ワックス中に粗面化材微粒子が分散され且つ溶媒を含んでいない塗布組成物を、ワックスと相容性のある樹脂からなる下地層上に、塗布・冷却した後、加熱工程によりワックス成分を溶融させる方法で凹凸表面構造を形成させたものである。
 本発明における凹凸表面構造の形成に関して推察すると、形成された凹凸表面構造は、滑らかな曲面からなる凹凸形状で、且つ、凹凸の内部にはナノオーダーの平均一次粒径からなる疎水性微粒子が分散している。形成された表面の凹凸は概ね100nm程度のスケールとなっているが、これは、微粒子表面にワックスが被覆される際に働く力、即ち、微粒子-ワックス間の分子間力が100nm以下の領域でのみこの力が支配的であることが主要因であると推察される。つまり、分子間力と下地樹脂層中への吸収・拡散により、所定の凹凸構造を形成し、且つ、内部に空隙を有する特有の立体構造が形成されるものと考えられる。
Summarizing these results, all the samples having good liquid repellency, as in Example 1, Example 2 and Example 3, have the roughening material fine particles dispersed in the wax and contain the solvent. An uneven surface structure is formed by a method in which a coating composition that has not been coated is coated and cooled on a base layer made of a resin compatible with wax and then the wax component is melted by a heating process.
Assuming the formation of the uneven surface structure in the present invention, the formed uneven surface structure is an uneven shape having a smooth curved surface, and hydrophobic fine particles having an average primary particle size of nano order are dispersed inside the unevenness. is doing. The unevenness of the formed surface has a scale of about 100 nm. This is because the force acting when the wax is coated on the surface of the fine particles, that is, in the region where the intermolecular force between the fine particles and the wax is 100 nm or less. It is speculated that the main factor is that this power is dominant only. That is, it is considered that a specific three-dimensional structure having a predetermined concavo-convex structure and having voids therein is formed by intermolecular force and absorption / diffusion into the base resin layer.
<応用実験例>
 以下の実験は、メタボール立体層の形成は、ワックスとのSP値の差やワックスの溶融維持のための加熱条件に大きく影響されることを示すものである。
<Application experiment example>
The following experiment shows that the formation of the metaball three-dimensional layer is greatly influenced by the difference in SP value from the wax and the heating conditions for maintaining the melting of the wax.
<実験1>
 容量50mlのバイアル瓶に、ワックス溶融物としてパラフィンワックス(融点50~52℃)を供給し70℃の条件で加熱溶融させ、前述した疎水性乾式シリカを加え、微粒子が分散したワックス組成物(非溶媒塗布組成物)を調製した。
 このワックス組成物において、ワックスと疎水性乾式シリカとの混合比(ワックス:シリカ)は93:7(重量比)である。
<Experiment 1>
Paraffin wax (melting point: 50 to 52 ° C.) is supplied as a wax melt to a 50 ml capacity vial, heated and melted at 70 ° C., added with the above-described hydrophobic dry silica, and a wax composition in which fine particles are dispersed (non-coated) Solvent coating composition) was prepared.
In this wax composition, the mixing ratio of wax to hydrophobic dry silica (wax: silica) is 93: 7 (weight ratio).
 このワックス組成物を70℃の条件で加熱しながら溶融させ撹拌したものを、約70℃に加熱したバーコーター(#6)を用いて、下地樹脂としてLDPEを用いて作製したフィルム(厚さ約400μm)に塗布し、多層構造体を作成した。 A film prepared by using LDPE as a base resin (thickness: about 6) using a bar coater (# 6) heated to about 70 ° C. while the wax composition was melted and stirred under heating at 70 ° C. 400 μm) to form a multilayer structure.
 この多層構造体を、オーブンを用いて60℃-5min、90℃-5min、120℃-5minの3つの条件で加熱し、ワックス組成物の塗布層に含まれるワックス成分を溶融させ、その後、室温下で冷却した。
 このような多層構造体について、オーブン加熱前後の多層構造体サンプルに関して、それぞれ前述の蒸留水の滑落角の測定及び表面観察を行った。得られた滑落角の値及び凹凸構造の有無を、多層構造体の作成に用いた下地樹脂の種類及びその物性(融点、SP値、ワックスとのSP値の差ΔSP)と共に、表3に示した。また、SEMによる凹凸表面構造の形態観察も行った。得られた観察画像を図16に示す。
 加えて、多層構造体の作製に使用した下地樹脂フィルムを用いて、各加熱条件下における下地層の結晶性の評価を行い、サンプルの吸熱ピークの変化について測定を行った。その結果を図17に示す。
 更に、図17の結果から各加熱温度条件下における樹脂の融解熱量ΔHを求め、結晶化度を算出した。その結果を表5に示す。
This multilayer structure is heated using an oven under three conditions of 60 ° C.-5 min, 90 ° C.-5 min, and 120 ° C.-5 min to melt the wax component contained in the coating layer of the wax composition, and then at room temperature. Cooled down.
About such a multilayer structure, the above-mentioned measurement of the sliding angle of distilled water and surface observation were performed on the multilayer structure samples before and after oven heating. The obtained sliding angle value and the presence or absence of the uneven structure are shown in Table 3 together with the type of the base resin used to create the multilayer structure and its physical properties (melting point, SP value, difference in SP value from wax ΔSP). It was. Moreover, the form observation of the uneven | corrugated surface structure by SEM was also performed. The obtained observation image is shown in FIG.
In addition, using the base resin film used for the production of the multilayer structure, the crystallinity of the base layer under each heating condition was evaluated, and the change in the endothermic peak of the sample was measured. The result is shown in FIG.
Furthermore, the amount of heat of fusion ΔH T of the resin under each heating temperature condition was determined from the results of FIG. 17 to calculate the crystallinity. The results are shown in Table 5.
<実験2>
 下地樹脂フィルムとしてHDPEフィルムを用いた他は、実験1と同様の操作で多層構造体を作製し、同様の測定を行い、その結果を表3に示した。また、凹凸表面構造の形態観察結果(SEM写真)を図16に示した。
 さらに、多層構造体の作製に使用した下地樹脂フィルムを用いて、各加熱条件下における下地層の結晶性の評価を行い、サンプルの吸熱ピークの変化について測定を行った。その結果を図18に示す。
 更に、図18の結果から各加熱温度条件下における樹脂の融解熱量ΔHを求め、結晶化度を算出した。その結果を表5に記載した。
<Experiment 2>
A multilayer structure was prepared in the same manner as in Experiment 1 except that an HDPE film was used as the base resin film, the same measurement was performed, and the results are shown in Table 3. Moreover, the form observation result (SEM photograph) of the uneven | corrugated surface structure was shown in FIG.
Furthermore, using the base resin film used for the production of the multilayer structure, the crystallinity of the base layer under each heating condition was evaluated, and the change in the endothermic peak of the sample was measured. The result is shown in FIG.
Furthermore, the amount of heat of fusion ΔH T of the resin under each heating temperature condition was determined from the results of FIG. 18 to calculate the crystallinity. The results are shown in Table 5.
<実験3>
 下地樹脂フィルムとしてh-PPフィルムを用い、多層構造体の加熱条件として150℃-5minを加えた他は、実験1と同様の操作で多層構造体を作製し、同様の測定を行い、その結果を表3に示した。また、凹凸表面構造の形態観察結果(SEM写真)を図16に示した。
 加えて、積層構造体の作製に使用した下地樹脂フィルムを用いて、各加熱条件下における下地樹脂層の結晶性の評価を行い、サンプルの吸熱ピークの変化について測定を行った。その結果を図18に示す。
 更に、図18の結果から各加熱温度条件下における樹脂の融解熱量ΔHを求め、結晶化度を算出した。その結果を表5に記載した。
<Experiment 3>
A multilayer structure was prepared in the same manner as in Experiment 1, except that an h-PP film was used as the base resin film and 150 ° C.-5 min was added as the heating condition of the multilayer structure. Are shown in Table 3. Moreover, the form observation result (SEM photograph) of the uneven | corrugated surface structure was shown in FIG.
In addition, the crystallinity of the base resin layer under each heating condition was evaluated using the base resin film used for the production of the laminated structure, and the change in the endothermic peak of the sample was measured. The result is shown in FIG.
Furthermore, the amount of heat of fusion ΔH T of the resin under each heating temperature condition was determined from the results of FIG. 18 to calculate the crystallinity. The results are shown in Table 5.
<実験4>
 下地樹脂フィルムとしてCOCフィルムを用いた他は、実験3と同様の操作で同様の操作で多層構造体を作製し、同様の測定を行い、その結果を表3に示した。また、凹凸表面構造の形態観察結果(SEM写真)を図16に示した。
<Experiment 4>
A multilayer structure was prepared in the same manner as in Experiment 3 except that a COC film was used as the base resin film, the same measurement was performed, and the results are shown in Table 3. Moreover, the form observation result (SEM photograph) of the uneven | corrugated surface structure was shown in FIG.
<実験5>
 下地樹脂のフィルムの材料としてEVOHを用い、積層構造体の加熱条件として60℃-5minを除き、180℃-5minを加えた他は、実験4と同様の操作で多層構造体を作製し、同様の測定を行い、その結果を表4に示した。また、凹凸表面構造の形態観察結果(SEM写真)を図16に示した。
<Experiment 5>
A multilayer structure was prepared in the same manner as in Experiment 4, except that EVOH was used as the material for the base resin film, and the heating condition of the laminated structure was changed to 180 ° C.-5 min except 60 ° C.-5 min. The results are shown in Table 4. Moreover, the form observation result (SEM photograph) of the uneven | corrugated surface structure was shown in FIG.
<実験6>
 下地樹脂フィルムとしてPETフィルムを用いた他は、実験4と同様の操作で多層構造体を作製し、蒸留水の滑落角の測定を行った。結果を表4に示す。
<Experiment 6>
A multilayer structure was prepared in the same manner as in Experiment 4 except that a PET film was used as the base resin film, and the sliding angle of distilled water was measured. The results are shown in Table 4.
<実験7>
 下地樹脂フィルムとしてPET-Gフィルムを用いた他は、実験4と同様の操作で多層構造体を作製し、同様の測定を行い、その結果を表4に示した。また、凹凸表面構造の形態観察結果(SEM写真)を図16に示した。
<Experiment 7>
A multilayer structure was prepared in the same manner as in Experiment 4 except that a PET-G film was used as the base resin film, and the same measurement was performed. The results are shown in Table 4. Moreover, the form observation result (SEM photograph) of the uneven | corrugated surface structure was shown in FIG.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表3,4の結果から、下地樹脂としてLDPEを使用した場合、60℃-5minの条件においては滑落角が22°であり、良好な撥液性が得られない結果となった。次に、90℃-5minの条件で加熱した場合、滑落角は1°となり、非常に良好な撥液性が得られた。
 しかし、さらに温度を上げ、120-5minの条件で加熱を行った場合、滑落角が大幅に増加し、撥液性が失われる傾向が見られた。
From the results of Tables 3 and 4, when LDPE was used as the base resin, the sliding angle was 22 ° under the condition of 60 ° C.-5 min, and good liquid repellency was not obtained. Next, when heated at 90 ° C. for 5 minutes, the sliding angle was 1 °, and very good liquid repellency was obtained.
However, when the temperature was further raised and heating was performed under the condition of 120-5 min, the sliding angle increased significantly, and the liquid repellency tended to be lost.
 また、各加熱条件下における下地層の結晶性評価を示す図17(実験1)から、LDPEに関しては約30℃の時点で吸熱ピークが出始めているため、約30℃から結晶部分の融解が開始し、温度の上昇に伴い非晶部分が徐々に増加していることが示されている。その後、109℃の時点でピークが頂点を迎えているため109℃で融点となり、それ以上の温度領域では結晶部分が全て融解し非晶の状態であると評価できる。
 このLDPEの吸熱ピーク、実験1での加熱温度(60℃、90℃、120℃)及び各温度条件下での結晶化度(ΔH60、ΔH90、ΔH120)及び表面観察の結果を比較すると、60℃で加熱した際の試験片、すなわち、樹脂の結晶性がほぼ変化していない状態(ΔH60≒ΔH)である場合、表面状態が変化しない傾向が見られた。
 また、90℃で加熱した際の試験片、すなわち、樹脂の結晶部分がある程度融解した状態(ΔH90<ΔH)である場合、表面構造が変化し、メタボール状の構造が形成される傾向が見られた。
 さらに、120℃で加熱した際の試験片、すなわち樹脂の結晶部分全てが融解した状態(ΔH120=0)である場合、凹凸構造が形成されない傾向が見られた。
Moreover, from FIG. 17 (experiment 1) showing the crystallinity evaluation of the underlayer under each heating condition, since an endothermic peak starts to appear at about 30 ° C. for LDPE, melting of the crystal portion starts from about 30 ° C. In addition, it is shown that the amorphous portion gradually increases as the temperature rises. Thereafter, since the peak reaches a peak at 109 ° C., the melting point is reached at 109 ° C., and it can be evaluated that the crystal part is completely melted and amorphous in a temperature range higher than that.
Comparing the endothermic peak of this LDPE, the heating temperature in Experiment 1 (60 ° C., 90 ° C., 120 ° C.), the crystallinity under each temperature condition (ΔH 60 , ΔH 90 , ΔH 120 ) and the results of surface observation When the test piece was heated at 60 ° C., that is, when the resin crystallinity was almost unchanged (ΔH 60 ≈ΔH 0 ), the surface state tended not to change.
In addition, when the test piece when heated at 90 ° C., that is, in a state where the crystal part of the resin is melted to some extent (ΔH 90 <ΔH 0 ), the surface structure tends to change and a metaball-like structure tends to be formed. It was seen.
Furthermore, when the test piece was heated at 120 ° C., that is, in the state where all of the crystal part of the resin was melted (ΔH 120 = 0), there was a tendency that the uneven structure was not formed.
 また、各加熱条件下における下地層の結晶性の評価を示す図18(実験2)から、HDPEに関しては約105℃の時点で吸熱ピークが出始めているため、約105℃から結晶部分の融解が開始し、温度の上昇に伴い非晶部分が徐々に増加していることが示されている。その後、131℃の時点でピークが頂点を迎えているため、131℃が融点であり、それ以上の温度領域では結晶部分が全て融解し非晶の状態であると評価できる。
 このHDPEの吸熱ピーク、実験2での加熱温度(60℃、90℃、120℃、150℃)及び各温度条件下における結晶化度(ΔH60、ΔH90、ΔH120、ΔH150)を比較すると、60℃で加熱した際の試験片、すなわち、樹脂の結晶性が変化していない状態(ΔH60≒ΔH)である場合、表面状態が変化しない傾向が見られた。
 また、90℃で加熱した際の試験片に関しても、樹脂の結晶性が変化していない状態(ΔH90≒ΔH)であり、表面構造が変化せず、凹凸構造が形成されない傾向が見られた。
 一方、120℃で加熱した際の試験片、すなわち樹脂の結晶部分がある程度融解した状態(ΔH120<ΔH)である場合、表面構造が変化し、メタボール状の構造が形成される傾向が見られた。
 しかし、150℃で加熱した際の試験片、すなわち樹脂の結晶部分全てが融解した状態(ΔH150=0)である場合、凹凸構造が形成されない傾向が見られた。
 また、各加熱条件下における下地層の結晶性評価を示す図19(実験3)から、h-PPに関しては約110℃の時点で吸熱ピークが出始めているため、約110℃から結晶部分の融解が開始し、温度の上昇に伴い非晶部分が徐々に増加していることが示されている。その後、164℃の時点でピークが頂点を迎えているため、164℃が融点であり、それ以上の温度領域では結晶部分が全て融解し非晶の状態であると評価できる。
Also, from FIG. 18 (experiment 2) showing the evaluation of the crystallinity of the underlayer under each heating condition, since an endothermic peak begins to appear at about 105 ° C. for HDPE, the melting of the crystal portion starts at about 105 ° C. It has been shown that the amorphous portion gradually increases with increasing temperature. Thereafter, since the peak reaches the peak at 131 ° C., it can be evaluated that 131 ° C. is the melting point, and in the temperature region higher than that, all the crystal parts are melted and are in an amorphous state.
Comparing the endothermic peak of this HDPE, the heating temperature in Experiment 2 (60 ° C., 90 ° C., 120 ° C., 150 ° C.) and the crystallinity (ΔH 60 , ΔH 90 , ΔH 120 , ΔH 150 ) under each temperature condition When the test piece was heated at 60 ° C., that is, when the resin crystallinity was not changed (ΔH 60 ≈ΔH 0 ), the surface state tended not to change.
In addition, the test piece when heated at 90 ° C. is in a state where the resin crystallinity is not changed (ΔH 90 ≈ΔH 0 ), and the surface structure does not change, and there is a tendency that the uneven structure is not formed. It was.
On the other hand, when the test piece when heated at 120 ° C., that is, in a state where the resin crystal part is melted to some extent (ΔH 120 <ΔH 0 ), the surface structure tends to change and a metaball-like structure tends to be formed. It was.
However, when the test piece was heated at 150 ° C., that is, in a state where all the crystal parts of the resin were melted (ΔH 150 = 0), the uneven structure tended to be not formed.
Further, from FIG. 19 (experiment 3) showing the crystallinity evaluation of the underlayer under each heating condition, since the endothermic peak starts to appear at about 110 ° C. for h-PP, the melting of the crystal portion starts at about 110 ° C. It has been shown that the amorphous portion gradually increases with increasing temperature. Thereafter, since the peak reaches the peak at 164 ° C., 164 ° C. is the melting point, and it can be evaluated that the crystalline portion is completely melted and amorphous in a temperature range higher than that.
 このh-PPの吸熱ピーク、実験3での加熱温度(60℃、90℃、120℃、150℃)及び各温度条件下における結晶化度(ΔH60、ΔH90、ΔH120、ΔH150)を比較すると、60℃で加熱した際の試験片、すなわち、樹脂の結晶性が変化していない状態(ΔH60≒ΔH)である場合、表面状態が変化しない傾向が見られた。
 また、90℃で加熱した際の試験片に関しても、樹脂の結晶性が変化していない状態(ΔH90≒ΔH)であり、表面構造が変化しない傾向が見られた。
 さらに、120℃で加熱した際の試験片に関しても、樹脂の結晶性が変化していない状態(ΔH120≒ΔH)であり、表面構造が変化しない傾向が見られた。
 これらと比較して、150℃で加熱した際の試験片、すなわち樹脂の結晶部分全てが融解した状態(ΔH150<H)である場合、表面構造が変化し、メタボール状の構造が形成される傾向が見られた。
The endothermic peak of h-PP, the heating temperature in Experiment 3 (60 ° C., 90 ° C., 120 ° C., 150 ° C.) and the crystallinity under each temperature condition (ΔH 60 , ΔH 90 , ΔH 120 , ΔH 150 ) In comparison, when the test piece was heated at 60 ° C., that is, when the resin crystallinity was not changed (ΔH 60 ≈ΔH 0 ), the surface state tended not to change.
Further, the test piece when heated at 90 ° C. was in a state where the crystallinity of the resin was not changed (ΔH 90 ≈ΔH 0 ), and a tendency that the surface structure did not change was observed.
Further, the test piece when heated at 120 ° C. was in a state where the crystallinity of the resin was not changed (ΔH 120 ≈ΔH 0 ), and a tendency that the surface structure did not change was observed.
Compared with these, when the test piece is heated at 150 ° C., that is, when all of the crystal part of the resin is melted (ΔH 150 <H 0 ), the surface structure changes and a metaball-like structure is formed. The tendency was seen.
 これらの結果から、良好な撥液性が得られる条件としては、
(A)分散媒であるパラフィンワックスのSP値と下地樹脂のSP値が近い、
  即ち、δ1-δ2が1.5以下である場合、
(B)塗布後の積層構造体を加熱する際、下地樹脂の結晶がある程度融解
  しており、かつ結晶部分が残存している状態のとき(0<ΔH<ΔH)、
  即ち、上記の状態をつくり出す条件として、樹脂の融点をX℃として、
   X-5≧Y≧X-50
  を満足する温度Yで5~10分加熱した場合、
(C)下地樹脂が結晶性の樹脂である場合
が挙げられ、これらの条件全てを満たした場合、メタボール状の凹凸構造が形成される傾向が見られた。
From these results, as a condition for obtaining good liquid repellency,
(A) The SP value of paraffin wax as a dispersion medium is close to the SP value of the base resin.
That is, when δ1-δ2 is 1.5 or less,
(B) When heating the laminated structure after coating, when the crystal of the base resin is melted to some extent and the crystal part remains (0 <ΔH T <ΔH 0 ),
That is, as a condition for creating the above state, the melting point of the resin is X ° C.
X-5 ≧ Y ≧ X-50
When heated for 5-10 minutes at a temperature Y satisfying
(C) The case where the base resin is a crystalline resin can be mentioned, and when all of these conditions are satisfied, a tendency to form a metaball-shaped uneven structure was observed.
<考察>
 この条件により得られるメタボール状の凹凸構造に関しては、凹凸構造が立体的に積層した様な構造となり、微細な空隙を多量に有するため、内容物の液滴滴下時には、液滴との界面に多数のエアポケットを形成させることとなり、特に高い撥液性が発現されていると考えられる。
 このような構造が形成される要因としては、多層構造体を加熱した際に分散媒として使用しているパラフィンワックスの下地樹脂中への拡散が発生し、吸収される現象が発生しているためと考えられる。パラフィンワックスと下地樹脂との相溶性が低い場合、すなわちδ1とδ2の差が大きい場合、下地樹脂中への拡散自体が発生しない、もしくは拡散の速度が非常に遅いため、最表面に存在するワックス成分が減少せず、表面が平滑な状態が保たれるため、メタボール形状の構造が形成され難いと考えられる。
 また、塗布後の積層構造体を加熱する際、下地樹脂の結晶部分が全く融解しない条件(ΔH≒ΔH)加熱した場合、下地樹脂の結晶部分はパラフィンワックスの拡散を抑制し、下地樹脂層への吸収を妨げる働きを持つと考えられる。その結果、最表面のワックス成分が減少せず、表面が平滑な状態が保たれ、メタボール形状の構造が形成され難いと考えられる。
<Discussion>
With regard to the concavo-convex structure of the metaball shape obtained under these conditions, the concavo-convex structure is a three-dimensionally stacked structure and has a large amount of fine voids. It is considered that a particularly high liquid repellency is expressed.
The reason why such a structure is formed is that when the multilayer structure is heated, the paraffin wax used as a dispersion medium diffuses into the base resin and is absorbed. it is conceivable that. When the compatibility between the paraffin wax and the base resin is low, that is, when the difference between δ1 and δ2 is large, the diffusion itself into the base resin does not occur, or the diffusion speed is very slow, so the wax existing on the outermost surface It is considered that a metaball-shaped structure is difficult to form because the components are not reduced and the surface is kept smooth.
Further, when heating the laminated structure after coating, under the condition that the crystal part of the base resin is not melted at all (ΔH 0 ≈ΔH T ), the crystal part of the base resin suppresses the diffusion of paraffin wax, and the base resin It is thought to have a function to prevent absorption into the layer. As a result, it is considered that the outermost wax component does not decrease, the surface is kept smooth, and a metaball-shaped structure is hardly formed.
 一方、下地樹脂が完全に融解する加熱条件(ΔH=0)、すなわち下地樹脂の融点以上で加熱した場合、結晶部分が完全に融解しパラフィンワックスの拡散は良好に行われると考えられるが、それと同時に下地樹脂自体も溶融し液状となるため、ワックスによる構造及び疎水性微粒子自体が下地樹脂層内に引き込まれると考えられる。その結果、メタボール形状の凹凸構造が形成され難いと考えられる。
 下地樹脂が非結晶性の樹脂(COC、PET-G)の場合、結晶部分が完全に融解した状態と同様の現象が発生していると推測され、凹凸構造が形成されなかったと考えられる。
On the other hand, when heated under the melting condition (ΔH = 0) where the base resin is completely melted, that is, the melting point of the base resin or higher, it is considered that the crystal part is completely melted and the paraffin wax is diffused well. At the same time, since the base resin itself melts and becomes liquid, it is considered that the wax structure and the hydrophobic fine particles themselves are drawn into the base resin layer. As a result, it is considered that a metaball-shaped uneven structure is difficult to form.
When the base resin is an amorphous resin (COC, PET-G), it is presumed that the same phenomenon as in the state where the crystal part is completely melted is generated, and it is considered that the uneven structure was not formed.
 したがって、本発明では、互いに相溶性の良好な下地樹脂とワックスとの組み合わせを選択し、該ワックス中に微粒子を分散させた状態で表面に塗布を行い、下地樹脂の結晶部分が十分に融解し、かつ結晶部分が残存する条件で多層構造体を加熱することで、ワックス成分が下地樹脂中へ吸収されることで速やかにメタボール形状の構造が表面に形成されるものと推測される。 Therefore, in the present invention, a combination of a base resin and a wax having good compatibility with each other is selected, and coating is performed on the surface in a state where fine particles are dispersed in the wax, and the crystal portion of the base resin is sufficiently melted. Further, by heating the multilayer structure under the condition that the crystal part remains, it is presumed that a metaball-shaped structure is rapidly formed on the surface by the wax component being absorbed into the base resin.
   1:パラフィンワックスが吸収された下地樹脂層(下地層)
   3:パラフィンワックス
   5:メタボール立体層
   7:微粒子
  10:構造体
1: Underlying resin layer in which paraffin wax is absorbed (underlying layer)
3: Paraffin wax 5: Three-dimensional layer of metaball 7: Fine particles 10: Structure

Claims (15)

  1.  表面が樹脂層で形成されている成形体と、該成形体の表面の樹脂層上に分布している微粒子とを含む構造体において、
     前記樹脂層の表面には、微粒子と共にワックスが分布していると共に、該樹脂層中に前記ワックスの一部が吸収されていることを特徴とする構造体。
    In a structure including a molded body whose surface is formed of a resin layer, and fine particles distributed on the resin layer on the surface of the molded body,
    A structure in which wax is distributed along with fine particles on the surface of the resin layer, and a part of the wax is absorbed in the resin layer.
  2.  前記微粒子が疎水性微粒子である請求項1に記載の構造体。 The structure according to claim 1, wherein the fine particles are hydrophobic fine particles.
  3.  前記樹脂層の上に、前記ワックスがメタボール状に連なったメタボール立体層が形成されており、該メタボール立体層の内部に、前記微粒子が分布している請求項1に記載の構造体。 The structure according to claim 1, wherein a metaball three-dimensional layer in which the wax is continuous in a metaball shape is formed on the resin layer, and the fine particles are distributed inside the metaball three-dimensional layer.
  4.  前記メタボール立体層は、走査型電子顕微鏡で観察して、20~200nmの径のボールの連結構造を有している請求項3に記載の構造体。 The structure according to claim 3, wherein the three-dimensional metaball layer has a connecting structure of balls having a diameter of 20 to 200 nm as observed with a scanning electron microscope.
  5.  前記微粒子は、4nm~1μmの平均一次粒径を有している請求項1に記載の構造体。 The structure according to claim 1, wherein the fine particles have an average primary particle diameter of 4 nm to 1 µm.
  6.  前記ワックスの融点が40℃~110℃の範囲にある請求項1に記載の構造体。 The structure according to claim 1, wherein the melting point of the wax is in the range of 40 ° C to 110 ° C.
  7.  前記樹脂層を形成している樹脂が、前記ワックスとのSP値の差が1.5(MPa)1/2以下のものである請求項1に記載の構造体。 The structure according to claim 1, wherein the resin forming the resin layer has an SP value difference of 1.5 (MPa) 1/2 or less from the wax.
  8.  前記樹脂層を形成している樹脂が非環状のオレフィン系樹脂であり、前記ワックスが、パラフィンワックス、マイクロクリスタリンワックス、或いはポリエチレンワックスの少なくとも1種である請求項7に記載の構造体。 The structure according to claim 7, wherein the resin forming the resin layer is an acyclic olefin resin, and the wax is at least one of paraffin wax, microcrystalline wax, or polyethylene wax.
  9.  前記成形体が容器の形態を有しており、容器に収容される内容物と接触する側の内面に、前記微粒子及びワックスが分布している請求項1に記載の構造体。 The structure according to claim 1, wherein the molded body has a form of a container, and the fine particles and the wax are distributed on the inner surface on the side in contact with the contents contained in the container.
  10.  前記容器がオレフィン系樹脂製のボトルである請求項9に記載の構造体。 The structure according to claim 9, wherein the container is a bottle made of olefin resin.
  11.  前記成形体が、容器口部にヒートシールにより施される蓋材の形態を有しており、容器に収容されている内容物と接触する側の面に、前記微粒子及びワックスが分布している請求項1に記載の構造体。 The molded body has a form of a lid material applied to the container mouth by heat sealing, and the fine particles and the wax are distributed on the surface in contact with the contents accommodated in the container. The structure according to claim 1.
  12.  微粒子及び溶融したワックスを含む非溶媒塗布組成物と、表面がワックス吸収性樹脂の層により形成された成形体とを用意する工程;
     前記非溶媒塗布組成物を、前記成形体の表面に塗布する塗布工程;
     次いで、前記成形体の表面を、前記ワックスの融点以上の温度に加熱して該ワックスが溶融した状態を維持させることにより、表面のワックス吸収性樹脂層に前記ワックスを吸収させるワックス吸収工程;
    および、
     前記ワックス吸収工程後に、前記成形体表面を冷却して溶融したワックスを固化させる冷却工程;
    を含むことを特徴とする疎水性表面を有する構造体の製造方法。
    A step of preparing a non-solvent coating composition containing fine particles and molten wax, and a molded body having a surface formed of a layer of a wax-absorbing resin;
    A coating step of coating the non-solvent coating composition on the surface of the molded body;
    Next, the surface of the molded body is heated to a temperature equal to or higher than the melting point of the wax to maintain the state in which the wax is melted, whereby the wax-absorbing resin layer on the surface absorbs the wax.
    and,
    A cooling step of solidifying the molten wax by cooling the surface of the molded body after the wax absorption step;
    A method for producing a structure having a hydrophobic surface, comprising:
  13.  前記ワックス吸収性樹脂が、前記ワックスとのSP値の差が1.5(MPa)1/2以下のものである請求項12に記載の製造方法。 The manufacturing method according to claim 12, wherein the wax-absorbing resin has an SP value difference of 1.5 (MPa) 1/2 or less from the wax.
  14.  前記ワックス吸収工程において、前記ワックス吸収性樹脂の融点をX℃としたとき、前記ワックスを溶融状態に維持するための加熱を、下記条件式;
       X-5≧Y≧X-50
    を満足する温度Yで、5秒~10分間行う請求項12に記載の方法。
    In the wax absorption step, when the melting point of the wax-absorbing resin is X ° C., heating for maintaining the wax in a molten state is performed by the following conditional expression
    X-5 ≧ Y ≧ X-50
    The method according to claim 12, which is carried out at a temperature Y satisfying the following conditions for 5 seconds to 10 minutes.
  15.  ワックス吸収性樹脂を用いての押出成形により、表面が該ワックス吸収性樹脂の層により形成された成形体を製造するに際し、該ワックス吸収性樹脂の層に隣接し且つ表面側となる位置に、微粒子及び溶融したワックスを含む非溶媒組成物を共押出することを特徴とする疎水性表面を有する構造体の製造方法。 When producing a molded body having a surface formed of the wax-absorbing resin layer by extrusion molding using the wax-absorbing resin, at a position adjacent to the wax-absorbing resin layer and on the surface side, A method for producing a structure having a hydrophobic surface, comprising coextruding a non-solvent composition containing fine particles and a molten wax.
PCT/JP2016/059965 2015-03-27 2016-03-28 Structure having hydrophobic surface, and method for manufacturing same WO2016158875A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177029483A KR102011448B1 (en) 2015-03-27 2016-03-28 Structure having a hydrophobic surface and a method of manufacturing the same
EP16772756.9A EP3275644B1 (en) 2015-03-27 2016-03-28 Structure having hydrophobic surface, and method for manufacturing same
US15/561,555 US10513099B2 (en) 2015-03-27 2016-03-28 Structured body having hydrophobic surface, and method for producing the same
CA2980099A CA2980099C (en) 2015-03-27 2016-03-28 Structured body having hydrophobic surface, and method for producing the same
AU2016240764A AU2016240764C1 (en) 2015-03-27 2016-03-28 Structured body having hydrophobic surface, and method for producing the same
CN201680019188.1A CN107428115B (en) 2015-03-27 2016-03-28 Structural body and its manufacturing method with hydrophobic surface
RU2017134372A RU2675145C1 (en) 2015-03-27 2016-03-28 Structured product with hydrophobic surface and method for manufacture thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015-067148 2015-03-27
JP2015067148 2015-03-27
JP2015-204690 2015-10-16
JP2015204690A JP6725232B2 (en) 2015-03-27 2015-10-16 Structure having hydrophobic uneven surface and method for forming hydrophobic uneven surface
JP2016029525A JP6734661B2 (en) 2016-02-19 2016-02-19 Laminated structure provided with wax layer having uneven surface and method for manufacturing the same
JP2016-029525 2016-02-19

Publications (1)

Publication Number Publication Date
WO2016158875A1 true WO2016158875A1 (en) 2016-10-06

Family

ID=57005144

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059965 WO2016158875A1 (en) 2015-03-27 2016-03-28 Structure having hydrophobic surface, and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016158875A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062660A (en) * 2016-10-11 2018-04-19 大和製罐株式会社 Water-repellent coating material, water-repellent laminate material, water-repellent bag-shaped container, and method for forming water-repellent coated film
JP2019031319A (en) * 2017-08-09 2019-02-28 住友ベークライト株式会社 Film for packaging container formation, packaging container and package
JP2019520245A (en) * 2017-03-30 2019-07-18 ノベリス・インコーポレイテッドNovelis Inc. Surface roughening of polymer film

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103751A (en) * 2011-11-15 2013-05-30 Showa Denko Packaging Co Ltd Packaging material having nonadherent surface and method of manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013103751A (en) * 2011-11-15 2013-05-30 Showa Denko Packaging Co Ltd Packaging material having nonadherent surface and method of manufacturing the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018062660A (en) * 2016-10-11 2018-04-19 大和製罐株式会社 Water-repellent coating material, water-repellent laminate material, water-repellent bag-shaped container, and method for forming water-repellent coated film
JP7153434B2 (en) 2016-10-11 2022-10-14 大和製罐株式会社 Water-repellent paint, water-repellent laminated material, water-repellent bag-like container, and method for forming water-repellent coating film
JP2019520245A (en) * 2017-03-30 2019-07-18 ノベリス・インコーポレイテッドNovelis Inc. Surface roughening of polymer film
US10836150B2 (en) 2017-03-30 2020-11-17 Novelis Inc. Surface roughening of polymer films
JP2019031319A (en) * 2017-08-09 2019-02-28 住友ベークライト株式会社 Film for packaging container formation, packaging container and package

Similar Documents

Publication Publication Date Title
KR102011448B1 (en) Structure having a hydrophobic surface and a method of manufacturing the same
JP6593332B2 (en) Container having liquid film formed on inner surface and coating liquid for forming liquid film
KR102105043B1 (en) Container having superior slide properties for fluid content
JP6665084B2 (en) Filling method for viscous contents
KR102061243B1 (en) Structure with external region on surface
JP6587823B2 (en) Container with solid particles distributed on the surface
JP6255748B2 (en) Resin molded body having a surface excellent in water slidability
WO2016158875A1 (en) Structure having hydrophobic surface, and method for manufacturing same
JP6734661B2 (en) Laminated structure provided with wax layer having uneven surface and method for manufacturing the same
JP6725232B2 (en) Structure having hydrophobic uneven surface and method for forming hydrophobic uneven surface
KR20170139106A (en) A structure having a gel-like coating on its surface
KR102061241B1 (en) Structure having liquid layer on surface
JP6307129B2 (en) Structure having a gel-like coating on the surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772756

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016772756

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2980099

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 15561555

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017134372

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2016240764

Country of ref document: AU

Date of ref document: 20160328

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177029483

Country of ref document: KR

Kind code of ref document: A