WO2016158848A1 - Seal ring - Google Patents

Seal ring Download PDF

Info

Publication number
WO2016158848A1
WO2016158848A1 PCT/JP2016/059882 JP2016059882W WO2016158848A1 WO 2016158848 A1 WO2016158848 A1 WO 2016158848A1 JP 2016059882 W JP2016059882 W JP 2016059882W WO 2016158848 A1 WO2016158848 A1 WO 2016158848A1
Authority
WO
WIPO (PCT)
Prior art keywords
seal ring
peripheral surface
pocket
slope
inner peripheral
Prior art date
Application number
PCT/JP2016/059882
Other languages
French (fr)
Japanese (ja)
Inventor
南宣 朴
Original Assignee
株式会社リケン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=57007235&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016158848(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 株式会社リケン filed Critical 株式会社リケン
Priority to JP2016565525A priority Critical patent/JP6360566B2/en
Priority to CN201690000630.1U priority patent/CN207687346U/en
Publication of WO2016158848A1 publication Critical patent/WO2016158848A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/44Free-space packings
    • F16J15/441Free-space packings with floating ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/164Sealings between relatively-moving surfaces the sealing action depending on movements; pressure difference, temperature or presence of leaking fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/32Sealings between relatively-moving surfaces with elastic sealings, e.g. O-rings
    • F16J15/3268Mounting of sealing rings
    • F16J15/3272Mounting of sealing rings the rings having a break or opening, e.g. to enable mounting on a shaft otherwise than from a shaft end

Definitions

  • the present invention relates to a seal ring that can be used for hydraulic equipment and the like.
  • Seal rings are used for hydraulic automatic transmissions.
  • the seal ring is fitted into a groove portion of a shaft inserted through the housing, and seals between the housing and the shaft.
  • friction loss frequency loss
  • Patent Documents 1 to 5 disclose techniques for reducing friction loss generated between a seal ring and a shaft.
  • the seal ring disclosed in these documents is provided with a pocket on the contact surface with the shaft.
  • oil that has entered the pocket of the seal ring may flow between the seal ring and the shaft to form an oil film between the seal ring and the shaft.
  • the formation of this oil film improves the lubricity of the seal ring and reduces friction loss.
  • the oil film becomes too thick, the oil tends to leak outside the seal ring.
  • friction loss and oil leakage tend to be in a trade-off relationship.
  • an object of the present invention is to provide a seal ring capable of achieving both reduction of friction loss and suppression of oil leakage.
  • a seal ring includes an outer peripheral surface, an inner peripheral surface facing the outer peripheral surface, a side surface connecting the outer peripheral surface and the inner peripheral surface, and the side surface. And a plurality of pockets that are closed at the outer peripheral surface side and open at the inner peripheral surface side.
  • Each of the plurality of pockets has first and second end portions and first and second slope portions.
  • the first and second end portions are convex R surfaces that are respectively provided at both ends in the circumferential direction and extend from the side surface and protrude toward the side surface having a tip curvature radius of 60 mm or less.
  • the first and second slope portions extend from the first and second end portions toward a circumferential central portion, respectively.
  • the first end portion and the first slope portion, or the second end portion and the second slope portion receive hydraulic pressure from the oil in the pocket, thereby reducing friction loss.
  • the first and second end portions are convex R surfaces.
  • Each of the plurality of pockets may further include a bottom portion provided in a central region between the first end portion and the second end portion.
  • the first and second slope portions may extend from the first and second end portions to the bottom portion, respectively.
  • the bottom portion may extend in a direction parallel to the side surface. In this seal ring, the oil pressure in the pocket can be satisfactorily received at the bottom, so that the friction loss can be further reduced.
  • the pocket may further include first and second connection portions that connect the bottom portion and the first and second slope portions, and are concave R surfaces that are recessed from the side surface side.
  • first and second connection portions that connect the bottom portion and the first and second slope portions, and are concave R surfaces that are recessed from the side surface side.
  • the first slope portion and the second slope portion may be connected at the central portion.
  • a large number of pockets can be provided. Thereby, in this seal ring, the friction loss can be further reduced.
  • the sum of the circumferential dimensions of the plurality of pockets on the inner peripheral surface may be not less than 50% and not more than 98% of the entire periphery of the inner peripheral surface.
  • the effect of reducing the friction loss can be satisfactorily obtained by setting the ratio of the pockets on the inner peripheral surface to 50% or more.
  • the pockets can be well separated by the pillars, so that the hydraulic pressure in each pocket can be ensured satisfactorily.
  • the first and second slope portions may be flat. This configuration facilitates the design and processing of the seal ring.
  • the first and second slope portions may form an angle of 1 ° or more and 20 ° or less with respect to the side surface.
  • the angle with respect to the side surfaces of the first and second slope portions is small, that is, the pocket is formed shallow. Thereby, the component toward the inner peripheral surface in the hydraulic pressure applied to the first and second slope portions by the oil in the pocket is increased.
  • limiting of an oil flow path becomes small, oil becomes easy to flow in into a 1st and 2nd end part. As a result, this seal ring can more effectively reduce the friction loss.
  • FIG. 1 is a plan view of a seal ring 1 according to an embodiment of the present invention.
  • the seal ring 1 has an outer peripheral surface 1a, an inner peripheral surface 1b, and a side surface 1c, and is formed in an annular shape centering on the central axis C.
  • the outer peripheral surface 1a and the inner peripheral surface 1b are cylindrical surfaces centered on the central axis C, and the side surface 1c is orthogonal to the outer peripheral surface 1a and the inner peripheral surface 1b.
  • the seal ring 1 has a plurality of pockets 10 arranged at equal intervals on the two side surfaces 1c. Each pocket 10 is formed in a concave shape. Further, the seal ring 1 is provided with an abutment portion 30 for facilitating the mounting to the shaft as required.
  • the shape of the seal ring 1 in the case of having the joint part 30 shall be defined as the state which closed the joint part 30.
  • the joint part 30 is configured to be able to suppress oil leakage from the joint part 30.
  • the shape of the abutment portion 30 is not particularly limited, and a known shape can be adopted.
  • the seal ring 1 is attached to the groove portion of the shaft in a state where the joint portion 30 is widened.
  • the shaft on which the seal ring 1 is mounted is inserted into the housing with the outer peripheral surface 1a of the seal ring 1 slightly protruding from the groove.
  • the side surface 1c of the seal ring 1 contacts the groove part of a shaft.
  • the seal ring 1 seals between the shaft and the housing.
  • the seal ring 1 is configured such that the pocket 10 is disposed in the groove portion of the shaft in a state where the seal ring 1 is mounted on the shaft and the housing. Therefore, a space is formed by the pocket 10 between the seal ring 1 and the groove portion of the shaft. In the seal ring 1, the hydraulic pressure of the oil flowing into the pocket 10 acts in a direction to separate the seal ring 1 and the shaft groove, so that the friction loss between the shaft groove and the shaft ring is reduced.
  • the diameter and thickness t 0 (see FIG. 3) of the seal ring 1 can be determined according to the configuration of the shaft and housing to be mounted.
  • the outer diameter of the seal ring 1 can be, for example, 10 mm or more and 150 mm or less.
  • the thickness of the seal ring 1 t 0, for example, can be set to 0.8mm or more 3.5mm or less.
  • the material forming the seal ring 1 is not limited to a specific type, but is polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyimide (PI), polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene, Ethylene tetrafluoroethylene (ETFE) or the like can be used.
  • the material forming the seal ring 1 may be filled with additives such as carbon powder and carbon fiber.
  • the manufacturing method of the seal ring 1 is not limited to a specific method.
  • the seal ring 1 provided with the pockets 10 can be directly manufactured.
  • materials suitable for the injection molding method include resins such as PEEK, PPS, and PI.
  • materials suitable for the compression molding method include resins such as PTFE.
  • the seal ring 1 can be manufactured by machining the pocket 10 afterwards.
  • FIG. 2 is a partial perspective view showing a schematic configuration of the seal ring 1 and shows an enlarged pocket 10.
  • FIG. 3 is a view showing the pocket 10 of the seal ring 1 from the inner peripheral surface 1b side. In FIG. 3, the shape along the inner peripheral surface 1b of the seal ring 1 is shown.
  • the dimensions d 0 , d 1 , d 2 shown in FIG. 3 indicate the dimensions along the circumferential direction of the inner peripheral surface 1 b of the seal ring 1.
  • the pocket 10 is provided on the inner peripheral surface 1 b side of the side surface 1 c of the seal ring 1.
  • the pocket 10 includes a partition wall portion 15 between the pocket 10 and the outer peripheral surface 1 a of the seal ring 1, and the outer peripheral surface 1 a side is closed by the partition wall portion 15. Therefore, in the seal ring 1, the oil in the pocket 10 can be prevented from leaking to the outer peripheral surface 1 a side of the seal ring 1.
  • the pocket 10 does not have a partition portion between the pocket 10 and the inner peripheral surface 1b, and is open to the inner peripheral surface 1b side of the seal ring 1.
  • the pocket 10 since it can prevent that the oil_pressure
  • the partition wall 15 of the pocket 10 is not limited to a specific configuration as long as the space in the pocket 10 and the space on the outer peripheral surface 1a side can be separated.
  • the partition wall portion 15 can be configured as a plane orthogonal to the side surface 1c of the seal ring 1, for example.
  • Each pocket 10 is separated in the circumferential direction of the seal ring 1 by a pillar portion 20 provided on the side surface 1c. That is, the pockets 10 and the column portions 20 are alternately arranged on the inner peripheral surface 1 b of the seal ring 1.
  • Dimension d 1 of the dimension d 0 and the column portion 20 of the pocket 10 may be suitably determined depending on the diameter of the seal ring 1, respectively.
  • the dimension d 0 of the pocket 10 can be set to 2.0 mm or more and 35 mm or less, for example.
  • Dimension d 1 of the cage bars 20 can be, for example, a 0.1mm or 5.0mm or less.
  • the shape of the pocket 10 is preferably symmetric with respect to a plane D indicated by a one-dot chain line in FIG. 3 at the center in the circumferential direction through the central axis C. Thereby, the function of the pocket 10 can be ensured irrespective of the rotation direction of the seal ring 1.
  • the position and shape of the pocket 10 in the two side surfaces 1c of the seal ring 1 is configured to be symmetrical about the plane E of FIG. 3 in the central portion in the thickness t 0 direction of the seal ring 1 by the dashed line ing.
  • the pocket 10 includes a bottom portion 11, first and second slope portions 12a and 12b, first and second end portions 13a and 13b, and first and second connection portions 14a and 14b.
  • the first and second slope portions 12a and 12b, the first and second end portions 13a and 13b, and the first and second connection portions 14a and 14b are symmetric with respect to the plane D, respectively.
  • the bottom 11 is provided in the central region in the circumferential direction of the pocket 10 and is the deepest part of the pocket 10 from the side surface 1c.
  • the bottom portion 11 functions as an oil inlet regardless of the rotation direction of the seal ring 1.
  • the bottom portion 11 preferably extends in a direction parallel to the side surface 1c as a whole.
  • the bottom 11 is typically planar, but need not be strictly planar. That is, the bottom portion 11 may be a gently curved surface. For example, the whole or a part thereof may be curved in a convex shape or a concave shape.
  • Depth t 1 from the dimension d 2 and the side surface 1c of the bottom part 11 may be appropriately determined.
  • the depth t 1 from the side surface 1c of the bottom 11 can be set to 0.1 mm or more and 0.6 mm or less, for example.
  • the total depth t 1 from both sides 1c of the bottom part 11, for example, can be not more than 98% more than 50% of the thickness t 0 of the seal ring 1.
  • first slope portion 12 a is disposed on the right side of the bottom portion 11
  • second slope portion 12 b is disposed on the left side of the bottom portion 11.
  • the first and second slope portions 12a and 12b are inclined from the bottom portion 11 toward the column portion 20 so that the depth from the side surface 1c becomes shallow.
  • the first and second slope portions 12a and 12b are preferably flat in terms of design and ease of processing.
  • the first and second slope portions 12a and 12b may be gentle curved surfaces instead of flat surfaces, and for example, the whole or a part thereof may be curved in a convex shape or a concave shape.
  • the angle ⁇ formed between the first and second inclined surfaces 12a and 12b and the side surface 1c can be determined as appropriate. As the angle ⁇ is smaller, the component of the hydraulic pressure applied to the first and second inclined surface portions 12a and 12b toward the inner peripheral surface 1b becomes larger. On the other hand, if the angle ⁇ is too small, it is difficult to apply hydraulic pressure to the first and second slope portions 12a and 12b. From these viewpoints, the angle ⁇ can be set to 1 ° or more and 20 ° or less, for example.
  • 1st and 2nd edge part 13a, 13b is comprised as a convex R surface which protrudes to the side surface 1c side, and is arrange
  • the first end portion 13 a connects the first slope portion 12 a and the column portion 20, and the second end portion 13 b connects the second slope portion 12 b and the column portion 20.
  • the first end portion 13a is disposed on the left side of the first slope portion 12a
  • the second end portion 13b is disposed on the right side of the second slope portion 12b.
  • the first and second end portions 13a and 13b form a wedge-shaped oil flow path. Since the first and second end portions 13a and 13b are configured as convex R surfaces, the inclination becomes gentler as the column portion 20 is approached. Therefore, the oil flow path formed by the first and second end portions 13a and 13b becomes narrower as it becomes narrower. This makes it difficult for the oil to escape to the inner peripheral surface 1b side, that is, the oil easily enters deep into the first and second end portions 13a and 13b, and therefore the hydraulic pressure applied to the first and second end portions 13a and 13b. Will increase.
  • the shapes of the first and second end portions 13a and 13b can be determined as appropriate.
  • the first and second end portions 13a and 13b may be formed with a single radius of curvature, or may be formed so that the radius of curvature continuously changes.
  • the curvature radius (tip curvature radius) of the portion with the smallest curvature radius of the first and second end portions 13a and 13b may be larger than 0 mm.
  • tip curvature radius of 1st and 2nd edge part 13a, 13b is 60 mm or less, It is more preferable that it is 30 mm or less, It is still more preferable that it is 10 mm or less. By these, said effect is acquired effectively.
  • the first and second connection portions 14a and 14b are configured as concave R surfaces that are recessed from the side surface 1c, and are disposed on both sides of the bottom portion 11 in the circumferential direction.
  • the first connection portion 14 a connects the first slope portion 12 a and the bottom portion 11, and the second connection portion 14 b connects the second slope portion 12 b and the bottom portion 11.
  • the first connection portion 14 a is disposed on the left side of the bottom portion 11, and the second connection portion 14 b is disposed on the right side of the bottom portion 11.
  • first and second connection portions 14a and 14b are configured as concave R surfaces, the oil flowing into the pocket 10 from the bottom portion 11 can smoothly flow to the first and second slope portions 12a and 12b. Become. For this reason, in the seal ring 1, it is possible to receive the hydraulic pressure satisfactorily at the first and second slope portions 12a and 12b.
  • the shapes of the first and second connection portions 14a and 14b can be determined as appropriate.
  • the first and second connecting portions 14a and 14b may be formed with a single radius of curvature, or may be formed so that the radius of curvature changes continuously.
  • the curvature radius (tip curvature radius) of the portion with the smallest curvature radius of the first and second connection portions 14a, 14b may be larger than 0 mm.
  • the tip curvature radii of the first and second connection portions 14a and 14b can be 60 mm or less, 30 mm or less, and 10 mm or less, like the first and second end portions 13a and 13b. It can be.
  • the seal ring 1 is provided with more pockets than a general seal ring. Thereby, in the seal ring 1, the number of parts that receive hydraulic pressure during rotation increases, that is, the interval between the parts that receive hydraulic pressure during rotation decreases. In the example shown in FIG. 1, twelve pockets 10 are provided.
  • FIG. 4 shows a portion that is mainly subjected to hydraulic pressure when the seal ring 1 rotates by hatching.
  • FIG. 4A shows the case of rotating right in the direction of arrow R
  • FIG. 4B shows the case of rotating left in the direction of arrow L.
  • the seal ring 1 there is a portion that hardly receives hydraulic pressure in any rotation direction. If a portion of the seal ring 1 that hardly receives hydraulic pressure is continuously present in the circumferential direction, the hydraulic pressure applied to the entire seal ring 1 decreases and becomes unstable. As a result, the friction loss may not be sufficiently suppressed.
  • the seal ring 1 by increasing the number of pockets 10 compared to a general seal ring, the interval between the portions that receive the hydraulic pressure is narrowed, that is, the range of the portion that does not receive the hydraulic pressure is narrowed. As a result, the seal ring 1 can stably receive high hydraulic pressure from the oil in the pocket 10.
  • the seal ring 1 when the number of the pockets 10 is four or more, the above effect can be obtained satisfactorily.
  • the number of pockets 10 is set to 40 or less, the hydraulic pressure applied to each pocket 10 can be ensured, so that the hydraulic pressure applied to the entire seal ring 1 can be kept high. For this reason, in the seal ring 1, it is preferable that the number of the pockets 10 is 4 or more and 40 or less.
  • the sealing ring 1 it is also preferred that the total size d 0 of the pocket 10 is 98% or less 50% or more of the total circumference of the inner circumferential surface 1b.
  • the proportion of the pockets 10 in the inner peripheral surface 1b is 50% or more, the effect of reducing the friction loss can be favorably obtained.
  • each pocket 10 can be well separated by the column portion 20 by keeping the proportion of the pockets on the inner peripheral surface 1b at 98% or less, so that the friction loss in each pocket 10 is reduced. The effect of reducing can be ensured.
  • the seal ring 501 which concerns on the modification of the said embodiment is demonstrated.
  • the seal ring 501 has the same configuration as the seal ring 1 according to the above-described embodiment except for the configuration described below.
  • the description about the structure similar to the seal ring 1 concerning the said embodiment in the seal ring 501 is abbreviate
  • FIG. 5 is a view showing the pocket 510 of the seal ring 501 according to the modification of the present embodiment from the inner peripheral surface 1b side. In FIG. 5, the shape along the inner peripheral surface 1b of the seal ring 501 is shown.
  • the seal ring 501 is not provided with the bottom 11 and the connecting portions 14a and 14b according to the above embodiment.
  • the 1st and 2nd slope parts 12a and 12b comprise V shape by being connected directly.
  • the 1st and 2nd slope parts 12a and 12b may be connected by the concave R surface, for example, even if it is not directly connected.
  • the configuration is omitted 14b, dimension d 0 of 510 of each pocket of the seal ring 501, the dimensions of each pocket 10 of the seal ring 1 according to the embodiment It is smaller than d 0.
  • the number of the pockets 510 can be further increased.
  • the seal ring 501 by increasing the number of pockets 510, that is, the number of the slope portions 12a and 12b and the end portions 13a and 13b, the number of portions that receive hydraulic pressure during rotation increases, and the interval between the portions that receive hydraulic pressure during rotation. Becomes narrower. Thereby, the seal ring 501 at the time of rotation can receive a higher hydraulic pressure from the oil in the pocket 510 more stably.
  • seal ring 1 according to the embodiment As an example of the present invention, a seal ring 1 having the configuration of the above embodiment was produced. The outer diameter of the seal ring 1 was 51 mm, and the number of pockets 10 was twelve.
  • the seal rings 101, 201, and 301 according to Comparative Examples 1 to 3 described below are configured in the same manner as the seal ring 1 according to the present embodiment, except for the configuration that is specifically described.
  • FIG. 6 is a view showing a seal ring 101 according to Comparative Example 1 of the present invention.
  • 6A is a plan view of the seal ring 101
  • FIG. 6B is a cross-sectional view of the seal ring 101 taken along the line AA ′ in FIG. 6A.
  • the side surface 101c is inclined so that the interval is narrowed from the outer peripheral surface 101a toward the inner peripheral surface 101b.
  • friction loss is reduced by adopting a configuration in which the side surface 101c and the groove portion of the shaft are not in surface contact with each other.
  • FIG. 7 is a view showing a seal ring 201 according to Comparative Example 2 of the present invention.
  • 7A is a plan view of the seal ring 201
  • FIG. 7B is a cross-sectional view of the seal ring 201 taken along line BB ′ of FIG. 7A.
  • the seal ring 201 is provided with eight pockets 210. Unlike the pocket 10 of the seal ring 1 according to the embodiment, the pocket 210 has an inclined surface that connects the inner peripheral surface 201b and the side surface 201c. In the seal ring 201, friction loss due to the pocket 210 is reduced while maintaining surface contact between the side surface 201c and the groove portion of the shaft.
  • FIG. 8 is a view showing a seal ring 301 according to Comparative Example 3 of the present invention.
  • 8A is a plan view of the seal ring 301
  • FIG. 8B is a partial perspective view showing the pocket 310 of the seal ring 301 in an enlarged manner.
  • the pocket 310 provided in the seal ring 301 extends along an area between the outer peripheral surface 301a and the inner peripheral surface 301b from an inflow port 311 provided in the inner peripheral surface 301b.
  • the pocket 310 is configured such that the width and the depth from the side surface 301 c become smaller as the pocket 310 moves away from the inlet 311.
  • the seal ring 301 is configured so that oil flowing into the pocket 310 from the inlet 311 does not flow toward the inner peripheral surface 301b side while narrowing the oil flow path.
  • the seal ring 301 has a configuration specialized for reducing friction loss by increasing the hydraulic pressure in the pocket 310.
  • Friction loss evaluation was performed using the seal ring 1 according to the example, the seal ring 101 according to comparative example 1, the seal ring 201 according to comparative example 2, and the seal ring 301 according to comparative example 3 as samples.
  • For the friction loss evaluation two samples were used, and drag torque (N ⁇ m) was measured at an oil temperature of 80 ° C. and an oil pressure of 0.5 MPa. The rotation speed of each sample in the measurement of drag torque was 1000 to 6000 rpm.
  • FIG. 9 is a graph showing the measurement results of drag torque.
  • the horizontal axis in FIG. 9 indicates the rotation speed (rpm), and the vertical axis indicates the relative value of the drag torque.
  • a low drag torque is obtained in any of the seal ring 1 according to the example, the seal ring 101 according to the comparative example 1, the seal ring 201 according to the comparative example 2, and the seal ring 301 according to the comparative example 3, and the friction loss is reduced. It had been. Among them, in the seal ring 1 according to the example and the seal ring 301 according to the comparative example 3, it was found that a very low drag torque was obtained and the friction loss was more effectively reduced.
  • Oil leakage evaluation was performed using the seal ring 1 according to the example, the seal ring 101 according to the comparative example 1, the seal ring 201 according to the comparative example 2, and the seal ring 301 according to the comparative example 3 as samples.
  • oil leakage evaluation two samples were used, and the amount of oil leakage (ml / min) was measured at an oil temperature of 80 ° C. and a hydraulic pressure of 0.5 MPa. The number of rotations of each sample in the measurement of the amount of oil leakage was 1000 to 6000 rpm.
  • FIG. 10 is a graph showing measurement results of the oil leakage amount.
  • the horizontal axis in FIG. 10 indicates the rotational speed (rpm), and the vertical axis indicates the relative value of the oil leakage amount.
  • the seal ring 101 according to the comparative example 1, the seal ring 201 according to the comparative example 2, and the seal ring 301 according to the comparative example 3 the amount of oil leakage is small and the oil leakage is suppressed. It was. Among them, in the seal ring 1 according to the example and the seal ring 201 according to the comparative example 2, oil leakage hardly occurs regardless of the rotation speed, and the oil leakage is more effectively suppressed. all right. In addition, the seal ring 301 according to the comparative example 3 did not suit the seal ring 1 according to the example particularly at a high rotational speed, although good results were obtained at a low rotational speed.
  • the shape of the pocket of the seal ring can be changed as appropriate.
  • the shape of each pocket need not be symmetric in the circumferential direction of the seal ring, and may be asymmetric in the circumferential direction of the seal ring.
  • a configuration in which pockets having the same configuration are provided on the two side surfaces of the seal ring is not essential.
  • the pocket may be provided on only one of the two side surfaces of the seal ring.
  • pockets having different configurations may be provided on the two side surfaces of the seal ring.
  • the number of pockets may be different from each other on the two sides of the seal ring.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Sealing Devices (AREA)

Abstract

Provided is a seal ring that can both reduce friction loss and control oil leaks. A seal ring comprises an outer circumferential face, an inner circumferential face that is opposite to the outer circumferential face, a side face that joins the outer circumferential face and the inner circumferential face, and a plurality of pockets that are provided on the side face with spaces therebetween and that are closed on the outer circumferential face side and opened on the inner circumferential face side. Each pocket has a first and second edge and a first and second inclined face. The first edge and second edge are provided on the ends in the circumferential direction, respectively, and are convex beveled faces that extend from the side face and project to the side face with tips having a radius of curvature of no more than 60 mm. The first and second inclined faces extend from the first and second edges, respectively, toward the center in the circumferential direction.

Description

シールリングSeal ring
 本発明は、油圧機器などに利用可能なシールリングに関する。 The present invention relates to a seal ring that can be used for hydraulic equipment and the like.
 油圧式の自動変速機などの各種油圧機器が搭載された自動車が知られている。このような自動車では、燃費向上のため、油圧機器の駆動損失の低減が望まれている。 An automobile equipped with various hydraulic devices such as a hydraulic automatic transmission is known. In such automobiles, it is desired to reduce the drive loss of hydraulic equipment in order to improve fuel efficiency.
 油圧式の自動変速機にはシールリングが用いられる。シールリングは、ハウジングに挿通されるシャフトの溝部に嵌め込まれ、ハウジングとシャフトとの間を封止する。このようなシールリングでは、自動変速機の駆動時に、シャフトとの間の相対的な回転により、シャフトとの間に摩擦損失(フリクションロス)が生じる。 シ ー ル Seal rings are used for hydraulic automatic transmissions. The seal ring is fitted into a groove portion of a shaft inserted through the housing, and seals between the housing and the shaft. In such a seal ring, when the automatic transmission is driven, friction loss (friction loss) occurs between the shaft and the shaft due to relative rotation with the shaft.
 このようなフリクションロスは油圧機器の駆動損失につながる。したがって、フリクションロスを低減させる技術が求められる。特許文献1~5には、シールリングとシャフトとの間に生じるフリクションロスを低減させる技術が開示されている。これらの文献に開示されたシールリングには、シャフトとの接触面にポケットが設けられている。 Such friction loss leads to driving loss of hydraulic equipment. Therefore, a technique for reducing friction loss is required. Patent Documents 1 to 5 disclose techniques for reducing friction loss generated between a seal ring and a shaft. The seal ring disclosed in these documents is provided with a pocket on the contact surface with the shaft.
 このようなシールリングに油圧が加わるとオイルがポケットに入り込む。ポケットに入り込んだオイルは、シールリングに対して、シャフトから離間する方向に力を加える。これにより、シールリングとシャフトとの間の摩擦が抑制されるため、シールリングとシャフトとの間に生じるフリクションロスが低減される。 ¡When hydraulic pressure is applied to such a seal ring, the oil enters the pocket. The oil that has entered the pocket applies a force to the seal ring in a direction away from the shaft. Thereby, since the friction between a seal ring and a shaft is suppressed, the friction loss which arises between a seal ring and a shaft is reduced.
国際公開第2011/105513号パンフレットInternational Publication No. 2011/105513 Pamphlet 国際公開第2004/090390号パンフレットInternational Publication No. 2004/090390 Pamphlet 国際公開第2011/162283号パンフレットInternational Publication No. 2011/162283 Pamphlet 国際公開第2013/094654号パンフレットInternational Publication No. 2013/094654 Pamphlet 国際公開第2013/094657号パンフレットInternational Publication No. 2013/094657 Pamphlet
 上記の技術では、シールリングのポケットに入り込んだオイルが、シールリングとシャフトとの間に流入して、シールリングとシャフトとの間に油膜を形成することがある。この油膜の形成により、シールリングの潤滑性が向上してフリクションロスが低減される一方で、この油膜が厚くなりすぎるとオイルがシールリングより外側に漏れやすくなる。このように、フリクションロスとオイル漏れとはトレードオフの関係になりやすい。 In the above technique, oil that has entered the pocket of the seal ring may flow between the seal ring and the shaft to form an oil film between the seal ring and the shaft. The formation of this oil film improves the lubricity of the seal ring and reduces friction loss. On the other hand, if the oil film becomes too thick, the oil tends to leak outside the seal ring. Thus, friction loss and oil leakage tend to be in a trade-off relationship.
 以上のような事情に鑑み、本発明の目的は、フリクションロスの低減とオイル漏れの抑制とを両立可能なシールリングを提供することにある。 In view of the circumstances as described above, an object of the present invention is to provide a seal ring capable of achieving both reduction of friction loss and suppression of oil leakage.
 上記目的を達成するため、本発明の一形態に係るシールリングは、外周面と、上記外周面に対向する内周面と、上記外周面と上記内周面とを接続する側面と、上記側面に間隔をあけて設けられ、上記外周面側が閉塞され、上記内周面側が開放された複数のポケットと、を具備する。
 上記複数のポケットはそれぞれ、第1及び第2端部と、第1及び第2斜面部と、を有する。
 上記第1及び第2端部は、周方向の両端部にそれぞれ設けられ、上記側面から延びる、先端曲率半径が60mm以下の上記側面側に突出する凸状のR面である。
 上記第1及び第2斜面部は、上記第1及び第2端部から周方向の中央部に向けてそれぞれ延びる。
In order to achieve the above object, a seal ring according to an aspect of the present invention includes an outer peripheral surface, an inner peripheral surface facing the outer peripheral surface, a side surface connecting the outer peripheral surface and the inner peripheral surface, and the side surface. And a plurality of pockets that are closed at the outer peripheral surface side and open at the inner peripheral surface side.
Each of the plurality of pockets has first and second end portions and first and second slope portions.
The first and second end portions are convex R surfaces that are respectively provided at both ends in the circumferential direction and extend from the side surface and protrude toward the side surface having a tip curvature radius of 60 mm or less.
The first and second slope portions extend from the first and second end portions toward a circumferential central portion, respectively.
 このシールリングでは、回転方向に応じて、第1端部及び第1斜面部、又は第2端部及び第2斜面部が、ポケット内のオイルから油圧を受けることにより、フリクションロスが低減される。つまり、この構成では、回転方向によらずに、フリクションロスを低減する効果が得られる。
 特に、この構成では、第1及び第2端部が凸状のR面である。これにより、第1及び第2端部では、側面に対する傾斜が第1及び第2斜面部よりも緩やかになり、つまりオイル流路の絞りが小さくなる。これにより、このシールリングでは、ポケット内のオイルが第1及び第2端部の奥まで流入しやすくなるため、第1及び第2端部に加わる油圧が増大する。この構成では、第1及び第2端部の先端曲率半径を60mm以下とすることにより上記の効果が有効に得られる。
 また、このシールリングでは、ポケットが内周面側に開放され、かつ、外周面側に閉塞されているため、ポケット内に入ったオイルが外周面側に漏れ出しにくい。
 このように、このシールリングでは、ポケットの形状及びポケットの数の相互作用によって、フリクションロスの低減とオイル漏れの抑制とを両立することが可能である。
In this seal ring, depending on the rotation direction, the first end portion and the first slope portion, or the second end portion and the second slope portion receive hydraulic pressure from the oil in the pocket, thereby reducing friction loss. . That is, with this configuration, an effect of reducing friction loss can be obtained regardless of the rotation direction.
In particular, in this configuration, the first and second end portions are convex R surfaces. Thereby, in the first and second end portions, the inclination with respect to the side surface becomes gentler than that in the first and second slope portions, that is, the restriction of the oil flow path is reduced. Thereby, in this seal ring, since the oil in the pocket easily flows into the first and second end portions, the hydraulic pressure applied to the first and second end portions increases. In this configuration, the above-described effects can be effectively obtained by setting the tip curvature radii of the first and second end portions to 60 mm or less.
Further, in this seal ring, since the pocket is opened to the inner peripheral surface side and closed to the outer peripheral surface side, the oil entering the pocket is difficult to leak to the outer peripheral surface side.
Thus, in this seal ring, it is possible to achieve both reduction of friction loss and suppression of oil leakage by the interaction of the shape of the pocket and the number of pockets.
 上記複数のポケットはそれぞれ、上記第1端部と上記第2端部との間の中央領域に設けられた底部を更に有していてもよい。
 上記第1及び第2斜面部は、上記第1及び第2端部から上記底部にそれぞれ延びていてもよい。
 上記底部は、上記側面に平行な方向に延びていてもよい。
 このシールリングでは、ポケット内のオイルの油圧を、底部において良好に受けることできるため、フリクションロスを更に低減することができる。
Each of the plurality of pockets may further include a bottom portion provided in a central region between the first end portion and the second end portion.
The first and second slope portions may extend from the first and second end portions to the bottom portion, respectively.
The bottom portion may extend in a direction parallel to the side surface.
In this seal ring, the oil pressure in the pocket can be satisfactorily received at the bottom, so that the friction loss can be further reduced.
 上記ポケットは、上記底部と上記第1及び第2斜面部とをそれぞれ接続し、上記側面側から窪む凹状のR面である第1及び第2接続部を更に有してもよい。
 このシールリングでは、底部からポケットに流入したオイルが第1及び第2斜面部によりスムーズに流動することができる。これにより、第1及び第2斜面部にオイルからの油圧が更に良好に加わる。
The pocket may further include first and second connection portions that connect the bottom portion and the first and second slope portions, and are concave R surfaces that are recessed from the side surface side.
In this seal ring, the oil flowing into the pocket from the bottom can smoothly flow through the first and second slope portions. As a result, the hydraulic pressure from the oil is more favorably applied to the first and second slope portions.
 上記第1斜面部と上記第2斜面部とが上記中央部において接続されていてもよい。
 このシールリングでは、各ポケットの周方向の寸法を縮小可能であるため、ポケットを多く設けることが可能である。これにより、このシールリングでは、フリクションロスを更に低減することができる。
The first slope portion and the second slope portion may be connected at the central portion.
In this seal ring, since the circumferential dimension of each pocket can be reduced, a large number of pockets can be provided. Thereby, in this seal ring, the friction loss can be further reduced.
 上記内周面における上記複数のポケットの周方向の寸法の合計は、上記内周面の全周の50%以上98%以下であってもよい。
 このシールリングでは、内周面におけるポケットの占める割合を50%以上とすることにより、フリクションロスを低減する効果が良好に得られる。この一方で、内周面におけるポケットの占める割合を98%以下に留めることにより、各ポケットを柱部によって良好に隔てることができるため、各ポケットにおける油圧を良好に確保することができる。
The sum of the circumferential dimensions of the plurality of pockets on the inner peripheral surface may be not less than 50% and not more than 98% of the entire periphery of the inner peripheral surface.
In this seal ring, the effect of reducing the friction loss can be satisfactorily obtained by setting the ratio of the pockets on the inner peripheral surface to 50% or more. On the other hand, by keeping the ratio of the pockets on the inner peripheral surface to 98% or less, the pockets can be well separated by the pillars, so that the hydraulic pressure in each pocket can be ensured satisfactorily.
 上記第1及び第2斜面部は平面であってもよい。
 この構成により、シールリングの設計や加工が容易になる。
The first and second slope portions may be flat.
This configuration facilitates the design and processing of the seal ring.
 上記第1及び第2斜面部は、上記側面に対して1°以上20°以下の角度を成していてもよい。
 このシールリングでは、第1及び第2斜面部の側面に対する角度が小さく、つまりポケットが浅く形成されている。これにより、ポケット内のオイルによって第1及び第2斜面部に加わる油圧における内周面向きの成分が大きくなる。また、オイル流路の絞りが小さくなるため、オイルが第1及び第2端部に流入しやすくなる。これらの結果、このシールリングでは、より効果的にフリクションロスを低減することができる。
The first and second slope portions may form an angle of 1 ° or more and 20 ° or less with respect to the side surface.
In this seal ring, the angle with respect to the side surfaces of the first and second slope portions is small, that is, the pocket is formed shallow. Thereby, the component toward the inner peripheral surface in the hydraulic pressure applied to the first and second slope portions by the oil in the pocket is increased. Moreover, since the restriction | limiting of an oil flow path becomes small, oil becomes easy to flow in into a 1st and 2nd end part. As a result, this seal ring can more effectively reduce the friction loss.
 フリクションロスの低減とオイル漏れの抑制を両立可能なシールリングを提供することができる。 ∙ It is possible to provide a seal ring that can reduce friction loss and suppress oil leakage.
本発明の一実施形態に係るシールリングの平面図である。It is a top view of the seal ring which concerns on one Embodiment of this invention. 上記シールリングの部分斜視図である。It is a fragmentary perspective view of the said seal ring. 上記シールリングの内周面を部分的に示す図である。It is a figure which shows partially the internal peripheral surface of the said seal ring. 上記シールリングの回転時に油圧を受ける部位を示す平面図である。It is a top view which shows the site | part which receives hydraulic pressure at the time of rotation of the said seal ring. 上記実施形態の変形例に係るシールリングの内周面を部分的に示す図である。It is a figure which shows partially the internal peripheral surface of the seal ring which concerns on the modification of the said embodiment. 比較例1に係るシールリングを示す図である。It is a figure which shows the seal ring concerning the comparative example 1. 比較例2に係るシールリングを示す図である。It is a figure which shows the seal ring concerning the comparative example 2. 比較例3に係るシールリングを示す図である。It is a figure which shows the seal ring concerning the comparative example 3. フリクションロス評価の結果を示すグラフである。It is a graph which shows the result of friction loss evaluation. オイル漏れ評価の結果を示すグラフである。It is a graph which shows the result of oil leak evaluation.
 以下、図面を参照しながら、本発明の一実施形態を説明する。 Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
[シールリング1]
 図1は、本発明の一実施形態に係るシールリング1の平面図である。シールリング1は、外周面1a、内周面1b、及び側面1cを有し、中心軸Cを中心とする環状に形成されている。外周面1a及び内周面1bは中心軸Cを中心とする円筒面であり、側面1cは外周面1a及び内周面1bに直交している。
[Seal ring 1]
FIG. 1 is a plan view of a seal ring 1 according to an embodiment of the present invention. The seal ring 1 has an outer peripheral surface 1a, an inner peripheral surface 1b, and a side surface 1c, and is formed in an annular shape centering on the central axis C. The outer peripheral surface 1a and the inner peripheral surface 1b are cylindrical surfaces centered on the central axis C, and the side surface 1c is orthogonal to the outer peripheral surface 1a and the inner peripheral surface 1b.
 シールリング1は、2つの側面1cにそれぞれ等間隔に配置された複数のポケット10を有する。各ポケット10は、凹状に形成されている。また、シールリング1には、必要に応じ、シャフトへの装着を容易にするための合口部30が設けられる。なお、本発明では、合口部30を有する場合のシールリング1の形状が、合口部30を閉じた状態として定義されるものとする。 The seal ring 1 has a plurality of pockets 10 arranged at equal intervals on the two side surfaces 1c. Each pocket 10 is formed in a concave shape. Further, the seal ring 1 is provided with an abutment portion 30 for facilitating the mounting to the shaft as required. In addition, in this invention, the shape of the seal ring 1 in the case of having the joint part 30 shall be defined as the state which closed the joint part 30. FIG.
 合口部30は、合口部30からのオイル漏れが抑制可能な構成とされる。合口部30の形状は、特に限定されず、公知の形状を採用可能である。合口部30としては、例えば、直角(ストレート)合口、斜め(アングル)合口、段付き(ステップ)合口、ダブルアングル合口、ダブルカット合口、トリプルステップ合口などを採用可能である。ダブルアングル合口、ダブルカット合口、トリプルステップ合口では、合口部30からのオイル漏れが特に良好に抑制される。 The joint part 30 is configured to be able to suppress oil leakage from the joint part 30. The shape of the abutment portion 30 is not particularly limited, and a known shape can be adopted. As the joint portion 30, for example, a right angle (straight) joint, an oblique (angle) joint, a stepped (step) joint, a double angle joint, a double cut joint, a triple step joint, or the like can be employed. In the double angle joint, the double cut joint, and the triple step joint, oil leakage from the joint part 30 is suppressed particularly well.
 シールリング1は、合口部30が広げられた状態でシャフトの溝部に装着される。シールリング1が装着されたシャフトは、シールリング1の外周面1aが溝部から少し突出した状態で、ハウジングに挿通される。これにより、シールリング1の外周面1aがハウジングの内周面に接触するとともに、シールリング1の側面1cがシャフトの溝部に接触する。このように、シールリング1によってシャフトとハウジングとの間が封止される。 The seal ring 1 is attached to the groove portion of the shaft in a state where the joint portion 30 is widened. The shaft on which the seal ring 1 is mounted is inserted into the housing with the outer peripheral surface 1a of the seal ring 1 slightly protruding from the groove. Thereby, while the outer peripheral surface 1a of the seal ring 1 contacts the inner peripheral surface of a housing, the side surface 1c of the seal ring 1 contacts the groove part of a shaft. Thus, the seal ring 1 seals between the shaft and the housing.
 シールリング1は、シャフト及びハウジングに装着された状態で、ポケット10がシャフトの溝部内に配置されるように構成されている。したがって、シールリング1とシャフトの溝部との間には、ポケット10によって空間が形成される。シールリング1では、ポケット10内に流入したオイルの油圧がシールリング1とシャフトの溝部とを離間させる方向に作用するため、シャフトの溝部との間のフリクションロスが低減される。 The seal ring 1 is configured such that the pocket 10 is disposed in the groove portion of the shaft in a state where the seal ring 1 is mounted on the shaft and the housing. Therefore, a space is formed by the pocket 10 between the seal ring 1 and the groove portion of the shaft. In the seal ring 1, the hydraulic pressure of the oil flowing into the pocket 10 acts in a direction to separate the seal ring 1 and the shaft groove, so that the friction loss between the shaft groove and the shaft ring is reduced.
 シールリング1の径や厚さt(図3参照)は、装着するシャフトやハウジングの構成に応じて決定可能である。シールリング1の外径は、例えば、10mm以上150mm以下とすることができる。シールリング1の厚さtは、例えば、0.8mm以上3.5mm以下とすることができる。 The diameter and thickness t 0 (see FIG. 3) of the seal ring 1 can be determined according to the configuration of the shaft and housing to be mounted. The outer diameter of the seal ring 1 can be, for example, 10 mm or more and 150 mm or less. The thickness of the seal ring 1 t 0, for example, can be set to 0.8mm or more 3.5mm or less.
 シールリング1を形成する材料は、特定の種類に限定されず、ポリエーテルエーテルケトン(PEEK)、ポリフェニレンサルファイド(PPS)、ポリイミド(PI)、ポリテトラフルオロエチレン(PTFE)、変性ポリテトラフルオロエチレン、エチレンテトラフルオロエチレン(ETFE)などを用いることができる。また、シールリング1を形成する材料には、これらにカーボン粉末やカーボン繊維等の添加剤が充填されていてもよい。 The material forming the seal ring 1 is not limited to a specific type, but is polyether ether ketone (PEEK), polyphenylene sulfide (PPS), polyimide (PI), polytetrafluoroethylene (PTFE), modified polytetrafluoroethylene, Ethylene tetrafluoroethylene (ETFE) or the like can be used. Moreover, the material forming the seal ring 1 may be filled with additives such as carbon powder and carbon fiber.
 シールリング1の製造方法は、特定の方法に限定されない。例えば、射出成形法や圧縮成型法では、ポケット10が設けられたシールリング1を直接製造することが可能である。射出成形法に適した材料としては、例えば、PEEK、PPS、PIなどの樹脂が挙げられる。圧縮成型法に適した材料としては、例えば、PTFEなどの樹脂が挙げられる。また、例えば、PTFEなどの樹脂については、事後的にポケット10を機械加工することによりシールリング1を製造することも可能である。 The manufacturing method of the seal ring 1 is not limited to a specific method. For example, in the injection molding method or the compression molding method, the seal ring 1 provided with the pockets 10 can be directly manufactured. Examples of materials suitable for the injection molding method include resins such as PEEK, PPS, and PI. Examples of materials suitable for the compression molding method include resins such as PTFE. For example, for a resin such as PTFE, the seal ring 1 can be manufactured by machining the pocket 10 afterwards.
[各ポケット10の構成]
 図2は、シールリング1の概略構成を示す部分斜視図であり、ポケット10を拡大して示している。図3は、シールリング1のポケット10を内周面1b側から示す図である。図3では、シールリング1の内周面1bに沿った形状を示している。図3に示す寸法d,d,dは、シールリング1の内周面1bの周方向に沿った寸法を示している。
[Configuration of each pocket 10]
FIG. 2 is a partial perspective view showing a schematic configuration of the seal ring 1 and shows an enlarged pocket 10. FIG. 3 is a view showing the pocket 10 of the seal ring 1 from the inner peripheral surface 1b side. In FIG. 3, the shape along the inner peripheral surface 1b of the seal ring 1 is shown. The dimensions d 0 , d 1 , d 2 shown in FIG. 3 indicate the dimensions along the circumferential direction of the inner peripheral surface 1 b of the seal ring 1.
 ポケット10は、シールリング1の側面1cの内周面1b側に設けられている。ポケット10は、シールリング1の外周面1aとの間に隔壁部15を具備し、外周面1a側が隔壁部15によって閉塞されている。したがって、シールリング1では、ポケット10内のオイルがシールリング1の外周面1a側に漏れ出すことを抑制することができる。 The pocket 10 is provided on the inner peripheral surface 1 b side of the side surface 1 c of the seal ring 1. The pocket 10 includes a partition wall portion 15 between the pocket 10 and the outer peripheral surface 1 a of the seal ring 1, and the outer peripheral surface 1 a side is closed by the partition wall portion 15. Therefore, in the seal ring 1, the oil in the pocket 10 can be prevented from leaking to the outer peripheral surface 1 a side of the seal ring 1.
 この一方で、ポケット10は、内周面1bとの間に隔壁部を有しておらず、シールリング1の内周面1b側に開放されている。これにより、ポケット10内の油圧が過度に高くなることを防止することができるため、ポケット10内のオイルがシールリング1の外周面1a側に漏れ出すことを効果的に抑制することができる。 On the other hand, the pocket 10 does not have a partition portion between the pocket 10 and the inner peripheral surface 1b, and is open to the inner peripheral surface 1b side of the seal ring 1. Thereby, since it can prevent that the oil_pressure | hydraulic in the pocket 10 becomes high too much, it can suppress effectively that the oil in the pocket 10 leaks to the outer peripheral surface 1a side of the seal ring 1. FIG.
 ポケット10の隔壁部15は、ポケット10内の空間と外周面1a側の空間とを隔てることができれば、特定の構成に限定されない。隔壁部15は、例えば、シールリング1の側面1cに直交する平面として構成することが可能である。 The partition wall 15 of the pocket 10 is not limited to a specific configuration as long as the space in the pocket 10 and the space on the outer peripheral surface 1a side can be separated. The partition wall portion 15 can be configured as a plane orthogonal to the side surface 1c of the seal ring 1, for example.
 各ポケット10は、側面1cに設けられた柱部20によってシールリング1の周方向に隔てられている。つまり、シールリング1の内周面1bには、ポケット10と柱部20とが交互に配置されている。 Each pocket 10 is separated in the circumferential direction of the seal ring 1 by a pillar portion 20 provided on the side surface 1c. That is, the pockets 10 and the column portions 20 are alternately arranged on the inner peripheral surface 1 b of the seal ring 1.
 ポケット10の寸法d及び柱部20の寸法dは、それぞれシールリング1の径などに応じて適宜決定可能である。ポケット10の寸法dは、例えば、2.0mm以上35mm以下とすることができる。柱部20の寸法dは、例えば、0.1mm以上5.0mm以下とすることができる。 Dimension d 1 of the dimension d 0 and the column portion 20 of the pocket 10 may be suitably determined depending on the diameter of the seal ring 1, respectively. The dimension d 0 of the pocket 10 can be set to 2.0 mm or more and 35 mm or less, for example. Dimension d 1 of the cage bars 20 can be, for example, a 0.1mm or 5.0mm or less.
 ポケット10の形状は、中心軸Cを通り、周方向における中央部にある図3に一点鎖線で示す平面Dについて対称であることが好ましい。これにより、シールリング1の回転方向によらずにポケット10の機能を確保することができる。また、シールリング1の2つの側面1cにおけるポケット10の位置及び形状は、シールリング1の厚さt方向における中央部にある図3に一点鎖線で示す平面Eについて対称となるように構成されている。 The shape of the pocket 10 is preferably symmetric with respect to a plane D indicated by a one-dot chain line in FIG. 3 at the center in the circumferential direction through the central axis C. Thereby, the function of the pocket 10 can be ensured irrespective of the rotation direction of the seal ring 1. The position and shape of the pocket 10 in the two side surfaces 1c of the seal ring 1 is configured to be symmetrical about the plane E of FIG. 3 in the central portion in the thickness t 0 direction of the seal ring 1 by the dashed line ing.
 ポケット10は、底部11と、第1及び第2斜面部12a,12bと、第1及び第2端部13a,13bと、第1及び第2接続部14a,14bと、を具備する。第1及び第2斜面部12a,12b、第1及び第2端部13a,13b、及び第1及び第2接続部14a,14bはそれぞれ平面Dについて対称である。 The pocket 10 includes a bottom portion 11, first and second slope portions 12a and 12b, first and second end portions 13a and 13b, and first and second connection portions 14a and 14b. The first and second slope portions 12a and 12b, the first and second end portions 13a and 13b, and the first and second connection portions 14a and 14b are symmetric with respect to the plane D, respectively.
 底部11は、ポケット10の周方向の中央領域に設けられ、ポケット10において側面1cからの深さが最も深い部位である。底部11は、シールリング1の回転方向によらず、オイルの流入口として機能する。底部11は、その全体として、側面1cに平行な方向に延びていることが好ましい。底部11は、典型的には平面であるが、厳密に平面である必要はない。つまり、底部11は、緩やかな曲面であってもよく、例えば、その全体又は一部が凸状や凹状に湾曲していてもよい。 The bottom 11 is provided in the central region in the circumferential direction of the pocket 10 and is the deepest part of the pocket 10 from the side surface 1c. The bottom portion 11 functions as an oil inlet regardless of the rotation direction of the seal ring 1. The bottom portion 11 preferably extends in a direction parallel to the side surface 1c as a whole. The bottom 11 is typically planar, but need not be strictly planar. That is, the bottom portion 11 may be a gently curved surface. For example, the whole or a part thereof may be curved in a convex shape or a concave shape.
 底部11の寸法d及び側面1cからの深さtは、適宜決定可能である。底部11の寸法dは、例えば、0.01mm以上3mm以下とすることができる。底部11の側面1cからの深さtは、例えば、0.1mm以上0.6mm以下とすることができる。また、底部11の両側面1cからの深さtの合計は、例えば、シールリング1の厚さtの50%以上98%以下とすることができる。 Depth t 1 from the dimension d 2 and the side surface 1c of the bottom part 11 may be appropriately determined. Dimension d 2 of the bottom portion 11, for example, be 0.01mm or less than 3mm. The depth t 1 from the side surface 1c of the bottom 11 can be set to 0.1 mm or more and 0.6 mm or less, for example. The total depth t 1 from both sides 1c of the bottom part 11, for example, can be not more than 98% more than 50% of the thickness t 0 of the seal ring 1.
 第1及び第2斜面部12a,12bは、底部11に対して相互に反対側に配置されている。図2,3に示す例では、第1斜面部12aが底部11の右側に配置され、第2斜面部12bが底部11の左側に配置されている。第1及び第2斜面部12a,12bは、それぞれ底部11から柱部20に向けて、側面1cからの深さが浅くなるように傾斜する。 1st and 2nd slope part 12a, 12b is arrange | positioned with respect to the bottom part 11 mutually. In the example shown in FIGS. 2 and 3, the first slope portion 12 a is disposed on the right side of the bottom portion 11, and the second slope portion 12 b is disposed on the left side of the bottom portion 11. The first and second slope portions 12a and 12b are inclined from the bottom portion 11 toward the column portion 20 so that the depth from the side surface 1c becomes shallow.
 第1及び第2斜面部12a,12bは、設計や加工の容易さなどの観点において、平面であることが好ましい。しかし、第1及び第2斜面部12a,12bは、平坦面でなく緩やかな曲面であってもよく、例えば、その全体又は一部が凸状や凹状に湾曲していてもよい。 The first and second slope portions 12a and 12b are preferably flat in terms of design and ease of processing. However, the first and second slope portions 12a and 12b may be gentle curved surfaces instead of flat surfaces, and for example, the whole or a part thereof may be curved in a convex shape or a concave shape.
 第1及び第2斜面部12a,12bがそれぞれ側面1cとの間に成す角度αは、適宜決定可能である。角度αが小さいほど、第1及び第2斜面部12a,12bに加わる油圧における内周面1b向きの成分が大きくなる。この一方で、角度αが小さすぎると、第1及び第2斜面部12a,12bに油圧が加わりにくくなる。これらの観点から、角度αは、例えば、1°以上20°以下とすることができる。 The angle α formed between the first and second inclined surfaces 12a and 12b and the side surface 1c can be determined as appropriate. As the angle α is smaller, the component of the hydraulic pressure applied to the first and second inclined surface portions 12a and 12b toward the inner peripheral surface 1b becomes larger. On the other hand, if the angle α is too small, it is difficult to apply hydraulic pressure to the first and second slope portions 12a and 12b. From these viewpoints, the angle α can be set to 1 ° or more and 20 ° or less, for example.
 第1及び第2端部13a,13bは、側面1c側に突出する凸状のR面として構成され、ポケット10の周方向の両端部に配置されている。第1端部13aは第1斜面部12aと柱部20とを接続し、第2端部13bは第2斜面部12bと柱部20とを接続している。図2,3に示す例では、第1端部13aが第1斜面部12aの左側に配置され、第2端部13bが第2斜面部12bの右側に配置されている。 1st and 2nd edge part 13a, 13b is comprised as a convex R surface which protrudes to the side surface 1c side, and is arrange | positioned at the both ends of the circumferential direction of the pocket 10. As shown in FIG. The first end portion 13 a connects the first slope portion 12 a and the column portion 20, and the second end portion 13 b connects the second slope portion 12 b and the column portion 20. In the example shown in FIGS. 2 and 3, the first end portion 13a is disposed on the left side of the first slope portion 12a, and the second end portion 13b is disposed on the right side of the second slope portion 12b.
 第1及び第2端部13a,13bは、楔状のオイル流路を形成している。第1及び第2端部13a,13bは、凸状のR面として構成されるため、柱部20に近づくにつれて傾斜が緩やかになる。したがって、第1及び第2端部13a,13bが形成するオイル流路は、狭くなるにつれて絞りが小さくなる。これにより、オイルが内周面1b側に逃げにくくなり、つまりオイルが第1及び第2端部13a,13bの奥まで進入しやすくなるため、第1及び第2端部13a,13bに加わる油圧が増大する。 The first and second end portions 13a and 13b form a wedge-shaped oil flow path. Since the first and second end portions 13a and 13b are configured as convex R surfaces, the inclination becomes gentler as the column portion 20 is approached. Therefore, the oil flow path formed by the first and second end portions 13a and 13b becomes narrower as it becomes narrower. This makes it difficult for the oil to escape to the inner peripheral surface 1b side, that is, the oil easily enters deep into the first and second end portions 13a and 13b, and therefore the hydraulic pressure applied to the first and second end portions 13a and 13b. Will increase.
 第1及び第2端部13a,13bの形状は、適宜決定可能である。第1及び第2端部13a,13bは、単一の曲率半径で形成されていても、連続して曲率半径が変化するように形成されていてもよい。第1及び第2端部13a,13bの最も曲率半径が小さい部分の曲率半径(先端曲率半径)は0mmより大きければよい。また、第1及び第2端部13a,13bの先端曲率半径は、60mm以下であることが好ましく、30mm以下であることがより好ましく、10mm以下であることが更に好ましい。これらにより、上記の効果が有効に得られる。 The shapes of the first and second end portions 13a and 13b can be determined as appropriate. The first and second end portions 13a and 13b may be formed with a single radius of curvature, or may be formed so that the radius of curvature continuously changes. The curvature radius (tip curvature radius) of the portion with the smallest curvature radius of the first and second end portions 13a and 13b may be larger than 0 mm. Moreover, it is preferable that the front-end | tip curvature radius of 1st and 2nd edge part 13a, 13b is 60 mm or less, It is more preferable that it is 30 mm or less, It is still more preferable that it is 10 mm or less. By these, said effect is acquired effectively.
 第1及び第2接続部14a,14bは、側面1c側から窪む凹状のR面として構成され、底部11の周方向の両側に配置されている。第1接続部14aは第1斜面部12aと底部11とを接続し、第2接続部14bは第2斜面部12bと底部11とを接続している。図2,3に示す例では、第1接続部14aが底部11の左側に配置され、第2接続部14bが底部11の右側に配置されている。 The first and second connection portions 14a and 14b are configured as concave R surfaces that are recessed from the side surface 1c, and are disposed on both sides of the bottom portion 11 in the circumferential direction. The first connection portion 14 a connects the first slope portion 12 a and the bottom portion 11, and the second connection portion 14 b connects the second slope portion 12 b and the bottom portion 11. In the example shown in FIGS. 2 and 3, the first connection portion 14 a is disposed on the left side of the bottom portion 11, and the second connection portion 14 b is disposed on the right side of the bottom portion 11.
 第1及び第2接続部14a,14bは凹状のR面として構成されるため、底部11からポケット10に流入したオイルがスムーズに第1及び第2斜面部12a,12bに流動することが可能となる。このため、シールリング1では、第1及び第2斜面部12a,12bにおいて良好に油圧を受けることが可能である。 Since the first and second connection portions 14a and 14b are configured as concave R surfaces, the oil flowing into the pocket 10 from the bottom portion 11 can smoothly flow to the first and second slope portions 12a and 12b. Become. For this reason, in the seal ring 1, it is possible to receive the hydraulic pressure satisfactorily at the first and second slope portions 12a and 12b.
 第1及び第2接続部14a,14bの形状は、適宜決定可能である。第1及び第2接続部14a,14bは、単一の曲率半径で形成されていても、連続して曲率半径が変化するように形成されていてもよい。第1及び第2接続部14a,14bの最も曲率半径が小さい部分の曲率半径(先端曲率半径)は0mmより大きければよい。また、第1及び第2接続部14a,14bの先端曲率半径は、第1及び第2端部13a,13bと同様に、60mm以下とすることができ、30mm以下とすることができ、10mm以下とすることができる。 The shapes of the first and second connection portions 14a and 14b can be determined as appropriate. The first and second connecting portions 14a and 14b may be formed with a single radius of curvature, or may be formed so that the radius of curvature changes continuously. The curvature radius (tip curvature radius) of the portion with the smallest curvature radius of the first and second connection portions 14a, 14b may be larger than 0 mm. Further, the tip curvature radii of the first and second connection portions 14a and 14b can be 60 mm or less, 30 mm or less, and 10 mm or less, like the first and second end portions 13a and 13b. It can be.
[ポケット10の配置]
 シールリング1では、一般的なシールリングよりも多くのポケットが設けられている。これにより、シールリング1において、回転時に油圧を受ける部位の数が多くなり、つまり回転時に油圧を受ける部位の間隔が狭くなる。図1に示す例では12個のポケット10が設けられている。
[Position of pocket 10]
The seal ring 1 is provided with more pockets than a general seal ring. Thereby, in the seal ring 1, the number of parts that receive hydraulic pressure during rotation increases, that is, the interval between the parts that receive hydraulic pressure during rotation decreases. In the example shown in FIG. 1, twelve pockets 10 are provided.
 図4は、シールリング1の回転時に主に油圧を受ける部位をハッチングで示している。図4(A)は矢印R方向に右回転する場合について示し、図4(B)は矢印L方向に左回転する場合について示している。 FIG. 4 shows a portion that is mainly subjected to hydraulic pressure when the seal ring 1 rotates by hatching. FIG. 4A shows the case of rotating right in the direction of arrow R, and FIG. 4B shows the case of rotating left in the direction of arrow L.
 図4(A)に示す右回転しているシールリング1では、各ポケット10の第1斜面部12a及び第1端部13aが油圧を受けるものの、各ポケット10の第2斜面部12b及び第2端部13bがほとんど油圧を受けない。この一方で、図4(B)に示す左回転しているシールリング1では、各ポケット10の第2斜面部12b及び第2端部13bが油圧を受けるものの、各ポケット10の第1斜面部12a及び第1端部13aがほとんど油圧を受けない。 In the seal ring 1 that is rotating clockwise as shown in FIG. 4A, the first inclined surface portion 12a and the first end portion 13a of each pocket 10 are subjected to hydraulic pressure, but the second inclined surface portion 12b and the second inclined surface portion 12b of each pocket 10 are used. The end 13b receives almost no hydraulic pressure. On the other hand, in the seal ring 1 that rotates counterclockwise as shown in FIG. 4B, the second inclined surface portion 12b and the second end portion 13b of each pocket 10 receive hydraulic pressure, but the first inclined surface portion of each pocket 10 12a and the 1st end part 13a receive little oil pressure.
 このように、シールリング1では、いずれの回転方向の場合であっても、ほとんど油圧を受けない部位が発生する。シールリング1おいてほとんど油圧を受けない部位が周方向に長く連続して存在していると、シールリング1全体に加わる油圧が低下するとともに不安定になる。これにより、フリクションロスを充分に抑制できなくなる場合がある。 As described above, in the seal ring 1, there is a portion that hardly receives hydraulic pressure in any rotation direction. If a portion of the seal ring 1 that hardly receives hydraulic pressure is continuously present in the circumferential direction, the hydraulic pressure applied to the entire seal ring 1 decreases and becomes unstable. As a result, the friction loss may not be sufficiently suppressed.
 その点、シールリング1では、一般的なシールリングよりもポケット10の数を多くすることにより、油圧を受ける部位の間隔を狭め、つまり油圧を受けない部位の範囲を狭めている。これにより、シールリング1は、ポケット10内のオイルから、高い油圧を安定して受けることが可能となる。 In that respect, in the seal ring 1, by increasing the number of pockets 10 compared to a general seal ring, the interval between the portions that receive the hydraulic pressure is narrowed, that is, the range of the portion that does not receive the hydraulic pressure is narrowed. As a result, the seal ring 1 can stably receive high hydraulic pressure from the oil in the pocket 10.
 シールリング1では、ポケット10の数を4個以上とすることにより、上記の効果が良好に得られる。この一方で、ポケット10の数を40個以下とすることにより、各ポケット10それぞれに加わる油圧を確保することができるため、シールリング1全体に加わる油圧を高く保持することができる。このため、シールリング1では、ポケット10の数が4個以上40個以下であることが好ましい。 In the seal ring 1, when the number of the pockets 10 is four or more, the above effect can be obtained satisfactorily. On the other hand, by setting the number of pockets 10 to 40 or less, the hydraulic pressure applied to each pocket 10 can be ensured, so that the hydraulic pressure applied to the entire seal ring 1 can be kept high. For this reason, in the seal ring 1, it is preferable that the number of the pockets 10 is 4 or more and 40 or less.
 また、シールリング1では、ポケット10の寸法dの合計が、内周面1bの全周の50%以上98%以下であることが好ましい。シールリング1では、内周面1bにおけるポケット10の占める割合を50%以上とすることにより、フリクションロスを低減する効果が良好に得られる。この一方で、シールリング1では、内周面1bにおけるポケットの占める割合を98%以下に留めることにより、各ポケット10を柱部20によって良好に隔てることができるため、各ポケット10におけるフリクションロスを低減する効果を確保することができる。 Moreover, the sealing ring 1, it is also preferred that the total size d 0 of the pocket 10 is 98% or less 50% or more of the total circumference of the inner circumferential surface 1b. In the seal ring 1, when the proportion of the pockets 10 in the inner peripheral surface 1b is 50% or more, the effect of reducing the friction loss can be favorably obtained. On the other hand, in the seal ring 1, each pocket 10 can be well separated by the column portion 20 by keeping the proportion of the pockets on the inner peripheral surface 1b at 98% or less, so that the friction loss in each pocket 10 is reduced. The effect of reducing can be ensured.
[変形例]
 図5を参照して、上記実施形態の変形例に係るシールリング501について説明する。シールリング501は、以下に説明する構成以外について、上記実施形態に係るシールリング1と同様の構成を有する。また、シールリング501における上記実施形態に係るシールリング1と同様の構成についての説明は適宜省略する。
[Modification]
With reference to FIG. 5, the seal ring 501 which concerns on the modification of the said embodiment is demonstrated. The seal ring 501 has the same configuration as the seal ring 1 according to the above-described embodiment except for the configuration described below. Moreover, the description about the structure similar to the seal ring 1 concerning the said embodiment in the seal ring 501 is abbreviate | omitted suitably.
 図5は、本実施形態の変形例に係るシールリング501のポケット510を内周面1b側から示す図である。図5では、シールリング501の内周面1bに沿った形状を示している。 FIG. 5 is a view showing the pocket 510 of the seal ring 501 according to the modification of the present embodiment from the inner peripheral surface 1b side. In FIG. 5, the shape along the inner peripheral surface 1b of the seal ring 501 is shown.
 シールリング501には、上記実施形態に係る底部11及び接続部14a,14bが設けられていない。このため、第1及び第2斜面部12a,12bは、直接接続されることによりV字形状を成している。なお、第1及び第2斜面部12a,12bは、直接接続されていなくても、例えば、凹状のR面で接続されていてもよい。 The seal ring 501 is not provided with the bottom 11 and the connecting portions 14a and 14b according to the above embodiment. For this reason, the 1st and 2nd slope parts 12a and 12b comprise V shape by being connected directly. In addition, the 1st and 2nd slope parts 12a and 12b may be connected by the concave R surface, for example, even if it is not directly connected.
 このように上記実施形態に係る底部11及び接続部14a,14bを省略した構成により、シールリング501の各ポケットの510の寸法dは、上記実施形態に係るシールリング1の各ポケット10の寸法dよりも小さくなる。これにより、シールリング501では、ポケット510の数を更に多くすることができる。 Bottom 11 and the connection portion 14a thus according to the above embodiment, the configuration is omitted 14b, dimension d 0 of 510 of each pocket of the seal ring 501, the dimensions of each pocket 10 of the seal ring 1 according to the embodiment It is smaller than d 0. Thereby, in the seal ring 501, the number of the pockets 510 can be further increased.
 シールリング501では、ポケット510の数、つまり斜面部12a,12b及び端部13a,13bの数を多くすることにより、回転時に油圧を受ける部位の数が多くなり、回転時に油圧を受ける部位の間隔が狭くなる。これにより、回転時のシールリング501は、ポケット510内のオイルから、更に高い油圧を更に安定して受けることが可能となる。 In the seal ring 501, by increasing the number of pockets 510, that is, the number of the slope portions 12a and 12b and the end portions 13a and 13b, the number of portions that receive hydraulic pressure during rotation increases, and the interval between the portions that receive hydraulic pressure during rotation. Becomes narrower. Thereby, the seal ring 501 at the time of rotation can receive a higher hydraulic pressure from the oil in the pocket 510 more stably.
 このように、変形例に係るシールリング501では、回転時のフリクションロスを更に効果的に低減可能である。 Thus, in the seal ring 501 according to the modified example, the friction loss during rotation can be further effectively reduced.
[実施例に係るシールリング1]
 本発明の実施例として、上記実施形態の構成のシールリング1を作製した。シールリング1の外径は51mmとし、ポケット10の数は12個とした。なお、以下に説明する比較例1~3に係るシールリング101,201,301は、特に説明する構成以外について、本実施例に係るシールリング1と同様に構成されている。
[Seal ring 1 according to the embodiment]
As an example of the present invention, a seal ring 1 having the configuration of the above embodiment was produced. The outer diameter of the seal ring 1 was 51 mm, and the number of pockets 10 was twelve. The seal rings 101, 201, and 301 according to Comparative Examples 1 to 3 described below are configured in the same manner as the seal ring 1 according to the present embodiment, except for the configuration that is specifically described.
[比較例1に係るシールリング101]
 図6は、本発明の比較例1に係るシールリング101を示す図である。図6(A)はシールリング101の平面図であり、図6(B)はシールリング101の図6(A)のA-A'線に沿った断面図である。
[Seal ring 101 according to comparative example 1]
FIG. 6 is a view showing a seal ring 101 according to Comparative Example 1 of the present invention. 6A is a plan view of the seal ring 101, and FIG. 6B is a cross-sectional view of the seal ring 101 taken along the line AA ′ in FIG. 6A.
 シールリング101では、側面101cが、外周面101aから内周面101bに向けて間隔が狭くなるように傾斜している。シールリング101では、側面101cとシャフトの溝部とが面接触しない構成とすることにより、フリクションロスの低減が図られている。 In the seal ring 101, the side surface 101c is inclined so that the interval is narrowed from the outer peripheral surface 101a toward the inner peripheral surface 101b. In the seal ring 101, friction loss is reduced by adopting a configuration in which the side surface 101c and the groove portion of the shaft are not in surface contact with each other.
[比較例2に係るシールリング201]
 図7は、本発明の比較例2に係るシールリング201を示す図である。図7(A)はシールリング201の平面図であり、図7(B)はシールリング201の図7(A)のB-B'線に沿った断面図である。
[Seal ring 201 according to comparative example 2]
FIG. 7 is a view showing a seal ring 201 according to Comparative Example 2 of the present invention. 7A is a plan view of the seal ring 201, and FIG. 7B is a cross-sectional view of the seal ring 201 taken along line BB ′ of FIG. 7A.
 シールリング201には、8個のポケット210が設けられている。ポケット210は、実施例に係るシールリング1のポケット10とは異なり、内周面201bと側面201cとを接続する傾斜面を有する。シールリング201では、側面201cとシャフトの溝部との面接触を保ちつつ、ポケット210によるフリクションロスの低減が図られている。 The seal ring 201 is provided with eight pockets 210. Unlike the pocket 10 of the seal ring 1 according to the embodiment, the pocket 210 has an inclined surface that connects the inner peripheral surface 201b and the side surface 201c. In the seal ring 201, friction loss due to the pocket 210 is reduced while maintaining surface contact between the side surface 201c and the groove portion of the shaft.
[比較例3に係るシールリング301]
 図8は、本発明の比較例3に係るシールリング301を示す図である。図8(A)はシールリング301の平面図であり、図8(B)はシールリング301のポケット310を拡大して示す部分斜視図である。
[Seal Ring 301 According to Comparative Example 3]
FIG. 8 is a view showing a seal ring 301 according to Comparative Example 3 of the present invention. 8A is a plan view of the seal ring 301, and FIG. 8B is a partial perspective view showing the pocket 310 of the seal ring 301 in an enlarged manner.
 シールリング301に設けられたポケット310は、内周面301bに設けられた流入口311から外周面301aと内周面301bとの間の領域に沿って延びている。ポケット310は、流入口311から離れるにつれて幅及び側面301cからの深さが小さくなるように構成されている。 The pocket 310 provided in the seal ring 301 extends along an area between the outer peripheral surface 301a and the inner peripheral surface 301b from an inflow port 311 provided in the inner peripheral surface 301b. The pocket 310 is configured such that the width and the depth from the side surface 301 c become smaller as the pocket 310 moves away from the inlet 311.
 シールリング301は、オイル流路を絞りつつ、流入口311からポケット310内に流入したオイルが内周面301b側に流出しないように構成されている。シールリング301は、ポケット310内の油圧を高めることによるフリクションロスの低減に特化した構成となっている。 The seal ring 301 is configured so that oil flowing into the pocket 310 from the inlet 311 does not flow toward the inner peripheral surface 301b side while narrowing the oil flow path. The seal ring 301 has a configuration specialized for reducing friction loss by increasing the hydraulic pressure in the pocket 310.
[フリクションロス評価]
 実施例に係るシールリング1、比較例1に係るシールリング101、比較例2に係るシールリング201、及び比較例3に係るシールリング301をサンプルとするフリクションロス評価を行った。フリクションロス評価としては、各サンプルを2本用い、オイルの温度を80℃とし、油圧を0.5MPaとする引き摺りトルク(N・m)の測定を行った。引き摺りトルクの測定における各サンプルの回転数は1000~6000rpmとした。
[Friction loss evaluation]
Friction loss evaluation was performed using the seal ring 1 according to the example, the seal ring 101 according to comparative example 1, the seal ring 201 according to comparative example 2, and the seal ring 301 according to comparative example 3 as samples. For the friction loss evaluation, two samples were used, and drag torque (N · m) was measured at an oil temperature of 80 ° C. and an oil pressure of 0.5 MPa. The rotation speed of each sample in the measurement of drag torque was 1000 to 6000 rpm.
 図9は、引き摺りトルクの測定結果を示すグラフである。図9の横軸は回転数(rpm)を示し、縦軸は引き摺りトルクの相対値を示している。 FIG. 9 is a graph showing the measurement results of drag torque. The horizontal axis in FIG. 9 indicates the rotation speed (rpm), and the vertical axis indicates the relative value of the drag torque.
 実施例に係るシールリング1、比較例1に係るシールリング101、比較例2に係るシールリング201、及び比較例3に係るシールリング301のいずれにおいても低い引き摺りトルクが得られ、フリクションロスが低減されていた。その中でも、実施例に係るシールリング1及び比較例3に係るシールリング301では、非常に低い引き摺りトルクが得られ、より効果的にフリクションロスが低減されていることがわかった。 A low drag torque is obtained in any of the seal ring 1 according to the example, the seal ring 101 according to the comparative example 1, the seal ring 201 according to the comparative example 2, and the seal ring 301 according to the comparative example 3, and the friction loss is reduced. It had been. Among them, in the seal ring 1 according to the example and the seal ring 301 according to the comparative example 3, it was found that a very low drag torque was obtained and the friction loss was more effectively reduced.
[オイル漏れ評価]
 実施例に係るシールリング1、比較例1に係るシールリング101、比較例2に係るシールリング201、及び比較例3に係るシールリング301をサンプルとするオイル漏れ評価を行った。オイル漏れ評価として、各サンプルを2本用い、オイルの温度を80℃とし、油圧を0.5MPaとするオイル漏れ量(ml/min)を測定した。オイル漏れ量の測定における各サンプルの回転数は1000~6000rpmとした。
[Oil leak evaluation]
Oil leakage evaluation was performed using the seal ring 1 according to the example, the seal ring 101 according to the comparative example 1, the seal ring 201 according to the comparative example 2, and the seal ring 301 according to the comparative example 3 as samples. For oil leakage evaluation, two samples were used, and the amount of oil leakage (ml / min) was measured at an oil temperature of 80 ° C. and a hydraulic pressure of 0.5 MPa. The number of rotations of each sample in the measurement of the amount of oil leakage was 1000 to 6000 rpm.
 図10は、オイル漏れ量の測定結果を示すグラフである。図10の横軸は回転数(rpm)を示し、縦軸はオイル漏れ量の相対値を示している。 FIG. 10 is a graph showing measurement results of the oil leakage amount. The horizontal axis in FIG. 10 indicates the rotational speed (rpm), and the vertical axis indicates the relative value of the oil leakage amount.
 実施例に係るシールリング1、比較例1に係るシールリング101、比較例2に係るシールリング201、及び比較例3に係るシールリング301のいずれにおいてもオイル漏れ量が少なく、オイル漏れが抑制されていた。その中でも、実施例に係るシールリング1及び比較例2に係るシールリング201では、回転数によらず、ほとんどオイル漏れが発生しておらず、より効果的にオイル漏れが抑制されていることがわかった。また、比較例3に係るシールリング301では、低回転数において良好な結果が得られているものの、特に高回転数において実施例に係るシールリング1には適わなかった。 In any of the seal ring 1 according to the example, the seal ring 101 according to the comparative example 1, the seal ring 201 according to the comparative example 2, and the seal ring 301 according to the comparative example 3, the amount of oil leakage is small and the oil leakage is suppressed. It was. Among them, in the seal ring 1 according to the example and the seal ring 201 according to the comparative example 2, oil leakage hardly occurs regardless of the rotation speed, and the oil leakage is more effectively suppressed. all right. In addition, the seal ring 301 according to the comparative example 3 did not suit the seal ring 1 according to the example particularly at a high rotational speed, although good results were obtained at a low rotational speed.
[まとめ]
 実施例に係るシールリング1では、フリクションロス評価及びオイル漏れ評価のいずれについても比較例1に係るシールリング101よりも更に良好な結果が得られた。
 また、実施例に係るシールリング1では、オイル漏れ評価について比較例2に係るシールリング201と遜色のない結果が得られ、フリクションロス評価について比較例2に係るシールリング201よりも更に良好な結果が得られた。
 更に、実施例に係るシールリング1では、フリクションロス評価について比較例3に係るシールリング301と遜色のない結果が得られ、オイル漏れ評価について比較例3に係るシールリング301よりも更に良好な結果が得られた。
[Summary]
In the seal ring 1 according to the example, better results than the seal ring 101 according to the comparative example 1 were obtained in both the friction loss evaluation and the oil leakage evaluation.
Further, in the seal ring 1 according to the example, a result comparable to the seal ring 201 according to the comparative example 2 is obtained for the oil leakage evaluation, and the better result than the seal ring 201 according to the comparative example 2 is obtained regarding the friction loss evaluation. was gotten.
Furthermore, in the seal ring 1 according to the example, a result comparable to the seal ring 301 according to the comparative example 3 is obtained for the friction loss evaluation, and the oil leakage evaluation is further better than the seal ring 301 according to the comparative example 3. was gotten.
 上記のとおり、本発明の実施例に係るシールリング1のみがフリクションロス評価及びオイル漏れ評価の両方において特に良好な結果が得られた。これにより、シールリング1では、フリクションロスの低減とオイル漏れの抑制とを両立可能であることがわかる。 As described above, only the seal ring 1 according to the example of the present invention obtained particularly good results in both the friction loss evaluation and the oil leakage evaluation. Thereby, it can be seen that the seal ring 1 can achieve both reduction of friction loss and suppression of oil leakage.
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。 As mentioned above, although embodiment of this invention was described, this invention is not limited only to the above-mentioned embodiment, Of course, in the range which does not deviate from the summary of this invention, a various change can be added.
 一例として、本発明において、シールリングのポケットの形状は、適宜変更可能である。例えば、各ポケットの形状は、シールリングの周方向において対称であることは必須ではなく、シールリングの周方向において非対称であってもよい。 As an example, in the present invention, the shape of the pocket of the seal ring can be changed as appropriate. For example, the shape of each pocket need not be symmetric in the circumferential direction of the seal ring, and may be asymmetric in the circumferential direction of the seal ring.
 また、本発明において、シールリングの2つの側面に同様の構成のポケットが設けられている構成は必須ではない。例えば、ポケットはシールリングの2つの側面のうち一方のみに設けられていてもよい。また、シールリングの2つの側面にそれぞれ異なる構成のポケットが設けられていてもよい。更に、ポケットの数がシールリングの2つの側面で相互に異なっていてもよい。 In the present invention, a configuration in which pockets having the same configuration are provided on the two side surfaces of the seal ring is not essential. For example, the pocket may be provided on only one of the two side surfaces of the seal ring. Further, pockets having different configurations may be provided on the two side surfaces of the seal ring. Furthermore, the number of pockets may be different from each other on the two sides of the seal ring.
1…シールリング
1a…外周面
1b…内周面
1c…側面
10…ポケット
11…底部
12a,12b…斜面部
13a,13b…端部
14a,14b…接続部
15…隔壁部
20…柱部
30…合口部
DESCRIPTION OF SYMBOLS 1 ... Seal ring 1a ... Outer peripheral surface 1b ... Inner peripheral surface 1c ... Side surface 10 ... Pocket 11 ... Bottom part 12a, 12b ... Slope part 13a, 13b ... End part 14a, 14b ... Connection part 15 ... Partition part 20 ... Column part 30 ... Abutment

Claims (8)

  1.  外周面と、前記外周面に対向する内周面と、前記外周面と前記内周面とを接続する側面と、前記側面に間隔をあけて設けられ、前記外周面側が閉塞され、前記内周面側が開放された複数のポケットと、を具備し、
     前記複数のポケットはそれぞれ、
     周方向の両端部にそれぞれ設けられ、前記側面から延びる、先端曲率半径が60mm以下の前記側面側に突出する凸状のR面である第1及び第2端部と、
     前記第1及び第2端部から周方向の中央部に向けてそれぞれ延びる第1及び第2斜面部と、を有する
     シールリング。
    An outer peripheral surface, an inner peripheral surface opposed to the outer peripheral surface, a side surface connecting the outer peripheral surface and the inner peripheral surface, and a space between the side surfaces, the outer peripheral surface side being blocked, and the inner peripheral surface A plurality of pockets open on the surface side;
    Each of the plurality of pockets is
    First and second ends that are convex R surfaces that are provided at both ends in the circumferential direction and extend from the side surface and protrude toward the side surface with a tip radius of curvature of 60 mm or less;
    A seal ring having first and second slope portions extending from the first and second end portions toward a circumferential central portion, respectively.
  2.  請求項1に記載のシールリングであって、
     前記複数のポケットはそれぞれ、前記第1端部と前記第2端部との間の中央領域に設けられた底部を更に有し、
     前記第1及び第2斜面部は、前記第1及び第2端部から前記底部にそれぞれ延びる
     シールリング。
    The seal ring according to claim 1,
    Each of the plurality of pockets further comprises a bottom portion provided in a central region between the first end and the second end;
    The first and second slope portions extend from the first and second end portions to the bottom portion, respectively.
  3.  請求項2に記載のシールリングであって、
     前記底部は、前記側面に平行な方向に延びている
     シールリング。
    The seal ring according to claim 2,
    The bottom portion extends in a direction parallel to the side surface.
  4.  請求項2又は3に記載のシールリングであって、
     前記ポケットは、前記底部と前記第1及び第2斜面部とをそれぞれ接続し、前記側面側から窪む凹状のR面である第1及び第2接続部を更に有する
     シールリング。
    The seal ring according to claim 2 or 3,
    The said pocket further has the 1st and 2nd connection part which is the concave R surface which connects the said bottom part and the said 1st and 2nd slope part, respectively, and is depressed from the said side surface side.
  5.  請求項1に記載のシールリングであって、
     前記第1斜面部と前記第2斜面部とが前記中央部において接続されている
     シールリング。
    The seal ring according to claim 1,
    A seal ring in which the first slope portion and the second slope portion are connected at the center portion.
  6.  請求項1から5のいずれか1項に記載のシールリングであって、
     前記内周面における前記複数のポケットの周方向の寸法の合計は、前記内周面の全周の50%以上98%以下である
     シールリング。
    The seal ring according to any one of claims 1 to 5,
    The sum of the circumferential dimensions of the plurality of pockets on the inner peripheral surface is not less than 50% and not more than 98% of the entire periphery of the inner peripheral surface.
  7.  請求項1から6のいずれか1項のいずれか1項に記載のシールリングであって、
     前記第1及び第2斜面部は平面である
     シールリング。
    The seal ring according to any one of claims 1 to 6,
    The first and second slope portions are flat seal rings.
  8.  請求項7に記載のシールリングであって、
     前記第1及び第2斜面部は、前記側面に対して1°以上20°以下の角度を成す
     シールリング。
    The seal ring according to claim 7,
    The first and second slope portions form an angle of 1 ° or more and 20 ° or less with respect to the side surface.
PCT/JP2016/059882 2015-03-31 2016-03-28 Seal ring WO2016158848A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016565525A JP6360566B2 (en) 2015-03-31 2016-03-28 Seal ring
CN201690000630.1U CN207687346U (en) 2015-03-31 2016-03-28 Sealing ring

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015071116 2015-03-31
JP2015-071116 2015-03-31
JP2015180975 2015-09-14
JP2015-180975 2015-09-14

Publications (1)

Publication Number Publication Date
WO2016158848A1 true WO2016158848A1 (en) 2016-10-06

Family

ID=57007235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059882 WO2016158848A1 (en) 2015-03-31 2016-03-28 Seal ring

Country Status (3)

Country Link
JP (2) JP6360566B2 (en)
CN (1) CN207687346U (en)
WO (1) WO2016158848A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058771A1 (en) * 2018-09-18 2020-03-26 株式会社リケン Seal ring

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018106484A1 (en) 2018-03-20 2019-09-26 Rolls-Royce Deutschland Ltd & Co Kg Geared fan engine and spline assembly
EP3998418B1 (en) * 2019-07-12 2024-01-03 NOK Corporation Seal ring
KR102360995B1 (en) * 2020-03-11 2022-02-09 평화오일씰공업 주식회사 Oil seal ring
KR102361233B1 (en) * 2020-03-11 2022-02-10 평화오일씰공업 주식회사 Oil seal ring

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094657A1 (en) * 2011-12-23 2013-06-27 株式会社リケン Seal ring
WO2015002143A1 (en) * 2013-07-03 2015-01-08 Ntn株式会社 Seal ring

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2560805Y2 (en) * 1992-01-31 1998-01-26 エヌティエヌ株式会社 Seal ring
JP2007170629A (en) * 2005-12-26 2007-07-05 Nok Corp Sealing ring and sealing ring manufacturing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013094657A1 (en) * 2011-12-23 2013-06-27 株式会社リケン Seal ring
WO2015002143A1 (en) * 2013-07-03 2015-01-08 Ntn株式会社 Seal ring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020058771A1 (en) * 2018-09-18 2020-03-26 株式会社リケン Seal ring

Also Published As

Publication number Publication date
JPWO2016158848A1 (en) 2017-04-27
JP6360566B2 (en) 2018-07-18
CN207687346U (en) 2018-08-03
JP2017166703A (en) 2017-09-21

Similar Documents

Publication Publication Date Title
WO2016158848A1 (en) Seal ring
JP6186413B2 (en) Seal ring
JP7043414B2 (en) Sliding parts
JP6476121B2 (en) Seal ring
JP6424949B2 (en) Seal ring
JPWO2016158848A6 (en) Seal ring
JP6245406B2 (en) Seal ring
US7891670B2 (en) Multi-directional shaft seal
AU2014354094B2 (en) Sliding component
WO2013094657A1 (en) Seal ring
WO2011162283A1 (en) Seal ring
WO2017065069A1 (en) Seal ring
JP6687162B2 (en) Seal ring
EP3051188B1 (en) Sliding component
CN108884940B (en) Sealing ring
WO2020058771A1 (en) Seal ring
JP2017172606A (en) Seal ring

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016565525

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772729

Country of ref document: EP

Kind code of ref document: A1