WO2016158768A1 - Clustering device and machine learning device - Google Patents

Clustering device and machine learning device Download PDF

Info

Publication number
WO2016158768A1
WO2016158768A1 PCT/JP2016/059662 JP2016059662W WO2016158768A1 WO 2016158768 A1 WO2016158768 A1 WO 2016158768A1 JP 2016059662 W JP2016059662 W JP 2016059662W WO 2016158768 A1 WO2016158768 A1 WO 2016158768A1
Authority
WO
WIPO (PCT)
Prior art keywords
transfer
learning
domain
unit
data
Prior art date
Application number
PCT/JP2016/059662
Other languages
French (fr)
Japanese (ja)
Inventor
健太 西行
藤吉 弘亘
Original Assignee
株式会社メガチップス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015069975A external-priority patent/JP6516531B2/en
Priority claimed from JP2015070128A external-priority patent/JP6543066B2/en
Application filed by 株式会社メガチップス filed Critical 株式会社メガチップス
Publication of WO2016158768A1 publication Critical patent/WO2016158768A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Definitions

  • the present invention relates to a clustering device and a machine learning device used in machine learning using transfer learning.
  • Machine learning is used for the process of detecting a person from image data and the process of analyzing measurement data by a sensor.
  • identification feature data generated by learning the person's characteristics is used.
  • the machine learning device learns the characteristics of a person using a plurality of images (a plurality of learning samples) taken of the person, and generates identification feature data that reflects the learning result.
  • the person detection device detects a person from an image photographed by the surveillance camera using the identification feature data generated by the machine learning device.
  • the appearance of the person photographed by the monitoring camera is different from the appearance of the person in the learning sample. That is, the characteristics of the person photographed by the monitoring camera are different from the characteristics of the person included in the learning sample. Therefore, when the feature data for identification generated from the learning sample is used to detect the person from the image generated by the monitoring camera, the detection accuracy of the person is lowered. In order to improve the detection accuracy of a person, a huge number of learning samples must be prepared according to the installation environment of the camera, which increases the cost.
  • Transfer learning is a technique in which a sample obtained from an environment different from the learning sample collection environment is learned in advance, and the characteristics of the detection target obtained by the prior learning are applied (transferred) to the learning result of the learning sample. Since transfer learning can suppress the number of learning samples, the cost for generating identification feature data can be reduced.
  • Non-Patent Document 1 discloses a random forest that introduces transfer learning as a machine learning algorithm that introduces transfer learning.
  • Patent Document 1 discloses an attribute classifier that applies transfer learning to a neural network. When the attribute of the first class can be used as the attribute of the second class, the attribute classifier according to Patent Document 1 transfers the attribute of the first class to the second class.
  • a set of samples learned in advance is called a prior domain.
  • the target to which the learning result of the prior domain is transferred is called a target domain.
  • the target domain is a set of learning samples generated in accordance with the installation environment of the monitoring camera.
  • the prior domain is a set of learning samples generated in an environment different from the installation environment of the monitoring camera.
  • Negative transfer is a phenomenon in which the accuracy of learning decreases when a prior domain learned in advance for transfer learning includes data that is significantly different from data included in the target domain. For this reason, it is desirable to identify a prior domain effective for transfer learning and use only the identified prior domain for machine learning before executing machine learning with transfer learning introduced.
  • Patent Document 1 does not disclose a method for generating a prior domain and a method for determining whether or not data used for transfer learning is included in the prior domain.
  • Non-Patent Document 1 discloses a method for determining whether a prior domain is effective for transfer learning. Specifically, the method according to Non-Patent Document 1 includes a classifier (prior classifier) learned using only a prior domain, and a classifier (transfer classification) that performs transfer learning using the prior domain and the target domain. Sample data). If the discrimination result by the prior discriminator for the sample data is the same as the discrimination result by the transfer discriminator, this prior domain is determined to be effective for transfer learning.
  • Non-Patent Document 1 a prior domain determined to be ineffective for transfer learning is not used for machine learning that introduces transfer learning. If the number of prior domains to be introduced for transfer learning is one and it is determined that this prior domain is not effective for transfer learning, machine learning incorporating transfer learning cannot be executed.
  • Non-Patent Document 1 if the discrimination result for the sample data by the prior discriminator is not the same as the discrimination result by the transfer discriminator, the prior domain is not determined to be effective for transfer learning. It is difficult to create such a prior domain in advance.
  • Non-Patent Document 2 discloses a method for determining whether a prior domain is effective for transfer learning. Specifically, the method according to Non-Patent Document 2 requires the reliability of the prior domain based on three criteria.
  • the first criterion is that sample data is sent to a discriminator (pre discriminator) trained using only a prior domain and a discriminator (transfer discriminator) that performs transfer learning using a prior domain and a target domain. input. If the discrimination result by the prior discriminator for the sample data is the same as the discrimination result by the transfer discriminator, this prior domain is determined to be effective for transfer learning.
  • the second criterion is the number of data included in the target domain.
  • the third criterion is the accuracy output from the transfer discriminator. If the accuracy output from the transfer discriminator is greater than a preset reference value of accuracy, it is determined that the transfer discriminator has high reliability and is effective for transfer learning.
  • the method according to Non-Patent Document 2 is a method that is premised on entrusting the judgment to an expert when the reliability is low, and the accuracy of judging the effectiveness of the prior domain is not high. That is, there is a high possibility that the method according to Non-Patent Document 2 erroneously determines that a prior domain that is not effective for transfer learning is effective. For this reason, a technique for accurately determining the effectiveness of a prior domain is desired.
  • the present invention is a clustering apparatus.
  • the clustering apparatus includes a clustering feature extraction unit, a classification unit, and a prior domain determination unit.
  • the clustering feature extraction unit generates a plurality of transfer candidate feature data by extracting features from each of a plurality of transfer candidate data used for machine learning using transfer learning.
  • the classifying unit classifies each transfer candidate feature data into a plurality of groups including the first group and the second group based on the features of each of the plurality of transfer candidate feature data generated by the clustering feature extraction unit.
  • the prior domain determination unit determines the first group as a prior domain used for machine learning when the number of transfer candidate feature data classified into the first group by the classification unit is equal to or less than a predetermined classification continuation reference value. If the number of candidate feature data is larger than the classification continuation reference value, it is determined to further classify the transfer candidate feature data classified into the first group.
  • the present invention is a machine learning device that learns a detection target by executing machine learning using transfer learning.
  • the machine learning device includes a clustering device and a prior domain evaluation device.
  • the clustering device classifies a plurality of transfer candidate data used for machine learning and generates a prior domain used for machine learning.
  • the prior domain evaluation apparatus evaluates whether the prior domain generated by the clustering apparatus is effective for machine learning.
  • the clustering apparatus includes a clustering feature extraction unit, a classification unit, and a prior domain determination unit.
  • the clustering feature extraction unit extracts features from each of the plurality of transfer candidate data to generate a plurality of transfer candidate feature data.
  • the classifying unit classifies each transfer candidate feature data into a plurality of groups including the first group and the second group based on the features of each of the plurality of transfer candidate feature data generated by the clustering feature extraction unit.
  • the prior domain determination unit determines the first group as a prior domain used for machine learning when the number of transfer candidate feature data classified into the first group by the classification unit is equal to or less than a predetermined classification continuation reference value.
  • the prior domain determination unit determines to further classify the transfer candidate feature data classified into the first group when the number of transfer candidate feature data is larger than the classification continuation reference value.
  • the prior domain evaluation device includes a trial transfer learning unit and a determination unit.
  • the trial transfer learning unit is configured for learning that includes transfer candidate feature data included in the first group and each of the features to be detected under a predetermined condition.
  • Machine learning is performed using the target domain including data to generate an evaluation classifier for evaluating the prior domain.
  • the determination unit determines whether the first group is effective for machine learning based on the trial transfer identification unit generated by the trial transfer learning unit.
  • the present invention is a machine learning device.
  • the machine learning device includes an acquisition unit, a trial transfer learning unit, and a determination unit.
  • the acquisition unit includes a target domain including a plurality of learning data each having a detection target characteristic under a predetermined condition, and a pre-domain including learning candidate data having a detection target characteristic under a condition different from the predetermined condition; To get.
  • the trial transfer learning unit performs machine learning in which transfer learning is introduced using the target domain and the prior domain acquired by the acquisition unit, and generates a decision tree used for detection of the detection target.
  • the determination unit determines whether or not the prior domain acquired by the acquisition unit is effective for transfer learning using all the leaf nodes constituting the decision tree generated by the trial transfer learning unit.
  • an object of the present invention is to provide a technique for efficiently creating a plurality of pre-domains from a plurality of data collected for creating the pre-domain.
  • an object of the present invention is to provide a technique that can accurately determine whether a prior domain is effective for transfer learning.
  • FIG. 3 is a diagram illustrating an example of distribution of transfer candidate feature data generated from transfer candidate data illustrated in FIG. 1 and learning feature data generated from learning data. It is a figure which shows the range of the prior domain produced
  • FIG. It is a flowchart of the prior domain production
  • FIG. 14 It is a figure which shows an example of the image contained in each of the target domain shown in FIG. 14, and a prior domain. It is a flowchart which shows operation
  • FIG. 1 is a functional block diagram showing the configuration of the machine learning device 100 according to the first embodiment of the present invention.
  • the machine learning device 100 illustrated in FIG. 1 executes machine learning using transfer learning using a plurality of transfer candidate data 141 stored in the storage device 140 and the target domain 150A stored in the storage device 150. .
  • the machine learning device 100 generates transfer identification data 35 for identifying a detection target as a result of the above machine learning.
  • the detection target is a person.
  • the transfer identification data 35 generated by the machine learning device 100 is used by a person detection device (not shown) to detect a person from an image taken by a camera.
  • the machine learning apparatus 100 uses a random forest in which transfer learning is introduced as a learning algorithm for generating the transfer identification data 35. Therefore, the transfer identification data 35 is a data group composed of a plurality of decision trees.
  • Storage device 150 stores target domain 150A.
  • the target domain 150A is a group of a plurality of images having characteristics of a detection target (person) under a predetermined condition.
  • the target domain 150A includes learning data 151, 151,.
  • the learning data 151 is, for example, an image obtained by photographing a person with a depression angle of 0 °.
  • the target domain 150 ⁇ / b> A is used when the selection learning device 30 executes the machine learning in which the transfer learning is introduced to generate the transfer identification data 35.
  • the storage device 140 stores transfer candidate data 141, 141,.
  • the plurality of transfer candidate data 141 are images obtained by photographing a person, and are collected by searching on the Internet for images obtained by photographing a person. Are classified based on the characteristics of the transfer candidate data 141, 141,... To generate the prior domains 145, 145,. .. Of the prior domains 145, 145,... Are used for generating the transfer identification data 35.
  • the machine learning device 100 includes a clustering device 10, a prior domain evaluation device 20, and a selection learning device 30.
  • the clustering apparatus 10 classifies the transfer candidate data 141 based on the characteristics of the transfer candidate data 141 and generates the prior domain 145.
  • the prior domain evaluation device 20 evaluates whether each of the prior domains 145 generated by the clustering device 10 is effective for transfer learning.
  • the prior domain evaluation device 20 outputs evaluation result data 253A indicating the evaluation result of each prior domain 145 to the selection learning device 30.
  • the selection learning device 30 selects the prior domain 145 determined to be effective for transfer learning by the prior domain evaluation device 20 from the prior domains 145 generated by the clustering device 10 based on the evaluation result data 253A.
  • the selection learning device 30 executes machine learning in which transfer learning is introduced using the selected prior domain 145 and the target domain 150A stored in the storage device 150. As a result, transfer identification data 35 is generated.
  • FIG. 2 is a functional block diagram showing a configuration of the clustering apparatus 10 shown in FIG. As shown in FIG. 2, the clustering device 10 includes a feature extraction unit 11, a classification unit 12, a variance calculation unit 13, and a prior domain determination unit 14.
  • the clustering device 10 inputs a plurality of transfer candidate data 141 from the storage device 140.
  • the feature extraction unit 11 extracts HOG (Histograms of Oriented Gradients) feature amounts from each of a plurality of transfer candidate data 141 input to the clustering apparatus 10, and a plurality of transfer candidate features corresponding to each of the transfer candidate data 141.
  • Data 142 is generated.
  • HOG feature value is simply referred to as “feature value”.
  • the classification unit 12 inputs a plurality of transfer candidate feature data 142 from the feature extraction unit 11.
  • the classification unit 12 classifies the transfer candidate feature data 142 into a plurality of groups based on the feature amounts included in each of the plurality of input transfer candidate feature data 142.
  • An algorithm called Density Forest is used to classify the transfer candidate feature data 142.
  • the classification unit 12 classifies the plurality of transfer candidate feature data 142 while creating one classification tree. Each node constituting the classification tree corresponds to each group.
  • the distribution calculation unit 13 calculates the covariance of each node.
  • the covariance of each node is calculated from the feature amount of the transfer candidate feature data 142 belonging to each node.
  • the covariance of each node is used when classifying the transfer candidate feature data 142 belonging to each node.
  • the covariance is used to determine whether or not to determine a node constituting the classification tree as a prior domain.
  • the prior domain determination unit 14 determines whether or not the nodes constituting the classification tree satisfy the conditions for the prior domain. When the number of transfer candidate feature data 142 belonging to the determination target node is equal to or less than a preset classification continuation reference value, the prior domain determination unit 14 determines the determination target node as the prior domain.
  • the prior domain determination unit 14 compares the covariance of the determination target node with a preset distribution reference value. When the covariance of the determination target node is equal to or less than the distribution reference value, the prior domain determination unit 14 determines the determination target node as the prior domain. On the other hand, when the variance of the determination target node is larger than the distribution reference value, the prior domain determination unit 14 determines to further classify the transfer candidate feature data 142 belonging to the determination target node.
  • FIG. 3 is a functional block diagram showing a configuration of the prior domain evaluation apparatus 20 shown in FIG. As illustrated in FIG. 3, the prior domain evaluation device 20 includes a temporary storage unit 21, a feature extraction unit 22, a trial transfer learning unit 23, a comparative learning unit 24, and a determination unit 25.
  • the prior domain evaluation device 20 inputs the target domain 150A stored in the storage device 140, and inputs the prior domain 145 generated by the clustering device 10.
  • the temporary storage unit 21 temporarily stores the prior domain 145 input from the clustering device 10.
  • the feature extraction unit 22 extracts feature amounts from each of the learning data 151, 151,... Included in the target domain 150A input to the prior domain evaluation apparatus 20, and a plurality of features corresponding to each learning data 151 are extracted. Learning feature data 152 is generated. The learning feature data 152 generated by the feature extraction unit 22 constitutes the target domain 150B.
  • the trial transfer learning unit 23 acquires the target domain 150B from the feature extraction unit 22.
  • the trial transfer learning unit 23 acquires, from the temporary storage unit 21, one of the previous domains 145 (the prior domain of interest) as an evaluation target.
  • the trial transfer learning unit 23 performs trial transfer learning using the acquired target domain 150A and the prior domain of interest.
  • Trial transfer learning is machine learning for evaluating the effectiveness of transfer learning of a prior domain of interest.
  • a random forest with transfer learning is used as an algorithm for trial transfer learning.
  • a trial transfer identification unit 231 corresponding to the target prior domain is generated.
  • the entity of the trial transfer identification unit 231 is a data group including a plurality of decision trees.
  • the trial transfer identification unit 231 is generated for each prior domain 145.
  • the comparative learning unit 24 performs comparative machine learning (comparative learning) using only the prior domain of interest.
  • a random forest into which transfer learning is not introduced is used as an algorithm for comparative learning.
  • a comparison identifying unit 241 corresponding to the target prior domain is generated.
  • the entity of the comparison and identification unit 241 is a data group constituting a plurality of decision trees.
  • the comparison identification unit 241 is generated for each prior domain 145.
  • the determination unit 25 determines whether or not the prior domain of interest is effective for transfer learning using the identification results obtained by the trial transfer identification unit 231 and the comparison identification unit 241.
  • the determination unit 25 includes a competitive value calculation unit 251, a reliability calculation unit 252, and a transfer evaluation unit 253.
  • the competitive value calculation unit 251 compares the identification result of the sample data by the comparison identification unit 241 with the identification result of the sample data by the trial transfer identification unit 231.
  • the sample data includes at least one of learning feature data 152 included in the target domain 150B and transfer candidate feature data 142 included in the target prior domain.
  • the competition value calculation unit 251 calculates the competition value 251A based on the comparison result.
  • the competitive value 251A indicates the degree to which the identification result by the comparison identifying unit 241 and the identification result by the trial transfer identifying unit 231 do not match.
  • the reliability calculation unit 252 calculates the reliability 252A using the identification result of the sample data by the trial transfer identification unit 231.
  • the reliability 252A indicates the reliability of the identification result obtained by the trial transfer identification unit 231.
  • the transfer evaluation unit 253 evaluates whether the prior domain of interest is effective for transfer learning based on the competitive value 251A and the reliability 252A.
  • the transfer evaluation unit 253 outputs evaluation result data 253A indicating each evaluation of the prior domain 145 to the selection learning device 30.
  • FIG. 4 is a functional block diagram showing the configuration of the selective learning device 30 shown in FIG. As illustrated in FIG. 4, the selection learning device 30 includes a prior domain selection unit 31, a feature extraction unit 32, and a transfer learning unit 33.
  • the prior domain selection unit 31 inputs the prior domain 145 from the clustering apparatus 10 and inputs the evaluation result data 253A from the prior domain evaluation apparatus 20. Based on the input evaluation result data 253A, the prior domain selection unit 31 selects a prior domain 145 that has been evaluated as effective for transfer learning from the prior domains 145 generated by the clustering apparatus 10.
  • the feature extraction unit 32 acquires the target domain 150A stored in the storage device 150. Similar to the feature extraction unit 22, the feature extraction unit 32 extracts a feature amount from each of the learning data 151, 151,... Included in the acquired target domain 150 ⁇ / b> A and generates the target domain 150 ⁇ / b> B.
  • the transfer learning unit 33 uses the target domain 150B and the pre-domain 145 selected by the pre-domain selection unit 31 to execute machine learning that introduces transfer learning.
  • the learning algorithm used by the transfer learning unit 33 is the same as the learning algorithm used by the trial transfer learning unit 23.
  • the transfer learning unit 33 generates transfer identification data 35 as a result of machine learning in which transfer learning is introduced.
  • FIG. 5 is a flowchart showing an outline of the operation of the machine learning device 100.
  • the clustering device 10 executes a pre-domain generation process for generating the pre-domain 145 from the transfer candidate data 141, 141,... Stored in the storage device 140 ( Step S11).
  • the number of prior domains 145 generated by the clustering device 10 is not particularly limited. Each of the prior domains 145 has transfer candidate feature data 142 generated by extracting feature amounts from the transfer candidate data 141.
  • the pre-domain evaluation device 20 executes a pre-domain evaluation process for determining whether each of the pre-domains 145 generated by the clustering device 10 is effective for transfer learning (Step S12).
  • the prior domain evaluation device 20 generates evaluation result data 253A as a result of step S12.
  • the evaluation result data 253A is data specifying the prior domain 145 determined to be effective for transfer learning among the prior domains 145 generated by the clustering apparatus 10.
  • the prior domain selection unit 31 selects the prior domain 145 determined to be effective for transfer learning from the prior domains 145 generated by the clustering device 10 based on the evaluation result data 253A ( Step S13).
  • the feature extraction unit 32 acquires the target domain 150A from the storage device 150.
  • the feature extraction unit 32 extracts feature amounts from each of the learning data 151 included in the acquired target domain 150A, and generates a plurality of learning feature data 152 (step S14).
  • the process executed by the feature extraction unit 32 is the same as the process executed by the feature extraction unit 22 shown in FIG. That is, the feature extraction unit 32 generates a target domain 150 ⁇ / b> B configured by a plurality of learning feature data 152.
  • the transfer learning unit 33 performs machine learning using transfer learning using the pre-domain 145 selected by the pre-domain selection unit 31 and the target domain 150B generated by the feature extraction unit 32 (step S15). .
  • the transfer learning unit 33 uses the same learning algorithm (random forest that introduced transfer learning) as the learning algorithm used by the trial transfer learning unit 23. Thereby, transfer identification data 35 which is a data group indicating a plurality of decision trees is generated.
  • step S11 the reason why the advance domain generation process (step S11) and the advance domain evaluation process (step S12) are executed will be described.
  • FIG. 6 is a diagram illustrating an example of the distribution of the target domain 150B and the transfer candidate feature data 142.
  • FIG. 6 shows an example in which the number of dimensions of the feature quantity of the transfer candidate feature data 142 and the learning feature data 152 is 2, and the distribution of the transfer candidate feature data 142 and the learning feature data constituting the target domain 150B. 152 distribution.
  • the target domain 150B includes learning feature data 152 generated by extracting feature amounts from the learning data 151.
  • the plurality of learning data 151 are images including a person photographed at a depression angle of 0 °, and thus have similar characteristics. Therefore, in the two-dimensional space shown in FIG. 6, the variation in the learning feature data 152 is small, and the target domain 150B is limited to a relatively narrow region.
  • the distribution of the transfer candidate feature data 142 has a larger variation than the feature data 152 for learning. Since the transfer candidate data 141 is collected by searching for a detection target (person) on the Internet, there are various shooting conditions for the person in the transfer candidate data 141. Transfer candidate feature data 142 is generated by extracting feature values from transfer candidate data 141. Therefore, the transfer candidate feature data 142 spreads over the entire two-dimensional space shown in FIG. 6, and its position is random.
  • a target domain and a prior domain are prepared in advance.
  • the target domain is a group of images having the characteristics of the detection target under a predetermined condition.
  • the detection target is a person
  • the predetermined condition is that the detection target (person) is included in an image captured at a depression angle of 0 °.
  • the prior domain is a group of images having the characteristics of the detection target under conditions different from the predetermined conditions described above.
  • the prior domain is generated by classifying collected images according to a predetermined rule. For example, when the shooting conditions of each collected image are known, the collected images can be classified according to the shooting conditions. Thereby, the prior domain becomes a set of images having features that are common to each other or similar to each other.
  • the machine learning device executes machine learning in which transfer learning is introduced, learning of a prior domain is performed first, and then learning of a target domain is performed. Then, the machine learning device identifies an image having a feature that is common or similar to the feature of the person photographed at the depression angle of 0 °, and transfers the feature of the identified image to the learning result of the image included in the target domain 150B. Let Thereby, the number of images constituting the target domain can be reduced, and the identification accuracy of the person can be improved.
  • the transfer candidate feature data 142 separated from the region of the target domain 150B is used for transfer learning. become. In this case, it is very likely that a negative transition occurs.
  • the pre-domain 145 is generated by combining the metastasis candidate feature data 142 having features that are common or similar to each other, and the pre-domain 145 thus generated introduces transfer learning. What is necessary is just to judge whether it is effective for machine learning.
  • the pre-domain generation process (step S11) is executed to generate a pre-domain 145 that is a set of transfer candidate feature data 142 having features that are common to each other or similar to each other.
  • FIG. 7 is a diagram showing an example in which the transfer candidate feature data 142 shown in FIG. 6 is classified.
  • the clustering apparatus 10 generates the prior domains 145A to 145G by classifying the transfer candidate feature data 142 shown in FIG.
  • the prior domains 145A to 145G do not overlap with the target domain 150B. Therefore, the prior domains 145A and 145F are not effective for machine learning in which transfer learning is introduced.
  • the prior domain 145D overlaps with the target domain 150B, but the overlapping range is smaller than other prior domains. Therefore, the pre-domain 145D may cause a negative transfer and is not effective for transfer learning.
  • the prior domain generation process may generate a negative domain that may cause negative transfer (not effective for transfer learning).
  • the prior domain evaluation process is performed in order to identify a prior domain effective for transfer learning among the prior domains 145A to 145G generated by the prior domain generation process (step S11).
  • FIG. 8 is a flowchart of the advance domain generation process (step S11). Referring to FIG. 8, the operation of the clustering device 10 that generates the prior domain 145 from the transfer candidate data 141, 141,... Stored in the storage device 140 will be described in detail.
  • the clustering device 10 acquires all the transfer candidate data 141 stored in the storage device 140.
  • the feature extraction unit 11 extracts HOG feature amounts from each of all acquired transfer candidate data 141 (step S101). Thereby, a plurality of transfer candidate feature data 142 corresponding to each of all transfer candidate data 141 is generated.
  • the feature extraction unit 11 sets conditions for extracting the HOG feature amount from the transfer candidate data 141 as follows, for example.
  • the color channel of the transfer candidate data 141 is set to gray scale.
  • the size of the transfer candidate data 141 is set to 60 pixels vertically and 30 pixels horizontally.
  • the cell, block, and the number of gradient directions are set as parameters when extracting the HOG feature value.
  • a cell is a unit area for calculating a gradient direction of luminance.
  • the block is a unit area for creating a histogram in the gradient direction of luminance.
  • the number of gradient directions is the number of divisions in the range of 0 ° to 180 °.
  • the size of one cell is set to 5 pixels vertically and 5 pixels horizontally.
  • the size of one block is set to 3 pixels vertically and 3 pixels horizontally.
  • the number of gradient directions is set to 9.
  • the gradient direction of each cell is divided into 9 directions every 20 ° and set to any one of the 9 directions.
  • the number of dimensions of the transfer candidate feature data 142 is 3240.
  • FIG. 9 is a diagram illustrating an initial structure of the classification tree 35 generated by the classification unit 12.
  • the classification unit 12 uses a density forest as an algorithm for classifying the transfer candidate feature data 142. When a density forest is used, a plurality of classification trees are normally generated, but the classification unit 12 generates only one classification tree.
  • the classification tree 35 is formed in the process in which the transfer candidate feature data 142 is classified by the classification unit 12. Among the nodes constituting the classification tree 35, a node satisfying a predetermined condition is determined as a prior domain.
  • the classification unit 12 creates a root node 35R of the classification tree 35 (step S102).
  • the nodes 35A and 35B shown in FIG. 9 are not generated when step S102 is executed.
  • the classification unit 12 inputs all the transfer candidate feature data 142 generated by the feature extraction unit 11 to the root node 35R (step S103).
  • the number of transfer candidate feature data 142 input to the root node 35R is 30000.
  • the prior domain determination unit 14 determines whether or not all nodes have been selected as classification target nodes in the classification tree 35 (step S104). Since the root node 35R is not selected as a classification target (No in step S104), the prior domain determination unit 14 selects the root node 35R as a classification target (step S105).
  • the prior domain determination unit 14 executes step S106 to determine whether or not the root node 35R satisfies the condition as the prior domain. Specifically, the prior domain determination unit 14 acquires the number of transfer candidate feature data 142 belonging to the root node 35R. The prior domain determination unit 14 determines whether or not the number of acquired transfer candidate feature data 142 is larger than a preset classification continuation reference value (step S106).
  • the classification continuation reference value is set to 9270, for example.
  • the number (30000) of transfer candidate feature data 142 belonging to the root node 35R is larger than the classification continuation reference value (9270) (Yes in step S106). In this case, since the number of transfer candidate feature data 142 belonging to the root node 35R is too large, the root node 35R cannot be used as the prior domain 145.
  • the prior domain determination unit 14 determines that one of the conditions for classifying the transfer candidate feature data 142 belonging to the root node 35R is satisfied.
  • the classification continuation reference value is larger than the number of dimensions of the feature amount extracted by the feature extraction unit 11.
  • the classification continuation reference value is set to 9720, which is three times the number of dimensions (3240) of the transfer candidate feature data 142.
  • the clustering apparatus 10 executes steps S107 and S108, and determines whether or not the condition for classifying the transfer candidate feature data 142 belonging to the root node 35R is satisfied based on the covariance of the root node 35R. To do.
  • the prior domain determination unit 14 instructs the classification unit 12 to calculate the covariance 13A (see FIG. 2) of the node to be classified (root node 35R).
  • the classification unit 12 outputs the transfer candidate feature data 142 belonging to the node to be classified (root node 35R) to the variance calculation unit 13 in accordance with an instruction from the prior domain determination unit 14.
  • the variance calculation unit 13 uses the transfer candidate feature data 142 output from the classification unit 12 to calculate the feature value covariance 13A of the transfer candidate feature data 142 belonging to the node to be classified.
  • the variance calculation unit 13 outputs the calculated covariance 13A to the prior domain determination unit 14.
  • the prior domain determination unit 14 determines whether or not the covariance 13A (covariance of the root node 35R) calculated by the distribution calculation unit 13 is larger than a preset distribution reference value (step S108). It is assumed that the covariance 13A is larger than the dispersion reference value (Yes in step S108).
  • the root node 35R includes all the transfer candidate feature data 142, and the variation of all the transfer candidate feature data 142 is very large.
  • the prior domain determination unit 14 determines that the transfer candidate feature data 142 belonging to the root node 35R can be further classified.
  • the prior domain determination unit 14 instructs the classification unit 12 to classify the transfer candidate feature data 142 belonging to the root node 35R.
  • Classification of transfer candidate feature data 142 The classification unit 12 generates nodes 35A and 35B as child nodes of the root node 35R in order to classify the transfer candidate feature data 142 belonging to the root node 35R in accordance with an instruction from the prior domain determination unit 14 (step S109). ).
  • the classification unit 12 classifies the transfer candidate feature data 142 belonging to the root node 35R as one of the nodes 35A and 35B generated in step S109 (step S110). Specifically, the classification destination node of the transfer candidate feature data 142 is determined based on the objective function I shown in the following formula (1).
  • S is a parent node (root node 35R).
  • S L is the left node (node 35A) of the two child nodes
  • S R is the right node (node 35B) of the two child nodes.
  • ⁇ (S) is the covariance of the parent node
  • ⁇ (S L ) is the covariance of the left child node
  • ⁇ (S R ) is the covariance of the right child node.
  • the classification unit 12 provisionally classifies the transfer candidate feature data 142 belonging to the root node 35R in order to calculate the objective function I shown in Expression (1). Specifically, the classification unit 12 sets a provisional branch condition for the transfer candidate feature data 142 as follows.
  • the number of dimensions of the transfer candidate feature data 142 is 3240. That is, the transfer candidate feature data 142 has 3240 feature amounts.
  • the classification unit 12 randomly selects a k-th (0 ⁇ k ⁇ 3239) feature amount from among 3240 feature amounts, and randomly sets a threshold value for the k-th feature amount. Thereby, a provisional branch condition is set.
  • the classification unit 12 provisionally classifies the transfer candidate feature data 142 belonging to the root node 35R into the node 35A or 35B based on the set branch condition.
  • the variance calculation unit 13 calculates the covariance of the transfer candidate feature data 142 classified into the node 35A and the covariance of the transfer candidate feature data 142 provisionally classified into the node 35B.
  • the covariance of the root node 35R has already been calculated in step S105.
  • the classification unit 12 calculates the objective function I of the root node 35R using these three covariances.
  • the classification unit 12 sets a plurality of branch conditions in the root node 35R.
  • the classification unit 12 provisionally classifies the transfer candidate feature data 142 based on each branch condition in order to calculate the objective function I corresponding to each branch condition.
  • the objective function I in each branch condition is calculated.
  • the classification unit 12 specifies the maximum objective function I among the plurality of calculated objective functions I.
  • the classification unit 12 determines to classify the transfer candidate feature data 142 belonging to the root node 35R under the branch condition corresponding to the maximum objective function I. Thereby, the transfer candidate feature data 142 belonging to the root node 35R is classified into one of the nodes 35A and 35B.
  • FIG. 10 is a diagram showing the classification tree 35 after the transfer candidate feature data 142 belonging to the root node 35R is classified. At the time when the classification of the transfer candidate feature data 142 into the nodes 35A and 35B is completed, the child nodes (nodes 35C and 35D) of the node 35B are not generated.
  • step S110 for classifying the transfer candidate feature data 142 belonging to the root node 35R into two child nodes ends.
  • the prior domain determination unit 14 determines whether all the nodes have been selected as the classification target (step S104). Since there are unselected nodes 35A and 35B (No in Step S104), the prior domain determination unit 14 selects the next node to be determined in the previous order (Step S105). Specifically, the classification unit 12 selects the node 35A.
  • the number of transfer candidate feature data 142 belonging to the node 35A is 7000. Since the number of transfer candidate feature data 142 belonging to the node 35A is equal to or less than the classification continuation reference value (9270) (No in step S106), the prior domain determination unit 14 determines the node 35A as the prior domain 145 (step S111). ). That is, the prior domain determination unit 14 determines not to further classify the transfer candidate feature data 142 belonging to the node 35A, and sets the node 35A as a leaf node.
  • the prior domain determination unit 14 selects the node 35B as a determination target (step S105).
  • the number of transfer candidate feature data 142 belonging to the node 35B is 23000, which is larger than the classification continuation reference value (9270) (Yes in step S106). Further, it is assumed that the covariance of the node 35B is larger than the dispersion reference value (Yes in step S108). In this case, the prior domain determination unit 14 determines to further classify the transfer candidate feature data 142 belonging to the node 35B.
  • the classification unit 12 generates child nodes (nodes 35C and 35D) of the node 35B in response to the determination by the prior domain determination unit 14 for the node 35B (step S109).
  • the classification unit 12 classifies the transfer candidate feature data 142 belonging to the node 35B into one of the nodes 35C and 35D, similarly to the classification of the transfer candidate feature data 142 in the root node 35R (step S110).
  • FIG. 11 is a diagram showing the classification tree 35 after the advance domain generation process (step S11) is completed. As shown in FIG. 11, as a result of classifying the transfer candidate feature data 142 belonging to the node 35B into the nodes 35C and 35D, 15000 transfer candidate feature data 142 are classified into the node 35C, and 8000 transfer candidate feature data. 142 is classified as node 35D.
  • the number of transfer candidate feature data 142 belonging to the node 35C is larger than the classification continuation reference value (9270) (Yes in step S106). Further, it is assumed that the covariance of the node 35C is larger than the dispersion reference value (Yes in step S108). In this case, the prior domain determination unit 14 determines to further classify the transfer candidate feature data 142 belonging to the node 35C. The classification of the transfer candidate feature data 142 belonging to the node 35C will be described later.
  • the prior domain determining unit 14 determines the node 35D as the prior domain.
  • the classification unit 12 generates nodes 35E and 35F as child nodes of the node 35C (step S109), and classifies the transfer candidate feature data 142 belonging to the node 35C into nodes 35E and 35F (step S110).
  • the number of transfer candidate feature data 142 belonging to the node 35E is 500, which is below the classification continuation reference value (No in step S106). For this reason, the prior domain determination unit 14 determines the node 35E as the prior domain (step S111).
  • the number of transfer candidate feature data 142 belonging to the node 35F is 14500, which is larger than the classification continuation reference value (Yes in step S106).
  • the covariance of the node 35F is smaller than the dispersion reference value (No in step S108).
  • the prior domain determination unit 14 determines that the variation in the feature amount distribution of the transfer candidate feature data 142 belonging to the node 35F is very small.
  • the transfer candidate feature data 142 belonging to the node 35F may be generated from the same image.
  • the prior domain determination unit 14 determines that the transfer candidate feature data 142 included in the node 35F cannot be further classified, and determines the node 35F as a prior domain (step S111). Thereby, since all the nodes constituting the classification tree 35 are selected as the determination targets (Yes in Step S104), the clustering apparatus 10 proceeds to Step S112.
  • the prior domain determination unit 14 checks the number of transfer candidate feature data 142 included in each node determined as the prior domain. If there is a node having the number of transfer candidate feature data 142 equal to or less than a preset discard reference value, the prior domain determination unit 14 excludes this node from the prior domain (step S112). For example, the discard reference value is set to the number of dimensions (3240) of the transfer candidate feature data 142. Specifically, the node 35E determined as the prior domain is excluded from the prior domain because the number of transfer candidate feature data 142 is 500.
  • the accuracy of the generated transfer identification data 35 may be reduced.
  • the classification continuation reference value is larger than the number of dimensions of the feature amount extracted by the feature extraction unit 11.
  • the discard reference value is set to 3240, which is the number of dimensions of the transfer candidate feature data 142.
  • the transfer candidate feature data 142 included in the previous domain may not have the detection target feature. high.
  • Transfer candidate feature data 142 generated from transfer candidate data 141 collected in error has different features from transfer candidate feature data 142 having human characteristics, and is not effective for transfer learning.
  • the search condition is an image obtained by photographing a person, it is assumed that a ratio of an image obtained by photographing an object other than a person in the set of transfer candidate data 141 is very small.
  • the prior domain determination unit 14 excludes a node having the number of transfer candidate feature data 142 equal to or less than the discard reference value from the prior domain.
  • the nodes 35A, 35D, and 35F are determined as the pre-domain 145 in the classification tree 35 shown in FIG.
  • the clustering apparatus 10 outputs the determined three prior domains 145 to the prior domain evaluation apparatus 20 and the selection learning apparatus 30.
  • the clustering apparatus 10 extracts features from each of the transfer candidate data 141 to generate a plurality of transfer candidate feature data 142, and in the process of creating the classification tree 35, the plurality of transfer candidate feature data 142. Are classified into nodes of the classification tree 35.
  • the clustering apparatus 10 To decide. As a result, it is possible to generate a prior domain including transfer candidate feature data 142 having features that are similar or common to each other.
  • FIG. 12 is a flowchart of the prior domain evaluation process (step S12) shown in FIG.
  • the prior domain evaluation device 20 starts the process shown in step S12, the trial transfer identification unit 231 is not generated in the trial transfer learning unit 23, and the comparison identification unit 241 is generated in the comparison learning unit 24. Not.
  • the prior domain evaluation device 20 acquires the prior domain 145 generated by the clustering device 10. Specifically, the prior domain evaluation apparatus 20 acquires three prior domains 145 (nodes 35A, 35D, and 35F illustrated in FIG. 11) generated in the process of creating the classification tree 35 illustrated in FIG. The prior domain evaluation device 20 stores the acquired prior domain 145 in the temporary storage unit 21 (step S201).
  • pre-domain 35A pre-domain 35D
  • pre-domain 35F pre-domain 35F
  • the feature extraction unit 22 acquires the target domain 150A stored in the storage device 150.
  • the feature extraction unit 22 generates a plurality of pieces of learning feature data 152 corresponding to each of the learning data 151 by extracting feature amounts from each of the learning data 151 included in the acquired target domain 150A (step S1). S202).
  • a target domain 150B composed of a plurality of learning feature data 152 is generated.
  • the feature extraction unit 22 outputs the generated target domain 150B to the trial transfer learning unit 23.
  • the feature extraction unit 22 extracts feature amounts under the same conditions as when the feature extraction unit 11 (see FIG. 2) generates the transfer candidate feature data 142 from the transfer candidate data 141. Therefore, the number of dimensions of the learning feature data 152 is 3240, which is the same as the number of dimensions of the transfer candidate feature data 142. The reason for this will be described later.
  • the pre-domain evaluation device 20 selects one pre-domain to be evaluated from the pre-domain 145 stored in the temporary storage unit 21 as to whether it is effective for transfer learning (Step S203). Specifically, the advance domain 35A is first selected from the advance domains 35A, 35D, and 35F stored in the temporary storage unit 21.
  • the comparative learning unit 24 inputs the prior domain 35A selected in step S203.
  • the comparative learning unit 24 learns the input prior domain 35A (step S204).
  • the learning algorithm of the comparative learning unit 24 is a random forest in which transfer learning is not introduced.
  • the comparison learning unit 24 generates a comparison identification unit 241 that reflects the learning result of the prior domain 35A by executing step S204.
  • the comparison identification unit 241 is a data group indicating the structure of a plurality of decision trees.
  • the trial transfer learning unit 23 acquires the target domain 150B from the feature extraction unit 22, and acquires the prior domain 35A from the temporary storage unit 21.
  • the trial transfer learning unit 23 performs machine learning using transfer learning using the input target domain 150B and the prior domain 35A (step S205).
  • the learning algorithm of the trial transfer learning unit 23 is a random forest in which transfer learning is introduced.
  • the trial transfer learning unit 23 generates a trial transfer identification unit 231 reflecting the learning results of the target domain 150A and the prior domain 35A by executing step S205.
  • the trial transfer identification unit 231 is a data group indicating the configuration of a plurality of decision trees. Since the learning algorithm and domain used in the trial transfer learning unit 23 are different from those of the comparison learning unit 24, the structure of the trial transfer identification unit 231 is different from the structure of the comparison identification unit 241.
  • Prior domain evaluation (step S206) ⁇ The determination unit 25 uses the trial transfer identification unit 231 generated by the trial transfer learning unit 23 and the comparison identification unit 241 generated by the comparison learning unit 24 so that the prior domain 35A to be evaluated is effective for transfer learning. Whether or not (step S206).
  • the determination unit 25 calculates two types of parameters, a competitive value 251A and a reliability 252A, in order to determine the effectiveness of transfer learning.
  • the determination unit 25 uses the identification result by the trial transfer identification unit 231 of the data included in the sample group.
  • the sample group is a set of the learning feature data 152 included in the target domain 150B and the transfer candidate feature data 142 included in the prior domain 35A to be evaluated.
  • data included in the sample group is referred to as “sample data”.
  • the determination unit 25 uses the identification result by the comparison identification unit 241 in addition to the identification result by the trial transfer identification unit 231.
  • the competition value calculation unit 251 calculates the competition value 251A based on the comparison result between the label of each image generated by the trial transfer identification unit 231 and the label of each image generated by the comparison identification unit 241.
  • the trial transfer identification unit 231 inputs any one of the sample data included in the sample group.
  • the trial transfer identification unit 231 performs a person identification process on the sample data, and generates a label 23A indicating the identification result.
  • the value of the label 23A is 0 or 1, for example. When the label 23A is 0, the label 23A indicates that the sample data does not include a human feature. When the label 23A is 1, the label 23A indicates that the sample data includes a human feature.
  • the trial transfer identification unit 231 outputs the generated label 23A to the conflict value calculation unit 251.
  • the trial transfer identification unit 231 calculates not only the label 23A but also the accuracy 23B indicating the probability of the label 23A as the identification result of the sample data.
  • the accuracy 23B is used for calculation of the reliability 252A described later.
  • the comparison identification unit 241 inputs the same data as the sample data input to the trial transfer identification unit 231.
  • the comparison and identification unit 241 performs a person identification process on the sample data, and generates a label 24A indicating the identification result.
  • the value of the label 24A is 0 or 1 like the label 23A. When the label 24A is 0, the label 24A indicates that the sample data does not include a human feature. When the label 24A is 1, the label 24A indicates that the sample data includes a human feature.
  • the comparison identification unit 241 outputs the generated label 24A to the conflict value calculation unit 251.
  • the competitive value calculation unit 251 calculates the competitive value 251A using the labels 23A and 24A generated from the sample data.
  • the competition value 251A is calculated by the following equation (2).
  • E c1 indicates the competition value 251A.
  • X indicates a sample group.
  • x represents an element (sample data) constituting the sample group.
  • M (x) indicates a label 24A generated from the element x.
  • T (x) indicates a label 23A generated from the element x.
  • [M (x) ⁇ T (x)] indicates the number of sample data in which the label 24A and the label 23A do not match.
  • the competition value 251A calculated by the equation (2) indicates the probability that the label 23A and the label 24A generated from the same sample data do not match.
  • the competitive value 251A is a numerical value of 0 or more and 1 or less. The closer the competition value 251A is to 0, the higher the competition value 251A is, the higher the effectiveness of the prior domain 35A in transfer learning. On the other hand, the closer the competitive value 251A approaches 1. It shows that the effectiveness of the prior domain 35A in transfer learning is low.
  • the conflict value 251A approaches 1. The reason will be described below.
  • the comparative learning unit 24 learns only the prior domain 35A. For this reason, only the learning result of the prior domain 35 ⁇ / b> A is reflected in the comparison and identification unit 241.
  • the trial transfer identification unit 231 executes machine learning in which transfer learning is introduced using the target domain 150A and the prior domain 35A.
  • the transfer candidate feature data 142 included in the previous domain 35A is learned.
  • the result is not reflected in the learning result of the learning feature data 152. That is, it can be considered that the trial transfer identification unit 231 and the comparison identification unit 241 are generated by learning different domains. In this case, the case where the identification results of the trial transfer identification unit 231 and the comparison identification unit 241 do not match increases, and the competition value 251A increases. Therefore, it is possible to determine whether or not the prior domain 35A is effective for transfer learning based on the competitive value 251A.
  • the reliability calculation unit 252 calculates the reliability 252A based on the label 23A and the accuracy 23B of each image generated by the trial transfer identification unit 231. In the calculation of the reliability 252A, the identification result of the sample data by the comparison / identification unit 241 is not used.
  • the trial transfer identification unit 231 generates the label 23A indicating the identification result of the person with respect to the sample data and the accuracy 23B indicating the likelihood of the label 23A.
  • the accuracy 23B is a value of 0 or more and 1 or less, and the closer the accuracy 23B is to 1, the smaller the possibility that the label 23A is erroneous.
  • the reliability calculation unit 252 inputs the label 23A and the accuracy 23B of each sample data from the trial transfer identification unit 231.
  • the reliability calculation unit 252 calculates the reliability 252A by calculating the following equation (3) using the label 23A and the accuracy 23B of each input sample data.
  • E c2 indicates the reliability 252A.
  • x represents an element (sample data) constituting the sample group X, similarly to the above formula (2).
  • is the number of elements of the sample group X.
  • P T (x) indicates the accuracy 23B of the element x.
  • P T (x) is the average of the probabilities of the classes set in the leaf nodes that the sample data has reached in each decision tree when the sample data is input to each decision tree constituting the trial transfer identification unit 231. .
  • T (x) indicates the label 23A of the element x.
  • the reliability 252A is a value obtained by dividing the total value of the accuracy 23B calculated when the label 23A matches the label y by the number of elements of the sample group X.
  • the reliability 252A is a value of 0 or more and 1 or less, and the closer to 1, the higher the effectiveness of the prior domain 35A in transfer learning.
  • the trial transfer learning unit 23 learns the transfer candidate feature data 142 by trial transfer learning. The result is transferred to the learning result of the learning feature data 152.
  • the trial transfer identification unit 231 reflects the learning results of the learning feature data 152 and the transfer candidate feature data 142 of the prior domain 35A.
  • the label 23A is 1 and the accuracy 23B is considered to approach 1. Therefore, when the learning feature data 152 is similar to the transfer candidate feature data 142 of the previous domain 35A (when the previous domain 35A is effective in transfer learning), the reliability 252A approaches 1.
  • the transfer evaluation unit 253 inputs the competitive value 251A and the reliability 252A.
  • the transfer evaluation unit 253 evaluates the effectiveness of the prior domain 35A in transfer learning based on the input competitive value 251A and reliability 252A.
  • the transfer evaluation unit 253 calculates a comprehensive evaluation value using the following equation (4).
  • Equation (4) E is a comprehensive evaluation value obtained from the competitive value 251A and the reliability 252A. As the effectiveness of pre-domain 35A in transfer learning decreases, the competitive value 251A increases. On the other hand, the reliability 252A decreases conversely. In order to match the tendency of the reliability 252A with the tendency of the competitive value 251A, a value obtained by subtracting the reliability 252A from 1 is used to calculate the comprehensive evaluation value.
  • the comprehensive evaluation value calculated by the above equation (4) is a value between 0 and 1 and approaches 0 as the effectiveness of transfer learning increases. If the calculated overall evaluation value is smaller than a preset threshold value, the transfer evaluation unit 253 determines that the prior domain 35A is effective in transfer learning.
  • step S206 After the evaluation of effectiveness in transfer learning of the prior domain 35A (step S206) is completed, the trial transfer identification unit 231 and the comparison identification unit 241 used for evaluating the effectiveness of the prior domain 35A are deleted (step S207). . This is because the trial transfer identifying unit 231 and the comparison identifying unit 241 corresponding to the prior domain 35A are not used in the evaluation of the effectiveness of other prior domains in transfer learning.
  • the prior domain evaluation device 20 determines whether all the prior domains stored in the temporary storage unit 21 have been selected (step S208). When all the pre-domains have not been selected (No in step S208), the pre-domain evaluation apparatus 20 returns to step S203 in order to evaluate the effectiveness in transfer learning of the non-selected pre-domains. Thereby, the effectiveness of the prior domains 35D and 35F in transfer learning is evaluated.
  • the transfer evaluation unit 253 creates evaluation result data 253A indicating the evaluation results of the prior domains 35A, 35D, and 35F.
  • the number of prior domains determined to be effective for transfer learning is not particularly limited.
  • the transfer evaluation unit 253 outputs the created evaluation result data 253A to the selection learning device 30.
  • the prior domain selection unit 31 selects the prior domains 35 ⁇ / b> A, 35 ⁇ / b> D, and 35 ⁇ / b> F determined to be effective for transfer learning from the prior domains 145 generated by the clustering device 10 based on the evaluation result data 253 ⁇ / b> A. Is selected (step S13).
  • the feature extraction unit 32 (see FIG. 4) acquires the target domain 150A from the storage device 150, and extracts a feature amount from each of the learning data 151 included in the acquired target domain 150A (step S14). Thereby, the target domain 150B including the learning feature data 152 is generated.
  • the feature extraction unit 32 extracts feature amounts under the same conditions as when the feature extraction unit 22 (see FIG. 2) extracts feature amounts from the learning data 151.
  • the transfer learning unit 33 executes machine learning using transfer learning using the selected prior domains 35A, 35D, and 35F and the target domain 150B generated by the feature extraction unit 32 (step S5). Thereby, transfer identification data 35 which is a data group indicating a plurality of decision trees is generated.
  • the machine learning device 100 extracts the features from the transfer candidate data 141, 141,... Stored in the storage device 140, and generates the transfer candidate feature data 142, 142,.
  • the machine learning device 100 classifies the transfer candidate feature data 142, 142,... Into a plurality of groups based on the extracted feature values.
  • the machine learning device 100 determines whether to determine the classified group as a prior domain based on the number or covariance of the transfer candidate feature data 142 in the classified group. Thereby, the prior domain used for transfer learning can be efficiently generated from transfer candidate data 141.
  • the clustering device 10 may classify the transfer candidate feature data 142 using another classification algorithm such as a k-means method.
  • the number of child nodes created in step S109 may be three or more.
  • the clustering apparatus 10 may classify the transfer candidate feature data 142 using two or more classification algorithms. For example, the clustering apparatus 10 determines the classification algorithm based on whether or not the number of transfer candidate feature data 142 belonging to the classification target node is larger than a reference value (algorithm change reference value) for determining the change of the classification algorithm. To decide.
  • a reference value algorithm change reference value
  • FIG. 13 is a diagram showing an example of the classification tree 35 generated using the k-means method and the density forest. For example, assume that the algorithm change reference value is set to 25000.
  • the number of transfer candidate feature data 142 belonging to the root node 35R is 30000, which is larger than the algorithm change reference value.
  • the clustering apparatus 10 generates nodes 36A, 36B, and 36C as child nodes of the root node 35R. Then, the clustering device 10 classifies the transfer candidate feature data 142 belonging to the root node 35R into the nodes 36A, 36B, and 36C using the k-means method.
  • the numbers of transfer candidate feature data 142 belonging to the nodes 36A and 36C are 5000 and 8000, which are equal to or less than the classification continuation reference value (9270).
  • the clustering apparatus 10 determines the nodes 36A and 36C as the prior domains.
  • the number of transfer candidate feature data 142 belonging to the node 36B is 17000, which is larger than the classification continuation reference value. In this case, the clustering apparatus 10 further classifies the transfer candidate feature data 142 belonging to the node 36B.
  • the clustering apparatus 10 uses the density forest to classify the transfer candidate feature data 142 belonging to the node 36B. To decide.
  • the clustering device 10 generates nodes 36D and 36E as child nodes of the node 36B, and classifies the transfer candidate feature data 142 belonging to the node 36B.
  • the classification of the transfer candidate feature data 142 can be performed at high speed by switching the classification algorithm according to the number of transfer candidate feature data 142 belonging to the node to be classified.
  • the selection learning device 30 may generate the transfer identification data 35 by using the target domain 150B generated by the feature extraction unit 22 included in the prior domain evaluation device 20 (see FIG. 3). Further, the prior domain evaluation apparatus 20 may generate the transfer candidate feature data 142 by extracting the feature amount from the transfer candidate data 141 corresponding to each of the prior domains 145. Alternatively, the selection learning device 30 may generate the transfer candidate feature data 142 by extracting the feature amount from the transfer candidate data 141 corresponding to the prior domain determined to be effective for transfer learning.
  • the transfer candidate feature data 142 used in each of the clustering device 10, the prior domain evaluation device 20, and the selection learning device 30 is generated by extracting feature amounts from the transfer candidate data 141 under the same conditions. It is desirable.
  • the learning feature data 152 is preferably generated by extracting feature amounts from the learning data 151 under the same conditions. The reason will be described below.
  • the transfer candidate feature data 142 generated by the clustering device 10 is the distribution in the transfer candidate feature data 142 in the prior domain evaluation device 20.
  • the positional relationship between the target domain and the prior domain differs between the transfer candidate feature data 142 generated by the clustering apparatus 10 and the transfer candidate feature data 142 of the prior domain evaluation apparatus 20.
  • the accuracy of determining whether the prior domain generated by the clustering device 10 is valid for transfer learning is reduced.
  • the distribution of the transfer candidate feature data 142 in the prior domain 145 determined to be valid by the prior domain evaluation device 20 changes. .
  • the learning accuracy of machine learning using transfer learning in the selection learning device 30 may be reduced, and the person identification accuracy using the transfer identification data 35 may be reduced.
  • the trial transfer learning unit 23, the comparison learning unit 24, and the transfer learning unit 33 use a random forest as a learning algorithm has been described as an example, but the present invention is not limited to this.
  • the trial transfer learning unit 23, the comparison learning unit 24, and the transfer learning unit 33 may use various algorithms such as ID3 (Iterative Dichotomiser 3), boosting, and neural network. Regardless of which learning algorithm is used, the trial transfer learning unit 23 and the transfer learning unit 33 execute machine learning that introduces transfer learning, and the comparative learning unit 24 executes machine learning that does not introduce transfer learning. do it.
  • the transfer evaluation unit 253 has described the example in which the comprehensive evaluation value is calculated by multiplying the competitive value 251A and the reliability 252A.
  • the present invention is not limited to this.
  • the transfer evaluation unit 253 may calculate the total of the competitive value 251A and the reliability 252A as a comprehensive evaluation value. That is, the transfer evaluation unit 253 may calculate a comprehensive evaluation value using the competitive value 251A and the reliability 252A.
  • the machine learning device 100 extracts the HOG feature amount from each of the transfer candidate data 141 and the learning data 151 has been described as an example, but the present invention is not limited to this.
  • the machine learning device 100 may extract a Haar-like feature value when learning a human face.
  • the machine learning device 100 may appropriately change the feature amount extracted from the transfer candidate data 141 and the learning data 151 according to the learning target.
  • the learning target may be measurement data measured by a sensor.
  • the type of sensor is not particularly limited, and various measurement data such as an acceleration sensor and an optical sensor can be used.
  • machine learning may be performed in order to use measurement data of these sensors in order to automatically drive a car.
  • FIG. 14 is a functional block diagram showing the configuration of the machine learning device 500 according to the second embodiment of the present invention.
  • a machine learning device 500 illustrated in FIG. 14 performs machine learning in which transfer learning is introduced, and generates transfer identification data 80.
  • the machine learning device 500 uses the target domain 61 and a prior domain determined to be effective for transfer learning among the prior domains 62 to 64 when executing machine learning with transfer learning introduced.
  • the transfer identification data 80 is used by a person detection device (not shown) to detect a person from a captured image generated by a camera.
  • the machine learning device 500 generates transfer identification data 80 for detecting a person from an image photographed at a depression angle of 0 °.
  • the machine learning device 500 executes machine learning (trial learning) for evaluating whether or not each of the prior domains 62 to 64 is effective for transfer learning before the transfer identification data 80 is generated.
  • Trial learning is machine learning in which transfer learning is introduced, and is different in part from machine learning for generating transfer identification data 80.
  • a prior domain used for machine learning in which transfer learning is introduced is selected one by one from the prior domains 62 to 64.
  • the machine learning device 500 evaluates the effectiveness of transfer learning for each of the prior domains 62 to 64 based on the result of trial learning.
  • the machine learning device 500 generates the transfer identification data 80 by executing machine learning using transfer learning using the target domain 61 and the prior domain determined to be effective for transfer learning.
  • the target domain 61 is a group of a plurality of images having the characteristics of a detection target (person) under a predetermined condition.
  • the prior domains 62 to 64 are a group of a plurality of images having the characteristics of the detection target under a condition different from the predetermined condition.
  • the prior domains 62 to 64 are generated by classifying a plurality of images according to a predetermined rule. Details of the target domain 61 and the prior domains 62 to 64 will be described later.
  • the machine learning device 500 includes an acquisition unit 51, a trial transfer learning unit 52, a comparison learning unit 53, a determination unit 54, and a selective transfer learning unit 55.
  • the trial transfer learning unit 52 corresponds to the trial transfer learning unit 23 (see FIG. 3) in the first embodiment.
  • the comparative learning unit 53 corresponds to the comparative learning unit 24 (see FIG. 3) in the first embodiment.
  • the determination unit 54 corresponds to the determination unit 25 (see FIG. 3) in the first embodiment.
  • the selective transfer learning unit 55 corresponds to the selective learning device 30 (see FIG. 1).
  • the acquisition unit 51 acquires the target domain 61 and the prior domains 62 to 64 stored in the storage device 60.
  • the acquisition unit 51 does not acquire the prior domains 62 to 64 at once, but selects one of the prior domains 62 to 64 as one machine domain subject to machine learning in the trial transfer learning unit 52 and the comparative learning unit 53. get.
  • the trial transfer learning unit 52 inputs the target domain 61 acquired by the acquisition unit 51 and one prior domain (attention prior domain) acquired by the acquisition unit 51.
  • the trial transfer learning unit 52 performs machine learning (trial learning) for evaluating the effectiveness of transfer learning using the input target domain 61 and the prior domain of interest, and as a result, the trial transfer identification unit 521. Is generated.
  • the trial transfer identification unit 521 is generated for each prior domain.
  • the trial transfer learning unit 52 uses a random forest in which transfer learning is introduced as a learning algorithm. Specifically, the algorithm used by the trial transfer learning unit 52 is called transfer forest, and weights data included in the prior domain using covariates during transfer learning. Therefore, the entity of the trial transfer identification unit 521 is a data group including a plurality of decision trees.
  • the comparison learning unit 53 performs machine learning (comparison learning) for comparison using only the target prior domain, and as a result, generates a comparison identification unit 531.
  • the comparison identification unit 531 is generated for each prior domain.
  • the comparative learning unit 53 uses a random forest that does not introduce transfer learning as a learning algorithm. Accordingly, the entity of the comparison and identification unit 531 is a data group including a plurality of decision trees different from the plurality of decision trees that constitute the trial transfer identification unit 521.
  • the determination unit 54 uses the trial transfer identification unit 521 and the comparison identification unit 531 to determine whether the prior domain of interest is effective for transfer learning.
  • the determination unit 54 includes a competitive value calculation unit 541, a reliability calculation unit 542, a distribution dissimilarity calculation unit 543, a complexity calculation unit 544, and a transfer evaluation unit 545.
  • the competitive value calculation unit 541 compares the identification result of the sample data by the comparison identification unit 531 with the identification result of the sample data by the trial transfer identification unit 521.
  • the sample data is an image included in the target domain 61 and an image included in the target prior domain.
  • the competition value calculation unit 541 calculates the competition value 541A based on the comparison result.
  • the competitive value 541A indicates the degree to which the identification result by the comparison identifying unit 531 and the identification result by the trial transfer identifying unit 521 do not match.
  • the reliability calculation unit 542 calculates the reliability 542A using the identification result of the sample data generated by the trial transfer identification unit 521.
  • the reliability 542A indicates the reliability of the identification result obtained by the trial transfer identification unit 521.
  • the distribution dissimilarity calculation unit 543 calculates the distribution dissimilarity based on the classification result of the image included in the target domain 61 by the trial transfer identification unit 521 and the classification result of the image included in the target prior domain by the trial transfer identification unit 521. 543A is calculated.
  • the classification of images is performed by a decision tree constituting the trial transfer identification unit 521.
  • the distribution dissimilarity 543A indicates how much the classification result of the image included in the target prior domain differs from the classification result of the image included in the target domain 61.
  • the complexity calculator 544 calculates the complexity 544A based on the structure of the decision tree constituting the trial transfer identification unit 521.
  • the complexity 544A indicates the complexity of the decision tree constituting the trial transfer identification unit 521.
  • the transfer evaluation unit 545 evaluates whether the prior domain of interest is effective for transfer learning based on the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A. The transfer evaluation unit 545 notifies the selective transfer learning unit 55 of the evaluation result of the attention prior domain.
  • the selective transfer learning unit 55 specifies a prior domain to be used for transfer learning based on each evaluation result of the prior domains 62 to 64 notified from the transfer evaluation unit 545.
  • the selective transfer learning unit 55 acquires the target domain 61 and the prior domain used for transfer learning via the acquisition unit 51.
  • the selected transfer learning unit 55 performs machine learning using transfer learning using the acquired target domain 61 and the prior domain, and generates transfer identification data 80.
  • the selective transfer learning unit 55 uses a learning algorithm (random forest into which transfer learning is introduced) used by the trial transfer learning unit 52.
  • Target domain and advance domain Hereinafter, the target domain 61 and the prior domains 62 to 64 will be described. The reason for determining whether or not the prior domains 62 to 64 are effective for transfer learning before the machine learning device 500 generates the transfer identification data 80 will be described.
  • FIG. 15 is a diagram showing an example of images belonging to the target domain 61 or the prior domains 62 to 64 stored in the storage device 60 shown in FIG.
  • the person detection device (not shown) using the transfer identification data 80 detects a person from an image taken at a depression angle of 0 °.
  • the target domain 61 includes images 61A to 61C obtained by photographing a person with a depression angle of 0 °.
  • the target domain 61 includes not only the images 61A to 61C but also a plurality of other images obtained by photographing a person at a depression angle of 0 °.
  • the target domain 61 includes a plurality of learning data having the characteristics of the detection target under a predetermined condition.
  • the detection target is a person.
  • the predetermined condition is that the detection target (person) is included in an image captured at a depression angle of 0 °.
  • the target domain 61 is used to generate the transfer identification data 80 regardless of the determination result for each of the prior domains 62 to 64.
  • the pre-domains 62 to 64 each include a plurality of images obtained by photographing a person at a depression angle greater than 0 °.
  • the pre-domain 62 includes images 62A to 62C obtained by photographing a person at a depression angle of 20 °.
  • the prior domain 63 includes images 63A to 63C obtained by photographing a person at a depression angle of 30 °.
  • the prior domain 64 includes images 64A to 64C obtained by photographing a person at a depression angle of 50 °.
  • each of the prior domains 62 to 64 includes not only the image shown in FIG. 15 but also other images taken at the respective depression angles, but the display of other images is omitted in FIG.
  • the pre-domains 62 to 64 are generated by classifying a plurality of images obtained by photographing a person at a depression angle greater than 0 ° according to the depression angle at the time of shooting. That is, the prior domains 62 to 64 are a set of data having the characteristics of the detection target under conditions different from the predetermined conditions.
  • the images included in the prior domains 62 to 64 may have the same characteristics as the characteristics of the images 61A to 61C included in the target domain 61.
  • Transfer learning specifies an image having the same characteristics as the image included in the target domain 61 among the images included in the prior domain, and applies the characteristics of the specified image to learning of the image included in the target domain 61. .
  • a certain pre-domain is a set of images having features that are significantly different from the features of the images included in the target domain 61
  • a negative transition occurs. This is because the characteristics of the image included in the prior domain are reflected in the transfer identification data 80 by transfer learning.
  • the machine learning device 500 evaluates whether or not the prior domains 62 to 64 are effective for the transfer learning in order to exclude the prior domains that are likely to cause the negative transfer from the generation of the transfer identification data 80.
  • FIG. 16 is a flowchart showing the operation of the machine learning device 500.
  • the trial transfer identification unit 521 is not generated in the trial transfer learning unit 52
  • the comparison identification unit 531 is not generated in the comparison learning unit 53. .
  • the acquisition unit 51 acquires the target domain 61 from the storage device 60 (step S21).
  • the acquisition unit 51 acquires a prior domain in which the effectiveness of transfer learning has not been evaluated among the prior domains 62 to 64 stored in the storage device 60 (step S22). Specifically, the acquisition unit 51 first acquires the prior domain 62 among the prior domains 62 to 64.
  • the comparative learning unit 53 inputs the prior domain 62 acquired by the acquisition unit 51.
  • the comparative learning unit 53 learns the input prior domain 62 (step S23).
  • the learning algorithm of the comparative learning unit 53 is a random forest in which transfer learning is not introduced.
  • the comparison learning unit 53 generates a comparison identification unit 531 reflecting the learning result of the prior domain 62 by executing step S23.
  • the comparison and identification unit 531 includes a plurality of decision trees.
  • the trial transfer learning unit 52 inputs the target domain 61 and the prior domain 62 acquired by the acquisition unit 51.
  • the trial transfer learning unit 52 performs machine learning using transfer learning by using the input target domain 61 and the prior domain 62 (step S24).
  • the learning algorithm of the trial transfer learning unit 52 is a random forest in which transfer learning is introduced.
  • the trial transfer learning unit 52 generates a trial transfer identification unit 521 reflecting the learning results of the target domain 61 and the prior domain 62 by executing step S24.
  • the trial transfer identification unit 521 includes a plurality of decision trees. Since the learning algorithm and domain used in the trial transfer learning unit 52 are different from those of the comparative learning unit 53, the configuration of the trial transfer identification unit 521 is different from the configuration of the comparison identification unit 531.
  • steps S23 and S24 the example in which the images 61A to 61C included in the target domain 61 and the images 62A to 62C included in the prior domain 62 are learned as they are has been described.
  • a feature extraction image obtained by extracting a predetermined feature amount from these images is used for learning.
  • the extracted feature amount is, for example, a HOG (Histograms of Oriented Gradients) feature amount in which the direction of an edge in a unit region in the image is histogrammed, or a Haar-like feature amount indicating a light / dark difference in a plurality of regions in the image Etc. can be used.
  • step S25 The determination unit 54 uses the trial transfer identification unit 521 generated by the trial transfer learning unit 52 and the comparison identification unit 531 generated by the comparison learning unit 53 to determine whether the prior domain 62 is effective for transfer learning. Is determined (step S25).
  • ⁇ Determining unit 54 calculates four types of parameters of competitive value 541A, reliability 542A, distribution dissimilarity 543A, and complexity 544A in order to determine the effectiveness of transfer learning.
  • the determination unit 54 uses the identification result by the trial transfer identification unit 521 of each image included in the sample group.
  • the sample group is an image included in a set in which the target domain 61 and the prior domain 62 that is an evaluation target of transfer learning effectiveness are combined.
  • the determination unit 54 uses the identification result by the comparison and identification unit 531 of each image included in the sample group, in addition to the identification result by the trial transfer identification unit 521.
  • the competition value calculation unit 541 calculates the competition value 541A based on the comparison result between the label of each image generated by the trial transfer identification unit 521 and the label of each image generated by the comparison identification unit 531.
  • the trial transfer identification unit 521 inputs one of the images included in the sample group (sample image).
  • the trial transfer identification unit 521 performs a person identification process on the sample image, and generates a label 52A indicating the identification result of the sample image.
  • the value of the label 52A is, for example, 0 or 1. When the label 52A is 0, the label 52A indicates that the sample image does not include a person. When the label 52A is 1, the label 52A indicates that the sample image includes a person.
  • the trial transfer identification unit 521 outputs the generated label 52A to the conflict value calculation unit 541.
  • the trial transfer identification unit 521 calculates not only the label 52A but also the accuracy 52B indicating the probability of the label 52A as the sample image identification result.
  • the accuracy 52B is used for calculation of the reliability 542A described later.
  • the comparison identification unit 531 inputs the same image as the sample image input to the trial transfer identification unit 521.
  • the comparison and identification unit 531 performs a person identification process on the sample image, and generates a label 53A indicating the identification result of the sample image.
  • the value of the label 53A is 0 or 1 like the label 52A. When the label 53A is 0, the label 53A indicates that the sample image does not include a person. When the label 53A is 1, the label 53A indicates that the sample image includes a person.
  • the comparison and identification unit 531 outputs the generated label 53A to the conflict value calculation unit 541.
  • the competitive value calculation unit 541 calculates the competitive value 541A using the labels 52A and 53A generated from the sample images.
  • the competition value 541A is calculated by the equation (2) used in the calculation of the competition value 251A in the first embodiment.
  • E c1 indicates the competitive value 541A.
  • X indicates a sample group.
  • x indicates an element (sample image) constituting the sample group.
  • M (x) indicates a label 53A generated from the element x.
  • T (x) indicates a label 52A generated from the element x.
  • [M (x) ⁇ T (x)] indicates the number of sample images in which the label 53A and the label 52A do not match.
  • the competitive value 541A calculated by the equation (2) indicates the probability that the label 52A and the label 53A generated from the same sample image match.
  • the competition value 541A is a numerical value of 0 or more and 1 or less. The closer the competition value 541A is to 0, the higher the competition value 541A is, the higher the effectiveness of the prior domain 62 in transfer learning. On the other hand, the closer the competition value 541A approaches 1. It shows that the effectiveness of the prior domain 62 in transfer learning is low.
  • the pre-domain contention value 541A is assumed to increase as the depression angle increases.
  • FIG. 17 is a graph showing an example of a change in the competitive value 541A.
  • the graph shown in FIG. 17 is created as follows.
  • a plurality of pre-domains were created by setting a depression angle every 5 degrees from a depression angle of 5 ° to a depression angle of 80 ° and classifying the images based on the set depression angles. Similar to the above, the target domain 61 is a set of images obtained by photographing a person at a depression angle of 0 °. A trial transition identification unit 521 and a comparison identification unit 531 corresponding to each depression angle were generated, and a competitive value 541A corresponding to each depression angle was calculated by the above procedure.
  • the competitive value 541A tends to increase as the depression angle increases. Therefore, it can be seen that the competitive value 541A can be used as a parameter for determining the effectiveness of the prior domain in transfer learning. However, the competitive value 541A increases while vibrating up and down. This indicates that the error of the competition value 541A is relatively large.
  • the advance domain that causes negative transfer may be erroneously determined to be effective. For this reason, when determining the validity of the prior domain using the competitive value 541A, it is desirable to use other parameters (such as reliability 542A) together.
  • the reliability calculation unit 542 calculates the reliability 542A based on the label 52A and the accuracy 52B of each image generated by the trial transfer identification unit 521. In the calculation of the reliability 542A, the identification result of the sample image by the comparison and identification unit 531 is not used.
  • the trial transfer identification unit 521 generates the label 52A indicating the person identification result for the sample image and the accuracy 52B indicating the probability of the label 52A.
  • the accuracy 52B is a value not less than 0 and not more than 1. The closer the accuracy 52B is to 1, the smaller the possibility that the label 52A is erroneous.
  • the reliability calculation unit 542 inputs the label 52A and the accuracy 52B of each sample image from the trial transfer identification unit 32.
  • the reliability calculation unit 542 calculates the reliability 542A using the input label 52A and accuracy 52B of each sample image.
  • the reliability 542A is calculated by the equation (3) used for calculating the reliability 252A in the first embodiment.
  • Equation (3) When Equation (3) is used for calculation of the reliability 542A, in Equation (3), E c2 indicates the reliability 542A.
  • x represents an element (sample image) constituting the sample group X, similarly to the above formula (2).
  • is the number of elements of the sample group X.
  • P T (x) indicates the accuracy 52B of the element x.
  • T (x) indicates the label 52A of the element x.
  • the reliability 542A is a value of 0 or more and 1 or less, and the closer to 1, the higher the effectiveness of the prior domain 62 in transfer learning.
  • FIG. 18 is a graph showing an example of a change in the reliability 542A. Similarly to FIG. 17, by generating a trial transfer identification unit 32 from each of a plurality of prior domains whose depression angles are set every 5 °, and calculating the reliability 542A corresponding to each prior domain, FIG. The graph shown was created.
  • the reliability 542A decreases as the depression angle increases as an overall trend. That is, the reliability 542A approaches 1 as the effectiveness of the prior domain increases.
  • the trial transfer learning unit 52 obtains the learning result of the prior domain 62 by trial transfer learning. Transfer to the learning result of the target domain 61.
  • the trial transfer identification unit 32 reflects the learning results of both the target domain 61 and the prior domain 62.
  • the label 52A is 1 and the accuracy 52B is considered to approach 1. Therefore, when the data included in the prior domain 62 and the data included in the target domain 61 are similar (when the prior domain 62 is effective in transfer learning), the reliability 542A approaches 1.
  • the reliability 542A increases while vibrating up and down. This indicates that the error of the reliability 542A is relatively large, like the competitive value 541A. For this reason, when the validity of the prior domain with respect to transfer learning is determined using only the reliability 542A, the prior domain that causes negative transfer may be erroneously determined to be effective. For this reason, when determining the validity of the prior domain using the reliability 542A, it is desirable to use other parameters (distribution dissimilarity 543A and the like) together.
  • the distribution dissimilarity calculation unit 543 calculates the distribution dissimilarity 543A using only the sample image identification result by the trial transfer identification unit 32.
  • the distribution dissimilarity calculation unit 543 calculates the distribution dissimilarity based on the difference between the image distribution of the target domain 61 and the image distribution of the prior domain 62 that has reached the leaf node of each decision tree constituting the trial transfer identification unit 521. 543A is calculated.
  • the trial transfer identification unit 521 includes a plurality of decision trees because a random forest in which transfer learning is introduced is used as a learning algorithm. However, in order to simplify the description of the calculation of the distribution dissimilarity 543A, a case where the number of decision trees constituting the trial transfer identification unit 521 is one will be described first.
  • FIG. 19 is a schematic diagram illustrating an example of a decision tree 75 that constitutes the trial transfer identification unit 521.
  • FIG. 20 is a diagram illustrating an example of the histogram 81 created based on the image identification result of the target domain 61.
  • FIG. 21 is a diagram illustrating an example of a histogram 82 created based on the image identification result of the prior domain 62. The histograms 81 and 82 are created based on the identification result by the trial transfer identification unit 521.
  • the histogram 81 is created as follows.
  • the trial transfer identification unit 521 inputs each image included in the target domain 61 to the root node 75R of the decision tree 75.
  • the input image reaches one of the leaf nodes 75A to 75G via the branch node.
  • the trial transfer identifying unit 521 compares the feature amount of the image 61A (see FIG. 15) with a threshold value used in the root node 75R, and determines the transition destination of the image 61A as branch nodes 76A and 76B based on the comparison result. Decide on either.
  • the trial transfer identification unit 521 compares the feature amount of the image 61A (see FIG. 15) with the threshold value used in the branch node 76A, and sets the transition destination node to the leaf node 75A.
  • the branch node 76C is determined.
  • the destination of the image 61A is determined to be the leaf node 75A.
  • the feature amount of the image 61A used at the branch node 76A may be the same as or different from the feature amount of the image 61A used at the root node 75R. If so, the threshold used at branch node 76A is different from the threshold used at root node 75R.
  • the trial transfer identification unit 521 outputs the destination data 52C for specifying the leaf node to which each image included in the target domain 61 has arrived, to the distribution difference calculation unit 543.
  • the distribution difference calculation unit 543 refers to the destination data 52C and counts the number of images that have reached each of the leaf nodes 75A to 75G. As a result, a histogram 81 indicating the distribution of the image of the target domain 61 that has reached the leaf node is created.
  • the trial transfer identification unit 521 generates destination data 52D that identifies the leaf node to which each of the images included in the prior domain 62 has arrived.
  • the distribution difference calculation unit 543 creates a histogram 82 indicating the distribution of the image of the previous domain 62 that has reached the leaf node, based on the destination data 52D.
  • the distribution dissimilarity 543A is calculated using the following equation (5). Specifically, the distribution dissimilarity 543A is obtained by normalizing the histograms 81 and 82 and then calculating their Bhattacharyya distance. The Bhattacharyya distance indicates the similarity between two probability distributions.
  • E c3 indicates the distribution dissimilarity 543A.
  • i is the number of each leaf node shown in FIG.
  • p (i) is the probability distribution of the image of the target domain 61 that has reached the leaf node.
  • q (i) is the probability distribution of the image of the previous domain 62 that has reached the leaf node.
  • the probability distribution p (i) is created from the histogram 81, and the probability distribution q (i) is created from the histogram 82.
  • X is the number of elements (images) constituting the sample group.
  • the distribution dissimilarity 543A is a numerical value of 0 or more and 1 or less, and approaches 1 as the similarity between the image distribution in the histogram 81 and the image distribution in the histogram 82 is lower. In other words, the closer the distribution dissimilarity 543A is to 1, the less the prior domain 62 is effective for transfer learning.
  • FIG. 22 is a graph showing an example of a change in the distribution dissimilarity 543A.
  • a trial transfer identification unit 521 corresponding to each of a plurality of prior domains whose depression angles are set every 5 ° is created, and the distribution dissimilarity 543A corresponding to each prior domain is calculated.
  • the distribution dissimilarity 543A increases as the depression angle increases. This is due to the following reason. As the depression angle increases, the difference between the image features included in the target domain 61 and the image features included in the pre-domain 62 increases. In this case, the frequency at which the route in which the image included in the prior domain 62 transitions in the decision tree 75 greatly deviates from the route in which the image included in the target domain 61 transitions in the decision tree 75 increases. The difference between the distribution of the image included in the target domain 61 and the distribution of the image included in the prior domain 62 increases, and the distribution dissimilarity 543A increases as the depression angle increases.
  • the peak appears at the node 75 ⁇ / b> D with the node number 3.
  • a peak appears in the node 75G of the node number 6. That is, the histograms 81 and 82 are greatly different from each other in the shape of the histogram.
  • the distribution dissimilarity 543A is a value close to 1, it is considered that the effectiveness of the prior domain 62 in transfer learning is low.
  • the distribution dissimilarity 543A does not vibrate up and down compared to the competitive value 541A and the reliability 542A. This indicates that the error of the distribution dissimilarity 543A is small and the effectiveness of the prior domain in transfer learning can be determined with high accuracy.
  • Distribution dissimilarity calculation unit 543 calculates distribution dissimilarity 543A for each decision tree using equation (5). Then, the distribution difference calculation unit 543 calculates the average of the distribution difference 543A of each decision tree as the distribution difference 543A of the prior domain 62.
  • the complexity calculation unit 544 calculates the complexity 544A based on the structure of the decision tree constituting the trial transfer identification unit 521.
  • the complexity 544A is calculated based on the depth of the leaf node of the decision tree that constitutes the trial transfer identification unit 521.
  • the complexity calculation unit 544 acquires leaf node data 52E in which the depth of each leaf node constituting the decision tree is recorded from the trial transfer identification unit 521.
  • the complexity calculator 544 calculates the complexity 544A using the following equation (6).
  • E c4 indicates the complexity 544A.
  • d k indicates the depth of the k-th leaf node in the decision tree.
  • n is the number of leaf nodes in the decision tree.
  • d max indicates the maximum depth of the leaf node in the decision tree, and is used to normalize the numerator (the sum of the depths of the leaf nodes) in Equation (6).
  • the depth of the leaf node is defined by the number of edges (branches) that pass from the leaf node to the root node 75R. For example, in the decision tree shown in FIG. 17, the depth of the leaf node 75A is 2.
  • the structure of a decision tree becomes more complex as the number of leaf nodes or the depth of leaf nodes increases.
  • the decision tree has a complex structure. The reason will be described below.
  • the trial transfer learning unit 52 creates a decision tree according to the feature of each image in the target domain 61.
  • a branch condition and a branch condition corresponding to the characteristics of each image in the prior domain 62 are created separately.
  • a subtree corresponding to each image of the target domain and a subtree for identifying the feature of each image of the prior domain 62 are created separately.
  • the number of leaf nodes constituting the decision tree increases and the structure of the decision tree becomes complicated. Therefore, the effectiveness of the prior domain 62 in transfer learning can be determined by using the complexity 544A calculated by Expression (6).
  • FIG. 23 is a graph showing an example of a change in complexity 544A. Similarly to FIG. 17, a plurality of pre-domains whose depression angles are set at intervals of 5 ° are created, and the complexity 544A corresponding to each pre-domain is calculated, thereby creating the graph shown in FIG.
  • the complexity 544A increases as the depression angle increases. This is because, as described above, the structure of the decision tree becomes more complex as the difference between the image features included in the prior domain and the image features included in the target domain increases. As with the distribution difference 543A, the complexity 544A does not vibrate up and down. Therefore, by using the complexity 544A, it is possible to accurately determine the effectiveness of the prior domain 62 in transfer learning.
  • a calculation method of the complexity 544A when a plurality of decision trees configure the trial transfer identification unit 521 will be described.
  • the complexity 544A for each decision tree is calculated according to equation (6).
  • the complexity 544A in the case where a plurality of decision trees constitute the trial transfer identification unit 521 is obtained.
  • Prior domain evaluation by transfer evaluation unit 545 receives the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
  • the transfer evaluation unit 545 evaluates the effectiveness of the prior domain 62 in transfer learning based on the input competitive value 541A, reliability 542A, distribution dissimilarity 543A, and complexity 544A.
  • the transfer evaluation unit 545 calculates a comprehensive evaluation value using the following equation (7).
  • E is a comprehensive evaluation value obtained from the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
  • the competitive value 541A, the distribution dissimilarity 543A, and the complexity 544A increase.
  • the reliability 542A decreases conversely.
  • a value obtained by subtracting the reliability 542A from 1 is used for calculation of the comprehensive evaluation value.
  • the comprehensive evaluation value calculated by the above equation (7) is a value of 0 or more, and approaches 0 as the effectiveness of transfer learning increases.
  • the transfer evaluation unit 545 determines that the pre-domain 62 is effective in transfer learning when the calculated comprehensive evaluation value is smaller than a preset threshold value.
  • the transfer evaluation unit 545 outputs to the selective transfer learning unit 55 evaluation result data 545A indicating the evaluation result of the prior domain 62 that has been the target of determining the effectiveness of transfer learning.
  • step S25 After the evaluation of the validity of the prior domain 62 (step S25) is completed, the trial transfer identifying unit 521 and the comparison identifying unit 531 used for evaluating the validity of the prior domain 62 are deleted (step S26). This is because the trial transfer identification unit 521 and the comparison identification unit 531 corresponding to the prior domain 62 are not used in the evaluation of the effectiveness of other prior domains in transfer learning.
  • the acquisition unit 51 determines whether or not the evaluation of all the prior domains stored in the storage device 60 has been completed (step S27). When the evaluation of all the prior domains has not been completed (No in step S27), the machine learning device 500 returns to step S22 in order to acquire a prior domain in which the effectiveness of transfer learning has not been evaluated.
  • the transfer evaluation unit 545 outputs evaluation result data 545A indicating the evaluation results of each of the prior domains 63 and 64 to the selective transfer learning unit 55.
  • the selective transfer learning unit 55 is determined to be effective for transfer learning based on the evaluation result data 545A of each of the prior domains 62 to 64. Identify the advance domain.
  • the number of prior domains determined to be effective for transfer learning is not particularly limited.
  • the selective transfer learning unit 55 acquires the target domain 61 and the identified prior domain from the storage device 60 via the acquisition unit 51.
  • the selective transfer learning unit 55 uses the acquired target domain 61 and the prior domain to perform machine learning based on a random forest in which transfer learning is introduced (step S28).
  • transfer identification data 80 is generated.
  • the generated transfer identification data 80 is used by a person detection device (not shown).
  • the machine learning device 500 evaluates the effectiveness of each of the advance domains 62 to 64 in transfer learning, and performs transfer learning using the target domain 61 and the advance domain determined to be effective for transfer learning. Perform the introduced machine learning.
  • the prior domain is configured by an image having a characteristic that is significantly different from the characteristics of the image included in the target domain, the prior domain is prevented from being used to generate the transfer identification data 80. As a result, it is possible to prevent a negative transition from occurring, and to improve the detection accuracy of the detection target.
  • the trial transfer learning unit 52 and the selective transfer learning unit 55 use a random forest as a learning algorithm has been described as an example, but the present invention is not limited to this.
  • the learning algorithm is not particularly limited as long as it is an algorithm that generates a decision tree.
  • ID3 Intelligent Dichotomiser 3
  • boosting can be used as a learning algorithm.
  • the trial transfer learning unit 52 may perform machine learning that introduces transfer learning
  • the comparative learning unit 53 may execute machine learning that does not introduce transfer learning.
  • Machine learning device 500 may use a prior domain including an image of a person taken at an elevation angle greater than 0 °.
  • a prior domain including an image having a brightness different from that of the image included in the target domain 61 may be used.
  • the target domain 61 is an image obtained by photographing a person has been described as an example, it goes without saying that data included in the target domain 61 is set according to the detection target.
  • the transfer evaluation unit 545 evaluates the effectiveness of the prior domain in transfer learning using the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
  • the transfer evaluation unit 545 may evaluate the effectiveness of the prior domain using at least one of the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
  • the distribution dissimilarity 543A and the complexity 544A have smaller errors than the competitive value 541A and the reliability 542A. Therefore, it is desirable that the transition evaluation unit 545 uses at least one of the distribution dissimilarity 543A and the complexity 544A.
  • the transfer evaluation unit 545 does not use the competitive value 541A and the reliability 542A for evaluation of the prior domain, the machine learning device 500 may not include the comparison learning unit 53.
  • the distribution difference calculation unit 543 adds the distribution differences calculated from the respective decision trees.
  • the distribution dissimilarity calculation unit 543 may calculate the distribution dissimilarity 543A using at least one decision tree among the decision trees constituting the trial transfer identification unit 521.
  • the complexity calculation unit 544 may calculate the complexity 544A using at least one decision tree among the decision trees constituting the trial transfer identification unit 521. That is, if the judgment unit 54 evaluates the effectiveness of the prior domain in transfer learning using all the leaf nodes constituting at least one decision tree among the plurality of decision trees constituting the trial transfer identification unit 521. Good.
  • the transition evaluation unit 545 calculates the overall evaluation value by multiplying the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
  • the transfer evaluation unit 545 may calculate the total of the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A as a comprehensive evaluation value.
  • the comprehensive evaluation value may be calculated after increasing the weights of the highly accurate distribution dissimilarity 543A and the complexity 544A. That is, the transfer evaluation unit 545 may calculate a comprehensive evaluation value using the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
  • the machine learning device 500 generates the transfer identification data 80 for detecting a person.
  • the learning target may be measurement data measured by a sensor.
  • the type of sensor is not particularly limited, and various measurement data such as an acceleration sensor and an optical sensor can be used.
  • machine learning may be performed in order to use measurement data of these sensors in order to automatically drive a car.
  • Part or all of the machine learning device of the above embodiment may be realized as an integrated circuit (for example, an LSI, a system LSI, etc.).
  • part or all of the processing of each functional block (each functional unit) of the machine learning device in the above embodiment may be realized by a program.
  • part or all of the processing of each functional block is performed by a central processing unit (CPU) in the computer.
  • a program for performing each processing is stored in a storage device such as a hard disk or a ROM, and is read out and executed in the ROM or the RAM.
  • a part or all of the processing of each functional block (each functional unit) in each of the above embodiments may be executed. good.
  • each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). . Further, it may be realized by mixed processing of software and hardware.
  • OS operating system
  • middleware middleware
  • predetermined library a predetermined library
  • execution order of the processing methods in the above embodiment is not necessarily limited to the description of the above embodiment, and the execution order can be changed without departing from the gist of the invention.
  • a computer program that causes a computer to execute the above-described method and a computer-readable recording medium that records the program are included in the scope of the present invention.
  • the computer-readable recording medium include a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, large-capacity DVD, next-generation DVD, and semiconductor memory. .
  • the computer program is not limited to the one recorded on the recording medium, but may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, or the like.
  • circuit may be realized in whole or in part by hardware, software, or a mixture of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Image Analysis (AREA)

Abstract

In a clustering device 10, a feature extraction unit 11 extracts features from each of a plurality of transition candidate data items 141 used in machine learning that has transition learning introduced, and generates a plurality of transition candidate feature data items 142. A classification unit 12 classifies the transition candidate feature data items 142 into a plurality of groups including a first group, on the basis of a feature amount of each of the plurality of transition candidate feature data 142 items. A pre-domain determination unit 14 determines the first group to be a pre-domain if the number of transition candidate feature data items 142 that have been classified into the first group is equal to or less than a prescribed classification continuation reference value, and makes the determination to further classify the transition candidate feature data items 142 that have been classified into the first group if the number of transition candidate feature data items 142 is larger than the classification continuation reference value.

Description

クラスタリング装置及び機械学習装置Clustering apparatus and machine learning apparatus
 本発明は、転移学習を導入した機械学習で用いられるクラスタリング装置及び機械学習装置に関する。 The present invention relates to a clustering device and a machine learning device used in machine learning using transfer learning.
 画像データから人物を検出する処理や、センサによる計測データの解析処理などに機械学習が用いられている。 Machine learning is used for the process of detecting a person from image data and the process of analyzing measurement data by a sensor.
 例えば、監視カメラにより撮影された画像から人物を検出する場合、人物の特徴を学習することにより生成された識別用特徴データが用いられる。具体的には、機械学習装置は、人物が撮影された複数の画像(複数の学習サンプル)を用いて人物の特徴を学習し、学習結果を反映した識別用特徴データを生成する。人物検出装置は、機械学習装置により生成された識別用特徴データを用いて、監視カメラにより撮影された画像から人物を検出する。 For example, when a person is detected from an image taken by a surveillance camera, identification feature data generated by learning the person's characteristics is used. Specifically, the machine learning device learns the characteristics of a person using a plurality of images (a plurality of learning samples) taken of the person, and generates identification feature data that reflects the learning result. The person detection device detects a person from an image photographed by the surveillance camera using the identification feature data generated by the machine learning device.
 監視カメラの設置環境が学習サンプルを収集する環境と異なる場合、監視カメラにより撮影される人物の見え方は、学習サンプルにおける人物の見え方と異なる。つまり、監視カメラにより撮影される人物の特徴が、学習サンプルに含まれる人物の特徴と異なる。従って、監視カメラにより生成された画像から人物を検出するにあたって学習サンプルから生成された識別用特徴データを用いた場合、人物の検出精度が低下する。人物の検出精度を向上させる場合、カメラの設置環境に合わせて、膨大な数の学習サンプルを準備しなければならず、コストが増大する。 When the monitoring camera installation environment is different from the environment in which the learning sample is collected, the appearance of the person photographed by the monitoring camera is different from the appearance of the person in the learning sample. That is, the characteristics of the person photographed by the monitoring camera are different from the characteristics of the person included in the learning sample. Therefore, when the feature data for identification generated from the learning sample is used to detect the person from the image generated by the monitoring camera, the detection accuracy of the person is lowered. In order to improve the detection accuracy of a person, a huge number of learning samples must be prepared according to the installation environment of the camera, which increases the cost.
 そこで、転移学習を導入した機械学習の手法が提案されている。転移学習は、学習サンプルの収集環境と異なる環境から得られたサンプルを事前に学習し、事前学習により得られた検出対象の特徴を、学習サンプルの学習結果に適用(転移)させる手法である。転移学習は、学習サンプルの数を抑制することができるため、識別用特徴データを生成するためのコストを低減することができる。 Therefore, a machine learning method that introduces transfer learning has been proposed. Transfer learning is a technique in which a sample obtained from an environment different from the learning sample collection environment is learned in advance, and the characteristics of the detection target obtained by the prior learning are applied (transferred) to the learning result of the learning sample. Since transfer learning can suppress the number of learning samples, the cost for generating identification feature data can be reduced.
 例えば、非特許文献1には、転移学習を導入した機械学習のアルゴリズムとして、転移学習を導入したランダムフォレストが開示されている。また、特許文献1には、ニューラルネットワークに転移学習を適用した属性識別器が開示されている。特許文献1に係る属性識別器は、第1のクラスの属性を第2のクラスの属性として利用可能である場合、第1のクラスの属性を第2のクラスに転移させる。 For example, Non-Patent Document 1 discloses a random forest that introduces transfer learning as a machine learning algorithm that introduces transfer learning. Patent Document 1 discloses an attribute classifier that applies transfer learning to a neural network. When the attribute of the first class can be used as the attribute of the second class, the attribute classifier according to Patent Document 1 transfers the attribute of the first class to the second class.
 転移学習において、事前に学習されるサンプルの集合は、事前ドメインと呼ばれる。事前ドメインの学習結果が転移される対象は、目標ドメインと呼ばれる。監視カメラにより撮影された画像から人物を検出する場合は、目標ドメインは、監視カメラの設置環境に合わせて生成された学習サンプルの集合である。事前ドメインは、監視カメラの設置環境と異なる環境で生成された学習サンプルの集合である。 In transfer learning, a set of samples learned in advance is called a prior domain. The target to which the learning result of the prior domain is transferred is called a target domain. When a person is detected from an image captured by a monitoring camera, the target domain is a set of learning samples generated in accordance with the installation environment of the monitoring camera. The prior domain is a set of learning samples generated in an environment different from the installation environment of the monitoring camera.
特開2012-84117号公報JP 2012-84117 A
 転移学習を用いた場合、負の転移と呼ばれる現象が起こることが知られている。負の転移とは、転移学習のために事前に学習する事前ドメインが目標ドメインに含まれるデータと大きく異なるデータを含んでいた場合に、学習の精度が低下する現象である。このため、転移学習を導入した機械学習を実行する前に、転移学習に有効な事前ドメインを特定し、特定した事前ドメインのみを機械学習に用いることが望ましい。 It is known that a phenomenon called negative transfer occurs when transfer learning is used. Negative transfer is a phenomenon in which the accuracy of learning decreases when a prior domain learned in advance for transfer learning includes data that is significantly different from data included in the target domain. For this reason, it is desirable to identify a prior domain effective for transfer learning and use only the identified prior domain for machine learning before executing machine learning with transfer learning introduced.
 特許文献1には、事前ドメインを生成する方法、転移学習に用いるデータを事前ドメインに含めるか否かを判断する方法が開示されていない。 Patent Document 1 does not disclose a method for generating a prior domain and a method for determining whether or not data used for transfer learning is included in the prior domain.
 非特許文献1には、事前ドメインが転移学習に有効であるか否かを判断する方法が開示されている。具体的には、非特許文献1に係る方法は、事前ドメインのみを用いて学習した識別器(事前識別器)と、事前ドメインと目標ドメインとを用いた転移学習を行った識別器(転移識別器)とにサンプルデータをそれぞれ入力する。サンプルデータに対する事前識別器による識別結果が転移識別器による識別結果と同じである場合、この事前ドメインは、転移学習に有効であると判断される。 Non-Patent Document 1 discloses a method for determining whether a prior domain is effective for transfer learning. Specifically, the method according to Non-Patent Document 1 includes a classifier (prior classifier) learned using only a prior domain, and a classifier (transfer classification) that performs transfer learning using the prior domain and the target domain. Sample data). If the discrimination result by the prior discriminator for the sample data is the same as the discrimination result by the transfer discriminator, this prior domain is determined to be effective for transfer learning.
 この結果、非特許文献1に開示されている方法において、転移学習に有効でないと判断された事前ドメインは、転移学習を導入した機械学習に用いられない。転移学習に導入される予定の事前ドメインの数が1つであり、この事前ドメインが転移学習に有効でないと判断された場合、転移学習を導入した機械学習を実行することができない。 As a result, in the method disclosed in Non-Patent Document 1, a prior domain determined to be ineffective for transfer learning is not used for machine learning that introduces transfer learning. If the number of prior domains to be introduced for transfer learning is one and it is determined that this prior domain is not effective for transfer learning, machine learning incorporating transfer learning cannot be executed.
 従って、事前ドメインが転移学習に有効か否かを判断する場合、複数の事前ドメインを予め準備しておくことが望ましい。しかし、収集されたサンプルを人間が1つずつ確認して、複数の事前ドメインを分類する方法は、現実的でない。また、収集されたデータから複数の事前ドメインを効率的に作成する技術は開発されていない。 Therefore, when determining whether or not a prior domain is effective for transfer learning, it is desirable to prepare a plurality of prior domains in advance. However, a method in which a human confirms collected samples one by one and classifies a plurality of prior domains is not practical. In addition, a technique for efficiently creating a plurality of advance domains from collected data has not been developed.
 また、非特許文献1では、上述のように、サンプルデータに対する事前識別器による識別結果が転移識別器による識別結果と同じでなければ、事前ドメインは、転移学習に有効であると判断されない。このような事前ドメインを予め作成しておくことは困難である。 Also, in Non-Patent Document 1, as described above, if the discrimination result for the sample data by the prior discriminator is not the same as the discrimination result by the transfer discriminator, the prior domain is not determined to be effective for transfer learning. It is difficult to create such a prior domain in advance.
 非特許文献2には、事前ドメインが転移学習に有効であるか否かを判断する方法が開示されている。具体的には、非特許文献2に係る方法は、3つの基準より事前ドメインの信頼性を求めている。1つ目の基準は、事前ドメインのみを用いて学習した識別器(事前識別器)と、事前ドメインと目標ドメインとを用いた転移学習を行う識別器(転移識別器)とにサンプルデータをそれぞれ入力する。サンプルデータに対する事前識別器による識別結果が転移識別器による識別結果と同じである場合、この事前ドメインは、転移学習に有効であると判断される。2つ目の基準は、目標ドメインに含まれるデータの数である。目標ドメインに含まれるデータの数が予め設定された基準値よりも少ない場合、転移学習を実行してもその有効性が低いと判断される。3つ目の基準は、転移識別器から出力される確度である。転移識別器から出力される確度が、予め設定された確度の基準値よりも大きい場合、転移識別器の信頼性が高く、転移学習に有効であると判断される。 Non-Patent Document 2 discloses a method for determining whether a prior domain is effective for transfer learning. Specifically, the method according to Non-Patent Document 2 requires the reliability of the prior domain based on three criteria. The first criterion is that sample data is sent to a discriminator (pre discriminator) trained using only a prior domain and a discriminator (transfer discriminator) that performs transfer learning using a prior domain and a target domain. input. If the discrimination result by the prior discriminator for the sample data is the same as the discrimination result by the transfer discriminator, this prior domain is determined to be effective for transfer learning. The second criterion is the number of data included in the target domain. When the number of data included in the target domain is smaller than a preset reference value, it is determined that the effectiveness is low even if transfer learning is executed. The third criterion is the accuracy output from the transfer discriminator. If the accuracy output from the transfer discriminator is greater than a preset reference value of accuracy, it is determined that the transfer discriminator has high reliability and is effective for transfer learning.
 しかし、非特許文献2に係る方法では、もともと信頼性が低い場合に専門家に判断を委ねることが前提となっている手法であり、事前ドメインの有効性を判断する精度は高くない。つまり、非特許文献2に係る方法は、転移学習に有効でない事前ドメインを誤って有効であると判断する可能性が高い。このため、事前ドメインの有効性を精度よく判断する技術が望まれている。 However, the method according to Non-Patent Document 2 is a method that is premised on entrusting the judgment to an expert when the reliability is low, and the accuracy of judging the effectiveness of the prior domain is not high. That is, there is a high possibility that the method according to Non-Patent Document 2 erroneously determines that a prior domain that is not effective for transfer learning is effective. For this reason, a technique for accurately determining the effectiveness of a prior domain is desired.
 本発明は、クラスタリング装置である。クラスタリング装置は、クラスタリング用特徴抽出部と、分類部と、事前ドメイン決定部とを備える。クラスタリング用特徴抽出部は、転移学習を導入した機械学習に用いられる複数の転移候補データの各々から特徴を抽出して複数の転移候補特徴データを生成する。分類部は、クラスタリング用特徴抽出部により生成された複数の転移候補特徴データの各々が有する特徴に基づいて、各転移候補特徴データを第1グループ及び第2グループを含む複数のグループに分類する。事前ドメイン決定部は、分類部により第1グループに分類された転移候補特徴データの数が所定の分類継続基準値以下である場合、第1グループを機械学習に用いられる事前ドメインに決定し、転移候補特徴データの数が分類継続基準値よりも大きい場合、第1グループに分類された転移候補特徴データをさらに分類することを決定する。 The present invention is a clustering apparatus. The clustering apparatus includes a clustering feature extraction unit, a classification unit, and a prior domain determination unit. The clustering feature extraction unit generates a plurality of transfer candidate feature data by extracting features from each of a plurality of transfer candidate data used for machine learning using transfer learning. The classifying unit classifies each transfer candidate feature data into a plurality of groups including the first group and the second group based on the features of each of the plurality of transfer candidate feature data generated by the clustering feature extraction unit. The prior domain determination unit determines the first group as a prior domain used for machine learning when the number of transfer candidate feature data classified into the first group by the classification unit is equal to or less than a predetermined classification continuation reference value. If the number of candidate feature data is larger than the classification continuation reference value, it is determined to further classify the transfer candidate feature data classified into the first group.
 これにより、転移学習を導入した機械学習に用いられる事前ドメインを効率的に作成することができる。 This makes it possible to efficiently create a prior domain used for machine learning that introduces transfer learning.
 本発明は、転移学習を導入した機械学習を実行して検出対象を学習する機械学習装置である。機械学習装置は、クラスタリング装置と、事前ドメイン評価装置とを備える。クラスタリング装置は、機械学習に用いられる複数の転移候補データを分類して機械学習に用いられる事前ドメインを生成する。事前ドメイン評価装置は、クラスタリング装置により生成された事前ドメインが機械学習に有効であるか否かを評価する。クラスタリング装置は、クラスタリング用特徴抽出部と、分類部と、事前ドメイン決定部とを備える。クラスタリング用特徴抽出部は、複数の転移候補データの各々から特徴を抽出して複数の転移候補特徴データを生成する。分類部は、クラスタリング用特徴抽出部により生成された複数の転移候補特徴データの各々が有する特徴に基づいて、各転移候補特徴データを第1グループ及び第2グループを含む複数のグループに分類する。事前ドメイン決定部は、分類部により第1グループに分類された転移候補特徴データの数が所定の分類継続基準値以下である場合、第1グループを機械学習に用いられる事前ドメインに決定する。事前ドメイン決定部は、転移候補特徴データの数が分類継続基準値よりも大きい場合、第1グループに分類された転移候補特徴データをさらに分類することを決定する。事前ドメイン評価装置は、試行転移学習部と、判断部とを備える。試行転移学習部は、事前ドメイン決定部により第1グループが事前ドメインに決定された場合、第1グループに含まれる転移候補特徴データと、各々が所定の条件下における検出対象の特徴を有する学習用データを含む目標ドメインとを用いて機械学習を実行して、事前ドメインを評価するための評価用識別器を生成する。判断部は、試行転移学習部により生成された試行転移識別部に基づいて、第1グループが機械学習に有効であるか否かを判断する。 The present invention is a machine learning device that learns a detection target by executing machine learning using transfer learning. The machine learning device includes a clustering device and a prior domain evaluation device. The clustering device classifies a plurality of transfer candidate data used for machine learning and generates a prior domain used for machine learning. The prior domain evaluation apparatus evaluates whether the prior domain generated by the clustering apparatus is effective for machine learning. The clustering apparatus includes a clustering feature extraction unit, a classification unit, and a prior domain determination unit. The clustering feature extraction unit extracts features from each of the plurality of transfer candidate data to generate a plurality of transfer candidate feature data. The classifying unit classifies each transfer candidate feature data into a plurality of groups including the first group and the second group based on the features of each of the plurality of transfer candidate feature data generated by the clustering feature extraction unit. The prior domain determination unit determines the first group as a prior domain used for machine learning when the number of transfer candidate feature data classified into the first group by the classification unit is equal to or less than a predetermined classification continuation reference value. The prior domain determination unit determines to further classify the transfer candidate feature data classified into the first group when the number of transfer candidate feature data is larger than the classification continuation reference value. The prior domain evaluation device includes a trial transfer learning unit and a determination unit. When the first group is determined to be a prior domain by the prior domain determination unit, the trial transfer learning unit is configured for learning that includes transfer candidate feature data included in the first group and each of the features to be detected under a predetermined condition. Machine learning is performed using the target domain including data to generate an evaluation classifier for evaluating the prior domain. The determination unit determines whether the first group is effective for machine learning based on the trial transfer identification unit generated by the trial transfer learning unit.
 これにより、転移学習を導入した機械学習に用いられる事前ドメインを効率的に作成し、事前ドメインの転移学習における有効性を精度よく評価することができる。 This makes it possible to efficiently create a prior domain used for machine learning that introduces transfer learning, and accurately evaluate the effectiveness of the prior domain in transfer learning.
 本発明は、機械学習装置である。機械学習装置は、取得部と、試行転移学習部と、判断部とを備える。取得部は、各々が所定の条件下における検出対象の特徴を有する複数の学習用データを含む目標ドメインと、所定の条件と異なる条件下における検出対象の特徴を有する学習候補データを含む事前ドメインとを取得する。試行転移学習部は、取得部により取得された目標ドメイン及び事前ドメインを用いて転移学習を導入した機械学習を実行して、検出対象の検出に用いられる決定木を生成する。判断部は、試行転移学習部により生成された決定木を構成する全てのリーフノードを用いて、取得部により取得された事前ドメインが転移学習に有効であるか否かを判断する。 The present invention is a machine learning device. The machine learning device includes an acquisition unit, a trial transfer learning unit, and a determination unit. The acquisition unit includes a target domain including a plurality of learning data each having a detection target characteristic under a predetermined condition, and a pre-domain including learning candidate data having a detection target characteristic under a condition different from the predetermined condition; To get. The trial transfer learning unit performs machine learning in which transfer learning is introduced using the target domain and the prior domain acquired by the acquisition unit, and generates a decision tree used for detection of the detection target. The determination unit determines whether or not the prior domain acquired by the acquisition unit is effective for transfer learning using all the leaf nodes constituting the decision tree generated by the trial transfer learning unit.
 決定木を構成する全てのリーフノードを用いることにより、事前ドメインの転移学習における有効性を精度よく評価することができる。 By using all the leaf nodes that make up the decision tree, it is possible to accurately evaluate the effectiveness of the prior domain transfer learning.
 それ故に本発明の目的は、事前ドメインを作成するために収集された複数のデータから、複数の事前ドメインを効率的に作成する技術を提供することである。 Therefore, an object of the present invention is to provide a technique for efficiently creating a plurality of pre-domains from a plurality of data collected for creating the pre-domain.
 また、本発明の目的は、事前ドメインが転移学習に有効であるかを精度よく判断することができる技術を提供することである。 Also, an object of the present invention is to provide a technique that can accurately determine whether a prior domain is effective for transfer learning.
 この発明の目的、特徴、局面、及び利点は、以下の詳細な説明と添付図面によって明白となる。 The objects, features, aspects and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
本発明の第1の実施の形態に係る機械学習装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the machine learning apparatus which concerns on the 1st Embodiment of this invention. 図1に示すクラスタリング装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the clustering apparatus shown in FIG. 図1に示す事前ドメイン評価装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the prior domain evaluation apparatus shown in FIG. 図1に示す選択学習装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the selection learning apparatus shown in FIG. 図1に示す機械学習装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the machine learning apparatus shown in FIG. 図1に示す転移候補データから生成される転移候補特徴データ及び学習用データから生成される学習用特徴データの分布の一例を示す図である。FIG. 3 is a diagram illustrating an example of distribution of transfer candidate feature data generated from transfer candidate data illustrated in FIG. 1 and learning feature data generated from learning data. 図6に示す転移候補特徴データを分類することにより生成される事前ドメインの範囲を示す図である。It is a figure which shows the range of the prior domain produced | generated by classifying the transfer candidate feature data shown in FIG. 図5に示す事前ドメイン生成処理のフローチャートである。It is a flowchart of the prior domain production | generation process shown in FIG. 図5に示す事前ドメイン生成処理において作成される分類木の初期構造を示す図である。It is a figure which shows the initial structure of the classification tree produced in the prior domain production | generation process shown in FIG. 図9に示す分類木にノードが追加された場合の構造の一例を示す図である。It is a figure which shows an example of a structure when a node is added to the classification tree shown in FIG. 図5に示す事前ドメイン生成処理が終了したときにおける分類木の構造の一例を示す図である。It is a figure which shows an example of the structure of a classification tree when the prior domain production | generation process shown in FIG. 5 is complete | finished. 図5に示す事前ドメイン評価処理のフローチャートである。It is a flowchart of the prior domain evaluation process shown in FIG. 図11に示す分類木の変形例を示す図である。It is a figure which shows the modification of the classification tree shown in FIG. 本発明の第2の実施の形態に係る機械学習装置の構成を示す機能ブロック図である。It is a functional block diagram which shows the structure of the machine learning apparatus which concerns on the 2nd Embodiment of this invention. 図14に示す目標ドメイン及び事前ドメインの各々に含まれる画像の一例を示す図である。It is a figure which shows an example of the image contained in each of the target domain shown in FIG. 14, and a prior domain. 図14に示す機械学習装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the machine learning apparatus shown in FIG. 図14に示す競合値算出部により算出される競合値の変化の一例を示す図である。It is a figure which shows an example of the change of the competitive value calculated by the competitive value calculation part shown in FIG. 図14に示す信頼度算出部により算出される信頼度の変化の一例を示す図である。It is a figure which shows an example of the change of the reliability calculated by the reliability calculation part shown in FIG. 図14に示す試行転移識別部を構成する決定木の一例を示す模式図である。It is a schematic diagram which shows an example of the decision tree which comprises the trial transfer identification part shown in FIG. 図14に示す試行転移識別部による目標ドメインの識別結果に基づいて作成されるヒストグラムの一例を示す図である。It is a figure which shows an example of the histogram produced based on the identification result of the target domain by the trial transfer identification part shown in FIG. 図14に示す試行転移識別部による事前ドメインの識別結果に基づいて作成されるヒストグラムの一例を示す図である。It is a figure which shows an example of the histogram produced based on the identification result of the prior domain by the trial transfer identification part shown in FIG. 図14に示す分布相違度算出部により算出される分布相違度の変化の一例を示す図である。It is a figure which shows an example of the change of the distribution difference calculated by the distribution difference calculation part shown in FIG. 図14に示す複雑度算出部により算出される複雑度の変化の一例を示す図である。It is a figure which shows an example of the change of the complexity calculated by the complexity calculation part shown in FIG. 図1及び図14に示す機械学習装置の他の構成を示す機能ブロック図である。It is a functional block diagram which shows the other structure of the machine learning apparatus shown in FIG.1 and FIG.14.
 以下、図面を参照しつつ、本発明の実施の形態を詳しく説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [第1の実施の形態]
 {1.機械学習装置100の構成}
 {1.1.全体構成}
 図1は、本発明の第1の実施の形態に係る機械学習装置100の構成を示す機能ブロック図である。図1に示す機械学習装置100は、記憶装置140に記憶された複数の転移候補データ141と、記憶装置150に記憶された目標ドメイン150Aとを用いて、転移学習を導入した機械学習を実行する。機械学習装置100は、上記の機械学習の結果として検出対象を識別するための転移識別データ35を生成する。
[First Embodiment]
{1. Configuration of Machine Learning Device 100}
{1.1. overall structure}
FIG. 1 is a functional block diagram showing the configuration of the machine learning device 100 according to the first embodiment of the present invention. The machine learning device 100 illustrated in FIG. 1 executes machine learning using transfer learning using a plurality of transfer candidate data 141 stored in the storage device 140 and the target domain 150A stored in the storage device 150. . The machine learning device 100 generates transfer identification data 35 for identifying a detection target as a result of the above machine learning.
 本実施の形態において、検出対象は、人物である。機械学習装置100により生成される転移識別データ35は、人物検出装置(図示省略)がカメラにより撮影された画像から人物を検出するために用いられる。機械学習装置100は、転移識別データ35を生成するための学習アルゴリズムとして、転移学習を導入したランダムフォレストを用いる。従って、転移識別データ35は、複数の決定木により構成されるデータ群である。 In the present embodiment, the detection target is a person. The transfer identification data 35 generated by the machine learning device 100 is used by a person detection device (not shown) to detect a person from an image taken by a camera. The machine learning apparatus 100 uses a random forest in which transfer learning is introduced as a learning algorithm for generating the transfer identification data 35. Therefore, the transfer identification data 35 is a data group composed of a plurality of decision trees.
 記憶装置150は、目標ドメイン150Aを記憶する。目標ドメイン150Aは、所定の条件下における検出対象(人物)の特徴を有する複数の画像のグループである。目標ドメイン150Aは、学習用データ151,151,・・・を含む。学習用データ151は、例えば、俯角0°で人物を撮影した画像である。目標ドメイン150Aは、選択学習装置30が転移学習を導入した機械学習を実行して転移識別データ35を生成する際に用いられる。 Storage device 150 stores target domain 150A. The target domain 150A is a group of a plurality of images having characteristics of a detection target (person) under a predetermined condition. The target domain 150A includes learning data 151, 151,. The learning data 151 is, for example, an image obtained by photographing a person with a depression angle of 0 °. The target domain 150 </ b> A is used when the selection learning device 30 executes the machine learning in which the transfer learning is introduced to generate the transfer identification data 35.
 記憶装置140は、転移候補データ141,141,・・・を記憶する。複数の転移候補データ141は、人物が撮影された画像であり、人物を撮影した画像をインターネット上で検索することにより収集される。転移候補データ141,141,・・・の各々の特徴に基づいて転移候補データ141,141,・・・を分類することにより、事前ドメイン145,145,・・・が生成される。事前ドメイン145,145,・・・のうち、転移学習に有効と判断された事前ドメイン145が、転移識別データ35の生成に用いられる。 The storage device 140 stores transfer candidate data 141, 141,. The plurality of transfer candidate data 141 are images obtained by photographing a person, and are collected by searching on the Internet for images obtained by photographing a person. Are classified based on the characteristics of the transfer candidate data 141, 141,... To generate the prior domains 145, 145,. .. Of the prior domains 145, 145,... Are used for generating the transfer identification data 35.
 機械学習装置100は、クラスタリング装置10と、事前ドメイン評価装置20と、選択学習装置30とを備える。 The machine learning device 100 includes a clustering device 10, a prior domain evaluation device 20, and a selection learning device 30.
 クラスタリング装置10は、転移候補データ141の各々の特徴に基づいて転移候補データ141を分類して、事前ドメイン145を生成する。 The clustering apparatus 10 classifies the transfer candidate data 141 based on the characteristics of the transfer candidate data 141 and generates the prior domain 145.
 事前ドメイン評価装置20は、クラスタリング装置10により生成された事前ドメイン145の各々が転移学習に有効であるか否かを評価する。事前ドメイン評価装置20は、各事前ドメイン145の評価結果を示す評価結果データ253Aを選択学習装置30に出力する。 The prior domain evaluation device 20 evaluates whether each of the prior domains 145 generated by the clustering device 10 is effective for transfer learning. The prior domain evaluation device 20 outputs evaluation result data 253A indicating the evaluation result of each prior domain 145 to the selection learning device 30.
 選択学習装置30は、評価結果データ253Aに基づいて、クラスタリング装置10により生成される事前ドメイン145のうち、事前ドメイン評価装置20により転移学習に有効と判断された事前ドメイン145を選択する。選択学習装置30は、選択した事前ドメイン145と、記憶装置150に記憶された目標ドメイン150Aとを用いて、転移学習を導入した機械学習を実行する。その結果、転移識別データ35が生成される。 The selection learning device 30 selects the prior domain 145 determined to be effective for transfer learning by the prior domain evaluation device 20 from the prior domains 145 generated by the clustering device 10 based on the evaluation result data 253A. The selection learning device 30 executes machine learning in which transfer learning is introduced using the selected prior domain 145 and the target domain 150A stored in the storage device 150. As a result, transfer identification data 35 is generated.
 {1.2.クラスタリング装置10の構成}
 図2は、図1に示すクラスタリング装置10の構成を示す機能ブロック図である。図2に示すように、クラスタリング装置10は、特徴抽出部11と、分類部12と、分散計算部13と、事前ドメイン決定部14とを備える。
{1.2. Configuration of Clustering Device 10}
FIG. 2 is a functional block diagram showing a configuration of the clustering apparatus 10 shown in FIG. As shown in FIG. 2, the clustering device 10 includes a feature extraction unit 11, a classification unit 12, a variance calculation unit 13, and a prior domain determination unit 14.
 クラスタリング装置10は、記憶装置140から複数の転移候補データ141を入力する。特徴抽出部11は、クラスタリング装置10に入力された複数の転移候補データ141の各々からHOG(Histograms of Oriented Gradients)特徴量を抽出して、転移候補データ141の各々に対応する複数の転移候補特徴データ142を生成する。以下、特に説明のない限り、HOG特徴量を単に「特徴量」と記載する。 The clustering device 10 inputs a plurality of transfer candidate data 141 from the storage device 140. The feature extraction unit 11 extracts HOG (Histograms of Oriented Gradients) feature amounts from each of a plurality of transfer candidate data 141 input to the clustering apparatus 10, and a plurality of transfer candidate features corresponding to each of the transfer candidate data 141. Data 142 is generated. Hereinafter, unless otherwise specified, the HOG feature value is simply referred to as “feature value”.
 分類部12は、特徴抽出部11から複数の転移候補特徴データ142を入力する。分類部12は、入力した複数の転移候補特徴データ142の各々に含まれる特徴量に基づいて、転移候補特徴データ142を複数のグループに分類する。転移候補特徴データ142の分類には、デンシティフォレスト(Density Forest)と呼ばれるアルゴリズムが用いられる。分類部12は、1本の分類木を作成しながら、複数の転移候補特徴データ142を分類する。分類木を構成するノードの各々が、各グループに対応する。 The classification unit 12 inputs a plurality of transfer candidate feature data 142 from the feature extraction unit 11. The classification unit 12 classifies the transfer candidate feature data 142 into a plurality of groups based on the feature amounts included in each of the plurality of input transfer candidate feature data 142. An algorithm called Density Forest is used to classify the transfer candidate feature data 142. The classification unit 12 classifies the plurality of transfer candidate feature data 142 while creating one classification tree. Each node constituting the classification tree corresponds to each group.
 分散計算部13は、各ノードの共分散を計算する。各ノードの共分散は、各ノードに属する転移候補特徴データ142が有する特徴量から計算される。各ノードの共分散は、各ノードに属する転移候補特徴データ142を分類する際に用いられる。また、共分散は、分類木を構成するノードを事前ドメインに決定するか否かを判断するために用いられる。 The distribution calculation unit 13 calculates the covariance of each node. The covariance of each node is calculated from the feature amount of the transfer candidate feature data 142 belonging to each node. The covariance of each node is used when classifying the transfer candidate feature data 142 belonging to each node. The covariance is used to determine whether or not to determine a node constituting the classification tree as a prior domain.
 事前ドメイン決定部14は、分類木を構成するノードが事前ドメインとしての条件を満たしているか否かを判断する。判断対象のノードに属する転移候補特徴データ142の数が、予め設定された分類継続基準値以下である場合、事前ドメイン決定部14は、判断対象のノードを事前ドメインに決定する。 The prior domain determination unit 14 determines whether or not the nodes constituting the classification tree satisfy the conditions for the prior domain. When the number of transfer candidate feature data 142 belonging to the determination target node is equal to or less than a preset classification continuation reference value, the prior domain determination unit 14 determines the determination target node as the prior domain.
 判断対象のノードに属する転移候補特徴データ142の数が、分類継続基準値より大きい場合、事前ドメイン決定部14は、判断対象のノードの共分散を予め設定された分散基準値と比較する。判断対象のノードの共分散が分散基準値以下である場合、事前ドメイン決定部14は、判断対象のノードを事前ドメインに決定する。一方、判断対象のノードの分散が分散基準値より大きい場合、事前ドメイン決定部14は、判断対象のノードに属する転移候補特徴データ142をさらに分類することを決定する。 When the number of transfer candidate feature data 142 belonging to the determination target node is larger than the classification continuation reference value, the prior domain determination unit 14 compares the covariance of the determination target node with a preset distribution reference value. When the covariance of the determination target node is equal to or less than the distribution reference value, the prior domain determination unit 14 determines the determination target node as the prior domain. On the other hand, when the variance of the determination target node is larger than the distribution reference value, the prior domain determination unit 14 determines to further classify the transfer candidate feature data 142 belonging to the determination target node.
 {1.3.事前ドメイン評価装置20の構成}
 図3は、図1に示す事前ドメイン評価装置20の構成を示す機能ブロック図である。図3に示すように、事前ドメイン評価装置20は、一時記憶部21と、特徴抽出部22と、試行転移学習部23と、比較学習部24と、判断部25とを備える。
{1.3. Configuration of Prior Domain Evaluation Device 20}
FIG. 3 is a functional block diagram showing a configuration of the prior domain evaluation apparatus 20 shown in FIG. As illustrated in FIG. 3, the prior domain evaluation device 20 includes a temporary storage unit 21, a feature extraction unit 22, a trial transfer learning unit 23, a comparative learning unit 24, and a determination unit 25.
 事前ドメイン評価装置20は、記憶装置140に記憶された目標ドメイン150Aを入力し、クラスタリング装置10により生成された事前ドメイン145を入力する。 The prior domain evaluation device 20 inputs the target domain 150A stored in the storage device 140, and inputs the prior domain 145 generated by the clustering device 10.
 一時記憶部21は、クラスタリング装置10から入力した事前ドメイン145を一時的に記憶する。 The temporary storage unit 21 temporarily stores the prior domain 145 input from the clustering device 10.
 特徴抽出部22は、事前ドメイン評価装置20に入力された目標ドメイン150Aに含まれる学習用データ151,151,・・・の各々から特徴量を抽出して、各学習用データ151に対応する複数の学習用特徴データ152を生成する。特徴抽出部22により生成された学習用特徴データ152は、目標ドメイン150Bを構成する。 The feature extraction unit 22 extracts feature amounts from each of the learning data 151, 151,... Included in the target domain 150A input to the prior domain evaluation apparatus 20, and a plurality of features corresponding to each learning data 151 are extracted. Learning feature data 152 is generated. The learning feature data 152 generated by the feature extraction unit 22 constitutes the target domain 150B.
 試行転移学習部23は、目標ドメイン150Bを特徴抽出部22から取得する。試行転移学習部23は、事前ドメイン145のうちいずれか1つの事前ドメイン(注目事前ドメイン)を評価対象として一時記憶部21から取得する。試行転移学習部23は、取得した目標ドメイン150A及び注目事前ドメインを用いて、試行転移学習を実行する。試行転移学習は、注目事前ドメインの転移学習の有効性を評価するための機械学習である。転移学習を導入したランダムフォレストが、試行転移学習のアルゴリズムとして用いられる。試行転移学習の結果、注目事前ドメインに対応する試行転移識別部231が生成される。試行転移識別部231の実体は、複数の決定木により構成されるデータ群である。試行転移識別部231は、事前ドメイン145ごとに生成される。 The trial transfer learning unit 23 acquires the target domain 150B from the feature extraction unit 22. The trial transfer learning unit 23 acquires, from the temporary storage unit 21, one of the previous domains 145 (the prior domain of interest) as an evaluation target. The trial transfer learning unit 23 performs trial transfer learning using the acquired target domain 150A and the prior domain of interest. Trial transfer learning is machine learning for evaluating the effectiveness of transfer learning of a prior domain of interest. A random forest with transfer learning is used as an algorithm for trial transfer learning. As a result of the trial transfer learning, a trial transfer identification unit 231 corresponding to the target prior domain is generated. The entity of the trial transfer identification unit 231 is a data group including a plurality of decision trees. The trial transfer identification unit 231 is generated for each prior domain 145.
 比較学習部24は、注目事前ドメインのみを利用して、比較用の機械学習(比較学習)を実行する。転移学習が導入されないランダムフォレストが、比較学習のアルゴリズムとして用いられる。比較学習の結果、注目事前ドメインに対応する比較識別部241を生成する。比較識別部241の実体は、複数の決定木を構成するデータ群である。比較識別部241は、事前ドメイン145ごとに生成される。 The comparative learning unit 24 performs comparative machine learning (comparative learning) using only the prior domain of interest. A random forest into which transfer learning is not introduced is used as an algorithm for comparative learning. As a result of the comparison learning, a comparison identifying unit 241 corresponding to the target prior domain is generated. The entity of the comparison and identification unit 241 is a data group constituting a plurality of decision trees. The comparison identification unit 241 is generated for each prior domain 145.
 判断部25は、試行転移識別部231及び比較識別部241による各々の識別結果を用いて、注目事前ドメインが転移学習に有効であるか否かを判断する。判断部25は、競合値計算部251と、信頼度計算部252と、転移評価部253とを備える。 The determination unit 25 determines whether or not the prior domain of interest is effective for transfer learning using the identification results obtained by the trial transfer identification unit 231 and the comparison identification unit 241. The determination unit 25 includes a competitive value calculation unit 251, a reliability calculation unit 252, and a transfer evaluation unit 253.
 競合値計算部251は、比較識別部241によるサンプルデータの識別結果を試行転移識別部231によるサンプルデータの識別結果と比較する。サンプルデータは、目標ドメイン150Bに含まれる学習用特徴データ152及び注目事前ドメインに含まれる転移候補特徴データ142のうち少なくとも1つのデータを含む。競合値計算部251は、比較結果に基づいて、競合値251Aを計算する。競合値251Aは、比較識別部241による識別結果と、試行転移識別部231による識別結果とが一致しない度合いを示す。 The competitive value calculation unit 251 compares the identification result of the sample data by the comparison identification unit 241 with the identification result of the sample data by the trial transfer identification unit 231. The sample data includes at least one of learning feature data 152 included in the target domain 150B and transfer candidate feature data 142 included in the target prior domain. The competition value calculation unit 251 calculates the competition value 251A based on the comparison result. The competitive value 251A indicates the degree to which the identification result by the comparison identifying unit 241 and the identification result by the trial transfer identifying unit 231 do not match.
 信頼度計算部252は、試行転移識別部231によるサンプルデータの識別結果を用いて、信頼度252Aを計算する。信頼度252Aは、試行転移識別部231による識別結果の信頼性を示す。 The reliability calculation unit 252 calculates the reliability 252A using the identification result of the sample data by the trial transfer identification unit 231. The reliability 252A indicates the reliability of the identification result obtained by the trial transfer identification unit 231.
 転移評価部253は、競合値251A及び信頼度252Aに基づいて、注目事前ドメインが転移学習に有効であるか否かを評価する。転移評価部253は、事前ドメイン145の各々の評価を示す評価結果データ253Aを選択学習装置30へ出力する。 The transfer evaluation unit 253 evaluates whether the prior domain of interest is effective for transfer learning based on the competitive value 251A and the reliability 252A. The transfer evaluation unit 253 outputs evaluation result data 253A indicating each evaluation of the prior domain 145 to the selection learning device 30.
 {1.4.選択学習装置30の構成}
 図4は、図1に示す選択学習装置30の構成を示す機能ブロック図である。図4に示すように、選択学習装置30は、事前ドメイン選択部31と、特徴抽出部32と、転移学習部33とを備える。
{1.4. Configuration of Selective Learning Device 30}
FIG. 4 is a functional block diagram showing the configuration of the selective learning device 30 shown in FIG. As illustrated in FIG. 4, the selection learning device 30 includes a prior domain selection unit 31, a feature extraction unit 32, and a transfer learning unit 33.
 事前ドメイン選択部31は、クラスタリング装置10から事前ドメイン145を入力し、評価結果データ253Aを事前ドメイン評価装置20から入力する。事前ドメイン選択部31は、入力した評価結果データ253Aに基づいて、クラスタリング装置10により生成された事前ドメイン145のうち、転移学習に有効と評価された事前ドメイン145を選択する。 The prior domain selection unit 31 inputs the prior domain 145 from the clustering apparatus 10 and inputs the evaluation result data 253A from the prior domain evaluation apparatus 20. Based on the input evaluation result data 253A, the prior domain selection unit 31 selects a prior domain 145 that has been evaluated as effective for transfer learning from the prior domains 145 generated by the clustering apparatus 10.
 特徴抽出部32は、記憶装置150に記憶された目標ドメイン150Aを取得する。特徴抽出部32は、特徴抽出部22と同様に、取得した目標ドメイン150Aに含まれる学習用データ151,151,・・・の各々から特徴量を抽出して目標ドメイン150Bを生成する。 The feature extraction unit 32 acquires the target domain 150A stored in the storage device 150. Similar to the feature extraction unit 22, the feature extraction unit 32 extracts a feature amount from each of the learning data 151, 151,... Included in the acquired target domain 150 </ b> A and generates the target domain 150 </ b> B.
 転移学習部33は、目標ドメイン150Bと、事前ドメイン選択部31により選択された事前ドメイン145とを用いて、転移学習を導入した機械学習を実行する。転移学習部33が用いる学習アルゴリズムは、試行転移学習部23が用いる学習アルゴリズムと同じである。転移学習部33は、転移学習を導入した機械学習の結果として、転移識別データ35を生成する。 The transfer learning unit 33 uses the target domain 150B and the pre-domain 145 selected by the pre-domain selection unit 31 to execute machine learning that introduces transfer learning. The learning algorithm used by the transfer learning unit 33 is the same as the learning algorithm used by the trial transfer learning unit 23. The transfer learning unit 33 generates transfer identification data 35 as a result of machine learning in which transfer learning is introduced.
 {2.動作概略}
 図5は、機械学習装置100の動作の概略を示すフローチャートである。図5に示すように、機械学習装置100において、クラスタリング装置10は、記憶装置140に記憶された転移候補データ141,141,・・・から事前ドメイン145を生成する事前ドメイン生成処理を実行する(ステップS11)。
{2. Outline of operation}
FIG. 5 is a flowchart showing an outline of the operation of the machine learning device 100. As shown in FIG. 5, in the machine learning device 100, the clustering device 10 executes a pre-domain generation process for generating the pre-domain 145 from the transfer candidate data 141, 141,... Stored in the storage device 140 ( Step S11).
 クラスタリング装置10により生成される事前ドメイン145の数は、特に限定されない。事前ドメイン145の各々は、転移候補データ141から特徴量を抽出することにより生成された転移候補特徴データ142を有する。 The number of prior domains 145 generated by the clustering device 10 is not particularly limited. Each of the prior domains 145 has transfer candidate feature data 142 generated by extracting feature amounts from the transfer candidate data 141.
 事前ドメイン評価装置20は、クラスタリング装置10により生成された事前ドメイン145の各々が転移学習に有効であるか否かを判断する事前ドメイン評価処理を実行する(ステップS12)。事前ドメイン評価装置20は、ステップS12の結果として、評価結果データ253Aを生成する。評価結果データ253Aは、クラスタリング装置10により生成された事前ドメイン145のうち、転移学習に有効と判断された事前ドメイン145を特定したデータである。 The pre-domain evaluation device 20 executes a pre-domain evaluation process for determining whether each of the pre-domains 145 generated by the clustering device 10 is effective for transfer learning (Step S12). The prior domain evaluation device 20 generates evaluation result data 253A as a result of step S12. The evaluation result data 253A is data specifying the prior domain 145 determined to be effective for transfer learning among the prior domains 145 generated by the clustering apparatus 10.
 選択学習装置30において、事前ドメイン選択部31は、評価結果データ253Aに基づいて、クラスタリング装置10により生成された事前ドメイン145の中から、転移学習に有効と判断された事前ドメイン145を選択する(ステップS13)。 In the selection learning device 30, the prior domain selection unit 31 selects the prior domain 145 determined to be effective for transfer learning from the prior domains 145 generated by the clustering device 10 based on the evaluation result data 253A ( Step S13).
 特徴抽出部32(図4参照)は、記憶装置150から目標ドメイン150Aを取得する。特徴抽出部32は、取得した目標ドメイン150Aに含まれる学習用データ151の各々から特徴量を抽出して、複数の学習用特徴データ152を生成する(ステップS14)。特徴抽出部32により実行される処理は、図3に示す特徴抽出部22により実行される処理と同じである。つまり、特徴抽出部32は、複数の学習用特徴データ152により構成される目標ドメイン150Bを生成する。 The feature extraction unit 32 (see FIG. 4) acquires the target domain 150A from the storage device 150. The feature extraction unit 32 extracts feature amounts from each of the learning data 151 included in the acquired target domain 150A, and generates a plurality of learning feature data 152 (step S14). The process executed by the feature extraction unit 32 is the same as the process executed by the feature extraction unit 22 shown in FIG. That is, the feature extraction unit 32 generates a target domain 150 </ b> B configured by a plurality of learning feature data 152.
 転移学習部33は、事前ドメイン選択部31により選択された事前ドメイン145と、特徴抽出部32により生成された目標ドメイン150Bとを用いて、転移学習を導入した機械学習を実行する(ステップS15)。転移学習部33は、試行転移学習部23が用いる学習アルゴリズムと同じ学習アルゴリズム(転移学習を導入したランダムフォレスト)を用いる。これにより、複数の決定木を示すデータ群である転移識別データ35が生成される。 The transfer learning unit 33 performs machine learning using transfer learning using the pre-domain 145 selected by the pre-domain selection unit 31 and the target domain 150B generated by the feature extraction unit 32 (step S15). . The transfer learning unit 33 uses the same learning algorithm (random forest that introduced transfer learning) as the learning algorithm used by the trial transfer learning unit 23. Thereby, transfer identification data 35 which is a data group indicating a plurality of decision trees is generated.
 以下、事前ドメイン生成処理(ステップS11)及び事前ドメイン評価処理(ステップS12)が実行される理由を説明する。 Hereinafter, the reason why the advance domain generation process (step S11) and the advance domain evaluation process (step S12) are executed will be described.
 図6は、目標ドメイン150B及び転移候補特徴データ142の分布の一例を示す図である。図6は、転移候補特徴データ142及び学習用特徴データ152の特徴量の次元数が2である場合を例にして、転移候補特徴データ142の分布と、目標ドメイン150Bを構成する学習用特徴データ152の分布とを示している。 FIG. 6 is a diagram illustrating an example of the distribution of the target domain 150B and the transfer candidate feature data 142. FIG. 6 shows an example in which the number of dimensions of the feature quantity of the transfer candidate feature data 142 and the learning feature data 152 is 2, and the distribution of the transfer candidate feature data 142 and the learning feature data constituting the target domain 150B. 152 distribution.
 目標ドメイン150Bは、学習用データ151から特徴量を抽出することにより生成された学習用特徴データ152を含む。複数の学習用データ151は、上述のように、俯角0°で撮影した人物を含む画像であるため、互いに類似する特徴を有する。従って、図6に示す2次元空間において、学習用特徴データ152のばらつきは小さく、目標ドメイン150Bは、比較的狭い領域に限定される。 The target domain 150B includes learning feature data 152 generated by extracting feature amounts from the learning data 151. As described above, the plurality of learning data 151 are images including a person photographed at a depression angle of 0 °, and thus have similar characteristics. Therefore, in the two-dimensional space shown in FIG. 6, the variation in the learning feature data 152 is small, and the target domain 150B is limited to a relatively narrow region.
 一方、転移候補特徴データ142の分布は、学習用特徴データ152に比べてばらつきが大きい。転移候補データ141は、インターネット上で検出対象(人物)を検索することにより収集されるため、転移候補データ141の人物の撮影条件は、様々である。転移候補特徴データ142は、転移候補データ141から特徴量を抽出することにより生成される。従って、転移候補特徴データ142は、図6に示す2次元空間全体に広がり、その位置はランダムである。 On the other hand, the distribution of the transfer candidate feature data 142 has a larger variation than the feature data 152 for learning. Since the transfer candidate data 141 is collected by searching for a detection target (person) on the Internet, there are various shooting conditions for the person in the transfer candidate data 141. Transfer candidate feature data 142 is generated by extracting feature values from transfer candidate data 141. Therefore, the transfer candidate feature data 142 spreads over the entire two-dimensional space shown in FIG. 6, and its position is random.
 ここで、転移学習を導入した機械学習について、画像から人物を検出する場合を例に説明する。転移学習を導入した機械学習では、目標ドメインと、事前ドメインとが予め準備される。目標ドメインは、所定の条件下における検出対象の特徴を有する画像のグループである。本実施の形態において、検出対象は人物であり、所定の条件は、検出対象(人物)が俯角0°で撮影された画像に含まれていることである。 Here, a case where a person is detected from an image will be described as an example of machine learning using transfer learning. In machine learning using transfer learning, a target domain and a prior domain are prepared in advance. The target domain is a group of images having the characteristics of the detection target under a predetermined condition. In the present embodiment, the detection target is a person, and the predetermined condition is that the detection target (person) is included in an image captured at a depression angle of 0 °.
 事前ドメインは、上記の所定の条件と異なる条件下における検出対象の特徴を有する画像のグループである。事前ドメインは、収集された画像を所定の規則により分類することにより生成される。例えば、収集された各画像の撮影条件がわかっている場合、収集された画像を撮影条件に応じて分類することができる。これにより、事前ドメインは、互いに共通する、又は類似する特徴を有する画像の集合となる。 The prior domain is a group of images having the characteristics of the detection target under conditions different from the predetermined conditions described above. The prior domain is generated by classifying collected images according to a predetermined rule. For example, when the shooting conditions of each collected image are known, the collected images can be classified according to the shooting conditions. Thereby, the prior domain becomes a set of images having features that are common to each other or similar to each other.
 機械学習装置が転移学習を導入した機械学習を実行する場合、最初に事前ドメインの学習が行われ、次に目標ドメインの学習が行われる。そして、機械学習装置は、俯角0°で撮影された人物の特徴と共通又は類似する特徴を有する画像を特定し、特定した画像が有する特徴を、目標ドメイン150Bに含まれる画像の学習結果に転移させる。これにより、目標ドメインを構成する画像の数を削減することができるとともに、人物の識別精度を向上させることができる。 When the machine learning device executes machine learning in which transfer learning is introduced, learning of a prior domain is performed first, and then learning of a target domain is performed. Then, the machine learning device identifies an image having a feature that is common or similar to the feature of the person photographed at the depression angle of 0 °, and transfers the feature of the identified image to the learning result of the image included in the target domain 150B. Let Thereby, the number of images constituting the target domain can be reduced, and the identification accuracy of the person can be improved.
 しかし、ある事前ドメインにおける画像の特徴が、目標ドメインにおける画像の特徴と大きく異なる場合、負の転移が発生する。この理由は、この事前ドメインにおける画像の特徴が、転移学習により、目標ドメインにおける画像の学習結果に反映されるためである。この結果、転移学習を導入した機械学習の結果として生成される転移識別データの精度が低下する。 However, if the image features in a certain prior domain are significantly different from the image features in the target domain, a negative transition occurs. This is because the feature of the image in the prior domain is reflected in the learning result of the image in the target domain by transfer learning. As a result, the accuracy of the transfer identification data generated as a result of machine learning in which transfer learning is introduced decreases.
 図6に示すように、2次元空間全体に広がる全ての転移候補特徴データ142を1つの事前ドメインとした場合、目標ドメイン150Bの領域から離れた転移候補特徴データ142が、転移学習に用いられることになる。この場合、負の転移が発生する可能性が非常に高い。負の転移の発生を防ぐためには、互いに共通する、又は類似する特徴を有する転移候補特徴データ142同士をまとめることにより、事前ドメイン145を生成し、生成した事前ドメイン145が、転移学習を導入した機械学習に有効であるか否かを判断すればよい。事前ドメイン生成処理(ステップS11)は、互いに共通する、又は類似する特徴を有する転移候補特徴データ142の集合である事前ドメイン145を生成するために実行される。 As shown in FIG. 6, when all the transfer candidate feature data 142 spread over the entire two-dimensional space are set as one prior domain, the transfer candidate feature data 142 separated from the region of the target domain 150B is used for transfer learning. become. In this case, it is very likely that a negative transition occurs. In order to prevent the occurrence of negative metastasis, the pre-domain 145 is generated by combining the metastasis candidate feature data 142 having features that are common or similar to each other, and the pre-domain 145 thus generated introduces transfer learning. What is necessary is just to judge whether it is effective for machine learning. The pre-domain generation process (step S11) is executed to generate a pre-domain 145 that is a set of transfer candidate feature data 142 having features that are common to each other or similar to each other.
 図7は、図6に示す転移候補特徴データ142を分類した一例を示す図である。クラスタリング装置10は、図7に示す転移候補特徴データ142を分類することにより、事前ドメイン145A~145Gを生成する。 FIG. 7 is a diagram showing an example in which the transfer candidate feature data 142 shown in FIG. 6 is classified. The clustering apparatus 10 generates the prior domains 145A to 145G by classifying the transfer candidate feature data 142 shown in FIG.
 事前ドメイン145A~145Gの中で、事前ドメイン145A及び145Fは、目標ドメイン150Bと重複していない。従って、事前ドメイン145A及び145Fは、転移学習を導入した機械学習に有効でない。また、事前ドメイン145Dは、目標ドメイン150Bと重複しているが、重複している範囲が他の事前ドメインに比べて少ない。従って、事前ドメイン145Dは、負の転移を発生させる可能性があり、転移学習に有効でない。 Among the prior domains 145A to 145G, the prior domains 145A and 145F do not overlap with the target domain 150B. Therefore, the prior domains 145A and 145F are not effective for machine learning in which transfer learning is introduced. In addition, the prior domain 145D overlaps with the target domain 150B, but the overlapping range is smaller than other prior domains. Therefore, the pre-domain 145D may cause a negative transfer and is not effective for transfer learning.
 このように、事前ドメイン生成処理(ステップS11)により、負の転移を発生させる可能性がある(転移学習に有効でない)事前ドメインが生成される可能性がある。転移学習を導入した機械学習の結果として生成される転移識別器の精度を向上させるためには、転移学習に有効でない事前ドメインを予め除外しておくことが望ましい。このため、事前ドメイン評価処理(ステップS12)は、事前ドメイン生成処理(ステップS11)により生成された事前ドメイン145A~145Gの中で、転移学習に有効な事前ドメインを特定するために行われる。 As described above, the prior domain generation process (step S11) may generate a negative domain that may cause negative transfer (not effective for transfer learning). In order to improve the accuracy of a transfer discriminator generated as a result of machine learning in which transfer learning is introduced, it is desirable to exclude in advance a prior domain that is not effective for transfer learning. Therefore, the prior domain evaluation process (step S12) is performed in order to identify a prior domain effective for transfer learning among the prior domains 145A to 145G generated by the prior domain generation process (step S11).
 {3.事前ドメイン生成処理(ステップS11)}
 図8は、事前ドメイン生成処理(ステップS11)のフローチャートである。図8を参照しながら、記憶装置140に記憶された転移候補データ141,141,・・・から事前ドメイン145を生成するクラスタリング装置10の動作を詳しく説明する。
{3. Prior domain generation process (step S11)}
FIG. 8 is a flowchart of the advance domain generation process (step S11). Referring to FIG. 8, the operation of the clustering device 10 that generates the prior domain 145 from the transfer candidate data 141, 141,... Stored in the storage device 140 will be described in detail.
 {3.1.HOG特徴量の抽出}
 クラスタリング装置10は、記憶装置140に記憶された全ての転移候補データ141を取得する。クラスタリング装置10において、特徴抽出部11(図2参照)は、取得した全ての転移候補データ141の各々からHOG特徴量を抽出する(ステップS101)。これにより、全ての転移候補データ141の各々に対応する複数の転移候補特徴データ142が生成される。
{3.1. Extraction of HOG features}
The clustering device 10 acquires all the transfer candidate data 141 stored in the storage device 140. In the clustering apparatus 10, the feature extraction unit 11 (see FIG. 2) extracts HOG feature amounts from each of all acquired transfer candidate data 141 (step S101). Thereby, a plurality of transfer candidate feature data 142 corresponding to each of all transfer candidate data 141 is generated.
 特徴抽出部11は、転移候補データ141からHOG特徴量を抽出する条件を、例えば、以下のように設定する。転移候補データ141の色チャンネルは、グレースケールに設定される。転移候補データ141のサイズは、縦60ピクセル、横30ピクセルに設定される。 The feature extraction unit 11 sets conditions for extracting the HOG feature amount from the transfer candidate data 141 as follows, for example. The color channel of the transfer candidate data 141 is set to gray scale. The size of the transfer candidate data 141 is set to 60 pixels vertically and 30 pixels horizontally.
 HOG特徴量の抽出時のパラメータとして、セル、ブロック、勾配方向数が設定される。セルは、輝度の勾配方向を計算する単位領域である。ブロックは、輝度の勾配方向のヒストグラムを作成する単位領域である。勾配方向数は、0°以上180°以下の範囲における分割数である。 The cell, block, and the number of gradient directions are set as parameters when extracting the HOG feature value. A cell is a unit area for calculating a gradient direction of luminance. The block is a unit area for creating a histogram in the gradient direction of luminance. The number of gradient directions is the number of divisions in the range of 0 ° to 180 °.
 例えば、1セルの大きさは、縦5ピクセル、横5ピクセルに設定される。1ブロックの大きさは、縦3ピクセル、横3ピクセルに設定される。勾配方向数は、9に設定される。勾配方向数が9である場合、各セルの勾配方向は、20°おきに9方向に分割され、9方向のうちいずれかの方向に設定される。この場合、転移候補特徴データ142の次元数は、3240となる。 For example, the size of one cell is set to 5 pixels vertically and 5 pixels horizontally. The size of one block is set to 3 pixels vertically and 3 pixels horizontally. The number of gradient directions is set to 9. When the number of gradient directions is 9, the gradient direction of each cell is divided into 9 directions every 20 ° and set to any one of the 9 directions. In this case, the number of dimensions of the transfer candidate feature data 142 is 3240.
 {3.2.ルートノード35Rにおける分類可否の判断}
 図9は、分類部12により生成される分類木35の初期構造を示す図である。分類部12は、転移候補特徴データ142を分類するためのアルゴリズムとしてデンシティフォレストを用いる。デンシティフォレストを用いる場合、通常であれば、複数の分類木が生成されるが、分類部12は、1本の分類木のみを生成する。
{3.2. Determination of whether or not classification is possible at root node 35R}
FIG. 9 is a diagram illustrating an initial structure of the classification tree 35 generated by the classification unit 12. The classification unit 12 uses a density forest as an algorithm for classifying the transfer candidate feature data 142. When a density forest is used, a plurality of classification trees are normally generated, but the classification unit 12 generates only one classification tree.
 分類木35は、転移候補特徴データ142が分類部12により分類される過程で形成される。分類木35を構成するノードのうち、所定の条件を満たすノードが、事前ドメインに決定される。 The classification tree 35 is formed in the process in which the transfer candidate feature data 142 is classified by the classification unit 12. Among the nodes constituting the classification tree 35, a node satisfying a predetermined condition is determined as a prior domain.
 分類部12は、分類木35のルートノード35Rを作成する(ステップS102)。図9に示すノード35A及び35Bは、ステップS102が実行される時点では生成されない。分類部12は、特徴抽出部11により生成された全ての転移候補特徴データ142を、ルートノード35Rに入力する(ステップS103)。ルートノード35Rに入力される転移候補特徴データ142の数は、30000である。 The classification unit 12 creates a root node 35R of the classification tree 35 (step S102). The nodes 35A and 35B shown in FIG. 9 are not generated when step S102 is executed. The classification unit 12 inputs all the transfer candidate feature data 142 generated by the feature extraction unit 11 to the root node 35R (step S103). The number of transfer candidate feature data 142 input to the root node 35R is 30000.
 次に、事前ドメイン決定部14は、分類木35において、全てのノードを分類対象ノードとして選択したか否かを判断する(ステップS104)。ルートノード35Rが分類対象として選択されていないため(ステップS104においてNo)、事前ドメイン決定部14は、ルートノード35Rを分類対象に選択する(ステップS105)。 Next, the prior domain determination unit 14 determines whether or not all nodes have been selected as classification target nodes in the classification tree 35 (step S104). Since the root node 35R is not selected as a classification target (No in step S104), the prior domain determination unit 14 selects the root node 35R as a classification target (step S105).
 事前ドメイン決定部14は、ステップS106を実行して、ルートノード35Rが事前ドメインとしての条件を満たしているか否かを判断する。具体的には、事前ドメイン決定部14は、ルートノード35Rに属する転移候補特徴データ142の数を取得する。事前ドメイン決定部14は、取得した転移候補特徴データ142の数が予め設定された分類継続基準値より大きいか否かを判断する(ステップS106)。分類継続基準値は、例えば、9270に設定される。 The prior domain determination unit 14 executes step S106 to determine whether or not the root node 35R satisfies the condition as the prior domain. Specifically, the prior domain determination unit 14 acquires the number of transfer candidate feature data 142 belonging to the root node 35R. The prior domain determination unit 14 determines whether or not the number of acquired transfer candidate feature data 142 is larger than a preset classification continuation reference value (step S106). The classification continuation reference value is set to 9270, for example.
 ルートノード35Rに属する転移候補特徴データ142の数(30000)は、分類継続基準値(9270)より大きい(ステップS106においてYes)。この場合、ルートノード35Rに属する転移候補特徴データ142の数が多すぎるため、ルートノード35Rを事前ドメイン145として用いることができない。 The number (30000) of transfer candidate feature data 142 belonging to the root node 35R is larger than the classification continuation reference value (9270) (Yes in step S106). In this case, since the number of transfer candidate feature data 142 belonging to the root node 35R is too large, the root node 35R cannot be used as the prior domain 145.
 上述のように、1つの事前ドメインが全ての転移候補特徴データ142を含む場合、転移学習を導入した機械学習により生成される転移識別データ35の精度が低下する。ルートノード35Rは、分類継続基準値よりも多い転移候補特徴データ142を含むため、上記1つの事前ドメインと同様に、目標ドメイン150Bの領域から大きく離れた転移候補特徴データ142を数多く含む。この場合、事前ドメイン決定部14は、ルートノード35Rに属する転移候補特徴データ142を分類する条件の1つが満たされていると判断する。 As described above, when one prior domain includes all the transfer candidate feature data 142, the accuracy of the transfer identification data 35 generated by machine learning using transfer learning decreases. Since the root node 35R includes the transfer candidate feature data 142 that is larger than the classification continuation reference value, the root node 35R includes a large number of transfer candidate feature data 142 that are far away from the region of the target domain 150B, as in the above-described one prior domain. In this case, the prior domain determination unit 14 determines that one of the conditions for classifying the transfer candidate feature data 142 belonging to the root node 35R is satisfied.
 分類継続基準値は、特徴抽出部11により抽出される特徴量の次元数より大きい。例えば、本実施の形態では、分類継続基準値は、転移候補特徴データ142の次元数(3240)の3倍である9720に設定される。 The classification continuation reference value is larger than the number of dimensions of the feature amount extracted by the feature extraction unit 11. For example, in this embodiment, the classification continuation reference value is set to 9720, which is three times the number of dimensions (3240) of the transfer candidate feature data 142.
 次に、クラスタリング装置10は、ステップS107及びS108を実行して、ルートノード35Rの共分散に基づいて、ルートノード35Rに属する転移候補特徴データ142を分類する条件が満たされているか否かを判断する。 Next, the clustering apparatus 10 executes steps S107 and S108, and determines whether or not the condition for classifying the transfer candidate feature data 142 belonging to the root node 35R is satisfied based on the covariance of the root node 35R. To do.
 事前ドメイン決定部14は、分類対象のノード(ルートノード35R)の共分散13A(図2参照)の計算を分類部12に指示する。分類部12は、事前ドメイン決定部14の指示に応じて、分類対象のノード(ルートノード35R)に属する転移候補特徴データ142を分散計算部13に出力する。分散計算部13は、分類部12から出力された転移候補特徴データ142を用いて、分類対象のノードに属する転移候補特徴データ142の特徴量の共分散13Aを計算する。分散計算部13は、計算した共分散13Aを事前ドメイン決定部14に出力する。 The prior domain determination unit 14 instructs the classification unit 12 to calculate the covariance 13A (see FIG. 2) of the node to be classified (root node 35R). The classification unit 12 outputs the transfer candidate feature data 142 belonging to the node to be classified (root node 35R) to the variance calculation unit 13 in accordance with an instruction from the prior domain determination unit 14. The variance calculation unit 13 uses the transfer candidate feature data 142 output from the classification unit 12 to calculate the feature value covariance 13A of the transfer candidate feature data 142 belonging to the node to be classified. The variance calculation unit 13 outputs the calculated covariance 13A to the prior domain determination unit 14.
 事前ドメイン決定部14は、分散計算部13により計算された共分散13A(ルートノード35Rの共分散)が予め設定された分散基準値よりも大きいか否かを判断する(ステップS108)。共分散13Aは、分散基準値よりも大きいと仮定する(ステップS108においてYes)。 The prior domain determination unit 14 determines whether or not the covariance 13A (covariance of the root node 35R) calculated by the distribution calculation unit 13 is larger than a preset distribution reference value (step S108). It is assumed that the covariance 13A is larger than the dispersion reference value (Yes in step S108).
 上述のように、ルートノード35Rは全ての転移候補特徴データ142を含んでおり、全ての転移候補特徴データ142のばらつきは非常に大きい。この場合、共分散13Aは非常に大きいため、事前ドメイン決定部14は、ルートノード35Rに属する転移候補特徴データ142をさらに分類することができると判断する。事前ドメイン決定部14は、ルートノード35Rに属する転移候補特徴データ142の分類を分類部12に指示する。 As described above, the root node 35R includes all the transfer candidate feature data 142, and the variation of all the transfer candidate feature data 142 is very large. In this case, since the covariance 13A is very large, the prior domain determination unit 14 determines that the transfer candidate feature data 142 belonging to the root node 35R can be further classified. The prior domain determination unit 14 instructs the classification unit 12 to classify the transfer candidate feature data 142 belonging to the root node 35R.
 {3.3.転移候補特徴データ142の分類}
 分類部12は、事前ドメイン決定部14の指示に応じて、ルートノード35Rに属する転移候補特徴データ142を分類するために、ルートノード35Rの子ノードとして、ノード35A及び35Bを生成する(ステップS109)。
{3.3. Classification of transfer candidate feature data 142}
The classification unit 12 generates nodes 35A and 35B as child nodes of the root node 35R in order to classify the transfer candidate feature data 142 belonging to the root node 35R in accordance with an instruction from the prior domain determination unit 14 (step S109). ).
 分類部12は、ルートノード35Rに属する転移候補特徴データ142を、ステップS109で生成したノード35A及び35Bのいずれかに分類する(ステップS110)。具体的には、下記式(1)に示す目的関数Iに基づいて、転移候補特徴データ142の分類先のノードが決定される。 The classification unit 12 classifies the transfer candidate feature data 142 belonging to the root node 35R as one of the nodes 35A and 35B generated in step S109 (step S110). Specifically, the classification destination node of the transfer candidate feature data 142 is determined based on the objective function I shown in the following formula (1).
Figure JPOXMLDOC01-appb-M000001
               
Figure JPOXMLDOC01-appb-M000001
               
 式(1)において、Sは、親ノード(ルートノード35R)である。Sは、2つの子ノードのうち左側のノード(ノード35A)であり、Sは、2つの子ノードのうち右側のノード(ノード35B)である。Λ(S)は、親ノードの共分散であり、Λ(S)は、左側の子ノードの共分散であり、Λ(S)は、右側の子ノードの共分散である。 In Expression (1), S is a parent node (root node 35R). S L is the left node (node 35A) of the two child nodes, and S R is the right node (node 35B) of the two child nodes. Λ (S) is the covariance of the parent node, Λ (S L ) is the covariance of the left child node, and Λ (S R ) is the covariance of the right child node.
 分類部12は、式(1)に示す目的関数Iを計算するために、ルートノード35Rに属する転移候補特徴データ142を暫定的に分類する。具体的には、分類部12は、以下のようにして、転移候補特徴データ142の暫定的な分岐条件を設定する。 The classification unit 12 provisionally classifies the transfer candidate feature data 142 belonging to the root node 35R in order to calculate the objective function I shown in Expression (1). Specifically, the classification unit 12 sets a provisional branch condition for the transfer candidate feature data 142 as follows.
 転移候補特徴データ142の次元数は、3240である。つまり、転移候補特徴データ142は、3240個の特徴量を有する。分類部12は、3240個の特徴量のうち、k番目(0≦k≦3239)の特徴量をランダムに選択し、k番目の特徴量のしきい値をランダムに設定する。これにより、暫定的な分岐条件が設定される。 The number of dimensions of the transfer candidate feature data 142 is 3240. That is, the transfer candidate feature data 142 has 3240 feature amounts. The classification unit 12 randomly selects a k-th (0 ≦ k ≦ 3239) feature amount from among 3240 feature amounts, and randomly sets a threshold value for the k-th feature amount. Thereby, a provisional branch condition is set.
 分類部12は、設定した分岐条件に基づいて、ルートノード35Rに属する転移候補特徴データ142を、ノード35A又は35Bに暫定的に分類する。分散計算部13は、ノード35Aに分類された転移候補特徴データ142の共分散と、ノード35Bに暫定的に分類された転移候補特徴データ142の共分散とを計算する。ルートノード35Rの共分散は、ステップS105において既に計算されている。分類部12は、これら3つの共分散を用いて、ルートノード35Rの目的関数Iを計算する。 The classification unit 12 provisionally classifies the transfer candidate feature data 142 belonging to the root node 35R into the node 35A or 35B based on the set branch condition. The variance calculation unit 13 calculates the covariance of the transfer candidate feature data 142 classified into the node 35A and the covariance of the transfer candidate feature data 142 provisionally classified into the node 35B. The covariance of the root node 35R has already been calculated in step S105. The classification unit 12 calculates the objective function I of the root node 35R using these three covariances.
 分類部12は、ルートノード35Rにおいて複数の分岐条件を設定する。分類部12は、各分岐条件に対応する目的関数Iを計算するために、各分岐条件に基づいて転移候補特徴データ142を暫定的に分類する。暫定的に分類された転移候補特徴データ142に基づいて、各分岐条件における目的関数Iを計算する。分類部12は、計算した複数の目的関数Iの中で最大の目的関数Iを特定する。分類部12は、最大の目的関数Iに対応する分岐条件で、ルートノード35Rに属する転移候補特徴データ142を分類することを決定する。これにより、ルートノード35Rに属する転移候補特徴データ142は、ノード35A及び35Bのいずれかに分類される。 The classification unit 12 sets a plurality of branch conditions in the root node 35R. The classification unit 12 provisionally classifies the transfer candidate feature data 142 based on each branch condition in order to calculate the objective function I corresponding to each branch condition. Based on the tentatively classified transfer candidate feature data 142, the objective function I in each branch condition is calculated. The classification unit 12 specifies the maximum objective function I among the plurality of calculated objective functions I. The classification unit 12 determines to classify the transfer candidate feature data 142 belonging to the root node 35R under the branch condition corresponding to the maximum objective function I. Thereby, the transfer candidate feature data 142 belonging to the root node 35R is classified into one of the nodes 35A and 35B.
 図10は、ルートノード35Rに属する転移候補特徴データ142が分類された後における分類木35を示す図である。なお、転移候補特徴データ142のノード35A及び35Bへの分類が終了した時点では、ノード35Bの子ノード(ノード35C及び35D)は、生成されていない。 FIG. 10 is a diagram showing the classification tree 35 after the transfer candidate feature data 142 belonging to the root node 35R is classified. At the time when the classification of the transfer candidate feature data 142 into the nodes 35A and 35B is completed, the child nodes ( nodes 35C and 35D) of the node 35B are not generated.
 ルートノード35Rに属する30000個の転移候補特徴データ142を分類した結果、7000個の転移候補特徴データ142が、ノード35Aに分類される。23000個の転移候補特徴データ142が、ノード35Bに分類される。これにより、ルートノード35Rに属する転移候補特徴データ142を2つの子ノードに分類するステップS110が終了する。 As a result of classifying 30,000 transfer candidate feature data 142 belonging to the root node 35R, 7000 transfer candidate feature data 142 are classified into the node 35A. 23,000 pieces of transfer candidate feature data 142 are classified into the node 35B. Thereby, step S110 for classifying the transfer candidate feature data 142 belonging to the root node 35R into two child nodes ends.
 {3.4.ノード35Aにおける判断}
 ルートノード35Rに属する転移候補特徴データ142の分類が終了した後に、事前ドメイン決定部14は、分類対象として全てのノードが選択されたか否かを判断する(ステップS104)。事前ドメイン決定部14は、選択されていないノード35A及び35Bが存在するため(ステップS104において、No)、次の判断対象となるノードを前順で選択する(ステップS105)。具体的には、分類部12は、ノード35Aを選択する。
{3.4. Determination at node 35A}
After the classification of the transfer candidate feature data 142 belonging to the root node 35R is completed, the prior domain determination unit 14 determines whether all the nodes have been selected as the classification target (step S104). Since there are unselected nodes 35A and 35B (No in Step S104), the prior domain determination unit 14 selects the next node to be determined in the previous order (Step S105). Specifically, the classification unit 12 selects the node 35A.
 図10に示すように、ノード35Aに属する転移候補特徴データ142の数は、7000である。ノード35Aに属する転移候補特徴データ142の数が、分類継続基準値(9270)以下であるため(ステップS106においてNo)、事前ドメイン決定部14は、ノード35Aを事前ドメイン145に決定する(ステップS111)。つまり、事前ドメイン決定部14は、ノード35Aに属する転移候補特徴データ142をさらに分類しないことを決定し、ノード35Aをリーフノードに設定する。 As shown in FIG. 10, the number of transfer candidate feature data 142 belonging to the node 35A is 7000. Since the number of transfer candidate feature data 142 belonging to the node 35A is equal to or less than the classification continuation reference value (9270) (No in step S106), the prior domain determination unit 14 determines the node 35A as the prior domain 145 (step S111). ). That is, the prior domain determination unit 14 determines not to further classify the transfer candidate feature data 142 belonging to the node 35A, and sets the node 35A as a leaf node.
 {3.5.ノード35Bにおける判断}
 次に、事前ドメイン決定部14は、ノード35Bを判断対象として選択する(ステップS105)。ノード35Bに属する転移候補特徴データ142の数は、23000であり、分類継続基準値(9270)よりも大きい(ステップS106においてYes)。また、ノード35Bの共分散は、分散基準値よりも大きいと仮定する(ステップS108においてYes)。この場合、事前ドメイン決定部14は、ノード35Bに属する転移候補特徴データ142をさらに分類することを決定する。
{3.5. Determination in node 35B}
Next, the prior domain determination unit 14 selects the node 35B as a determination target (step S105). The number of transfer candidate feature data 142 belonging to the node 35B is 23000, which is larger than the classification continuation reference value (9270) (Yes in step S106). Further, it is assumed that the covariance of the node 35B is larger than the dispersion reference value (Yes in step S108). In this case, the prior domain determination unit 14 determines to further classify the transfer candidate feature data 142 belonging to the node 35B.
 分類部12は、ノード35Bに対する事前ドメイン決定部14の決定に応じて、ノード35Bの子ノード(ノード35C及び35D)を生成する(ステップS109)。分類部12は、ルートノード35Rにおける転移候補特徴データ142の分類と同様に、ノード35Bに属する転移候補特徴データ142を、ノード35C及び35Dのいずれかに分類する(ステップS110)。 The classification unit 12 generates child nodes ( nodes 35C and 35D) of the node 35B in response to the determination by the prior domain determination unit 14 for the node 35B (step S109). The classification unit 12 classifies the transfer candidate feature data 142 belonging to the node 35B into one of the nodes 35C and 35D, similarly to the classification of the transfer candidate feature data 142 in the root node 35R (step S110).
 図11は、事前ドメイン生成処理(ステップS11)が終了した後の分類木35を示す図である。図11に示すように、ノード35Bに属する転移候補特徴データ142を、ノード35C及び35Dに分類した結果、15000個の転移候補特徴データ142が、ノード35Cに分類され、8000個の転移候補特徴データ142が、ノード35Dに分類される。 FIG. 11 is a diagram showing the classification tree 35 after the advance domain generation process (step S11) is completed. As shown in FIG. 11, as a result of classifying the transfer candidate feature data 142 belonging to the node 35B into the nodes 35C and 35D, 15000 transfer candidate feature data 142 are classified into the node 35C, and 8000 transfer candidate feature data. 142 is classified as node 35D.
 ノード35Cに属する転移候補特徴データ142の数は、分類継続基準値(9270)よりも大きい(ステップS106においてYes)。また、ノード35Cの共分散が分散基準値よりも大きいと仮定する(ステップS108においてYes)。この場合、事前ドメイン決定部14は、ノード35Cに属する転移候補特徴データ142をさらに分類することを決定する。ノード35Cに属する転移候補特徴データ142の分類については、後述する。 The number of transfer candidate feature data 142 belonging to the node 35C is larger than the classification continuation reference value (9270) (Yes in step S106). Further, it is assumed that the covariance of the node 35C is larger than the dispersion reference value (Yes in step S108). In this case, the prior domain determination unit 14 determines to further classify the transfer candidate feature data 142 belonging to the node 35C. The classification of the transfer candidate feature data 142 belonging to the node 35C will be described later.
 一方、ノード35Dに属する転移候補特徴データ142の数が分類継続基準値以下であるため(ステップS106においてNo)、事前ドメイン決定部14は、ノード35Dを事前ドメインに決定する。 On the other hand, since the number of transfer candidate feature data 142 belonging to the node 35D is equal to or less than the classification continuation reference value (No in step S106), the prior domain determining unit 14 determines the node 35D as the prior domain.
 {3.6.転移候補特徴データ142の分類の終了}
 分類部12は、ノード35Cの子ノードとしてノード35E及び35Fを生成し(ステップS109)、ノード35Cに属する転移候補特徴データ142をノード35E及び35Fに分類する(ステップS110)。
{3.6. End of Classification of Transfer Candidate Feature Data 142}
The classification unit 12 generates nodes 35E and 35F as child nodes of the node 35C (step S109), and classifies the transfer candidate feature data 142 belonging to the node 35C into nodes 35E and 35F (step S110).
 ノード35Eに属する転移候補特徴データ142の数は、500であり、分類継続基準値以下である(ステップS106においてNo)。このため、事前ドメイン決定部14は、ノード35Eを事前ドメインに決定する(ステップS111)。 The number of transfer candidate feature data 142 belonging to the node 35E is 500, which is below the classification continuation reference value (No in step S106). For this reason, the prior domain determination unit 14 determines the node 35E as the prior domain (step S111).
 ノード35Fに属する転移候補特徴データ142の数は、14500であり、分類継続基準値よりも大きい(ステップS106においてYes)。一方、ノード35Fの共分散が、分散基準値よりも小さいと仮定する(ステップS108においてNo)。この場合、事前ドメイン決定部14は、ノード35Fに属する転移候補特徴データ142の特徴量の分布のばらつきが非常に小さいと判断する。例えば、ノード35Fに属する転移候補特徴データ142の大半が、同一の画像から生成される場合が考えられる。この場合、事前ドメイン決定部14は、ノード35Fに含まれる転移候補特徴データ142をさらに分類することができないと判断し、ノード35Fを事前ドメインに決定する(ステップS111)。これにより、分類木35を構成する全てのノードを判断対象として選択したため(ステップS104においてYes)、クラスタリング装置10は、ステップS112に進む。 The number of transfer candidate feature data 142 belonging to the node 35F is 14500, which is larger than the classification continuation reference value (Yes in step S106). On the other hand, it is assumed that the covariance of the node 35F is smaller than the dispersion reference value (No in step S108). In this case, the prior domain determination unit 14 determines that the variation in the feature amount distribution of the transfer candidate feature data 142 belonging to the node 35F is very small. For example, the transfer candidate feature data 142 belonging to the node 35F may be generated from the same image. In this case, the prior domain determination unit 14 determines that the transfer candidate feature data 142 included in the node 35F cannot be further classified, and determines the node 35F as a prior domain (step S111). Thereby, since all the nodes constituting the classification tree 35 are selected as the determination targets (Yes in Step S104), the clustering apparatus 10 proceeds to Step S112.
 {3.7.事前ドメインの除外}
 事前ドメイン決定部14は、事前ドメインに決定された各ノードが有する転移候補特徴データ142の数を確認する。事前ドメイン決定部14は、予め設定された破棄基準値以下の数の転移候補特徴データ142を有するノードがある場合、このノードを事前ドメインから除外する(ステップS112)。破棄基準値は、例えば、転移候補特徴データ142の次元数(3240)に設定される。具体的には、事前ドメインに決定されたノード35Eは、転移候補特徴データ142の数が500であるため、事前ドメインから除外される。
{3.7. Pre-domain exclusion}
The prior domain determination unit 14 checks the number of transfer candidate feature data 142 included in each node determined as the prior domain. If there is a node having the number of transfer candidate feature data 142 equal to or less than a preset discard reference value, the prior domain determination unit 14 excludes this node from the prior domain (step S112). For example, the discard reference value is set to the number of dimensions (3240) of the transfer candidate feature data 142. Specifically, the node 35E determined as the prior domain is excluded from the prior domain because the number of transfer candidate feature data 142 is 500.
 上述のように、学習に用いられる数のデータが次元数よりも少ない場合、生成される転移識別データ35の精度が低下する可能性がある。 As described above, when the number of data used for learning is less than the number of dimensions, the accuracy of the generated transfer identification data 35 may be reduced.
 分類継続基準値は、特徴抽出部11により抽出される特徴量の次元数より大きい。機械学習において、学習に用いられるデータの数が学習に用いられるデータの次元数よりも少ない場合、学習に用いられるデータの特徴の学習結果が過大に評価され、転移識別データ35の精度が低下する。このため、本実施の形態では、破棄基準値が、転移候補特徴データ142の次元数である3240に設定される。これにより、事前ドメイン145に属する転移候補特徴データ142の数が、転移候補特徴データ142の次元数より少なくなることを防ぐことができる。 The classification continuation reference value is larger than the number of dimensions of the feature amount extracted by the feature extraction unit 11. In machine learning, when the number of data used for learning is less than the number of dimensions of data used for learning, the learning result of the characteristics of the data used for learning is overestimated, and the accuracy of the transfer identification data 35 decreases. . For this reason, in this embodiment, the discard reference value is set to 3240, which is the number of dimensions of the transfer candidate feature data 142. Thereby, it is possible to prevent the number of transfer candidate feature data 142 belonging to the prior domain 145 from becoming smaller than the number of dimensions of the transfer candidate feature data 142.
 また、ある事前ドメインに含まれる転移候補特徴データ142の数が、破棄基準値よりも少ない場合、この事前ドメインに含まれる転移候補特徴データ142は、検出対象の特徴を有していない可能性が高い。 In addition, when the number of transfer candidate feature data 142 included in a certain prior domain is smaller than the discard reference value, the transfer candidate feature data 142 included in the previous domain may not have the detection target feature. high.
 例えば、インターネット上で人物の画像を収集する際に、人物以外の物が撮影された画像が転移候補データ141として誤って取得される場合がある。誤って収集された転移候補データ141から生成された転移候補特徴データ142は、人物の特徴を有する転移候補特徴データ142と異なる特徴を有し、転移学習に有効でない。また、検索条件が人物を撮影した画像であるため、人物以外の物が撮影された画像が転移候補データ141の集合において占める割合は、非常に小さいと想定される。 For example, when collecting images of a person on the Internet, an image in which an object other than a person is taken may be erroneously acquired as transfer candidate data 141. Transfer candidate feature data 142 generated from transfer candidate data 141 collected in error has different features from transfer candidate feature data 142 having human characteristics, and is not effective for transfer learning. Further, since the search condition is an image obtained by photographing a person, it is assumed that a ratio of an image obtained by photographing an object other than a person in the set of transfer candidate data 141 is very small.
 従って、あるノードに属する転移候補特徴データ142の数が破棄基準値よりも少ない場合、このノードは、誤って収集された転移候補データ141から生成された転移候補特徴データ142により構成されると考えられる。事前ドメイン決定部14は、破棄基準値以下の数の転移候補特徴データ142を有するノードを、事前ドメインから除外する。 Therefore, when the number of transfer candidate feature data 142 belonging to a certain node is smaller than the discard reference value, it is considered that this node is constituted by transfer candidate feature data 142 generated from transfer candidate data 141 collected in error. It is done. The prior domain determination unit 14 excludes a node having the number of transfer candidate feature data 142 equal to or less than the discard reference value from the prior domain.
 この結果、図11に示す分類木35において、ノード35A、35D及び35Fが事前ドメイン145に決定される。クラスタリング装置10は、決定された3つの事前ドメイン145を事前ドメイン評価装置20及び選択学習装置30に出力する。 As a result, the nodes 35A, 35D, and 35F are determined as the pre-domain 145 in the classification tree 35 shown in FIG. The clustering apparatus 10 outputs the determined three prior domains 145 to the prior domain evaluation apparatus 20 and the selection learning apparatus 30.
 以上説明したように、クラスタリング装置10は、転移候補データ141の各々から特徴を抽出して複数の転移候補特徴データ142を生成し、分類木35を作成する過程で、複数の転移候補特徴データ142を分類木35のノードに分類する。クラスタリング装置10は、ノードに属する転移候補特徴データ142の数が分類継続基準値以下であるか、ノードに属する転移候補特徴データ142の共分散が分散基準値以下である場合、このノードを事前ドメインに決定する。これにより、互いに類似する、又は共通する特徴を有する転移候補特徴データ142により構成される事前ドメインを生成することができる。 As described above, the clustering apparatus 10 extracts features from each of the transfer candidate data 141 to generate a plurality of transfer candidate feature data 142, and in the process of creating the classification tree 35, the plurality of transfer candidate feature data 142. Are classified into nodes of the classification tree 35. When the number of transfer candidate feature data 142 belonging to the node is equal to or smaller than the classification continuation reference value, or the covariance of the transfer candidate feature data 142 belonging to the node is equal to or less than the dispersion reference value, the clustering apparatus 10 To decide. As a result, it is possible to generate a prior domain including transfer candidate feature data 142 having features that are similar or common to each other.
 {4.事前ドメイン評価処理(ステップS12)}
 図12は、図5に示す事前ドメイン評価処理(ステップS12)のフローチャートである。事前ドメイン評価装置20が、ステップS12に示す処理を開始する際に、試行転移識別部231が試行転移学習部23内に生成されておらず、比較識別部241が比較学習部24内に生成されていない。
{4. Prior domain evaluation process (step S12)}
FIG. 12 is a flowchart of the prior domain evaluation process (step S12) shown in FIG. When the prior domain evaluation device 20 starts the process shown in step S12, the trial transfer identification unit 231 is not generated in the trial transfer learning unit 23, and the comparison identification unit 241 is generated in the comparison learning unit 24. Not.
 {4.1.目標ドメイン150Bの生成}
 事前ドメイン評価装置20は、クラスタリング装置10により生成された事前ドメイン145を取得する。具体的には、事前ドメイン評価装置20は、図11に示す分類木35を作成する過程で生成された3つの事前ドメイン145(図11に示すノード35A、35D、35F)を取得する。事前ドメイン評価装置20は、取得した事前ドメイン145を一時記憶部21に記憶する(ステップS201)。
{4.1. Generation of target domain 150B}
The prior domain evaluation device 20 acquires the prior domain 145 generated by the clustering device 10. Specifically, the prior domain evaluation apparatus 20 acquires three prior domains 145 ( nodes 35A, 35D, and 35F illustrated in FIG. 11) generated in the process of creating the classification tree 35 illustrated in FIG. The prior domain evaluation device 20 stores the acquired prior domain 145 in the temporary storage unit 21 (step S201).
 以下、ノード35A、35D及び35Fを、それぞれ「事前ドメイン35A」、「事前ドメイン35D」、「事前ドメイン35F」と記載する。 Hereinafter, the nodes 35A, 35D, and 35F are referred to as “pre-domain 35A”, “pre-domain 35D”, and “pre-domain 35F”, respectively.
 特徴抽出部22(図3参照)が、記憶装置150に記憶された目標ドメイン150Aを取得する。特徴抽出部22は、取得した目標ドメイン150Aに含まれる学習用データ151の各々から特徴量を抽出することにより、学習用データ151の各々に対応する複数の学習用特徴データ152を生成する(ステップS202)。これにより、複数の学習用特徴データ152により構成される目標ドメイン150Bが生成される。特徴抽出部22は、生成した目標ドメイン150Bを試行転移学習部23に出力する。 The feature extraction unit 22 (see FIG. 3) acquires the target domain 150A stored in the storage device 150. The feature extraction unit 22 generates a plurality of pieces of learning feature data 152 corresponding to each of the learning data 151 by extracting feature amounts from each of the learning data 151 included in the acquired target domain 150A (step S1). S202). As a result, a target domain 150B composed of a plurality of learning feature data 152 is generated. The feature extraction unit 22 outputs the generated target domain 150B to the trial transfer learning unit 23.
 特徴抽出部22は、特徴抽出部11(図2参照)が転移候補データ141から転移候補特徴データ142を生成する時と同じ条件で、特徴量の抽出を行う。従って、学習用特徴データ152の次元数は、転移候補特徴データ142の次元数と同じ3240である。この理由については後述する。 The feature extraction unit 22 extracts feature amounts under the same conditions as when the feature extraction unit 11 (see FIG. 2) generates the transfer candidate feature data 142 from the transfer candidate data 141. Therefore, the number of dimensions of the learning feature data 152 is 3240, which is the same as the number of dimensions of the transfer candidate feature data 142. The reason for this will be described later.
 事前ドメイン評価装置20は、一時記憶部21に記憶された事前ドメイン145のうち、転移学習に有効か否かを評価する対象となる事前ドメインを1つ選択する(ステップS203)。具体的には、一時記憶部21に記憶されている事前ドメイン35A、35D及び35Fのうち、最初に事前ドメイン35Aが選択される。 The pre-domain evaluation device 20 selects one pre-domain to be evaluated from the pre-domain 145 stored in the temporary storage unit 21 as to whether it is effective for transfer learning (Step S203). Specifically, the advance domain 35A is first selected from the advance domains 35A, 35D, and 35F stored in the temporary storage unit 21.
 {4.2.比較学習及び試行転移学習}
 比較学習部24は、ステップS203において選択された事前ドメイン35Aを入力する。比較学習部24は、入力した事前ドメイン35Aを学習する(ステップS204)。比較学習部24の学習アルゴリズムは、転移学習が導入されていないランダムフォレストである。比較学習部24は、ステップS204を実行することにより、事前ドメイン35Aの学習結果を反映した比較識別部241を生成する。比較識別部241は、複数の決定木の構造を示すデータ群である。
{4.2. Comparative learning and trial transfer learning}
The comparative learning unit 24 inputs the prior domain 35A selected in step S203. The comparative learning unit 24 learns the input prior domain 35A (step S204). The learning algorithm of the comparative learning unit 24 is a random forest in which transfer learning is not introduced. The comparison learning unit 24 generates a comparison identification unit 241 that reflects the learning result of the prior domain 35A by executing step S204. The comparison identification unit 241 is a data group indicating the structure of a plurality of decision trees.
 試行転移学習部23は、特徴抽出部22から目標ドメイン150Bを取得し、一時記憶部21から事前ドメイン35Aを取得する。試行転移学習部23は、入力した目標ドメイン150B及び事前ドメイン35Aを用いて、転移学習を導入した機械学習を行う(ステップS205)。試行転移学習部23の学習アルゴリズムは、転移学習を導入したランダムフォレストである。試行転移学習部23は、ステップS205を実行することにより、目標ドメイン150A及び事前ドメイン35Aの学習結果を反映した試行転移識別部231を生成する。試行転移識別部231は、複数の決定木の構成を示すデータ群である。試行転移学習部23において用いられる学習アルゴリズム及びドメインが比較学習部24のものと異なるため、試行転移識別部231の構造は、比較識別部241の構造と異なる。 The trial transfer learning unit 23 acquires the target domain 150B from the feature extraction unit 22, and acquires the prior domain 35A from the temporary storage unit 21. The trial transfer learning unit 23 performs machine learning using transfer learning using the input target domain 150B and the prior domain 35A (step S205). The learning algorithm of the trial transfer learning unit 23 is a random forest in which transfer learning is introduced. The trial transfer learning unit 23 generates a trial transfer identification unit 231 reflecting the learning results of the target domain 150A and the prior domain 35A by executing step S205. The trial transfer identification unit 231 is a data group indicating the configuration of a plurality of decision trees. Since the learning algorithm and domain used in the trial transfer learning unit 23 are different from those of the comparison learning unit 24, the structure of the trial transfer identification unit 231 is different from the structure of the comparison identification unit 241.
 {4.3.事前ドメインの評価(ステップS206)}
 判断部25は、試行転移学習部23により生成された試行転移識別部231と比較学習部24により生成された比較識別部241とを用いて、評価対象の事前ドメイン35Aが転移学習に有効であるか否かを判断する(ステップS206)。
{4.3. Prior domain evaluation (step S206)}
The determination unit 25 uses the trial transfer identification unit 231 generated by the trial transfer learning unit 23 and the comparison identification unit 241 generated by the comparison learning unit 24 so that the prior domain 35A to be evaluated is effective for transfer learning. Whether or not (step S206).
 判断部25は、転移学習の有効性を判断するために、競合値251A及び信頼度252Aの2種類のパラメータを計算する。判断部25は、信頼度252Aを計算する場合、サンプルグループに含まれるデータの試行転移識別部231による識別結果を利用する。ここで、サンプルグループとは、目標ドメイン150Bに含まれる学習用特徴データ152と、評価対象である事前ドメイン35Aに含まれる転移候補特徴データ142とを合わせた集合である。以下、サンプルグループに含まれるデータを、「サンプルデータ」と記載する。判断部25は、競合値251Aを計算する場合、試行転移識別部231による識別結果に加えて、比較識別部241による識別結果を利用する。 The determination unit 25 calculates two types of parameters, a competitive value 251A and a reliability 252A, in order to determine the effectiveness of transfer learning. When calculating the reliability 252A, the determination unit 25 uses the identification result by the trial transfer identification unit 231 of the data included in the sample group. Here, the sample group is a set of the learning feature data 152 included in the target domain 150B and the transfer candidate feature data 142 included in the prior domain 35A to be evaluated. Hereinafter, data included in the sample group is referred to as “sample data”. When calculating the competitive value 251A, the determination unit 25 uses the identification result by the comparison identification unit 241 in addition to the identification result by the trial transfer identification unit 231.
 {4.3.1.競合値251Aの計算}
 競合値計算部251は、試行転移識別部231により生成される各画像のラベルと、比較識別部241により生成される各画像のラベルとの比較結果に基づいて、競合値251Aを計算する。
{4.3.1. Calculation of competitive value 251A}
The competition value calculation unit 251 calculates the competition value 251A based on the comparison result between the label of each image generated by the trial transfer identification unit 231 and the label of each image generated by the comparison identification unit 241.
 試行転移識別部231は、サンプルグループに含まれるサンプルデータのうち、いずれか1つを入力する。試行転移識別部231は、サンプルデータに対して人物の識別処理を行い、識別結果を示すラベル23Aを生成する。ラベル23Aの値は、例えば、0又は1である。ラベル23Aが0である場合、ラベル23Aは、サンプルデータが人物の特徴を含まないことを示す。ラベル23Aが1である場合、ラベル23Aは、サンプルデータが人物の特徴を含むことを示す。試行転移識別部231は、生成したラベル23Aを競合値計算部251に出力する。 The trial transfer identification unit 231 inputs any one of the sample data included in the sample group. The trial transfer identification unit 231 performs a person identification process on the sample data, and generates a label 23A indicating the identification result. The value of the label 23A is 0 or 1, for example. When the label 23A is 0, the label 23A indicates that the sample data does not include a human feature. When the label 23A is 1, the label 23A indicates that the sample data includes a human feature. The trial transfer identification unit 231 outputs the generated label 23A to the conflict value calculation unit 251.
 なお、試行転移識別部231は、サンプルデータの識別結果として、ラベル23Aだけでなく、ラベル23Aの確からしさを示す確度23Bを計算する。確度23Bは、後述する信頼度252Aの計算に用いられる。 Note that the trial transfer identification unit 231 calculates not only the label 23A but also the accuracy 23B indicating the probability of the label 23A as the identification result of the sample data. The accuracy 23B is used for calculation of the reliability 252A described later.
 比較識別部241は、試行転移識別部231に入力されたサンプルデータと同じデータを入力する。比較識別部241は、サンプルデータに対して人物の識別処理を行い、識別結果を示すラベル24Aを生成する。ラベル24Aの値は、ラベル23Aと同様に、0又は1である。ラベル24Aが0である場合、ラベル24Aは、サンプルデータが人物の特徴を含まないことを示す。ラベル24Aが1である場合、ラベル24Aは、サンプルデータが人物の特徴を含むことを示す。比較識別部241は、生成したラベル24Aを競合値計算部251に出力する。 The comparison identification unit 241 inputs the same data as the sample data input to the trial transfer identification unit 231. The comparison and identification unit 241 performs a person identification process on the sample data, and generates a label 24A indicating the identification result. The value of the label 24A is 0 or 1 like the label 23A. When the label 24A is 0, the label 24A indicates that the sample data does not include a human feature. When the label 24A is 1, the label 24A indicates that the sample data includes a human feature. The comparison identification unit 241 outputs the generated label 24A to the conflict value calculation unit 251.
 競合値計算部251は、サンプルデータから生成されるラベル23A及び24Aを用いて、競合値251Aを計算する。競合値251Aは、下記式(2)により計算される。 The competitive value calculation unit 251 calculates the competitive value 251A using the labels 23A and 24A generated from the sample data. The competition value 251A is calculated by the following equation (2).
Figure JPOXMLDOC01-appb-M000002
               
Figure JPOXMLDOC01-appb-M000002
               
 式(2)において、Ec1は、競合値251Aを示す。Xは、サンプルグループを示す。xは、サンプルグループを構成する要素(サンプルデータ)を示す。M(x)は、要素xから生成されたラベル24Aを示す。T(x)は、要素xから生成されたラベル23Aを示す。[M(x)≠T(x)]は、ラベル24Aとラベル23Aとが一致しなかったサンプルデータの数を示す。|X|は、サンプルグループXを構成する要素の数である。 In the formula (2), E c1 indicates the competition value 251A. X indicates a sample group. x represents an element (sample data) constituting the sample group. M (x) indicates a label 24A generated from the element x. T (x) indicates a label 23A generated from the element x. [M (x) ≠ T (x)] indicates the number of sample data in which the label 24A and the label 23A do not match. | X | is the number of elements constituting the sample group X.
 式(2)により計算される競合値251Aは、同一のサンプルデータから生成されるラベル23A及びラベル24Aが一致しない確率を示す。競合値251Aは、0以上1以下の数値である。競合値251Aが0に近づくほど、競合値251Aは、転移学習における事前ドメイン35Aの有効性が高いことを示す。一方、競合値251Aが1に近づくほど。転移学習における事前ドメイン35Aの有効性が低いことを示す。 The competition value 251A calculated by the equation (2) indicates the probability that the label 23A and the label 24A generated from the same sample data do not match. The competitive value 251A is a numerical value of 0 or more and 1 or less. The closer the competition value 251A is to 0, the higher the competition value 251A is, the higher the effectiveness of the prior domain 35A in transfer learning. On the other hand, the closer the competitive value 251A approaches 1. It shows that the effectiveness of the prior domain 35A in transfer learning is low.
 目標ドメイン150Bに含まれる学習用特徴データ52と、評価対象の事前ドメイン35Aに含まれる転移候補特徴データ142との相違点が多い場合、事前ドメイン35Aは、転移学習に有効ではない。この場合、競合値251Aは、1に近づく。以下、その理由を説明する。 When there are many differences between the learning feature data 52 included in the target domain 150B and the transfer candidate feature data 142 included in the evaluation target previous domain 35A, the previous domain 35A is not effective for transfer learning. In this case, the conflict value 251A approaches 1. The reason will be described below.
 上述のように、比較学習部24は、事前ドメイン35Aのみを学習する。このため、事前ドメイン35Aの学習結果のみが、比較識別部241に反映される。 As described above, the comparative learning unit 24 learns only the prior domain 35A. For this reason, only the learning result of the prior domain 35 </ b> A is reflected in the comparison and identification unit 241.
 一方、試行転移識別部231が、目標ドメイン150A及び事前ドメイン35Aを用いて転移学習を導入した機械学習を実行している。しかし、目標ドメイン150Bに含まれる学習用特徴データ152と、評価対象の事前ドメイン35Aに含まれる転移候補特徴データ142との相違点が多い場合、事前ドメイン35Aに含まれる転移候補特徴データ142の学習結果が、学習用特徴データ152の学習結果に反映されない。つまり、試行転移識別部231と、比較識別部241とは、互いに異なるドメインを学習することにより生成されたと考えることができる。この場合、試行転移識別部231と、比較識別部241との識別結果が一致しない場合が増加し、競合値251Aが増加する。従って、競合値251Aに基づいて、事前ドメイン35Aが転移学習に有効であるか否かを判断することが可能となる。 On the other hand, the trial transfer identification unit 231 executes machine learning in which transfer learning is introduced using the target domain 150A and the prior domain 35A. However, when there are many differences between the learning feature data 152 included in the target domain 150B and the transfer candidate feature data 142 included in the evaluation target prior domain 35A, the transfer candidate feature data 142 included in the previous domain 35A is learned. The result is not reflected in the learning result of the learning feature data 152. That is, it can be considered that the trial transfer identification unit 231 and the comparison identification unit 241 are generated by learning different domains. In this case, the case where the identification results of the trial transfer identification unit 231 and the comparison identification unit 241 do not match increases, and the competition value 251A increases. Therefore, it is possible to determine whether or not the prior domain 35A is effective for transfer learning based on the competitive value 251A.
 {4.3.2.信頼度の計算}
 信頼度計算部252は、試行転移識別部231により生成される各画像のラベル23A及び確度23Bに基づいて、信頼度252Aを計算する。信頼度252Aの計算に当たり、比較識別部241によるサンプルデータの識別結果は使用されない。
{4.3.2. Reliability calculation}
The reliability calculation unit 252 calculates the reliability 252A based on the label 23A and the accuracy 23B of each image generated by the trial transfer identification unit 231. In the calculation of the reliability 252A, the identification result of the sample data by the comparison / identification unit 241 is not used.
 試行転移識別部231は、上述のように、サンプルデータに対する人物の識別結果を示すラベル23Aと、ラベル23Aの確からしさを示す確度23Bを生成する。確度23Bは、0以上1以下の値であり、確度23Bが1に近づくほど、ラベル23Aが誤りである可能性が小さくなる。 As described above, the trial transfer identification unit 231 generates the label 23A indicating the identification result of the person with respect to the sample data and the accuracy 23B indicating the likelihood of the label 23A. The accuracy 23B is a value of 0 or more and 1 or less, and the closer the accuracy 23B is to 1, the smaller the possibility that the label 23A is erroneous.
 信頼度計算部252は、試行転移識別部231から各サンプルデータのラベル23A及び確度23Bを入力する。信頼度計算部252は、入力した各サンプルデータのラベル23A及び確度23Bを用いて、下記式(3)を計算することにより信頼度252Aを計算する。 The reliability calculation unit 252 inputs the label 23A and the accuracy 23B of each sample data from the trial transfer identification unit 231. The reliability calculation unit 252 calculates the reliability 252A by calculating the following equation (3) using the label 23A and the accuracy 23B of each input sample data.
Figure JPOXMLDOC01-appb-M000003
               
Figure JPOXMLDOC01-appb-M000003
               
 上記式(3)において、Ec2は、信頼度252Aを示す。xは、上記式(2)と同様に、サンプルグループXを構成する要素(サンプルデータ)を示す。|X|は、サンプルグループXの要素数である。P(x)は、要素xの確度23Bを示す。P(x)は、サンプルデータが試行転移識別部231を構成する各決定木に入力された場合において、サンプルデータが各決定木において到達したリーフノードに設定されたクラスの確率の平均である。T(x)は、要素xのラベル23Aを示す。yは、人物の存在を示すラベル(y=1)である。つまり、信頼度252Aは、ラベル23Aがラベルyと一致する場合に算出された確度23Bの合計値を、サンプルグループXの要素数で除算した値である。信頼度252Aは、0以上1以下の値であり、1に近いほど、転移学習における事前ドメイン35Aの有効性が高いことを示す。 In the above formula (3), E c2 indicates the reliability 252A. x represents an element (sample data) constituting the sample group X, similarly to the above formula (2). | X | is the number of elements of the sample group X. P T (x) indicates the accuracy 23B of the element x. P T (x) is the average of the probabilities of the classes set in the leaf nodes that the sample data has reached in each decision tree when the sample data is input to each decision tree constituting the trial transfer identification unit 231. . T (x) indicates the label 23A of the element x. y is a label (y = 1) indicating the presence of a person. That is, the reliability 252A is a value obtained by dividing the total value of the accuracy 23B calculated when the label 23A matches the label y by the number of elements of the sample group X. The reliability 252A is a value of 0 or more and 1 or less, and the closer to 1, the higher the effectiveness of the prior domain 35A in transfer learning.
 事前ドメイン35Aの転移候補特徴データ142が、学習用特徴データ152の特徴量と類似する特徴量を有している場合、試行転移学習部23は、試行転移学習により、転移候補特徴データ142の学習結果を学習用特徴データ152の学習結果に転移させる。試行転移識別部231には、学習用特徴データ152と、事前ドメイン35Aの転移候補特徴データ142との学習結果が反映されている。試行転移識別部231は、試行転移学習に用られたサンプルグループの各データに対して識別処理を行った場合、ラベル23Aは1となり、その確度23Bも1に近づくと考えられる。従って、学習用特徴データ152と事前ドメイン35Aの転移候補特徴データ142とが類似している場合(事前ドメイン35Aが転移学習において有効である場合)、信頼度252Aは、1に近づく。 When the transfer candidate feature data 142 of the prior domain 35A has a feature amount similar to the feature amount of the learning feature data 152, the trial transfer learning unit 23 learns the transfer candidate feature data 142 by trial transfer learning. The result is transferred to the learning result of the learning feature data 152. The trial transfer identification unit 231 reflects the learning results of the learning feature data 152 and the transfer candidate feature data 142 of the prior domain 35A. When the trial transfer identification unit 231 performs identification processing on each data of the sample group used for the trial transfer learning, the label 23A is 1 and the accuracy 23B is considered to approach 1. Therefore, when the learning feature data 152 is similar to the transfer candidate feature data 142 of the previous domain 35A (when the previous domain 35A is effective in transfer learning), the reliability 252A approaches 1.
 {4.3.3.転移評価部253による事前ドメインの評価}
 転移評価部253は、競合値251A及び信頼度252Aを入力する。転移評価部253は、入力した競合値251A及び信頼度252Aに基づいて、転移学習における事前ドメイン35Aの有効性を評価する。
{4.3.3. Evaluation of prior domain by transfer evaluation unit 253}
The transfer evaluation unit 253 inputs the competitive value 251A and the reliability 252A. The transfer evaluation unit 253 evaluates the effectiveness of the prior domain 35A in transfer learning based on the input competitive value 251A and reliability 252A.
 転移評価部253は、下記の式(4)を用いて、総合評価値を計算する。 The transfer evaluation unit 253 calculates a comprehensive evaluation value using the following equation (4).
Figure JPOXMLDOC01-appb-M000004
               
Figure JPOXMLDOC01-appb-M000004
               
 式(4)において、Eは、競合値251A及び信頼度252Aから得られる総合評価値である。事前ドメイン35Aの転移学習における有効性が低下するにつれて、競合値251Aは増加する。一方、信頼度252Aは、逆に低下する。信頼度252Aの傾向を競合値251Aの傾向に合わせるために、1から信頼度252Aを減算した値を、総合評価値の計算に使用している。 In Equation (4), E is a comprehensive evaluation value obtained from the competitive value 251A and the reliability 252A. As the effectiveness of pre-domain 35A in transfer learning decreases, the competitive value 251A increases. On the other hand, the reliability 252A decreases conversely. In order to match the tendency of the reliability 252A with the tendency of the competitive value 251A, a value obtained by subtracting the reliability 252A from 1 is used to calculate the comprehensive evaluation value.
 上記式(4)により計算された総合評価値は、0以上1以下の値であり、転移学習の有効性が高くなるにつれて0に近づく。転移評価部253は、計算された総合評価値が予め設定されたしきい値よりも小さい場合、事前ドメイン35Aが転移学習において有効であると判断する。 The comprehensive evaluation value calculated by the above equation (4) is a value between 0 and 1 and approaches 0 as the effectiveness of transfer learning increases. If the calculated overall evaluation value is smaller than a preset threshold value, the transfer evaluation unit 253 determines that the prior domain 35A is effective in transfer learning.
 {4.4.次の事前ドメインの指定}
 事前ドメイン35Aの転移学習における有効性の評価(ステップS206)が終了した後に、事前ドメイン35Aの有効性の評価に用いられた試行転移識別部231及び比較識別部241が削除される(ステップS207)。事前ドメイン35Aに対応する試行転移識別部231及び比較識別部241は、転移学習における他の事前ドメインの有効性の評価で使用されないためである。
{4.4. Specify next advance domain}
After the evaluation of effectiveness in transfer learning of the prior domain 35A (step S206) is completed, the trial transfer identification unit 231 and the comparison identification unit 241 used for evaluating the effectiveness of the prior domain 35A are deleted (step S207). . This is because the trial transfer identifying unit 231 and the comparison identifying unit 241 corresponding to the prior domain 35A are not used in the evaluation of the effectiveness of other prior domains in transfer learning.
 事前ドメイン評価装置20は、一時記憶部21に記憶されている全ての事前ドメインを選択したか否かを判断する(ステップS208)。全ての事前ドメインを選択していない場合(ステップS208においてNo)、事前ドメイン評価装置20は、選択されていない事前ドメインの転移学習における有効性を評価するために、ステップS203に戻る。これにより、転移学習における事前ドメイン35D及び35Fの有効性が評価される。 The prior domain evaluation device 20 determines whether all the prior domains stored in the temporary storage unit 21 have been selected (step S208). When all the pre-domains have not been selected (No in step S208), the pre-domain evaluation apparatus 20 returns to step S203 in order to evaluate the effectiveness in transfer learning of the non-selected pre-domains. Thereby, the effectiveness of the prior domains 35D and 35F in transfer learning is evaluated.
 {4.5.評価結果データ253Aの生成}
 全ての事前ドメインが選択された場合(ステップS208においてYes)、転移評価部253は、事前ドメイン35A、35D及び35Fの各々の評価結果を示す評価結果データ253Aを作成する。転移学習に有効と判断される事前ドメインの数は、特に限定されない。転移評価部253は、作成した評価結果データ253Aを選択学習装置30に出力する。
{4.5. Generation of Evaluation Result Data 253A}
When all the prior domains have been selected (Yes in step S208), the transfer evaluation unit 253 creates evaluation result data 253A indicating the evaluation results of the prior domains 35A, 35D, and 35F. The number of prior domains determined to be effective for transfer learning is not particularly limited. The transfer evaluation unit 253 outputs the created evaluation result data 253A to the selection learning device 30.
 再び、図5を参照する。選択学習装置30において、事前ドメイン選択部31は、評価結果データ253Aに基づいて、クラスタリング装置10により生成された事前ドメイン145の中から、転移学習に有効と判断された事前ドメイン35A、35D及び35Fを選択する(ステップS13)。特徴抽出部32(図4参照)は、記憶装置150から目標ドメイン150Aを取得し、取得した目標ドメイン150Aに含まれる学習用データ151の各々から特徴量を抽出する(ステップS14)。これにより、学習用特徴データ152を含む目標ドメイン150Bが生成される。特徴抽出部32は、特徴抽出部22(図2参照)が学習用データ151から特徴量を抽出する時と同じ条件で、特徴量の抽出を行う。 Refer again to FIG. In the selection learning device 30, the prior domain selection unit 31 selects the prior domains 35 </ b> A, 35 </ b> D, and 35 </ b> F determined to be effective for transfer learning from the prior domains 145 generated by the clustering device 10 based on the evaluation result data 253 </ b> A. Is selected (step S13). The feature extraction unit 32 (see FIG. 4) acquires the target domain 150A from the storage device 150, and extracts a feature amount from each of the learning data 151 included in the acquired target domain 150A (step S14). Thereby, the target domain 150B including the learning feature data 152 is generated. The feature extraction unit 32 extracts feature amounts under the same conditions as when the feature extraction unit 22 (see FIG. 2) extracts feature amounts from the learning data 151.
 転移学習部33は、選択された事前ドメイン35A、35D及び35Fと、特徴抽出部32により生成された目標ドメイン150Bとを用いて、転移学習を導入した機械学習を実行する(ステップS5)。これにより、複数の決定木を示すデータ群である転移識別データ35が生成される。 The transfer learning unit 33 executes machine learning using transfer learning using the selected prior domains 35A, 35D, and 35F and the target domain 150B generated by the feature extraction unit 32 (step S5). Thereby, transfer identification data 35 which is a data group indicating a plurality of decision trees is generated.
 以上説明したように、機械学習装置100は、記憶装置140に記憶された転移候補データ141,141,・・・から特徴を抽出して転移候補特徴データ142,142,・・・を生成する。機械学習装置100は、抽出した特徴量に基づいて転移候補特徴データ142,142,・・・を複数のグループに分類する。機械学習装置100は、分類されたグループにおける転移候補特徴データ142の数又は共分散に基づいて、分類されたグループを事前ドメインに決定するか否かを判断する。これにより、転移学習に用いられる事前ドメインを、転移候補データ141から効率的に生成することができる。 As described above, the machine learning device 100 extracts the features from the transfer candidate data 141, 141,... Stored in the storage device 140, and generates the transfer candidate feature data 142, 142,. The machine learning device 100 classifies the transfer candidate feature data 142, 142,... Into a plurality of groups based on the extracted feature values. The machine learning device 100 determines whether to determine the classified group as a prior domain based on the number or covariance of the transfer candidate feature data 142 in the classified group. Thereby, the prior domain used for transfer learning can be efficiently generated from transfer candidate data 141.
 {変形例}
 上記第1の実施の形態において、クラスタリング装置10が、転移候補特徴データ142を分類する際に、デンシティフォレストを用いて分類木35として2分木を生成する場合を例に説明したが、これに限られない。クラスタリング装置10は、k-means法などの他の分類アルゴリズムを用いて、転移候補特徴データ142を分類してもよい。この場合、ステップS109(図8参照)において作成される子ノードの数は、3つ以上であってもよい。
{Modifications}
In the first embodiment, the case where the clustering device 10 generates the binary tree as the classification tree 35 using the density forest when classifying the transfer candidate feature data 142 has been described as an example. Not limited. The clustering apparatus 10 may classify the transfer candidate feature data 142 using another classification algorithm such as a k-means method. In this case, the number of child nodes created in step S109 (see FIG. 8) may be three or more.
 また、クラスタリング装置10は、2つ以上の分類アルゴリズムを用いて、転移候補特徴データ142を分類してもよい。例えば、クラスタリング装置10は、分類対象のノードに属する転移候補特徴データ142の数が、分類アルゴリズムの変更を判断するための基準値(アルゴリズム変更基準値)より大きいか否かに基づいて、分類アルゴリズムを決定する。 The clustering apparatus 10 may classify the transfer candidate feature data 142 using two or more classification algorithms. For example, the clustering apparatus 10 determines the classification algorithm based on whether or not the number of transfer candidate feature data 142 belonging to the classification target node is larger than a reference value (algorithm change reference value) for determining the change of the classification algorithm. To decide.
 図13は、k-means法と、デンシティフォレストとを用いて生成された分類木35の一例を示す図である。例えば、アルゴリズム変更基準値が、25000に設定されていると仮定する。 FIG. 13 is a diagram showing an example of the classification tree 35 generated using the k-means method and the density forest. For example, assume that the algorithm change reference value is set to 25000.
 ルートノード35Rに属する転移候補特徴データ142の数は、30000であり、アルゴリズム変更基準値よりも大きい。この場合、クラスタリング装置10は、ルートノード35Rの子ノードとして、ノード36A、36B及び36Cを生成する。そして、クラスタリング装置10は、k-means法を用いて、ルートノード35Rに属する転移候補特徴データ142を、ノード36A、36B及び36Cに分類する。 The number of transfer candidate feature data 142 belonging to the root node 35R is 30000, which is larger than the algorithm change reference value. In this case, the clustering apparatus 10 generates nodes 36A, 36B, and 36C as child nodes of the root node 35R. Then, the clustering device 10 classifies the transfer candidate feature data 142 belonging to the root node 35R into the nodes 36A, 36B, and 36C using the k-means method.
 そして、ノード36A及び36Cに属する転移候補特徴データ142の数は、5000及び8000であり、分類継続基準値(9270)以下である。クラスタリング装置10は、ノード36A及び36Cをそれぞれ事前ドメインに決定する。一方、ノード36Bに属する転移候補特徴データ142の数は、17000であり、分類継続基準値よりも大きい。この場合、クラスタリング装置10は、ノード36Bに属する転移候補特徴データ142をさらに分類する。 The numbers of transfer candidate feature data 142 belonging to the nodes 36A and 36C are 5000 and 8000, which are equal to or less than the classification continuation reference value (9270). The clustering apparatus 10 determines the nodes 36A and 36C as the prior domains. On the other hand, the number of transfer candidate feature data 142 belonging to the node 36B is 17000, which is larger than the classification continuation reference value. In this case, the clustering apparatus 10 further classifies the transfer candidate feature data 142 belonging to the node 36B.
 ノード36Bに属する転移候補特徴データ142の数(17000)は、アルゴリズム変更基準値(25000)以下であるため、クラスタリング装置10は、ノード36Bに属する転移候補特徴データ142の分類にデンシティフォレストを用いることを決定する。クラスタリング装置10は、ノード36Bの子ノードとして、ノード36D及び36Eを生成し、ノード36Bに属する転移候補特徴データ142を分類する。 Since the number (17000) of the transfer candidate feature data 142 belonging to the node 36B is equal to or less than the algorithm change reference value (25000), the clustering apparatus 10 uses the density forest to classify the transfer candidate feature data 142 belonging to the node 36B. To decide. The clustering device 10 generates nodes 36D and 36E as child nodes of the node 36B, and classifies the transfer candidate feature data 142 belonging to the node 36B.
 このように、分類対象のノードに属する転移候補特徴データ142の数に応じて分類アルゴリズムを切り替えることにより、転移候補特徴データ142の分類を高速に実行することができる。 Thus, the classification of the transfer candidate feature data 142 can be performed at high speed by switching the classification algorithm according to the number of transfer candidate feature data 142 belonging to the node to be classified.
 また、上記第1の実施の形態において、選択学習装置30(図4参照)が、特徴抽出部32を備える例を説明したが、これに限られない。選択学習装置30は、事前ドメイン評価装置20(図3参照)が備える特徴抽出部22により生成された目標ドメイン150Bを用いて、転移識別データ35を生成してもよい。また、事前ドメイン評価装置20が、各事前ドメイン145に対応する転移候補データ141から特徴量を抽出して転移候補特徴データ142を生成してもよい。あるいは、選択学習装置30が、転移学習に有効と判断された事前ドメインに対応する転移候補データ141から特徴量を抽出して転移候補特徴データ142を生成してもよい。 In the first embodiment, the example in which the selection learning device 30 (see FIG. 4) includes the feature extraction unit 32 has been described. However, the present invention is not limited to this. The selection learning device 30 may generate the transfer identification data 35 by using the target domain 150B generated by the feature extraction unit 22 included in the prior domain evaluation device 20 (see FIG. 3). Further, the prior domain evaluation apparatus 20 may generate the transfer candidate feature data 142 by extracting the feature amount from the transfer candidate data 141 corresponding to each of the prior domains 145. Alternatively, the selection learning device 30 may generate the transfer candidate feature data 142 by extracting the feature amount from the transfer candidate data 141 corresponding to the prior domain determined to be effective for transfer learning.
 いずれの場合においても、クラスタリング装置10、事前ドメイン評価装置20、選択学習装置30の各々において用いられる転移候補特徴データ142は、全て同じ条件で転移候補データ141から特徴量を抽出することにより生成されることが望ましい。同様に、学習用特徴データ152は、全て同じ条件で学習用データ151から特徴量を抽出することにより生成されることが望ましい。以下、その理由について説明する。 In any case, the transfer candidate feature data 142 used in each of the clustering device 10, the prior domain evaluation device 20, and the selection learning device 30 is generated by extracting feature amounts from the transfer candidate data 141 under the same conditions. It is desirable. Similarly, the learning feature data 152 is preferably generated by extracting feature amounts from the learning data 151 under the same conditions. The reason will be described below.
 例えば、クラスタリング装置10と事前ドメイン評価装置20とで特徴量の抽出条件が異なる場合、クラスタリング装置10において生成される転移候補特徴データ142は、事前ドメイン評価装置20において転移候補特徴データ142における分布と異なる分布を有する。目標ドメインと事前ドメインとの位置関係が、クラスタリング装置10において生成される転移候補特徴データ142と、事前ドメイン評価装置20において転移候補特徴データ142とで異なる。この結果、事前ドメイン評価装置20において、クラスタリング装置10で生成された事前ドメインが転移学習で有効であるか否かを判定する精度が低下する。 For example, when the feature quantity extraction conditions are different between the clustering device 10 and the prior domain evaluation device 20, the transfer candidate feature data 142 generated by the clustering device 10 is the distribution in the transfer candidate feature data 142 in the prior domain evaluation device 20. Have a different distribution. The positional relationship between the target domain and the prior domain differs between the transfer candidate feature data 142 generated by the clustering apparatus 10 and the transfer candidate feature data 142 of the prior domain evaluation apparatus 20. As a result, in the prior domain evaluation device 20, the accuracy of determining whether the prior domain generated by the clustering device 10 is valid for transfer learning is reduced.
 事前ドメイン評価装置20と、選択学習装置30とで特徴量の抽出条件が異なる場合も同様に、事前ドメイン評価装置20で有効と判断された事前ドメイン145における転移候補特徴データ142の分布が変化する。この結果、選択学習装置30における転移学習を導入した機械学習の学習精度が低下し、転移識別データ35を用いた人物の識別精度が低下する可能性がある。 Similarly, when the feature amount extraction conditions are different between the prior domain evaluation device 20 and the selection learning device 30, the distribution of the transfer candidate feature data 142 in the prior domain 145 determined to be valid by the prior domain evaluation device 20 changes. . As a result, the learning accuracy of machine learning using transfer learning in the selection learning device 30 may be reduced, and the person identification accuracy using the transfer identification data 35 may be reduced.
 これに対して、クラスタリング装置10、事前ドメイン評価装置20、及び選択学習装置30における特徴量の抽出条件を揃えることにより、事前ドメインの有効性を評価するときの精度、転移識別データ35を生成するときの学習の精度が低下することを防ぐことができる。 On the other hand, by aligning the feature quantity extraction conditions in the clustering device 10, the prior domain evaluation device 20, and the selective learning device 30, the accuracy when evaluating the effectiveness of the prior domain, transfer identification data 35 is generated. It is possible to prevent the accuracy of learning from being reduced.
 上記第1の実施の形態において、試行転移学習部23、比較学習部24及び転移学習部33が、学習アルゴリズムとしてランダムフォレストを用いる場合を例に説明したが、これに限られない。例えば、試行転移学習部23、比較学習部24及び転移学習部33は、ID3(Iterative Dichotomiser 3)や、ブースティング、ニューラルネットワークなどの各種アルゴリズムを用いてもよい。いずれの学習アルゴズムを用いる場合であっても、試行転移学習部23及び転移学習部33は、転移学習を導入した機械学習を実行し、比較学習部24は、転移学習を導入しない機械学習を実行すればよい。 In the first embodiment, the case where the trial transfer learning unit 23, the comparison learning unit 24, and the transfer learning unit 33 use a random forest as a learning algorithm has been described as an example, but the present invention is not limited to this. For example, the trial transfer learning unit 23, the comparison learning unit 24, and the transfer learning unit 33 may use various algorithms such as ID3 (Iterative Dichotomiser 3), boosting, and neural network. Regardless of which learning algorithm is used, the trial transfer learning unit 23 and the transfer learning unit 33 execute machine learning that introduces transfer learning, and the comparative learning unit 24 executes machine learning that does not introduce transfer learning. do it.
 上記第1の実施の形態において、転移評価部253は、競合値251A及び信頼度252Aを乗算することにより、総合評価値を計算する例を説明したが、これに限られない。たとえば、転移評価部253は、競合値251A及び信頼度252Aの合計を総合評価値として計算してもよい。つまり、転移評価部253は、競合値251A及び信頼度252Aを用いて、総合評価値を計算すればよい。 In the first embodiment, the transfer evaluation unit 253 has described the example in which the comprehensive evaluation value is calculated by multiplying the competitive value 251A and the reliability 252A. However, the present invention is not limited to this. For example, the transfer evaluation unit 253 may calculate the total of the competitive value 251A and the reliability 252A as a comprehensive evaluation value. That is, the transfer evaluation unit 253 may calculate a comprehensive evaluation value using the competitive value 251A and the reliability 252A.
 上記第1の実施の形態において、機械学習装置100が、転移候補データ141及び学習用データ151の各々からHOG特徴量を抽出する場合を例にして説明したが、これに限られない。例えば、機械学習装置100は、人物の顔を学習する場合、Haar-like特徴量を抽出してもよい。機械学習装置100は、学習対象に応じて、転移候補データ141及び学習用データ151から抽出する特徴量を適宜変更すればよい。 In the first embodiment, the case where the machine learning device 100 extracts the HOG feature amount from each of the transfer candidate data 141 and the learning data 151 has been described as an example, but the present invention is not limited to this. For example, the machine learning device 100 may extract a Haar-like feature value when learning a human face. The machine learning device 100 may appropriately change the feature amount extracted from the transfer candidate data 141 and the learning data 151 according to the learning target.
 上記第1の実施の形態において、機械学習装置100が、人物を検出するための転移識別データ35を生成する例を説明したが、これに限られない。学習の対象は、センサにより計測された測定データであってもよい。センサの種類は、特に限定されず、加速度センサ、光センサなどの様々な測定データを使用することができる。例えば、自動車の自動運転を行うために、これらのセンサの測定データを用いるために機械学習を実行してもよい。 In the first embodiment, the example in which the machine learning device 100 generates the transfer identification data 35 for detecting a person has been described. However, the present invention is not limited to this. The learning target may be measurement data measured by a sensor. The type of sensor is not particularly limited, and various measurement data such as an acceleration sensor and an optical sensor can be used. For example, machine learning may be performed in order to use measurement data of these sensors in order to automatically drive a car.
 [第2の実施の形態]
 {1.機械学習装置500の構成}
 図14は、本発明の第2の実施の形態に係る機械学習装置500の構成を示す機能ブロック図である。図14に示す機械学習装置500は、転移学習を導入した機械学習を実行して、転移識別データ80を生成する。機械学習装置500は、転移学習を導入した機械学習を実行する際に、目標ドメイン61と、事前ドメイン62~64のうち転移学習に有効と判断された事前ドメインとを用いる。転移識別データ80は、人物検出装置(図示省略)がカメラにより生成された撮影画像から人物を検出するために用いられる。
[Second Embodiment]
{1. Configuration of Machine Learning Device 500}
FIG. 14 is a functional block diagram showing the configuration of the machine learning device 500 according to the second embodiment of the present invention. A machine learning device 500 illustrated in FIG. 14 performs machine learning in which transfer learning is introduced, and generates transfer identification data 80. The machine learning device 500 uses the target domain 61 and a prior domain determined to be effective for transfer learning among the prior domains 62 to 64 when executing machine learning with transfer learning introduced. The transfer identification data 80 is used by a person detection device (not shown) to detect a person from a captured image generated by a camera.
 本実施の形態では、機械学習装置500が、俯角0°で撮影された画像から人物を検出するための転移識別データ80を生成する場合を例にして説明する。 In the present embodiment, an example will be described in which the machine learning device 500 generates transfer identification data 80 for detecting a person from an image photographed at a depression angle of 0 °.
 機械学習装置500は、転移識別データ80の生成前に、事前ドメイン62~64の各々が転移学習に有効であるか否かを評価するための機械学習(試行学習)を実行する。試行学習は、転移学習を導入した機械学習であり、転移識別データ80を生成するための機械学習と一部の点で異なる。試行学習では、転移学習を導入した機械学習に用いられる事前ドメインが、事前ドメイン62~64から1つずつ選択される。 The machine learning device 500 executes machine learning (trial learning) for evaluating whether or not each of the prior domains 62 to 64 is effective for transfer learning before the transfer identification data 80 is generated. Trial learning is machine learning in which transfer learning is introduced, and is different in part from machine learning for generating transfer identification data 80. In trial learning, a prior domain used for machine learning in which transfer learning is introduced is selected one by one from the prior domains 62 to 64.
 機械学習装置500は、試行学習の結果に基づいて、事前ドメイン62~64の各々に対する転移学習の有効性を評価する。機械学習装置500は、目標ドメイン61と、転移学習に有効と判断された事前ドメインとを用いて、転移学習を導入した機械学習を実行して、転移識別データ80を生成する。 The machine learning device 500 evaluates the effectiveness of transfer learning for each of the prior domains 62 to 64 based on the result of trial learning. The machine learning device 500 generates the transfer identification data 80 by executing machine learning using transfer learning using the target domain 61 and the prior domain determined to be effective for transfer learning.
 目標ドメイン61は、所定の条件下における検出対象(人物)の特徴を有する複数の画像のグループである。事前ドメイン62~64は、上記の所定の条件と異なる条件下における検出対象の特徴を有する複数の画像のグループである。事前ドメイン62~64は、複数の画像を所定の規則で分類することにより生成される。目標ドメイン61及び事前ドメイン62~64の詳細については、後述する。 The target domain 61 is a group of a plurality of images having the characteristics of a detection target (person) under a predetermined condition. The prior domains 62 to 64 are a group of a plurality of images having the characteristics of the detection target under a condition different from the predetermined condition. The prior domains 62 to 64 are generated by classifying a plurality of images according to a predetermined rule. Details of the target domain 61 and the prior domains 62 to 64 will be described later.
 図14に示すように、機械学習装置500は、取得部51と、試行転移学習部52と、比較学習部53と、判断部54と、選択転移学習部55とを備える。 As illustrated in FIG. 14, the machine learning device 500 includes an acquisition unit 51, a trial transfer learning unit 52, a comparison learning unit 53, a determination unit 54, and a selective transfer learning unit 55.
 なお、機械学習装置500の各構成要素を、第1の実施の形態に係る機械学習装置100に用いてもよい。この場合、試行転移学習部52は、第1の実施の形態における試行転移学習部23(図3参照)に対応する。比較学習部53は、第1の実施の形態における比較学習部24(図3参照)に対応する。判断部54は、第1の実施の形態における判断部25(図3参照)に対応する。選択転移学習部55は、選択学習装置30(図1参照)に対応する。 In addition, you may use each component of the machine learning apparatus 500 for the machine learning apparatus 100 which concerns on 1st Embodiment. In this case, the trial transfer learning unit 52 corresponds to the trial transfer learning unit 23 (see FIG. 3) in the first embodiment. The comparative learning unit 53 corresponds to the comparative learning unit 24 (see FIG. 3) in the first embodiment. The determination unit 54 corresponds to the determination unit 25 (see FIG. 3) in the first embodiment. The selective transfer learning unit 55 corresponds to the selective learning device 30 (see FIG. 1).
 取得部51は、記憶装置60に記憶された目標ドメイン61と、事前ドメイン62~64とを取得する。取得部51は、事前ドメイン62~64を一括して取得するのではなく、事前ドメイン62~64のうち、試行転移学習部52及び比較学習部53において機械学習の対象となる1つの事前ドメインを取得する。 The acquisition unit 51 acquires the target domain 61 and the prior domains 62 to 64 stored in the storage device 60. The acquisition unit 51 does not acquire the prior domains 62 to 64 at once, but selects one of the prior domains 62 to 64 as one machine domain subject to machine learning in the trial transfer learning unit 52 and the comparative learning unit 53. get.
 試行転移学習部52は、取得部51により取得された目標ドメイン61と、取得部51により取得された1つの事前ドメイン(注目事前ドメイン)とを入力する。試行転移学習部52は、入力された目標ドメイン61及び注目事前ドメインを利用して、転移学習の有効性を評価するための機械学習(試行学習)を実行し、その結果、試行転移識別部521を生成する。試行転移識別部521は、事前ドメインごとに生成される。試行転移学習部52は、学習アルゴリズムとして、転移学習を導入したランダムフォレストを用いる。具体的には、試行転移学習部52により用いられるアルゴリズムは、トランスファーフォレスト(Transfer Forest)と呼ばれており、転移学習の際に、共変量を用いて事前ドメインに含まれるデータを重み付けする。従って、試行転移識別部521の実体は、複数の決定木により構成されるデータ群である。 The trial transfer learning unit 52 inputs the target domain 61 acquired by the acquisition unit 51 and one prior domain (attention prior domain) acquired by the acquisition unit 51. The trial transfer learning unit 52 performs machine learning (trial learning) for evaluating the effectiveness of transfer learning using the input target domain 61 and the prior domain of interest, and as a result, the trial transfer identification unit 521. Is generated. The trial transfer identification unit 521 is generated for each prior domain. The trial transfer learning unit 52 uses a random forest in which transfer learning is introduced as a learning algorithm. Specifically, the algorithm used by the trial transfer learning unit 52 is called transfer forest, and weights data included in the prior domain using covariates during transfer learning. Therefore, the entity of the trial transfer identification unit 521 is a data group including a plurality of decision trees.
 比較学習部53は、注目事前ドメインのみを利用して、比較用の機械学習(比較学習)を実行し、その結果、比較識別部531を生成する。比較識別部531は、事前ドメインごとに生成される。比較学習部53は、学習アルゴリズムとして、転移学習を導入しないランダムフォレストを用いる。従って、比較識別部531の実体は、試行転移識別部521を構成する複数の決定木と異なる複数の決定木により構成されるデータ群である。 The comparison learning unit 53 performs machine learning (comparison learning) for comparison using only the target prior domain, and as a result, generates a comparison identification unit 531. The comparison identification unit 531 is generated for each prior domain. The comparative learning unit 53 uses a random forest that does not introduce transfer learning as a learning algorithm. Accordingly, the entity of the comparison and identification unit 531 is a data group including a plurality of decision trees different from the plurality of decision trees that constitute the trial transfer identification unit 521.
 判断部54は、試行転移識別部521と比較識別部531とを用いて、注目事前ドメインが転移学習に有効であるか否かを判断する。判断部54は、競合値計算部541と、信頼度計算部542と、分布相違度計算部543と、複雑度計算部544と、転移評価部545とを備える。 The determination unit 54 uses the trial transfer identification unit 521 and the comparison identification unit 531 to determine whether the prior domain of interest is effective for transfer learning. The determination unit 54 includes a competitive value calculation unit 541, a reliability calculation unit 542, a distribution dissimilarity calculation unit 543, a complexity calculation unit 544, and a transfer evaluation unit 545.
 競合値計算部541は、比較識別部531によるサンプルデータの識別結果を試行転移識別部521によるサンプルデータの識別結果と比較する。サンプルデータは、目標ドメイン61に含まれる画像及び注目事前ドメインに含まれる画像である。競合値計算部541は、比較結果に基づいて、競合値541Aを計算する。競合値541Aは、比較識別部531による識別結果と、試行転移識別部521による識別結果とが一致しない度合いを示す。 The competitive value calculation unit 541 compares the identification result of the sample data by the comparison identification unit 531 with the identification result of the sample data by the trial transfer identification unit 521. The sample data is an image included in the target domain 61 and an image included in the target prior domain. The competition value calculation unit 541 calculates the competition value 541A based on the comparison result. The competitive value 541A indicates the degree to which the identification result by the comparison identifying unit 531 and the identification result by the trial transfer identifying unit 521 do not match.
 信頼度計算部542は、試行転移識別部521により生成されるサンプルデータの識別結果を用いて、信頼度542Aを計算する。信頼度542Aは、試行転移識別部521による識別結果の信頼性を示す。 The reliability calculation unit 542 calculates the reliability 542A using the identification result of the sample data generated by the trial transfer identification unit 521. The reliability 542A indicates the reliability of the identification result obtained by the trial transfer identification unit 521.
 分布相違度計算部543は、試行転移識別部521による目標ドメイン61に含まれる画像の分類結果と、試行転移識別部521による注目事前ドメインに含まれる画像の分類結果とに基づいて、分布相違度543Aを計算する。画像の分類は、試行転移識別部521を構成する決定木により行われる。分布相違度543Aは、注目事前ドメインに含まれる画像の分類結果が目標ドメイン61に含まれる画像の分類結果とどの程度異なるかを示す。 The distribution dissimilarity calculation unit 543 calculates the distribution dissimilarity based on the classification result of the image included in the target domain 61 by the trial transfer identification unit 521 and the classification result of the image included in the target prior domain by the trial transfer identification unit 521. 543A is calculated. The classification of images is performed by a decision tree constituting the trial transfer identification unit 521. The distribution dissimilarity 543A indicates how much the classification result of the image included in the target prior domain differs from the classification result of the image included in the target domain 61.
 複雑度計算部544は、試行転移識別部521を構成する決定木の構造に基づいて、複雑度544Aを計算する。複雑度544Aは、試行転移識別部521を構成する決定木の複雑さを示す。 The complexity calculator 544 calculates the complexity 544A based on the structure of the decision tree constituting the trial transfer identification unit 521. The complexity 544A indicates the complexity of the decision tree constituting the trial transfer identification unit 521.
 転移評価部545は、競合値541Aと、信頼度542Aと、分布相違度543Aと、複雑度544Aとに基づいて、注目事前ドメインが転移学習に有効であるか否かを評価する。転移評価部545は、注目事前ドメインの評価結果を選択転移学習部55に通知する。 The transfer evaluation unit 545 evaluates whether the prior domain of interest is effective for transfer learning based on the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A. The transfer evaluation unit 545 notifies the selective transfer learning unit 55 of the evaluation result of the attention prior domain.
 選択転移学習部55は、転移評価部545から通知される事前ドメイン62~64の各々の評価結果に基づいて、転移学習に用いる事前ドメインを特定する。選択転移学習部55は、取得部51を介して、目標ドメイン61と転移学習に用いる事前ドメインとを取得する。選択転移学習部55は、取得した目標ドメイン61と事前ドメインとを用いて、転移学習を導入した機械学習を実行して、転移識別データ80を生成する。選択転移学習部55は、試行転移学習部52が用いる学習アルゴリズム(転移学習を導入したランダムフォレスト)を用いる。 The selective transfer learning unit 55 specifies a prior domain to be used for transfer learning based on each evaluation result of the prior domains 62 to 64 notified from the transfer evaluation unit 545. The selective transfer learning unit 55 acquires the target domain 61 and the prior domain used for transfer learning via the acquisition unit 51. The selected transfer learning unit 55 performs machine learning using transfer learning using the acquired target domain 61 and the prior domain, and generates transfer identification data 80. The selective transfer learning unit 55 uses a learning algorithm (random forest into which transfer learning is introduced) used by the trial transfer learning unit 52.
 {2.目標ドメイン及び事前ドメイン}
 以下、目標ドメイン61と事前ドメイン62~64について説明する。また、機械学習装置500が転移識別データ80を生成する前に、事前ドメイン62~64が転移学習に有効であるか否かを判断する理由を説明する。
{2. Target domain and advance domain}
Hereinafter, the target domain 61 and the prior domains 62 to 64 will be described. The reason for determining whether or not the prior domains 62 to 64 are effective for transfer learning before the machine learning device 500 generates the transfer identification data 80 will be described.
 図15は、図14に示す記憶装置60に記憶される目標ドメイン61又は事前ドメイン62~64に属する画像の一例を示す図である。 FIG. 15 is a diagram showing an example of images belonging to the target domain 61 or the prior domains 62 to 64 stored in the storage device 60 shown in FIG.
 転移識別データ80を利用する人物検出装置(図示省略)は、上述のように、俯角0°で撮影された画像から人物を検出することを想定している。この場合、目標ドメイン61は、図15に示すように、俯角0°で人物を撮影した画像61A~61Cを含む。実際には、目標ドメイン61は、画像61A~61Cだけでなく、俯角0°で人物を撮影した他の複数の画像を含む。 As described above, it is assumed that the person detection device (not shown) using the transfer identification data 80 detects a person from an image taken at a depression angle of 0 °. In this case, as shown in FIG. 15, the target domain 61 includes images 61A to 61C obtained by photographing a person with a depression angle of 0 °. Actually, the target domain 61 includes not only the images 61A to 61C but also a plurality of other images obtained by photographing a person at a depression angle of 0 °.
 つまり、目標ドメイン61は、所定の条件下における検出対象の特徴を有する複数の学習用データを含む。本実施の形態では、検出対象は人物である。所定の条件は、検出対象(人物)が俯角0°で撮影された画像に含まれていることである。目標ドメイン61は、事前ドメイン62~64の各々に対する判断結果に関係なく、転移識別データ80の生成に用いられる。 That is, the target domain 61 includes a plurality of learning data having the characteristics of the detection target under a predetermined condition. In the present embodiment, the detection target is a person. The predetermined condition is that the detection target (person) is included in an image captured at a depression angle of 0 °. The target domain 61 is used to generate the transfer identification data 80 regardless of the determination result for each of the prior domains 62 to 64.
 事前ドメイン62~64は、それぞれ、0°よりも大きい俯角で人物を撮影した複数の画像を含む。図15に示すように、事前ドメイン62は、俯角20°で人物を撮影した画像62A~62Cを含む。事前ドメイン63は、俯角30°で人物を撮影した画像63A~63Cを含む。事前ドメイン64は、俯角50°で人物を撮影した画像64A~64Cを含む。実際には、事前ドメイン62~64の各々は、図15に示す画像だけでなく、それぞれの俯角で撮影した他の画像を含むが、図15では、他の画像の表示を省略している。 The pre-domains 62 to 64 each include a plurality of images obtained by photographing a person at a depression angle greater than 0 °. As shown in FIG. 15, the pre-domain 62 includes images 62A to 62C obtained by photographing a person at a depression angle of 20 °. The prior domain 63 includes images 63A to 63C obtained by photographing a person at a depression angle of 30 °. The prior domain 64 includes images 64A to 64C obtained by photographing a person at a depression angle of 50 °. Actually, each of the prior domains 62 to 64 includes not only the image shown in FIG. 15 but also other images taken at the respective depression angles, but the display of other images is omitted in FIG.
 事前ドメイン62~64は、0°よりも大きい俯角で人物を撮影した複数の画像を、撮影時の俯角に応じて分類することにより生成される。すなわち、事前ドメイン62~64は、所定の条件と異なる条件下における検出対象の特徴を有するデータの集合である。 The pre-domains 62 to 64 are generated by classifying a plurality of images obtained by photographing a person at a depression angle greater than 0 ° according to the depression angle at the time of shooting. That is, the prior domains 62 to 64 are a set of data having the characteristics of the detection target under conditions different from the predetermined conditions.
 事前ドメイン62~64に対する転移学習の有効性の評価は、以下の理由によって行われる。事前ドメイン62~64に含まれる画像が、目標ドメイン61に含まれる画像61A~61Cの特徴と同様の特徴を有する場合がある。転移学習は、事前ドメインに含まれる画像のうち、目標ドメイン61に含まれる画像と同様の特徴を有する画像を特定し、特定した画像が有する特徴を目標ドメイン61に含まれる画像の学習に適用する。 Evaluation of the effectiveness of transfer learning for the prior domains 62 to 64 is performed for the following reasons. The images included in the prior domains 62 to 64 may have the same characteristics as the characteristics of the images 61A to 61C included in the target domain 61. Transfer learning specifies an image having the same characteristics as the image included in the target domain 61 among the images included in the prior domain, and applies the characteristics of the specified image to learning of the image included in the target domain 61. .
 しかし、ある事前ドメインが、目標ドメイン61に含まれる画像の特徴と大きく異なる特徴を有する画像の集合である場合、負の転移が発生する。この理由は、この事前ドメインに含まれる画像の特徴が、転移学習により転移識別データ80に反映されるためである。機械学習装置500は、負の転移を引き起こす可能性の高い事前ドメインを、転移識別データ80の生成から除外するために、事前ドメイン62~64が転移学習に有効であるか否かを評価する。 However, if a certain pre-domain is a set of images having features that are significantly different from the features of the images included in the target domain 61, a negative transition occurs. This is because the characteristics of the image included in the prior domain are reflected in the transfer identification data 80 by transfer learning. The machine learning device 500 evaluates whether or not the prior domains 62 to 64 are effective for the transfer learning in order to exclude the prior domains that are likely to cause the negative transfer from the generation of the transfer identification data 80.
 {3.機械学習装置500の動作}
 図16は、機械学習装置500の動作を示すフローチャートである。機械学習装置500が図16に示す処理を開始する際に、試行転移識別部521が試行転移学習部52内に生成されておらず、比較識別部531が比較学習部53内に生成されていない。
{3. Operation of Machine Learning Device 500}
FIG. 16 is a flowchart showing the operation of the machine learning device 500. When the machine learning device 500 starts the process shown in FIG. 16, the trial transfer identification unit 521 is not generated in the trial transfer learning unit 52, and the comparison identification unit 531 is not generated in the comparison learning unit 53. .
 {3.1.ドメインの取得}
 最初に、機械学習装置500において、取得部51は、記憶装置60から目標ドメイン61を取得する(ステップS21)。取得部51は、記憶装置60に記憶されている事前ドメイン62~64のうち、転移学習の有効性が評価されていない事前ドメインを取得する(ステップS22)。具体的には、取得部51は、事前ドメイン62~64のうち、最初に事前ドメイン62を取得する。
{3.1. Get domain}
First, in the machine learning device 500, the acquisition unit 51 acquires the target domain 61 from the storage device 60 (step S21). The acquisition unit 51 acquires a prior domain in which the effectiveness of transfer learning has not been evaluated among the prior domains 62 to 64 stored in the storage device 60 (step S22). Specifically, the acquisition unit 51 first acquires the prior domain 62 among the prior domains 62 to 64.
 {3.2.比較学習及び試行学習}
 比較学習部53は、取得部51により取得された事前ドメイン62を入力する。比較学習部53は、入力した事前ドメイン62を学習する(ステップS23)。比較学習部53の学習アルゴリズムは、転移学習が導入されていないランダムフォレストである。比較学習部53は、ステップS23を実行することにより、事前ドメイン62の学習結果を反映した比較識別部531を生成する。比較識別部531は、複数の決定木により構成される。
{3.2. Comparative learning and trial learning}
The comparative learning unit 53 inputs the prior domain 62 acquired by the acquisition unit 51. The comparative learning unit 53 learns the input prior domain 62 (step S23). The learning algorithm of the comparative learning unit 53 is a random forest in which transfer learning is not introduced. The comparison learning unit 53 generates a comparison identification unit 531 reflecting the learning result of the prior domain 62 by executing step S23. The comparison and identification unit 531 includes a plurality of decision trees.
 試行転移学習部52は、取得部51により取得された目標ドメイン61及び事前ドメイン62を入力する。試行転移学習部52は、入力した目標ドメイン61及び事前ドメイン62を用いて、転移学習を導入した機械学習を行う(ステップS24)。試行転移学習部52の学習アルゴリズムは、転移学習を導入したランダムフォレストである。試行転移学習部52は、ステップS24を実行することにより、目標ドメイン61及び事前ドメイン62の学習結果を反映した試行転移識別部521を生成する。試行転移識別部521は、複数の決定木により構成される。試行転移学習部52において用いられる学習アルゴリズム及びドメインが比較学習部53のものと異なるため、試行転移識別部521の構成は、比較識別部531の構成と異なる。 The trial transfer learning unit 52 inputs the target domain 61 and the prior domain 62 acquired by the acquisition unit 51. The trial transfer learning unit 52 performs machine learning using transfer learning by using the input target domain 61 and the prior domain 62 (step S24). The learning algorithm of the trial transfer learning unit 52 is a random forest in which transfer learning is introduced. The trial transfer learning unit 52 generates a trial transfer identification unit 521 reflecting the learning results of the target domain 61 and the prior domain 62 by executing step S24. The trial transfer identification unit 521 includes a plurality of decision trees. Since the learning algorithm and domain used in the trial transfer learning unit 52 are different from those of the comparative learning unit 53, the configuration of the trial transfer identification unit 521 is different from the configuration of the comparison identification unit 531.
 なお、ステップS23及びステップS24において、目標ドメイン61に含まれる画像61A~61Cと、事前ドメイン62に含まれる画像62A~62Cとをそのまま学習する例を説明した。しかし、実際には、これらの画像から所定の特徴量を抽出した特徴抽出画像が学習に用いられる。抽出される特徴量は、たとえば、画像内の単位領域内におけるエッジの方向をヒストグラム化したHOG(Histograms of Oriented Gradients)特徴量や、画像内の複数の領域における明暗差を示すHaar-like特徴量などを用いることができる。 Note that, in steps S23 and S24, the example in which the images 61A to 61C included in the target domain 61 and the images 62A to 62C included in the prior domain 62 are learned as they are has been described. However, in practice, a feature extraction image obtained by extracting a predetermined feature amount from these images is used for learning. The extracted feature amount is, for example, a HOG (Histograms of Oriented Gradients) feature amount in which the direction of an edge in a unit region in the image is histogrammed, or a Haar-like feature amount indicating a light / dark difference in a plurality of regions in the image Etc. can be used.
 {3.3.転移学習の評価(ステップS25)}
 判断部54は、試行転移学習部52により生成された試行転移識別部521と比較学習部53により生成された比較識別部531とを用いて、事前ドメイン62が転移学習に有効であるか否かを判断する(ステップS25)。
{3.3. Evaluation of transfer learning (step S25)}
The determination unit 54 uses the trial transfer identification unit 521 generated by the trial transfer learning unit 52 and the comparison identification unit 531 generated by the comparison learning unit 53 to determine whether the prior domain 62 is effective for transfer learning. Is determined (step S25).
 判断部54は、転移学習の有効性を判断するために、競合値541A、信頼度542A、分布相違度543A、複雑度544Aの4種類のパラメータを計算する。 判断 Determining unit 54 calculates four types of parameters of competitive value 541A, reliability 542A, distribution dissimilarity 543A, and complexity 544A in order to determine the effectiveness of transfer learning.
 判断部54は、信頼度542A、分布相違度543A、及び複雑度544Aを計算する場合、サンプルグループに含まれる各画像の試行転移識別部521による識別結果を利用する。ここで、サンプルグループとは、目標ドメイン61と、転移学習の有効性の評価対象である事前ドメイン62とを合わせた集合に含まれる画像である。判断部54は、競合値541Aを計算する場合、試行転移識別部521による識別結果に加えて、サンプルグループに含まれる各画像の比較識別部531による識別結果を利用する。 When the determination unit 54 calculates the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A, the determination unit 54 uses the identification result by the trial transfer identification unit 521 of each image included in the sample group. Here, the sample group is an image included in a set in which the target domain 61 and the prior domain 62 that is an evaluation target of transfer learning effectiveness are combined. When calculating the competitive value 541A, the determination unit 54 uses the identification result by the comparison and identification unit 531 of each image included in the sample group, in addition to the identification result by the trial transfer identification unit 521.
 以下、それぞれのパラメータの詳細及び計算方法についてそれぞれ説明する。 The details of each parameter and the calculation method are described below.
 {3.3.1.競合値541Aの計算}
 競合値計算部541は、試行転移識別部521により生成される各画像のラベルと、比較識別部531により生成される各画像のラベルとの比較結果に基づいて、競合値541Aを計算する。
{3.3.1. Calculation of competitive value 541A}
The competition value calculation unit 541 calculates the competition value 541A based on the comparison result between the label of each image generated by the trial transfer identification unit 521 and the label of each image generated by the comparison identification unit 531.
 試行転移識別部521は、サンプルグループに含まれる画像のうち、いずれか1つ(サンプル画像)を入力する。試行転移識別部521は、サンプル画像に対して人物の識別処理を行い、サンプル画像の識別結果を示すラベル52Aを生成する。ラベル52Aの値は、例えば、0又は1である。ラベル52Aが0である場合、ラベル52Aは、サンプル画像が人物を含まないことを示す。ラベル52Aが1である場合、ラベル52Aは、サンプル画像が人物を含むことを示す。試行転移識別部521は、生成したラベル52Aを競合値計算部541に出力する。 The trial transfer identification unit 521 inputs one of the images included in the sample group (sample image). The trial transfer identification unit 521 performs a person identification process on the sample image, and generates a label 52A indicating the identification result of the sample image. The value of the label 52A is, for example, 0 or 1. When the label 52A is 0, the label 52A indicates that the sample image does not include a person. When the label 52A is 1, the label 52A indicates that the sample image includes a person. The trial transfer identification unit 521 outputs the generated label 52A to the conflict value calculation unit 541.
 なお、試行転移識別部521は、サンプル画像の識別結果として、ラベル52Aだけでなく、ラベル52Aの確からしさを示す確度52Bを計算する。確度52Bは、後述する信頼度542Aの計算に用いられる。 The trial transfer identification unit 521 calculates not only the label 52A but also the accuracy 52B indicating the probability of the label 52A as the sample image identification result. The accuracy 52B is used for calculation of the reliability 542A described later.
 比較識別部531は、試行転移識別部521に入力されたサンプル画像と同じ画像を入力する。比較識別部531は、サンプル画像に対して人物の識別処理を行い、サンプル画像の識別結果を示すラベル53Aを生成する。ラベル53Aの値は、ラベル52Aと同様に、0又は1である。ラベル53Aが0である場合、ラベル53Aは、サンプル画像が人物を含まないことを示す。ラベル53Aが1である場合、ラベル53Aは、サンプル画像が人物を含むことを示す。比較識別部531は、生成したラベル53Aを競合値計算部541に出力する。 The comparison identification unit 531 inputs the same image as the sample image input to the trial transfer identification unit 521. The comparison and identification unit 531 performs a person identification process on the sample image, and generates a label 53A indicating the identification result of the sample image. The value of the label 53A is 0 or 1 like the label 52A. When the label 53A is 0, the label 53A indicates that the sample image does not include a person. When the label 53A is 1, the label 53A indicates that the sample image includes a person. The comparison and identification unit 531 outputs the generated label 53A to the conflict value calculation unit 541.
 競合値計算部541は、サンプル画像から生成されるラベル52A及び53Aを用いて、競合値541Aを計算する。競合値541Aは、第1の実施の形態において競合値251Aの計算に使用した式(2)により計算される。 The competitive value calculation unit 541 calculates the competitive value 541A using the labels 52A and 53A generated from the sample images. The competition value 541A is calculated by the equation (2) used in the calculation of the competition value 251A in the first embodiment.
 式(2)を競合値541の計算に用いる場合、式(2)において、Ec1は、競合値541Aを示す。Xは、サンプルグループを示す。xは、サンプルグループを構成する要素(サンプル画像)を示す。M(x)は、要素xから生成されたラベル53Aを示す。T(x)は、要素xから生成されたラベル52Aを示す。[M(x)≠T(x)]は、ラベル53Aとラベル52Aとが一致しなかったサンプル画像の数を示す。|X|は、サンプルグループXを構成する要素の数である。 When Expression (2) is used for calculation of the competitive value 541, in Expression (2), E c1 indicates the competitive value 541A. X indicates a sample group. x indicates an element (sample image) constituting the sample group. M (x) indicates a label 53A generated from the element x. T (x) indicates a label 52A generated from the element x. [M (x) ≠ T (x)] indicates the number of sample images in which the label 53A and the label 52A do not match. | X | is the number of elements constituting the sample group X.
 式(2)により計算される競合値541Aは、同一のサンプル画像から生成されるラベル52A及びラベル53Aが一致する確率を示す。競合値541Aは、0以上1以下の数値である。競合値541Aが0に近づくほど、競合値541Aは、転移学習における事前ドメイン62の有効性が高いことを示す。一方、競合値541Aが1に近づくほど。転移学習における事前ドメイン62の有効性が低いことを示す。 The competitive value 541A calculated by the equation (2) indicates the probability that the label 52A and the label 53A generated from the same sample image match. The competition value 541A is a numerical value of 0 or more and 1 or less. The closer the competition value 541A is to 0, the higher the competition value 541A is, the higher the effectiveness of the prior domain 62 in transfer learning. On the other hand, the closer the competition value 541A approaches 1. It shows that the effectiveness of the prior domain 62 in transfer learning is low.
 俯角が大きくなるにつれて、事前ドメインに含まれる画像の特徴と目標ドメインに含まれる画像の特徴との相違点の数が増加する。従って、俯角が大きくなるにつれて、事前ドメインの競合値541Aは、増加すると想定される。 As the depression angle increases, the number of differences between the image features included in the prior domain and the image features included in the target domain increases. Therefore, the pre-domain contention value 541A is assumed to increase as the depression angle increases.
 図17は、競合値541Aの変化の一例を示すグラフである。図17に示すグラフは、以下のようにして作成される。 FIG. 17 is a graph showing an example of a change in the competitive value 541A. The graph shown in FIG. 17 is created as follows.
 俯角5°から俯角80°まで5°おきに俯角を設定し、設定された俯角に基づいて画像を分類することにより、複数の事前ドメインを作成した。目標ドメイン61は、上記と同様に、俯角0°で人物を撮影した画像の集合である。各俯角に対応する試行転移識別部521及び比較識別部531を生成して、各俯角に対応する競合値541Aを上記の手順で計算した。 A plurality of pre-domains were created by setting a depression angle every 5 degrees from a depression angle of 5 ° to a depression angle of 80 ° and classifying the images based on the set depression angles. Similar to the above, the target domain 61 is a set of images obtained by photographing a person at a depression angle of 0 °. A trial transition identification unit 521 and a comparison identification unit 531 corresponding to each depression angle were generated, and a competitive value 541A corresponding to each depression angle was calculated by the above procedure.
 図17に示すように、競合値541Aは、俯角の増加に合わせて増加する傾向がある。従って、転移学習における事前ドメインの有効性を判断するパラメータとして競合値541Aを利用できることがわかる。しかし、競合値541Aは、上下に振動しながら増加している。このことは、競合値541Aの誤差が比較的大きいことを示している。 As shown in FIG. 17, the competitive value 541A tends to increase as the depression angle increases. Therefore, it can be seen that the competitive value 541A can be used as a parameter for determining the effectiveness of the prior domain in transfer learning. However, the competitive value 541A increases while vibrating up and down. This indicates that the error of the competition value 541A is relatively large.
 従って、競合値541Aのみを用いて、転移学習に対する事前ドメインの有効性を判断した場合、負の転移を引き起こす事前ドメインを誤って有効であると判断するおそれがある。このため、競合値541Aを用いて事前ドメインの有効性を判断する場合、他のパラメータ(信頼度542A等)を合わせて用いることが望ましい。 Therefore, when the effectiveness of the advance domain for transfer learning is determined using only the competitive value 541A, the advance domain that causes negative transfer may be erroneously determined to be effective. For this reason, when determining the validity of the prior domain using the competitive value 541A, it is desirable to use other parameters (such as reliability 542A) together.
 {3.3.2.信頼度の計算}
 信頼度計算部542は、試行転移識別部521により生成される各画像のラベル52A及び確度52Bに基づいて、信頼度542Aを計算する。信頼度542Aの計算に当たり、比較識別部531によるサンプル画像の識別結果は使用されない。
{3.3.2. Reliability calculation}
The reliability calculation unit 542 calculates the reliability 542A based on the label 52A and the accuracy 52B of each image generated by the trial transfer identification unit 521. In the calculation of the reliability 542A, the identification result of the sample image by the comparison and identification unit 531 is not used.
 試行転移識別部521は、上述のように、サンプル画像に対する人物の識別結果を示すラベル52Aと、ラベル52Aの確からしさを示す確度52Bを生成する。確度52Bは、0以上1以下の値であり、確度52Bが1に近づくほど、ラベル52Aが誤りである可能性が小さくなる。 As described above, the trial transfer identification unit 521 generates the label 52A indicating the person identification result for the sample image and the accuracy 52B indicating the probability of the label 52A. The accuracy 52B is a value not less than 0 and not more than 1. The closer the accuracy 52B is to 1, the smaller the possibility that the label 52A is erroneous.
 信頼度計算部542は、試行転移識別部32から各サンプル画像のラベル52A及び確度52Bを入力する。信頼度計算部542は、入力した各サンプル画像のラベル52A及び確度52Bを用いて、信頼度542Aを計算する。信頼度542Aは、第1の実施の形態において信頼度252Aの計算に使用した式(3)により計算される。 The reliability calculation unit 542 inputs the label 52A and the accuracy 52B of each sample image from the trial transfer identification unit 32. The reliability calculation unit 542 calculates the reliability 542A using the input label 52A and accuracy 52B of each sample image. The reliability 542A is calculated by the equation (3) used for calculating the reliability 252A in the first embodiment.
 上記式(3)を信頼度542Aの計算に用いる場合、式(3)において、Ec2は、信頼度542Aを示す。xは、上記式(2)と同様に、サンプルグループXを構成する要素(サンプル画像)を示す。|X|は、サンプルグループXの要素数である。P(x)は、要素xの確度52Bを示す。T(x)は、要素xのラベル52Aを示す。yは、人物の存在を示すラベル(y=1)である。つまり、信頼度542Aは、ラベル52Aがラベルyと一致する場合に算出された確度52Bの合計値を、サンプルグループXの要素数で除算した値である。信頼度542Aは、0以上1以下の値であり、1に近いほど、転移学習における事前ドメイン62の有効性が高いことを示す。 When Equation (3) is used for calculation of the reliability 542A, in Equation (3), E c2 indicates the reliability 542A. x represents an element (sample image) constituting the sample group X, similarly to the above formula (2). | X | is the number of elements of the sample group X. P T (x) indicates the accuracy 52B of the element x. T (x) indicates the label 52A of the element x. y is a label (y = 1) indicating the presence of a person. That is, the reliability 542A is a value obtained by dividing the total value of the accuracy 52B calculated when the label 52A matches the label y by the number of elements of the sample group X. The reliability 542A is a value of 0 or more and 1 or less, and the closer to 1, the higher the effectiveness of the prior domain 62 in transfer learning.
 図18は、信頼度542Aの変化の一例を示すグラフである。図17と同様に、俯角が5°おきに設定された複数の事前ドメインの各々から試行転移識別部32を生成して、各事前ドメインに対応する信頼度542Aを計算することにより、図18に示すグラフを作成した。 FIG. 18 is a graph showing an example of a change in the reliability 542A. Similarly to FIG. 17, by generating a trial transfer identification unit 32 from each of a plurality of prior domains whose depression angles are set every 5 °, and calculating the reliability 542A corresponding to each prior domain, FIG. The graph shown was created.
 信頼度542Aは、図18に示すように、全体的な傾向として、俯角の増加に合わせて減少していく。つまり、事前ドメインの有効性が高くなるにつれて、信頼度542Aは1に近づく。以下、その理由を説明する。事前ドメイン62に含まれるデータが、目標ドメイン61に含まれるデータの特徴量と類似する特徴量を有している場合、試行転移学習部52は、試行転移学習により、事前ドメイン62の学習結果を目標ドメイン61の学習結果に転移させる。試行転移識別部32には、目標ドメイン61及び事前ドメイン62の両者の学習結果が反映されている。試行転移識別部32がサンプルグループに含まれる各画像に対して識別処理を行った場合、ラベル52Aは1となり、その確度52Bも1に近づくと考えられる。従って、事前ドメイン62に含まれるデータと目標ドメイン61に含まれるデータとが類似している場合(事前ドメイン62が転移学習において有効である場合)、信頼度542Aは、1に近づく。 As shown in FIG. 18, the reliability 542A decreases as the depression angle increases as an overall trend. That is, the reliability 542A approaches 1 as the effectiveness of the prior domain increases. The reason will be described below. When the data included in the prior domain 62 has a feature amount similar to the feature amount of the data included in the target domain 61, the trial transfer learning unit 52 obtains the learning result of the prior domain 62 by trial transfer learning. Transfer to the learning result of the target domain 61. The trial transfer identification unit 32 reflects the learning results of both the target domain 61 and the prior domain 62. When the trial transfer identification unit 32 performs identification processing on each image included in the sample group, the label 52A is 1 and the accuracy 52B is considered to approach 1. Therefore, when the data included in the prior domain 62 and the data included in the target domain 61 are similar (when the prior domain 62 is effective in transfer learning), the reliability 542A approaches 1.
 図18に示すように、信頼度542Aは、上下に振動しながら増加する。これは、競合値541Aと同様に、信頼度542Aの誤差が比較的大きいことを示している。このため、信頼度542Aのみを用いて、転移学習に対する事前ドメインの有効性を判断した場合、負の転移を引き起こす事前ドメインを誤って有効であると判断するおそれがある。このため、信頼度542Aを用いて事前ドメインの有効性を判断する場合、他のパラメータ(分布相違度543A等)を合わせて用いることが望ましい。 As shown in FIG. 18, the reliability 542A increases while vibrating up and down. This indicates that the error of the reliability 542A is relatively large, like the competitive value 541A. For this reason, when the validity of the prior domain with respect to transfer learning is determined using only the reliability 542A, the prior domain that causes negative transfer may be erroneously determined to be effective. For this reason, when determining the validity of the prior domain using the reliability 542A, it is desirable to use other parameters (distribution dissimilarity 543A and the like) together.
 {3.3.3.分布相違度}
 分布相違度計算部543は、試行転移識別部32によるサンプル画像の識別結果のみを利用して、分布相違度543Aを計算する。分布相違度計算部543は、試行転移識別部521を構成する各決定木のリーフノードに到達した目標ドメイン61の画像の分布と事前ドメイン62の画像の分布との差に基づいて、分布相違度543Aを計算する。
{3.3.3. Distribution difference}
The distribution dissimilarity calculation unit 543 calculates the distribution dissimilarity 543A using only the sample image identification result by the trial transfer identification unit 32. The distribution dissimilarity calculation unit 543 calculates the distribution dissimilarity based on the difference between the image distribution of the target domain 61 and the image distribution of the prior domain 62 that has reached the leaf node of each decision tree constituting the trial transfer identification unit 521. 543A is calculated.
 試行転移識別部521は、学習アルゴリズムとして転移学習を導入したランダムフォレストを用いるため、複数の決定木により構成される。しかし、分布相違度543Aの計算の説明を簡略化するために、試行転移識別部521を構成する決定木が1つである場合を最初に説明する。 The trial transfer identification unit 521 includes a plurality of decision trees because a random forest in which transfer learning is introduced is used as a learning algorithm. However, in order to simplify the description of the calculation of the distribution dissimilarity 543A, a case where the number of decision trees constituting the trial transfer identification unit 521 is one will be described first.
 図19は、試行転移識別部521を構成する決定木75の一例を示す模式図である。図20は、目標ドメイン61の画像の識別結果に基づいて作成されるヒストグラム81の一例を示す図である。図21は、事前ドメイン62の画像の識別結果に基づいて作成されるヒストグラム82の一例を示す図である。ヒストグラム81及び82は、試行転移識別部521による識別結果に基づいて作成される。 FIG. 19 is a schematic diagram illustrating an example of a decision tree 75 that constitutes the trial transfer identification unit 521. FIG. 20 is a diagram illustrating an example of the histogram 81 created based on the image identification result of the target domain 61. FIG. 21 is a diagram illustrating an example of a histogram 82 created based on the image identification result of the prior domain 62. The histograms 81 and 82 are created based on the identification result by the trial transfer identification unit 521.
 ヒストグラム81は、以下のようにして作成される。試行転移識別部521は、目標ドメイン61に含まれる各画像を決定木75のルートノード75Rに入力する。入力された画像は、分岐ノードを経由して、リーフノード75A~75Gのいずれかに到達する。 The histogram 81 is created as follows. The trial transfer identification unit 521 inputs each image included in the target domain 61 to the root node 75R of the decision tree 75. The input image reaches one of the leaf nodes 75A to 75G via the branch node.
 例えば、試行転移識別部521は、画像61A(図15参照)の特徴量をルートノード75Rで用いられるしきい値と比較し、比較結果に基づいて、画像61Aの遷移先を分岐ノード76A及び76Bのいずれかに決定する。画像61Aが分岐ノード76Aに遷移した場合、試行転移識別部521は、画像61A(図15参照)の特徴量を分岐ノード76Aで用いられるしきい値と比較し、遷移先のノードをリーフノード75A又は分岐ノード76Cに決定する。画像61Aがリーフノード75Aに遷移することにより、画像61Aの到達先が、リーフノード75Aに決定される。分岐ノード76Aで用いられる画像61Aの特徴量は、ルートノード75Rで用いられる画像61Aの特徴量と同じであっても異なっていてもよい。同じである場合、分岐ノード76Aで用いられるしきい値は、ルートノード75Rで用いられるしきい値と異なる。 For example, the trial transfer identifying unit 521 compares the feature amount of the image 61A (see FIG. 15) with a threshold value used in the root node 75R, and determines the transition destination of the image 61A as branch nodes 76A and 76B based on the comparison result. Decide on either. When the image 61A transitions to the branch node 76A, the trial transfer identification unit 521 compares the feature amount of the image 61A (see FIG. 15) with the threshold value used in the branch node 76A, and sets the transition destination node to the leaf node 75A. Alternatively, the branch node 76C is determined. When the image 61A transitions to the leaf node 75A, the destination of the image 61A is determined to be the leaf node 75A. The feature amount of the image 61A used at the branch node 76A may be the same as or different from the feature amount of the image 61A used at the root node 75R. If so, the threshold used at branch node 76A is different from the threshold used at root node 75R.
 試行転移識別部521は、目標ドメイン61に含まれる各画像が到達したリーフノードを特定する到達先データ52Cを分布相違度計算部543に出力する。分布相違度計算部543は、到達先データ52Cを参照して、リーフノード75A~75Gの各々に到達した画像の数をカウントする。この結果、リーフノードに到達した目標ドメイン61の画像の分布を示すヒストグラム81が作成される。 The trial transfer identification unit 521 outputs the destination data 52C for specifying the leaf node to which each image included in the target domain 61 has arrived, to the distribution difference calculation unit 543. The distribution difference calculation unit 543 refers to the destination data 52C and counts the number of images that have reached each of the leaf nodes 75A to 75G. As a result, a histogram 81 indicating the distribution of the image of the target domain 61 that has reached the leaf node is created.
 試行転移識別部521は、事前ドメイン62に含まれる画像の各々が到達したリーフノードを特定する到達先データ52Dを生成する。分布相違度計算部543は、到達先データ52Dに基づいて、リーフノードに到達した事前ドメイン62の画像の分布を示すヒストグラム82を作成する。 The trial transfer identification unit 521 generates destination data 52D that identifies the leaf node to which each of the images included in the prior domain 62 has arrived. The distribution difference calculation unit 543 creates a histogram 82 indicating the distribution of the image of the previous domain 62 that has reached the leaf node, based on the destination data 52D.
 分布相違度543Aは、下記式(5)を用いて計算される。具体的には、分布相違度543Aは、ヒストグラム81及び82を正規化した後、それらのBhattacharyya距離を算出することによりにより得られる。Bhattacharyya距離は、2つの確率分布の類似性を示す。 The distribution dissimilarity 543A is calculated using the following equation (5). Specifically, the distribution dissimilarity 543A is obtained by normalizing the histograms 81 and 82 and then calculating their Bhattacharyya distance. The Bhattacharyya distance indicates the similarity between two probability distributions.
Figure JPOXMLDOC01-appb-M000005
               
Figure JPOXMLDOC01-appb-M000005
               
 式(5)において、Ec3は、分布相違度543Aを示す。iは、図19に示す各リーフノードの番号である。p(i)は、リーフノードに到達した目標ドメイン61の画像の確率分布である。q(i)は、リーフノードに到達した事前ドメイン62の画像の確率分布である。確率分布p(i)は、ヒストグラム81から作成され、確率分布q(i)は、ヒストグラム82から作成される。Xは、サンプルグループを構成する要素(画像)の数である。 In Equation (5), E c3 indicates the distribution dissimilarity 543A. i is the number of each leaf node shown in FIG. p (i) is the probability distribution of the image of the target domain 61 that has reached the leaf node. q (i) is the probability distribution of the image of the previous domain 62 that has reached the leaf node. The probability distribution p (i) is created from the histogram 81, and the probability distribution q (i) is created from the histogram 82. X is the number of elements (images) constituting the sample group.
 分布相違度543Aは、0以上1以下の数値であり、ヒストグラム81における画像の分布と、ヒストグラム82における画像の分布との類似性が低いほど1に近づく。つまり、分布相違度543Aが1に近づくほど、事前ドメイン62が転移学習に有効でないことを示す。 The distribution dissimilarity 543A is a numerical value of 0 or more and 1 or less, and approaches 1 as the similarity between the image distribution in the histogram 81 and the image distribution in the histogram 82 is lower. In other words, the closer the distribution dissimilarity 543A is to 1, the less the prior domain 62 is effective for transfer learning.
 図22は、分布相違度543Aの変化の一例を示すグラフである。図17と同様に、俯角が5°おきに設定された複数の事前ドメインの各々に対応する試行転移識別部521を作成して、各事前ドメインに対応する分布相違度543Aを計算した。 FIG. 22 is a graph showing an example of a change in the distribution dissimilarity 543A. Similarly to FIG. 17, a trial transfer identification unit 521 corresponding to each of a plurality of prior domains whose depression angles are set every 5 ° is created, and the distribution dissimilarity 543A corresponding to each prior domain is calculated.
 図22に示すように、分布相違度543Aは、俯角の増加に合わせて増加する。これは、以下の理由による。俯角が増加するにつれて、目標ドメイン61に含まれる画像の特徴と事前ドメイン62に含まれる画像の特徴との差が大きくなる。この場合、事前ドメイン62に含まれる画像が決定木75内を遷移するルートが、目標ドメイン61に含まれる画像が決定木75内を遷移するルートから大きく外れる頻度が増加する。目標ドメイン61に含まれる画像の分布と、事前ドメイン62に含まれる画像の分布との差が大きくなり、俯角の増加に合わせて分布相違度543Aが増加する。 22, the distribution dissimilarity 543A increases as the depression angle increases. This is due to the following reason. As the depression angle increases, the difference between the image features included in the target domain 61 and the image features included in the pre-domain 62 increases. In this case, the frequency at which the route in which the image included in the prior domain 62 transitions in the decision tree 75 greatly deviates from the route in which the image included in the target domain 61 transitions in the decision tree 75 increases. The difference between the distribution of the image included in the target domain 61 and the distribution of the image included in the prior domain 62 increases, and the distribution dissimilarity 543A increases as the depression angle increases.
 例えば、図20に示すヒストグラム81では、ピークがノード番号3のノード75Dに表れている。一方、図21に示すヒストグラム82では、ピークがノード番号6のノード75Gに表れている。つまり、ヒストグラム81及び82は、ヒストグラムの形状が互いに大きく異なる。この場合、分布相違度543Aは、1に近い値となるため、転移学習における事前ドメイン62の有効性は低いと考えられる。 For example, in the histogram 81 shown in FIG. 20, the peak appears at the node 75 </ b> D with the node number 3. On the other hand, in the histogram 82 shown in FIG. 21, a peak appears in the node 75G of the node number 6. That is, the histograms 81 and 82 are greatly different from each other in the shape of the histogram. In this case, since the distribution dissimilarity 543A is a value close to 1, it is considered that the effectiveness of the prior domain 62 in transfer learning is low.
 また、図22に示すように、競合値541A及び信頼度542Aに比べて、分布相違度543Aは、上下に振動しない。これは、分布相違度543Aの誤差が小さく、転移学習における事前ドメインの有効性を精度よく判断できることを示している。 Also, as shown in FIG. 22, the distribution dissimilarity 543A does not vibrate up and down compared to the competitive value 541A and the reliability 542A. This indicates that the error of the distribution dissimilarity 543A is small and the effectiveness of the prior domain in transfer learning can be determined with high accuracy.
 次に、試行転移識別部521が複数の決定木により構成される場合における、分布相違度543Aの計算について説明する。分布相違度計算部543は、式(5)を用いて、決定木ごとの分布相違度543Aを計算する。そして、分布相違度計算部543は、各決定木の分布相違度543Aの平均を、事前ドメイン62の分布相違度543Aとして算出する。 Next, calculation of the distribution dissimilarity 543A when the trial transfer identification unit 521 is configured by a plurality of decision trees will be described. Distribution dissimilarity calculation unit 543 calculates distribution dissimilarity 543A for each decision tree using equation (5). Then, the distribution difference calculation unit 543 calculates the average of the distribution difference 543A of each decision tree as the distribution difference 543A of the prior domain 62.
 {3.3.4.木の複雑度}
 複雑度計算部544は、試行転移識別部521を構成する決定木の構造に基づいて複雑度544Aを計算する。複雑度544Aは、試行転移識別部521を構成する決定木のリーフノードの深さに基づいて計算される。
{3.3.4. Tree complexity}
The complexity calculation unit 544 calculates the complexity 544A based on the structure of the decision tree constituting the trial transfer identification unit 521. The complexity 544A is calculated based on the depth of the leaf node of the decision tree that constitutes the trial transfer identification unit 521.
 複雑度544Aの計算方法について、分布相違度543Aの説明と同様に、試行転移識別部521を構成する決定木が1つである場合を最初に説明する。複雑度計算部544は、決定木を構成する各リーフノードの深さを記録したリーフノードデータ52Eを試行転移識別部521から取得する。複雑度計算部544は、下記式(6)を用いて、複雑度544Aを計算する。 As for the calculation method of the complexity 544A, a case where there is one decision tree constituting the trial transfer identification unit 521 will be described first as in the case of the distribution dissimilarity 543A. The complexity calculation unit 544 acquires leaf node data 52E in which the depth of each leaf node constituting the decision tree is recorded from the trial transfer identification unit 521. The complexity calculator 544 calculates the complexity 544A using the following equation (6).
Figure JPOXMLDOC01-appb-M000006
               
Figure JPOXMLDOC01-appb-M000006
               
 上記式(5)において、Ec4は、複雑度544Aを示す。dは、決定木におけるk番目のリーフノードの深さを示す。nは、決定木におけるリーフノードの数である。dmaxは、決定木におけるリーフノードの最大深さを示し、式(6)の分子(リーフノードの深さの合計値)を正規化するために用いられる。リーフノードの深さは、リーフノードからルートノード75Rに到達するまでに通過するエッジ(枝)の数によって定義される。例えば、図17に示す決定木において、リーフノード75Aの深さは、2である。 In the above formula (5), E c4 indicates the complexity 544A. d k indicates the depth of the k-th leaf node in the decision tree. n is the number of leaf nodes in the decision tree. d max indicates the maximum depth of the leaf node in the decision tree, and is used to normalize the numerator (the sum of the depths of the leaf nodes) in Equation (6). The depth of the leaf node is defined by the number of edges (branches) that pass from the leaf node to the root node 75R. For example, in the decision tree shown in FIG. 17, the depth of the leaf node 75A is 2.
 一般的に、リーフノードの数又はリーフノードの深さが増加するにつれて、決定木の構造は複雑となる。目標ドメイン61の各画像の特徴と事前ドメイン62の各画像の特徴との差が大きくなるにつれて、決定木は複雑な構造を有する。以下、その理由について説明する。 In general, the structure of a decision tree becomes more complex as the number of leaf nodes or the depth of leaf nodes increases. As the difference between the features of each image in the target domain 61 and the features of each image in the pre-domain 62 increases, the decision tree has a complex structure. The reason will be described below.
 目標ドメイン61の各画像の特徴と事前ドメイン62の各画像の特徴との差が大きい場合、試行転移学習部52は、決定木を作成する際に、目標ドメイン61の各画像の特徴に応じた分岐条件と、事前ドメイン62の各画像の特徴に応じた分岐条件とを別々に作成する。この結果、目標ドメインの各画像に対応する部分木と、事前ドメイン62の各画像の特徴を識別するための部分木とが、別々に作成される。この結果、決定木を構成するリーフノードの数が増加し、決定木の構造は複雑となる。従って、式(6)により計算される複雑度544Aを用いることにより、転移学習における事前ドメイン62の有効性を判断することができる。 When the difference between the feature of each image in the target domain 61 and the feature of each image in the pre-domain 62 is large, the trial transfer learning unit 52 creates a decision tree according to the feature of each image in the target domain 61. A branch condition and a branch condition corresponding to the characteristics of each image in the prior domain 62 are created separately. As a result, a subtree corresponding to each image of the target domain and a subtree for identifying the feature of each image of the prior domain 62 are created separately. As a result, the number of leaf nodes constituting the decision tree increases and the structure of the decision tree becomes complicated. Therefore, the effectiveness of the prior domain 62 in transfer learning can be determined by using the complexity 544A calculated by Expression (6).
 図23は、複雑度544Aの変化の一例を示すグラフである。図17と同様に、俯角が5°おきに設定された複数の事前ドメインを作成し、各事前ドメインに対応する複雑度544Aを計算することにより、図23に示すグラフを作成した。 FIG. 23 is a graph showing an example of a change in complexity 544A. Similarly to FIG. 17, a plurality of pre-domains whose depression angles are set at intervals of 5 ° are created, and the complexity 544A corresponding to each pre-domain is calculated, thereby creating the graph shown in FIG.
 図23に示すように、複雑度544Aは、俯角の増加に合わせて増加する。これは、上述のように、事前ドメインに含まれる画像の特徴と、目標ドメインに含まれる画像の特徴との差が大きくなるにつれて、決定木の構造が複雑となるためである。なお、分布相違度543Aと同様に、複雑度544Aは、上下に振動しない。従って、複雑度544Aを用いることにより、転移学習における事前ドメイン62の有効性を精度よく判断することができる。 As shown in FIG. 23, the complexity 544A increases as the depression angle increases. This is because, as described above, the structure of the decision tree becomes more complex as the difference between the image features included in the prior domain and the image features included in the target domain increases. As with the distribution difference 543A, the complexity 544A does not vibrate up and down. Therefore, by using the complexity 544A, it is possible to accurately determine the effectiveness of the prior domain 62 in transfer learning.
 複数の決定木が試行転移識別部521を構成する場合の複雑度544Aの計算方法について説明する。決定木ごとの複雑度544Aが、式(6)により計算される。決定木ごとに計算された複雑度544Aを平均することにより、複数の決定木が試行転移識別部521を構成する場合における複雑度544Aが得られる。 A calculation method of the complexity 544A when a plurality of decision trees configure the trial transfer identification unit 521 will be described. The complexity 544A for each decision tree is calculated according to equation (6). By averaging the complexity 544A calculated for each decision tree, the complexity 544A in the case where a plurality of decision trees constitute the trial transfer identification unit 521 is obtained.
 {3.3.5.転移評価部545による事前ドメインの評価}
 転移評価部545は、競合値541A、信頼度542A、分布相違度543A、及び複雑度544Aを入力する。転移評価部545は、入力した競合値541A、信頼度542A、分布相違度543A、及び複雑度544Aに基づいて、転移学習における事前ドメイン62の有効性を評価する。
{3.3.5. Prior domain evaluation by transfer evaluation unit 545}
The transfer evaluation unit 545 receives the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A. The transfer evaluation unit 545 evaluates the effectiveness of the prior domain 62 in transfer learning based on the input competitive value 541A, reliability 542A, distribution dissimilarity 543A, and complexity 544A.
 転移評価部545は、下記の式(7)を用いて、総合評価値を計算する。 The transfer evaluation unit 545 calculates a comprehensive evaluation value using the following equation (7).
Figure JPOXMLDOC01-appb-M000007
               
Figure JPOXMLDOC01-appb-M000007
               
 式(7)において、Eは、競合値541A、信頼度542A、分布相違度543A、及び複雑度544Aから得られる総合評価値である。事前ドメインの転移学習における有効性が低下するにつれて、競合値541A、分布相違度543A、及び複雑度544Aは増加する。一方、信頼度542Aは、逆に低下する。信頼度542Aの傾向を他の3つの評価値の傾向に合わせるために、1から信頼度542Aを減算した値を、総合評価値の計算に使用している。 In Expression (7), E is a comprehensive evaluation value obtained from the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A. As the effectiveness of predomain transfer learning decreases, the competitive value 541A, the distribution dissimilarity 543A, and the complexity 544A increase. On the other hand, the reliability 542A decreases conversely. In order to match the tendency of the reliability 542A with the tendency of the other three evaluation values, a value obtained by subtracting the reliability 542A from 1 is used for calculation of the comprehensive evaluation value.
 上記式(7)により計算された総合評価値は、0以上の値であり、転移学習の有効性が高くなるにつれて0に近づく。転移評価部545は、計算された総合評価値が予め設定されたしきい値よりも小さい場合、事前ドメイン62が転移学習において有効であると判断する。転移評価部545は、転移学習の有効性の判断対象であった事前ドメイン62の評価結果を示す評価結果データ545Aを選択転移学習部55に出力する。 The comprehensive evaluation value calculated by the above equation (7) is a value of 0 or more, and approaches 0 as the effectiveness of transfer learning increases. The transfer evaluation unit 545 determines that the pre-domain 62 is effective in transfer learning when the calculated comprehensive evaluation value is smaller than a preset threshold value. The transfer evaluation unit 545 outputs to the selective transfer learning unit 55 evaluation result data 545A indicating the evaluation result of the prior domain 62 that has been the target of determining the effectiveness of transfer learning.
 {3.4.次の事前ドメインの指定}
 事前ドメイン62の有効性の評価(ステップS25)が終了した後に、事前ドメイン62の有効性の評価に用いられた試行転移識別部521及び比較識別部531が削除される(ステップS26)。事前ドメイン62に対応する試行転移識別部521及び比較識別部531は、転移学習における他の事前ドメインの有効性の評価で使用されないためである。
{3.4. Specify next advance domain}
After the evaluation of the validity of the prior domain 62 (step S25) is completed, the trial transfer identifying unit 521 and the comparison identifying unit 531 used for evaluating the validity of the prior domain 62 are deleted (step S26). This is because the trial transfer identification unit 521 and the comparison identification unit 531 corresponding to the prior domain 62 are not used in the evaluation of the effectiveness of other prior domains in transfer learning.
 取得部51は、記憶装置60に記憶されている全ての事前ドメインの評価が終了したか否かを判断する(ステップS27)。全ての事前ドメインの評価が終了していない場合(ステップS27においてNo)、機械学習装置500は、転移学習の有効性が評価されていない事前ドメインを取得するために、ステップS22に戻る。 The acquisition unit 51 determines whether or not the evaluation of all the prior domains stored in the storage device 60 has been completed (step S27). When the evaluation of all the prior domains has not been completed (No in step S27), the machine learning device 500 returns to step S22 in order to acquire a prior domain in which the effectiveness of transfer learning has not been evaluated.
 これにより、転移学習における事前ドメイン63及び64の有効性が評価される。転移評価部545は、事前ドメイン63及び64の各々の評価結果を示す評価結果データ545Aを、選択転移学習部55に出力する。 This evaluates the effectiveness of the prior domains 63 and 64 in transfer learning. The transfer evaluation unit 545 outputs evaluation result data 545A indicating the evaluation results of each of the prior domains 63 and 64 to the selective transfer learning unit 55.
 {3.5.転移識別データ80の生成}
 全ての事前ドメインの評価が終了した場合(ステップS27においてYes)、選択転移学習部55は、事前ドメイン62~64の各々の評価結果データ545Aに基づいて、転移学習に有効であると判断された事前ドメインを特定する。転移学習に有効と判断される事前ドメインの数は、特に限定されない。
{3.5. Generation of transfer identification data 80}
When the evaluation of all the prior domains is completed (Yes in step S27), the selective transfer learning unit 55 is determined to be effective for transfer learning based on the evaluation result data 545A of each of the prior domains 62 to 64. Identify the advance domain. The number of prior domains determined to be effective for transfer learning is not particularly limited.
 選択転移学習部55は、目標ドメイン61及び特定した事前ドメインを、取得部51を介して記憶装置60から取得する。選択転移学習部55は、取得した目標ドメイン61及び事前ドメインを用いて、転移学習を導入したランダムフォレストに基づく機械学習を実行する(ステップS28)。この結果、転移識別データ80が生成される。生成された転移識別データ80は、人物検出装置(図示省略)により利用される。 The selective transfer learning unit 55 acquires the target domain 61 and the identified prior domain from the storage device 60 via the acquisition unit 51. The selective transfer learning unit 55 uses the acquired target domain 61 and the prior domain to perform machine learning based on a random forest in which transfer learning is introduced (step S28). As a result, transfer identification data 80 is generated. The generated transfer identification data 80 is used by a person detection device (not shown).
 以上説明したように、機械学習装置500は、事前ドメイン62~64の各々の転移学習における有効性を評価し、目標ドメイン61と転移学習に有効と判断された事前ドメインとを用いて転移学習を導入した機械学習を実行する。事前ドメインが、目標ドメインに含まれる画像の特徴と大きく異なる特徴を有する画像により構成される場合、この事前ドメインが転移識別データ80の生成に用いられることが防止される。この結果、負の転移が発生することを防止することができ、検出対象の検出精度を高めることができる。 As described above, the machine learning device 500 evaluates the effectiveness of each of the advance domains 62 to 64 in transfer learning, and performs transfer learning using the target domain 61 and the advance domain determined to be effective for transfer learning. Perform the introduced machine learning. When the prior domain is configured by an image having a characteristic that is significantly different from the characteristics of the image included in the target domain, the prior domain is prevented from being used to generate the transfer identification data 80. As a result, it is possible to prevent a negative transition from occurring, and to improve the detection accuracy of the detection target.
 {変形例}
 なお、上記第2の実施の形態において、試行転移学習部52及び選択転移学習部55が、学習アルゴリズムとしてランダムフォレストを用いる場合を例に説明したが、これに限られない。学習アルゴリズムは、決定木を生成するアルゴリズムであれば、特に限定されない。例えば、学習アルゴリズムとして、ID3(Iterative Dichotomiser 3)や、ブースティングを用いることが可能である。いずれの学習アルゴズムを用いる場合であっても、試行転移学習部52は、転移学習を導入した機械学習を実行し、比較学習部53は、転移学習を導入しない機械学習を実行すればよい。
{Modifications}
In the second embodiment, the case where the trial transfer learning unit 52 and the selective transfer learning unit 55 use a random forest as a learning algorithm has been described as an example, but the present invention is not limited to this. The learning algorithm is not particularly limited as long as it is an algorithm that generates a decision tree. For example, ID3 (Iterative Dichotomiser 3) or boosting can be used as a learning algorithm. Regardless of which learning algorithm is used, the trial transfer learning unit 52 may perform machine learning that introduces transfer learning, and the comparative learning unit 53 may execute machine learning that does not introduce transfer learning.
 上記第2の実施の形態において、事前ドメイン62~64が、0°よりも大きい俯角で人物を撮影された画像を含む例を説明したが、これに限られない。機械学習装置500は、0°よりも大きい仰角で人物を撮影した画像を含む事前ドメインを用いてもよい。あるいは、目標ドメイン61に含まれる画像の明るさと異なる明るさを有する画像を含む事前ドメインを用いてもよい。また、目標ドメイン61が人物を撮影した画像である場合を例にして説明したが、検出対象に応じて目標ドメイン61に含まれるデータが設定されることは言うまでもない。 In the second embodiment, the example has been described in which the pre-domains 62 to 64 include an image obtained by photographing a person at a depression angle greater than 0 °, but the present invention is not limited to this. Machine learning device 500 may use a prior domain including an image of a person taken at an elevation angle greater than 0 °. Alternatively, a prior domain including an image having a brightness different from that of the image included in the target domain 61 may be used. In addition, although the case where the target domain 61 is an image obtained by photographing a person has been described as an example, it goes without saying that data included in the target domain 61 is set according to the detection target.
 上記第2の実施の形態において、転移評価部545が、競合値541A、信頼度542A、分布相違度543A及び複雑度544Aを用いて、転移学習における事前ドメインの有効性を評価する例を説明したが、これに限られない。転移評価部545は、競合値541A、信頼度542A、分布相違度543A及び複雑度544Aの少なくとも1つを用いて、事前ドメインの有効性を評価すればよい。 In the second embodiment, an example has been described in which the transfer evaluation unit 545 evaluates the effectiveness of the prior domain in transfer learning using the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A. However, it is not limited to this. The transfer evaluation unit 545 may evaluate the effectiveness of the prior domain using at least one of the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
 なお、分布相違度543A及び複雑度544Aは、競合値541A及び信頼度542Aに比べて、誤差が小さい。このため、転移評価部545は、少なくとも、分布相違度543A及び複雑度544Aをいずれかを用いることが望ましい。転移評価部545が、事前ドメインの評価に競合値541A及び信頼度542Aを用いない場合、機械学習装置500は、比較学習部53を備えなくてもよい。 The distribution dissimilarity 543A and the complexity 544A have smaller errors than the competitive value 541A and the reliability 542A. Therefore, it is desirable that the transition evaluation unit 545 uses at least one of the distribution dissimilarity 543A and the complexity 544A. When the transfer evaluation unit 545 does not use the competitive value 541A and the reliability 542A for evaluation of the prior domain, the machine learning device 500 may not include the comparison learning unit 53.
 上記第2の実施の形態において、分布相違度計算部543は、試行転移識別部521が複数の決定木により構成される場合、各決定木から計算される分布相違度を合計することにより分布相違度543Aを計算する例を説明したが、これに限られない。分布相違度計算部543は、試行転移識別部521を構成する決定木のうち、少なくとも一本の決定木を用いて分布相違度543Aを計算すればよい。複雑度計算部544も、同様に、試行転移識別部521を構成する決定木のうち、少なくとも一本の決定木を用いて複雑度544Aを計算すればよい。すなわち、判断部54は、試行転移識別部521を構成する複数の決定木のうち、少なくとも1つの決定木を構成する全てのリーフノードを用いて、転移学習における事前ドメインの有効性を評価すればよい。 In the second embodiment, when the trial transfer identification unit 521 is configured by a plurality of decision trees, the distribution difference calculation unit 543 adds the distribution differences calculated from the respective decision trees. Although the example which calculates degree 543A was demonstrated, it is not restricted to this. The distribution dissimilarity calculation unit 543 may calculate the distribution dissimilarity 543A using at least one decision tree among the decision trees constituting the trial transfer identification unit 521. Similarly, the complexity calculation unit 544 may calculate the complexity 544A using at least one decision tree among the decision trees constituting the trial transfer identification unit 521. That is, if the judgment unit 54 evaluates the effectiveness of the prior domain in transfer learning using all the leaf nodes constituting at least one decision tree among the plurality of decision trees constituting the trial transfer identification unit 521. Good.
 上記第2の実施の形態において、転移評価部545は、競合値541A、信頼度542A、分布相違度543A及び複雑度544Aを乗算することにより、総合評価値を計算する例を説明したが、これに限られない。たとえば、転移評価部545は、競合値541A、信頼度542A、分布相違度543A及び複雑度544Aの合計を総合評価値として計算してもよい。また、精度の高い分布相違度543A及び複雑度544Aの重みを大きくした上で、総合評価値を計算してもよい。つまり、転移評価部545は、競合値541A、信頼度542A、分布相違度543A及び複雑度544Aを用いて、総合評価値を計算すればよい。 In the second embodiment, the transition evaluation unit 545 calculates the overall evaluation value by multiplying the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A. Not limited to. For example, the transfer evaluation unit 545 may calculate the total of the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A as a comprehensive evaluation value. Further, the comprehensive evaluation value may be calculated after increasing the weights of the highly accurate distribution dissimilarity 543A and the complexity 544A. That is, the transfer evaluation unit 545 may calculate a comprehensive evaluation value using the competitive value 541A, the reliability 542A, the distribution dissimilarity 543A, and the complexity 544A.
 上記第2の実施の形態において、機械学習装置500が、人物を検出するための転移識別データ80を生成する例を例にしたが、これに限られない。学習の対象は、センサにより計測された測定データであってもよい。センサの種類は、特に限定されず、加速度センサ、光センサなどの様々な測定データを使用することができる。例えば、自動車の自動運転を行うために、これらのセンサの測定データを用いるために機械学習を実行してもよい。 In the second embodiment, the machine learning device 500 generates the transfer identification data 80 for detecting a person. However, the present invention is not limited to this. The learning target may be measurement data measured by a sensor. The type of sensor is not particularly limited, and various measurement data such as an acceleration sensor and an optical sensor can be used. For example, machine learning may be performed in order to use measurement data of these sensors in order to automatically drive a car.
 上記実施の形態の機械学習装置の一部または全部は、集積回路(例えば、LSI、システムLSI等)として実現されるものであってもよい。 Part or all of the machine learning device of the above embodiment may be realized as an integrated circuit (for example, an LSI, a system LSI, etc.).
 また、上記実施の形態における機械学習装置の各機能ブロック(各機能部)の処理の一部または全部は、プログラムにより実現されるものであってもよい。そして、上記各実施の形態の機械学習装置において、各機能ブロックの処理の一部または全部は、コンピュータにおいて、中央演算装置(CPU)により行われる。また、それぞれの処理を行うためのプログラムは、ハードディスク、ROMなどの記憶装置に格納されており、ROMにおいて、あるいはRAMに読み出されて実行される。例えば、機械学習装置の構成を、図24に示すような構成とすることにより、上記各実施形態の各機能ブロック(各機能部)の処理の一部または全部が実行されるものであっても良い。 Further, part or all of the processing of each functional block (each functional unit) of the machine learning device in the above embodiment may be realized by a program. In the machine learning device of each of the above embodiments, part or all of the processing of each functional block is performed by a central processing unit (CPU) in the computer. In addition, a program for performing each processing is stored in a storage device such as a hard disk or a ROM, and is read out and executed in the ROM or the RAM. For example, by configuring the machine learning device as shown in FIG. 24, a part or all of the processing of each functional block (each functional unit) in each of the above embodiments may be executed. good.
 また、上記実施の形態の各処理をハードウェアにより実現してもよいし、ソフトウェア(OS(オペレーティングシステム)、ミドルウェア、あるいは、所定のライブラリとともに実現される場合を含む。)により実現してもよい。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。 In addition, each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). . Further, it may be realized by mixed processing of software and hardware.
 また、上記実施の形態における処理方法の実行順序は、必ずしも、上記実施形態の記載に制限されるものではなく、発明の要旨を逸脱しない範囲で、実行順序を入れ替えることができるものである。 Further, the execution order of the processing methods in the above embodiment is not necessarily limited to the description of the above embodiment, and the execution order can be changed without departing from the gist of the invention.
 前述した方法をコンピュータに実行させるコンピュータプログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体は、本発明の範囲に含まれる。ここで、コンピュータ読み取り可能な記録媒体としては、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、大容量DVD、次世代DVD、半導体メモリを挙げることができる。 A computer program that causes a computer to execute the above-described method and a computer-readable recording medium that records the program are included in the scope of the present invention. Here, examples of the computer-readable recording medium include a flexible disk, hard disk, CD-ROM, MO, DVD, DVD-ROM, DVD-RAM, large-capacity DVD, next-generation DVD, and semiconductor memory. .
 上記コンピュータプログラムは、上記記録媒体に記録されたものに限られず、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク等を経由して伝送されるものであってもよい。 The computer program is not limited to the one recorded on the recording medium, but may be transmitted via a telecommunication line, a wireless or wired communication line, a network represented by the Internet, or the like.
 また、文言「部」は、「サーキトリー(circuitry)」を含む概念であってもよい。サーキトリーは、ハードウェア、ソフトウェア、あるいは、ハードウェアおよびソフトウェアの混在により、その全部または一部が、実現されるものであってもよい。 Further, the word “part” may be a concept including “circulatory”. The circuit may be realized in whole or in part by hardware, software, or a mixture of hardware and software.

Claims (19)

  1.  転移学習を導入した機械学習に用いられる複数の転移候補データの各々から特徴を抽出して複数の転移候補特徴データを生成するクラスタリング用特徴抽出部と、
     前記クラスタリング用特徴抽出部により生成された複数の転移候補特徴データの各々が有する特徴に基づいて、各転移候補特徴データを第1グループ及び第2グループを含む複数のグループに分類する分類部と、
     前記分類部により前記第1グループに分類された転移候補特徴データの数が所定の分類継続基準値以下である場合、前記第1グループを前記機械学習に用いられる事前ドメインに決定し、前記転移候補特徴データの数が前記分類継続基準値よりも大きい場合、前記第1グループに分類された転移候補特徴データをさらに分類することを決定する事前ドメイン決定部と、
    を備えるクラスタリング装置。
    A feature extraction unit for clustering that generates a plurality of transfer candidate feature data by extracting features from each of a plurality of transfer candidate data used in machine learning using transfer learning;
    A classifying unit that classifies each transfer candidate feature data into a plurality of groups including a first group and a second group based on the features of each of the plurality of transfer candidate feature data generated by the clustering feature extraction unit;
    When the number of transfer candidate feature data classified into the first group by the classification unit is equal to or less than a predetermined classification continuation reference value, the first group is determined as a prior domain used for the machine learning, and the transfer candidate If the number of feature data is larger than the classification continuation reference value, a pre-domain determination unit that determines to further classify the transfer candidate feature data classified into the first group;
    A clustering apparatus comprising:
  2.  請求項1に記載のクラスタリング装置であって、
     事前ドメイン決定部は、前記第1グループに分類された転移候補特徴データの数が所定の破棄基準値よりも小さい場合、前記第1グループを事前ドメインから除外するクラスタリング装置。
    The clustering device according to claim 1,
    The prior domain determination unit is a clustering apparatus that excludes the first group from the prior domain when the number of transfer candidate feature data classified into the first group is smaller than a predetermined discard reference value.
  3.  請求項1に記載のクラスタリング装置であって、さらに、
     前記第1グループに分類された転移候補特徴データの各々が有する特徴量に基づいて、前記第1グループに分類された転移候補特徴データの分散を計算する分散計算部、
    を備え、
     前記事前ドメイン決定部は、前記第1グループに分類された転移候補特徴データの数が前記分類継続基準値よりも大きい場合、前記分散計算部により計算された分散を所定の分散基準値と比較し、前記分散計算部により計算された分散が前記分散基準値以下である場合、前記第1グループを事前ドメインに決定するクラスタリング装置。
    The clustering device according to claim 1, further comprising:
    A variance calculation unit for calculating a variance of transfer candidate feature data classified into the first group based on a feature amount of each of the transfer candidate feature data classified into the first group;
    With
    The prior domain determination unit compares the variance calculated by the variance calculation unit with a predetermined variance reference value when the number of transfer candidate feature data classified into the first group is larger than the classification continuation reference value When the variance calculated by the variance calculation unit is equal to or smaller than the variance reference value, the clustering apparatus determines the first group as a prior domain.
  4.  請求項1に記載のクラスタリング装置であって、
     前記分類部は、前記第1グループに分類された転移候補特徴データの数が所定の変更基準値よりも大きい場合、前記第1グループに分類された転移候補特徴データを第1の数の下位グループにさらに分類し、
     前記分類部は、前記第1グループに分類された転移候補特徴データの数が前記変更基準値以下である場合、前記第1グループに分類された転移候補特徴データを前記第1の数よりも小さい第2の数の下位グループに分類するクラスタリング装置。
    The clustering device according to claim 1,
    When the number of transfer candidate feature data classified into the first group is larger than a predetermined change reference value, the classifying unit converts the transfer candidate feature data classified into the first group into a first number of lower groups. Further categorized into
    When the number of transfer candidate feature data classified into the first group is less than or equal to the change reference value, the classification unit determines the transfer candidate feature data classified into the first group to be smaller than the first number. A clustering device for classifying into a second number of subgroups.
  5.  請求項1に記載のクラスタリング装置であって、
     前記分類継続基準値が、前記クラスタリング用特徴抽出部により抽出される転移候補特徴データの次元数に基づいて決定されるクラスタリング装置。
    The clustering device according to claim 1,
    A clustering device in which the classification continuation reference value is determined based on the number of dimensions of transfer candidate feature data extracted by the clustering feature extraction unit.
  6.  転移学習を導入した機械学習を実行して検出対象を学習する機械学習装置であって、
     前記機械学習に用いられる複数の転移候補データを分類して前記機械学習に用いられる事前ドメインを生成するクラスタリング装置と、
     前記クラスタリング装置により生成された事前ドメインが前記機械学習に有効であるか否かを評価する事前ドメイン評価装置と、
    を備え、
     前記クラスタリング装置は、
     前記複数の転移候補データの各々から特徴を抽出して複数の転移候補特徴データを生成するクラスタリング用特徴抽出部と、
     前記クラスタリング用特徴抽出部により生成された複数の転移候補特徴データの各々が有する特徴に基づいて、各転移候補特徴データを第1グループ及び第2グループを含む複数のグループに分類する分類部と、
     前記分類部により前記第1グループに分類された転移候補特徴データの数が所定の分類継続基準値以下である場合、前記第1グループを前記機械学習に用いられる事前ドメインに決定し、前記転移候補特徴データの数が前記分類継続基準値よりも大きい場合、前記第1グループに分類された転移候補特徴データをさらに分類することを決定する事前ドメイン決定部と、
    を備え、
     前記事前ドメイン評価装置は、
     前記事前ドメイン決定部により前記第1グループが前記事前ドメインに決定された場合、前記第1グループに含まれる転移候補特徴データと、各々が所定の条件下における検出対象の特徴を有する学習用データを含む目標ドメインとを用いて前記機械学習を実行して、前記事前ドメインを評価するための評価用識別器を生成する試行転移学習部と、
     前記試行転移学習部により生成された試行転移識別部に基づいて、前記第1グループが前記機械学習に有効であるか否かを判断する判断部と、
    を備える機械学習装置。
    A machine learning device that learns a detection target by executing machine learning using transfer learning,
    A clustering device that classifies a plurality of transfer candidate data used for the machine learning and generates a prior domain used for the machine learning;
    A prior domain evaluation device that evaluates whether the prior domain generated by the clustering device is effective for the machine learning;
    With
    The clustering apparatus includes:
    A clustering feature extractor for extracting features from each of the plurality of transfer candidate data to generate a plurality of transfer candidate feature data;
    A classifying unit that classifies each transfer candidate feature data into a plurality of groups including a first group and a second group based on the features of each of the plurality of transfer candidate feature data generated by the clustering feature extraction unit;
    When the number of transfer candidate feature data classified into the first group by the classification unit is equal to or less than a predetermined classification continuation reference value, the first group is determined as a prior domain used for the machine learning, and the transfer candidate If the number of feature data is larger than the classification continuation reference value, a pre-domain determination unit that determines to further classify the transfer candidate feature data classified into the first group;
    With
    The prior domain evaluation device is:
    When the first group is determined to be the previous domain by the prior domain determining unit, the transfer candidate feature data included in the first group, and each of which has a feature to be detected under a predetermined condition A trial transfer learning unit that performs the machine learning using a target domain including data and generates an evaluation classifier for evaluating the prior domain;
    A determination unit that determines whether the first group is effective for the machine learning based on the trial transfer identification unit generated by the trial transfer learning unit;
    A machine learning device comprising:
  7.  請求項6に記載の機械学習装置であって、
     前記事前ドメイン評価装置は、さらに、
     前記目標ドメインに含まれる学習用データの各々が有する特徴を抽出して、学習用特徴データを生成する学習用特徴抽出部、
    を備え、
     前記試行転移学習部は、前記学習用特徴データを用いて前記機械学習を実行し、
     前記学習用特徴抽出部が学習用データから特徴を抽出する条件は、前記クラスタリング用特徴抽出部が前記複数の転移候補データの各々から特徴を抽出する条件と同じである機械学習装置。
    The machine learning device according to claim 6,
    The prior domain evaluation device further includes:
    A feature extraction unit for learning that extracts features of each of the learning data included in the target domain and generates learning feature data;
    With
    The trial transfer learning unit performs the machine learning using the learning feature data,
    The machine learning device in which the condition for the feature extraction unit for learning to extract features from the learning data is the same as the condition for the feature extraction unit for clustering to extract features from each of the plurality of transfer candidate data.
  8.  請求項7に記載の機械学習装置であって、さらに、
     前記目標ドメインと、前記事前ドメイン評価装置により前記機械学習に有効であると判断された全ての事前ドメインとを用いて前記機械学習を実行して転移識別部を生成する選択学習装置、
    を備える機械学習装置。
    The machine learning device according to claim 7, further comprising:
    A selective learning device that generates the transfer identification unit by executing the machine learning using the target domain and all the prior domains determined to be effective for the machine learning by the prior domain evaluation device;
    A machine learning device comprising:
  9.  転移学習を導入した機械学習に用いられる複数の転移候補データの各々から特徴を抽出して複数の転移候補特徴データを生成するステップと、
     生成された複数の転移候補特徴データの各々が有する特徴に基づいて、各転移候補特徴データを第1グループ及び第2グループを含む複数のグループに分類するステップと、
     前記第1グループに分類された転移候補特徴データの数が所定の分類継続基準値以下である場合、前記第1グループを前記機械学習に用いられる事前ドメインに決定するステップと、
     前記転移候補特徴データの数が前記分類継続基準値よりも大きい場合、前記第1グループに分類された転移候補特徴データをさらに分類することを決定するステップと、
    を備えるクラスタリング方法。
    Generating a plurality of transfer candidate feature data by extracting features from each of a plurality of transfer candidate data used for machine learning using transfer learning;
    Classifying each transfer candidate feature data into a plurality of groups including a first group and a second group based on the features of each of the generated plurality of transfer candidate feature data; and
    When the number of transfer candidate feature data classified into the first group is less than or equal to a predetermined classification continuation reference value, determining the first group as a pre-domain used for the machine learning;
    If the number of transfer candidate feature data is greater than the classification continuation reference value, determining to further classify transfer candidate feature data classified into the first group;
    A clustering method comprising:
  10.  転移学習を導入した機械学習に用いられる複数の転移候補データの各々を分類するクラスタリング方法をコンピュータに実行させるためのプログラムであって、
     前記機械学習に用いられる複数の転移候補データの各々から特徴を抽出して複数の転移候補特徴データを生成するステップと、
     生成された複数の転移候補特徴データの各々が有する特徴に基づいて、各転移候補特徴データを第1グループ及び第2グループを含む複数のグループに分類するステップと、
     前記第1グループに分類された転移候補特徴データの数が所定の分類継続基準値以下である場合、前記第1グループを前記機械学習に用いられる事前ドメインに決定するステップと、
     前記転移候補特徴データの数が前記分類継続基準値よりも大きい場合、前記第1グループに分類された転移候補特徴データをさらに分類することを決定するステップと、
    を備えるクラスタリング方法をコンピュータに実行させるためのプログラム。
    A program for causing a computer to execute a clustering method for classifying each of a plurality of transfer candidate data used in machine learning using transfer learning,
    Extracting a feature from each of a plurality of transfer candidate data used in the machine learning to generate a plurality of transfer candidate feature data; and
    Classifying each transfer candidate feature data into a plurality of groups including a first group and a second group based on the features of each of the generated plurality of transfer candidate feature data; and
    When the number of transfer candidate feature data classified into the first group is less than or equal to a predetermined classification continuation reference value, determining the first group as a pre-domain used for the machine learning;
    If the number of transfer candidate feature data is greater than the classification continuation reference value, determining to further classify transfer candidate feature data classified into the first group;
    A program for causing a computer to execute a clustering method.
  11.  各々が所定の条件下における検出対象の特徴を有する複数の学習用データを含む目標ドメインと、前記所定の条件と異なる条件下における検出対象の特徴を有する学習候補データを含む事前ドメインとを取得する取得部と、
     前記取得部により取得された目標ドメイン及び事前ドメインを用いて転移学習を導入した機械学習を実行して、前記検出対象の検出に用いられる決定木を生成する試行転移学習部と、
     前記試行転移学習部により生成された決定木を構成する全てのリーフノードを用いて、前記取得部により取得された事前ドメインが転移学習に有効であるか否かを判断する判断部と、
    を備える機械学習装置。
    A target domain including a plurality of learning data each having a detection target characteristic under a predetermined condition and a pre-domain including learning candidate data having a detection target characteristic under a condition different from the predetermined condition are acquired. An acquisition unit;
    A trial transfer learning unit that performs machine learning that introduces transfer learning using the target domain and the prior domain acquired by the acquisition unit, and generates a decision tree used for detection of the detection target;
    A determination unit that determines whether or not the prior domain acquired by the acquisition unit is effective for transfer learning, using all leaf nodes constituting the decision tree generated by the trial transfer learning unit;
    A machine learning device comprising:
  12.  請求項11に記載の機械学習装置であって、
     前記判断部は、
     前記試行転移学習部により生成された決定木を構成する各リーフノードの深さを積算することにより決定木の複雑度を計算し、計算した複雑度に基づいて前記事前ドメインを転移学習に用いるか否かを判断する複雑度計算部、
    を備える機械学習装置。
    The machine learning device according to claim 11,
    The determination unit
    The complexity of the decision tree is calculated by accumulating the depth of each leaf node constituting the decision tree generated by the trial transfer learning unit, and the prior domain is used for transfer learning based on the calculated complexity. A complexity calculator that determines whether or not
    A machine learning device comprising:
  13.  請求項12に記載の機械学習装置であって、
     前記試行転移学習部は、第1決定木と前記第1の決定木と異なる第2決定木とを生成し、
     前記複雑度計算部は、前記第1決定木の複雑度と前記第2決定木の複雑度と計算し、計算した前記第1決定木の複雑度と前記第2決定木の複雑度とに基づいて、前記事前ドメインが有効であるか否かを判断する機械学習装置。
    The machine learning device according to claim 12,
    The trial transfer learning unit generates a first decision tree and a second decision tree different from the first decision tree,
    The complexity calculation unit calculates the complexity of the first decision tree and the complexity of the second decision tree, and based on the calculated complexity of the first decision tree and the complexity of the second decision tree A machine learning device that determines whether or not the prior domain is valid.
  14.  請求項11に記載の機械学習装置であって、さらに、
     前記試行転移学習部により生成された決定木を用いて前記目標ドメインに含まれる各学習用データを分類し、前記試行転移学習部により生成された決定木を用いて前記事前ドメインに含まれる各学習候補データを分類する試行転移識別部、
    を備え、
     前記判断部は、前記試行転移識別部による前記複数の学習用データの分類結果と、前記複数の学習候補データの分類結果とに基づいて、前記事前ドメインが有効であるか否かを判断する機械学習装置。
    The machine learning device according to claim 11, further comprising:
    Each learning data included in the target domain is classified using the decision tree generated by the trial transfer learning unit, and each of the learning domains included in the prior domain using the decision tree generated by the trial transfer learning unit. Trial transfer identification unit for classifying learning candidate data,
    With
    The determination unit determines whether the prior domain is valid based on a classification result of the plurality of learning data by the trial transfer identification unit and a classification result of the plurality of learning candidate data. Machine learning device.
  15.  請求項14に記載の機械学習装置であって、
     前記判断部は、
     学習用データが到達した前記決定木のリーフノードの確率分布と、各学習候補データが到達した前記決定木のリーフノードの確率分布との分布相違度に基づいて前記事前ドメインが有効であるか否かを判断する分布相違度計算部、
    を備える機械学習装置。
    The machine learning device according to claim 14,
    The determination unit
    Whether the prior domain is valid based on the distribution dissimilarity between the probability distribution of the leaf nodes of the decision tree reached by the learning data and the probability distribution of the leaf nodes of the decision tree reached by each learning candidate data A distribution dissimilarity calculator for determining whether or not,
    A machine learning device comprising:
  16.  請求項15に記載の機械学習装置であって、
     前記試行転移学習部は、第1決定木と前記第1決定木と異なる第2決定木とを生成し、
     前記分布相違度計算部は、前記第1決定木を用いて第1分布相違度を計算し、前記第2決定木を用いて第2分布相違度を計算し、
     前記判断部は、前記分布相違度計算部により計算された第1分布相違度及び第2分布相違度に基づいて前記事前ドメインが有効であるか否かを判断する機械学習装置。
    The machine learning device according to claim 15,
    The trial transfer learning unit generates a first decision tree and a second decision tree different from the first decision tree,
    The distribution dissimilarity calculation unit calculates a first distribution dissimilarity using the first decision tree, calculates a second distribution dissimilarity using the second decision tree,
    The determination unit is a machine learning device that determines whether or not the prior domain is valid based on the first distribution difference and the second distribution difference calculated by the distribution difference calculation unit.
  17.  請求項12に記載の機械学習装置であって、
     前記試行転移学習部は、
     生成した前記決定木を用いて前記目標ドメインに含まれる各学習用データを分類し、生成した前記決定木を用いて前記事前ドメインに含まれる各学習候補データを分類する試行転移識別部、
    を含み、
     前記判断部は、
     前記試行転移識別部による前記複数の学習用データの分類結果と、前記複数の学習候補データの分類結果とを比較し、比較結果と、前記決定木の複雑度とに基づいて、前記事前ドメインが有効であるか否かを判断する転移評価部、
    を備える機械学習装置。
    The machine learning device according to claim 12,
    The trial transfer learning unit includes:
    A trial transfer identifying unit that classifies each learning data included in the target domain using the generated decision tree, and classifies each learning candidate data included in the prior domain using the generated decision tree,
    Including
    The determination unit
    The classification result of the plurality of learning data by the trial transfer identification unit is compared with the classification result of the plurality of learning candidate data, and based on the comparison result and the complexity of the decision tree, the prior domain A metastasis evaluation unit that determines whether or not
    A machine learning device comprising:
  18.  各々が検出対象の特徴を有する複数の学習用データを含む目標ドメインと、所定の規則を満たし、かつ、各々が前記検出対象の学習に用いられる可能性のある複数の学習候補データを有する事前ドメインとを取得するステップと、
     前記目標ドメイン及び前記事前ドメインを用いて転移学習を実行して、前記検出対象の検出に用いられる決定木を生成するステップと、
     生成された決定木を用いて、前記事前ドメインが転移学習に有効であるか否かを判断するステップと、
    を備える機械学習方法。
    A target domain that includes a plurality of learning data each having a feature to be detected, and a pre-domain that has a plurality of learning candidate data that satisfy a predetermined rule and each may be used for learning the detection target And a step of obtaining
    Performing transfer learning using the target domain and the prior domain to generate a decision tree used to detect the detection target;
    Using the generated decision tree to determine whether the prior domain is valid for transfer learning;
    A machine learning method comprising:
  19.  転移学習をコンピュータに実行させるプログラムであって、
     各々が検出対象の特徴を有する複数の学習用データを含む目標ドメインと、所定の規則を満たし、かつ、各々が前記検出対象の学習に用いられる可能性のある複数の学習候補データを有する事前ドメインとを取得するステップと、
     前記目標ドメイン及び前記事前ドメインを用いて転移学習を実行して、前記検出対象の検出に用いられる決定木を生成するステップと、
     生成された決定木を用いて、前記事前ドメインが転移学習に有効であるか否かを判断するステップと、
    を実行させるプログラム。
     
     
    A program that causes a computer to perform transfer learning,
    A target domain that includes a plurality of learning data each having a feature to be detected, and a pre-domain that has a plurality of learning candidate data that satisfy a predetermined rule and each may be used for learning the detection target And a step of obtaining
    Performing transfer learning using the target domain and the prior domain to generate a decision tree used to detect the detection target;
    Using the generated decision tree to determine whether the prior domain is valid for transfer learning;
    A program that executes

PCT/JP2016/059662 2015-03-30 2016-03-25 Clustering device and machine learning device WO2016158768A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-069975 2015-03-30
JP2015069975A JP6516531B2 (en) 2015-03-30 2015-03-30 Clustering device and machine learning device
JP2015-070128 2015-03-30
JP2015070128A JP6543066B2 (en) 2015-03-30 2015-03-30 Machine learning device

Publications (1)

Publication Number Publication Date
WO2016158768A1 true WO2016158768A1 (en) 2016-10-06

Family

ID=57004647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059662 WO2016158768A1 (en) 2015-03-30 2016-03-25 Clustering device and machine learning device

Country Status (1)

Country Link
WO (1) WO2016158768A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322445A (en) * 2018-01-02 2018-07-24 华东电力试验研究院有限公司 A kind of network inbreak detection method based on transfer learning and integrated study
CN109446424A (en) * 2018-10-30 2019-03-08 长春理工大学 A kind of invalid address Webpage filtering method and system
CN110134791A (en) * 2019-05-21 2019-08-16 北京泰迪熊移动科技有限公司 A kind of data processing method, electronic equipment and storage medium
JP7056794B1 (en) 2021-11-10 2022-04-19 トヨタ自動車株式会社 Model learning system and model learning device
JP2022543245A (en) * 2019-08-02 2022-10-11 グーグル エルエルシー A framework for learning to transfer learning

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118659A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Information search device, information search method and program

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012118659A (en) * 2010-11-30 2012-06-21 Nippon Telegr & Teleph Corp <Ntt> Information search device, information search method and program

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAMITSU TSUCHIYA ET AL.: "Transfer Forest based on Covariate Shift", IEICE TECHNICAL REPORT, vol. 114, no. 90, 12 June 2014 (2014-06-12), pages 31 - 36 *
RYOJI WAKAYAMA ET AL.: "Training of Random Forests Using Covariate Shift on Parallel Distributed Processing", IEICE TECHNICAL REPORT, vol. 114, no. 520, 12 March 2015 (2015-03-12), pages 205 - 210 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108322445A (en) * 2018-01-02 2018-07-24 华东电力试验研究院有限公司 A kind of network inbreak detection method based on transfer learning and integrated study
CN109446424A (en) * 2018-10-30 2019-03-08 长春理工大学 A kind of invalid address Webpage filtering method and system
CN109446424B (en) * 2018-10-30 2020-10-27 长春理工大学 Invalid address webpage filtering method and system
CN110134791A (en) * 2019-05-21 2019-08-16 北京泰迪熊移动科技有限公司 A kind of data processing method, electronic equipment and storage medium
CN110134791B (en) * 2019-05-21 2022-03-08 北京泰迪熊移动科技有限公司 Data processing method, electronic equipment and storage medium
JP2022543245A (en) * 2019-08-02 2022-10-11 グーグル エルエルシー A framework for learning to transfer learning
JP7342242B2 (en) 2019-08-02 2023-09-11 グーグル エルエルシー A framework for learning to transfer learning
JP7056794B1 (en) 2021-11-10 2022-04-19 トヨタ自動車株式会社 Model learning system and model learning device
JP2023071063A (en) * 2021-11-10 2023-05-22 トヨタ自動車株式会社 Model learning system and model learning device

Similar Documents

Publication Publication Date Title
JP6543066B2 (en) Machine learning device
JP6516531B2 (en) Clustering device and machine learning device
WO2016158768A1 (en) Clustering device and machine learning device
CN106846355B (en) Target tracking method and device based on lifting intuitive fuzzy tree
JP5880454B2 (en) Image identification apparatus and program
JP4767595B2 (en) Object detection device and learning device thereof
JP5558412B2 (en) System and method for adapting a classifier to detect objects in a particular scene
JP6448325B2 (en) Image processing apparatus, image processing method, and program
JP5570629B2 (en) Classifier learning method and apparatus, and processing apparatus
KR101780676B1 (en) Method for learning rejector by forming classification tree in use of training image and detecting object in test image by using the rejector
JP6897749B2 (en) Learning methods, learning systems, and learning programs
TWI567660B (en) Multi-class object classifying method and system
US20110235901A1 (en) Method, apparatus, and program for generating classifiers
WO2013182298A1 (en) Method for annotating images
KR101932595B1 (en) Image processing apparatus and method for detecting translucent objects in image
EP2953062A1 (en) Learning method, image processing device and learning program
JP4802176B2 (en) Pattern recognition apparatus, pattern recognition program, and pattern recognition method
JP2015232805A (en) Image processing method, image processor, and image processing program
US20180039822A1 (en) Learning device and learning discrimination system
Ruby et al. An effective feature descriptor method to classify plant leaf diseases using eXtreme Gradient Boost
JP6659120B2 (en) Information processing apparatus, information processing method, and program
JP5623253B2 (en) Multi-target tracking device
JP7341962B2 (en) Learning data collection device, learning device, learning data collection method and program
CN111723719B (en) Video target detection method, system and device based on category external memory
Feng et al. Tracking people by evolving social groups: an approach with social network perspective

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772649

Country of ref document: EP

Kind code of ref document: A1