WO2016158700A1 - Medical instrument - Google Patents

Medical instrument Download PDF

Info

Publication number
WO2016158700A1
WO2016158700A1 PCT/JP2016/059486 JP2016059486W WO2016158700A1 WO 2016158700 A1 WO2016158700 A1 WO 2016158700A1 JP 2016059486 W JP2016059486 W JP 2016059486W WO 2016158700 A1 WO2016158700 A1 WO 2016158700A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
polymer
film thickness
base material
group
Prior art date
Application number
PCT/JP2016/059486
Other languages
French (fr)
Japanese (ja)
Inventor
政則 倉本
崇王 安齊
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2016158700A1 publication Critical patent/WO2016158700A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L29/00Materials for catheters, medical tubing, cannulae, or endoscopes or for coating catheters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices

Definitions

  • the present invention relates to a medical device.
  • the present invention relates to a medical device having a surface having lubricity and blood compatibility.
  • Medical devices such as catheters are required to have lubricity in order to reduce tissue damage such as blood vessels and improve the operability of the operator.
  • a medical device inserted into a blood vessel such as a catheter is required to have blood compatibility.
  • a lesion in a peripheral blood vessel is treated, and a reduction in the diameter of the catheter is required. Accordingly, a technique for reducing the film thickness such as a lubricious coating is also required.
  • Patent Document 1 describes that a polymer chain is grown on the surface of a medical device by radical polymerization of a deliquescent monomer, thereby imparting lubricity while reducing the film thickness.
  • an alkali metal-containing monomer and a zwitterionic monomer are disclosed as deliquescent monomers.
  • JP 2014-214226 A (equivalent to US 2014/0322468 A1)
  • the polymer brush may be charged too negatively. In such a case, due to the negative charge of the polymer brush, the hydration between the polymer brush and water may be significantly disturbed, and blood compatibility may be reduced.
  • the polymer brush is not charged negatively or positively (neutral), so there is no repulsive force between the polymer brushes, and the polymer brushes Tend to grow together and form aggregates. For this reason, when a polymer brush peels, there exists a possibility of having a bad influence on a human body by the magnitude
  • the present invention has been made in view of the above circumstances, and an object thereof is to provide a medical device having a lubricating layer in which association between polymer brushes is reduced while ensuring blood compatibility.
  • the object is a medical device having a base material layer, wherein the polymer chain has a lubricating layer in which polymer chains having a length of less than 10 ⁇ m are present in a brush shape on the base material layer.
  • a medical device which is formed from a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility and has a negative charge when contacting a body fluid.
  • FIG. 1 indicates a medical device; 2 indicates a polymer chain (polymer brush); 3 indicates a lubricating layer; and 4 indicates a base material layer.
  • 2 indicates a polymer chain (polymer brush); 3 indicates a lubricating layer; and 4 indicates a base material layer.
  • the medical device of the present invention is a medical device having a base material layer, and has a lubricating layer in which polymer chains having a length of less than 10 ⁇ m are present in a brush shape on the base material layer, and the polymer
  • the chain is formed from a copolymer of a zwitterionic monomer having an affinity for blood and an anionic monomer, and is negatively charged when contacting a body fluid.
  • a polymer chain having a length of less than 10 ⁇ m and existing in a brush shape on the base material layer is also simply referred to as “polymer brush according to the present invention” or “polymer brush”.
  • zwitterionic monomer having blood compatibility is also simply referred to as “zwitterionic monomer according to the present invention” or “zwitterionic monomer”.
  • the polymer chain constituting the lubricating layer is formed from a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility; and (b) the lubricating layer has a length of less than 10 ⁇ m. And having a polymer chain existing in a brush shape.
  • the medical device having the above configuration can reduce the association between polymer chains with an anionic monomer while ensuring blood compatibility with a zwitterionic monomer.
  • the polymer chain has a structural unit derived from a zwitterionic monomer.
  • the constituent unit derived from this zwitterionic monomer has blood compatibility and hydrophilicity.
  • the lubricating layer can exhibit excellent blood compatibility and lubricity.
  • the polymer chain has a structural unit derived from an anionic monomer in addition to a structural unit derived from a zwitterionic monomer.
  • the structural unit derived from the anionic monomer is negatively charged when contacting a body fluid (for example, an aqueous liquid such as blood). That is, as shown in FIG.
  • each polymer chain 2 constituting the lubricating layer 3 is negatively charged when contacting a body fluid and repels adjacent polymer chains due to this negative charge.
  • Ah electrostatic repulsion
  • adjacent polymer chains do not associate with each other due to electrostatic repulsion, but rather extend in parallel on the base material layer 4 in a brush shape (perpendicular to the surface of the base material layer 4) and are oriented. Therefore, the lubricating layer according to the present invention can effectively exhibit the original characteristics (blood compatibility, lubricity) of the polymer brush when contacting body fluid.
  • “association” means that polymer brushes (polymer chains) according to the present invention are bonded to each other.
  • the polymer chain according to the present invention has a structural unit derived from an anionic monomer.
  • an anionic monomer By using an anionic monomer in this way, even if the polymer is peeled off, it is difficult for the polymers to associate with each other due to electrostatic repulsion. Even when the medical device of the present invention is used in blood, the anion on the blood cell surface repels the anion of the anionic monomer of the polymer chain, so that the induction of blood cell aggregation can be suppressed / prevented.
  • “aggregation” or “aggregation of blood cells” means that blood cells bind to each other via a polymer chain.
  • blood compatibility and lubricity can be exhibited by the zwitterionic monomer.
  • the charge amount of the polymer brush is appropriately adjusted by the anionic monomer to effectively suppress / prevent disturbance of the hydration structure of the polymer brush with water, and further decrease in blood compatibility and lubricity of the polymer brush. it can.
  • the lubricating layer can be a thin film of less than 10 ⁇ m.
  • the medical device can exhibit excellent blood compatibility and lubricity even with such a thin film. Therefore, the diameter of the catheter can be reduced and it can be suitably used for the treatment of a lesion in a peripheral blood vessel.
  • the polymer brush is peeled off from the base material layer, the polymer brush is negative, so the polymer brushes hardly meet each other. The same. For this reason, the peeled material is in the form of fine particles of less than 10 ⁇ m, and has a size with little or no influence on the human body. Therefore, the medical device of the present invention can be safely applied in vivo.
  • the said mechanism is estimation and this invention is not limited to the said estimation.
  • X to Y indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
  • FIG. 1 is a schematic partial cross-sectional view for explaining the surface of the medical device of the present invention.
  • the medical device 1 of the present invention has a structure in which a lubricating layer 3 is formed on a base material layer 4.
  • the lubricating layer 3 has the polymer chain 2 in a brush shape.
  • the polymer chain 2 is negatively charged with an anionic monomer in a body fluid (for example, an aqueous liquid such as blood).
  • a body fluid for example, an aqueous liquid such as blood.
  • the adjacent polymer chains 2 are appropriately separated from each other by electrostatic repulsion and are oriented substantially perpendicularly (in a brush shape) to the surface of the base material layer 4.
  • the lubricating layer according to the present invention can exhibit higher effects (blood compatibility, lubricity) when contacting body fluid.
  • the “polymer brush” is intended to indicate a state in which the polymer chain exists in a brush shape, and the polymer brush and the polymer chain are treated as synonymous unless otherwise specified.
  • the polymer chain is negatively charged when contacting body fluid means that it is only required to be negatively charged at least when contacting body fluid, and not negatively charged when not contacting body fluid. Also good.
  • the base material layer constitutes a medical device.
  • the material of the base material layer is not particularly limited and can be appropriately selected depending on the application. It is preferable that at least the surface of the base material layer is made of a polymer material.
  • the “base layer is made of a polymeric material” means that at least the surface of the base layer is made of a polymeric material, and the entire base layer (all) is made of a polymeric material. It is not limited to what is configured (formed). Therefore, on the surface of the base material core portion formed of a hard reinforcing material such as a metal material or a ceramic material, a polymer material that is more flexible than a reinforcing material such as a metal material is applied by an appropriate method (dipping or spraying).
  • the base material core portion may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials for each part of the medical device are connected. . Further, a different intermediate layer may be formed between the base material core portion and the surface polymer layer.
  • the surface polymer layer a multilayer structure in which different polymer materials are laminated in multiple layers, or a structure (composite) in which members made of different polymer materials are connected to each part of a medical device, etc. There may be.
  • various stainless steels such as SUS304, SUS316L, SUS420J2, SUS630, gold, platinum, tantalum, silver, copper, nickel, cobalt, titanium, iron, aluminum, tin, magnesium, zinc and nickel-titanium alloy, cobalt
  • metal materials such as chromium alloys and zinc-tungsten alloys, inorganic materials such as various ceramic materials, and metal-ceramic composites, but are not limited thereto.
  • the polymer material that can be used for the base material layer or the surface polymer layer is not particularly limited, and examples thereof include nylon 6, nylon 11, nylon 12, and nylon 66 (all are registered trademarks).
  • Polyolefin resins such as polyamide resin, linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), and polypropylene resin, epoxy resin, urethane resin, diallyl phthalate resin (allyl resin) ), Polycarbonate resin, fluorine resin, amino resin (urea resin, melamine resin, benzoguanamine resin), polyester resin, styrene resin, acrylic resin, polyacetal resin, vinyl acetate resin, phenol resin, polyvinyl chloride (PVC) (vinyl chloride) Block copolymer having a hard segment made of nylon resin, silicone resin (silicon resin), nylon 6, nylon 66, nylon 11 or nylon 12, and soft segment made of polyalkylene glycol, polyether or aliphatic polyester.
  • nylon elastomer etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. What is necessary is just to select the polymeric material optimal as polymeric base materials, such as a catheter, a guide wire, and an indwelling needle which are use applications, as said polymeric material suitably.
  • the material that can be used for the intermediate layer is not particularly limited, and may be appropriately selected depending on the intended use. Examples include various metal materials, various ceramic materials, and organic-inorganic composites, but are not limited thereto.
  • the lubrication layer has a polymer chain in a brush shape.
  • the lubricating layer is composed of a polymer brush (polymer chain).
  • the polymer chain is a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility.
  • the polymer chain has a length of less than 10 ⁇ m.
  • the length of the polymer chain corresponds to the thickness of the lubricating layer. That is, the lubricating layer can be a thin film of less than 10 ⁇ m.
  • the medical device can exhibit excellent blood compatibility and lubricity even with such a thin lubrication layer, and the diameter of the catheter is reduced. It can also be used suitably for the treatment of lesions in peripheral blood vessels. Even when the polymer chain (polymer brush) is peeled off from the base material layer, the polymer brush is negative and the polymer brushes are hardly associated with each other.
  • the length of the polymer chain is less than 10 ⁇ m, and in consideration of a further reduction effect on the influence on the human body, it is preferably 9.999 ⁇ m or less, more preferably 8.000 ⁇ m or less, and particularly preferably 7.000 ⁇ m or less.
  • the lower limit of the polymer chain length is not particularly limited and is a measurement limit.
  • the length of the polymer chain is preferably 0.001 ⁇ m or more, more preferably 0.0051 ⁇ m or more, and particularly preferably 0.0101 ⁇ m or more. With such a length, the polymer chain can reduce the influence on the human body while ensuring high blood compatibility and lubricity. According to a preferred embodiment, the length of the polymer chain is 0.001 to 9.999 ⁇ m, more preferably 0.005 to 8.000 ⁇ m, particularly preferably 0.010 to 7.000 ⁇ m.
  • the length of the polymer chain is defined as the length of the polymer brush and the film thickness of the polymer brush being approximately the same. Further, the film thickness of the polymer brush and the film thickness of the lubricating layer are considered to be approximately the same.
  • the film thickness of the polymer brush on the base material layer can be calculated from an optical measurement method using an ellipsometry or an optical interference film thickness meter, or from a micrograph. Consider it a length.
  • a value measured using an optical interference film thickness meter FILMETRIX, F40
  • the polymer chain (polymer brush) according to the present invention is formed from a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility and lubricity.
  • zwitterionic monomers are compounds having both a cationic group and an anionic group in one molecule.
  • Such zwitterionic monomers are not particularly limited, and examples thereof include those having a carboxybetaine skeleton, a sulfobetaine skeleton, a phosphobetaine skeleton, and those having an amino acid skeleton.
  • the zwitterionic monomer preferably has a betaine skeleton such as a carboxybetaine skeleton, a sulfobetaine skeleton, or a phosphobetaine skeleton. That is, according to a preferred embodiment of the present invention, the zwitterionic monomer has a betaine skeleton.
  • a carboxybetaine type, sulfobetaine type, or phosphobetaine type zwitterionic monomer having the following structure is preferably used.
  • R 1 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity.
  • Z is an oxygen atom or —NH—, and preferably an oxygen atom from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity.
  • R 2 is a linear or branched alkylene group having 1 to 6 carbon atoms.
  • the linear or branched alkylene group having 1 to 6 carbon atoms is not limited to the following, and examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Can be mentioned.
  • it is preferably a linear or branched alkylene group having 1 to 3 carbon atoms, preferably a methylene group or an ethylene group. More preferably, it is particularly preferably an ethylene group.
  • R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms.
  • R 3 and R 4 may be the same or different.
  • the alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group linear or Examples include branched alkyl groups.
  • a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, and 1 or 2 carbon atoms are preferable.
  • an alkyl group (methyl group, ethyl group) and particularly preferably a methyl group.
  • R 5 is a methylene group, ethylene group, trimethylene group, propylene group, butylene group, isobutylene group, sec-butylene group, or tert-butylene group.
  • a methylene group, an ethylene group, a trimethylene group, and a propylene group are preferable from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or improving lubricity.
  • an alkylene group having 1 carbon atom is particularly preferred
  • an alkylene group having 3 carbon atoms is particularly preferred.
  • X is —COO ⁇ (carboxybetaine type zwitterionic monomer), —SO 3 ⁇ (sulfobetaine type zwitterionic monomer).
  • a zwitterionic monomer having a carboxybetaine skeleton includes N- (meth) acryloyloxymethyl- N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N- (meth) acryloyloxyethyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N- (meth) acryloyloxypropyl-N, N-dimethylammonium- ⁇ -N-methylcarboxybetaine, N- (meth) acryloyloleoxymethyl-N, N-diethylammonium- ⁇ -N-methylcarboxybetaine, N- (meth) acryloyloxyethyl-N, N-diethylammonium- ⁇ -N-methylcarboxybeta And N- (
  • a phosphobetaine-type zwitterionic monomer having the following structure is preferably used.
  • R 11 is a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity.
  • Z ′ is an oxygen atom or —NH—, and preferably an oxygen atom from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity.
  • R 12 and R 13 are linear or branched alkylene groups having 1 to 6 carbon atoms.
  • R 12 and R 13 may be the same or different.
  • the linear or branched alkylene group having 1 to 6 carbon atoms is not limited to the following, and examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Can be mentioned.
  • it is preferably a linear or branched alkylene group having 1 to 3 carbon atoms, preferably a methylene group or an ethylene group. More preferably, it is particularly preferably an ethylene group.
  • R 14 to R 16 are each independently an alkyl group having 1 to 4 carbon atoms.
  • R 14 to R 16 may be the same or different.
  • the alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group linear or Examples include branched alkyl groups.
  • a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, and 1 or 2 carbon atoms are preferable.
  • an alkyl group (methyl group, ethyl group) and particularly preferably a methyl group.
  • zwitterionic monomers having a phosphobetaine skeleton include 2- (meth) acryloyloxyethyl phosphorylcholine, 4- (meth) acryloyloxybutylphosphorylcholine, Examples include 6- (meth) acryloyloxyhexyl phosphorylcholine, ⁇ - (meth) acryloyloxyethylene phosphorylcholine, 4-styryloxybutyl phosphorylcholine, and the like. Of these, 2- (meth) acryloyloxyethyl phosphorylcholine is preferred.
  • Zwitterionic monomers having an amino acid skeleton include, for example, (meth) acryloyl-L-lysine, (meth) acryloyl-L-serine, (meth) acryloyl-L-threonine, (meta And acryloyl-L-tyrosine.
  • the zwitterionic monomers may be used alone or in combination of two or more. By using such a zwitterionic monomer, high blood compatibility (for example, antithrombogenicity) can be imparted to the lubricating layer of the medical device.
  • high blood compatibility for example, antithrombogenicity
  • (meth) acryl means “acryl and / or methacryl”.
  • (meth) acryloyl” means “acryloyl and / or methacryloyl”.
  • R 1 is a methyl group
  • Z is an oxygen atom
  • R 2 is an alkylene group having 1 to 3 carbon atoms
  • R 3 and R 4 are each independently And an alkyl group having 1 or 2 carbon atoms
  • X is preferably —COO 2 — or —SO 3 —
  • R 11 is a methyl group
  • Z ′ is an oxygen atom
  • R 12 and R 13 are alkylene groups having 1 to 3 carbon atoms
  • R 14 to R 16 are respectively Independently, an alkyl group having 1 or 2 carbon atoms is preferable.
  • the zwitterionic monomer is represented by the formula (1), wherein R 1 is a methyl group, Z is an oxygen atom, R 2 is an ethylene group (—CH 2 CH 2 —), R 3 and R [2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide (SPB)) in which 4 is a methyl group, R 5 is a trimethylene group, and X is —SO 3 — ;
  • R 1 is a methyl group
  • Z is an oxygen atom
  • R 2 is an ethylene group (—CH 2 CH 2 —)
  • R 3 and R 4 are methyl groups
  • R 5 is methylene group
  • X is -COO - a is N- methacryloyloxyethyl -N, N- dimethylammonium-.alpha.-N- methyl carboxy betaine (CMB); and the above formula (2), R 11 is a methyl group Yes, Z
  • An anionic monomer is a compound that is negatively charged when contacting a body fluid.
  • “having a negative charge when contacting a body fluid” means having a minus charge enough to repel an anionic group (minus) present in the body fluid.
  • Such an anionic monomer is not particularly limited, but includes a carboxyl group (—COOH), a sulfonic acid group (—SO 3 H), a sulfuric acid group (—OSO 3 H), and a phosphonic acid group (—PO 3 H 2 ). And compounds having an anionic group such as a phosphate group (—PO 4 H 2 ).
  • a negative charge is appropriately charged when contacting the body fluid, repelling the anionic group (minus) on the surface of the body fluid component (for example, blood cells), and more effectively suppressing the aggregation of the body fluid component ⁇ Can be prevented.
  • anionic monomers are appropriately negatively charged when contacting body fluids, and also exhibit blood compatibility (for example, antithrombogenicity) due to negative charges derived from these functional groups (blood of medical devices) Compatibility can be further improved).
  • the anionic monomer may contain the said functional group independently, and may contain both of these.
  • anionic monomers include (meth) acrylic acid, ⁇ -carboxyethyl acrylate, 2- (meth) acrylamide-2-methyl-propanesulfonic acid (AMPS), vinyl sulfate, allyl sulfate, 4-vinylphenyl sulfate, styrene sulfonic acid, sulfoethyl (meth) acrylate, sulfopropyl (meth) acrylate, 2-methyl-2-propene-1-sulfonic acid, 2-propene-1-sulfonic acid, 2-hydroxy-3 -((Meth) acryloyloxy) propane-1-sulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 3-((meth) acryloylamino) propane-1-sulfonic acid, phosphoric acid (meth) 2-hydroxyethyl acrylate, 2- (meth) acryloyl phosphate 2-phosphoric acid (
  • the salt of the anionic monomer is not particularly limited, and examples thereof include inorganic cation salts and organic cation salts.
  • the salt of the inorganic cation alkali metal salts, alkaline earth metal salts, and ammonium salts are preferable, and among them, sodium salts, potassium salts, and lithium salts are more preferable.
  • the organic cation salt is preferably a primary to tertiary amine salt.
  • the anionic monomers may be used alone or in combination of two or more.
  • anionic monomers By using these anionic monomers, a negative charge is appropriately charged when contacting the body fluid, repelling the anionic group (minus) on the surface of the body fluid component (for example, blood cells), and more effectively suppressing the aggregation of the body fluid component ⁇ Can be prevented.
  • these anionic monomers are appropriately negatively charged when contacting body fluids, and also exhibit particularly excellent blood compatibility (for example, antithrombogenicity) due to the negative charge derived from these functional groups (medical treatment) The blood compatibility of the device can be further improved).
  • an anionic monomer even if the polymer is peeled off, it is difficult for the polymers to associate with each other due to electrostatic repulsion.
  • the copolymer according to the present invention has a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer, but the composition of the copolymer is not particularly limited. Specifically, from the viewpoint of blood compatibility, it is preferable that the proportion of zwitterionic monomers is higher than the proportion of anionic monomers. Further, from the viewpoint of the effect of suppressing association and / or aggregation due to the anionic monomer, the proportion of the anionic monomer is preferably more than 0.5 mol% with respect to the copolymer.
  • the composition of the copolymer (molar ratio of zwitterionic monomer: anionic monomer) is such that the copolymer contains more zwitterionic monomer than anionic monomer (molar ratio of zwitterionic monomer> anion).
  • the composition of the copolymer (molar ratio of zwitterionic monomer: anionic monomer) is 60 to 99:40 to 1, more preferably 60 to 97:40 to 3, particularly preferably. 70-97: 30-3.
  • the sum of the molar ratio of zwitterionic monomer: anionic monomer is 100.
  • the copolymer (polymer brush) can more effectively achieve both the high blood compatibility and lubricity due to the zwitterionic monomer and the inhibitory effect on association and / or aggregation due to the anionic monomer.
  • it can confirm with a well-known method that the copolymer is negatively charged. For example, using a Zetasizer (MALVERN), 1 mL of the polymer solution is put into a cell with an electrode, and the potential of the polymer surface (zeta potential) is measured by passing an electric current. You can confirm that it is tinged.
  • MALVERN Zetasizer
  • the copolymer constituting the polymer chain according to the present invention essentially contains a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer, but may contain other repeating units.
  • the copolymer constituting the polymer chain according to the present invention is composed only of a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer.
  • the copolymer constituting the polymer chain according to the present invention comprises only a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer.
  • the form of the copolymer according to the present invention is not particularly limited, and may take any form such as a random copolymer, an alternating copolymer, a graft copolymer, and a block copolymer.
  • a method for forming a lubricating layer is 2006-523128 (US 2004) except that a polymer chain having a length of less than 10 ⁇ m can be formed from a zwitterionic monomer and an anionic monomer.
  • / 0191538 (corresponding to A1)
  • Japanese Patent Application Laid-Open No. 2014-214226 (corresponding to US 2014/0322468 A1) and the like can be applied similarly or appropriately modified.
  • this invention is not limited to the following form.
  • a radical starting point is formed in the base material layer.
  • the method for forming the radical start point on the base material layer is not particularly limited, but the method for immobilizing the polymerization initiator on the base material surface, plasma treatment, ultraviolet irradiation, laser light irradiation, corona discharge, radiation (electron) Line, gamma ray) irradiation, microwave, etc.
  • a method of immobilizing the polymerization initiator on the substrate surface is preferable.
  • radiation irradiation is preferable, and electron beam irradiation (particularly atmospheric pressure electron beam irradiation) is preferable.
  • the radiation graft polymerization method in which the starting point of radicals is formed in the base material layer by electron beam irradiation has a wide range of base material shapes and materials that can be selected; use an initiator. Without the use of a catalyst, and the graft polymerization can be carried out under mild conditions.
  • the processing conditions in this case are not particularly limited.
  • the dose of the electron beam is not particularly limited, but strongly relates to the control of the density of the polymer brush formed on the base material layer. Therefore, the electron beam dose is preferably 10 to 1000 kGy, and more preferably 50 to 500 kGy.
  • a polymer brush can be formed on a base material with a suitable density, and lubricity and blood compatibility can further be improved. Moreover, if it is the above conditions, a polymer brush will be formed on a base material with a suitable density, and the association
  • the pressure conditions for electron beam irradiation are not particularly limited, and can be under reduced pressure or atmospheric pressure. However, it is possible to realize a system configuration with low space and low cost, and it is economically superior. Therefore, it is good to carry out under atmospheric pressure.
  • the irradiation atmosphere is not particularly limited, and examples thereof include an inert gas atmosphere such as nitrogen and helium.
  • the electron beam irradiation time is, for example, in the range of 0.1 second to 1 hour, more preferably 0.5 second to 10 minutes.
  • the polymer brush can be formed on the substrate with an appropriate density, and the lubricity and blood compatibility can be further improved.
  • a polymer brush will be formed on a base material with a suitable density, and the association
  • radical initiation points may be formed in the base material layer by adsorbing a polymerization initiator on the base material layer.
  • a polymerization initiator it does not restrict
  • Specific examples include carbonyl compounds such as benzophenone compounds and photoreducible dyes. Of these, carbonyl compounds, particularly benzophenone compounds, are preferred.
  • the benzophenone compound is not limited to the following, but includes benzophenone, xanthone, 9-fluorenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4, Examples thereof include 4′-bis (diethylamino) benzophenone; fluorinated benzophenones such as 2,3,4,5,6-pentafluorobenzophenone and decafluorobenzophenone. Of these, benzophenone, xanthone, thioxanthone, fluorenone, acetophenone, and anthraquinone are preferable in consideration of ease of adjustment of the formation density and length of the polymer brush.
  • the method for forming the radical starting point on the base material layer using the polymerization initiator is not particularly limited, and a known method can be applied in the same manner or appropriately modified. Specifically, a method in which a polymerization initiator is dissolved in an appropriate solvent to obtain a polymerization initiator solution, and the substrate layer is treated with this polymerization initiator solution to adsorb the polymerization initiator to the substrate layer is preferable. Can be used.
  • the solvent that can be used for preparing the polymerization initiator solution is not particularly limited as long as the polymerization initiator can be dissolved, and is appropriately selected according to the polymerization initiator to be used.
  • the usage-amount of a solvent will not be restrict
  • the amount is such that the concentration of the polymerization initiator in the polymerization initiator solution is preferably about 75 to 0.1 g / 100 mL solvent.
  • the method for treating the base material layer with the polymerization initiator solution is not particularly limited as long as the polymerization initiator can be present on the surface of the base material layer.
  • conventionally known methods such as coating / printing method, dipping method (dipping method, dip coating method), spraying method (spray method), spin coating method, mixed solution-impregnated sponge coating method, and the like can be applied.
  • the dipping method (dipping method, dip coating method) is preferably used.
  • it is not necessary to process the whole base material layer with a polymerization initiator solution and you may process a part of base material layer surface with a polymerization initiator solution.
  • a coating / printing method and a spraying method can be preferably used.
  • the base material layer may be dried to remove the solvent if necessary. Thereby, a polymerization initiator can adsorb
  • the conditions for treating the base material layer with the polymerization initiator solution are not particularly limited as long as the polymerization initiator can be present on the surface of the base material layer.
  • the contact temperature of the base material layer with the polymerization initiator solution is preferably 10 to 100 ° C., more preferably Is 20 to 80 ° C.
  • the immersion time is preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 10 minutes.
  • a zwitterionic monomer and an anionic monomer are supplied to the radical generated as described above to perform polymerization (radical polymerization).
  • the supply form of the monomer is not particularly limited.
  • a method of polymerizing a monomer by immersing a base material layer having a radical start point formed on the surface thereof in a monomer solution containing a zwitterionic monomer and an anionic monomer, and, if necessary, another monomer, and a radical A method of polymerizing the monomer by supplying a zwitterionic monomer and an anionic monomer and, if necessary, other monomers in a gaseous form to the base material layer having the starting point of the surface formed on the surface is preferred.
  • the solvent used for the preparation of the monomer solution is not particularly limited as long as it can dissolve the zwitterionic monomer and the anionic monomer.
  • water, methanol, ethanol, propanol, n-butanol and the like can be used.
  • Alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, acetic acid, tetrahydrofuran (THF), 1,4-dioxane, acetone, methyl ethyl ketone, acetonitrile, dimethylformamide, hexamethylphosphoric triamide, triethylamine ,
  • a solvent miscible with water such as pyridine and dimethyl sulfoxide, or a solvent soluble in water such as diethyl ether and ethyl acetate. These solvents may be used alone or in the form of a mixture of two or more.
  • the mixing ratio of the zwitterionic monomer and the anionic monomer in the monomer solution is not particularly limited, but the preferred composition of the copolymer (molar amounts of zwitterionic monomer and anionic monomer, and other monomers if necessary). Ratio) is preferably adjusted.
  • the concentration of the zwitterionic monomer and the anionic monomer in the monomer solution and, if necessary, the concentration of other monomers (monomer concentration) are not particularly limited, but the density of the polymer brush on the base material layer, the polymer Considering the length of the brush and the like, the total monomer concentration is preferably 0.01 to 20 mol, more preferably 0.05 to 10 mol, per liter of the monomer solution.
  • the monomer concentration is the total concentration of zwitterionic monomer and anionic monomer and, if necessary, other monomers.
  • the monomer solution may be bubbled with an inert gas such as nitrogen or helium when the base material layer is immersed.
  • the conditions for immersing the base material layer in the monomer solution are also not particularly limited.
  • the immersion temperature liquid temperature of the monomer solution
  • the immersion time is preferably 1 minute to 24 hours, more preferably 5 minutes to 12 hours. Under such conditions, a polymer brush having a predetermined length can be efficiently formed.
  • the immersion time of the base material layer in the monomer solution is strongly related to the length of the polymer brush formed on the base material layer, the polymer brush having a predetermined length can be obtained by adjusting the immersion time as described above. It can be formed efficiently.
  • the radical starting point is formed on the base material layer by adsorbing the polymerization initiator, after the base material layer adsorbed with the polymerization initiator is immersed in the monomer solution, the starting point of the base material layer surface is set. It is preferable to radically polymerize monomers (zwitterionic monomers and anionic monomers and, if necessary, other monomers) as a starting point. Thereby, a polymer brush is formed on the substrate layer surface.
  • the solvent used for the preparation of the monomer solution and the concentration of the monomer (monomer concentration) are not particularly limited and are the same as those in the above-described radiation graft polymerization method, and thus the description thereof is omitted here.
  • the monomer solution may be bubbled with an inert gas such as nitrogen or helium when the base material layer is immersed.
  • the conditions for immersing the base material layer in the monomer solution are also not particularly limited.
  • the radical polymerization method is not particularly limited, and known radical polymerization methods can be applied in the same manner or appropriately modified. Specifically, a method of irradiating ultraviolet rays (200 to 400 nm, particularly a high pressure mercury lamp having a wavelength of 300 to 400 nm) is preferable. Thereby, radical polymerization (photo radical polymerization) proceeds more efficiently, and a polymer brush having a desired length can be grown on the base material layer.
  • the radical polymerization conditions are not particularly limited as long as a polymer brush having a desired length can be grown on the base material layer.
  • the illuminance of the ultraviolet rays is preferably 70 ⁇ 0.1mW / cm 2, more preferably 30 ⁇ 0.5mW / cm 2.
  • the irradiation time is preferably 0.1 to 12 hours, more preferably 0.5 to 6 hours. Under such conditions, radical polymerization (photo radical polymerization) proceeds more efficiently, and a polymer brush having a desired length can be grown on the base material layer.
  • a lubricating layer in which the polymer chain according to the present invention is present in a brush shape can be formed on the base material layer.
  • the base material layer on which the lubricating layer is formed may be washed (for example, washed with water).
  • the density of the polymer brush is not particularly limited, but is preferably about 0.1 to 1 ⁇ g / cm 2 in consideration of lubricity and the like.
  • divided the weight difference before and behind the polymerization measured by the ultramicro balance (Sartorius) by the area is used for the density of the polymer brush.
  • the molecular weight of the copolymer (polymer chain, polymer brush) of the zwitterionic monomer and the anionic monomer is not particularly limited, but the length of the polymer is not limited from the viewpoint of lubricity and safety of the peeled fine particles. It is preferable that the length is adjusted so as to be as described above.
  • Examples of the medical device according to the present invention include, for example, an implantable artificial organ and a therapeutic instrument, an extracorporeal circulation artificial organ, a catheter, a guide wire, and the like.
  • an artificial blood vessel, an artificial trachea, a stent, or an implantable medical device such as an artificial skin or an artificial pericardium, or an artificial heart system, an artificial lung system, an artificial heart lung or the like inserted into or replaced into a blood vessel or a lumen.
  • the medical device according to the present invention is excellent in blood compatibility and can suppress the formation of thrombus on the surface of the medical device, so that the medical device to be inserted into a blood vessel, specifically, cardiovascular, cerebral blood vessel, etc. It is preferably applied to various catheters used for endovascular treatment.
  • a blood vessel specifically, cardiovascular, cerebral blood vessel, etc.
  • It is preferably applied to various catheters used for endovascular treatment.
  • medical devices in these fields are particularly required to have lubricity and blood compatibility (antithrombogenicity to prevent thrombus formation) for improving operability.
  • blood compatibility can be evaluated by, for example, a blood coagulation test or a protein adsorption test.
  • Example 1 A base material 1 was prepared by irradiating the surface of a polypropylene (PP) film (thickness: 60 ⁇ m) with an electron beam of 70 kGy / sec for 5 seconds in a nitrogen atmosphere.
  • PP polypropylene
  • the monomer solution (1) was prepared by dissolving in water so that the molar ratio was 5.
  • the total monomer concentration (molar concentration) of the monomer solution was adjusted to be 1 mol / L monomer solution.
  • the base material 1 prepared above is immersed in the monomer solution (1) prepared above while nitrogen bubbling, and a polymerization reaction is performed at 50 ° C. (monomer solution temperature) for 1 hour, thereby forming a lubrication comprising a polymer brush.
  • a layer was formed on substrate 1 (substrate 2).
  • This base material 2 was washed with water to produce a medical device 1.
  • the film thickness (dry film thickness) was measured using an optical interference type film thickness meter (F40 manufactured by FILMETRIX). As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured.
  • the film thickness of the lubricating layer is regarded as the average length of the polymer brush.
  • the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm.
  • the obtained medical device 1 When the obtained medical device 1 was rubbed with a finger, it exhibited excellent lubricity and durability.
  • Example 2 A medical device 2 was produced in the same manner as in Example 1 except that a nylon elastomer sheet (thickness: 1 mm) was used instead of the polypropylene film (thickness: 60 ⁇ m). With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm.
  • Example 1 When the obtained medical device 2 was rubbed strongly with a finger, as in Example 1, excellent lubricity and durability were exhibited.
  • the HDPE sheet (base material 3) adsorbed with benzophenone thus obtained was immersed in the monomer aqueous solution and subjected to nitrogen bubbling for 1 minute, and then sealed and irradiated with ultraviolet rays (illuminance 2.5 mW / cm 2 , (Wavelength 365 nm) was irradiated for 2 hours, a copolymer of SPB and AAc was grafted onto the surface of the HDPE sheet, and a lubricating layer composed of a polymer brush was formed on the substrate 3 (substrate 4). This base material 4 was washed with water to produce a medical device 3.
  • the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured.
  • the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm.
  • Example 4 2.91 g (10.4 mmol) of SPB, 0.19 g (2.6 mmol) of AAc, and water were added to prepare 13 mL of an aqueous monomer solution (4). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 80:20.
  • Example 3 the medical device 4 was produced in the same manner as in Example 3 except that the monomer aqueous solution (4) thus prepared was used instead of the monomer aqueous solution (3).
  • the film thickness (dry film thickness) was measured in the same manner as in Example 1.
  • the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured.
  • the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm.
  • Example 5 SPB 2.54 g (9.1 mmol), AAc 0.28 g (3.9 mmol), and water were added to prepare 13 mL of an aqueous monomer solution (5). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 70:30.
  • Example 3 the medical device 5 was produced in the same manner as in Example 3 except that the monomer aqueous solution (5) thus prepared was used instead of the monomer aqueous solution (3).
  • the film thickness (dry film thickness) was measured in the same manner as in Example 1.
  • the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured.
  • the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm.
  • the obtained medical device 5 was rubbed strongly with a finger, it exhibited excellent lubricity and durability.
  • Example 6 SPB 2.18 g (7.8 mmol), AAc 0.37 g (5.2 mmol), and water were added to prepare 13 mL aqueous monomer solution (6). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 60:40.
  • Example 3 a medical device 6 was produced in the same manner as in Example 3 except that the monomer aqueous solution (6) thus prepared was used instead of the monomer aqueous solution (3).
  • the film thickness (dry film thickness) was measured in the same manner as in Example 1.
  • the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured.
  • the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm.
  • the obtained medical device 6 was rubbed with a finger, it exhibited excellent lubricity and durability.
  • Example 7 SPB 1.82 g (6.5 mmol), AAc 0.47 g (6.5 mmol), and water were added to prepare a 13 mL aqueous monomer solution (7). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 50:50.
  • Example 3 the medical device 7 was produced in the same manner as in Example 3 except that the monomer aqueous solution (7) thus prepared was used instead of the monomer aqueous solution (3).
  • the film thickness (dry film thickness) was measured in the same manner as in Example 1.
  • the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured.
  • the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm.
  • the obtained medical device 7 was rubbed strongly with a finger, it exhibited excellent lubricity and durability.
  • Example 3 the medical device 8 was produced in the same manner as in Example 3 except that the monomer aqueous solution (8) thus prepared was used instead of the monomer aqueous solution (3).
  • the film thickness (dry film thickness) was measured in the same manner as in Example 1.
  • the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured.
  • the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm.
  • the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this comparative example is estimated to be in the range of 10 nm to 100 nm.
  • the obtained medical device 8 When the obtained medical device 8 was rubbed with a finger, it exhibited excellent lubricity and durability.
  • Example 3 a medical device 9 was produced in the same manner as in the above Example 3 except that this water was used in place of the monomer aqueous solution (3).
  • the obtained medical device 9 was strongly rubbed with a finger, but no lubricity was exhibited.
  • the medical devices 3 to 9 are immersed in a 1% glutaraldehyde PBS solution and allowed to stand at room temperature (25 ° C.) for 3 hours, and then the medical devices 3 to 9 are pulled up from the glutaraldehyde PBS solution and washed three times with RO water. Washed and dried under reduced pressure for 48 hours.
  • the amount of thrombus attached was calculated from the change in weight before and after contact with blood.
  • the results are shown in Table 1 below.
  • the evaluation of blood compatibility is regarded as one point for every 0.0001 g of increased weight of clot adhesion, and the smaller the score, the better the blood compatibility. Further, if the score is 1.5 points or less, it is determined to be acceptable, if the score is 1.0 points or less, it is determined that the blood compatibility is excellent, and if the score is 0.5 points or less, Judged to be very excellent in blood compatibility.
  • the medical device of the present invention exhibits blood compatibility.
  • the introduction rate of acrylic acid, which is an anionic monomer is 30 mol% or less in the copolymer, it is suggested that particularly excellent blood compatibility can be exhibited.
  • the lubrication layer made of the polymer brush according to the present invention exhibits excellent blood compatibility and lubricity, and the association between the polymer chains does not occur or hardly occurs. .

Landscapes

  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Materials For Medical Uses (AREA)

Abstract

The present invention provides a medical instrument having a lubricating layer that reduces the association of polymer brushes while ensuring hemocompatibility. This medical instrument has a base material layer and a lubricating layer comprising polymer chains that have a length of less than 10 μm present in the form of brushes on the base material layer, the polymer chains being formed from a hemocompatible copolymer of zwitterionic monomers and anionic monomers, and carrying a negative charge during contact with body fluids.

Description

医療用具Medical tools
 本発明は、医療用具に関する。特に、本発明は、潤滑性及び血液適合性を有する表面を有する医療用具に関する。 The present invention relates to a medical device. In particular, the present invention relates to a medical device having a surface having lubricity and blood compatibility.
 カテーテル等の医療用具は、血管等の組織損傷を低減させ、かつ、術者の操作性を向上させるために潤滑性が求められている。一方で、カテーテル等の血管内に挿入される医療用具は、血液適合性が求められている。 Medical devices such as catheters are required to have lubricity in order to reduce tissue damage such as blood vessels and improve the operability of the operator. On the other hand, a medical device inserted into a blood vessel such as a catheter is required to have blood compatibility.
 また、カテーテルを用いた手技では、末梢の血管内の病変部の治療が行われており、カテーテルの細径化が求められている。それに伴って、潤滑性コーティング等の膜厚を薄くする技術も求められている。 Also, in a procedure using a catheter, a lesion in a peripheral blood vessel is treated, and a reduction in the diameter of the catheter is required. Accordingly, a technique for reducing the film thickness such as a lubricious coating is also required.
 例えば、特許文献1では、医療用具の表面に潮解性モノマーのラジカル重合によりポリマー鎖を成長させ、膜厚を薄くしつつ、潤滑性を付与することが記載されている。特許文献1では、潮解性モノマーとしてアルカリ金属含有モノマー及び双性イオン性モノマーが開示されている。 For example, Patent Document 1 describes that a polymer chain is grown on the surface of a medical device by radical polymerization of a deliquescent monomer, thereby imparting lubricity while reducing the film thickness. In Patent Document 1, an alkali metal-containing monomer and a zwitterionic monomer are disclosed as deliquescent monomers.
特開2014-214226号公報(US 2014/0322468 A1に相当)JP 2014-214226 A (equivalent to US 2014/0322468 A1)
 しかしながら、アルカリ金属含有モノマーからなるポリマーブラシを作製した場合には、ポリマーブラシがマイナスに帯電しすぎる虞がある。このような場合、ポリマーブラシのマイナスの電荷の影響により、ポリマーブラシと水との水和性が著しく乱れて、血液適合性が減少する可能性がある。また、双性イオン性モノマーからなるポリマーブラシを作製した場合には、ポリマーブラシがマイナスにもプラスにも帯電しない(中性である)ため、ポリマーブラシ間に反発力が生じず、ポリマーブラシ同士が会合して大きくなり、会合体を形成する傾向にある。このため、ポリマーブラシが剥離した際、その大きさにより人体に悪影響を与える可能性がある。 However, when a polymer brush made of an alkali metal-containing monomer is produced, the polymer brush may be charged too negatively. In such a case, due to the negative charge of the polymer brush, the hydration between the polymer brush and water may be significantly disturbed, and blood compatibility may be reduced. In addition, when a polymer brush made of a zwitterionic monomer is prepared, the polymer brush is not charged negatively or positively (neutral), so there is no repulsive force between the polymer brushes, and the polymer brushes Tend to grow together and form aggregates. For this reason, when a polymer brush peels, there exists a possibility of having a bad influence on a human body by the magnitude | size.
 したがって、本発明は、上記事情を鑑みてなされたものであり、血液適合性を確保しつつ、ポリマーブラシ同士の会合を低減した潤滑層を有する医療用具を提供することを目的とする。 Therefore, the present invention has been made in view of the above circumstances, and an object thereof is to provide a medical device having a lubricating layer in which association between polymer brushes is reduced while ensuring blood compatibility.
 本発明者らは、上記の問題を解決すべく、鋭意研究を行った結果、血液適合性を有する双性イオンモノマーとアニオン性モノマーとの共重合体からなるポリマーブラシを医療用具の基材上に形成することによって、上記目的を達成できることを知得して、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have found that a polymer brush composed of a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility is formed on a substrate of a medical device. As a result, it was learned that the above object could be achieved, and the present invention was completed.
 すなわち、上記目的は、基材層を有する医療用具であって、前記基材層上に、10μm未満の長さを有するポリマー鎖がブラシ状に存在してなる潤滑層を有し、前記ポリマー鎖は、血液適合性を有する双性イオンモノマーとアニオン性モノマーとの共重合体から形成され、かつ体液接触時にマイナスの電荷を帯びる医療用具によって達成できる。 That is, the object is a medical device having a base material layer, wherein the polymer chain has a lubricating layer in which polymer chains having a length of less than 10 μm are present in a brush shape on the base material layer. Can be achieved by a medical device which is formed from a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility and has a negative charge when contacting a body fluid.
本発明の医療用具の表面を説明するための概略部分断面図である。図1中、1は医療用具を;2はポリマー鎖(ポリマーブラシ)を;3は潤滑層を;および4は基材層を、それぞれ、示す。It is a general | schematic fragmentary sectional view for demonstrating the surface of the medical device of this invention. In FIG. 1, 1 indicates a medical device; 2 indicates a polymer chain (polymer brush); 3 indicates a lubricating layer; and 4 indicates a base material layer. 実施例における「血液適合性の評価」における医療用具4、7および9の血栓の付着状態を示す写真である。It is a photograph which shows the adhesion state of the thrombus of the medical devices 4, 7, and 9 in "Evaluation of blood compatibility" in an Example. 実施例における「凝集性(ポリマー鎖同士の会合)の評価」における化合物3、5および6を含む溶液の外観を示す写真である。It is a photograph which shows the external appearance of the solution containing the compounds 3, 5 and 6 in "Evaluation of cohesiveness (association of polymer chains)" in an Example.
 本発明の医療用具は、基材層を有する医療用具であって、前記基材層上に、10μm未満の長さを有するポリマー鎖がブラシ状に存在してなる潤滑層を有し、前記ポリマー鎖は、血液適合性を有する双性イオンモノマーとアニオン性モノマーとの共重合体から形成され、かつ体液接触時にマイナスの電荷を帯びる。上記構成により、血液適合性及び潤滑性を向上すると共に、ポリマーブラシの電荷量を調整して、ポリマーブラシ同士の会合を効果的に抑制・防止できる。なお、本明細書において、10μm未満の長さを有し、基材層上にブラシ状に存在するポリマー鎖を、単に「本発明に係るポリマーブラシ」または「ポリマーブラシ」とも称する。同様にして、「血液適合性を有する双性イオンモノマー」を、単に「本発明に係る双性イオンモノマー」または「双性イオンモノマー」とも称する。 The medical device of the present invention is a medical device having a base material layer, and has a lubricating layer in which polymer chains having a length of less than 10 μm are present in a brush shape on the base material layer, and the polymer The chain is formed from a copolymer of a zwitterionic monomer having an affinity for blood and an anionic monomer, and is negatively charged when contacting a body fluid. With the above configuration, blood compatibility and lubricity can be improved, and the charge amount of the polymer brush can be adjusted to effectively suppress / prevent association between the polymer brushes. In the present specification, a polymer chain having a length of less than 10 μm and existing in a brush shape on the base material layer is also simply referred to as “polymer brush according to the present invention” or “polymer brush”. Similarly, “zwitterionic monomer having blood compatibility” is also simply referred to as “zwitterionic monomer according to the present invention” or “zwitterionic monomer”.
 本発明は、(a)潤滑層を構成するポリマー鎖が血液適合性を有する双性イオンモノマーとアニオン性モノマーとの共重合体から形成される;および(b)潤滑層が10μm未満の長さを有しかつブラシ状に存在するポリマー鎖を有することを特徴とする。上記構成を有する医療用具は、双性イオンモノマーにより血液適合性を確保しつつ、アニオン性モノマーによりポリマー鎖同士の会合を低減できる。 In the present invention, (a) the polymer chain constituting the lubricating layer is formed from a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility; and (b) the lubricating layer has a length of less than 10 μm. And having a polymer chain existing in a brush shape. The medical device having the above configuration can reduce the association between polymer chains with an anionic monomer while ensuring blood compatibility with a zwitterionic monomer.
 上記(a)の構成によると、ポリマー鎖は双性イオンモノマー由来の構成単位を有する。この双性イオンモノマー由来の構成単位は、血液適合性および親水性を有する。このため、潤滑層は、優れた血液適合性及び潤滑性を発揮できる。また、ポリマー鎖は、双性イオンモノマー由来の構成単位に加えて、アニオン性モノマー由来の構成単位を有する。このアニオン性モノマー由来の構成単位は体液(例えば、血液等の水性液体)接触時にマイナスの電荷を帯びる。すなわち、図1に示されるように、本発明の医療用具1では、潤滑層3を構成する各ポリマー鎖2は体液接触時にマイナスの電荷を帯び、このマイナスの電荷により隣接するポリマー鎖と反発しあう(静電反発)。このため、隣接するポリマー鎖同士は静電反発により会合せずに、むしろ基材層4上にブラシ状に(基材層4面に対して垂直に)平行に伸長して配向する。ゆえに、本発明に係る潤滑層は、体液接触時に、ポリマーブラシ本来の特性(血液適合性、潤滑性)を効果的に発揮できる。なお、本明細書において、「会合」とは、本発明に係るポリマーブラシ(ポリマー鎖)同士が結合することを意図する。 According to the configuration of (a) above, the polymer chain has a structural unit derived from a zwitterionic monomer. The constituent unit derived from this zwitterionic monomer has blood compatibility and hydrophilicity. For this reason, the lubricating layer can exhibit excellent blood compatibility and lubricity. The polymer chain has a structural unit derived from an anionic monomer in addition to a structural unit derived from a zwitterionic monomer. The structural unit derived from the anionic monomer is negatively charged when contacting a body fluid (for example, an aqueous liquid such as blood). That is, as shown in FIG. 1, in the medical device 1 of the present invention, each polymer chain 2 constituting the lubricating layer 3 is negatively charged when contacting a body fluid and repels adjacent polymer chains due to this negative charge. Ah (electrostatic repulsion). Therefore, adjacent polymer chains do not associate with each other due to electrostatic repulsion, but rather extend in parallel on the base material layer 4 in a brush shape (perpendicular to the surface of the base material layer 4) and are oriented. Therefore, the lubricating layer according to the present invention can effectively exhibit the original characteristics (blood compatibility, lubricity) of the polymer brush when contacting body fluid. In the present specification, “association” means that polymer brushes (polymer chains) according to the present invention are bonded to each other.
 加えて、本発明に係るポリマー鎖は、アニオン性モノマー由来の構成単位を有する。このようにアニオン性モノマーを用いることで、たとえポリマーが剥離してしまっても、静電反発によりポリマーどうしが会合しにくいため、微粒子が発生しにくく、安全性上好ましい。また、本発明の医療用具を血液中に使用しても、血球表面のアニオンはポリマー鎖のアニオン性モノマーのアニオンと反発しあうため、血球の凝集の誘発を抑制・防止できる。なお、本明細書において、「凝集」または「血球の凝集」とは、ポリマー鎖を介して血球同士が結合することを意図する。 In addition, the polymer chain according to the present invention has a structural unit derived from an anionic monomer. By using an anionic monomer in this way, even if the polymer is peeled off, it is difficult for the polymers to associate with each other due to electrostatic repulsion. Even when the medical device of the present invention is used in blood, the anion on the blood cell surface repels the anion of the anionic monomer of the polymer chain, so that the induction of blood cell aggregation can be suppressed / prevented. In the present specification, “aggregation” or “aggregation of blood cells” means that blood cells bind to each other via a polymer chain.
 上述したように、上記(a)の構成によると、双性イオンモノマーにより血液適合性及び潤滑性を発揮できる。また、アニオン性モノマーによりポリマーブラシが有する電荷量を適切に調整して、ポリマーブラシの水との水和構造の乱れ、さらにはポリマーブラシの血液適合性および潤滑性の減少を有効に抑制・防止できる。 As described above, according to the configuration of the above (a), blood compatibility and lubricity can be exhibited by the zwitterionic monomer. In addition, the charge amount of the polymer brush is appropriately adjusted by the anionic monomer to effectively suppress / prevent disturbance of the hydration structure of the polymer brush with water, and further decrease in blood compatibility and lubricity of the polymer brush. it can.
 また、上記(b)の構成によると、潤滑層を10μm未満の薄膜とすることができる。また、上述したように、本発明に係るポリマー鎖は高い血液適合性及び潤滑性を有するため、このような薄膜であっても、医療用具は優れた血液適合性及び潤滑性を発揮できる。ゆえに、カテーテルを細径化でき、末梢の血管内の病変部の治療にも好適に使用できる。加えて、ポリマーブラシが基材層から剥離した場合であっても、ポリマーブラシはマイナスを帯びているため、ポリマーブラシ同士はほとんど会合しないため、剥離物の大きさは最大でもポリマーブラシの大きさと同じである。このため、剥離物は、10μm未満の微粒子状であり、人体への影響が小さいまたはないサイズである。ゆえに、本発明の医療用具は生体内に安全に適用できる。 Further, according to the configuration of (b) above, the lubricating layer can be a thin film of less than 10 μm. Further, as described above, since the polymer chain according to the present invention has high blood compatibility and lubricity, the medical device can exhibit excellent blood compatibility and lubricity even with such a thin film. Therefore, the diameter of the catheter can be reduced and it can be suitably used for the treatment of a lesion in a peripheral blood vessel. In addition, even when the polymer brush is peeled off from the base material layer, the polymer brush is negative, so the polymer brushes hardly meet each other. The same. For this reason, the peeled material is in the form of fine particles of less than 10 μm, and has a size with little or no influence on the human body. Therefore, the medical device of the present invention can be safely applied in vivo.
 なお、上記メカニズムは推測であり、本発明は上記推測に限定されない。 In addition, the said mechanism is estimation and this invention is not limited to the said estimation.
 以下、本発明の実施の形態を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、図面の寸法比率は、説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited only to the following embodiment. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may be different from the actual ratios.
 また、本明細書において、範囲を示す「X~Y」は、XおよびYを含み、「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%の条件で測定する。 In this specification, “X to Y” indicating a range includes X and Y, and means “X or more and Y or less”. Unless otherwise specified, measurement of operation and physical properties is performed under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50%.
 [医療用具]
 図1は、本発明の医療用具の表面を説明するための概略部分断面図である。図1に示されるように、本発明の医療用具1は、潤滑層3が基材層4上に形成される構造を有する。また、潤滑層3は、ポリマー鎖2がブラシ状に存在してなる。また、ポリマー鎖2は、体液(例えば、血液等の水性液体)中では、アニオン性モノマーがマイナスに帯電する。このため、特に体液中では、隣接するポリマー鎖2同士が静電反発により適度に離間して基材層4面に対してほぼ垂直に(ブラシ状に)配向する。ゆえに、本発明に係る潤滑層は、体液接触時により高い効果(血液適合性、潤滑性)を発揮できる。なお、本明細書において、「ポリマーブラシ」は、ポリマー鎖がブラシ状に存在した状態を意図するものであり、特記しない限り、ポリマーブラシ及びポリマー鎖は同義として扱う。また、本明細書において、「ポリマー鎖が体液接触時にマイナスの電荷を帯びる」とは、少なくとも体液接触時にマイナスの電荷を帯びればよく、体液と接触しない場合にはマイナスの電荷を帯びなくてもよい。
[Medical equipment]
FIG. 1 is a schematic partial cross-sectional view for explaining the surface of the medical device of the present invention. As shown in FIG. 1, the medical device 1 of the present invention has a structure in which a lubricating layer 3 is formed on a base material layer 4. The lubricating layer 3 has the polymer chain 2 in a brush shape. The polymer chain 2 is negatively charged with an anionic monomer in a body fluid (for example, an aqueous liquid such as blood). For this reason, especially in the body fluid, the adjacent polymer chains 2 are appropriately separated from each other by electrostatic repulsion and are oriented substantially perpendicularly (in a brush shape) to the surface of the base material layer 4. Therefore, the lubricating layer according to the present invention can exhibit higher effects (blood compatibility, lubricity) when contacting body fluid. In the present specification, the “polymer brush” is intended to indicate a state in which the polymer chain exists in a brush shape, and the polymer brush and the polymer chain are treated as synonymous unless otherwise specified. Further, in the present specification, “the polymer chain is negatively charged when contacting body fluid” means that it is only required to be negatively charged at least when contacting body fluid, and not negatively charged when not contacting body fluid. Also good.
 (基材層)
 基材層は、医療用具を構成する。基材層の材質は、特に制限されず、用途によって適宜選択されうる。基材層は、少なくとも表面が高分子材料からなることが好ましい。ここで、基材層が「少なくとも表面が高分子材料からなる」とは、基材層の少なくとも表面が高分子材料で構成されていればよく、基材層全体(全部)が高分子材料で構成(形成)されているものに何ら制限されるものではない。したがって、金属材料やセラミックス材料等の硬い補強材料で形成された基材コア部の表面に、金属材料等の補強材料に比して柔軟な高分子材料が適当な方法(浸漬(ディッピング)、噴霧(スプレー)、塗布・印刷等の従来公知の方法)で被覆(コーティング)あるいは基材コア部の金属材料等と表面高分子層の高分子材料とが複合化(適当な反応処理)されて、表面高分子層を形成しているものも、本発明の基材層に含まれる。よって、基材コア部が、異なる材料を多層に積層してなる多層構造体、あるいは医療用具の部分ごとに異なる材料で形成された部材を繋ぎ合わせた構造(複合体)などであってもよい。また、基材コア部と表面高分子層との間に、更に異なる中間層が形成されていてもよい。さらに、表面高分子層に関しても異なる高分子材料を多層に積層してなる多層構造体、あるいは医療用具の部分ごとに異なる高分子材料で形成された部材を繋ぎ合わせた構造(複合体)などであってもよい。
(Base material layer)
The base material layer constitutes a medical device. The material of the base material layer is not particularly limited and can be appropriately selected depending on the application. It is preferable that at least the surface of the base material layer is made of a polymer material. Here, the “base layer is made of a polymeric material” means that at least the surface of the base layer is made of a polymeric material, and the entire base layer (all) is made of a polymeric material. It is not limited to what is configured (formed). Therefore, on the surface of the base material core portion formed of a hard reinforcing material such as a metal material or a ceramic material, a polymer material that is more flexible than a reinforcing material such as a metal material is applied by an appropriate method (dipping or spraying). (Spray), coating / printing, etc.) (coating) or the base material core metal material and the polymer material of the surface polymer layer are combined (appropriate reaction treatment), What forms the surface polymer layer is also included in the base material layer of the present invention. Therefore, the base material core portion may be a multilayer structure in which different materials are laminated in multiple layers, or a structure (composite) in which members formed of different materials for each part of the medical device are connected. . Further, a different intermediate layer may be formed between the base material core portion and the surface polymer layer. Furthermore, with regard to the surface polymer layer, a multilayer structure in which different polymer materials are laminated in multiple layers, or a structure (composite) in which members made of different polymer materials are connected to each part of a medical device, etc. There may be.
 上記形態において、基材コア部に用いることができる材料としては、特に制限されるものではなく、カテーテル、ガイドワイヤ、留置針等の用途に応じて最適な基材コア部としての機能を十分に発現し得る補強材料を適宜選択すればよい。例えば、SUS304、SUS316L、SUS420J2、SUS630などの各種ステンレス鋼(SUS)、金、白金、タンタル、銀、銅、ニッケル、コバルト、チタン、鉄、アルミニウム、スズ、マグネシウム、亜鉛およびニッケル-チタン合金、コバルト-クロム合金、亜鉛-タングステン合金等のそれらの合金などの各種金属材料、各種セラミックス材料などの無機材料、更には金属-セラミックス複合体などが例示できるが、これらに何ら制限されるものではない。 In the said form, it does not restrict | limit especially as a material which can be used for a base-material core part, The function as an optimal base-material core part is enough according to uses, such as a catheter, a guide wire, and an indwelling needle. What is necessary is just to select the reinforcement material which can be expressed suitably. For example, various stainless steels (SUS) such as SUS304, SUS316L, SUS420J2, SUS630, gold, platinum, tantalum, silver, copper, nickel, cobalt, titanium, iron, aluminum, tin, magnesium, zinc and nickel-titanium alloy, cobalt Examples include various metal materials such as chromium alloys and zinc-tungsten alloys, inorganic materials such as various ceramic materials, and metal-ceramic composites, but are not limited thereto.
 また、基材層ないし表面高分子層に用いることができる高分子材料としては、特に限定されるものではなく、例えば、ナイロン6、ナイロン11、ナイロン12、ナイロン66(いずれも登録商標)などのポリアミド樹脂、直鎖状低密度ポリエチレン(LLDPE)、低密度ポリエチレン(LDPE)、高密度ポリエチレン(HDPE)などのポリエチレン樹脂やポリプロピレン樹脂などのポリオレフィン樹脂、エポキシ樹脂、ウレタン樹脂、ジアリルフタレート樹脂(アリル樹脂)、ポリカーボネート樹脂、フッ素樹脂、アミノ樹脂(ユリア樹脂、メラミン樹脂、ベンゾグアナミン樹脂)、ポリエステル樹脂、スチロール樹脂、アクリル樹脂、ポリアセタール樹脂、酢酸ビニル樹脂、フェノール樹脂、ポリ塩化ビニル(PVC)(塩化ビニル樹脂)、シリコーン樹脂(ケイ素樹脂)、ナイロン6、ナイロン66、ナイロン11、ナイロン12などをハードセグメントとし、ポリアルキレングリコール、ポリエーテル、または脂肪族ポリエステルなどをソフトセグメントとするブロック共重合体であるナイロンエラストマーなどが挙げられる。これらは1種単独で使用してもよいし、2種以上を併用してもよい。上記高分子材料には、使用用途であるカテーテル、ガイドワイヤ、留置針等の高分子基材として最適な高分子材料を適宜選択すればよい。 The polymer material that can be used for the base material layer or the surface polymer layer is not particularly limited, and examples thereof include nylon 6, nylon 11, nylon 12, and nylon 66 (all are registered trademarks). Polyolefin resins such as polyamide resin, linear low density polyethylene (LLDPE), low density polyethylene (LDPE), high density polyethylene (HDPE), and polypropylene resin, epoxy resin, urethane resin, diallyl phthalate resin (allyl resin) ), Polycarbonate resin, fluorine resin, amino resin (urea resin, melamine resin, benzoguanamine resin), polyester resin, styrene resin, acrylic resin, polyacetal resin, vinyl acetate resin, phenol resin, polyvinyl chloride (PVC) (vinyl chloride) Block copolymer having a hard segment made of nylon resin, silicone resin (silicon resin), nylon 6, nylon 66, nylon 11 or nylon 12, and soft segment made of polyalkylene glycol, polyether or aliphatic polyester. A certain nylon elastomer etc. are mentioned. These may be used individually by 1 type and may use 2 or more types together. What is necessary is just to select the polymeric material optimal as polymeric base materials, such as a catheter, a guide wire, and an indwelling needle which are use applications, as said polymeric material suitably.
 また、上記中間層に用いることができる材料としては、特に制限されるものではなく、使用用途に応じて適宜選択すればよい。例えば、各種金属材料、各種セラミックス材料、さらには有機-無機複合体などが例示できるが、これらに何ら限定されるものではない。 The material that can be used for the intermediate layer is not particularly limited, and may be appropriately selected depending on the intended use. Examples include various metal materials, various ceramic materials, and organic-inorganic composites, but are not limited thereto.
 (潤滑層)
 潤滑層は、ポリマー鎖がブラシ状に存在してなる。好ましくは、潤滑層はポリマーブラシ(ポリマー鎖)から構成される。また、ポリマー鎖は、血液適合性を有する双性イオンモノマーとアニオン性モノマーとの共重合体である。
(Lubrication layer)
The lubrication layer has a polymer chain in a brush shape. Preferably, the lubricating layer is composed of a polymer brush (polymer chain). The polymer chain is a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility.
 ここで、ポリマー鎖は、長さが10μm未満である。図1に示されるように、ポリマー鎖の長さは潤滑層の厚みに相当する。すなわち、潤滑層を10μm未満の薄膜とすることができる。本発明に係るポリマー鎖は高い血液適合性及び潤滑性を有するため、このような薄い潤滑層であっても、医療用具は優れた血液適合性及び潤滑性を発揮できる上、カテーテルを細径化でき、末梢の血管内の病変部の治療にも好適に使用できる。また、ポリマー鎖(ポリマーブラシ)が基材層から剥離した場合であっても、ポリマーブラシはマイナスを帯びているため、ポリマーブラシ同士はほとんど会合しないため、剥離物の大きさは最大でもポリマーブラシと実質的に同じであり(剥離物は10μm未満の微粒子状であり)、人体への影響が小さいまたはないサイズである。ゆえに、本発明の医療用具は体内に安全に適用できる。ポリマー鎖の長さは、10μm未満であり、人体への影響へのさらなる低減効果を考慮すると、好ましくは9.999μm以下、より好ましくは8.000μm以下、特に好ましくは7.000μm以下である。なお、ポリマー鎖の長さの下限は、特に制限されず、測定限界である。潤滑性のより向上効果などを考慮すると、ポリマー鎖の長さは、好ましくは0.001μm以上、より好ましくは0.0051μm以上、特に好ましくは0.0101μm以上である。このような長さであれば、ポリマー鎖は、高い血液適合性及び潤滑性は確保しつつ、人体への影響をより小さくすることができる。好ましい形態によると、ポリマー鎖の長さは、0.001~9.999μmであり、より好ましくは0.005~8.000μm、特に好ましくは0.010~7.000μmである。 Here, the polymer chain has a length of less than 10 μm. As shown in FIG. 1, the length of the polymer chain corresponds to the thickness of the lubricating layer. That is, the lubricating layer can be a thin film of less than 10 μm. Since the polymer chain according to the present invention has high blood compatibility and lubricity, the medical device can exhibit excellent blood compatibility and lubricity even with such a thin lubrication layer, and the diameter of the catheter is reduced. It can also be used suitably for the treatment of lesions in peripheral blood vessels. Even when the polymer chain (polymer brush) is peeled off from the base material layer, the polymer brush is negative and the polymer brushes are hardly associated with each other. Is substantially the same (the peeled material is in the form of fine particles of less than 10 μm) and has a size with little or no effect on the human body. Therefore, the medical device of the present invention can be safely applied to the body. The length of the polymer chain is less than 10 μm, and in consideration of a further reduction effect on the influence on the human body, it is preferably 9.999 μm or less, more preferably 8.000 μm or less, and particularly preferably 7.000 μm or less. The lower limit of the polymer chain length is not particularly limited and is a measurement limit. Considering the effect of improving lubricity, the length of the polymer chain is preferably 0.001 μm or more, more preferably 0.0051 μm or more, and particularly preferably 0.0101 μm or more. With such a length, the polymer chain can reduce the influence on the human body while ensuring high blood compatibility and lubricity. According to a preferred embodiment, the length of the polymer chain is 0.001 to 9.999 μm, more preferably 0.005 to 8.000 μm, particularly preferably 0.010 to 7.000 μm.
 本明細書において、ポリマー鎖(ポリマーブラシ)の長さは、ポリマーブラシの長さとポリマーブラシの膜厚とが同程度であると定義する。また、ポリマーブラシの膜厚と潤滑層の膜厚とが同程度であるとみなす。基材層上のポリマーブラシの膜厚(≒潤滑層の膜厚)は、エリプソメトリーや光干渉式膜厚計を用いた光学式測定法または顕微鏡写真から算出できるため、当該値をポリマーブラシの長さとみなす。本明細書では、ポリマー鎖(ポリマーブラシ)の長さは、下記実施例に記載されるように、光干渉式膜厚計(FILMETRIX社製、F40)を用いて測定された値を採用する。 In this specification, the length of the polymer chain (polymer brush) is defined as the length of the polymer brush and the film thickness of the polymer brush being approximately the same. Further, the film thickness of the polymer brush and the film thickness of the lubricating layer are considered to be approximately the same. The film thickness of the polymer brush on the base material layer (≈the film thickness of the lubrication layer) can be calculated from an optical measurement method using an ellipsometry or an optical interference film thickness meter, or from a micrograph. Consider it a length. In this specification, as the length of the polymer chain (polymer brush), as described in the following examples, a value measured using an optical interference film thickness meter (FILMETRIX, F40) is adopted.
 本発明に係るポリマー鎖(ポリマーブラシ)は、血液適合性および潤滑性を有する双性イオンモノマーとアニオン性モノマーとの共重合体から形成される。 The polymer chain (polymer brush) according to the present invention is formed from a copolymer of a zwitterionic monomer and an anionic monomer having blood compatibility and lubricity.
 このうち、双性イオンモノマーは、一分子内にカチオン性基及びアニオン性基双方を有する化合物である。このような双性イオンモノマーは、特に制限されないが、カルボキシベタイン骨格、スルホベタイン骨格、ホスホベタイン骨格を有するもの、さらにはアミノ酸骨格を有するものなどが挙げられる。このうち、双性イオンモノマーは、カルボキシベタイン骨格、スルホベタイン骨格、ホスホベタイン骨格などのベタイン骨格を有するものが好ましい。すなわち、本発明の好ましい形態によると、双性イオンモノマーは、ベタイン骨格を有する。これらの双性イオンを含む骨格を繰り返し単位として導入することにより、血液適合性(例えば、抗血栓性)および潤滑性をより有効に向上できる。 Among these, zwitterionic monomers are compounds having both a cationic group and an anionic group in one molecule. Such zwitterionic monomers are not particularly limited, and examples thereof include those having a carboxybetaine skeleton, a sulfobetaine skeleton, a phosphobetaine skeleton, and those having an amino acid skeleton. Among these, the zwitterionic monomer preferably has a betaine skeleton such as a carboxybetaine skeleton, a sulfobetaine skeleton, or a phosphobetaine skeleton. That is, according to a preferred embodiment of the present invention, the zwitterionic monomer has a betaine skeleton. By introducing a skeleton containing these zwitterions as a repeating unit, blood compatibility (for example, antithrombogenicity) and lubricity can be improved more effectively.
 ここで、ベタイン骨格を有する双性イオンモノマーとしては、例えば、下記式(1): Here, as a zwitterionic monomer having a betaine skeleton, for example, the following formula (1):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
の構造を有するカルボキシベタイン型、スルホベタイン型またはホスホベタイン型の双性イオンモノマーが好ましく使用される。 A carboxybetaine type, sulfobetaine type, or phosphobetaine type zwitterionic monomer having the following structure is preferably used.
 上記式(1)において、Rは水素原子またはメチル基であり、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、好ましくはメチル基である。Zは、酸素原子または-NH-であり、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、好ましくは酸素原子である。 In the above formula (1), R 1 is a hydrogen atom or a methyl group, and is preferably a methyl group from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity. Z is an oxygen atom or —NH—, and preferably an oxygen atom from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity.
 Rは、炭素原子数1~6の直鎖または分岐鎖のアルキレン基である。炭素原子数1~6の直鎖または分岐鎖のアルキレン基は、以下に制限されないが、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などが挙げられる。これらのうち、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、炭素原子数1~3の直鎖または分岐鎖のアルキレン基であると好ましく、メチレン基、エチレン基であるとより好ましく、エチレン基であると特に好ましい。 R 2 is a linear or branched alkylene group having 1 to 6 carbon atoms. The linear or branched alkylene group having 1 to 6 carbon atoms is not limited to the following, and examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Can be mentioned. Among these, from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity, it is preferably a linear or branched alkylene group having 1 to 3 carbon atoms, preferably a methylene group or an ethylene group. More preferably, it is particularly preferably an ethylene group.
 RおよびRは、それぞれ独立して、炭素原子数1~4のアルキル基である。ここで、RおよびRは、同じであってもまたは異なるものであってもよい。炭素原子数1~4のアルキル基は、以下に制限されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基の直鎖または分岐鎖のアルキル基が挙げられる。これらのうち、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、炭素原子数1~3の直鎖または分岐鎖のアルキル基であると好ましく、炭素原子数1または2のアルキル基(メチル基、エチル基)であるとより好ましく、メチル基であると特に好ましい。 R 3 and R 4 are each independently an alkyl group having 1 to 4 carbon atoms. Here, R 3 and R 4 may be the same or different. The alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group linear or Examples include branched alkyl groups. Among these, from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity, a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, and 1 or 2 carbon atoms are preferable. And more preferably an alkyl group (methyl group, ethyl group), and particularly preferably a methyl group.
 Rは、メチレン基、エチレン基、トリメチレン基、プロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基である。これらのうち、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、メチレン基、エチレン基、トリメチレン基、プロピレン基が好ましい。また、カルボキシベタイン型の場合は炭素原子数1のアルキレン基(メチレン基)が、スルホベタイン型の場合は炭素原子数3のアルキレン基(トリメチレン基)であると特に好ましい。 R 5 is a methylene group, ethylene group, trimethylene group, propylene group, butylene group, isobutylene group, sec-butylene group, or tert-butylene group. Among these, a methylene group, an ethylene group, a trimethylene group, and a propylene group are preferable from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or improving lubricity. In the case of the carboxybetaine type, an alkylene group having 1 carbon atom (methylene group) is particularly preferred, and in the case of the sulfobetaine type, an alkylene group having 3 carbon atoms (trimethylene group) is particularly preferred.
 Xは、-COO(カルボキシベタイン型の双性イオンモノマー)、-SO (スルホベタイン型の双性イオンモノマー)である。 X is —COO (carboxybetaine type zwitterionic monomer), —SO 3 (sulfobetaine type zwitterionic monomer).
 具体的には、上記双性イオンモノマーのうち、カルボキシベタイン骨格を有する双性イオンモノマー(カルボキシベタイン型の双性イオンモノマー;X=-COO)としては、N-(メタ)アクリロイルオキシメチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、N-(メタ)アクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、N-(メタ)アクリロイルオキシプロピル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン、N-(メタ)アクリロイノレオキシメチル-N,N-ジエチルアンモニウム-α-N-メチルカルボキシベタイン、N-(メタ)アクリロイルオキシエチル-N,N-ジエチルアンモニウム-α-N-メチルカルボキシベタイン、N-(メタ)アクリロイルオキシプロピル-N,N-ジエチルアンモニウム-α-N-メチルカルボキシベタインなどが挙げられるが、好ましくはN-(メタ)アクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン(CBA)などが挙げられる。 Specifically, among the zwitterionic monomers, a zwitterionic monomer having a carboxybetaine skeleton (carboxybetaine type zwitterionic monomer; X = —COO ) includes N- (meth) acryloyloxymethyl- N, N-dimethylammonium-α-N-methylcarboxybetaine, N- (meth) acryloyloxyethyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, N- (meth) acryloyloxypropyl-N, N-dimethylammonium-α-N-methylcarboxybetaine, N- (meth) acryloyloleoxymethyl-N, N-diethylammonium-α-N-methylcarboxybetaine, N- (meth) acryloyloxyethyl-N, N-diethylammonium-α-N-methylcarboxybeta And N- (meth) acryloyloxypropyl-N, N-diethylammonium-α-N-methylcarboxybetaine are preferable, and N- (meth) acryloyloxyethyl-N, N-dimethylammonium-α is preferable. -N-methylcarboxybetaine (CBA) and the like.
 上記双性イオンモノマーのうち、スルホベタイン骨格を有する双性イオンモノマー(スルホベタイン型の双性イオンモノマー;X=-SO )としては、[2-((メタ)アクリロイルオキシ)エチル]ジメチル-(3-スルホプロピル)アンモニウムヒドロキシド、[2-((メタ)アクリロイルオキシ)エチル]ジメチル-(3-スルホブチル)アンモニウムヒドロキシド、[2-((メタ)アクリロイルオキシ)エチル]ジエチル-(3-スルホプロピル)アンモニウムヒドロキシド、[2-((メタ)アクリロイルオキシ)エチル]ジエチル-(3-スルホブチル)アンモニウムヒドロキシドなどが挙げられる。これらのうち、[2-((メタ)アクリロイルオキシ)エチル]ジメチル-(3-スルホプロピル)アンモニウムヒドロキシドが好ましい。 Among the zwitterionic monomers, a zwitterionic monomer having a sulfobetaine skeleton (sulfobetaine type zwitterionic monomer; X = —SO 3 ) is [2-((meth) acryloyloxy) ethyl] dimethyl. -(3-sulfopropyl) ammonium hydroxide, [2-((meth) acryloyloxy) ethyl] dimethyl- (3-sulfobutyl) ammonium hydroxide, [2-((meth) acryloyloxy) ethyl] diethyl- (3 -Sulfopropyl) ammonium hydroxide, [2-((meth) acryloyloxy) ethyl] diethyl- (3-sulfobutyl) ammonium hydroxide, and the like. Of these, [2-((meth) acryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide is preferred.
 また、ベタイン骨格を有する他の双性イオンモノマーとしては、例えば、下記式(2): Further, as another zwitterionic monomer having a betaine skeleton, for example, the following formula (2):
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
の構造を有するホスホベタイン型の双性イオンモノマーが好ましく使用される。 A phosphobetaine-type zwitterionic monomer having the following structure is preferably used.
 上記式(2)において、R11は水素原子またはメチル基であり、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、好ましくはメチル基である。Z’は、酸素原子または-NH-であり、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、好ましくは酸素原子である。 In the above formula (2), R 11 is a hydrogen atom or a methyl group, and preferably a methyl group from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity. Z ′ is an oxygen atom or —NH—, and preferably an oxygen atom from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity.
 R12およびR13は、炭素原子数1~6の直鎖または分岐鎖のアルキレン基である。ここで、R12およびR13は、それぞれ同じであってもまたは異なるものであってもよい。炭素原子数1~6の直鎖または分岐鎖のアルキレン基は、以下に制限されないが、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基などが挙げられる。これらのうち、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、炭素原子数1~3の直鎖または分岐鎖のアルキレン基であると好ましく、メチレン基、エチレン基であるとより好ましく、エチレン基であると特に好ましい。 R 12 and R 13 are linear or branched alkylene groups having 1 to 6 carbon atoms. Here, R 12 and R 13 may be the same or different. The linear or branched alkylene group having 1 to 6 carbon atoms is not limited to the following, and examples thereof include a methylene group, an ethylene group, a trimethylene group, a propylene group, a tetramethylene group, a pentamethylene group, and a hexamethylene group. Can be mentioned. Among these, from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity, it is preferably a linear or branched alkylene group having 1 to 3 carbon atoms, preferably a methylene group or an ethylene group. More preferably, it is particularly preferably an ethylene group.
 R14~R16は、それぞれ独立して、炭素原子数1~4のアルキル基である。ここで、R14~R16は、同じであってもまたは異なるものであってもよい。炭素原子数1~4のアルキル基は、以下に制限されないが、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基の直鎖または分岐鎖のアルキル基が挙げられる。これらのうち、血液適合性(例えば、抗血栓性)および/または潤滑性向上の観点から、炭素原子数1~3の直鎖または分岐鎖のアルキル基であると好ましく、炭素原子数1または2のアルキル基(メチル基、エチル基)であるとより好ましく、メチル基であると特に好ましい。 R 14 to R 16 are each independently an alkyl group having 1 to 4 carbon atoms. Here, R 14 to R 16 may be the same or different. The alkyl group having 1 to 4 carbon atoms is not limited to the following, but for example, a methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group linear or Examples include branched alkyl groups. Among these, from the viewpoint of improving blood compatibility (for example, antithrombogenicity) and / or lubricity, a linear or branched alkyl group having 1 to 3 carbon atoms is preferable, and 1 or 2 carbon atoms are preferable. And more preferably an alkyl group (methyl group, ethyl group), and particularly preferably a methyl group.
 上記双性イオンモノマーのうち、ホスホベタイン骨格を有する双性イオンモノマー(ホスホベタイン型の双性イオンモノマー)としては、2-(メタ)アクリロイルオキシエチルホスホリルコリン、4-(メタ)アクリロイルオキシブチルホスホリルコリン、6-(メタ)アクリロイルオキシへキシルホスホリルコリン、ω-(メタ)アクリロイルオキシエチレンホスホリルコリン、4-スチリルオキシブチルホスホリルコリンなどが挙げられる。これらのうち、2-(メタ)アクリロイルオキシエチルホスホリルコリンが好ましい。 Among the zwitterionic monomers, zwitterionic monomers having a phosphobetaine skeleton (phosphobetaine-type zwitterionic monomers) include 2- (meth) acryloyloxyethyl phosphorylcholine, 4- (meth) acryloyloxybutylphosphorylcholine, Examples include 6- (meth) acryloyloxyhexyl phosphorylcholine, ω- (meth) acryloyloxyethylene phosphorylcholine, 4-styryloxybutyl phosphorylcholine, and the like. Of these, 2- (meth) acryloyloxyethyl phosphorylcholine is preferred.
 アミノ酸骨格を有する双性イオンモノマー(アミノ酸型の双性イオンモノマー)は、例えば、(メタ)アクリロイル-L-リシン、(メタ)アクリロイル-L-セリン、(メタ)アクリロイル-L-スレオニン、(メタ)アクリロイル-L-チロシンなどが挙げられる。 Zwitterionic monomers having an amino acid skeleton (amino acid type zwitterionic monomers) include, for example, (meth) acryloyl-L-lysine, (meth) acryloyl-L-serine, (meth) acryloyl-L-threonine, (meta And acryloyl-L-tyrosine.
 上記双性イオンモノマーは、1種単独で、または2種以上が混合して用いられてもよい。かような双性イオンモノマーを用いることにより、医療用具の潤滑層により高い血液適合性(例えば、抗血栓性)を付与することができる。なお、本明細書中、「(メタ)アクリル」とは、「アクリルおよび/またはメタクリル」を示すものである。同様にして、「(メタ)アクリロイル」とは、「アクリロイルおよび/またはメタクリロイル」を示すものとする。 The zwitterionic monomers may be used alone or in combination of two or more. By using such a zwitterionic monomer, high blood compatibility (for example, antithrombogenicity) can be imparted to the lubricating layer of the medical device. In the present specification, “(meth) acryl” means “acryl and / or methacryl”. Similarly, “(meth) acryloyl” means “acryloyl and / or methacryloyl”.
 これらのうち、上記式(1)中、Rはメチル基であり、Zは酸素原子であり、Rは炭素原子数1~3のアルキレン基であり、RおよびRはそれぞれ独立して炭素原子数1または2のアルキル基であり、Xは-COOまたは-SO であると好ましい。また、上記式(2)中、R11はメチル基であり、Z’は酸素原子であり、R12及びR13は炭素原子数1~3のアルキレン基であり、R14~R16はそれぞれ独立して炭素原子数1または2のアルキル基であると好ましい。さらに、双性イオンモノマーは、上記式(1)中、Rがメチル基であり、Zが酸素原子であり、Rがエチレン基(-CHCH-)であり、RおよびRがメチル基であり、Rがトリメチレン基であり、Xが-SO である[2-(メタクリロイルオキシ)エチル]ジメチル-(3-スルホプロピル)アンモニウムヒドロキシド(SPB));上記式(1)中、Rがメチル基であり、Zは酸素原子であり、Rがエチレン基(-CHCH-)であり、RおよびRがメチル基であり、Rがメチレン基であり、Xが-COOであるN-メタクリロイルオキシエチル-N,N-ジメチルアンモニウム-α-N-メチルカルボキシベタイン(CMB);および上記式(2)中、R11がメチル基であり、Z’が酸素原子であり、R12及びR13がエチレン基(-CHCH-)であり、R14~R16がメチル基である2-メタクリロイルオキシエチルホスホリルコリン(MPC)であることが特に好ましい。 Among these, in the above formula (1), R 1 is a methyl group, Z is an oxygen atom, R 2 is an alkylene group having 1 to 3 carbon atoms, and R 3 and R 4 are each independently And an alkyl group having 1 or 2 carbon atoms, and X is preferably —COO 2 or —SO 3 . In the above formula (2), R 11 is a methyl group, Z ′ is an oxygen atom, R 12 and R 13 are alkylene groups having 1 to 3 carbon atoms, and R 14 to R 16 are respectively Independently, an alkyl group having 1 or 2 carbon atoms is preferable. Further, the zwitterionic monomer is represented by the formula (1), wherein R 1 is a methyl group, Z is an oxygen atom, R 2 is an ethylene group (—CH 2 CH 2 —), R 3 and R [2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide (SPB)) in which 4 is a methyl group, R 5 is a trimethylene group, and X is —SO 3 ; In (1), R 1 is a methyl group, Z is an oxygen atom, R 2 is an ethylene group (—CH 2 CH 2 —), R 3 and R 4 are methyl groups, and R 5 is methylene group, X is -COO - a is N- methacryloyloxyethyl -N, N- dimethylammonium-.alpha.-N- methyl carboxy betaine (CMB); and the above formula (2), R 11 is a methyl group Yes, Z ' Is particularly preferably 2-methacryloyloxyethyl phosphorylcholine (MPC) in which R 12 is an oxygen atom, R 12 and R 13 are ethylene groups (—CH 2 CH 2 —), and R 14 to R 16 are methyl groups. .
 また、アニオン性モノマーは、体液接触時にマイナスの電荷を帯びる化合物である。本明細書において、「体液接触時にマイナスの電荷を帯びる」とは、体液中に存在するアニオン性基(マイナス)と反発できる程度のマイナスの電荷を有することを意味する。 An anionic monomer is a compound that is negatively charged when contacting a body fluid. In the present specification, “having a negative charge when contacting a body fluid” means having a minus charge enough to repel an anionic group (minus) present in the body fluid.
 このようなアニオン性モノマーとしては、特に制限されないが、カルボキシル基(-COOH)、スルホン酸基(-SOH)、硫酸基(-OSOH)、ホスホン酸基(-PO)、リン酸基(-PO)等のアニオン性基を有する化合物が挙げられる。これらのアニオン性モノマーを用いることにより、体液接触時に適切に負電荷を帯びて、体液成分(例えば、血球)表面のアニオン性基(マイナス)と反発して、体液成分の凝集をより有効に抑制・防止できる。また、これらのアニオン性モノマーは、体液接触時に適切なマイナスに帯電すると共に、これらの官能基に由来する負電荷により、血液適合性(例えば、抗血栓性)をも発現する(医療用具の血液適合性をさらに向上できる)。また、アニオン性モノマーは、上記官能基を単独で含んでいてもよいし、またはこれら両方を含んでいてもよい。 Such an anionic monomer is not particularly limited, but includes a carboxyl group (—COOH), a sulfonic acid group (—SO 3 H), a sulfuric acid group (—OSO 3 H), and a phosphonic acid group (—PO 3 H 2 ). And compounds having an anionic group such as a phosphate group (—PO 4 H 2 ). By using these anionic monomers, a negative charge is appropriately charged when contacting the body fluid, repelling the anionic group (minus) on the surface of the body fluid component (for example, blood cells), and more effectively suppressing the aggregation of the body fluid component・ Can be prevented. In addition, these anionic monomers are appropriately negatively charged when contacting body fluids, and also exhibit blood compatibility (for example, antithrombogenicity) due to negative charges derived from these functional groups (blood of medical devices) Compatibility can be further improved). Moreover, the anionic monomer may contain the said functional group independently, and may contain both of these.
 具体的には、このようなアニオン性モノマーとしては、(メタ)アクリル酸、β-カルボキシエチルアクリレート、2-(メタ)アクリルアミド-2-メチル-プロパンスルホン酸(AMPS)、硫酸ビニル、硫酸アリル、硫酸4-ビニルフェニル、スチレンスルホン酸、スルホエチル(メタ)アクリレート、スルホプロピル(メタ)アクリレート、2-メチル-2-プロペン-1-スルホン酸、2-プロペン-1-スルホン酸、2-ヒドロキシ-3-((メタ)アクリロイルオキシ)プロパン-1-スルホン酸、2-アクリルアミド-2-メチル-1-プロパンスルホン酸、3-((メタ)アクリロイルアミノ)プロパン-1-スルホン酸、リン酸(メタ)アクリル酸2-ヒドロキシエチルエステル、リン酸2-(メタ)アクリロイルエチル、(メタ)アクリル酸2-ホスホノエチル、((メタ)アクリロイルアミノメチル)ホスホン酸、2-((メタ)アクリロイルアミノ)エチルホスホン酸、2-((メタ)アクリロイルオキシアミノ)エチルホスホン酸、2-((メタ)アクリロイルオキシアミノ)エチルホスホン酸;ならびにこれらの塩などが挙げられる。ここで、上記アニオン性モノマーの塩としては特に制限されず、無機陽イオンの塩または有機陽イオンの塩が挙げられる。無機陽イオンの塩としては、アルカリ金属塩、アルカリ土類金属塩、アンモニウム塩が好ましく、中でも、ナトリウム塩、カリウム塩、リチウム塩がより好ましい。有機陽イオンの塩としては、第1級~第3級アミン塩が好ましい。上記アニオン性モノマーは、1種単独で、または2種以上が混合して用いられてもよい。これらのアニオン性モノマーを用いることにより、体液接触時に適切に負電荷を帯びて、体液成分(例えば、血球)表面のアニオン性基(マイナス)と反発して、体液成分の凝集をより有効に抑制・防止できる。また、これらのアニオン性モノマーは、体液接触時に適切なマイナスに帯電すると共に、これらの官能基に由来する負電荷により、特に優れた血液適合性(例えば、抗血栓性)をも発現する(医療用具の血液適合性をさらに向上できる)。また、アニオン性モノマーを用いることで、たとえポリマーが剥離してしまっても、静電反発によりポリマーどうしが会合しにくいため、微粒子が発生しにくく、安全性上好ましい。 Specifically, such anionic monomers include (meth) acrylic acid, β-carboxyethyl acrylate, 2- (meth) acrylamide-2-methyl-propanesulfonic acid (AMPS), vinyl sulfate, allyl sulfate, 4-vinylphenyl sulfate, styrene sulfonic acid, sulfoethyl (meth) acrylate, sulfopropyl (meth) acrylate, 2-methyl-2-propene-1-sulfonic acid, 2-propene-1-sulfonic acid, 2-hydroxy-3 -((Meth) acryloyloxy) propane-1-sulfonic acid, 2-acrylamido-2-methyl-1-propanesulfonic acid, 3-((meth) acryloylamino) propane-1-sulfonic acid, phosphoric acid (meth) 2-hydroxyethyl acrylate, 2- (meth) acryloyl phosphate 2-phosphonoethyl (meth) acrylate, ((meth) acryloylaminomethyl) phosphonic acid, 2-((meth) acryloylamino) ethylphosphonic acid, 2-((meth) acryloyloxyamino) ethylphosphonic acid, 2 -((Meth) acryloyloxyamino) ethylphosphonic acid; and salts thereof. Here, the salt of the anionic monomer is not particularly limited, and examples thereof include inorganic cation salts and organic cation salts. As the salt of the inorganic cation, alkali metal salts, alkaline earth metal salts, and ammonium salts are preferable, and among them, sodium salts, potassium salts, and lithium salts are more preferable. The organic cation salt is preferably a primary to tertiary amine salt. The anionic monomers may be used alone or in combination of two or more. By using these anionic monomers, a negative charge is appropriately charged when contacting the body fluid, repelling the anionic group (minus) on the surface of the body fluid component (for example, blood cells), and more effectively suppressing the aggregation of the body fluid component・ Can be prevented. In addition, these anionic monomers are appropriately negatively charged when contacting body fluids, and also exhibit particularly excellent blood compatibility (for example, antithrombogenicity) due to the negative charge derived from these functional groups (medical treatment) The blood compatibility of the device can be further improved). In addition, by using an anionic monomer, even if the polymer is peeled off, it is difficult for the polymers to associate with each other due to electrostatic repulsion.
 本発明に係る共重合体は、双性イオンモノマー由来の繰り返し単位及びアニオン性モノマー由来の繰り返し単位を有するが、共重合体の組成は特に制限されない。具体的には、血液適合性の観点からは、双性イオンモノマーの割合がアニオン性モノマーの割合より多いことが好ましい。また、アニオン性モノマーによる会合および/または凝集の抑制効果の観点からは、アニオン性モノマーの割合が共重合体に対して0.5モル%を超えることが好ましい。以上の観点から、共重合体の組成(双性イオンモノマー:アニオン性モノマーのモル比)は、共重合体がアニオン性モノマーより双性イオンモノマーを多く含む(双性イオンモノマーのモル比>アニオン性モノマーのモル比)ことが好ましい。より好ましくは、共重合体の組成(双性イオンモノマー:アニオン性モノマーのモル比)は、60~99:40~1であり、より好ましくは60~97:40~3であり、特に好ましくは70~97:30~3である。ここで、双性イオンモノマー:アニオン性モノマーのモル比の合計は100である。このような組成であれば、共重合体(ポリマーブラシ)は、双性イオンモノマーによる高い血液適合性及び潤滑性、ならびにアニオン性モノマーによる会合および/または凝集の抑制効果をより有効に両立できる。なお、共重合体が負電荷を帯びていることは、公知の方法にて確認できる。例えば、ゼータサイザー(MALVERN社)を用いて、電極のついたセルに1mLのポリマー溶液を入れ、電流を流すことによってポリマー表面の電位(ゼータ電位)測定することにより、共重合体が負電荷を帯びていることを確認できる。 The copolymer according to the present invention has a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer, but the composition of the copolymer is not particularly limited. Specifically, from the viewpoint of blood compatibility, it is preferable that the proportion of zwitterionic monomers is higher than the proportion of anionic monomers. Further, from the viewpoint of the effect of suppressing association and / or aggregation due to the anionic monomer, the proportion of the anionic monomer is preferably more than 0.5 mol% with respect to the copolymer. From the above viewpoint, the composition of the copolymer (molar ratio of zwitterionic monomer: anionic monomer) is such that the copolymer contains more zwitterionic monomer than anionic monomer (molar ratio of zwitterionic monomer> anion). (Molar ratio of the functional monomer). More preferably, the composition of the copolymer (molar ratio of zwitterionic monomer: anionic monomer) is 60 to 99:40 to 1, more preferably 60 to 97:40 to 3, particularly preferably. 70-97: 30-3. Here, the sum of the molar ratio of zwitterionic monomer: anionic monomer is 100. With such a composition, the copolymer (polymer brush) can more effectively achieve both the high blood compatibility and lubricity due to the zwitterionic monomer and the inhibitory effect on association and / or aggregation due to the anionic monomer. In addition, it can confirm with a well-known method that the copolymer is negatively charged. For example, using a Zetasizer (MALVERN), 1 mL of the polymer solution is put into a cell with an electrode, and the potential of the polymer surface (zeta potential) is measured by passing an electric current. You can confirm that it is tinged.
 本発明に係るポリマー鎖を構成する共重合体は、双性イオンモノマー由来の繰り返し単位及びアニオン性モノマー由来の繰り返し単位を必須に含むが、その他の繰り返し単位を含んでいてもよい。好ましくは、本発明に係るポリマー鎖を構成する共重合体は、双性イオンモノマー由来の繰り返し単位及びアニオン性モノマー由来の繰り返し単位のみから構成される。 The copolymer constituting the polymer chain according to the present invention essentially contains a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer, but may contain other repeating units. Preferably, the copolymer constituting the polymer chain according to the present invention is composed only of a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer.
 好ましくは、本発明に係るポリマー鎖を構成する共重合体は、双性イオンモノマー由来の繰り返し単位及びアニオン性モノマー由来の繰り返し単位のみから構成される。なお、本発明に係る共重合体の形態は、特に制限されず、ランダム共重合体、交互共重合体、グラフト共重合体、ブロック共重合体等のいずれの形態をとってもよい。 Preferably, the copolymer constituting the polymer chain according to the present invention comprises only a repeating unit derived from a zwitterionic monomer and a repeating unit derived from an anionic monomer. The form of the copolymer according to the present invention is not particularly limited, and may take any form such as a random copolymer, an alternating copolymer, a graft copolymer, and a block copolymer.
 本発明において、潤滑層の形成方法(ポリマーブラシの製造方法)は、双性イオンモノマーとアニオン性モノマーとから10μm未満の長さのポリマー鎖を形成できる以外は、2006-523128号公報(US 2004/0191538 A1に相当)、特開2014-214226号公報(US 2014/0322468 A1に相当)等に記載の公知の方法が同様にまたは適宜修飾して適用できる。具体的には、基材層にラジカルの開始点を形成した後、生成したラジカルに双性イオンモノマーおよびアニオン性モノマーを重合(ラジカル重合)する方法が好ましい。以下、上記好ましい形態について説明するが、本発明は下記形態に限定されない。 In the present invention, a method for forming a lubricating layer (a method for producing a polymer brush) is 2006-523128 (US 2004) except that a polymer chain having a length of less than 10 μm can be formed from a zwitterionic monomer and an anionic monomer. / 0191538 (corresponding to A1), Japanese Patent Application Laid-Open No. 2014-214226 (corresponding to US 2014/0322468 A1) and the like can be applied similarly or appropriately modified. Specifically, it is preferable to form a radical starting point in the base material layer and then polymerize (radical polymerization) a zwitterionic monomer and an anionic monomer to the generated radical. Hereinafter, although the said preferable form is demonstrated, this invention is not limited to the following form.
 まず、基材層にラジカルの開始点を形成する。ここで、基材層にラジカルの開始点を形成する方法は特に制限されないが、重合開始剤を基材表面に固定化する方法、プラズマ処理、紫外線照射、レーザー光照射、コロナ放電、放射線(電子線、γ線)照射、マイクロウェーブなどがある。これらのうち、特殊な設備が不要であるなどの観点からは、重合開始剤を基材表面に固定化する方法が好ましい。また、開始剤が不要で工程が簡略化できるなどの観点からは、放射線照射が好ましく、電子線照射(特に大気圧電子線照射)が好ましい。 First, a radical starting point is formed in the base material layer. Here, the method for forming the radical start point on the base material layer is not particularly limited, but the method for immobilizing the polymerization initiator on the base material surface, plasma treatment, ultraviolet irradiation, laser light irradiation, corona discharge, radiation (electron) Line, gamma ray) irradiation, microwave, etc. Among these, from the standpoint that special equipment is not required, a method of immobilizing the polymerization initiator on the substrate surface is preferable. Further, from the viewpoint of not requiring an initiator and simplifying the process, radiation irradiation is preferable, and electron beam irradiation (particularly atmospheric pressure electron beam irradiation) is preferable.
 このうち、電子線照射(特に大気圧電子線照射)により基材層にラジカルの開始点を形成する放射線グラフト重合法は、選択できる基材の形状や材質の幅が広い;開始剤を使用せずに反応開始点であるラジカルを生成できる;および触媒を使用せずに穏和な条件でグラフト重合できるという利点がある。この場合の処理条件は特に制限されない。例えば、電子線の線量は、特に制限されないが、基材層上に形成されるポリマーブラシの密度の制御に強くかかわる。ゆえに、電子線の線量を10~1000kGyであることが好ましく、50~500kGyであることがより好ましい。このような範囲であれば、適切な密度でポリマーブラシを基材上に形成して、潤滑性や血液適合性をさらに向上できる。また、上記したような条件であれば、適切な密度でポリマーブラシを基材上に形成して、ポリマーブラシ同士の会合をより有効に抑制・防止できる。電子線照射での圧力条件は、特に制限されるものではなく、減圧下、大気圧下のいずれでも可能であるが、省スペース、低コストでのシステム構成が実現でき、経済的にも優れることから、大気圧下で行うのがよい。また、照射雰囲気は、特に制限されないが、例えば、窒素、ヘリウム等の不活性ガス雰囲気が挙げられる。電子線の照射時間は、例えば0.1秒~1時間、より好ましくは0.5秒~10分の範囲である。このような条件であれば、適切な密度でポリマーブラシを基材上に形成して、潤滑性や血液適合性をさらに向上できる。また、上記したような条件であれば、適切な密度でポリマーブラシを基材上に形成して、ポリマーブラシ同士の会合をより有効に抑制・防止できる。 Among these, the radiation graft polymerization method in which the starting point of radicals is formed in the base material layer by electron beam irradiation (particularly atmospheric pressure electron beam irradiation) has a wide range of base material shapes and materials that can be selected; use an initiator. Without the use of a catalyst, and the graft polymerization can be carried out under mild conditions. The processing conditions in this case are not particularly limited. For example, the dose of the electron beam is not particularly limited, but strongly relates to the control of the density of the polymer brush formed on the base material layer. Therefore, the electron beam dose is preferably 10 to 1000 kGy, and more preferably 50 to 500 kGy. If it is such a range, a polymer brush can be formed on a base material with a suitable density, and lubricity and blood compatibility can further be improved. Moreover, if it is the above conditions, a polymer brush will be formed on a base material with a suitable density, and the association | polymerization of polymer brushes can be suppressed and prevented more effectively. The pressure conditions for electron beam irradiation are not particularly limited, and can be under reduced pressure or atmospheric pressure. However, it is possible to realize a system configuration with low space and low cost, and it is economically superior. Therefore, it is good to carry out under atmospheric pressure. The irradiation atmosphere is not particularly limited, and examples thereof include an inert gas atmosphere such as nitrogen and helium. The electron beam irradiation time is, for example, in the range of 0.1 second to 1 hour, more preferably 0.5 second to 10 minutes. Under such conditions, the polymer brush can be formed on the substrate with an appropriate density, and the lubricity and blood compatibility can be further improved. Moreover, if it is the above conditions, a polymer brush will be formed on a base material with a suitable density, and the association | polymerization of polymer brushes can be suppressed and prevented more effectively.
 または、基材層に重合開始剤を吸着させることによって、基材層にラジカルの開始点を形成してもよい。ここで、重合開始剤としては、特に制限されず、公知の重合開始剤が使用できる。具体的には、ベンゾフェノン化合物等のカルボニル化合物、光還元性色素などが挙げられる。これらのうち、カルボニル化合物、特にベンゾフェノン化合物が好ましい。ここで、ベンゾフェノン化合物としては、下記に限定されないが、ベンゾフェノン、キサントン、9-フルオレノン、2,4-ジクロロベンゾフェノン、o-ベンゾイル安息香酸メチル、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン;2,3,4,5,6-ペンタフルオロベンゾフェノン、デカフルオロベンゾフェノン等のフッ化ベンゾフェノンなどが挙げられる。これらのうち、ポリマーブラシの形成密度や長さの調節のしやすさなどを考慮すると、ベンゾフェノン、キサントン、チオキサントン、フルオレノン、アセトフェノン、アントラキノンが好ましい。 Alternatively, radical initiation points may be formed in the base material layer by adsorbing a polymerization initiator on the base material layer. Here, it does not restrict | limit especially as a polymerization initiator, A well-known polymerization initiator can be used. Specific examples include carbonyl compounds such as benzophenone compounds and photoreducible dyes. Of these, carbonyl compounds, particularly benzophenone compounds, are preferred. Here, the benzophenone compound is not limited to the following, but includes benzophenone, xanthone, 9-fluorenone, 2,4-dichlorobenzophenone, methyl o-benzoylbenzoate, 4,4′-bis (dimethylamino) benzophenone, 4, Examples thereof include 4′-bis (diethylamino) benzophenone; fluorinated benzophenones such as 2,3,4,5,6-pentafluorobenzophenone and decafluorobenzophenone. Of these, benzophenone, xanthone, thioxanthone, fluorenone, acetophenone, and anthraquinone are preferable in consideration of ease of adjustment of the formation density and length of the polymer brush.
 ここで、上記重合開始剤を用いて基材層にラジカルの開始点を形成する方法としては、特に制限されず、公知の方法を同様にしてまたは適宜修飾して適用できる。具体的には、重合開始剤を適当な溶媒に溶解して重合開始剤溶液を得、この重合開始剤溶液で基材層を処理して重合開始剤を基材層に吸着する方法が好適に使用できる。ここで、重合開始剤溶液を調製するために使用できる溶媒は、重合開始剤が溶解できるものであれば特に制限されず、使用される重合開始剤に応じて適宜選択される。具体的には、メタノール、エタノール、アセトン、ベンゼン、トルエン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン(THF)などが挙げられる。これらのうち、重合開始剤の溶解のしやすさ、沸点(特に下記乾燥/蒸発を行う場合)の観点から、アセトン、THF、メタノール、エタノール、2-プロパノールが好ましい。ここで、溶媒の使用量は、重合開始剤を基材層に吸着させることが可能であれば特に制限されない。具体的には、重合開始剤溶液における重合開始剤の濃度が、好ましくは75~0.1g/100mL溶媒程度となるような量である。 Here, the method for forming the radical starting point on the base material layer using the polymerization initiator is not particularly limited, and a known method can be applied in the same manner or appropriately modified. Specifically, a method in which a polymerization initiator is dissolved in an appropriate solvent to obtain a polymerization initiator solution, and the substrate layer is treated with this polymerization initiator solution to adsorb the polymerization initiator to the substrate layer is preferable. Can be used. Here, the solvent that can be used for preparing the polymerization initiator solution is not particularly limited as long as the polymerization initiator can be dissolved, and is appropriately selected according to the polymerization initiator to be used. Specific examples include methanol, ethanol, acetone, benzene, toluene, methyl ethyl ketone, ethyl acetate, and tetrahydrofuran (THF). Of these, acetone, THF, methanol, ethanol, and 2-propanol are preferred from the viewpoints of ease of dissolution of the polymerization initiator and boiling point (particularly when drying / evaporation described below). Here, the usage-amount of a solvent will not be restrict | limited especially if a polymerization initiator can be made to adsorb | suck to a base material layer. Specifically, the amount is such that the concentration of the polymerization initiator in the polymerization initiator solution is preferably about 75 to 0.1 g / 100 mL solvent.
 また、重合開始剤溶液による基材層の処理方法は、基材層表面に重合開始剤を存在させることができれば特に制限されない。例えば、塗布・印刷法、浸漬法(ディッピング法、ディップコート法)、噴霧法(スプレー法)、スピンコート法、混合溶液含浸スポンジコート法など、従来公知の方法を適用することができる。これらのうち、浸漬法(ディッピング法、ディップコート法)を用いるのが好ましい。なお、基材層全体を重合開始剤溶液で処理する必要はなく、基材層表面の一部を重合開始剤溶液で処理してもよい。この場合には、塗布・印刷法、噴霧法(スプレー法)が好ましく使用できる。また、このように基材層表面を重合開始剤溶液で処理した後、必要であればこの基材層を乾燥することにより溶媒を除去してもよい。これにより、重合開始剤が基材層表面により強固に吸着できる。 Further, the method for treating the base material layer with the polymerization initiator solution is not particularly limited as long as the polymerization initiator can be present on the surface of the base material layer. For example, conventionally known methods such as coating / printing method, dipping method (dipping method, dip coating method), spraying method (spray method), spin coating method, mixed solution-impregnated sponge coating method, and the like can be applied. Of these, the dipping method (dipping method, dip coating method) is preferably used. In addition, it is not necessary to process the whole base material layer with a polymerization initiator solution, and you may process a part of base material layer surface with a polymerization initiator solution. In this case, a coating / printing method and a spraying method (spraying method) can be preferably used. Moreover, after processing the base material layer surface with the polymerization initiator solution in this way, the base material layer may be dried to remove the solvent if necessary. Thereby, a polymerization initiator can adsorb | suck more firmly by the base-material layer surface.
 また、重合開始剤溶液による基材層の処理条件は、基材層表面に重合開始剤を存在させることができれば特に制限されない。例えば、基材層の重合開始剤溶液との接触温度(例えば、基材層を重合開始剤溶液に浸漬する場合は、重合開始剤溶液の液温)は、好ましくは10~100℃、より好ましくは20~80℃である。また、浸漬時間は、好ましくは0.5分~30分間、より好ましくは1分~10分間である。 Further, the conditions for treating the base material layer with the polymerization initiator solution are not particularly limited as long as the polymerization initiator can be present on the surface of the base material layer. For example, the contact temperature of the base material layer with the polymerization initiator solution (for example, when the base material layer is immersed in the polymerization initiator solution) is preferably 10 to 100 ° C., more preferably Is 20 to 80 ° C. The immersion time is preferably 0.5 minutes to 30 minutes, more preferably 1 minute to 10 minutes.
 次に、上記にて生成したラジカルに双性イオンモノマーおよびアニオン性モノマーを供給して重合(ラジカル重合)する。ここで、モノマーの供給形態は特に制限されない。好ましくは、ラジカルの開始点が表面に形成した基材層を双性イオンモノマーおよびアニオン性モノマー、ならびに必要であれば他のモノマーを含むモノマー溶液に浸漬してモノマーの重合を行う方法、およびラジカルの開始点が表面に形成した基材層に双性イオンモノマーおよびアニオン性モノマー、ならびに必要であれば他のモノマーをガス状に供給してモノマーの重合を行う方法などが好ましい。 Next, a zwitterionic monomer and an anionic monomer are supplied to the radical generated as described above to perform polymerization (radical polymerization). Here, the supply form of the monomer is not particularly limited. Preferably, a method of polymerizing a monomer by immersing a base material layer having a radical start point formed on the surface thereof in a monomer solution containing a zwitterionic monomer and an anionic monomer, and, if necessary, another monomer, and a radical A method of polymerizing the monomer by supplying a zwitterionic monomer and an anionic monomer and, if necessary, other monomers in a gaseous form to the base material layer having the starting point of the surface formed on the surface is preferred.
 上記方法のうち、電子線照射(特に大気圧電子線照射)により基材層にラジカルの開始点を形成する放射線グラフト重合法では、基材層をモノマー溶液に浸漬することがより好ましい。ここで、モノマー溶液の調製に使用される溶媒は、双性イオンモノマーおよびアニオン性モノマーを溶解できるものであれば特に制限されないが、例えば、水、およびメタノール、エタノール、プロパノール、n-ブタノール等のアルコール類、エチレングリコール、ジエチレングリコール、プロピレングリコール、ジプロピレングリコール等の多価アルコール類、酢酸、テトラヒドロフラン(THF)、1,4-ジオキサン、アセトン、メチルエチルケトン、アセトニトリル、ジメチルホルムアミド、ヘキサメチルリン酸トリアミド、トリエチルアミン、ピリジン、ジメチルスルホキシドなどの水と混和できる溶媒、またはジエチルエーテル、酢酸エチルなどの水に溶解する溶媒などが挙げられる。これらの溶媒は1種を単独で使用してもまたは2種以上の混合液の形態で使用してもよい。また、モノマー溶液中の双性イオンモノマーおよびアニオン性モノマーの混合比は特に制限されないが、上記共重合体の好ましい組成(双性イオンモノマーおよびアニオン性モノマー、ならびに必要であれば他のモノマーのモル比)となるように調整されることが好ましい。また、モノマー溶液中の双性イオンモノマーおよびアニオン性モノマー、ならびに必要であれば他のモノマーの濃度(単量体濃度)もまた、特に制限されないが、基材層上のポリマーブラシの密度、ポリマーブラシの長さなどを考慮すると、全モノマー濃度が、モノマー溶液1L当たり、好ましくは0.01~20モル、より好ましくは0.05~10モルである。なお、上記単量体濃度は、双性イオンモノマーおよびアニオン性モノマー、ならびに必要であれば他のモノマーの合計濃度である。また、基材層の浸漬時に、モノマー溶液を窒素、ヘリウムなどの不活性ガスでバブリングしてもよい。基材層のモノマー溶液への浸漬条件もまた特に制限されない。例えば、浸漬温度(モノマー溶液の液温)は、好ましくは10~200℃、より好ましくは室温(25℃)~100℃である。また、浸漬時間は、好ましくは1分~24時間、より好ましくは5分~12時間である。このような条件であれば、所定の長さのポリマーブラシを効率よく形成できる。特に基材層のモノマー溶液への浸漬時間が基材層上に形成されるポリマーブラシの長さに強くかかわるため、浸漬時間を上記したように調節することによって、所定の長さのポリマーブラシを効率よく形成できる。 Among the above methods, in the radiation graft polymerization method in which radical starting points are formed in the base material layer by electron beam irradiation (particularly atmospheric pressure electron beam irradiation), it is more preferable to immerse the base material layer in the monomer solution. Here, the solvent used for the preparation of the monomer solution is not particularly limited as long as it can dissolve the zwitterionic monomer and the anionic monomer. For example, water, methanol, ethanol, propanol, n-butanol and the like can be used. Alcohols, polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, dipropylene glycol, acetic acid, tetrahydrofuran (THF), 1,4-dioxane, acetone, methyl ethyl ketone, acetonitrile, dimethylformamide, hexamethylphosphoric triamide, triethylamine , A solvent miscible with water such as pyridine and dimethyl sulfoxide, or a solvent soluble in water such as diethyl ether and ethyl acetate. These solvents may be used alone or in the form of a mixture of two or more. Further, the mixing ratio of the zwitterionic monomer and the anionic monomer in the monomer solution is not particularly limited, but the preferred composition of the copolymer (molar amounts of zwitterionic monomer and anionic monomer, and other monomers if necessary). Ratio) is preferably adjusted. Further, the concentration of the zwitterionic monomer and the anionic monomer in the monomer solution and, if necessary, the concentration of other monomers (monomer concentration) are not particularly limited, but the density of the polymer brush on the base material layer, the polymer Considering the length of the brush and the like, the total monomer concentration is preferably 0.01 to 20 mol, more preferably 0.05 to 10 mol, per liter of the monomer solution. The monomer concentration is the total concentration of zwitterionic monomer and anionic monomer and, if necessary, other monomers. Further, the monomer solution may be bubbled with an inert gas such as nitrogen or helium when the base material layer is immersed. The conditions for immersing the base material layer in the monomer solution are also not particularly limited. For example, the immersion temperature (liquid temperature of the monomer solution) is preferably 10 to 200 ° C., more preferably room temperature (25 ° C.) to 100 ° C. The immersion time is preferably 1 minute to 24 hours, more preferably 5 minutes to 12 hours. Under such conditions, a polymer brush having a predetermined length can be efficiently formed. In particular, since the immersion time of the base material layer in the monomer solution is strongly related to the length of the polymer brush formed on the base material layer, the polymer brush having a predetermined length can be obtained by adjusting the immersion time as described above. It can be formed efficiently.
 また、重合開始剤を吸着させることにより基材層にラジカルの開始点を形成した場合には、重合開始剤が吸着した基材層をモノマー溶液に浸漬した後、基材層表面の開始点を起点にしてモノマー(双性イオンモノマーおよびアニオン性モノマー、ならびに必要であれば他のモノマー)をラジカル重合させることが好ましい。これにより、基材層表面にポリマーブラシが形成される。ここで、モノマー溶液の調製に使用される溶媒、モノマーの濃度(単量体濃度)は、特に制限されず、上記放射線グラフト重合法と同様であるため、ここでは説明を省略する。また、基材層の浸漬時に、モノマー溶液を窒素、ヘリウムなどの不活性ガスでバブリングしてもよい。基材層のモノマー溶液への浸漬条件もまた特に制限されない。 In addition, when the radical starting point is formed on the base material layer by adsorbing the polymerization initiator, after the base material layer adsorbed with the polymerization initiator is immersed in the monomer solution, the starting point of the base material layer surface is set. It is preferable to radically polymerize monomers (zwitterionic monomers and anionic monomers and, if necessary, other monomers) as a starting point. Thereby, a polymer brush is formed on the substrate layer surface. Here, the solvent used for the preparation of the monomer solution and the concentration of the monomer (monomer concentration) are not particularly limited and are the same as those in the above-described radiation graft polymerization method, and thus the description thereof is omitted here. Further, the monomer solution may be bubbled with an inert gas such as nitrogen or helium when the base material layer is immersed. The conditions for immersing the base material layer in the monomer solution are also not particularly limited.
 本方法において、ラジカル重合方法は、特に制限されず、公知のラジカル重合方法が同様にしてまたは適宜修正して適用できる。具体的には、紫外線(200~400nm、特に波長300~400nmの高圧水銀灯)を照射する方法が好ましい。これにより、ラジカル重合(光ラジカル重合)がより効率よく進行し、所望の長さのポリマーブラシが基材層上に成長できる。また、ラジカル重合条件もまた所望の長さのポリマーブラシが基材層上に成長できる限り特に制限されない。具体的には、紫外線の照度は、好ましくは70~0.1mW/cm、より好ましくは30~0.5mW/cmである。また、照射時間は、好ましくは0.1~12時間であり、より好ましくは0.5~6時間である。このような条件であれば、ラジカル重合(光ラジカル重合)がより効率よく進行し、所望の長さのポリマーブラシが基材層上に成長できる。 In this method, the radical polymerization method is not particularly limited, and known radical polymerization methods can be applied in the same manner or appropriately modified. Specifically, a method of irradiating ultraviolet rays (200 to 400 nm, particularly a high pressure mercury lamp having a wavelength of 300 to 400 nm) is preferable. Thereby, radical polymerization (photo radical polymerization) proceeds more efficiently, and a polymer brush having a desired length can be grown on the base material layer. The radical polymerization conditions are not particularly limited as long as a polymer brush having a desired length can be grown on the base material layer. Specifically, the illuminance of the ultraviolet rays is preferably 70 ~ 0.1mW / cm 2, more preferably 30 ~ 0.5mW / cm 2. The irradiation time is preferably 0.1 to 12 hours, more preferably 0.5 to 6 hours. Under such conditions, radical polymerization (photo radical polymerization) proceeds more efficiently, and a polymer brush having a desired length can be grown on the base material layer.
 上記方法によって、本発明に係るポリマー鎖がブラシ状に存在してなる潤滑層を基材層上に形成できる。なお、上記重合反応終了後に、潤滑層が形成された基材層を洗浄(例えば、水洗)してもよい。ここで、ポリマーブラシの密度は特に制限されないが、潤滑性などを考慮すると、0.1~1μg/cm程度であることが好ましい。なお、本明細書において、ポリマーブラシの密度は、ウルトラミクロ天秤(ザルトリウス社)によって測定された重合前後の重量差を面積で除した値を採用する。また、双性イオンモノマーとアニオン性モノマーとの共重合体(ポリマー鎖、ポリマーブラシ)の分子量もまた特に制限されないが、潤滑性と剥離微粒子の安全性などの点から、ポリマーの長さが上記したような長さになるように調節されることが好ましい。 By the above method, a lubricating layer in which the polymer chain according to the present invention is present in a brush shape can be formed on the base material layer. In addition, after the completion of the polymerization reaction, the base material layer on which the lubricating layer is formed may be washed (for example, washed with water). Here, the density of the polymer brush is not particularly limited, but is preferably about 0.1 to 1 μg / cm 2 in consideration of lubricity and the like. In addition, in this specification, the value which remove | divided the weight difference before and behind the polymerization measured by the ultramicro balance (Sartorius) by the area is used for the density of the polymer brush. In addition, the molecular weight of the copolymer (polymer chain, polymer brush) of the zwitterionic monomer and the anionic monomer is not particularly limited, but the length of the polymer is not limited from the viewpoint of lubricity and safety of the peeled fine particles. It is preferable that the length is adjusted so as to be as described above.
 本発明に係る医療用具としては、例えば、体内埋入型の人工器官や治療器具、体外循環型の人工臓器類、カテーテル、ガイドワイヤー等を例示できる。具体的には、血管や管腔内へ挿入あるいは置換される人工血管、人工気管、ステントや、人工皮膚、人工心膜等の埋入型医療器具や、人工心臓システム、人工肺システム、人工心肺システム、人工腎臓システム、人工肝臓システム、免疫調節システム等の人工臓器システムや、留置針、IVHカテーテル、薬液投与用カテーテル、サーモダイリューションカテーテル、血管造影用カテーテル、血管拡張用カテーテルおよびダイレーターあるいはイントロデューサー等の血管内に挿入ないし留置されるカテーテルや、あるいは、これらのカテーテル用のガイドワイヤー、スタイレット等や、胃管カテーテル、栄養カテーテル、経管栄養用(ED)チューブ、尿道カテーテル、導尿カテーテル、バルーンカテーテル、気管内吸引カテーテルをはじめとする各種の吸引カテーテルや排液カテーテル等の血管以外の生体組織に挿入ないし留置されるカテーテル類が例示できる。特に、本発明に係る医療用具は、血液適合性に優れ、医療用具の表面への血栓の形成を抑制できるため、血管内に挿入する医療用具、具体的には、心臓血管、脳血管等の血管内治療に用いる種々のカテーテルに好適に適用される。特に心臓や脳血管内治療では、血管が細く、血管が蛇行しているため、高度の技術が要求される。そのため、これらの分野での医療用具には、操作性を高めるための潤滑性と血液適合性(血栓の形成を防止する抗血栓性)が特に要求される。 Examples of the medical device according to the present invention include, for example, an implantable artificial organ and a therapeutic instrument, an extracorporeal circulation artificial organ, a catheter, a guide wire, and the like. Specifically, an artificial blood vessel, an artificial trachea, a stent, or an implantable medical device such as an artificial skin or an artificial pericardium, or an artificial heart system, an artificial lung system, an artificial heart lung or the like inserted into or replaced into a blood vessel or a lumen. Systems, artificial kidney systems, artificial liver systems, artificial organ systems such as immune regulation systems, indwelling needles, IVH catheters, drug solution catheters, thermodilution catheters, angiographic catheters, vasodilator catheters and dilators or Catheters inserted or placed in blood vessels such as introducers, guide wires for these catheters, stylets, gastric catheters, nutritional catheters, tube feeding (ED) tubes, urinary catheters, guides Urine catheter, balloon catheter, endotracheal suction catheter Catheters are inserted or indwelled in various suction catheter and drainage catheter vessels other than living tissue, such that the can be exemplified. In particular, the medical device according to the present invention is excellent in blood compatibility and can suppress the formation of thrombus on the surface of the medical device, so that the medical device to be inserted into a blood vessel, specifically, cardiovascular, cerebral blood vessel, etc. It is preferably applied to various catheters used for endovascular treatment. In particular, in heart and cerebrovascular treatment, since blood vessels are thin and blood vessels meander, advanced techniques are required. Therefore, medical devices in these fields are particularly required to have lubricity and blood compatibility (antithrombogenicity to prevent thrombus formation) for improving operability.
 なお、本明細書において、血液適合性は、例えば、血液凝固検査やタンパク吸着性試験で評価することができる。 In this specification, blood compatibility can be evaluated by, for example, a blood coagulation test or a protein adsorption test.
 本発明の効果を、以下の実施例および比較例を用いて説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。なお、下記実施例において、特記しない限り、操作は室温(25℃)で行われた。また、特記しない限り、「%」および「部」は、それぞれ、「重量%」および「重量部」を意味する。 The effect of the present invention will be described using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples. In the following examples, the operation was performed at room temperature (25 ° C.) unless otherwise specified. Unless otherwise specified, “%” and “part” mean “% by weight” and “part by weight”, respectively.
 実施例1
 ポリプロピレン(PP)フィルム(厚み:60μm)表面に、窒素雰囲気下で、70kGy/秒の電子線を5秒間照射して、基材1を準備した。
Example 1
A base material 1 was prepared by irradiating the surface of a polypropylene (PP) film (thickness: 60 μm) with an electron beam of 70 kGy / sec for 5 seconds in a nitrogen atmosphere.
 別途、血液適合性を有する双性イオンモノマーとして([2-(メタクリロイルオキシ)エチル]ジメチル-(3-スルホプロピル)アンモニウムヒドロキシド(SPB))およびアニオン性モノマーとしてアクリル酸(AAc)を、95:5のモル比となるように、水に溶解し、モノマー溶液(1)を調製した。ここで、モノマー溶液の全モノマー濃度(モル濃度)が1モル/Lモノマー溶液になるように調整した。 Separately, ([2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide (SPB)) as a zwitterionic monomer having blood compatibility, and acrylic acid (AAc) as an anionic monomer, 95 : The monomer solution (1) was prepared by dissolving in water so that the molar ratio was 5. Here, the total monomer concentration (molar concentration) of the monomer solution was adjusted to be 1 mol / L monomer solution.
 次に、上記で調製したモノマー溶液(1)に、窒素バブリングしながら、上記で準備した基材1を浸漬し、50℃(モノマー溶液温度)で1時間重合反応を行い、ポリマーブラシからなる潤滑層を基材1上に形成した(基材2)。この基材2を水で洗浄して、医療用具1を製造した。このようにして形成された潤滑層について、膜厚(乾燥膜厚)を、光干渉式膜厚計(FILMETRIX社製、F40)を用いて測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本実施例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。また、このポリマーブラシは、SPB-AAc共重合体(SPB:AAc=95:5(モル比))から構成される。 Next, the base material 1 prepared above is immersed in the monomer solution (1) prepared above while nitrogen bubbling, and a polymerization reaction is performed at 50 ° C. (monomer solution temperature) for 1 hour, thereby forming a lubrication comprising a polymer brush. A layer was formed on substrate 1 (substrate 2). This base material 2 was washed with water to produce a medical device 1. About the lubricating layer formed in this way, the film thickness (dry film thickness) was measured using an optical interference type film thickness meter (F40 manufactured by FILMETRIX). As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm. The polymer brush is composed of an SPB-AAc copolymer (SPB: AAc = 95: 5 (molar ratio)).
 得られた医療用具1を指で強く擦ったところ、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 1 was rubbed with a finger, it exhibited excellent lubricity and durability.
 実施例2
 ポリプロピレンフィルム(厚み:60μm)の代わりに、ナイロンエラストマーシート(厚み:1mm)を使用する以外は、実施例1と同様にして、医療用具2を製造した。このようにして形成された潤滑層について、上記実施例1と同様にして、膜厚(乾燥膜厚)を測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本実施例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。また、このポリマーブラシは、SPB-AAc共重合体(SPB:AAc=95:5(モル比))から構成される。
Example 2
A medical device 2 was produced in the same manner as in Example 1 except that a nylon elastomer sheet (thickness: 1 mm) was used instead of the polypropylene film (thickness: 60 μm). With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm. The polymer brush is composed of an SPB-AAc copolymer (SPB: AAc = 95: 5 (molar ratio)).
 得られた医療用具2を指で強く擦ったところ、実施例1と同様に、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 2 was rubbed strongly with a finger, as in Example 1, excellent lubricity and durability were exhibited.
 実施例3
 血液適合性を有する双性イオンモノマーとして([2-(メタクリロイルオキシ)エチル]ジメチル-(3-スルホプロピル)アンモニウムヒドロキシド(SPB)) 3.27g(11.7mmol)、アクリル酸(AAc) 0.09g(1.3mmol)、及び水を加え、13mLのモノマー水溶液(3)[全モノマー濃度(モル濃度)=1モル/L]を調製した。この際、SPB及びAAcの仕込み比(SPB:AAc(モル比))は、90:10である。
Example 3
As a zwitterionic monomer having blood compatibility ([2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide (SPB)) 3.27 g (11.7 mmol), acrylic acid (AAc) 0 0.09 g (1.3 mmol) and water were added to prepare 13 mL of an aqueous monomer solution (3) [total monomer concentration (molar concentration) = 1 mol / L]. At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 90:10.
 次に、ベンゾフェノン 0.05gをアセトン10mLに溶解し、その中に高密度ポリエチレン(HDPE)シート(厚み:1mm)を1分間浸漬した後、引き上げて、室温(25℃)で乾燥し、溶媒を除去し、ベンゾフェノンが吸着したHDPEシート(基材3)を得た。 Next, 0.05 g of benzophenone is dissolved in 10 mL of acetone, a high-density polyethylene (HDPE) sheet (thickness: 1 mm) is immersed in it for 1 minute, and then pulled up and dried at room temperature (25 ° C.). The HDPE sheet | seat (base material 3) which removed and adsorb | sucked the benzophenone was obtained.
 さらに、このようにして得られたベンゾフェノンが吸着したHDPEシート(基材3)をモノマー水溶液に浸漬させ、1分間の窒素バブリングを行った後、密閉して紫外線(照度2.5mW/cm、波長365nm)を2時間照射し、SPBとAAcとの共重合体をHDPEシート表面にグラフトし、ポリマーブラシからなる潤滑層を基材3上に形成した(基材4)。この基材4を水で洗浄して、医療用具3を製造した。このようにして形成された潤滑層について、上記実施例1と同様にして、膜厚(乾燥膜厚)を測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本実施例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。また、このポリマーブラシは、SPB-AAc共重合体(SPB:AAc=90:10(モル比))から構成される。 Further, the HDPE sheet (base material 3) adsorbed with benzophenone thus obtained was immersed in the monomer aqueous solution and subjected to nitrogen bubbling for 1 minute, and then sealed and irradiated with ultraviolet rays (illuminance 2.5 mW / cm 2 , (Wavelength 365 nm) was irradiated for 2 hours, a copolymer of SPB and AAc was grafted onto the surface of the HDPE sheet, and a lubricating layer composed of a polymer brush was formed on the substrate 3 (substrate 4). This base material 4 was washed with water to produce a medical device 3. With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm. The polymer brush is composed of an SPB-AAc copolymer (SPB: AAc = 90: 10 (molar ratio)).
 得られた医療用具3を指で強く擦ったところ、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 3 was rubbed strongly with a finger, it exhibited excellent lubricity and durability.
 実施例4
 SPB 2.91g(10.4mmol)、AAc 0.19g(2.6mmol)、及び水を加え、13mLのモノマー水溶液(4)を調製した。この際、SPB及びAAcの仕込み比(SPB:AAc(モル比))は、80:20である。
Example 4
2.91 g (10.4 mmol) of SPB, 0.19 g (2.6 mmol) of AAc, and water were added to prepare 13 mL of an aqueous monomer solution (4). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 80:20.
 上記実施例3において、このようにして調製されたモノマー水溶液(4)をモノマー水溶液(3)の代わりに使用する以外は、上記実施例3と同様にして、医療用具4を製造した。このようにして形成された潤滑層について、上記実施例1と同様にして、膜厚(乾燥膜厚)を測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本実施例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。また、このポリマーブラシは、SPB-AAc共重合体(SPB:AAc=80:20(モル比))から構成される。 In Example 3, the medical device 4 was produced in the same manner as in Example 3 except that the monomer aqueous solution (4) thus prepared was used instead of the monomer aqueous solution (3). With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm. The polymer brush is composed of an SPB-AAc copolymer (SPB: AAc = 80: 20 (molar ratio)).
 得られた医療用具4を指で強く擦ったところ、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 4 was rubbed strongly with a finger, it exhibited excellent lubricity and durability.
 実施例5
 SPB 2.54g(9.1mmol)、AAc 0.28g(3.9mmol)、及び水を加え、13mLのモノマー水溶液(5)を調製した。この際、SPB及びAAcの仕込み比(SPB:AAc(モル比))は、70:30である。
Example 5
SPB 2.54 g (9.1 mmol), AAc 0.28 g (3.9 mmol), and water were added to prepare 13 mL of an aqueous monomer solution (5). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 70:30.
 上記実施例3において、このようにして調製されたモノマー水溶液(5)をモノマー水溶液(3)の代わりに使用する以外は、上記実施例3と同様にして、医療用具5を製造した。このようにして形成された潤滑層について、上記実施例1と同様にして、膜厚(乾燥膜厚)を測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本実施例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。また、このポリマーブラシは、SPB-AAc共重合体(SPB:AAc=70:30(モル比))から構成される。 In Example 3, the medical device 5 was produced in the same manner as in Example 3 except that the monomer aqueous solution (5) thus prepared was used instead of the monomer aqueous solution (3). With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm. The polymer brush is composed of an SPB-AAc copolymer (SPB: AAc = 70: 30 (molar ratio)).
 得られた医療用具5を指で強く擦ったところ、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 5 was rubbed strongly with a finger, it exhibited excellent lubricity and durability.
 実施例6
 SPB 2.18g(7.8mmol)、AAc 0.37g(5.2mmol)、及び水を加え、13mLのモノマー水溶液(6)を調製した。この際、SPB及びAAcの仕込み比(SPB:AAc(モル比))は、60:40である。
Example 6
SPB 2.18 g (7.8 mmol), AAc 0.37 g (5.2 mmol), and water were added to prepare 13 mL aqueous monomer solution (6). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 60:40.
 上記実施例3において、このようにして調製されたモノマー水溶液(6)をモノマー水溶液(3)の代わりに使用する以外は、上記実施例3と同様にして、医療用具6を製造した。このようにして形成された潤滑層について、上記実施例1と同様にして、膜厚(乾燥膜厚)を測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本実施例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。また、このポリマーブラシは、SPB-AAc共重合体(SPB:AAc=60:40(モル比))から構成される。 In Example 3, a medical device 6 was produced in the same manner as in Example 3 except that the monomer aqueous solution (6) thus prepared was used instead of the monomer aqueous solution (3). With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm. The polymer brush is composed of an SPB-AAc copolymer (SPB: AAc = 60: 40 (molar ratio)).
 得られた医療用具6を指で強く擦ったところ、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 6 was rubbed with a finger, it exhibited excellent lubricity and durability.
 実施例7
 SPB 1.82g(6.5mmol)、AAc 0.47g(6.5mmol)、及び水を加え、13mLのモノマー水溶液(7)を調製した。この際、SPB及びAAcの仕込み比(SPB:AAc(モル比))は、50:50である。
Example 7
SPB 1.82 g (6.5 mmol), AAc 0.47 g (6.5 mmol), and water were added to prepare a 13 mL aqueous monomer solution (7). At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 50:50.
 上記実施例3において、このようにして調製されたモノマー水溶液(7)をモノマー水溶液(3)の代わりに使用する以外は、上記実施例3と同様にして、医療用具7を製造した。このようにして形成された潤滑層について、上記実施例1と同様にして、膜厚(乾燥膜厚)を測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本実施例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。また、このポリマーブラシは、SPB-AAc共重合体(SPB:AAc=50:50(モル比))から構成される。 In Example 3, the medical device 7 was produced in the same manner as in Example 3 except that the monomer aqueous solution (7) thus prepared was used instead of the monomer aqueous solution (3). With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this example is presumed to be in the range of 10 nm to 100 nm. The polymer brush is composed of an SPB-AAc copolymer (SPB: AAc = 50: 50 (molar ratio)).
 得られた医療用具7を指で強く擦ったところ、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 7 was rubbed strongly with a finger, it exhibited excellent lubricity and durability.
 比較例1
 SPB 3.63g(13.0mmol)、及び水を加え、13mLのモノマー水溶液(8)を調製した。この際、SPB及びAAcの仕込み比(SPB:AAc(モル比))は、100:0である。
Comparative Example 1
SPB 3.63g (13.0mmol) and water were added, and 13 mL monomer aqueous solution (8) was prepared. At this time, the charging ratio of SPB and AAc (SPB: AAc (molar ratio)) is 100: 0.
 上記実施例3において、このようにして調製されたモノマー水溶液(8)をモノマー水溶液(3)の代わりに使用する以外は、上記実施例3と同様にして、医療用具8を製造した。このようにして形成された潤滑層について、上記実施例1と同様にして、膜厚(乾燥膜厚)を測定した。その結果、膜厚(乾燥膜厚)が検出限界(100nm)未満であり、測定できなかった。ここで、潤滑層の膜厚をポリマーブラシの平均長さとみなす。このため、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は、100nm未満であると推測される。一方、指で触れると滑り性を示したことから、膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm以上であると推測される。したがって、本比較例で形成された潤滑層の膜厚(乾燥膜厚)(ゆえに、ポリマーブラシの長さ)は10nm~100nmの範囲であると推測される。 In Example 3, the medical device 8 was produced in the same manner as in Example 3 except that the monomer aqueous solution (8) thus prepared was used instead of the monomer aqueous solution (3). With respect to the lubricating layer thus formed, the film thickness (dry film thickness) was measured in the same manner as in Example 1. As a result, the film thickness (dry film thickness) was less than the detection limit (100 nm) and could not be measured. Here, the film thickness of the lubricating layer is regarded as the average length of the polymer brush. For this reason, the film thickness (dry film thickness) (hence, the length of the polymer brush) is estimated to be less than 100 nm. On the other hand, since it showed slipperiness when touched with a finger, the film thickness (dry film thickness) (and hence the length of the polymer brush) is estimated to be 10 nm or more. Therefore, the film thickness (dry film thickness) (and hence the length of the polymer brush) of the lubricating layer formed in this comparative example is estimated to be in the range of 10 nm to 100 nm.
 得られた医療用具8を指で強く擦ったところ、優れた潤滑性と耐久性を発揮した。 When the obtained medical device 8 was rubbed with a finger, it exhibited excellent lubricity and durability.
 比較例2
 モノマーを加えず、水13mLのみを加えた。この際、SPB及びAAcの仕込み比(SPB:AAc(モル比))は、0:0である。
Comparative Example 2
No monomer was added and only 13 mL of water was added. At this time, the charge ratio of SPB and AAc (SPB: AAc (molar ratio)) is 0: 0.
 上記実施例3において、この水をモノマー水溶液(3)の代わりに使用する以外は、上記実施例3と同様にして、医療用具9を製造した。 In the above Example 3, a medical device 9 was produced in the same manner as in the above Example 3 except that this water was used in place of the monomer aqueous solution (3).
 得られた医療用具9を指で強く擦ったが、潤滑性は全く発揮しなかった。 The obtained medical device 9 was strongly rubbed with a finger, but no lubricity was exhibited.
 上記にて得られた医療用具3~9について、下記方法に従って、血液適合性を評価した。その結果を下記表1に示す。 The blood compatibility of the medical devices 3 to 9 obtained above was evaluated according to the following method. The results are shown in Table 1 below.
 (血液適合性の評価)
 0.5unit/mLのヘパリンを含む4mLの人血を調製し、その中にあらかじめ重量を測っておいた医療用具3~9を浸漬し、室温(25℃)で2時間静置した後、医療用具3~9を血液から引き上げ、リン酸緩衝生理食塩水(PBS、pH 7.4)中で10回リンスした。外観を観察すると、医療用具6、医療用具7、医療用具9には血栓の付着が認められた。ここで、医療用具4、7および9の血栓の付着状態を下記図2に示す。
(Evaluation of blood compatibility)
Prepare 4 mL of human blood containing 0.5 unit / mL heparin, immerse the pre-weighed medical devices 3 to 9 and let it stand at room temperature (25 ° C.) for 2 hours. Tools 3-9 were withdrawn from the blood and rinsed 10 times in phosphate buffered saline (PBS, pH 7.4). When the appearance was observed, adhesion of thrombus was observed on the medical device 6, the medical device 7, and the medical device 9. Here, the attached state of the thrombus of the medical devices 4, 7 and 9 is shown in FIG.
 次に、医療用具3~9を1%グルタルアルデヒドPBS溶液に浸漬し、室温(25℃)で3時間静置した後、医療用具3~9をグルタルアルデヒドPBS溶液から引き上げ、RO水で3回洗浄し、48時間減圧乾燥を行った。 Next, the medical devices 3 to 9 are immersed in a 1% glutaraldehyde PBS solution and allowed to stand at room temperature (25 ° C.) for 3 hours, and then the medical devices 3 to 9 are pulled up from the glutaraldehyde PBS solution and washed three times with RO water. Washed and dried under reduced pressure for 48 hours.
 血液との接触前後の重量変化から、血栓の付着量を算出した。結果を下記表1に示す。ここで、血液適合性の評価は、血栓の付着の増加重量0.0001gごとに1点とみなし、スコアが小さいほど血液適合性に優れることを意味する。また、スコアが1.5点以下であれば許容できると判断し、スコアが1.0点以下であれば血液適合性に優れると判断し、スコアが0.5点以下である場合には、血液適合性に非常に優れると判断する。 The amount of thrombus attached was calculated from the change in weight before and after contact with blood. The results are shown in Table 1 below. Here, the evaluation of blood compatibility is regarded as one point for every 0.0001 g of increased weight of clot adhesion, and the smaller the score, the better the blood compatibility. Further, if the score is 1.5 points or less, it is determined to be acceptable, if the score is 1.0 points or less, it is determined that the blood compatibility is excellent, and if the score is 0.5 points or less, Judged to be very excellent in blood compatibility.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 上記表1の結果から、本発明の医療用具は、血液適合性を発揮することがわかる。特にアニオン性モノマーであるアクリル酸の導入率が共重合体において30モル%以下である場合には、特に優れた血液適合性を発揮できることが示唆される。 From the results of Table 1 above, it can be seen that the medical device of the present invention exhibits blood compatibility. In particular, when the introduction rate of acrylic acid, which is an anionic monomer, is 30 mol% or less in the copolymer, it is suggested that particularly excellent blood compatibility can be exhibited.
 実施例8
 遠沈管に、血液適合性を有する双性イオンモノマーとして([2-(メタクリロイルオキシ)エチル]ジメチル-(3-スルホプロピル)アンモニウムヒドロキシド(SPB)) 1.11g(4.0mmol)、アニオン性モノマーとしてアクリル酸(AAc) 1.40mg(19μmol)、及び水5mLを加え、2分間、窒素バブリングを行った後、速やかに過硫酸アンモニウム 27.4mg(0.12mmol)及びN,N,N’,N’-テトラメチルエチレンジアミン 27.8mg(0.24mmol)を添加し、密閉して室温(25℃)で一晩静置して共重合を行い、SPBとAAcとの共重合体(SPB:AAc=99.5:0.5(モル比))を含む重合液を得た。
Example 8
1.11 g (4.0 mmol) as a zwitterionic monomer having blood compatibility ([2- (methacryloyloxy) ethyl] dimethyl- (3-sulfopropyl) ammonium hydroxide (SPB)), anionic Acrylic acid (AAc) 1.40 mg (19 μmol) and 5 mL of water were added as monomers, and after 2 minutes of nitrogen bubbling, 27.4 mg (0.12 mmol) of ammonium persulfate and N, N, N ′, N′-tetramethylethylenediamine (27.8 mg, 0.24 mmol) was added, sealed, and allowed to stand overnight at room temperature (25 ° C.) for copolymerization. A copolymer of SPB and AAc (SPB: AAc) = 99.5: 0.5 (molar ratio)).
 次に、この重合液を透析膜(分画分子量(MWCO)=1,000)に入れ、RO水で3日間透析した後、凍結乾燥して、SPB-AAc共重合体(SPB:AAc=99.5:0.5(モル比))(化合物1)を得た。 Next, this polymerization solution is put into a dialysis membrane (fractionated molecular weight (MWCO) = 1,000), dialyzed against RO water for 3 days, freeze-dried, and SPB-AAc copolymer (SPB: AAc = 99). .5: 0.5 (molar ratio)) (compound 1) was obtained.
 実施例9
 実施例8において、SPBおよびAAcの添加量をそれぞれ1.08g(3.9mmol)および8.60mg(0.12mmol)に変更した以外は、実施例8と同様にして、SPB-AAc共重合体(SPB:AAc=97:3(モル比))(化合物2)を得た。
Example 9
An SPB-AAc copolymer was prepared in the same manner as in Example 8, except that the addition amounts of SPB and AAc were changed to 1.08 g (3.9 mmol) and 8.60 mg (0.12 mmol), respectively. (SPB: AAc = 97: 3 (molar ratio)) (Compound 2) was obtained.
 実施例10
 実施例8において、SPBおよびAAcの添加量をそれぞれ1.06g(3.8mmol)および14.4mg(0.20mmol)に変更した以外は、実施例8と同様にして、SPB-AAc共重合体(SPB:AAc=95:5(モル比))(化合物3)を得た。
Example 10
An SPB-AAc copolymer was prepared in the same manner as in Example 8, except that the addition amounts of SPB and AAc were changed to 1.06 g (3.8 mmol) and 14.4 mg (0.20 mmol), respectively. (SPB: AAc = 95: 5 (molar ratio)) (Compound 3) was obtained.
 実施例11
 実施例8において、SPBおよびAAcの添加量をそれぞれ0.89g(3.2mmol)および57.6mg(0.80mmol)に変更した以外は、実施例8と同様にして、SPB-AAc共重合体(SPB:AAc=80:20(モル比))(化合物4)を得た。
Example 11
An SPB-AAc copolymer was prepared in the same manner as in Example 8, except that the addition amounts of SPB and AAc were changed to 0.89 g (3.2 mmol) and 57.6 mg (0.80 mmol), respectively. (SPB: AAc = 80: 20 (molar ratio)) (Compound 4) was obtained.
 比較例3
 実施例8において、遠沈管に、SPBを添加せずに、AAc0.288g(4.0mmol)のみを加え、さらに重合液に10.0重量%の飽和炭酸水素ナトリウム水溶液を5mL添加して透析を行った以外は、実施例8と同様にして、AAc重合体(SPB:AAc=0:100(モル比))(化合物5)を得た。
Comparative Example 3
In Example 8, only 0.288 g (4.0 mmol) of AAc was added to the centrifuge tube without adding SPB, and 5 mL of a 10.0 wt% saturated aqueous sodium hydrogen carbonate solution was further added to the polymerization solution, followed by dialysis. An AAc polymer (SPB: AAc = 0: 100 (molar ratio)) (Compound 5) was obtained in the same manner as in Example 8 except for carrying out.
 比較例4
 実施例8において、遠沈管に、AAcを添加せずに、SPB1.12g(4.0mmol)のみを加えた以外は、実施例8と同様にして、SPB重合体(SPB:AAc=100:0(モル比))(化合物6)を得た。
Comparative Example 4
In Example 8, the SPB polymer (SPB: AAc = 100: 0) was added in the same manner as in Example 8 except that only 1.12 g (4.0 mmol) of SPB was added to the centrifuge tube without adding AAc. (Molar ratio)) (Compound 6) was obtained.
 上記にて得られた化合物1~6について、下記方法に従って、凝集性(ポリマー鎖同士の会合)を評価した。その結果を下記表2に示す。 For the compounds 1 to 6 obtained above, the cohesiveness (association of polymer chains) was evaluated according to the following method. The results are shown in Table 2 below.
 (凝集性(ポリマー鎖同士の会合)の評価)
 化合物1~6を、それぞれ、10mg/mLの濃度になるように10mM Tris-HClに溶解し、その溶液の外観を肉眼で観察し、濁り(白濁)の有無を評価した。ここで、化合物3、5および6を含む溶液の外観を下記図3に示す。
(Evaluation of cohesiveness (association of polymer chains))
Compounds 1 to 6 were each dissolved in 10 mM Tris-HCl so as to have a concentration of 10 mg / mL, the appearance of the solution was observed with the naked eye, and the presence or absence of turbidity (white turbidity) was evaluated. Here, the appearance of a solution containing the compounds 3, 5 and 6 is shown in FIG.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 上記表2の結果より、本発明に係る化合物2~5を含む溶液は透明である、即ち、ポリマー鎖同士の会合が有意に低減して凝集体を形成しないことが分かる。特にアニオン性モノマーであるアクリル酸の導入率が共重合体において3モル%以上である場合には、特に会合(凝集)抑制効果を発揮できることが示唆される。これに対して、血液適合性を有する双性イオンモノマーであるSPBのみからなる化合物6は、血液適合性には優れる(表1)ものの、ポリマー鎖同士が会合して凝集体を形成してしまう。 From the results shown in Table 2, it can be seen that the solutions containing the compounds 2 to 5 according to the present invention are transparent, that is, the association between the polymer chains is significantly reduced and no aggregate is formed. In particular, when the introduction rate of acrylic acid, which is an anionic monomer, is 3 mol% or more in the copolymer, it is suggested that the effect of suppressing association (aggregation) can be exhibited. In contrast, the compound 6 consisting only of SPB, which is a zwitterionic monomer having blood compatibility, is excellent in blood compatibility (Table 1), but the polymer chains associate to form an aggregate. .
 上記表1及び2の結果から、本発明に係るポリマーブラシからなる潤滑層は、優れた血液適合性および潤滑性を発揮しつつ、ポリマー鎖同士の会合が起こらないまたは起こりにくいことが考察される。 From the results of Tables 1 and 2 above, it is considered that the lubrication layer made of the polymer brush according to the present invention exhibits excellent blood compatibility and lubricity, and the association between the polymer chains does not occur or hardly occurs. .
 本出願は、2015年3月30日に出願された日本特許出願番号2015-68660号および2015年12月18日に出願された日本特許出願番号2015-247916号に基づいており、その開示内容は、参照され、全体として、組み入れられている。 This application is based on Japanese Patent Application No. 2015-68760 filed on Mar. 30, 2015 and Japanese Patent Application No. 2015-247916 filed on Dec. 18, 2015. , Referenced and incorporated in its entirety.
  1…医療用具、
  2…ポリマー鎖(ポリマーブラシ)、
  3…潤滑層、
  4…基材層。
1 ... medical equipment,
2 ... polymer chain (polymer brush),
3 ... Lubrication layer,
4 ... Base material layer.

Claims (4)

  1.  基材層を有する医療用具であって、
     前記基材層上に、10μm未満の長さを有するポリマー鎖がブラシ状に存在してなる潤滑層を有し、
     前記ポリマー鎖は、血液適合性を有する双性イオンモノマーとアニオン性モノマーとの共重合体から形成され、かつ体液接触時にマイナスの電荷を帯びる、医療用具。
    A medical device having a base material layer,
    On the base material layer, there is a lubricating layer in which polymer chains having a length of less than 10 μm are present in a brush shape,
    The medical device, wherein the polymer chain is formed from a copolymer of a zwitterionic monomer having blood compatibility and an anionic monomer, and has a negative charge when contacting a body fluid.
  2.  前記双性イオンモノマーは、ベタイン骨格を有する、請求項1に記載の医療用具。 The medical device according to claim 1, wherein the zwitterionic monomer has a betaine skeleton.
  3.  前記共重合体がアニオン性モノマーより双性イオンモノマーを多く含む、請求項1または2に記載の医療用具。 The medical device according to claim 1 or 2, wherein the copolymer contains more zwitterionic monomers than anionic monomers.
  4.  前記双性イオンモノマーとアニオン性モノマーとのモル比は、60~99:40~1(ただし、双性イオンモノマーおよびアニオン性モノマーのモル比の合計は100である)である、請求項1~3のいずれか1項に記載の医療用具。 The molar ratio of the zwitterionic monomer to the anionic monomer is 60 to 99:40 to 1 (provided that the total molar ratio of the zwitterionic monomer and the anionic monomer is 100). 4. The medical device according to any one of 3 above.
PCT/JP2016/059486 2015-03-30 2016-03-24 Medical instrument WO2016158700A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015068660 2015-03-30
JP2015-068660 2015-03-30
JP2015247916 2015-12-18
JP2015-247916 2015-12-18

Publications (1)

Publication Number Publication Date
WO2016158700A1 true WO2016158700A1 (en) 2016-10-06

Family

ID=57005056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059486 WO2016158700A1 (en) 2015-03-30 2016-03-24 Medical instrument

Country Status (1)

Country Link
WO (1) WO2016158700A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163764A1 (en) * 2018-02-20 2019-08-29 テルモ株式会社 Medical instrument

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502053A (en) * 1991-07-05 1995-03-02 バイオコンパテイブルズ・リミテツド polymer surface coating
JP2002538897A (en) * 1999-03-13 2002-11-19 バイオインターラクションズ リミテッド Biocompatible endoprosthesis
JP2014214226A (en) * 2013-04-25 2014-11-17 住友ゴム工業株式会社 Surface modification method and surface-modified elastomer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07502053A (en) * 1991-07-05 1995-03-02 バイオコンパテイブルズ・リミテツド polymer surface coating
JP2002538897A (en) * 1999-03-13 2002-11-19 バイオインターラクションズ リミテッド Biocompatible endoprosthesis
JP2014214226A (en) * 2013-04-25 2014-11-17 住友ゴム工業株式会社 Surface modification method and surface-modified elastomer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHANG, YUNG ET AL.: "Blood-Inert Surfaces via Ion-Pair Anchoring of Zwitterionic Copolymer Brushes in Human Whole Blood", ADVANCED FUNCTIONAL MATERIALS, vol. 23, 2013, pages 1100 - 1110, XP001582402, ISSN: 1616-3028 *
KUO, WEI-HSUAN ET AL.: "Surface Modification with Poly(sulfobetaine methacrylate-co-acrylic acid) To Reduce Fibrinogen Adsorption, Platelet Adhesion, and Plasma Coagulation", BIOMACROMOLECULES, vol. 12, 2011, pages 4348 - 4356, XP055315720, ISSN: 1525-7797 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019163764A1 (en) * 2018-02-20 2019-08-29 テルモ株式会社 Medical instrument
CN111565768A (en) * 2018-02-20 2020-08-21 泰尔茂株式会社 Medical instrument
JPWO2019163764A1 (en) * 2018-02-20 2021-02-12 テルモ株式会社 Medical equipment
CN111565768B (en) * 2018-02-20 2022-09-02 泰尔茂株式会社 Medical instrument
JP7267988B2 (en) 2018-02-20 2023-05-02 テルモ株式会社 medical equipment
US11872326B2 (en) 2018-02-20 2024-01-16 Terumo Kabushiki Kaisha Medical instrument

Similar Documents

Publication Publication Date Title
JP7368446B2 (en) Hydrophilic copolymers and medical devices
US20160375180A1 (en) Method for producing medical device and medical device
US10022478B2 (en) Medical device
JP7267988B2 (en) medical equipment
US9956324B2 (en) Medical material, and medical device using the medical material
JP7209643B2 (en) Medical coating material and medical device using the medical coating material
JP7252225B2 (en) Hydrophilic copolymers and medical devices
WO2016158700A1 (en) Medical instrument
JP6278731B2 (en) Antithrombotic medical material and medical device using the medical material
WO2022191271A1 (en) Medical instrument
WO2021033764A1 (en) Medical instrument and production method therefor
WO2021033767A1 (en) Medical instrument and manufacturing method therefor
WO2015098764A1 (en) Antithrombotic medical material, and medical device utilizing said medical material
JP6640584B2 (en) Medical device and manufacturing method thereof
JP2024060627A (en) Hydrophilic copolymer and medical device
JPWO2020175329A1 (en) Manufacturing method of medical equipment and medical equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772581

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP