WO2016158636A1 - Fluid machine equipped with diffuser - Google Patents

Fluid machine equipped with diffuser Download PDF

Info

Publication number
WO2016158636A1
WO2016158636A1 PCT/JP2016/059302 JP2016059302W WO2016158636A1 WO 2016158636 A1 WO2016158636 A1 WO 2016158636A1 JP 2016059302 W JP2016059302 W JP 2016059302W WO 2016158636 A1 WO2016158636 A1 WO 2016158636A1
Authority
WO
WIPO (PCT)
Prior art keywords
diffuser
channel
flow path
fluid
fluid machine
Prior art date
Application number
PCT/JP2016/059302
Other languages
French (fr)
Japanese (ja)
Inventor
夕美子 関野
啓悦 渡邉
ファイドン クリスタコポロス
メーダッド ザンゲネ
Original Assignee
株式会社荏原製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社荏原製作所 filed Critical 株式会社荏原製作所
Priority to EP16772517.5A priority Critical patent/EP3279479A4/en
Priority to CN201680021211.0A priority patent/CN107949705B/en
Priority to US15/563,361 priority patent/US20180080471A1/en
Priority to JP2017509854A priority patent/JP6706248B2/en
Publication of WO2016158636A1 publication Critical patent/WO2016158636A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/18Rotors
    • F04D29/22Rotors specially for centrifugal pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/445Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps
    • F04D29/448Fluid-guiding means, e.g. diffusers especially adapted for liquid pumps bladed diffusers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/043Shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/50Inlet or outlet
    • F05D2250/52Outlet

Definitions

  • the present invention relates to a fluid machine including a diffuser.
  • a diffuser pump that transports water is known as a fluid machine including a diffuser.
  • a diffuser pump can transfer water at high pressure by applying kinetic energy to water with a rotating impeller and converting it into pressure energy with a diffuser provided on the discharge side of the impeller.
  • a high-pressure multi-stage diffuser pump includes a plurality of impellers fixed to a rotating shaft.
  • a diffuser is provided on the radially outer side of each stage of the impeller.
  • the diffuser is formed with diffuser blades that define a plurality of diffuser flow paths configured to allow fluid discharged from the impeller to pass through. The fluid that has passed through the diffuser flow path is guided to the next stage impeller.
  • a diffuser pump In the diffuser pump, the diffuser is designed to reduce the pressure loss of the fluid passing through the pump, make the flow uniform, and improve the pump efficiency.
  • various shapes of the diffuser channel Conventionally, in order to improve the pump efficiency of the diffuser pump, various shapes of the diffuser channel have been studied (Patent Document 1).
  • a diffuser pump generally includes a plurality of diffuser channels, but all conventional diffuser channels have the same shape.
  • the diffuser flow paths are all designed to have the same shape. However, depending on the shape of the flow path downstream from the diffuser, the flow of fluid discharged from the diffuser may not always be uniform. If the flow of fluid discharged from the diffuser enters the next stage impeller without being properly rectified, the pump efficiency may decrease.
  • a fluid machine having a diffuser for converting the kinetic energy of the fluid into pressure energy.
  • the diffuser has a first diffuser flow path and a second diffuser flow path configured to allow fluid to pass through, and the shapes of the first diffuser flow path and the second diffuser flow path are different.
  • each of the first diffuser channel and the second diffuser channel has an inlet of the diffuser channel, and at least one of the first diffuser channel and the second diffuser channel.
  • the cross-sectional areas of the first diffuser flow path and the second diffuser flow path that are orthogonal to the flow path center at the same distance from the inlet of each diffuser flow path are different from each other.
  • the fluid machine in a fluid machine, includes a first impeller that rotationally drives and imparts kinetic energy to the fluid, and the first diffuser channel and the second diffuser channel Located downstream of the first impeller in the flow direction.
  • the first diffuser channel and the second diffuser channel each have an outlet of the diffuser channel
  • the fluid machine includes the first diffuser channel and the second diffuser flow.
  • a first return channel fluidly coupled to the first merge channel, and the first return channel extends in the direction of the rotation axis of the first impeller.
  • the second diffuser channel is located closer to the first return channel than the first diffuser channel, and the cross-sectional area of the second diffuser channel is the first It is larger than the cross-sectional area of the diffuser channel.
  • the first diffuser channel and the second diffuser channel have a cross-sectional area that increases from an inlet of each diffuser channel toward an outlet of the diffuser channel.
  • the second diffuser flow path has a region in which the rate of increase in cross-sectional area is relatively large, a small region, and a large region in order from the diffuser flow channel inlet to the diffuser flow channel outlet.
  • the diffuser in a fluid machine, includes a third diffuser channel and a fourth diffuser channel configured to allow fluid to pass therethrough, and the third diffuser channel and the fourth diffuser channel.
  • the channel is located downstream of the first impeller in the fluid flow direction, the third diffuser channel and the fourth diffuser channel each have an outlet of the diffuser channel, and the fluid machine includes the third diffuser channel A second merging channel fluidly coupled to the outlet of each diffuser channel of the fourth diffuser channel, and a second return fluidly coupled to the second merging channel for supplying fluid to the second impeller.
  • the second return channel extends in the direction of the drive shaft of the first impeller.
  • the third diffuser channel and the fourth diffuser channel have shapes that are rotationally symmetric with respect to the first diffuser channel and the second diffuser channel, respectively.
  • the third diffuser channel and the fourth diffuser channel have a cross-sectional area that increases from an inlet of each diffuser channel toward an outlet of the diffuser channel.
  • the fourth diffuser flow path has a region in which the increase rate of the cross-sectional area is relatively large, a small region, and a large region in order from the inlet of the diffuser flow channel to the outlet of the diffuser flow channel.
  • FIG. 3 is a cross-sectional perspective view taken along the line AA and the rotation axis of FIG.
  • FIG. 3 is a cross-sectional view taken along line AA in FIG.
  • FIG. 6 is a plan view showing a diffuser flow path according to one embodiment. 6 is a graph showing the relative size of the cross-sectional area at each position of each diffuser channel, according to one embodiment.
  • FIG. 6 is a cross-sectional perspective view of a diffuser channel, according to one embodiment.
  • FIG. 8 is a view showing a cross-sectional shape at positions P01 to P06 of the diffuser flow path shown in FIG. It is a graph which shows the relative flow volume of the fluid in each diffuser flow path by one Embodiment and each diffuser flow path by a comparative example. It is a figure which shows the pressure loss of each diffuser flow path and merge flow path by one Embodiment, and each diffuser flow path and merge flow path of a comparative example.
  • FIG. 6 is a diagram showing the flow velocity of fluid at cross-sectional positions P01 to P06 of a diffuser flow path 104-5 according to a comparative example.
  • FIG. 6 is a diagram showing the flow velocity of the fluid at each of the cross-sectional positions P01 to P06 of the diffuser flow path 104-5 according to one embodiment.
  • FIG. 1 is a cross-sectional view illustrating an overall configuration of a multistage diffuser pump 1A according to an embodiment of the present disclosure.
  • the multistage diffuser pump 1 ⁇ / b> A includes a rotating member 30 and a stationary member 40.
  • Rotating member 30 includes a rotating shaft 10 supported at both ends. First to seventh impellers I1 to I7 are attached to the impeller attachment portions 10a to 10g of the rotary shaft 10. The rotating member 30 is mounted so as to be rotatable within the stationary member 40.
  • the stationary member 40 has an outer trunk portion 25.
  • the outer body portion 25 includes a cylindrical member 20 that includes a suction port Wi and a discharge port Wo.
  • the outer body portion 25 includes a suction side plate 18 and a discharge side plate 22 that close both ends of the tubular member 20.
  • the stationary member 40 further has an inner trunk portion 2A. Diffuser blades V1 to V7 that form pumps P1 to P7 of each stage together with the impellers I1 to I7 are formed in the inner trunk portion 2A.
  • the first pump P1 is in the low-pressure chamber R1 communicating with the water inlet Wi, and is composed of an impeller I1 and a diffuser blade V1.
  • the second to seventh pumps P2 to P7 are composed of impellers I2 to I7 and diffuser blades V2 to V7.
  • the seventh pump P7 communicates with the high-pressure chamber R2 that communicates with the discharge port Wo.
  • FIG. 2 is a cross-sectional view of the periphery of the impellers I1 and I2 and the diffuser blades V1 and V2 of the multistage diffuser pump according to the embodiment of the present disclosure.
  • the impellers I ⁇ b> 1 and I ⁇ b> 2 fixed to the rotary shaft 10 include a plurality of impeller blades 50, a hub 52 in which the impeller blades 50 are arranged at equal intervals, and the impeller blades 50.
  • a shroud 54 covering the front surface.
  • a diffuser portion 100 is formed on the downstream side of the impellers I1 and I2, that is, on the radially outer side.
  • FIG. 3 is a cross-sectional perspective view taken along the line AA and the rotation axis of FIG. 4 is a cross-sectional view taken along line AA in FIG. 3 and 4, the impeller I and the rotating shaft 10 are omitted in order to clarify the illustration of the diffuser unit 100.
  • the diffuser unit 100 has a plurality of diffuser blades 102.
  • a diffuser flow path 104 is defined by the wall surface 109 on the hub 52 side, the wall surface 110 on the shroud 54 side, and each diffuser blade 102.
  • the hub 52 and the shroud 54 are a main plate and a side plate of the impeller 102, respectively.
  • each diffuser channel 104 is formed so that its cross-sectional area increases from the inlet 106 of the diffuser channel 104 toward the outlet 108 of the diffuser channel 104. Further, at least some of the diffuser channels 104 have different shapes. In FIG. 3, the arrow indicates the direction of fluid flow.
  • a merging channel 150 that is in fluid communication with the diffuser channel 104 is formed on the downstream side of the outlet 108 of the diffuser channel 104, that is, on the radially outer side.
  • four diffuser channels 104 are in fluid communication with one merge channel 150, and two sets of four diffuser channels 104 and one merge channel 150 are formed.
  • the merge channel 150 is in the same plane as the diffuser channel 104.
  • the number of the diffuser flow path 104 and the merge flow path 150 is arbitrary. For example, in another embodiment, three diffuser channels may be in fluid communication with one merge channel, and three sets of them may be formed.
  • the fluid discharged by applying kinetic energy by the impeller I1 enters the diffuser flow path 104 and is converted into pressure energy.
  • the fluid exiting from the outlet 108 of the diffuser channel 104 of each diffuser channel 104 enters a merging channel 150 formed downstream of the outlet 108 of the diffuser channel 104.
  • the plurality of diffuser flow paths 104 are shaped in consideration of the shape of the downstream merge flow path 150 so that the fluid discharged from the diffuser flow path 104 is not lost as much as possible. Designed.
  • a return channel 200 that is in fluid communication with the merge channel 150 is formed downstream of the merge channel 150.
  • the return channel 200 extends in the direction of the rotating shaft 10 as a whole.
  • a return channel 250 that is in fluid communication with the return channel 200 is formed downstream of the return channel 200.
  • the return flow path 250 as a whole extends radially inward toward the rotary shaft 10. Downstream of the return flow path 250, the next stage impeller I2 is formed.
  • the fluid exiting the impeller I1 passes through the diffuser flow path 104, and then is supplied to the next stage impeller I2 through the merging flow path 150, the return flow path 200, and the return flow path 250. Is done.
  • each diffuser channel 104 is formed so that its cross-sectional area increases from the inlet 106 of the diffuser channel 104 toward the outlet 108 of the diffuser channel 104. Further, at least some of the diffuser channels 104 have different shapes. Hereinafter, the shape of the diffuser flow path 104 in one embodiment will be described in detail.
  • FIG. 4 is a plan view showing the diffuser flow path 104 and the merge flow path 150 cut out along the line AA in FIG.
  • eight diffuser channels 104 are defined between the eight diffuser vanes 102.
  • Diffuser flow paths 104-1, 104-8, 104-7, and 104-6 are in fluid communication with merge flow path 150-1.
  • Diffuser flow paths 104-2, 104-3, 104-4, and 104-5 are in fluid communication with merge flow path 150-2.
  • the diffuser channels 104-1, 104-8, 104-7, and 104-6 are group 1 and the diffuser channels 104-2, 104-3, 104-4, and 104-5 are group 2.
  • the fluid that has passed through the diffuser channels 104 of the group 1 and group 2 is supplied to the impeller at the next stage through the merging channel 150, the return channel 200, and the return channel 250.
  • FIG. 5 is a plan view showing one of the diffuser channels 104 according to one embodiment.
  • a curve connecting the centers of the circles inscribed in the two diffuser blades 102 is defined as the flow path center of the diffuser flow path 104.
  • a cross section perpendicular to the center of the channel on the most upstream side is defined as the inlet 106 of the diffuser channel 104.
  • a cross section perpendicular to the center of the channel on the most downstream side (right side in FIG. 5) is defined as the outlet 108 of the diffuser channel 104.
  • the diffuser channel 104 has a channel cross-sectional area that increases from the inlet 106 of the diffuser channel 104 toward the outlet 108 of the diffuser channel 104.
  • at least a part of the plurality of diffuser channels 104 in the same group is different in shape from the other diffuser channels 104 in the same group. More specifically, the degree of increase in the cross-sectional area of the diffuser flow path 104 is different.
  • the cross-sectional areas of the diffuser channels 104 orthogonal to the channel center at the same distance from the inlet 106 of each diffuser channel 104 are different.
  • the diffuser flow path 104 located near the return flow path 200 that is in fluid communication with the merge flow path 150 can be configured such that the degree of increase in the cross-sectional area of the flow path increases.
  • the return flow path 200 is located near the diffuser flow paths 104-1 and 104-5. Therefore, the diffuser channels 104-1 and 104-5 close to the return channel 200 are more than the other diffuser channels 104-2, 104-3, 104-4, 104-6, 104-7, and 104-8.
  • the degree of increase in the channel cross-sectional area is large.
  • FIG. 6 is a graph showing the relative sizes of the cross-sectional areas at the respective positions of the diffuser channels 104-1 to 104-8 according to one embodiment.
  • the horizontal axis represents the positions P01 to P06 of the diffuser channel shown in FIG.
  • the position P01 corresponds to the inlet 106 of the diffuser channel 104
  • the position P06 corresponds to the outlet 108 of the diffuser channel 104.
  • the vertical axis of the graph in FIG. 6 represents the relative flow path cross-sectional area when the cross-sectional area at the position P01 of one diffuser flow path 104 as a comparative example is 100.
  • the cross-sectional area of the diffuser flow path 104 close to the return flow path 200 is a region where the increase rate of the cross-sectional area is relatively large from the inlet 106 of the diffuser flow path 104 to the outlet 108 of the diffuser flow path 104.
  • Small area large area.
  • the increase rate of the cross-sectional area of the diffuser flow path 104-5 near the return flow path 200 is large from the position P01 to the position P02, and is increased from the position P02 to the position P03. It becomes relatively small, and the increase rate increases again from the position P03 to the position P04.
  • the mixing loss can be reduced when the fluid from the other diffuser flow path 104 is merged in the merge flow path 150.
  • the Group 1 diffuser channels 104-1, 104-8, 104-7, 104-6 and the Group 2 diffuser channels 104-5, 104-4, 104-3, 104-2 are:
  • the shapes may be rotationally symmetric.
  • FIG. 7 and 8 are diagrams showing an example of a cross-sectional shape of the diffuser flow path 104 according to an embodiment.
  • FIG. 7 is a cross-sectional perspective view of the diffuser flow path 104 and schematically shows a cross-sectional shape at positions P01 to P06.
  • the front diffuser blade 102 is indicated by a broken line.
  • FIG. 8 shows cross-sectional shapes at positions P01 to P06 shown in FIG. 7 and 8, the upper side is the wall surface 110 on the shroud 54 side, and the lower side is the wall surface 109 on the hub 52 side.
  • the diffuser flow path 104 is provided with a convex portion in the direction of the rotating shaft 10 to change the size of the cross-sectional area.
  • the diffuser channel 104 is convex on the shroud side at positions P01 and P02, is convex on the hub side at position P03, and is shroud at positions P04 to P06. Convex on both the side and the hub side.
  • the cross-sectional shape in each position of the diffuser flow path 104 is arbitrary, and can be made into a different shape in other embodiments.
  • a convex shape is formed only on the wall surface 110 on the shroud side and a convex shape is formed only on the wall surface 109 on the hub side from the inlet 106 of the diffuser flow path 104 to the outlet 108 of the diffuser flow path 104.
  • both the shroud-side wall surface 110 and the hub-side wall surface 109 can have any shape that is convex.
  • the graph shown in FIG. 9 shows the flow rate per unit time of each diffuser flow path in numerical fluid dynamics (in a pump including a diffuser flow path according to an embodiment of the present invention and a pump including a diffuser flow path according to a comparative example).
  • the results obtained by flow analysis using CFD (Computational Fluids) are shown.
  • the horizontal axis indicates the diffuser channels 104-1 to 104-8 shown in FIG. 4, and the vertical axis indicates the relative flow rate in each of the diffuser channels 104-1 to 104-8. Represents.
  • the relative flow rate is 1, it means that the fluid flows at the same flow rate in all the diffuser flow paths 104-1 to 104-8.
  • the diffuser channels 104-1 to 104-8 are changed by changing the cross-sectional shape for each of the diffuser channels 104-1 to 104-8 as in the embodiment of the present disclosure.
  • the variation in the flow rate is small. That is, in the embodiment of the present disclosure, the mixing loss in the merging channel 150 downstream of the diffuser channel 104 is reduced as compared with the comparative example in which the shapes of the diffuser channels 104 are all the same.
  • FIG. 10 is a diagram illustrating a result of pressure loss in the diffuser flow path 104 and the merge flow path 150 according to the CFD simulation.
  • the magnitude of the pressure loss is shown in gray scale, and the darker the black, the greater the pressure loss.
  • the pressure loss as a whole is smaller in the embodiment of the present disclosure than in the comparative example.
  • FIG. 11 is a diagram showing the flow velocity of the fluid at the respective cross-sectional positions P01 to P06 of the diffuser flow path 104-5 according to the comparative example.
  • FIG. 12 is a diagram illustrating the flow velocity of the fluid at each of the cross-sectional positions P01 to P06 of the diffuser flow path 104-5 according to the embodiment of the present disclosure.
  • the flow velocity at each of the cross-sectional positions P01 to P06 is indicated by an isovelocity line, indicating that the flow velocity is larger toward the center of the cross section.
  • the distortion of the uniform flow velocity line is smaller than that of the comparative example, and the flow velocity distribution has a clean curve. Therefore, in the embodiment of the present disclosure, the fluid flow through the diffuser flow path is uniform, and the rectifying effect is improved. According to the embodiment of the present disclosure, noise and vibration in the pump can be reduced by increasing the pressure loss and rectifying effect.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

In order to provide each diffuser flow path in a fluid machine so as to achieve uniform flow downstream from a diffuser, this fluid machine has a diffuser for converting the kinetic energy of a fluid to pressure energy, the diffuser has first diffuser flow paths and second diffuser flow paths configured so as to enable a fluid to pass therethrough, and the first diffuser flow paths and the second diffuser flow paths have different shapes.

Description

ディフューザを備える流体機械Fluid machine with a diffuser
 本発明は、ディフューザを備える流体機械に関する。 The present invention relates to a fluid machine including a diffuser.
 ディフューザを備える流体機械として、たとえば水を輸送するディフューザポンプが知られている。一般に、ディフューザポンプは、回転駆動する羽根車で水に運動エネルギーを与え、羽根車の吐出し側に設けられるディフューザで圧力エネルギーに変換して水を高圧で輸送することができる。 For example, a diffuser pump that transports water is known as a fluid machine including a diffuser. In general, a diffuser pump can transfer water at high pressure by applying kinetic energy to water with a rotating impeller and converting it into pressure energy with a diffuser provided on the discharge side of the impeller.
 一例として、高圧多段ディフューザポンプは、回転軸に固定される複数の羽根車を備えている。各段の羽根車の半径方向外側には、ディフューザが備えられる。ディフューザには、羽根車から吐出された流体が通るように構成される複数のディフューザ流路を画定するディフューザ羽根が形成される。ディフューザ流路を通った流体は、次段の羽根車に案内される。 As an example, a high-pressure multi-stage diffuser pump includes a plurality of impellers fixed to a rotating shaft. A diffuser is provided on the radially outer side of each stage of the impeller. The diffuser is formed with diffuser blades that define a plurality of diffuser flow paths configured to allow fluid discharged from the impeller to pass through. The fluid that has passed through the diffuser flow path is guided to the next stage impeller.
 ディフューザポンプにおいては、ポンプ内を通過する流体の圧力損失を減らし、流れを均一にし、ポンプ効率が向上するようにディフューザが設計される。従来、ディフューザポンプのポンプ効率を向上させるために、様々なディフューザ流路の形状が検討されてきた(特許文献1)。ディフューザポンプは、一般に複数のディフューザ流路を備えるが、従来のディフューザ流路は全て同一の形状であった。 In the diffuser pump, the diffuser is designed to reduce the pressure loss of the fluid passing through the pump, make the flow uniform, and improve the pump efficiency. Conventionally, in order to improve the pump efficiency of the diffuser pump, various shapes of the diffuser channel have been studied (Patent Document 1). A diffuser pump generally includes a plurality of diffuser channels, but all conventional diffuser channels have the same shape.
特開2013-209883号公報JP 2013-209883 A
 従来、ディフューザ流路は、全て同一の形状となるように設計されていたが、ディフューザより下流の流路の形状によっては、ディフューザから吐出された流体の流れが必ずしも均一にならない場合がある。ディフューザから吐出された流体の流れが適切に整流されずに次の段の羽根車に入る場合、ポンプ効率が低下することがある。 Conventionally, the diffuser flow paths are all designed to have the same shape. However, depending on the shape of the flow path downstream from the diffuser, the flow of fluid discharged from the diffuser may not always be uniform. If the flow of fluid discharged from the diffuser enters the next stage impeller without being properly rectified, the pump efficiency may decrease.
 本開示は、全体として圧力損失を減らすための、各ディフューザ流路を提供することを1つの目的とする。また、本開示は、ディフューザの下流での流れを均一にするための各ディフューザ流路を提供することを1つの目的とする。 This disclosure is intended to provide each diffuser flow path to reduce pressure loss as a whole. Another object of the present disclosure is to provide each diffuser flow path for making the flow downstream of the diffuser uniform.
 本開示の一側面によれば、流体機械が提供され、この流体機械は、流体の運動エネルギーを圧力エネルギーに変換するためのディフューザを有する。ディフューザは、流体が通過するように構成される第1ディフューザ流路および第2ディフューザ流路を有し、第1ディフューザ流路および第2ディフューザ流路の形状が異なる。 According to one aspect of the present disclosure, a fluid machine is provided, the fluid machine having a diffuser for converting the kinetic energy of the fluid into pressure energy. The diffuser has a first diffuser flow path and a second diffuser flow path configured to allow fluid to pass through, and the shapes of the first diffuser flow path and the second diffuser flow path are different.
 本開示の一側面によれば、流体機械において、第1ディフューザ流路および第2ディフューザ流路は、それぞれディフューザ流路の入口を有し、第1ディフューザ流路および第2ディフューザ流路の少なくとも一部において、各ディフューザ流路の入口からの距離が等しい位置における流路中心に直交する、第1ディフューザ流路および第2ディフューザ流路の断面積が互いに異なる。 According to an aspect of the present disclosure, in the fluid machine, each of the first diffuser channel and the second diffuser channel has an inlet of the diffuser channel, and at least one of the first diffuser channel and the second diffuser channel. In the section, the cross-sectional areas of the first diffuser flow path and the second diffuser flow path that are orthogonal to the flow path center at the same distance from the inlet of each diffuser flow path are different from each other.
 本開示の一側面によれば、流体機械において、流体機械は、回転駆動して流体に運動エネルギーを与える第1羽根車を有し、第1ディフューザ流路および第2ディフューザ流路は、流体の流れ方向における第1羽根車の下流に位置する。 According to an aspect of the present disclosure, in a fluid machine, the fluid machine includes a first impeller that rotationally drives and imparts kinetic energy to the fluid, and the first diffuser channel and the second diffuser channel Located downstream of the first impeller in the flow direction.
 本開示の一側面によれば、流体機械において、第1ディフューザ流路および第2ディフューザ流路は、それぞれディフューザ流路の出口を有し、流体機械は、第1ディフューザ流路および第2ディフューザ流路の各ディフューザ流路の出口に流体結合される第1合流流路と、第1羽根車よりも流体の流れ方向の下流に位置する次段の第2羽根車に流体を供給するための、第1合流流路に流体結合される第1返し流路と、を有し、第1返し流路は第1羽根車の回転軸の方向に延びる。 According to an aspect of the present disclosure, in the fluid machine, the first diffuser channel and the second diffuser channel each have an outlet of the diffuser channel, and the fluid machine includes the first diffuser channel and the second diffuser flow. For supplying a fluid to a first combined flow channel fluidly coupled to an outlet of each diffuser flow channel of the path, and a second impeller at the next stage located downstream of the first impeller in the fluid flow direction; A first return channel fluidly coupled to the first merge channel, and the first return channel extends in the direction of the rotation axis of the first impeller.
 本開示の一側面によれば、流体機械において、第2ディフューザ流路は、第1ディフューザ流路よりも第1返し流路の近くに位置し、第2ディフューザ流路の断面積が、第1ディフューザ流路の断面積よりも大きい。 According to an aspect of the present disclosure, in the fluid machine, the second diffuser channel is located closer to the first return channel than the first diffuser channel, and the cross-sectional area of the second diffuser channel is the first It is larger than the cross-sectional area of the diffuser channel.
 本開示の一側面によれば、流体機械において、第1ディフューザ流路および第2ディフューザ流路は、それぞれのディフューザ流路の入口からディフューザ流路の出口に向かって、断面積が増大するように構成され、第2ディフューザ流路は、ディフューザ流路の入口からディフューザ流路の出口に向かって順番に断面積の増加率が相対的に大きい領域、小さい領域、大きい領域を有する。 According to an aspect of the present disclosure, in the fluid machine, the first diffuser channel and the second diffuser channel have a cross-sectional area that increases from an inlet of each diffuser channel toward an outlet of the diffuser channel. The second diffuser flow path has a region in which the rate of increase in cross-sectional area is relatively large, a small region, and a large region in order from the diffuser flow channel inlet to the diffuser flow channel outlet.
 本開示の一側面によれば、流体機械において、ディフューザは、流体が通過するように構成される第3ディフューザ流路および第4ディフューザ流路を有し、第3ディフューザ流路および第4ディフューザ流路は、流体の流れ方向における第1羽根車の下流に位置し、第3ディフューザ流路および第4ディフューザ流路は、それぞれディフューザ流路の出口を有し、流体機械は、第3ディフューザ流路および第4ディフューザ流路の各ディフューザ流路の出口に流体結合される第2合流流路と、第2羽根車に流体を供給するための、第2合流流路に流体結合される第2返し流路と、を有し、第2返し流路は第1羽根車の駆動軸の方向に延びる。 According to one aspect of the present disclosure, in a fluid machine, the diffuser includes a third diffuser channel and a fourth diffuser channel configured to allow fluid to pass therethrough, and the third diffuser channel and the fourth diffuser channel. The channel is located downstream of the first impeller in the fluid flow direction, the third diffuser channel and the fourth diffuser channel each have an outlet of the diffuser channel, and the fluid machine includes the third diffuser channel A second merging channel fluidly coupled to the outlet of each diffuser channel of the fourth diffuser channel, and a second return fluidly coupled to the second merging channel for supplying fluid to the second impeller. And the second return channel extends in the direction of the drive shaft of the first impeller.
 本開示の一側面によれば、流体機械において、第3ディフューザ流路および第4ディフューザ流路は、それぞれ第1ディフューザ流路および第2ディフューザ流路の回転対称となる形状である。 According to one aspect of the present disclosure, in the fluid machine, the third diffuser channel and the fourth diffuser channel have shapes that are rotationally symmetric with respect to the first diffuser channel and the second diffuser channel, respectively.
 本開示の一側面によれば、流体機械において、第3ディフューザ流路および第4ディフューザ流路は、それぞれのディフューザ流路の入口からディフューザ流路の出口に向かって、断面積が増大するように構成され、第4ディフューザ流路は、ディフューザ流路の入口からディフューザ流路の出口に向かって順番に断面積の増加率が相対的に大きい領域、小さい領域、大きい領域を有する。 According to an aspect of the present disclosure, in the fluid machine, the third diffuser channel and the fourth diffuser channel have a cross-sectional area that increases from an inlet of each diffuser channel toward an outlet of the diffuser channel. The fourth diffuser flow path has a region in which the increase rate of the cross-sectional area is relatively large, a small region, and a large region in order from the inlet of the diffuser flow channel to the outlet of the diffuser flow channel.
一実施形態による多段ディフューザポンプの全体構成を示す断面図である。It is sectional drawing which shows the whole multistage diffuser pump structure by one Embodiment. 一実施形態による多段ディフューザポンプの羽根車およびディフューザ羽根の周辺の断面図である。It is sectional drawing of the periphery of the impeller and diffuser blade | wing of a multistage diffuser pump by one Embodiment. 図2の線分A-Aおよび回転軸の方向に沿って切り出した断面斜視図である。FIG. 3 is a cross-sectional perspective view taken along the line AA and the rotation axis of FIG. 図2の線分A-Aに沿って切り出した断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 一実施形態による、ディフューザ流路を示す平面図である。FIG. 6 is a plan view showing a diffuser flow path according to one embodiment. 一実施形態による、各ディフューザ流路の各位置における断面積の相対的な大きさを示すグラフである。6 is a graph showing the relative size of the cross-sectional area at each position of each diffuser channel, according to one embodiment. 一実施形態による、ディフューザ流路の断面斜視図である。FIG. 6 is a cross-sectional perspective view of a diffuser channel, according to one embodiment. 図7に示されるディフューザ流路の位置P01~P06における断面形状を示す図である。FIG. 8 is a view showing a cross-sectional shape at positions P01 to P06 of the diffuser flow path shown in FIG. 一実施形態による各ディフューザ流路および比較例による各ディフューザ流路における、流体の相対的な流量を示すグラフである。It is a graph which shows the relative flow volume of the fluid in each diffuser flow path by one Embodiment and each diffuser flow path by a comparative example. 一実施形態による各ディフューザ流路および合流流路と、比較例の各ディフューザ流路および合流流路の圧力損失を示す図である。It is a figure which shows the pressure loss of each diffuser flow path and merge flow path by one Embodiment, and each diffuser flow path and merge flow path of a comparative example. 比較例によるディフューザ流路104-5の各断面位置P01~P06における流体の流速を示す図である。FIG. 6 is a diagram showing the flow velocity of fluid at cross-sectional positions P01 to P06 of a diffuser flow path 104-5 according to a comparative example. 一実施形態によるディフューザ流路104-5の各断面位置P01~P06における流体の流速を示す図である。FIG. 6 is a diagram showing the flow velocity of the fluid at each of the cross-sectional positions P01 to P06 of the diffuser flow path 104-5 according to one embodiment.
 以下、本発明の実施形態を添付図面とともに説明する。なお、添付図面において、同一または類似の構成要素には、同一の符号を付して重複した説明を省略する。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals, and redundant description is omitted. Further, the features shown in each embodiment can be applied to other embodiments as long as they do not contradict each other.
 図1は、本開示の一実施形態による多段ディフューザポンプ1Aの全体構成を示す断面図である。多段ディフューザポンプ1Aは、回転部材30と静止部材40とで構成されている。 FIG. 1 is a cross-sectional view illustrating an overall configuration of a multistage diffuser pump 1A according to an embodiment of the present disclosure. The multistage diffuser pump 1 </ b> A includes a rotating member 30 and a stationary member 40.
 回転部材30は、両端で支持される回転軸10を備える。回転軸10の羽根車取付け部10a~10gに第1~第7の羽根車I1~I7が取り付けられている。回転部材30は、静止部材40内を回転自在に装着される。 Rotating member 30 includes a rotating shaft 10 supported at both ends. First to seventh impellers I1 to I7 are attached to the impeller attachment portions 10a to 10g of the rotary shaft 10. The rotating member 30 is mounted so as to be rotatable within the stationary member 40.
 静止部材40は外胴部25を有する。外胴部25は、吸込口Wiと吐出口Woとを備える筒状部材20を有する。また、外胴部25は、筒状部材20の両端を閉鎖する吸込側板18と吐出側板22とを有する。静止部材40はさらに内胴部2Aを有する。内胴部2Aには、羽根車I1~I7とともに各段のポンプP1~P7を形成するディフューザ羽根V1~V7が形成されている。 The stationary member 40 has an outer trunk portion 25. The outer body portion 25 includes a cylindrical member 20 that includes a suction port Wi and a discharge port Wo. The outer body portion 25 includes a suction side plate 18 and a discharge side plate 22 that close both ends of the tubular member 20. The stationary member 40 further has an inner trunk portion 2A. Diffuser blades V1 to V7 that form pumps P1 to P7 of each stage together with the impellers I1 to I7 are formed in the inner trunk portion 2A.
 第1のポンプP1は、吸水口Wiに連通する低圧室R1内にあり、羽根車I1とディフューザ羽根V1とで構成される。第2~第7のポンプP2~P7は、羽根車I2~I7とディフューザ羽根V2~V7とで構成される。第7のポンプP7は、吐出口Woに連通する高圧室R2に連通している。 The first pump P1 is in the low-pressure chamber R1 communicating with the water inlet Wi, and is composed of an impeller I1 and a diffuser blade V1. The second to seventh pumps P2 to P7 are composed of impellers I2 to I7 and diffuser blades V2 to V7. The seventh pump P7 communicates with the high-pressure chamber R2 that communicates with the discharge port Wo.
 図2は、本開示の一実施形態による多段ディフューザポンプの羽根車I1、I2およびディフューザ羽根V1、V2の周辺の断面図である。図2に示される実施形態において、回転軸10に固定される羽根車I1、I2は、複数の羽根車ブレード50と、羽根車ブレード50を等間隔で配置したハブ52と、羽根車ブレード50の前面を覆うシュラウド54とを有する。羽根車I1、I2の下流側、すなわち半径方向外側に、ディフューザ部100が形成される。 FIG. 2 is a cross-sectional view of the periphery of the impellers I1 and I2 and the diffuser blades V1 and V2 of the multistage diffuser pump according to the embodiment of the present disclosure. In the embodiment shown in FIG. 2, the impellers I <b> 1 and I <b> 2 fixed to the rotary shaft 10 include a plurality of impeller blades 50, a hub 52 in which the impeller blades 50 are arranged at equal intervals, and the impeller blades 50. A shroud 54 covering the front surface. A diffuser portion 100 is formed on the downstream side of the impellers I1 and I2, that is, on the radially outer side.
 図3は、図2の線分A-Aおよび回転軸の方向に切り出した断面斜視図である。図4は、図2の線分A-Aで切り出した断面図である。なお、図3、4においては、ディフューザ部100の図示を明瞭にするために、羽根車Iおよび回転軸10は省略してある。 FIG. 3 is a cross-sectional perspective view taken along the line AA and the rotation axis of FIG. 4 is a cross-sectional view taken along line AA in FIG. 3 and 4, the impeller I and the rotating shaft 10 are omitted in order to clarify the illustration of the diffuser unit 100.
 図2および図3に示されるように、ディフューザ部100は、複数のディフューザ羽根102を有する。ハブ52側の壁面109、シュラウド54側の壁面110、および各ディフューザ羽根102により、それぞれディフューザ流路104が画定される。なお、ハブ52およびシュラウド54は、それぞれ羽根車102の主板および側板である。後に詳述するように、各ディフューザ流路104は、ディフューザ流路104の入口106からディフューザ流路104の出口108に向かって断面積が増大するように形成される。また、少なくともいくつかのディフューザ流路104は、互いに形状が異なる。なお、図3において、矢印は流体の流れる方向を示している。 2 and 3, the diffuser unit 100 has a plurality of diffuser blades 102. A diffuser flow path 104 is defined by the wall surface 109 on the hub 52 side, the wall surface 110 on the shroud 54 side, and each diffuser blade 102. The hub 52 and the shroud 54 are a main plate and a side plate of the impeller 102, respectively. As will be described in detail later, each diffuser channel 104 is formed so that its cross-sectional area increases from the inlet 106 of the diffuser channel 104 toward the outlet 108 of the diffuser channel 104. Further, at least some of the diffuser channels 104 have different shapes. In FIG. 3, the arrow indicates the direction of fluid flow.
 図3、4に示されるように、ディフューザ流路104の出口108の下流側、すなわち半径方向外側に、ディフューザ流路104と流体連通する合流流路150が形成されている。図4に示される実施形態においては、4つのディフューザ流路104が1つの合流流路150に流体連通しており、4つのディフューザ流路104および1つの合流流路150が2組形成されている。図示の実施形態において、合流流路150は、ディフューザ流路104と同一平面内にある。なお、ディフューザ流路104および合流流路150の数は任意である。たとえば、他の実施形態において、3つのディフューザ流路が1つの合流流路に流体連通し、それらが3組形成されるようにしてもよい。 As shown in FIGS. 3 and 4, a merging channel 150 that is in fluid communication with the diffuser channel 104 is formed on the downstream side of the outlet 108 of the diffuser channel 104, that is, on the radially outer side. In the embodiment shown in FIG. 4, four diffuser channels 104 are in fluid communication with one merge channel 150, and two sets of four diffuser channels 104 and one merge channel 150 are formed. . In the illustrated embodiment, the merge channel 150 is in the same plane as the diffuser channel 104. In addition, the number of the diffuser flow path 104 and the merge flow path 150 is arbitrary. For example, in another embodiment, three diffuser channels may be in fluid communication with one merge channel, and three sets of them may be formed.
 羽根車I1により運動エネルギーが付与されて吐出された流体はディフューザ流路104に入り、圧力エネルギーに変換される。各ディフューザ流路104のディフューザ流路104の出口108から出た流体は、ディフューザ流路104の出口108の下流に形成される合流流路150に入る。本開示の実施形態によるディフューザポンプにおいては、複数のディフューザ流路104は、ディフューザ流路104から吐出された流体ができるだけ損失しないように、下流にある合流流路150の形状を考慮して形状が設計される。 The fluid discharged by applying kinetic energy by the impeller I1 enters the diffuser flow path 104 and is converted into pressure energy. The fluid exiting from the outlet 108 of the diffuser channel 104 of each diffuser channel 104 enters a merging channel 150 formed downstream of the outlet 108 of the diffuser channel 104. In the diffuser pump according to the embodiment of the present disclosure, the plurality of diffuser flow paths 104 are shaped in consideration of the shape of the downstream merge flow path 150 so that the fluid discharged from the diffuser flow path 104 is not lost as much as possible. Designed.
 一実施形態において、合流流路150の下流において、合流流路150に流体連通する返し流路200が形成される。図示の実施形態において、返し流路200は、全体として回転軸10の方向に延びる。 In one embodiment, a return channel 200 that is in fluid communication with the merge channel 150 is formed downstream of the merge channel 150. In the illustrated embodiment, the return channel 200 extends in the direction of the rotating shaft 10 as a whole.
 一実施形態において、返し流路200の下流において、返し流路200に流体連通する戻り流路250が形成される。戻り流路250は、全体として半径方向内側に回転軸10に向かうように延びる。戻り流路250の下流には、次段の羽根車I2が形成される。 In one embodiment, a return channel 250 that is in fluid communication with the return channel 200 is formed downstream of the return channel 200. The return flow path 250 as a whole extends radially inward toward the rotary shaft 10. Downstream of the return flow path 250, the next stage impeller I2 is formed.
 図示の実施形態において、羽根車I1を出た流体は、ディフューザ流路104を通り、その後、合流流路150、返し流路200、および戻り流路250を通って次段の羽根車I2に供給される。 In the illustrated embodiment, the fluid exiting the impeller I1 passes through the diffuser flow path 104, and then is supplied to the next stage impeller I2 through the merging flow path 150, the return flow path 200, and the return flow path 250. Is done.
 上述したように、各ディフューザ流路104は、ディフューザ流路104の入口106からディフューザ流路104の出口108に向かって断面積が増大するように形成される。また、少なくともいくつかのディフューザ流路104は、互いに形状が異なる。以下、一実施形態におけるディフューザ流路104の形状について詳述する。 As described above, each diffuser channel 104 is formed so that its cross-sectional area increases from the inlet 106 of the diffuser channel 104 toward the outlet 108 of the diffuser channel 104. Further, at least some of the diffuser channels 104 have different shapes. Hereinafter, the shape of the diffuser flow path 104 in one embodiment will be described in detail.
 図4は、図2の線分A-Aに沿って切り出したディフューザ流路104および合流流路150を示す平面図である。図示の実施形態において、8個のディフューザ羽根102の間に8個のディフューザ流路104が画定されている。ディフューザ流路104-1、104-8、104-7、104-6は、合流流路150-1に流体連通している。ディフューザ流路104-2、104-3、104-4、104-5は、合流流路150-2に流体連通している。便宜的に、ディフューザ流路104-1、104-8、104-7、104-6をグループ1とし、ディフューザ流路104-2、104-3、104-4、104-5をグループ2とする。グループ1およびグループ2のディフューザ流路104を通った流体は、それぞれの合流流路150、返し流路200、および戻り流路250を通り、次段の羽根車に供給される。 FIG. 4 is a plan view showing the diffuser flow path 104 and the merge flow path 150 cut out along the line AA in FIG. In the illustrated embodiment, eight diffuser channels 104 are defined between the eight diffuser vanes 102. Diffuser flow paths 104-1, 104-8, 104-7, and 104-6 are in fluid communication with merge flow path 150-1. Diffuser flow paths 104-2, 104-3, 104-4, and 104-5 are in fluid communication with merge flow path 150-2. For convenience, the diffuser channels 104-1, 104-8, 104-7, and 104-6 are group 1 and the diffuser channels 104-2, 104-3, 104-4, and 104-5 are group 2. . The fluid that has passed through the diffuser channels 104 of the group 1 and group 2 is supplied to the impeller at the next stage through the merging channel 150, the return channel 200, and the return channel 250.
 図5は、一実施形態によるディフューザ流路104の1つを示す平面図である。図示のように、2つのディフューザ羽根102に内接する円の中心を結ぶ曲線をディフューザ流路104の流路中心と定義する。また、最も上流側(図5では左側)にある流路中心に垂直な断面を、ディフューザ流路104の入口106、と定義する。また、最も下流側(図5では右側)にある流路中心に垂直な断面を、ディフューザ流路104の出口108、と定義する。 FIG. 5 is a plan view showing one of the diffuser channels 104 according to one embodiment. As shown in the figure, a curve connecting the centers of the circles inscribed in the two diffuser blades 102 is defined as the flow path center of the diffuser flow path 104. In addition, a cross section perpendicular to the center of the channel on the most upstream side (left side in FIG. 5) is defined as the inlet 106 of the diffuser channel 104. In addition, a cross section perpendicular to the center of the channel on the most downstream side (right side in FIG. 5) is defined as the outlet 108 of the diffuser channel 104.
 図5に示される実施形態において、ディフューザ流路104は、ディフューザ流路104の入口106からディフューザ流路104の出口108に向かって流路断面積が増大している。本開示の一実施形態において、同一のグループ内の複数のディフューザ流路104の少なくとも一部は、同一グループ内の他のディフューザ流路104と形状が異なる。より詳細には、ディフューザ流路104の流路断面積の増大の程度が異なる。たとえば、各ディフューザ流路104の入口106から同一に距離における流路中心に直交するディフューザ流路104の断面積が異なる。 In the embodiment shown in FIG. 5, the diffuser channel 104 has a channel cross-sectional area that increases from the inlet 106 of the diffuser channel 104 toward the outlet 108 of the diffuser channel 104. In one embodiment of the present disclosure, at least a part of the plurality of diffuser channels 104 in the same group is different in shape from the other diffuser channels 104 in the same group. More specifically, the degree of increase in the cross-sectional area of the diffuser flow path 104 is different. For example, the cross-sectional areas of the diffuser channels 104 orthogonal to the channel center at the same distance from the inlet 106 of each diffuser channel 104 are different.
 一実施形態において、合流流路150に流体連通する返し流路200の近くに位置するディフューザ流路104ほど、流路断面積の増大の程度が大きくなるように構成することができる。図3、4に示される実施形態において、返し流路200は、ディフューザ流路104-1、104-5の近くに位置している。そのため、返し流路200に近いディフューザ流路104-1、104-5は、他のディフューザ流路104-2、104-3、104-4、104-6、104-7、104-8よりも流路断面積の増大の程度が大きい。 In one embodiment, the diffuser flow path 104 located near the return flow path 200 that is in fluid communication with the merge flow path 150 can be configured such that the degree of increase in the cross-sectional area of the flow path increases. In the embodiment shown in FIGS. 3 and 4, the return flow path 200 is located near the diffuser flow paths 104-1 and 104-5. Therefore, the diffuser channels 104-1 and 104-5 close to the return channel 200 are more than the other diffuser channels 104-2, 104-3, 104-4, 104-6, 104-7, and 104-8. The degree of increase in the channel cross-sectional area is large.
 図6は、一実施形態による、各ディフューザ流路104-1~104-8の各位置における断面積の相対的な大きさを示すグラフである。横軸は、図5に示すディフューザ流路の各位置P01~P06を表す。なお、位置P01はディフューザ流路104の入口106に対応し、位置P06はディフューザ流路104の出口108に対応する。図6のグラフの縦軸は、比較例となる1つのディフューザ流路104の位置P01の断面積を100とした場合の相対的な流路断面積を表している。 FIG. 6 is a graph showing the relative sizes of the cross-sectional areas at the respective positions of the diffuser channels 104-1 to 104-8 according to one embodiment. The horizontal axis represents the positions P01 to P06 of the diffuser channel shown in FIG. The position P01 corresponds to the inlet 106 of the diffuser channel 104, and the position P06 corresponds to the outlet 108 of the diffuser channel 104. The vertical axis of the graph in FIG. 6 represents the relative flow path cross-sectional area when the cross-sectional area at the position P01 of one diffuser flow path 104 as a comparative example is 100.
 一実施形態において、返し流路200に近いディフューザ流路104の断面積は、ディフューザ流路104の入口106からディフューザ流路104の出口108に向かって、断面積の増加率が相対的に大きい領域、小さい領域、大きい領域を有する。たとえば、図6のグラフにおいて、返し流路200に近いディフューザ流路104-5の断面積の増加率は、位置P01から位置P02においては増加率が大きく、位置P02から位置P03においては増加率が相対的に小さくなり、位置P03から位置P04においては、増加率が再び大きくなる。このような構成とすることにより、他のディフューザ流路104からの流体を合流流路150で合流させる際に混合損失を低減させることができる。 In one embodiment, the cross-sectional area of the diffuser flow path 104 close to the return flow path 200 is a region where the increase rate of the cross-sectional area is relatively large from the inlet 106 of the diffuser flow path 104 to the outlet 108 of the diffuser flow path 104. , Small area, large area. For example, in the graph of FIG. 6, the increase rate of the cross-sectional area of the diffuser flow path 104-5 near the return flow path 200 is large from the position P01 to the position P02, and is increased from the position P02 to the position P03. It becomes relatively small, and the increase rate increases again from the position P03 to the position P04. With such a configuration, the mixing loss can be reduced when the fluid from the other diffuser flow path 104 is merged in the merge flow path 150.
 他の実施形態として、グループ1のディフューザ流路104-1、104-8、104-7、104-6およびグループ2のディフューザ流路104-5、104-4、104-3、104-2は、それぞれ回転対称となる形状としてもよい。 In other embodiments, the Group 1 diffuser channels 104-1, 104-8, 104-7, 104-6 and the Group 2 diffuser channels 104-5, 104-4, 104-3, 104-2 are: The shapes may be rotationally symmetric.
 図7、図8は、一実施形態によるディフューザ流路104の断面形状の一例を示す図である。図7は、ディフューザ流路104の断面斜視図であり、位置P01~P06における断面形状を概略的に示している。なお、図7において、手前側のディフューザ羽根102は破線で示されている。図8は、図7に示される位置P01~P06における各断面形状をそれぞれ示している。図7、8において、上側がシュラウド54の側の壁面110であり、下側がハブ52の側の壁面109である。 7 and 8 are diagrams showing an example of a cross-sectional shape of the diffuser flow path 104 according to an embodiment. FIG. 7 is a cross-sectional perspective view of the diffuser flow path 104 and schematically shows a cross-sectional shape at positions P01 to P06. In FIG. 7, the front diffuser blade 102 is indicated by a broken line. FIG. 8 shows cross-sectional shapes at positions P01 to P06 shown in FIG. 7 and 8, the upper side is the wall surface 110 on the shroud 54 side, and the lower side is the wall surface 109 on the hub 52 side.
 図7、8に示されるように、一実施形態において、ディフューザ流路104は、回転軸10の方向に凸となる部分を設けて、断面積の大きさを変更させている。図7、8に示されるように、一実施形態において、ディフューザ流路104の位置P01、P02ではシュラウドの側に凸状となり、位置P03ではハブの側に凸状となり、位置P04~P06ではシュラウドの側およびハブの側の両方に凸状となっている。ディフューザ流路104の各位置における断面形状は任意であり、他の実施形態では異なる形状とすることができる。たとえば、非限定的な例として、ディフューザ流路104の入口106からディフューザ流路104の出口108に向かって、シュラウドの側の壁面110にのみ凸状となり、ハブの側の壁面109にのみ凸状となり、シュラウドの側の壁面110およびハブの側の壁面109の両方に凸状となる任意の形状とすることができる。 7 and 8, in one embodiment, the diffuser flow path 104 is provided with a convex portion in the direction of the rotating shaft 10 to change the size of the cross-sectional area. As shown in FIGS. 7 and 8, in one embodiment, the diffuser channel 104 is convex on the shroud side at positions P01 and P02, is convex on the hub side at position P03, and is shroud at positions P04 to P06. Convex on both the side and the hub side. The cross-sectional shape in each position of the diffuser flow path 104 is arbitrary, and can be made into a different shape in other embodiments. For example, as a non-limiting example, a convex shape is formed only on the wall surface 110 on the shroud side and a convex shape is formed only on the wall surface 109 on the hub side from the inlet 106 of the diffuser flow path 104 to the outlet 108 of the diffuser flow path 104. Thus, both the shroud-side wall surface 110 and the hub-side wall surface 109 can have any shape that is convex.
 図9に示すグラフは、本発明の一実施形態によるディフューザ流路を備えるポンプと、比較例によるディフューザ流路を備えるポンプとにおいて、各ディフューザ流路の単位時間当たりの流量を、数値流体力学(CFD, Computational Fluid Dynamics)による流れ解析により求めた結果を示す。図9のグラフにおいて、横軸は、図4に示されるディフューザ流路104-1~104-8を示しており、縦軸は、各ディフューザ流路104-1~104-8における相対的な流量を表している。相対的な流量が1である場合は、全てのディフューザ流路104-1~104~8に同一の流量で流体が流れることを意味する。比較例においては、全てのディフューザ流路が図6に示される比較例の断面と同一であり、合流流路は図9に示される実施例と同一である。図9のグラフにおいて、本発明の実施例における各ディフューザ流路104-1~104-8の断面は、図6に示されるように形成されている。 The graph shown in FIG. 9 shows the flow rate per unit time of each diffuser flow path in numerical fluid dynamics (in a pump including a diffuser flow path according to an embodiment of the present invention and a pump including a diffuser flow path according to a comparative example). The results obtained by flow analysis using CFD (Computational Fluids) are shown. In the graph of FIG. 9, the horizontal axis indicates the diffuser channels 104-1 to 104-8 shown in FIG. 4, and the vertical axis indicates the relative flow rate in each of the diffuser channels 104-1 to 104-8. Represents. When the relative flow rate is 1, it means that the fluid flows at the same flow rate in all the diffuser flow paths 104-1 to 104-8. In the comparative example, all the diffuser channels are the same as the cross section of the comparative example shown in FIG. 6, and the merging channel is the same as the example shown in FIG. 9. In the graph of FIG. 9, the cross sections of the diffuser channels 104-1 to 104-8 in the embodiment of the present invention are formed as shown in FIG.
 図9のグラフに示されるように、本開示の実施形態のように、ディフューザ流路104-1~104-8ごとに断面形状を変更することで、各ディフューザ流路104-1~104-8における流量のばらつきが小さくなっている。すなわち、ディフューザ流路104の形状が全て同一の比較例の場合と比べて、本開示の実施形態では、ディフューザ流路104の下流にある合流流路150における混合損失が減少する。 As shown in the graph of FIG. 9, the diffuser channels 104-1 to 104-8 are changed by changing the cross-sectional shape for each of the diffuser channels 104-1 to 104-8 as in the embodiment of the present disclosure. The variation in the flow rate is small. That is, in the embodiment of the present disclosure, the mixing loss in the merging channel 150 downstream of the diffuser channel 104 is reduced as compared with the comparative example in which the shapes of the diffuser channels 104 are all the same.
 図10は、上記CFDシミュレーションによる、ディフューザ流路104および合流流路150の圧力損失を示す結果を示す図である。図10において、圧力損失の大きさはグレースケールで示されており、黒が濃い方が大きな圧力損失が存在することを示している。図10から分かる通り、本開示の実施形態の方が、比較例の場合よりも全体として圧力損失が小さくなっている。 FIG. 10 is a diagram illustrating a result of pressure loss in the diffuser flow path 104 and the merge flow path 150 according to the CFD simulation. In FIG. 10, the magnitude of the pressure loss is shown in gray scale, and the darker the black, the greater the pressure loss. As can be seen from FIG. 10, the pressure loss as a whole is smaller in the embodiment of the present disclosure than in the comparative example.
 図11は、比較例によるディフューザ流路104-5の各断面位置P01~P06における流体の流速を示す図である。図12は、本開示の実施形態によるディフューザ流路104-5の各断面位置P01~P06における流体の流速を示す図である。図11および図12において、各断面位置P01~P06における流速は等流速線で示されており、断面の中心ほど流速が大きいことを示している。図11および図12から分かるように、本開示の実施形態においては、比較例の場合よりも、等流速度線のゆがみが小さく、きれいな褶曲を重ねた流速の分布となっている。そのため、本開示の実施形態においては、ディフューザ流路を通る流体の流れが均一であり、整流効果が向上している。本開示の実施形態によれば、圧力損失の低下と整流効果を高めることで、ポンプにおける騒音や振動を低減することができる。 FIG. 11 is a diagram showing the flow velocity of the fluid at the respective cross-sectional positions P01 to P06 of the diffuser flow path 104-5 according to the comparative example. FIG. 12 is a diagram illustrating the flow velocity of the fluid at each of the cross-sectional positions P01 to P06 of the diffuser flow path 104-5 according to the embodiment of the present disclosure. In FIG. 11 and FIG. 12, the flow velocity at each of the cross-sectional positions P01 to P06 is indicated by an isovelocity line, indicating that the flow velocity is larger toward the center of the cross section. As can be seen from FIG. 11 and FIG. 12, in the embodiment of the present disclosure, the distortion of the uniform flow velocity line is smaller than that of the comparative example, and the flow velocity distribution has a clean curve. Therefore, in the embodiment of the present disclosure, the fluid flow through the diffuser flow path is uniform, and the rectifying effect is improved. According to the embodiment of the present disclosure, noise and vibration in the pump can be reduced by increasing the pressure loss and rectifying effect.
 以上のように本願発明の実施形態を説明してきたが、本発明は上述の実施形態に限定されるものではない。また、上述の実施形態のそれぞれの特徴は互いに矛盾しない限り組み合わせまたは交換することができる。 As described above, the embodiment of the present invention has been described, but the present invention is not limited to the above-described embodiment. The features of the above-described embodiments can be combined or exchanged as long as they do not contradict each other.
I1~I7・・・羽根車
100・・・ディフューザ部
104・・・ディフューザ流路
106・・・ディフューザ流路の入口
108・・・ディフューザ流路の出口
150・・・合流流路
200・・・返し流路
250・・・戻り流路
 
 
 
 
I1 to I7 ... impeller 100 ... diffuser section 104 ... diffuser flow path 106 ... diffuser flow path inlet 108 ... diffuser flow path outlet 150 ... confluence flow path 200 ... Return channel 250 ... Return channel


Claims (9)

  1.  流体機械であって、
     前記流体機械は、流体の運動エネルギーを圧力エネルギーに変換するためのディフューザを有し、
     前記ディフューザは、流体が通過するように構成される第1ディフューザ流路および第2ディフューザ流路を有し、
     前記第1ディフューザ流路および前記第2ディフューザ流路の形状が異なる、流体機械。
    A fluid machine,
    The fluid machine has a diffuser for converting fluid kinetic energy into pressure energy;
    The diffuser has a first diffuser flow path and a second diffuser flow path configured to allow fluid to pass through,
    A fluid machine in which shapes of the first diffuser flow path and the second diffuser flow path are different.
  2.  請求項1に記載の流体機械であって、
     前記第1ディフューザ流路および前記第2ディフューザ流路は、それぞれディフューザ流路の入口を有し、
     前記第1ディフューザ流路および前記第2ディフューザ流路の少なくとも一部において、各ディフューザ流路の入口からの距離が等しい位置における流路中心に直交する、前記第1ディフューザ流路および前記第2ディフューザ流路の断面積が互いに異なる、流体機械。
    The fluid machine according to claim 1,
    The first diffuser channel and the second diffuser channel each have an inlet of a diffuser channel;
    The first diffuser channel and the second diffuser that are orthogonal to the channel center at a position where the distance from the inlet of each diffuser channel is equal in at least a part of the first diffuser channel and the second diffuser channel. Fluid machines with different cross-sectional areas of flow paths.
  3.  請求項1または2に記載の流体機械であって、
     前記流体機械は、回転駆動して流体に運動エネルギーを与える第1羽根車を有し、
     前記第1ディフューザ流路および前記第2ディフューザ流路は、流体の流れ方向における前記第1羽根車の下流に位置する、流体機械。
    The fluid machine according to claim 1 or 2,
    The fluid machine has a first impeller that rotationally drives to give kinetic energy to the fluid,
    The fluid machine, wherein the first diffuser channel and the second diffuser channel are located downstream of the first impeller in a fluid flow direction.
  4.  請求項3に記載の流体機械であって、
     前記第1ディフューザ流路および前記第2ディフューザ流路は、それぞれディフューザ流路の出口を有し、
     前記流体機械は、前記第1ディフューザ流路および前記第2ディフューザ流路の各前記ディフューザ流路の出口に流体結合される第1合流流路と、
     前記第1羽根車よりも流体の流れ方向の下流に位置する次段の第2羽根車に流体を供給するための、前記第1合流流路に流体結合される第1返し流路と、を有し、前記第1返し流路は前記第1羽根車の回転軸の方向に延びる、流体機械。
    The fluid machine according to claim 3,
    The first diffuser flow path and the second diffuser flow path each have an outlet of a diffuser flow path,
    The fluid machine includes: a first merging channel fluidly coupled to an outlet of each of the diffuser channels of the first diffuser channel and the second diffuser channel;
    A first return channel fluidly coupled to the first merging channel for supplying fluid to a second impeller at the next stage located downstream of the first impeller in the fluid flow direction; A fluid machine, wherein the first return channel extends in a direction of a rotation axis of the first impeller.
  5.  請求項4に記載の流体機械であって、
     前記第2ディフューザ流路は、前記第1ディフューザ流路よりも前記第1返し流路の近くに位置し、前記第2ディフューザ流路の前記断面積が、前記第1ディフューザ流路の断面積よりも大きい、流体機械。
    The fluid machine according to claim 4,
    The second diffuser channel is located closer to the first return channel than the first diffuser channel, and the cross-sectional area of the second diffuser channel is greater than the cross-sectional area of the first diffuser channel. Also big, fluid machinery.
  6.  請求項5に記載の流体機械であって、
     前記第1ディフューザ流路および前記第2ディフューザ流路は、それぞれの前記ディフューザ流路の入口から前記ディフューザ流路の出口に向かって、断面積が増大するように構成され、
     前記第2ディフューザ流路は、前記ディフューザ流路の入口から前記ディフューザ流路の出口に向かって順番に断面積の増加率が相対的に大きい領域、小さい領域、大きい領域を有する、流体機械。
    The fluid machine according to claim 5,
    The first diffuser flow path and the second diffuser flow path are configured such that a cross-sectional area increases from an inlet of each of the diffuser flow paths toward an outlet of the diffuser flow path,
    The second diffuser flow path has a region in which an increase rate of a cross-sectional area is relatively large, a small area, and a large area in order from an inlet of the diffuser flow path to an outlet of the diffuser flow path.
  7.  請求項4乃至6のいずれか一項に記載の流体機械であって、
     前記ディフューザは、流体が通過するように構成される第3ディフューザ流路および第4ディフューザ流路を有し、前記第3ディフューザ流路および前記第4ディフューザ流路は、流体の流れ方向における前記第1羽根車の下流に位置し、
     前記第3ディフューザ流路および前記第4ディフューザ流路は、それぞれディフューザ流路の出口を有し、
     前記流体機械は、前記第3ディフューザ流路および前記第4ディフューザ流路の各前記ディフューザ流路の出口に流体結合される第2合流流路と、
     前記第2羽根車に流体を供給するための、前記第2合流流路に流体結合される第2返し流路と、を有し、前記第2返し流路は前記第1羽根車の駆動軸の方向に延びる、流体機械。
    The fluid machine according to any one of claims 4 to 6,
    The diffuser has a third diffuser flow path and a fourth diffuser flow path configured to allow fluid to pass through, and the third diffuser flow path and the fourth diffuser flow path are the first diffuser in the fluid flow direction. Located downstream of one impeller,
    The third diffuser channel and the fourth diffuser channel each have an outlet of the diffuser channel,
    The fluid machine includes: a second merging channel fluidly coupled to an outlet of each of the diffuser channels of the third diffuser channel and the fourth diffuser channel;
    A second return flow path fluidly coupled to the second merge flow path for supplying fluid to the second impeller, wherein the second return flow path is a drive shaft of the first impeller. A fluid machine extending in the direction of
  8.  請求項7に記載の流体機械であって、
     前記第3ディフューザ流路および前記第4ディフューザ流路は、それぞれ前記第1ディフューザ流路および前記第2ディフューザ流路の回転対称となる形状である、流体機械。
    The fluid machine according to claim 7,
    The fluid machine, wherein the third diffuser channel and the fourth diffuser channel are rotationally symmetric with respect to the first diffuser channel and the second diffuser channel, respectively.
  9.  請求項7または8に記載の流体機械であって、
     前記第3ディフューザ流路および前記第4ディフューザ流路は、それぞれの前記ディフューザ流路の入口から前記ディフューザ流路の出口に向かって、断面積が増大するように構成され、
     前記第4ディフューザ流路は、前記ディフューザ流路の入口から前記ディフューザ流路の出口に向かって順番に断面積の増加率が相対的に大きい領域、小さい領域、大きい領域を有する、流体機械。
     
     
     
     
     
     
    The fluid machine according to claim 7 or 8,
    The third diffuser flow path and the fourth diffuser flow path are configured such that a cross-sectional area increases from an inlet of each of the diffuser flow paths toward an outlet of the diffuser flow path,
    The fluid machine according to claim 4, wherein the fourth diffuser flow path has a relatively large area, a small area, and a large area of the cross-sectional area increase rate in order from the diffuser flow path inlet to the diffuser flow path outlet.





PCT/JP2016/059302 2015-03-30 2016-03-24 Fluid machine equipped with diffuser WO2016158636A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP16772517.5A EP3279479A4 (en) 2015-03-30 2016-03-24 Fluid machine equipped with diffuser
CN201680021211.0A CN107949705B (en) 2015-03-30 2016-03-24 Fluid machine with diffuser
US15/563,361 US20180080471A1 (en) 2015-03-30 2016-03-24 Fluid machine including diffuser
JP2017509854A JP6706248B2 (en) 2015-03-30 2016-03-24 Fluid machine with diffuser

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015068481 2015-03-30
JP2015-068481 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158636A1 true WO2016158636A1 (en) 2016-10-06

Family

ID=57005798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059302 WO2016158636A1 (en) 2015-03-30 2016-03-24 Fluid machine equipped with diffuser

Country Status (5)

Country Link
US (1) US20180080471A1 (en)
EP (1) EP3279479A4 (en)
JP (1) JP6706248B2 (en)
CN (1) CN107949705B (en)
WO (1) WO2016158636A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469990B2 (en) 2020-08-07 2024-04-17 日立Astemo株式会社 Two-stage centrifugal pump

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20153032A1 (en) * 2015-08-10 2017-02-10 Nuovo Pignone Tecnologie Srl CENTRIFUGAL PUMP
US11473589B2 (en) * 2018-05-18 2022-10-18 Franklin Electric Co., Inc. Impeller assemblies and method of making

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303797A (en) * 1998-04-20 1999-11-02 Hitachi Ltd Multistage compressor
JP2010071241A (en) * 2008-09-19 2010-04-02 Mitsubishi Heavy Ind Ltd Centrifugal compressor

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912279A1 (en) * 1989-04-14 1990-10-18 Klein Schanzlin & Becker Ag Guide wheel for centrifugal pump - has arrangement of different sized flow channels
DE4418662C2 (en) * 1994-05-27 1997-06-05 Grundfos As Centrifugal pump
JP2002155896A (en) * 2000-11-22 2002-05-31 Mitsubishi Heavy Ind Ltd Turbocompressor and refrigerating device provided with the same
JP4872456B2 (en) * 2006-05-24 2012-02-08 パナソニック電工株式会社 Pump and liquid supply device
EP2014925A1 (en) * 2007-07-12 2009-01-14 ABB Turbo Systems AG Diffuser for radial compressors

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11303797A (en) * 1998-04-20 1999-11-02 Hitachi Ltd Multistage compressor
JP2010071241A (en) * 2008-09-19 2010-04-02 Mitsubishi Heavy Ind Ltd Centrifugal compressor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279479A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7469990B2 (en) 2020-08-07 2024-04-17 日立Astemo株式会社 Two-stage centrifugal pump

Also Published As

Publication number Publication date
CN107949705B (en) 2020-03-17
EP3279479A1 (en) 2018-02-07
EP3279479A4 (en) 2018-12-12
JPWO2016158636A1 (en) 2018-01-25
CN107949705A (en) 2018-04-20
US20180080471A1 (en) 2018-03-22
JP6706248B2 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
CN105026766B (en) back-to-back centrifugal pump
US9874219B2 (en) Impeller and fluid machine
KR102228248B1 (en) High-strength turbomachine impeller, turbomachine and manufacturing method including the impeller
EP3133295B1 (en) Diffuser, airflow generating apparatus, and electrical device
US20170342847A1 (en) Diffuser having shaped vanes
WO2016158636A1 (en) Fluid machine equipped with diffuser
CA2578135A1 (en) Attrition scrubber apparatus and method
CN105723097A (en) Centrifugal turbomachine
US10378543B2 (en) Impeller, in particular for a side channel machine
DK3102332T3 (en) Agitator ball mill
CN101925748B (en) Fluid machine
KR20150120168A (en) Centrifugal type mixed flow blower
US9546661B2 (en) Rotor machine intended to function as a pump or an agitator and an impeller for such a rotor machine
JP5693112B2 (en) Axial turbine and method for exhausting flow from an axial turbine
GB2507307A (en) Impeller
JP2017048703A (en) Centrifugal Pump
WO2016092873A1 (en) Centrifugal compressor impeller
US20130129524A1 (en) Centrifugal impeller
JP4138748B2 (en) Impeller for centrifugal pump
US11761453B2 (en) Pump impeller and pump herewith
KR20170121692A (en) Mixed flow impeller having forward curved blade with mean camber line shape section of airfoil
JP2018178872A (en) Fluid machine
US784371A (en) Elastic-fluid turbine.
KR101672262B1 (en) Mixed flow impeller having airfoil cambered plate type backward twisted blades
RU68059U1 (en) CENTRIFUGAL GAS SEPARATOR CROSS-COUPLING TRANSMITTER FOR SUBMERSIBLE Borehole PUMP UNIT FOR OIL PRODUCTION (OPTIONS)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509854

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15563361

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE