WO2016157818A1 - Cooling device - Google Patents

Cooling device Download PDF

Info

Publication number
WO2016157818A1
WO2016157818A1 PCT/JP2016/001625 JP2016001625W WO2016157818A1 WO 2016157818 A1 WO2016157818 A1 WO 2016157818A1 JP 2016001625 W JP2016001625 W JP 2016001625W WO 2016157818 A1 WO2016157818 A1 WO 2016157818A1
Authority
WO
WIPO (PCT)
Prior art keywords
outside air
air
cooling device
heating element
casing
Prior art date
Application number
PCT/JP2016/001625
Other languages
French (fr)
Japanese (ja)
Inventor
智之 樋口
直之 舟田
訓央 清本
悠人 増田
将吾 前田
柴田 洋
忍 織戸
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015128254A external-priority patent/JP2017011229A/en
Priority claimed from JP2016025871A external-priority patent/JP2016195240A/en
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2016157818A1 publication Critical patent/WO2016157818A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02BBOARDS, SUBSTATIONS OR SWITCHING ARRANGEMENTS FOR THE SUPPLY OR DISTRIBUTION OF ELECTRIC POWER
    • H02B1/00Frameworks, boards, panels, desks, casings; Details of substations or switching arrangements
    • H02B1/56Cooling; Ventilation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a cooling device for a heating element storage box that stores a heating element such as a power conditioner.
  • the power conditioner converts direct current used in solar power generation systems into alternating current. At the time of conversion, the power conditioner generates heat and becomes a heating element. Therefore, it is necessary to cool the power conditioner during use.
  • a cooling device for a solar power generation system in which a power conditioner is arranged in a switchboard and a cooling fan is provided on the upper side of the power conditioner to cool the solar power generation system (for example, see Patent Document 1).
  • the solar power generation system of Patent Document 1 includes an exhaust fan inside the power conditioner. Furthermore, the air conditioner which discharge
  • the power consumption of the air conditioner increases if the heat generation amount of the heating element increases.
  • the present invention provides a cooling device that can be used in combination with an air conditioner to suppress an increase in power consumption of the air conditioner even if the amount of heat generated by the heating element increases.
  • the present invention is a cooling device that processes exhaust heat from a heating element storage box installed in the storage room with the back face close to the wall surface of the storage room, and cools the space in the storage room.
  • the cooling device includes a casing installed on the upper surface of the heating element storage box, a heat exchanger disposed inside the casing, an outside air blower and an inner / outer partition plate, and an interior for allowing the inside air of the heating element storage box to flow into the casing.
  • the heat exchanger includes a condenser and an evaporator that form a refrigerant cycle, and a refrigerant air pipe and a refrigerant liquid pipe that connect the condenser and the evaporator.
  • the inner and outer partition plates form a lower inside air compartment and an upper outside air compartment, which are independent of each other inside the casing.
  • the heating element storage box includes an indoor air outlet on the upper surface and an indoor air inlet on the front surface.
  • the casing has an inside air outlet, an outside air inlet, and an outside air outlet.
  • the evaporator is provided in the inside air compartment, and the condenser is provided in the outside air compartment.
  • the indoor air blower sucks in the indoor air from the storage room via the indoor air intake port of the heating element storage box, and blows out the internal air blown out from the indoor air outlet through the evaporator in the internal air compartment of the casing into the storage room. Blow out.
  • the outside air blower sucks outside air from the outside air inlet of the outside air section of the casing, and blows out outside from the outside air outlet through the condenser to cool the storage chamber.
  • the cooling device is installed on the upper surface of the heating element storage box in the storage chamber. Therefore, even when the emitted-heat amount of the heat generating body inside a heat generating body storage box increases, the increase in the power consumption of an air conditioner can be suppressed. As a result, it is possible to provide a cooling device that can cope with an increase in the amount of heat generated by the heating element with low power consumption.
  • FIG. 1 is an internal perspective view of a storage chamber in which a heating element storage box and a cooling device according to Embodiment 1 of the present invention are installed.
  • FIG. 2 is a perspective view of the heating element storage box and the inside of the cooling device seen through.
  • FIG. 3 is a block diagram showing a partial cross section of the cooling device.
  • FIG. 4 is a configuration diagram of the evaporator (condenser).
  • FIG. 5 is an internal perspective view of the storage chamber in which the heating element storage box and the cooling device according to Embodiment 2 of the present invention are installed.
  • FIG. 6 is a perspective view of the heating element storage box and the cooling device.
  • FIG. 7 is an exploded perspective view of the heating element storage box and the cooling device.
  • FIG. 1 is an internal perspective view of a storage chamber in which a heating element storage box and a cooling device according to Embodiment 1 of the present invention are installed.
  • FIG. 2 is a perspective view of the heating element storage box and the inside of the
  • FIG. 8A is an internal perspective view seen from diagonally above the left rear of the cooling device.
  • FIG. 8B is an internal see-through perspective view seen from the diagonally upper right rear of the cooling device.
  • FIG. 9 is a configuration diagram showing a cross section taken along line 9-9 of FIG. 8B.
  • FIG. 10 is a diagram showing the flow of the inside air of the cooling device.
  • FIG. 11 is a diagram showing a flow of outside air of the cooling device.
  • FIG. 1 is a diagram illustrating an example of a schematic configuration of a cooling system for a heating element including the cooling device of the present embodiment.
  • positioning of each component is demonstrated according to the front, back, upper direction, lower direction, left side, and right side shown in FIG. The same applies to the subsequent drawings.
  • the cooling system includes, for example, a cooling device 1, a heating element storage box 2, a storage chamber 3, an air conditioner 6, and the like.
  • the cooling device 1 of the present embodiment is installed on the upper surface 2c of the heating element storage box 2 stored in the storage chamber 3, as shown in FIG.
  • the heating element storage box 2 stores a heating element (not shown) such as a power conditioner.
  • the interior of the storage room 3 is composed of an airtight space surrounded by a floor surface 3a, a ceiling surface 3b, and four wall surfaces 3c.
  • the storage chamber 3 includes an air conditioner 6 including an indoor unit 4 installed on the inner side and an outdoor unit 5 installed on the outer side.
  • the rear surface 2a of the heating element storage box 2 is installed on the inner wall surface of the wall surface 3c of the storage chamber 3 so as to be substantially parallel (including parallel).
  • the heating element storage box 2 includes an indoor air inlet 7 on the front surface 2b side and an indoor air outlet 10 on the upper surface 2c side.
  • the air inside the storage chamber 3 (hereinafter referred to as “inside air”) is sucked into the heating element storage box 2 through the indoor air suction port 7 by driving of the inside air blower 35 described later, and the indoor air outlet 10 is blown out into the cooling device 1.
  • the cooling device 1 includes an outside air intake duct 8 and an outside air exhaust duct 9 that are installed at the top so as to protrude from the ceiling surface 3 b of the storage chamber 3.
  • Air outside the storage chamber 3 (hereinafter referred to as “outside air”) is sucked into the cooling device 1 through the outside air intake duct 8 by driving an outside air blower 19 described later.
  • the outside air sucked into the cooling device 1 is discharged to the outside of the storage chamber 3 through a condenser 20 and an outside air exhaust duct 9 which will be described later.
  • a cooling system for a heating element including the cooling device of the present embodiment is configured.
  • FIG. 2 shows a perspective view of the heating element storage box 2 and the inside of the cooling device 1 according to the present embodiment.
  • FIG. 3 is a block diagram showing a partial cross section of the cooling device.
  • the heating element storage box 2 includes, for example, a round hole-shaped indoor air outlet 10 at a substantially central portion (including the central portion) in the longitudinal direction (left-right direction) of the upper surface 2 c.
  • the inside air of the heating element storage box 2 is blown out from the indoor air outlet 10 to the inside of the cooling device 1 by the action of a blower (inside air blower 35) installed on the upper surface 2c of the heating element storage box 2, for example.
  • a blower inside air blower 35
  • the inside air blower 35 is placed in the same space as the inside air section 16 as shown in FIG.
  • the cooling device 1 includes a casing 11, two heat exchangers 24 disposed inside the casing 11, an outside air blower 19, an inside / outside partition plate 15, and an outside air partition partition plate 18.
  • the inner / outer partition plate 15 divides the inside of the casing 11 in the vertical direction into a lower inside air compartment 16 and an upper outside air compartment 17.
  • the outside air partition plate 18 divides the inside of the outside air compartment 17 in the left-right direction.
  • the condenser 20A and the condenser 20B of the two heat exchangers 24 are arranged symmetrically with the outside air partition plate 18 as the center line.
  • the condenser 20 ⁇ / b> A and the condenser 20 ⁇ / b> B are installed symmetrically in a “C” shape (inverted V shape) with the outside air partition plate 18 as the center line.
  • the “C shape” means a shape that inclines obliquely downward as it goes away from the center line. That is, the “C-shape” means a shape that is inclined to the lower left on the left side of the center line and a shape that is inclined to the lower right on the right side of the center line as viewed from the front of FIG.
  • the casing 11 includes an outside air inlet 12 connected to the outside air intake duct 8 and an outside air outlet 13 connected to the outside air exhaust duct 9 on the upper surface 11a.
  • the casing 11 includes an inside air outlet 14 that communicates with the inside air section 16 and opens toward the inside of the storage chamber 3 on both sides of the front surface 11b.
  • the inside air outlet 14 blows out the inside air flowing through the cooling device 1 into the storage chamber 3 by driving the inside air blower 35.
  • the inside of the casing 11 of the cooling device 1 is divided into a lower inside air section 16 and an upper outside air section 17 by the above-described inner and outer partition plates 15. Further, the inside of the outside air compartment 17 is divided into two right and left compartments by an outside air compartment partition plate 18.
  • outside air section 17 for example, two outside air blowers 19 arranged in the front-rear direction and a condenser 20 are installed corresponding to the outside air inlet 12.
  • An evaporator 21 is installed inside the inside air section 16.
  • the condenser 20 and the evaporator 21 are connected by a refrigerant air pipe 22 and a refrigerant liquid pipe 23 to constitute a heat exchanger 24.
  • the heat exchanger 24 forms a refrigerant cycle, that is, a thermosiphon, with the refrigerant sealed inside.
  • the refrigerant air pipe 22 and the refrigerant liquid pipe 23 penetrate the inner / outer partition plate 15, and the penetrating portion is sealed with, for example, a gasket (not shown). Thereby, the independence (airtightness) of the inside air section 16 and the outside air section 17 in the casing 11 constituting the cooling device 1 is ensured.
  • the condenser 20 and the evaporator 21 of the heat exchanger 24 are each configured to be stacked in, for example, three rows in the vertical direction.
  • the refrigerant gas pipe 22 and the refrigerant liquid pipe 23 connect the uppermost rows, the middle rows, and the lowermost rows of the condenser 20 and the evaporator 21, respectively.
  • FIG. 3 illustrates only the refrigerant air pipe 22 and the refrigerant liquid pipe 23 that connect the uppermost rows.
  • the evaporator 21 (condenser 20) which comprises the heat exchanger 24 is demonstrated using FIG. Since the basic configurations of the evaporator 21 and the condenser 20 are the same, the evaporator 21 will be described as an example.
  • the evaporator 21 of the heat exchanger 24 includes two headers 25, a plurality of tubes 26, and corrugated fins 27.
  • the tubes 26 are arranged at regular intervals between the headers 26.
  • the fins 27 are inserted between the tubes 26 and allow the inside air or outside air to flow therethrough. Then, the heat of the inside air and the outside air is transmitted to the tube 26 through the fins 27 to exchange heat with the refrigerant flowing in the tube 26.
  • the tube 26 and the fin 27 are welded at a large number of contact portions 27a. By welding the contact portion 27a, good heat transfer between the tube 26 and the fin 27 is provided.
  • the indoor air outlet 10 includes the left evaporator 21A and the right evaporator 21B that constitute the two evaporators 21 arranged in a “C” shape (inverted V shape).
  • the inside air that has flowed into the inside air section 16 of the casing 11 from the indoor air outlet 10 is divided into left and right and passes between the fins 27 of the evaporator 21. Thereby, the heated inside air is heat-exchanged with the refrigerant flowing through the evaporator 21 and cooled.
  • the inside air cooled by the evaporator 21 is blown into the storage chamber 3 from the inside air outlet 14 that opens forward on both sides of the casing 11 in the left-right direction.
  • the flow of the internal air on the right side in the internal air section 16 of the casing 11 is indicated by a solid line arrow.
  • the evaporator 21 is provided with the left evaporator 21A and the right evaporator 21B symmetrically. Therefore, the inside air that has flowed into the inside air section 16 of the casing 11 is distributed to the left and right substantially evenly (including evenly). Then, the inside air of substantially the same air volume (including the same air volume) passes through the left evaporator 21A and the right evaporator 21B.
  • the inside air blown into the storage chamber 3 is sucked from the indoor air inlet 7 that opens in the front surface 2b of the heating element storage box 2, and circulates again to cool the heating element.
  • the inside air which flowed in from the indoor air outlet 10 passes between the corrugated fins 27 of the evaporator 21 (substantially triangular space (including the triangular space) shown in FIG. 4).
  • the pressure loss of the inside air passing between the fins 27 is lower than that of the stacked heat exchange elements. Therefore, a separate air blower is not provided in the inside air compartment 16 of the casing 11, and the inside air blower 35 disposed on the upper surface 2 c of the heating element storage box 2 can be used as a blower.
  • outside air blower 19 is driven. Accordingly, as shown in FIG. 3, outside air (outside air) is sucked from the outside air inlet 12 of the casing 11 through the outside air intake duct 8 shown in FIG. 1 in the outside air compartment 17 of the casing 11. .
  • the sucked outside air passes between the fins 27 of the condenser 20 of the heat exchanger 24 as indicated by broken line arrows shown in FIG. Thereby, the sucked outside air is heat-exchanged with the refrigerant flowing in the condenser 20 and heated.
  • the outside air heated by the condenser 20 is discharged from the outside air outlet 13 of the casing 11 to the outside through the outside air exhaust duct 9.
  • the heat exchanger 24 operates as follows.
  • the refrigerant flowing inside the evaporator 21 evaporates from the inside air flowing in from the indoor air outlet 10 by absorbing heat.
  • the evaporated refrigerant flows into the condenser 20 through the refrigerant trachea 22.
  • the inside air is cooled by the endothermic action accompanying the evaporation of the refrigerant in the evaporator 21.
  • the cooled inside air is blown into the storage chamber 3 from the inside air outlets 14 provided on the left and right sides of the inside air section 16 of the casing 11. Thereby, the inside air heated with the heat generating body can be cooled.
  • the high-temperature refrigerant flowing in the condenser 20 is cooled by heat radiation to the outside air sucked from the outside air inlet 12, and is condensed and liquefied.
  • the liquefied refrigerant flows into the evaporator 21 again through the refrigerant liquid pipe 23.
  • the outside air heated by heat exchange with the refrigerant in the condenser 20 passes through the outside air outlet 13 of the casing 11 and is discharged outside.
  • the refrigerant in the evaporator 21 absorbs heat from the inside air heated in the heating element storage box 2 and evaporates.
  • the evaporated refrigerant dissipates heat to the outside air passing through the condenser 20 of the heat exchanger 24 and condenses.
  • coolant which changes a gaseous-phase state and a liquid phase state repeatedly circulates the inside of the heat exchanger 24 by a density difference.
  • action which performs heat conveyance is implement
  • the heat exchanger 24 of the cooling device 1 is arranged in a “C-shape” (inverted V-shape) symmetrically about the outside air partition plate 18 as a center line.
  • the evaporator 21 and the condenser 20 constituting the heat exchanger 24 are installed at an inclination angle of, for example, 20 degrees with respect to the horizontal.
  • the cooling device 1 can be installed in a limited space between the upper surface 2c of the heating element storage box 2 and the ceiling surface 3b of the storage chamber 3. That is, the height of the cooling device 1 can be designed low. Further, in the case of a power conditioner or the like that has already been operated and no heat exchanger is installed, the cooling device 1 can be easily installed by retrofitting when the amount of heat generated by the heating element increases.
  • the inclination angle of the evaporator 21 and the condenser 20 is preferably 15 degrees to 25 degrees.
  • the inclination angle is smaller than 15 degrees, the pressure loss of the air passing between the fins 27 increases.
  • the inclination angle is larger than 25 degrees, the height of the cooling device 1 is increased and the cooling device 1 is increased in size.
  • the configuration in which two heat exchangers 24 are provided has been described as an example, but the present invention is not limited to this.
  • the number of heat exchangers 24 may be increased or decreased according to the amount of heat generated by the heating element.
  • the heat generation amount of the heating element is small, a configuration in which one heat exchanger 24 is provided may be used.
  • the configuration in which two outside air blowers 19 are provided for one heat exchanger 24 has been described as an example, but the present invention is not limited thereto.
  • the number of outside air blowers 19 may be increased or decreased according to the amount of heat generated by the heating element.
  • the heat generation amount of the heating element is small, a configuration in which one outside air blower 19 is provided may be used.
  • the two condensers 20 of the present embodiment preferably have the left condenser 20A and the right condenser 20B symmetrically provided with the outside air partitioning plate 18 as the center line.
  • the outside air that has passed through the left condenser 20A and the outside air that has passed through the right condenser 20B are discharged from the outside air outlet 13 to the outside without interfering with each other by the outside air partitioning plate 18. Thereby, the outside air flowing into the outside air section 17 can smoothly pass between the fins 27 of the condenser 20. As a result, the heat exchange efficiency between the outside air and the refrigerant in the condenser 20 of the heat exchanger 24 can be increased.
  • the height 16 a of the inside air section 16 before the inside air blown out from the room air outlet 10 by the inside air blower 35 passes through the evaporator 21 is the inside air after passing through the evaporator 21. It is preferable that the height of the section 16 is higher than 16b. According to this configuration, the inside air hits the evaporator 21 from a wider space of the inside air section 16 toward the evaporator 21, for example, with a low pressure loss. Therefore, the heat exchange efficiency between the inside air and the refrigerant in the evaporator 21 of the heat exchanger 24 can be further increased.
  • the height 17 a of the outside air section 17 before the outside air sucked from the outside air inlet 12 by the outside air blower 19 passes through the condenser 20 is the outside air section after passing through the condenser 20.
  • the height 17 is preferably higher than the height 17b. According to this configuration, outside air strikes favorably toward the condenser 20 from a wider space of the outside air section 17. Therefore, the heat exchange efficiency between the outside air and the refrigerant in the condenser 20 of the heat exchanger 24 can be further increased.
  • the cooling device 1 is installed on the upper surface 2 c of the heating element storage box 2. Thereby, even when the calorific value of the heating element inside the heating element storage box 2 increases, the increase in the power consumption of the air conditioner can be suppressed by arranging the cooling device 1 individually. As a result, it can respond appropriately according to the increase or decrease in the amount of heat generated by the heating element.
  • Embodiment 2 Below, schematic structure of the cooling system of a heat generating body provided with the cooling device concerning this Embodiment 2 is demonstrated using FIGS. 5-7.
  • FIG. 5 is a diagram illustrating an example of a schematic configuration of a heating element cooling system including the cooling device according to the second embodiment.
  • FIG. 6 is a perspective view of the heating element storage box and the cooling device.
  • FIG. 7 is an exploded perspective view of the heating element storage box and the cooling device.
  • a plurality of cooling devices 1 are installed in the upper surface 2 c of, for example, one heating element storage box 2 stored in the storage chamber 3.
  • the heating element storage box 2 stores a heating element (not shown) such as a power conditioner.
  • the interior of the storage room 3 is composed of an airtight space surrounded by a floor surface 3a, a ceiling surface 3b, and four wall surfaces 3c.
  • the storage chamber 3 includes an air conditioner 6 including an indoor unit 4 installed on the inner side and an outdoor unit 5 installed on the outer side.
  • the rear surface 2a of the heating element storage box 2 is disposed on the inner wall surface of the wall surface 3c of the storage chamber 3 so as to be substantially parallel (including parallel).
  • the heating element storage box 2 includes an indoor air inlet 7 on the front surface 2b side and an indoor air outlet 10 on the upper surface 2c side. Air inside the storage chamber 3 (hereinafter referred to as “inside air”) is sucked into the heating element storage box 2 through the indoor air suction port 7 by driving of an inside air blower 31 described later, 10 is blown out into the cooling device 1.
  • inside air Air inside the storage chamber 3
  • a plurality of cooling devices 1 are disposed on the upper surface 2 c of the heating element storage box 2 through the chamber 28.
  • the cooling device 1 has a protruding portion 110 that protrudes from the front surface 2 b of the heating element storage box 2.
  • the chamber 28 is formed with an inside air passage hole 29 corresponding to each of the plurality of cooling devices 1 arranged. Thereby, the inside air flowing into the chamber 28 from the indoor air outlet 10 of the heating element storage box 2 is distributed to the respective cooling devices 1.
  • a cooling system for a heating element including the cooling device of the present embodiment is configured.
  • FIG. 8A shows an internal perspective view seen from diagonally above the left rear of the cooling device 1.
  • FIG. 8B shows an internal perspective view seen from diagonally above the right rear of the cooling device 1.
  • the cooling device 1 includes a casing 11, a heat exchanger 24, an inside air blower 31, two outside air blowers 32, an inside / outside partition plate 15, an inside air, which are arranged inside the casing 11. It is comprised from the air blower partition plate 31a, the external air blower partition plate 32a, the external air wind path partition plate 30, the external air wind path forming plate 33, and the like.
  • the inner / outer partition plate 15 divides the inside of the casing 11 in the vertical direction into a lower inside air compartment 16 and an upper outside air compartment 17.
  • the inside air blower partition plate 31a divides the casing 11 in the front-rear direction on the front surface 11b (see FIG. 6) side of the casing 11 to form an inside air blower chamber 31b.
  • the outside air blower partition plate 32a is divided in the left-right direction of the casing 11 to form an outside air blower chamber 32b on one side surface side. Thereby, the casing 11 is divided into the inside air section 16, the outside air section 17, the inside air blower chamber 31b, and the outside air blower chamber 32b.
  • the outside air blower chamber 32b has two outside air blowers 32 disposed therein.
  • the two outside air blowers 32 are individually partitioned by the outside air path partition plate 30. Thereby, outside air (outside air) is discharged to the outside from the respective air passages via the two outside air blowers 32.
  • the inside air blower chamber 31b has at least one inside air blower 31 disposed therein.
  • the outside air path forming plate 33 is disposed in the outside air section 17 so as to form an air path from the outside air inlet 12 to the condenser 20. Specifically, the outside air path formation plate 33 is provided so as to cover the side surface of the condenser 20.
  • the casing 11 includes an outside air inlet 12 that opens upward on the back surface 2a side of the heating element storage box 2 (see FIG. 7) and communicates with the outside air compartment 17.
  • the outside air blower chamber 32 b includes an outside air outlet 13 that opens to the back surface 2 a side of the casing 11.
  • the casing 11 has the protrusion part 110 which protrudes from the front surface 2b (refer FIG. 6) of the heat generating body storage box 2. As shown in FIG. An internal air outlet 14 that opens to the lower surface of the casing 11 is formed in the protrusion 110. Thereby, the inside air heat-exchanged by the evaporator 21 of the cooling device 1 is blown out downward along the front surface 2 b of the heating element storage box 2 from the inside air outlet 14 of the protrusion 110.
  • FIG. 9 is a configuration diagram showing a cross section taken along line 9-9 of FIG. 8B.
  • the inside of the casing 11 is divided into a lower inside air compartment 16 and an upper outside air compartment 17 by the inner and outer partition plates 15 described above.
  • a condenser 20 is installed inside the outside air section 17, and an evaporator 21 is installed inside the inside air section 16.
  • the condenser 20 and the evaporator 21 are connected by a refrigerant air pipe 22 and a refrigerant liquid pipe 23 to constitute a heat exchanger 24.
  • the heat exchanger 24 forms a refrigerant cycle, that is, a thermosiphon, with the refrigerant sealed inside.
  • the refrigerant air pipe 22 and the refrigerant liquid pipe 23 penetrate the inner and outer partition plates 15, and the penetrating portion is sealed with, for example, a gasket (not shown). Thereby, the independence (airtightness) of the inside air section 16 and the outside air section 17 in the casing 11 constituting the cooling device 1 is ensured.
  • the condenser 20 and the evaporator 21 of the heat exchanger 24 are each configured to be stacked in, for example, three rows in the vertical direction.
  • the refrigerant gas pipe 22 and the refrigerant liquid pipe 23 connect the uppermost rows, the middle rows, and the lowermost rows of the condenser 20 and the evaporator 21, respectively.
  • FIG. 9 shows only the refrigerant air pipe 22 and the refrigerant liquid pipe 23 connecting the uppermost rows.
  • the cooling system of the heating element configured as described above, when a heating element such as a power conditioner in the heating element storage box 2 is operated, heat is generated and the air (inside air) around the heating element is heated. Further, the blower in the heating element storage box 2 and the inside air blower 31 in the casing 11 are driven. At this time, the heated inside air flows into the chamber 28 from the indoor air outlet 10 that opens in the upper surface 2 c of the heating element storage box 2 by being pushed by the blower and sucked by the inside air blower 31.
  • a heating element such as a power conditioner in the heating element storage box 2
  • the blower in the heating element storage box 2 and the inside air blower 31 in the casing 11 are driven. At this time, the heated inside air flows into the chamber 28 from the indoor air outlet 10 that opens in the upper surface 2 c of the heating element storage box 2 by being pushed by the blower and sucked by the inside air blower 31.
  • the inflowing inside air spreads horizontally in the chamber 28 and is rectified.
  • the rectified inside air flows from the inside air passage holes 29 corresponding to the three cooling devices 1 while being dispersed into the inside air section 16 of the casing 11.
  • the inflowing inside air first passes through the evaporator 21 in the inside air section 16. Thereby, the inside air is cooled by exchanging heat with the refrigerant flowing in the evaporator 21.
  • the cooled inside air is sucked into the inside air blower chamber 31b by the inside air blower 31 via the inside air section 16.
  • the sucked inside air is turned 90 degrees in the inside air blower chamber 31b. And it blows off perpendicularly downward from the inside air blower outlet 14 of the inside air blower chamber 31b corresponding to the protrusion part 110 of the casing 11.
  • the inside air blower chamber 31b functions as a chamber and rectifies the sucked inside air.
  • FIG. 10 shows the flow of the inside air with black arrows and white arrows.
  • the indoor air inlet 7 of the heating element storage box 2 is provided below the front surface 2b of the heating element storage box 2. Therefore, the inside air is blown downward along the front surface 2 b of the heating element storage box 2 from the inside air outlet 14 formed on the lower surface of the projecting portion 110, and is sucked from the indoor air inlet 7. Thereby, the air cooled by the evaporator 21 of the inside air section 16 can be supplied to the indoor air inlet 7 of the heating element storage box 2 through the shortest path.
  • the inside air cooled by the cooling device 1 can be supplied almost directly into the heating element storage box 2 and efficiently cooled. Therefore, the set temperature of the air conditioner 6 can be increased as compared with the case where the inside air temperature is reduced only by the air conditioner 6. As a result, the power consumption of the air conditioner 6 can be suppressed and the energy saving effect can be improved.
  • the outside air blower 32 is driven. Thereby, as shown by the arrow in FIG. 11, outside air is sucked into the outside air compartment 17 from the outside air inlet 12 on the back surface of the casing 11.
  • the sucked outside air passes between the fins 27 of the condenser 20 of the heat exchanger 24. Thereby, the outside air is heat-exchanged with the refrigerant flowing in the condenser 20 and heated.
  • the outside air heated by the condenser 20 is sucked into the two outside air blowers 32 arranged in the outside air blower chamber 32b.
  • the sucked inside air is turned 90 degrees toward the back surface of the casing 11 in the outside air blower chamber 32b.
  • the direction-changed outside air is blown out horizontally in the rear direction, and is discharged from the outside-air outlet 13 through the wall surface 3c of the storage chamber 3 to the outside.
  • the inside air that has been dispersed in the chamber 28 from the indoor air outlet 10 and has flowed into the inside air section 16 is removed from the evaporator 21 (condensation). Passing between the corrugated fins 27 of the container 20) (substantially triangular space (including triangular space) in FIG. 4). At this time, the pressure loss of the inside air passing between the fins 27 is lower than that of the stacked heat exchange elements. Therefore, the output of the inside air blower 31 provided in the inside air blower chamber 31b can be lowered. As a result, the energy saving effect can be further enhanced as compared with the conventional blower. In addition, since the output can be similarly reduced in the two outside air blowers 32 provided in the outside air blower chamber 32b, an energy saving operation is possible.
  • the inside air blower 31 is constituted by one unit for the two outside air blowers 32.
  • the heating element storage box 2 includes a blower (not shown) inside. That is, the heated inside air can be caused to flow from the indoor air outlet 10 into the chamber 28 by being pushed by the blower. For this reason, even if the single air blower 31 is used, a sufficient blowing function can be obtained.
  • the refrigerant flowing inside the evaporator 21 evaporates from the air flowing in from the indoor air outlet 10 by absorbing heat.
  • the evaporated refrigerant flows into the condenser 20 through the refrigerant trachea 22.
  • the inside air is cooled by the endothermic action accompanying the evaporation of the refrigerant in the evaporator 21.
  • the cooled inside air is blown out from the inside air outlet 14 formed on the lower surface of the projecting portion 110 (corresponding to the inside air blower chamber 31b) of the casing 11 toward the indoor air inlet 7 of the heating element storage box 2. Thereby, cooling of a heat generating body can be performed efficiently.
  • the high-temperature refrigerant flowing in the condenser 20 is cooled by heat radiation to the outside air sucked from the outside air inlet 12, and is condensed and liquefied.
  • the liquefied refrigerant flows into the evaporator 21 again through the refrigerant liquid pipe 23.
  • the outside air heated by heat exchange with the refrigerant of the condenser 20 is discharged from the outside air outlet 13 of the casing 11 to the outside.
  • the refrigerant in the evaporator 21 absorbs heat from the inside air heated in the heating element storage box 2 and evaporates.
  • the evaporated refrigerant dissipates heat to the outside air passing through the condenser 20 of the heat exchanger 24 and condenses.
  • coolant which changes a gaseous-phase state and a liquid phase state repeatedly circulates the inside of the heat exchanger 24 by a density difference.
  • action which performs heat conveyance is implement
  • the cooling device 1 can be installed in a limited space between the upper surface 2c of the heating element storage box 2 and the ceiling surface 3b of the storage chamber 3. That is, the height of the cooling device 1 can be designed low. Further, in the case of a power conditioner or the like that has already been operated and no heat exchanger is installed, the cooling device 1 can be easily installed by retrofitting when the amount of heat generated by the heating element increases.
  • the outside air inlet 12 is provided on the upper side of the back side of the casing 11 shown in FIGS. 8A and 8B, and the outside air outlet 13 is provided on the back side of the outside air blower chamber 32b.
  • the hole (not shown) corresponding to the said external air inlet 12 and the external air outlet 13 is provided in the wall surface 3c of the storage chamber 3 which contact
  • FIG. As a result, it is possible to directly exchange outside air through the outside air inlet 12 and the outside air outlet 13. Therefore, there is no need to provide a duct or the like outside the cooling device 1. As a result, the height of the cooling device 1 can be reduced. Further, in the case of a power conditioner or the like that has already been operated and no heat exchanger is installed, the cooling device 1 can be easily installed by retrofitting when the amount of heat generated by the heating element increases.
  • the evaporator 21 and the condenser 20 of the heat exchanger 24 are arranged to be inclined at an inclination angle of 15 degrees to 25 degrees with respect to the horizontal direction.
  • a configuration is preferred.
  • the inclination angle is smaller than 15 degrees, the pressure loss of the air passing between the fins 27 increases.
  • the inclination angle is larger than 25 degrees, the height of the cooling device 1 is increased and the cooling device 1 is increased in size.
  • the cooling device 1 is described as an example of the configuration in which the cooling device 1 is provided on the upper surface 2c of the heating element storage box 2 via the chamber 28, but the present invention is not limited to this.
  • the chamber 28 is effective when a plurality of cooling devices 1 are provided. Therefore, when providing one cooling device 1, it can respond by providing the leg part which extended the four side surfaces of the casing 11 below. That is, the chamber 28 becomes unnecessary by covering the indoor air outlet 10 of the heating element storage box 2 with the legs.
  • the configuration in which three cooling devices 1 are provided for one heating element storage box 2 has been described as an example, but the present invention is not limited thereto.
  • the number of cooling devices 1 may be increased or decreased according to the amount of heat generated by the heating element.
  • a configuration in which one cooling device 1 is provided may be used.
  • the configuration in which two outside air blowers 32 are provided for one heat exchanger 24 is described as an example, but the present invention is not limited to this.
  • the number of outside air blowers 32 may be increased or decreased according to the amount of heat generated by the heating element.
  • the heat generation amount of the heating element is small, a configuration in which one outside air blower 32 is provided may be used.
  • the cooling device 1 is installed on the upper surface 2 c of the heating element storage box 2.
  • the increase in power consumption of the air conditioner is suppressed by installing a plurality of cooling devices 1 on the upper surface 2c of the heating element storage box 2. it can. As a result, it can respond appropriately according to the increase or decrease in the amount of heat generated by the heating element.
  • the present invention is useful as a cooling device for a heating element storage box or the like in which the calorific value changes because it can suppress an increase in power consumption of the air conditioner used in combination and cope with an increase in the calorific value.
  • Cooling device Heating body storage box 2a Back surface 2b, 11b Front surface 2c, 11a Upper surface 3 Storage room 3a Floor surface 3b Ceiling surface 3c Wall surface 4 Indoor unit 5 Outdoor unit 6 Air conditioner 7 Indoor air intake port 8 Outside air intake duct 9 Outside air exhaust Duct 10 Indoor air outlet 11 Casing 12 Outside air inlet 13 Outside air outlet 14 Inside air outlet 15 Inside / outside partition plate 16 Inside air compartment 16a, 16b, 17a, 17b Height 17 Outside air compartment 18 Outside air compartment plate 19 Outside air blower 20, 20A , 20B Condenser 21, 21A, 21B Evaporator 22 Refrigerant air pipe 23 Refrigerant liquid pipe 24 Heat exchanger 25 Header 26 Tube 27 Fin 27a Contact portion 28 Chamber 29 Inside air passage hole 30 Outside air air passage partition plate 31, 35 Inside air blower 31a Inside air Blower partition plate 31b Chamber 32 outside air blower 32a outside air blower partition plate 32b outside air blower chamber 33 outside air air path forming plate 110 protruding portions

Abstract

Air (internal air) inside a heating-element storage box (2) is blown into a casing (11) of a cooling device (1) by an internal-air blower (35) disposed inside the heating-element storage box (2) via an indoor-air outlet (10) provided in a substantially central area, in the longitudinal direction, of an upper surface (2c) of the heating-element storage box (2). Then, the blown internal air is cooled by heat exchangers (24) disposed in an inverted V shape that is horizontally symmetrical with respect to a center line formed by an external-air partitioning plate (18) provided inside the casing (11). Thus, the cooling device (1) can suppress an increase in power consumption of an air conditioner even if the amount of heat from a heating element increases.

Description

冷却装置Cooling system
 本発明は、例えばパワーコンディショナーなどの発熱体を収納した発熱体収納箱の冷却装置に関する。 The present invention relates to a cooling device for a heating element storage box that stores a heating element such as a power conditioner.
 パワーコンディショナーは、太陽光発電システムなどで使用される直流電流を交流電流に変換する。変換時において、パワーコンディショナーは発熱するため発熱体となる。そのため、使用時において、パワーコンディショナーを冷却する必要がある。 The power conditioner converts direct current used in solar power generation systems into alternating current. At the time of conversion, the power conditioner generates heat and becomes a heating element. Therefore, it is necessary to cool the power conditioner during use.
 そこで、従来、配電盤内にパワーコンディショナーを配置し、冷却ファンをパワーコンディショナーの上側に設けて冷却する、太陽光発電システムの冷却装置が開示されている(例えば、特許文献1参照)。 Therefore, conventionally, a cooling device for a solar power generation system has been disclosed in which a power conditioner is arranged in a switchboard and a cooling fan is provided on the upper side of the power conditioner to cool the solar power generation system (for example, see Patent Document 1).
 特許文献1の太陽光発電システムは、パワーコンディショナーの内部に排気ファンを備える。さらに、パワーコンディショナーの内部で発生する熱を、発熱体収納箱から外部に放出する、空調機を備える。空調機は、パワーコンディショナーが設けられた発熱体収納箱内を冷却する。 The solar power generation system of Patent Document 1 includes an exhaust fan inside the power conditioner. Furthermore, the air conditioner which discharge | releases the heat | fever which generate | occur | produces inside a power conditioner to the exterior from a heat generating body storage box is provided. The air conditioner cools the inside of the heating element storage box provided with the power conditioner.
特開2015-46952号公報JP2015-46952A
 しかし、空調機でパワーコンディショナーが設置された外部空間を冷却する場合、発熱体の発熱量が増加すれば、空調機の消費電力が増大する。 However, when the external space where the power conditioner is installed is cooled by the air conditioner, the power consumption of the air conditioner increases if the heat generation amount of the heating element increases.
 そこで、本発明は、空調機と併用し、発熱体の発熱量が増加しても、空調機の消費電力の増大を抑制できる冷却装置を提供する。 Therefore, the present invention provides a cooling device that can be used in combination with an air conditioner to suppress an increase in power consumption of the air conditioner even if the amount of heat generated by the heating element increases.
 つまり、本発明は、収納室内に、背面を収納室内壁面に近接させて設置された発熱体収納箱からの排熱を処理し収納室内空間を冷却する冷却装置である。冷却装置は、発熱体収納箱の上面に設置されたケーシングと、ケーシングの内部に配置される熱交換器、外気送風機および内外仕切板と、発熱体収納箱の内気をケーシング内に通流させる内部送風機と、を備える。熱交換器は、冷媒サイクルを形成する、凝縮器および蒸発器と、凝縮器と蒸発器とを接続する冷媒気管および冷媒液管とで構成される。内外仕切板は、ケーシングの内部にそれぞれ独立した、下側の内気区画と上側の外気区画を形成する。発熱体収納箱は、上面に室内空気吹出口、前面に室内空気吸込口を備える。ケーシングは、内気吹出口、外気吸込口、外気吹出口を有し、蒸発器は内気区画内に、凝縮器は外気区画内に設けられる。内気送風機は、収納室から発熱体収納箱の室内空気吸込口を介して吸い込み、室内空気吹出口から吹き出される内気を、ケーシングの内気区画の蒸発器を経由して内気吹出口から収納室内に吹き出す。さらに、外気送風機は、外気を、ケーシングの外気区画の外気吸込口から吸込み、凝縮器を経由して外気吹出口から外部に吹き出し、収納室を冷却する。 That is, the present invention is a cooling device that processes exhaust heat from a heating element storage box installed in the storage room with the back face close to the wall surface of the storage room, and cools the space in the storage room. The cooling device includes a casing installed on the upper surface of the heating element storage box, a heat exchanger disposed inside the casing, an outside air blower and an inner / outer partition plate, and an interior for allowing the inside air of the heating element storage box to flow into the casing. A blower. The heat exchanger includes a condenser and an evaporator that form a refrigerant cycle, and a refrigerant air pipe and a refrigerant liquid pipe that connect the condenser and the evaporator. The inner and outer partition plates form a lower inside air compartment and an upper outside air compartment, which are independent of each other inside the casing. The heating element storage box includes an indoor air outlet on the upper surface and an indoor air inlet on the front surface. The casing has an inside air outlet, an outside air inlet, and an outside air outlet. The evaporator is provided in the inside air compartment, and the condenser is provided in the outside air compartment. The indoor air blower sucks in the indoor air from the storage room via the indoor air intake port of the heating element storage box, and blows out the internal air blown out from the indoor air outlet through the evaporator in the internal air compartment of the casing into the storage room. Blow out. Further, the outside air blower sucks outside air from the outside air inlet of the outside air section of the casing, and blows out outside from the outside air outlet through the condenser to cool the storage chamber.
 この構成によれば、収納室内の発熱体収納箱の上面に冷却装置を設置する。これにより、発熱体収納箱内部の発熱体の発熱量が増加した場合でも、空調機の消費電力の増加を抑制できる。その結果、少ない電力消費で、発熱体の発熱量の増加に対応できる冷却装置を提供できる。 According to this configuration, the cooling device is installed on the upper surface of the heating element storage box in the storage chamber. Thereby, even when the emitted-heat amount of the heat generating body inside a heat generating body storage box increases, the increase in the power consumption of an air conditioner can be suppressed. As a result, it is possible to provide a cooling device that can cope with an increase in the amount of heat generated by the heating element with low power consumption.
図1は、本発明の実施の形態1に係る発熱体収納箱と冷却装置とを設置した収納室の内部透視斜視図である。FIG. 1 is an internal perspective view of a storage chamber in which a heating element storage box and a cooling device according to Embodiment 1 of the present invention are installed. 図2は、同発熱体収納箱と、冷却装置の内部を透視した斜視図である。FIG. 2 is a perspective view of the heating element storage box and the inside of the cooling device seen through. 図3は、同冷却装置の部分断面を示す構成図である。FIG. 3 is a block diagram showing a partial cross section of the cooling device. 図4は、同蒸発器(凝縮器)の構成図である。FIG. 4 is a configuration diagram of the evaporator (condenser). 図5は、本発明の実施の形態2の発熱体収納箱と冷却装置とを設置した収納室の内部透視斜視図である。FIG. 5 is an internal perspective view of the storage chamber in which the heating element storage box and the cooling device according to Embodiment 2 of the present invention are installed. 図6は、同発熱体収納箱と冷却装置の斜視図である。FIG. 6 is a perspective view of the heating element storage box and the cooling device. 図7は、同発熱体収納箱と冷却装置の分解斜視図である。FIG. 7 is an exploded perspective view of the heating element storage box and the cooling device. 図8Aは、同冷却装置の左側後方の斜め上方から見た内部透視斜視図である。FIG. 8A is an internal perspective view seen from diagonally above the left rear of the cooling device. 図8Bは、同冷却装置の右側後方の斜め上方から見た内部透視斜視図である。FIG. 8B is an internal see-through perspective view seen from the diagonally upper right rear of the cooling device. 図9は、図8Bの9-9線断面を示す構成図である。FIG. 9 is a configuration diagram showing a cross section taken along line 9-9 of FIG. 8B. 図10は、同冷却装置の内気の流れを示す図である。FIG. 10 is a diagram showing the flow of the inside air of the cooling device. 図11は、同冷却装置の外気の流れを示す図である。FIG. 11 is a diagram showing a flow of outside air of the cooling device.
 以下に、本発明の実施の形態について、図面を参照しながら説明する。なお、本実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the present embodiment.
 (実施の形態1)
 以下に、本実施の形態1に係る冷却装置を備える発熱体の冷却システムの概略構成について、図1を用いて説明する。
(Embodiment 1)
Hereinafter, a schematic configuration of a cooling system for a heating element including the cooling device according to the first embodiment will be described with reference to FIG.
 図1は、本実施の形態の冷却装置を備える発熱体の冷却システムの概略構成の一例を示す図である。なお、図1中に示す前方、後方、上方、下方、左方、右方にしたがって、各構成要素の配置を説明する。以降の図においても同様である。 FIG. 1 is a diagram illustrating an example of a schematic configuration of a cooling system for a heating element including the cooling device of the present embodiment. In addition, the arrangement | positioning of each component is demonstrated according to the front, back, upper direction, lower direction, left side, and right side shown in FIG. The same applies to the subsequent drawings.
 冷却システムは、例えば冷却装置1、発熱体収納箱2、収納室3、空調機6などから構成される。 The cooling system includes, for example, a cooling device 1, a heating element storage box 2, a storage chamber 3, an air conditioner 6, and the like.
 本実施の形態の冷却装置1は、図1に示すように、収納室3に収納される発熱体収納箱2の上面2cに設置される。発熱体収納箱2は、例えばパワーコンディショナーなどの発熱体(図示せず)を収納している。 The cooling device 1 of the present embodiment is installed on the upper surface 2c of the heating element storage box 2 stored in the storage chamber 3, as shown in FIG. The heating element storage box 2 stores a heating element (not shown) such as a power conditioner.
 収納室3の内部は、床面3aと天井面3bと4つの壁面3cとにより囲まれた気密性を有する空間で構成される。収納室3は、内部側に設置される室内機4と、外部側に設置される室外機5からなる空調機6を備える。 The interior of the storage room 3 is composed of an airtight space surrounded by a floor surface 3a, a ceiling surface 3b, and four wall surfaces 3c. The storage chamber 3 includes an air conditioner 6 including an indoor unit 4 installed on the inner side and an outdoor unit 5 installed on the outer side.
 発熱体収納箱2の背面2aは、収納室3の壁面3cの内壁面に、ほぼ平行(平行を含む)に近接して設置される。 The rear surface 2a of the heating element storage box 2 is installed on the inner wall surface of the wall surface 3c of the storage chamber 3 so as to be substantially parallel (including parallel).
 発熱体収納箱2は、前面2b側に室内空気吸込口7、上面2c側に室内空気吹出口10を備える。収納室3の内部の空気(以下、「内気」と記す)は、後述する内気送風機35の駆動により、室内空気吸込口7を介して発熱体収納箱2の内部に吸い込まれ、室内空気吹出口10を介して冷却装置1内に吹き出される。 The heating element storage box 2 includes an indoor air inlet 7 on the front surface 2b side and an indoor air outlet 10 on the upper surface 2c side. The air inside the storage chamber 3 (hereinafter referred to as “inside air”) is sucked into the heating element storage box 2 through the indoor air suction port 7 by driving of the inside air blower 35 described later, and the indoor air outlet 10 is blown out into the cooling device 1.
 冷却装置1は、上部に、収納室3の天井面3bから突出するように設置される、外気吸気ダクト8と外気排気ダクト9を備える。収納室3の外部の空気(以下、「外気」と記す)は、後述する外気送風機19の駆動により、外気吸気ダクト8を通して、冷却装置1の内部に吸い込まれる。冷却装置1内に吸い込まれた外気は、後述する熱交換器24の凝縮器20および外気排気ダクト9を介して、収納室3の外部に排出される。 The cooling device 1 includes an outside air intake duct 8 and an outside air exhaust duct 9 that are installed at the top so as to protrude from the ceiling surface 3 b of the storage chamber 3. Air outside the storage chamber 3 (hereinafter referred to as “outside air”) is sucked into the cooling device 1 through the outside air intake duct 8 by driving an outside air blower 19 described later. The outside air sucked into the cooling device 1 is discharged to the outside of the storage chamber 3 through a condenser 20 and an outside air exhaust duct 9 which will be described later.
 以上にように、本実施の形態の冷却装置を備える発熱体の冷却システムが構成される。 As described above, a cooling system for a heating element including the cooling device of the present embodiment is configured.
 以下に、冷却装置と発熱体収納箱の構成について、図2と図3を用いて説明する。 Hereinafter, the configuration of the cooling device and the heating element storage box will be described with reference to FIGS. 2 and 3.
 図2は、発熱体収納箱2と、本実施の形態にかかる冷却装置1の内部を透視した斜視図を示す。図3は、同冷却装置の部分断面を示す構成図を示す。 FIG. 2 shows a perspective view of the heating element storage box 2 and the inside of the cooling device 1 according to the present embodiment. FIG. 3 is a block diagram showing a partial cross section of the cooling device.
 図2に示すように、発熱体収納箱2は、上面2cの長手方向(左右方向)の略中央部分(中央部分を含む)に、例えば丸孔形状の室内空気吹出口10を備える。発熱体収納箱2の内気は、発熱体収納箱2の、例えば上面2cに設置された送風部(内気送風機35)の作用により、室内空気吹出口10から冷却装置1の内部に吹き出される。内気送風機35が上面2cに設置された場合、内気送風機35は、図3のように内気区画16と同じ空間に配置される状態となる。 As shown in FIG. 2, the heating element storage box 2 includes, for example, a round hole-shaped indoor air outlet 10 at a substantially central portion (including the central portion) in the longitudinal direction (left-right direction) of the upper surface 2 c. The inside air of the heating element storage box 2 is blown out from the indoor air outlet 10 to the inside of the cooling device 1 by the action of a blower (inside air blower 35) installed on the upper surface 2c of the heating element storage box 2, for example. When the inside air blower 35 is installed on the upper surface 2c, the inside air blower 35 is placed in the same space as the inside air section 16 as shown in FIG.
 冷却装置1は、ケーシング11と、ケーシング11の内部に配置される、2つの熱交換器24と、外気送風機19と、内外仕切板15と、外気区画仕切板18などで構成される。 The cooling device 1 includes a casing 11, two heat exchangers 24 disposed inside the casing 11, an outside air blower 19, an inside / outside partition plate 15, and an outside air partition partition plate 18.
 内外仕切板15は、ケーシング11の内部を上下方向に、下側の内気区画16と、上側の外気区画17とに分割する。 The inner / outer partition plate 15 divides the inside of the casing 11 in the vertical direction into a lower inside air compartment 16 and an upper outside air compartment 17.
 外気区画仕切板18は、外気区画17の内部を左右方向に、分割する。そして、2つの熱交換器24の凝縮器20Aおよび凝縮器20Bを、外気区画仕切板18を中心線として、左右対称に配置する。このとき、凝縮器20Aおよび凝縮器20Bは、外気区画仕切板18を中心線として、「ハの字形」(逆Vの字形)で左右対称に設置される。ここで、「ハの字形」とは、中心線から遠ざかるにつれて、斜め下方に向かって傾斜する形状を意味する。つまり、「ハの字形」とは、図2の前方から見て、中心線の左側においては左下に傾斜する形状を意味し、中心線の右側においては右下に傾斜する形状を意味する。 The outside air partition plate 18 divides the inside of the outside air compartment 17 in the left-right direction. And the condenser 20A and the condenser 20B of the two heat exchangers 24 are arranged symmetrically with the outside air partition plate 18 as the center line. At this time, the condenser 20 </ b> A and the condenser 20 </ b> B are installed symmetrically in a “C” shape (inverted V shape) with the outside air partition plate 18 as the center line. Here, the “C shape” means a shape that inclines obliquely downward as it goes away from the center line. That is, the “C-shape” means a shape that is inclined to the lower left on the left side of the center line and a shape that is inclined to the lower right on the right side of the center line as viewed from the front of FIG.
 ケーシング11は、上面11aに、外気吸気ダクト8と接続される外気吸込口12と、外気排気ダクト9と接続される外気吹出口13を備える。 The casing 11 includes an outside air inlet 12 connected to the outside air intake duct 8 and an outside air outlet 13 connected to the outside air exhaust duct 9 on the upper surface 11a.
 また、ケーシング11は、前面11bの両側に、内気区画16と連通し、収納室3の内部に向かって開口する内気吹出口14を備える。内気吹出口14は、内気送風機35の駆動により、冷却装置1を通流する内気を収納室3内に吹き出す。 Moreover, the casing 11 includes an inside air outlet 14 that communicates with the inside air section 16 and opens toward the inside of the storage chamber 3 on both sides of the front surface 11b. The inside air outlet 14 blows out the inside air flowing through the cooling device 1 into the storage chamber 3 by driving the inside air blower 35.
 つぎに、冷却装置1の詳細な構成について、図3を用いて説明する。 Next, a detailed configuration of the cooling device 1 will be described with reference to FIG.
 図3に示すように、冷却装置1のケーシング11の内部は、上述した内外仕切板15により、下側の内気区画16と上側の外気区画17に分割されている。さらに、外気区画17の内部は、外気区画仕切板18により、左右の2区画に分割されている。 As shown in FIG. 3, the inside of the casing 11 of the cooling device 1 is divided into a lower inside air section 16 and an upper outside air section 17 by the above-described inner and outer partition plates 15. Further, the inside of the outside air compartment 17 is divided into two right and left compartments by an outside air compartment partition plate 18.
 外気区画17の内部には、外気吸込口12に対応して、例えば前後方向に配置される2つの外気送風機19と、凝縮器20が設置される。内気区画16の内部には、蒸発器21が設置される。凝縮器20と蒸発器21は、冷媒気管22および冷媒液管23で接続され、熱交換器24を構成する。 In the outside air section 17, for example, two outside air blowers 19 arranged in the front-rear direction and a condenser 20 are installed corresponding to the outside air inlet 12. An evaporator 21 is installed inside the inside air section 16. The condenser 20 and the evaporator 21 are connected by a refrigerant air pipe 22 and a refrigerant liquid pipe 23 to constitute a heat exchanger 24.
 熱交換器24は、内部に封入された冷媒により、冷媒サイクル、すなわちサーモサイフォンを形成する。冷媒気管22と冷媒液管23は、内外仕切板15を貫通し、貫通部は、例えばガスケット(図示せず)などで封止される。これにより、冷却装置1を構成するケーシング11内の内気区画16と外気区画17との独立性(気密性)を、確保している。 The heat exchanger 24 forms a refrigerant cycle, that is, a thermosiphon, with the refrigerant sealed inside. The refrigerant air pipe 22 and the refrigerant liquid pipe 23 penetrate the inner / outer partition plate 15, and the penetrating portion is sealed with, for example, a gasket (not shown). Thereby, the independence (airtightness) of the inside air section 16 and the outside air section 17 in the casing 11 constituting the cooling device 1 is ensured.
 なお、熱交換器24の凝縮器20および蒸発器21は、それぞれ、例えば上下方向に3列に積層して構成される。このとき、冷媒気管22と冷媒液管23は、凝縮器20と蒸発器21の最上列同士、中央列同士、最下列同士をそれぞれ接続する。図3は、最上列同士を接続している冷媒気管22と冷媒液管23のみを図示している。 Note that the condenser 20 and the evaporator 21 of the heat exchanger 24 are each configured to be stacked in, for example, three rows in the vertical direction. At this time, the refrigerant gas pipe 22 and the refrigerant liquid pipe 23 connect the uppermost rows, the middle rows, and the lowermost rows of the condenser 20 and the evaporator 21, respectively. FIG. 3 illustrates only the refrigerant air pipe 22 and the refrigerant liquid pipe 23 that connect the uppermost rows.
 つぎに、熱交換器24を構成する蒸発器21(凝縮器20)について、図4を用いて説明する。なお、蒸発器21と凝縮器20の基本的な構成は、同じであるので、蒸発器21を例に、説明する。 Next, the evaporator 21 (condenser 20) which comprises the heat exchanger 24 is demonstrated using FIG. Since the basic configurations of the evaporator 21 and the condenser 20 are the same, the evaporator 21 will be described as an example.
 熱交換器24の蒸発器21は、図4に示すように、2本のヘッダー25と、複数のチューブ26と、波型のフィン27などで構成される。チューブ26は、ヘッダー26間に一定間隔で配置される。フィン27は、チューブ26間に挿入され、内気または外気が通流する。そして、フィン27を介して、内気および外気の熱をチューブ26に伝達して、チューブ26内を流れる冷媒と熱交換する。チューブ26とフィン27は、多数の接触部27aで溶接される。接触部27aの溶接により、チューブ26とフィン27との良好な伝熱性が付与される。 As shown in FIG. 4, the evaporator 21 of the heat exchanger 24 includes two headers 25, a plurality of tubes 26, and corrugated fins 27. The tubes 26 are arranged at regular intervals between the headers 26. The fins 27 are inserted between the tubes 26 and allow the inside air or outside air to flow therethrough. Then, the heat of the inside air and the outside air is transmitted to the tube 26 through the fins 27 to exchange heat with the refrigerant flowing in the tube 26. The tube 26 and the fin 27 are welded at a large number of contact portions 27a. By welding the contact portion 27a, good heat transfer between the tube 26 and the fin 27 is provided.
 つぎに、冷却装置1の動作および作用について、主に内気および外気の流れにしたがって説明する。 Next, the operation and action of the cooling device 1 will be described mainly according to the flow of inside air and outside air.
 まず、冷却装置1の内気の流れについて説明する。 First, the flow of the inside air of the cooling device 1 will be described.
 上記構成の発熱体の冷却システムにおいて、発熱体収納箱2内のパワーコンディショナーなどの発熱体が作動すると発熱し、発熱体の周囲の内部の空気(内気)を加熱する。このとき、発熱体収納箱2の、例えば上面2cに配設された内気送風機35が駆動される。これにより、加熱された内気は、発熱体収納箱2の上面2cに開口する室内空気吹出口10から、ケーシング11の内気区画16へ流入する。なお、室内空気吹出口10は、上述したように、「ハの字形」(逆Vの字形)に配置された2つの蒸発器21を構成する左側の蒸発器21Aと右側の蒸発器21Bとの間に設けられる。 In the cooling system of the heating element configured as described above, when a heating element such as a power conditioner in the heating element storage box 2 is operated, heat is generated and the air (inside air) around the heating element is heated. At this time, the inside air blower 35 disposed on, for example, the upper surface 2c of the heating element storage box 2 is driven. Thereby, the heated inside air flows into the inside air compartment 16 of the casing 11 from the indoor air outlet 10 that opens to the upper surface 2 c of the heating element storage box 2. As described above, the indoor air outlet 10 includes the left evaporator 21A and the right evaporator 21B that constitute the two evaporators 21 arranged in a “C” shape (inverted V shape). Between.
 つぎに、室内空気吹出口10から、ケーシング11の内気区画16へ流入した内気は、左右に分かれ、蒸発器21のフィン27間を通過する。これにより、加熱された内気は、蒸発器21を流れる冷媒と熱交換され、冷却される。 Next, the inside air that has flowed into the inside air section 16 of the casing 11 from the indoor air outlet 10 is divided into left and right and passes between the fins 27 of the evaporator 21. Thereby, the heated inside air is heat-exchanged with the refrigerant flowing through the evaporator 21 and cooled.
 つぎに、蒸発器21で冷却された内気は、ケーシング11の左右方向の両側で、前方に向けて開口する内気吹出口14から収納室3内に吹き出される。なお、図3には、一例として、ケーシング11の内気区画16における右側の内気の流れを、実線矢印で示している。 Next, the inside air cooled by the evaporator 21 is blown into the storage chamber 3 from the inside air outlet 14 that opens forward on both sides of the casing 11 in the left-right direction. In FIG. 3, as an example, the flow of the internal air on the right side in the internal air section 16 of the casing 11 is indicated by a solid line arrow.
 このとき、本実施の形態では、蒸発器21を、左側の蒸発器21Aと右側の蒸発器21Bを左右対称に設けている。そのため、ケーシング11の内気区画16に流入した内気は、ほぼ均等(均等を含む)に左右に分配される。そして、左側の蒸発器21Aと右側の蒸発器21Bには、ほぼ同じ風量(同じ風量を含む)の内気が通過する。 At this time, in this embodiment, the evaporator 21 is provided with the left evaporator 21A and the right evaporator 21B symmetrically. Therefore, the inside air that has flowed into the inside air section 16 of the casing 11 is distributed to the left and right substantially evenly (including evenly). Then, the inside air of substantially the same air volume (including the same air volume) passes through the left evaporator 21A and the right evaporator 21B.
 収納室3内に吹き出された内気は、発熱体収納箱2の前面2bに開口する室内空気吸込口7から吸込まれて、再び、発熱体を冷却するように循環する。 The inside air blown into the storage chamber 3 is sucked from the indoor air inlet 7 that opens in the front surface 2b of the heating element storage box 2, and circulates again to cool the heating element.
 なお、図4に示すように、室内空気吹出口10から流入した内気は、蒸発器21の波型のフィン27間(図4に示す略三角形空間(三角形空間を含む))を通過する。このとき、積層した熱交換素子に比べて、フィン27間を通過する内気の圧力損失が低い。そのため、ケーシング11の内気区画16内に、別途送風機を設けず、発熱体収納箱2の上面2cなどに配置した内気送風機35を送風機として利用できる。 In addition, as shown in FIG. 4, the inside air which flowed in from the indoor air outlet 10 passes between the corrugated fins 27 of the evaporator 21 (substantially triangular space (including the triangular space) shown in FIG. 4). At this time, the pressure loss of the inside air passing between the fins 27 is lower than that of the stacked heat exchange elements. Therefore, a separate air blower is not provided in the inside air compartment 16 of the casing 11, and the inside air blower 35 disposed on the upper surface 2 c of the heating element storage box 2 can be used as a blower.
 以下に、冷却装置1の外気の流れについて説明する。 Hereinafter, the flow of the outside air of the cooling device 1 will be described.
 まず、上記構成の発熱体の冷却システムが起動すると、外気送風機19が駆動される。これにより、図3に示すように、ケーシング11の外気区画17内では、図1に示す外気吸気ダクト8を通過して、ケーシング11の外気吸込口12から、外部の空気(外気)が吸い込まれる。 First, when the cooling system for the heating element configured as described above is activated, the outside air blower 19 is driven. Accordingly, as shown in FIG. 3, outside air (outside air) is sucked from the outside air inlet 12 of the casing 11 through the outside air intake duct 8 shown in FIG. 1 in the outside air compartment 17 of the casing 11. .
 吸い込まれた外気は、図3に示す破線矢印のように、熱交換器24の凝縮器20のフィン27間を通過する。これにより、吸い込まれた外気は、凝縮器20内を流れる冷媒と熱交換され、加熱される。 The sucked outside air passes between the fins 27 of the condenser 20 of the heat exchanger 24 as indicated by broken line arrows shown in FIG. Thereby, the sucked outside air is heat-exchanged with the refrigerant flowing in the condenser 20 and heated.
 凝縮器20で加熱された外気は、ケーシング11の外気吹出口13から外気排気ダクト9を通過して室外に排出される。 The outside air heated by the condenser 20 is discharged from the outside air outlet 13 of the casing 11 to the outside through the outside air exhaust duct 9.
 このとき、熱交換器24は、以下のように動作する。 At this time, the heat exchanger 24 operates as follows.
 まず、蒸発器21の内部を流れる冷媒は、室内空気吹出口10から流入した内気から吸熱により蒸発する。蒸発した冷媒は、冷媒気管22を通って凝縮器20へ流入する。このとき、内気は、蒸発器21の冷媒の蒸発に伴う吸熱作用により冷却される。冷却された内気は、ケーシング11の内気区画16の左右の両側に設けた内気吹出口14から収納室3内に吹き出される。これにより、発熱体で加熱された内気を冷却することができる。 First, the refrigerant flowing inside the evaporator 21 evaporates from the inside air flowing in from the indoor air outlet 10 by absorbing heat. The evaporated refrigerant flows into the condenser 20 through the refrigerant trachea 22. At this time, the inside air is cooled by the endothermic action accompanying the evaporation of the refrigerant in the evaporator 21. The cooled inside air is blown into the storage chamber 3 from the inside air outlets 14 provided on the left and right sides of the inside air section 16 of the casing 11. Thereby, the inside air heated with the heat generating body can be cooled.
 一方、凝縮器20内を流れる高温の冷媒は、外気吸込口12から吸い込まれた外気への放熱により冷やされ、凝縮して液化する。液化した冷媒は、冷媒液管23を通って、再び蒸発器21へ流入する。このとき、凝縮器20の冷媒との熱交換により昇温された外気は、ケーシング11の外気吹出口13から外気排気ダクト9を通過して、屋外へ排出される。 On the other hand, the high-temperature refrigerant flowing in the condenser 20 is cooled by heat radiation to the outside air sucked from the outside air inlet 12, and is condensed and liquefied. The liquefied refrigerant flows into the evaporator 21 again through the refrigerant liquid pipe 23. At this time, the outside air heated by heat exchange with the refrigerant in the condenser 20 passes through the outside air outlet 13 of the casing 11 and is discharged outside.
 つまり、熱交換器24は、蒸発器21内の冷媒が発熱体収納箱2内で加熱された内気から熱を吸熱して蒸発する。蒸発した冷媒は、熱交換器24の凝縮器20を通過する外気へ放熱して凝縮する。そして、気相状態と液相状態を繰り返し変化する冷媒が、密度差により熱交換器24の内部を循環する。これにより、熱搬送を行うサーモサイフォン作用が実現される。 That is, in the heat exchanger 24, the refrigerant in the evaporator 21 absorbs heat from the inside air heated in the heating element storage box 2 and evaporates. The evaporated refrigerant dissipates heat to the outside air passing through the condenser 20 of the heat exchanger 24 and condenses. And the refrigerant | coolant which changes a gaseous-phase state and a liquid phase state repeatedly circulates the inside of the heat exchanger 24 by a density difference. Thereby, the thermosiphon effect | action which performs heat conveyance is implement | achieved.
 上述したように、本実施の形態では、冷却装置1の熱交換器24は、外気区画仕切板18を中心線として、左右対称に「ハの字形」(逆Vの字形)で配設される。このとき、熱交換器24を構成する蒸発器21と凝縮器20を、水平に対して、例えば20度の傾斜角度で設置する。 As described above, in the present embodiment, the heat exchanger 24 of the cooling device 1 is arranged in a “C-shape” (inverted V-shape) symmetrically about the outside air partition plate 18 as a center line. . At this time, the evaporator 21 and the condenser 20 constituting the heat exchanger 24 are installed at an inclination angle of, for example, 20 degrees with respect to the horizontal.
 この構成により、発熱体収納箱2の上面2cと収納室3の天井面3bとの間の限られた空間内に、冷却装置1を設置できる。つまり、冷却装置1の高さを低く設計できる。また、既に稼働し、熱交換器が設置されていないパワーコンディショナーなどにおいて、発熱体の発熱量が増加した場合、後付けにより、容易に、冷却装置1を追加設置できる。 With this configuration, the cooling device 1 can be installed in a limited space between the upper surface 2c of the heating element storage box 2 and the ceiling surface 3b of the storage chamber 3. That is, the height of the cooling device 1 can be designed low. Further, in the case of a power conditioner or the like that has already been operated and no heat exchanger is installed, the cooling device 1 can be easily installed by retrofitting when the amount of heat generated by the heating element increases.
 このとき、蒸発器21と凝縮器20の傾斜角度は、15度から25度が好ましい。傾斜角度が15度よりも小さい場合、フィン27間を通過する空気の圧力損失が増大する。一方、傾斜角度が25度よりも大きい場合、冷却装置1の高さが高くなり、冷却装置1が大型化する。 At this time, the inclination angle of the evaporator 21 and the condenser 20 is preferably 15 degrees to 25 degrees. When the inclination angle is smaller than 15 degrees, the pressure loss of the air passing between the fins 27 increases. On the other hand, when the inclination angle is larger than 25 degrees, the height of the cooling device 1 is increased and the cooling device 1 is increased in size.
 なお、本実施の形態では、熱交換器24を2個設ける構成を例に説明したが、これに限られない。例えば、熱交換器24の数は、発熱体の発熱量に応じて増減すればよい。発熱体の発熱量が少ない場合、熱交換器24を1個設ける構成でもよい。 In the present embodiment, the configuration in which two heat exchangers 24 are provided has been described as an example, but the present invention is not limited to this. For example, the number of heat exchangers 24 may be increased or decreased according to the amount of heat generated by the heating element. When the heat generation amount of the heating element is small, a configuration in which one heat exchanger 24 is provided may be used.
 また、本実施の形態では、1つの熱交換器24に対して、外気送風機19を2個設ける構成を例に説明したが、これに限られない。例えば、外気送風機19の数は、発熱体の発熱量に応じて増減すればよい。発熱体の発熱量が少ない場合、外気送風機19を1個設ける構成でもよい。 In the present embodiment, the configuration in which two outside air blowers 19 are provided for one heat exchanger 24 has been described as an example, but the present invention is not limited thereto. For example, the number of outside air blowers 19 may be increased or decreased according to the amount of heat generated by the heating element. When the heat generation amount of the heating element is small, a configuration in which one outside air blower 19 is provided may be used.
 また、上述したように、本実施の形態の2つの凝縮器20は、外気区画仕切板18を中心線として、左側の凝縮器20Aと右側の凝縮器20Bとを左右対称に設けることが好ましい。外気区画仕切板18により、左側の凝縮器20Aを通過した外気と、右側の凝縮器20Bを通過した外気は、互いに干渉することなく、外気吹出口13から室外に排出される。これにより、外気区画17内に流入する外気は、凝縮器20のフィン27間をスムーズに通過できる。その結果、外気と、熱交換器24の凝縮器20内の冷媒との熱交換効率を高めることができる。 Also, as described above, the two condensers 20 of the present embodiment preferably have the left condenser 20A and the right condenser 20B symmetrically provided with the outside air partitioning plate 18 as the center line. The outside air that has passed through the left condenser 20A and the outside air that has passed through the right condenser 20B are discharged from the outside air outlet 13 to the outside without interfering with each other by the outside air partitioning plate 18. Thereby, the outside air flowing into the outside air section 17 can smoothly pass between the fins 27 of the condenser 20. As a result, the heat exchange efficiency between the outside air and the refrigerant in the condenser 20 of the heat exchanger 24 can be increased.
 また、図3に示すように、内気送風機35で室内空気吹出口10から吹き出された内気が蒸発器21を通過する前の内気区画16の高さ16aは、蒸発器21を通過した後の内気区画16の高さ16bよりも高いことが好ましい。この構成によれば、内気区画16のより広い空間から、蒸発器21に向かって良好、例えば圧力損失の低い状態で内気が当たる。そのため、内気と、熱交換器24の蒸発器21内の冷媒との、熱交換効率をさらに高めることができる。 Further, as shown in FIG. 3, the height 16 a of the inside air section 16 before the inside air blown out from the room air outlet 10 by the inside air blower 35 passes through the evaporator 21 is the inside air after passing through the evaporator 21. It is preferable that the height of the section 16 is higher than 16b. According to this configuration, the inside air hits the evaporator 21 from a wider space of the inside air section 16 toward the evaporator 21, for example, with a low pressure loss. Therefore, the heat exchange efficiency between the inside air and the refrigerant in the evaporator 21 of the heat exchanger 24 can be further increased.
 さらに、図3に示すように、外気送風機19で外気吸込口12から吸い込まれた外気が凝縮器20を通過する前の外気区画17の高さ17aは、凝縮器20を通過した後の外気区画17の高さ17bよりも高いことが好ましい。この構成によれば、外気区画17のより広い空間から、凝縮器20に向かって良好に外気が当たる。そのため、外気と、熱交換器24の凝縮器20内の冷媒との、熱交換効率をさらに高めることができる。 Further, as shown in FIG. 3, the height 17 a of the outside air section 17 before the outside air sucked from the outside air inlet 12 by the outside air blower 19 passes through the condenser 20 is the outside air section after passing through the condenser 20. The height 17 is preferably higher than the height 17b. According to this configuration, outside air strikes favorably toward the condenser 20 from a wider space of the outside air section 17. Therefore, the heat exchange efficiency between the outside air and the refrigerant in the condenser 20 of the heat exchanger 24 can be further increased.
 以上で説明したように、本実施の形態によれば、発熱体収納箱2の上面2cに冷却装置1を設置する。これにより、発熱体収納箱2内部の発熱体の発熱量が増加した場合でも、個別に冷却装置1を配設することにより、空調機の消費電力の増加を抑制できる。その結果、発熱体の発熱量の増減に応じて、適切に対応できる。 As described above, according to the present embodiment, the cooling device 1 is installed on the upper surface 2 c of the heating element storage box 2. Thereby, even when the calorific value of the heating element inside the heating element storage box 2 increases, the increase in the power consumption of the air conditioner can be suppressed by arranging the cooling device 1 individually. As a result, it can respond appropriately according to the increase or decrease in the amount of heat generated by the heating element.
 (実施の形態2)
 以下に、本実施の形態2に係る冷却装置を備える発熱体の冷却システムの概略構成について、図5から図7を用いて説明する。
(Embodiment 2)
Below, schematic structure of the cooling system of a heat generating body provided with the cooling device concerning this Embodiment 2 is demonstrated using FIGS. 5-7.
 図5は、本実施の形態2の冷却装置を備える発熱体の冷却システムの概略構成の一例を示す図である。図6は、同発熱体収納箱と冷却装置の斜視図である。 FIG. 5 is a diagram illustrating an example of a schematic configuration of a heating element cooling system including the cooling device according to the second embodiment. FIG. 6 is a perspective view of the heating element storage box and the cooling device.
 図7は、同発熱体収納箱と冷却装置の分解斜視図である。 FIG. 7 is an exploded perspective view of the heating element storage box and the cooling device.
 本実施の形態の冷却装置1は、図5から図7に示すように、収納室3に収納される、例えば1つの発熱体収納箱2の上面2cに複数個設置される。発熱体収納箱2は、例えばパワーコンディショナーなどの発熱体(図示せず)を収納している。 As shown in FIGS. 5 to 7, a plurality of cooling devices 1 according to the present embodiment are installed in the upper surface 2 c of, for example, one heating element storage box 2 stored in the storage chamber 3. The heating element storage box 2 stores a heating element (not shown) such as a power conditioner.
 収納室3の内部は、床面3aと天井面3bと4つの壁面3cとにより囲まれた気密性を有する空間で構成される。収納室3は、内部側に設置された室内機4と、外部側に設置された室外機5からなる空調機6を備える。 The interior of the storage room 3 is composed of an airtight space surrounded by a floor surface 3a, a ceiling surface 3b, and four wall surfaces 3c. The storage chamber 3 includes an air conditioner 6 including an indoor unit 4 installed on the inner side and an outdoor unit 5 installed on the outer side.
 発熱体収納箱2の背面2aは、収納室3の壁面3cの内壁面に、ほぼ平行(平行を含む)に近接して配設される。 The rear surface 2a of the heating element storage box 2 is disposed on the inner wall surface of the wall surface 3c of the storage chamber 3 so as to be substantially parallel (including parallel).
 発熱体収納箱2は、前面2b側に室内空気吸込口7、上面2c側に室内空気吹出口10を備える。収納室3の内部の空気(以下、「内気」と記す)は、後述する内気送風機31の駆動により、室内空気吸込口7を介して発熱体収納箱2の内部に吸い込まれ、室内空気吹出口10を介して冷却装置1内に吹き出される。 The heating element storage box 2 includes an indoor air inlet 7 on the front surface 2b side and an indoor air outlet 10 on the upper surface 2c side. Air inside the storage chamber 3 (hereinafter referred to as “inside air”) is sucked into the heating element storage box 2 through the indoor air suction port 7 by driving of an inside air blower 31 described later, 10 is blown out into the cooling device 1.
 また、冷却装置1は、図6および図7に示すように、チャンバー28を介して発熱体収納箱2の上面2cに複数(例えば、本実施の形態では3個)、配設される。このとき、冷却装置1は、発熱体収納箱2の前面2bより突出する突出部110を有する。チャンバー28には、配設される複数の冷却装置1のそれぞれに対応する内気通過孔29が形成されている。これにより、発熱体収納箱2の室内空気吹出口10からチャンバー28に流入する内気は、それぞれの冷却装置1に分配される。 Further, as shown in FIGS. 6 and 7, a plurality of cooling devices 1 (for example, three in the present embodiment) are disposed on the upper surface 2 c of the heating element storage box 2 through the chamber 28. At this time, the cooling device 1 has a protruding portion 110 that protrudes from the front surface 2 b of the heating element storage box 2. The chamber 28 is formed with an inside air passage hole 29 corresponding to each of the plurality of cooling devices 1 arranged. Thereby, the inside air flowing into the chamber 28 from the indoor air outlet 10 of the heating element storage box 2 is distributed to the respective cooling devices 1.
 以上のように、本実施の形態の冷却装置を備える発熱体の冷却システムが構成される。 As described above, a cooling system for a heating element including the cooling device of the present embodiment is configured.
 以下に、本実施の形態の冷却装置の詳細な構成について、図8Aと図8Bを用いて説明する。 Hereinafter, a detailed configuration of the cooling device of the present embodiment will be described with reference to FIGS. 8A and 8B.
 図8Aは、冷却装置1の左側後方の斜め上方から見た内部透視斜視図を示す。図8Bは、冷却装置1の右側後方の斜め上方から見た内部透視斜視図を示す。 FIG. 8A shows an internal perspective view seen from diagonally above the left rear of the cooling device 1. FIG. 8B shows an internal perspective view seen from diagonally above the right rear of the cooling device 1.
 冷却装置1は、図8A、図8Bに示すように、ケーシング11と、ケーシング11の内部に配置される、熱交換器24、内気送風機31、2台の外気送風機32、内外仕切板15、内気送風機仕切板31a、外気送風機仕切板32a、外気風路仕切板30および外気風路形成板33などから構成される。 As shown in FIGS. 8A and 8B, the cooling device 1 includes a casing 11, a heat exchanger 24, an inside air blower 31, two outside air blowers 32, an inside / outside partition plate 15, an inside air, which are arranged inside the casing 11. It is comprised from the air blower partition plate 31a, the external air blower partition plate 32a, the external air wind path partition plate 30, the external air wind path forming plate 33, and the like.
 内外仕切板15は、ケーシング11の内部を上下方向に、下側の内気区画16と、上側の外気区画17とに分割する。 The inner / outer partition plate 15 divides the inside of the casing 11 in the vertical direction into a lower inside air compartment 16 and an upper outside air compartment 17.
 内気送風機仕切板31aは、ケーシング11の前面11b(図6参照)側で前後方向にケーシング11を分割して、内気送風機チャンバー31bを形成する。 The inside air blower partition plate 31a divides the casing 11 in the front-rear direction on the front surface 11b (see FIG. 6) side of the casing 11 to form an inside air blower chamber 31b.
 外気送風機仕切板32aは、ケーシング11の左右方向に分割して、1つの側面側に外気送風機チャンバー32bを形成する。これにより、ケーシング11は、内気区画16、外気区画17、内気送風機チャンバー31b、外気送風機チャンバー32bに区分けされる。 The outside air blower partition plate 32a is divided in the left-right direction of the casing 11 to form an outside air blower chamber 32b on one side surface side. Thereby, the casing 11 is divided into the inside air section 16, the outside air section 17, the inside air blower chamber 31b, and the outside air blower chamber 32b.
 外気送風機チャンバー32bは、内部に、2台の外気送風機32が配置される。2台の外気送風機32は、外気風路仕切板30で個別に仕切られる。これにより、外部の空気(外気)は、2台の外気送風機32を介して、それぞれの風路から外部に排出される。 The outside air blower chamber 32b has two outside air blowers 32 disposed therein. The two outside air blowers 32 are individually partitioned by the outside air path partition plate 30. Thereby, outside air (outside air) is discharged to the outside from the respective air passages via the two outside air blowers 32.
 内気送風機チャンバー31bは、内部に、少なくとも1台の内気送風機31が配置される。 The inside air blower chamber 31b has at least one inside air blower 31 disposed therein.
 外気風路形成板33は、外気吸込口12から凝縮器20への風路を形成するように外気区画17内に配置される。具体的には、外気風路形成板33は、凝縮器20の側面を覆うように設けられる。 The outside air path forming plate 33 is disposed in the outside air section 17 so as to form an air path from the outside air inlet 12 to the condenser 20. Specifically, the outside air path formation plate 33 is provided so as to cover the side surface of the condenser 20.
 ケーシング11は、発熱体収納箱2の背面2a側(図7参照)で上側に開口し、外気区画17と連通する外気吸込口12を備える。外気送風機チャンバー32bは、ケーシング11の背面2a側に開口する外気吹出口13を備える。 The casing 11 includes an outside air inlet 12 that opens upward on the back surface 2a side of the heating element storage box 2 (see FIG. 7) and communicates with the outside air compartment 17. The outside air blower chamber 32 b includes an outside air outlet 13 that opens to the back surface 2 a side of the casing 11.
 また、ケーシング11は、発熱体収納箱2の前面2b(図6参照)より突出する突出部110を有する。突出部110には、ケーシング11の下面に開口する内気吹出口14が形成される。これにより、冷却装置1の蒸発器21で熱交換された内気は、突出部110の内気吹出口14から発熱体収納箱2の前面2bに沿って下向きに吹き出される。 Moreover, the casing 11 has the protrusion part 110 which protrudes from the front surface 2b (refer FIG. 6) of the heat generating body storage box 2. As shown in FIG. An internal air outlet 14 that opens to the lower surface of the casing 11 is formed in the protrusion 110. Thereby, the inside air heat-exchanged by the evaporator 21 of the cooling device 1 is blown out downward along the front surface 2 b of the heating element storage box 2 from the inside air outlet 14 of the protrusion 110.
 つぎに、冷却装置1の熱交換器24の動作および作用について、図9を用いて、説明する。 Next, the operation and action of the heat exchanger 24 of the cooling device 1 will be described with reference to FIG.
 図9は、図8Bの9-9線断面を示す構成図である。 FIG. 9 is a configuration diagram showing a cross section taken along line 9-9 of FIG. 8B.
 図9に示すように、ケーシング11の内部は、上述した内外仕切板15により、下側の内気区画16と上側の外気区画17に分割されている。 As shown in FIG. 9, the inside of the casing 11 is divided into a lower inside air compartment 16 and an upper outside air compartment 17 by the inner and outer partition plates 15 described above.
 外気区画17の内部には凝縮器20が、内気区画16の内部には蒸発器21が設置される。凝縮器20と蒸発器21は、冷媒気管22および冷媒液管23で接続され、熱交換器24を構成する。 A condenser 20 is installed inside the outside air section 17, and an evaporator 21 is installed inside the inside air section 16. The condenser 20 and the evaporator 21 are connected by a refrigerant air pipe 22 and a refrigerant liquid pipe 23 to constitute a heat exchanger 24.
 熱交換器24は、内部に封入された冷媒により、冷媒サイクル、すなわちサーモサイフォンを形成する。冷媒気管22と冷媒液管23は、内外仕切板15を貫通し、貫通部は、例えばガスケットなど(図示せず)で封止される。これにより、冷却装置1を構成するケーシング11内の内気区画16と外気区画17との独立性(気密性)を、確保している。 The heat exchanger 24 forms a refrigerant cycle, that is, a thermosiphon, with the refrigerant sealed inside. The refrigerant air pipe 22 and the refrigerant liquid pipe 23 penetrate the inner and outer partition plates 15, and the penetrating portion is sealed with, for example, a gasket (not shown). Thereby, the independence (airtightness) of the inside air section 16 and the outside air section 17 in the casing 11 constituting the cooling device 1 is ensured.
 なお、熱交換器24の凝縮器20および蒸発器21は、それぞれ、例えば上下方向に3列に積層して構成される。このとき、冷媒気管22と冷媒液管23は、凝縮器20と蒸発器21の最上列同士、中央列同士、最下列同士をそれぞれ接続する。図9は、最上列同士を接続している冷媒気管22と冷媒液管23のみを図示している。 Note that the condenser 20 and the evaporator 21 of the heat exchanger 24 are each configured to be stacked in, for example, three rows in the vertical direction. At this time, the refrigerant gas pipe 22 and the refrigerant liquid pipe 23 connect the uppermost rows, the middle rows, and the lowermost rows of the condenser 20 and the evaporator 21, respectively. FIG. 9 shows only the refrigerant air pipe 22 and the refrigerant liquid pipe 23 connecting the uppermost rows.
 また、本実施の形態の熱交換器24を構成する蒸発器21(凝縮器20)については、実施の形態1で図4を用いて説明した熱交換器24と同じであるので、説明を省略する。 Moreover, about the evaporator 21 (condenser 20) which comprises the heat exchanger 24 of this Embodiment, since it is the same as the heat exchanger 24 demonstrated using FIG. 4 in Embodiment 1, description is abbreviate | omitted. To do.
 つぎに、冷却装置1の冷却作用について、主に内気および外気の流れにしたがって、説明する。 Next, the cooling action of the cooling device 1 will be described mainly in accordance with the flow of inside air and outside air.
 まず、冷却装置1の内気の流れについて、図10を用いて説明する。 First, the flow of the inside air of the cooling device 1 will be described with reference to FIG.
 上記構成の発熱体の冷却システムにおいて、発熱体収納箱2内のパワーコンディショナーなどの発熱体が作動すると発熱し、発熱体の周囲の内部の空気(内気)を加熱する。また、発熱体収納箱2内の送風機およびケーシング11内の内気送風機31が駆動される。このとき、加熱された内気は、送風機による押し込みおよび内気送風機31による吸い込みにより、発熱体収納箱2の上面2cに開口する室内空気吹出口10から、チャンバー28内へ流入する。 In the cooling system of the heating element configured as described above, when a heating element such as a power conditioner in the heating element storage box 2 is operated, heat is generated and the air (inside air) around the heating element is heated. Further, the blower in the heating element storage box 2 and the inside air blower 31 in the casing 11 are driven. At this time, the heated inside air flows into the chamber 28 from the indoor air outlet 10 that opens in the upper surface 2 c of the heating element storage box 2 by being pushed by the blower and sucked by the inside air blower 31.
 流入した内気は、チャンバー28内で水平方向に広がり整流される。整流された内気は、3個の冷却装置1のそれぞれと対応する内気通過孔29から、ケーシング11の内気区画16へ分散しながら流入する。 The inflowing inside air spreads horizontally in the chamber 28 and is rectified. The rectified inside air flows from the inside air passage holes 29 corresponding to the three cooling devices 1 while being dispersed into the inside air section 16 of the casing 11.
 流入した内気は、まず、内気区画16内の蒸発器21を通過する。これにより、内気は、蒸発器21内を流れる冷媒と熱交換して冷却される。冷却された内気は内気区画16を経由して、内気送風機チャンバー31b内に、内気送風機31により吸い込まれる。吸い込まれた内気は、内気送風機チャンバー31bで90度方向転換される。そして、ケーシング11の突出部110に対応する内気送風機チャンバー31bの内気吹出口14から垂直下方向に吹き出される。この場合、内気送風機チャンバー31bは、チャンバーとして機能し、吸い込んだ内気を整流する。そして、整流された内気は、発熱体収納箱2の前面2bより突出した突出部110の下面に開口した内気吹出口14から発熱体収納箱2の前面2bに沿って下向きに吹き出される。図10は、上記内気の流れを、黒塗り矢印および白抜き矢印で示している。 The inflowing inside air first passes through the evaporator 21 in the inside air section 16. Thereby, the inside air is cooled by exchanging heat with the refrigerant flowing in the evaporator 21. The cooled inside air is sucked into the inside air blower chamber 31b by the inside air blower 31 via the inside air section 16. The sucked inside air is turned 90 degrees in the inside air blower chamber 31b. And it blows off perpendicularly downward from the inside air blower outlet 14 of the inside air blower chamber 31b corresponding to the protrusion part 110 of the casing 11. In this case, the inside air blower chamber 31b functions as a chamber and rectifies the sucked inside air. Then, the rectified inside air is blown downward along the front surface 2b of the heating element storage box 2 from the inside air outlet 14 opened on the lower surface of the protrusion 110 protruding from the front surface 2b of the heating element storage box 2. FIG. 10 shows the flow of the inside air with black arrows and white arrows.
 このとき、発熱体収納箱2の室内空気吸込口7は、発熱体収納箱2の前面2b下方に設けられている。そのため、内気は、突出部110の下面に形成された内気吹出口14から発熱体収納箱2の前面2bに沿って下向きに吹き出され、室内空気吸込口7から吸い込まれる。これにより、内気区画16の蒸発器21で冷却された空気を、発熱体収納箱2の室内空気吸込口7へ最短経路で供給できる。 At this time, the indoor air inlet 7 of the heating element storage box 2 is provided below the front surface 2b of the heating element storage box 2. Therefore, the inside air is blown downward along the front surface 2 b of the heating element storage box 2 from the inside air outlet 14 formed on the lower surface of the projecting portion 110, and is sucked from the indoor air inlet 7. Thereby, the air cooled by the evaporator 21 of the inside air section 16 can be supplied to the indoor air inlet 7 of the heating element storage box 2 through the shortest path.
 つまり、収納室3内の空気の温度が少々高い場合でも、発熱体収納箱2の内部に、冷却装置1で冷却された内気を、ほぼ直接供給して効率よく冷却できる。そのため、空調機6のみで内気温度を低減させる場合と比較して、空調機6の設定温度を高くできる。その結果、空調機6の電力消費を抑制して、省エネルギー効果を向上させることができる。 That is, even when the temperature of the air in the storage chamber 3 is slightly high, the inside air cooled by the cooling device 1 can be supplied almost directly into the heating element storage box 2 and efficiently cooled. Therefore, the set temperature of the air conditioner 6 can be increased as compared with the case where the inside air temperature is reduced only by the air conditioner 6. As a result, the power consumption of the air conditioner 6 can be suppressed and the energy saving effect can be improved.
 つぎに、冷却装置1の外気の流れについて、図11を用いて説明する。 Next, the flow of the outside air of the cooling device 1 will be described with reference to FIG.
 まず、上記構成の発熱体の冷却システムが起動すると、外気送風機32が駆動される。これにより、図11の矢印で示すように、ケーシング11の背面の外気吸込口12から、外気区画17内に外気が吸い込まれる。 First, when the cooling system for the heating element configured as described above is activated, the outside air blower 32 is driven. Thereby, as shown by the arrow in FIG. 11, outside air is sucked into the outside air compartment 17 from the outside air inlet 12 on the back surface of the casing 11.
 吸い込まれた外気は、熱交換器24の凝縮器20のフィン27間を通過する。これにより、外気は、凝縮器20内を流れる冷媒と熱交換され、加熱される。 The sucked outside air passes between the fins 27 of the condenser 20 of the heat exchanger 24. Thereby, the outside air is heat-exchanged with the refrigerant flowing in the condenser 20 and heated.
 凝縮器20で加熱された外気は、外気送風機チャンバー32b内に配置された2台の外気送風機32に吸い込まれる。吸い込まれた内気は、外気送風機チャンバー32bで、ケーシング11の背面方向に90度方向転換される。そして、方向転換された外気は、背面方向に向かって水平方向に吹き出され、外気吹出口13から収納室3の壁面3cを経て室外に排出される。 The outside air heated by the condenser 20 is sucked into the two outside air blowers 32 arranged in the outside air blower chamber 32b. The sucked inside air is turned 90 degrees toward the back surface of the casing 11 in the outside air blower chamber 32b. The direction-changed outside air is blown out horizontally in the rear direction, and is discharged from the outside-air outlet 13 through the wall surface 3c of the storage chamber 3 to the outside.
 なお、本実施の形態においても、実施の形態1で図4を用いて説明したように、室内空気吹出口10からチャンバー28で分散して内気区画16に流入した内気は、蒸発器21(凝縮器20)の波型のフィン27間(図4の略三角形空間(三角形空間を含む))を通過する。このとき、積層した熱交換素子に比べて、フィン27間を通過する内気の圧力損失が低い。そのため、内気送風機チャンバー31b内に設けた内気送風機31の出力を低くできる。その結果、従来の送風機より、さらに省エネルギー効果を高めることができる。なお、外気送風機チャンバー32b内に設けた2台の外気送風機32においても、同様に出力を低くできるので、省エネルギー運転が可能となる。 In the present embodiment as well, as described with reference to FIG. 4 in the first embodiment, the inside air that has been dispersed in the chamber 28 from the indoor air outlet 10 and has flowed into the inside air section 16 is removed from the evaporator 21 (condensation). Passing between the corrugated fins 27 of the container 20) (substantially triangular space (including triangular space) in FIG. 4). At this time, the pressure loss of the inside air passing between the fins 27 is lower than that of the stacked heat exchange elements. Therefore, the output of the inside air blower 31 provided in the inside air blower chamber 31b can be lowered. As a result, the energy saving effect can be further enhanced as compared with the conventional blower. In addition, since the output can be similarly reduced in the two outside air blowers 32 provided in the outside air blower chamber 32b, an energy saving operation is possible.
 ここで、本実施の形態においては、2台の外気送風機32に対して、内気送風機31を1台で構成している。この理由は、発熱体収納箱2は、内部に、図示しない送風機を備えていることに起因する。つまり、送風機による押し込みにより、室内空気吹出口10からチャンバー28内へ、加熱された内気を流入させることができる。そのため、1台の内気送風機31で構成しても、充分な送風機能を得ることができるからである。 Here, in the present embodiment, the inside air blower 31 is constituted by one unit for the two outside air blowers 32. The reason for this is that the heating element storage box 2 includes a blower (not shown) inside. That is, the heated inside air can be caused to flow from the indoor air outlet 10 into the chamber 28 by being pushed by the blower. For this reason, even if the single air blower 31 is used, a sufficient blowing function can be obtained.
 以下に、熱交換器24の動作について、具体的に説明する。 Hereinafter, the operation of the heat exchanger 24 will be specifically described.
 まず、蒸発器21の内部を流れる冷媒は、室内空気吹出口10から流入した空気から吸熱により蒸発する。蒸発した冷媒は、冷媒気管22を通って凝縮器20へ流入する。このとき、内気は、蒸発器21の冷媒の蒸発に伴う吸熱作用により冷却される。冷却された内気は、ケーシング11の突出部110(内気送風機チャンバー31bに対応)の下面に形成した内気吹出口14から発熱体収納箱2の室内空気吸込口7に向かって吹き出される。これにより、発熱体の冷却を効率よく行うことができる。 First, the refrigerant flowing inside the evaporator 21 evaporates from the air flowing in from the indoor air outlet 10 by absorbing heat. The evaporated refrigerant flows into the condenser 20 through the refrigerant trachea 22. At this time, the inside air is cooled by the endothermic action accompanying the evaporation of the refrigerant in the evaporator 21. The cooled inside air is blown out from the inside air outlet 14 formed on the lower surface of the projecting portion 110 (corresponding to the inside air blower chamber 31b) of the casing 11 toward the indoor air inlet 7 of the heating element storage box 2. Thereby, cooling of a heat generating body can be performed efficiently.
 一方、凝縮器20内を流れる高温の冷媒は、外気吸込口12から吸い込まれた外気への放熱により冷やされ、凝縮して液化する。液化した冷媒は、冷媒液管23を通って、再び蒸発器21へ流入する。このとき、凝縮器20の冷媒との熱交換により昇温された外気は、ケーシング11の外気吹出口13から屋外へ排出される。 On the other hand, the high-temperature refrigerant flowing in the condenser 20 is cooled by heat radiation to the outside air sucked from the outside air inlet 12, and is condensed and liquefied. The liquefied refrigerant flows into the evaporator 21 again through the refrigerant liquid pipe 23. At this time, the outside air heated by heat exchange with the refrigerant of the condenser 20 is discharged from the outside air outlet 13 of the casing 11 to the outside.
 つまり、熱交換器24は、蒸発器21内の冷媒が発熱体収納箱2内で加熱された内気から熱を吸熱して蒸発する。蒸発した冷媒は、熱交換器24の凝縮器20を通過する外気へ放熱して凝縮する。そして、気相状態と液相状態を繰り返し変化する冷媒が、密度差により熱交換器24の内部を循環する。これにより、熱搬送を行うサーモサイフォン作用が実現される。 That is, in the heat exchanger 24, the refrigerant in the evaporator 21 absorbs heat from the inside air heated in the heating element storage box 2 and evaporates. The evaporated refrigerant dissipates heat to the outside air passing through the condenser 20 of the heat exchanger 24 and condenses. And the refrigerant | coolant which changes a gaseous-phase state and a liquid phase state repeatedly circulates the inside of the heat exchanger 24 by a density difference. Thereby, the thermosiphon effect | action which performs heat conveyance is implement | achieved.
 この構成により、発熱体収納箱2の上面2cと収納室3の天井面3bとの間の限られた空間内に、冷却装置1を設置できる。つまり、冷却装置1の高さを低く設計できる。また、既に稼働し、熱交換器が設置されていないパワーコンディショナーなどにおいて、発熱体の発熱量が増加した場合、後付けにより、容易に、冷却装置1を追加設置できる。 With this configuration, the cooling device 1 can be installed in a limited space between the upper surface 2c of the heating element storage box 2 and the ceiling surface 3b of the storage chamber 3. That is, the height of the cooling device 1 can be designed low. Further, in the case of a power conditioner or the like that has already been operated and no heat exchanger is installed, the cooling device 1 can be easily installed by retrofitting when the amount of heat generated by the heating element increases.
 また、本実施の形態では、図8Aおよび図8Bに示すケーシング11の背面側の上側に外気吸込口12を設け、外気送風機チャンバー32bの背面側に外気吹出口13を設けている。そして、発熱体収納箱2の背面2aに接する収納室3の壁面3cに、上記外気吸込口12および外気吹出口13に対応した孔(図示せず)を設ける。これにより、外気吸込口12および外気吹出口13を通じて、直接、外気の吸い込みや排出などのやり取りが可能となる。そのため、冷却装置1外にダクトなどを設ける必要がない。その結果、冷却装置1の高さを低くできる。さらに、既に稼働し、熱交換器が設置されていないパワーコンディショナーなどにおいて、発熱体の発熱量が増加した場合、後付けにより、容易に、冷却装置1を追加設置できる。 In the present embodiment, the outside air inlet 12 is provided on the upper side of the back side of the casing 11 shown in FIGS. 8A and 8B, and the outside air outlet 13 is provided on the back side of the outside air blower chamber 32b. And the hole (not shown) corresponding to the said external air inlet 12 and the external air outlet 13 is provided in the wall surface 3c of the storage chamber 3 which contact | connects the back surface 2a of the heat generating body storage box 2. FIG. As a result, it is possible to directly exchange outside air through the outside air inlet 12 and the outside air outlet 13. Therefore, there is no need to provide a duct or the like outside the cooling device 1. As a result, the height of the cooling device 1 can be reduced. Further, in the case of a power conditioner or the like that has already been operated and no heat exchanger is installed, the cooling device 1 can be easily installed by retrofitting when the amount of heat generated by the heating element increases.
 また、本実施の形態でも、実施の形態1と同様に、熱交換器24の蒸発器21と凝縮器20は、水平方向に対して、15度から25度の傾斜角度で傾斜させて配置する構成が好ましい。傾斜角度が15度よりも小さい場合、フィン27間を通過する空気の圧力損失が増大する。一方、傾斜角度が25度よりも大きい場合、冷却装置1の高さが高くなり、冷却装置1が大型化する。 Also in the present embodiment, as in the first embodiment, the evaporator 21 and the condenser 20 of the heat exchanger 24 are arranged to be inclined at an inclination angle of 15 degrees to 25 degrees with respect to the horizontal direction. A configuration is preferred. When the inclination angle is smaller than 15 degrees, the pressure loss of the air passing between the fins 27 increases. On the other hand, when the inclination angle is larger than 25 degrees, the height of the cooling device 1 is increased and the cooling device 1 is increased in size.
 なお、本実施の形態では、冷却装置1を、チャンバー28を介して発熱体収納箱2の上面2cに設ける構成を例に説明したが、これに限られない。チャンバー28は、複数の冷却装置1を設ける場合に有効である。そのため、冷却装置1を1個設ける場合には、ケーシング11の4つの側面を下方に延長した脚部を設けることで対応できる。つまり、発熱体収納箱2の室内空気吹出口10を脚部で覆うことにより、チャンバー28が不要になる。 In the present embodiment, the cooling device 1 is described as an example of the configuration in which the cooling device 1 is provided on the upper surface 2c of the heating element storage box 2 via the chamber 28, but the present invention is not limited to this. The chamber 28 is effective when a plurality of cooling devices 1 are provided. Therefore, when providing one cooling device 1, it can respond by providing the leg part which extended the four side surfaces of the casing 11 below. That is, the chamber 28 becomes unnecessary by covering the indoor air outlet 10 of the heating element storage box 2 with the legs.
 また、本実施の形態では、1つの発熱体収納箱2に対して、冷却装置1を3個設ける構成を例に説明したが、これに限られない。例えば、冷却装置1の数は、発熱体の発熱量に応じて増減すればよい。発熱体の発熱量が少ない場合、冷却装置1を1個設ける構成でもよい。 In the present embodiment, the configuration in which three cooling devices 1 are provided for one heating element storage box 2 has been described as an example, but the present invention is not limited thereto. For example, the number of cooling devices 1 may be increased or decreased according to the amount of heat generated by the heating element. When the heat generation amount of the heating element is small, a configuration in which one cooling device 1 is provided may be used.
 また、本実施の形態では、1つの熱交換器24に対して、外気送風機32を2個設ける構成を例に説明したが、これに限られない。例えば、外気送風機32の数は、発熱体の発熱量に応じて増減すればよい。発熱体の発熱量が少ない場合、外気送風機32を1個設ける構成でもよい。 In the present embodiment, the configuration in which two outside air blowers 32 are provided for one heat exchanger 24 is described as an example, but the present invention is not limited to this. For example, the number of outside air blowers 32 may be increased or decreased according to the amount of heat generated by the heating element. When the heat generation amount of the heating element is small, a configuration in which one outside air blower 32 is provided may be used.
 以上で説明したように、本実施の形態によれば、発熱体収納箱2の上面2cに冷却装置1を設置する。これにより、発熱体収納箱2内部の発熱体の発熱量が増加した場合でも、発熱体収納箱2の上面2cに複数の冷却装置1を設置することで、空調機の消費電力の増加を抑制できる。その結果、発熱体の発熱量の増減に応じて、適切に対応できる。 As described above, according to the present embodiment, the cooling device 1 is installed on the upper surface 2 c of the heating element storage box 2. Thereby, even when the heat generation amount of the heating element inside the heating element storage box 2 increases, the increase in power consumption of the air conditioner is suppressed by installing a plurality of cooling devices 1 on the upper surface 2c of the heating element storage box 2. it can. As a result, it can respond appropriately according to the increase or decrease in the amount of heat generated by the heating element.
 本発明は、併用する空調機の消費電力の増加を抑制して発熱量の増加に対応できるので、発熱量が変化する発熱体収納箱などの冷却装置として有用である。 The present invention is useful as a cooling device for a heating element storage box or the like in which the calorific value changes because it can suppress an increase in power consumption of the air conditioner used in combination and cope with an increase in the calorific value.
 1  冷却装置
 2  発熱体収納箱
 2a  背面
 2b,11b  前面
 2c,11a  上面
 3  収納室
 3a  床面
 3b  天井面
 3c  壁面
 4  室内機
 5  室外機
 6  空調機
 7  室内空気吸込口
 8  外気吸気ダクト
 9  外気排気ダクト
 10  室内空気吹出口
 11  ケーシング
 12  外気吸込口
 13  外気吹出口
 14  内気吹出口
 15  内外仕切板
 16  内気区画
 16a,16b,17a,17b  高さ
 17  外気区画
 18  外気区画仕切板
 19  外気送風機
 20,20A,20B  凝縮器
 21,21A,21B  蒸発器
 22  冷媒気管
 23  冷媒液管
 24  熱交換器
 25  ヘッダー
 26  チューブ
 27  フィン
 27a  接触部
 28  チャンバー
 29  内気通過孔
 30  外気風路仕切板
 31,35  内気送風機
 31a  内気送風機仕切板
 31b  内気送風機チャンバー
 32  外気送風機
 32a  外気送風機仕切板
 32b  外気送風機チャンバー
 33  外気風路形成板
 110  突出部
DESCRIPTION OF SYMBOLS 1 Cooling device 2 Heating body storage box 2a Back surface 2b, 11b Front surface 2c, 11a Upper surface 3 Storage room 3a Floor surface 3b Ceiling surface 3c Wall surface 4 Indoor unit 5 Outdoor unit 6 Air conditioner 7 Indoor air intake port 8 Outside air intake duct 9 Outside air exhaust Duct 10 Indoor air outlet 11 Casing 12 Outside air inlet 13 Outside air outlet 14 Inside air outlet 15 Inside / outside partition plate 16 Inside air compartment 16a, 16b, 17a, 17b Height 17 Outside air compartment 18 Outside air compartment plate 19 Outside air blower 20, 20A , 20B Condenser 21, 21A, 21B Evaporator 22 Refrigerant air pipe 23 Refrigerant liquid pipe 24 Heat exchanger 25 Header 26 Tube 27 Fin 27a Contact portion 28 Chamber 29 Inside air passage hole 30 Outside air air passage partition plate 31, 35 Inside air blower 31a Inside air Blower partition plate 31b Chamber 32 outside air blower 32a outside air blower partition plate 32b outside air blower chamber 33 outside air air path forming plate 110 protruding portions

Claims (10)

  1. 収納室内に、背面を前記収納室の内壁面に近接させて設置された発熱体収納箱からの排熱を処理し前記収納室の内空間を冷却する冷却装置であって、
    前記発熱体収納箱の上面に設置されたケーシングと、
    前記ケーシングの内部に配置される熱交換器、外気送風機および内外仕切板と、
    前記発熱体収納箱の内気を前記ケーシング内に通流させる内部送風機と、を備え、
    前記熱交換器は、冷媒サイクルを形成する、凝縮器および蒸発器と、前記凝縮器と前記蒸発器とを接続する冷媒気管および冷媒液管とで構成され、
    前記内外仕切板は、前記ケーシングの内部にそれぞれ独立した、下側の内気区画と上側の外気区画を形成し、
    前記発熱体収納箱は、上面に室内空気吹出口、前面に室内空気吸込口を備え、
    前記ケーシングは、内気吹出口、外気吸込口、外気吹出口を有し、
    前記蒸発器は前記内気区画内に、前記凝縮器は前記外気区画内に設けられ、
    前記内気送風機は、前記収納室から前記発熱体収納箱の前記室内空気吸込口を介して吸い込み、前記室内空気吹出口から吹き出される内気を、前記ケーシングの前記内気区画の前記蒸発器を経由して前記内気吹出口から前記収納室内に吹き出し、
    前記外気送風機は、外気を、前記ケーシングの前記外気区画の前記外気吸込口から吸込み、前記凝縮器を経由して前記外気吹出口から外部に吹き出し、
    前記収納室を冷却する冷却装置。
    A cooling device for treating exhaust heat from a heating element storage box installed with a back surface close to the inner wall surface of the storage chamber in the storage chamber and cooling the internal space of the storage chamber,
    A casing installed on an upper surface of the heating element storage box;
    A heat exchanger, an outside air blower and an inside / outside partition plate disposed inside the casing;
    An internal blower for allowing the inside air of the heating element storage box to flow into the casing,
    The heat exchanger includes a condenser and an evaporator that form a refrigerant cycle, and a refrigerant pipe and a refrigerant liquid pipe that connect the condenser and the evaporator.
    The inner and outer partition plates are independent from each other inside the casing, forming a lower inside air compartment and an upper outside air compartment,
    The heating element storage box includes an indoor air outlet on the upper surface and an indoor air inlet on the front surface,
    The casing has an inside air outlet, an outside air inlet, an outside air outlet,
    The evaporator is provided in the inside air compartment, and the condenser is provided in the outside air compartment,
    The inside air blower sucks from the storage chamber through the indoor air suction port of the heating element storage box, and blows out the internal air blown out from the indoor air outlet through the evaporator of the inside air section of the casing. To blow out from the inside air outlet into the storage room,
    The outside air blower sucks outside air from the outside air inlet of the outside air section of the casing, and blows out from the outside air outlet through the condenser.
    A cooling device for cooling the storage chamber.
  2. 前記ケーシングは、内部に、少なくとも2個の前記熱交換器を有し、前記熱交換器のそれぞれは、前記外気区画の前記ケーシングの長手方向の中央部に設けた外気区画仕切板で仕切られ、仕切られた前記外気区画のそれぞれには1つ以上の外気送風機を備え、
    それぞれの前記熱交換器は、前記外気区画仕切板を中心線として、左右対称にハの字形(逆Vの字形)に傾斜して配設される請求項1に記載の冷却装置。
    The casing has at least two of the heat exchangers therein, and each of the heat exchangers is partitioned by an outside air partition partition plate provided at a central portion in the longitudinal direction of the casing of the outside air compartment, Each of the partitioned outside air compartments includes one or more outside air blowers,
    2. The cooling device according to claim 1, wherein each of the heat exchangers is disposed so as to be symmetrical in a C shape (inverted V shape) symmetrically about the outside air partition plate as a center line.
  3. 前記内気区画内に流通した前記内気が前記蒸発器を通過する前の前記内気区画の高さは、前記蒸発器を通過した後の前記内気区画の高さよりも高い請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein a height of the inside air compartment before the inside air flowing through the inside air compartment passes through the evaporator is higher than a height of the inside air compartment after passing through the evaporator. .
  4. 前記外気区画内に流通した前記外気が前記凝縮器を通過する前の前記外気区画の高さは、前記凝縮器を通過した後の前記外気区画の高さよりも高い請求項1に記載の冷却装置。 2. The cooling device according to claim 1, wherein a height of the outside air section before the outside air flowing through the outside air section passes through the condenser is higher than a height of the outside air section after passing through the condenser. .
  5. 前記ハの字形(逆Vの字形)に傾斜して配設される前記熱交換器の傾斜角度は、水平方向に対して、15度から25度である請求項2に記載の冷却装置。 The cooling device according to claim 2, wherein an inclination angle of the heat exchanger arranged to be inclined in the C shape (inverted V shape) is 15 degrees to 25 degrees with respect to a horizontal direction.
  6. 前記内気送風機は、前記発熱体収納箱の上面に配設される請求項1に記載の冷却装置。 The cooling device according to claim 1, wherein the inside air blower is disposed on an upper surface of the heating element storage box.
  7. 前記ケーシングは、前面側で、前記内気送風機を収納する内気送風機チャンバーを形成する内気送風機仕切板と、側面側で、前記外気送風機を収納する外気送風機チャンバーを形成する外気送風機仕切板を、備え、
    前記内気吸込口は前記ケーシングの前記内気区画の下面側に、前記内気吹出口は前記内気送風機チャンバーの下面側に設けられ、
    前記外気吸込口は前記ケーシングの前記外気区画の背面側に、前記外気吹出口は前記外気送風機チャンバーの背面側に設けられる請求項1に記載の冷却装置。
    The casing includes an inside air blower partition plate that forms an inside air blower chamber that houses the inside air blower on the front side, and an outside air blower partition plate that forms an outside air blower chamber that houses the outside air blower on the side surface side,
    The inside air suction port is provided on the lower surface side of the inside air section of the casing, and the inside air outlet is provided on the lower surface side of the inside air blower chamber,
    The cooling device according to claim 1, wherein the outside air inlet is provided on a back side of the outside air section of the casing, and the outside air outlet is provided on a back side of the outside air blower chamber.
  8. 前記ケーシングは、前記発熱体収納部の前面から前記収納室内に突出する突出部を、備え、
    前記突出部の下面側に、前記内気吹出口が配置される請求項7に記載の冷却装置。
    The casing includes a protruding portion that protrudes from the front surface of the heating element storage portion into the storage chamber,
    The cooling device according to claim 7, wherein the inside air outlet is disposed on a lower surface side of the protruding portion.
  9. 前記ケーシングと前記発熱体収納箱との間に、前記内気を通流させるチャンバーが配置される請求項7に記載の冷却装置。 The cooling device according to claim 7, wherein a chamber for allowing the inside air to flow is disposed between the casing and the heating element storage box.
  10. 前記発熱体収納箱の上面に、複数の前記ケーシングを配設し、
    前記チャンバーは、前記複数のケーシングのそれぞれに対応する内気通過孔を有する請求項9に記載の冷却装置。
    A plurality of the casings are disposed on the upper surface of the heating element storage box,
    The cooling device according to claim 9, wherein the chamber has an inside air passage hole corresponding to each of the plurality of casings.
PCT/JP2016/001625 2015-03-31 2016-03-22 Cooling device WO2016157818A1 (en)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2015071450 2015-03-31
JP2015-071450 2015-03-31
JP2015-128254 2015-06-26
JP2015128254A JP2017011229A (en) 2015-06-26 2015-06-26 Cooling device
JP2016025871A JP2016195240A (en) 2015-03-31 2016-02-15 Cooling system
JP2016-025871 2016-02-15

Publications (1)

Publication Number Publication Date
WO2016157818A1 true WO2016157818A1 (en) 2016-10-06

Family

ID=57005887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001625 WO2016157818A1 (en) 2015-03-31 2016-03-22 Cooling device

Country Status (1)

Country Link
WO (1) WO2016157818A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135972A (en) * 1997-10-30 1999-05-21 Denso Corp Housing cooling device
JP2003289195A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Cooling device
JP2009105304A (en) * 2007-10-25 2009-05-14 Panasonic Corp Heat-generating apparatus storage device
JP2009272463A (en) * 2008-05-08 2009-11-19 Panasonic Corp Heating element storage box cooling apparatus
JP2010050209A (en) * 2008-08-20 2010-03-04 Denso Corp Cooling device
WO2010082875A1 (en) * 2009-01-15 2010-07-22 Telefonaktiebolaget L M Ericsson (Publ) Heat transfer arrangement and electronic housing comprising a heat transfer arrangement and method of controlling heat transfer
WO2011064972A1 (en) * 2009-11-25 2011-06-03 パナソニック株式会社 Heat generating body box housing refrigeration device
JP2012198000A (en) * 2011-03-23 2012-10-18 Panasonic Corp Cooling device, and heating element storage apparatus using the same
WO2014032654A1 (en) * 2012-08-31 2014-03-06 Rittal Gmbh & Co. Kg Heat exchanger for cooling a switch cabinet and corresponding cooling arrangement

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11135972A (en) * 1997-10-30 1999-05-21 Denso Corp Housing cooling device
JP2003289195A (en) * 2002-03-28 2003-10-10 Mitsubishi Electric Corp Cooling device
JP2009105304A (en) * 2007-10-25 2009-05-14 Panasonic Corp Heat-generating apparatus storage device
JP2009272463A (en) * 2008-05-08 2009-11-19 Panasonic Corp Heating element storage box cooling apparatus
JP2010050209A (en) * 2008-08-20 2010-03-04 Denso Corp Cooling device
WO2010082875A1 (en) * 2009-01-15 2010-07-22 Telefonaktiebolaget L M Ericsson (Publ) Heat transfer arrangement and electronic housing comprising a heat transfer arrangement and method of controlling heat transfer
WO2011064972A1 (en) * 2009-11-25 2011-06-03 パナソニック株式会社 Heat generating body box housing refrigeration device
JP2012198000A (en) * 2011-03-23 2012-10-18 Panasonic Corp Cooling device, and heating element storage apparatus using the same
WO2014032654A1 (en) * 2012-08-31 2014-03-06 Rittal Gmbh & Co. Kg Heat exchanger for cooling a switch cabinet and corresponding cooling arrangement

Similar Documents

Publication Publication Date Title
US10005354B2 (en) Cooling module and cooling system for vehicle
CN103229013B (en) The cooling of motor
US20110126581A1 (en) Air conditioner and outdoor unit thereof
EP3396274B1 (en) Heat exchanger and air conditioning system
TW201738517A (en) Refrigerator
KR20200048739A (en) Cooling module for vehicle
JP2006336909A (en) Condenser, and indoor unit for air conditioner using it
JP2006214633A (en) Outdoor unit of air conditioner
JP2010129629A (en) Heat generating element housing apparatus
WO2011064972A1 (en) Heat generating body box housing refrigeration device
JP2006297964A (en) Air-conditioner for railroad vehicle
KR20140143650A (en) Cooling module for vehicle
JP2011038734A (en) Evaporative cooling device
JP2010281548A (en) Air conditioner
JP6931766B2 (en) Cooling system
JP2007271212A (en) Outdoor unit of heat pump water heater
JP2017011229A (en) Cooling device
WO2016157818A1 (en) Cooling device
WO2016112834A1 (en) Inter-row air conditioning heat exchanger, and inter-row air conditioner
JP6130125B2 (en) Cooling panel and cooling system including the panel
KR101490906B1 (en) Cooling module for vehicle
JP2017083110A (en) Cooling device
JPH09326582A (en) Boiling cooling device and case cooling device equipped therewith
JP3539151B2 (en) Cooling system
KR102131158B1 (en) Air conditioner system for vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771711

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771711

Country of ref document: EP

Kind code of ref document: A1