WO2016157802A1 - Information processing apparatus, information processing system, information processing method, and storage medium - Google Patents

Information processing apparatus, information processing system, information processing method, and storage medium Download PDF

Info

Publication number
WO2016157802A1
WO2016157802A1 PCT/JP2016/001595 JP2016001595W WO2016157802A1 WO 2016157802 A1 WO2016157802 A1 WO 2016157802A1 JP 2016001595 W JP2016001595 W JP 2016001595W WO 2016157802 A1 WO2016157802 A1 WO 2016157802A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinate conversion
coordinates
coordinate
conversion table
information
Prior art date
Application number
PCT/JP2016/001595
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 徹
哲夫 井下
大輔 西脇
吉洋 服部
達哉 安部
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2017509251A priority Critical patent/JP6683195B2/en
Publication of WO2016157802A1 publication Critical patent/WO2016157802A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • G06T17/05Geographic models

Definitions

  • the present invention relates to information processing, and more particularly, to an information processing apparatus, an information processing system, an information processing method, and a recording medium that process position information.
  • a wide area monitoring system generally detects a vehicle and / or a person from a captured image and grasps the position of the vehicle and / or the person.
  • the wide area monitoring system preliminarily calculates the coordinates of each pixel in the camera coordinate system in which the vehicle is captured, the coordinates in the world coordinate system, and Must be associated with each other. That is, the wide area monitoring system needs to calculate the coordinate conversion between the coordinates of each pixel in the camera coordinate system and the coordinates of the world coordinate system.
  • the road surface on which the vehicle travels is often not a simple plane.
  • the road surface shape projected on the camera coordinate system is complicatedly distorted. Therefore, the coordinate transformation in this case cannot be expressed using a simple linear transformation. Therefore, accurate association between the camera coordinate system and the world coordinate system is not easy.
  • the correspondence table is a table for converting a two-dimensional coordinate table that is a camera coordinate system into a three-dimensional coordinate table that is a world coordinate system.
  • methods 1 to 3 described below are mainly conceivable as a method for performing this association.
  • Method 1 The method described below is referred to as “Method 1”.
  • Method 1 determines the position of the main target (hereinafter referred to as “Landmark”) on the camera field of view in the world coordinate system based on general maps, aerial photographs or road drawings. To derive.
  • An example of a landmark is an illumination column.
  • the method 1 compares the position of the derived landmark in the world coordinate system (coordinates such as latitude, longitude, and altitude) with the position on the captured image (that is, coordinates in the camera coordinate system). And associate the two.
  • a continuous correspondence table is created by interpolating the coordinates between the landmarks.
  • Method 2 The method described below is referred to as “Method 2”.
  • Method 2 derives the position (coordinates) of the landmark on the camera field of view in the world coordinate system using road surveying equipment such as Total Station. Then, in the method 2, the position (coordinate) of the derived landmark in the world coordinate system is compared with the position on the photographed image (that is, sitting in the camera coordinate system), and the two are associated with each other. Method 2 creates a continuous correspondence table by interpolating the coordinates between the landmarks.
  • Method 3 The method described below is referred to as “Method 3”.
  • Method 3 uses a survey vehicle equipped with a GPS (Global Positioning System) / inertial navigation system, stereo camera, laser radar (Laser radar) or the like.
  • Method 3 derives three-dimensional continuous road shape data (map data) as a position (coordinates) in the world coordinate system. Then, in the method 3, the map data values of the landmarks on the camera field of view are compared with the positions on the image obtained by photographing them (that is, the coordinates in the camera coordinate system), and the two are associated with each other.
  • Method 3 does not use interpolation or the like for the coordinates between the landmarks.
  • Method 3 creates a continuous correspondence table using the map data for the coordinates between the landmarks.
  • Patent Document 1 discloses the following method.
  • the method described in Patent Document 1 records the coordinates of the world coordinate system recorded by a survey vehicle equipped with GPS and the frame of a moving image captured by the camera in complete synchronization. This method creates a continuous correspondence table between the coordinates of the world coordinate system and the coordinates of the camera coordinate system without performing the road surface shape surveying based on the above record.
  • Patent Document 2 discloses the following method.
  • the method described in Patent Document 2 analyzes a three-dimensional point group representing the shape of a plurality of features and the like based on statistical processing as three-dimensional topographic data.
  • the coordinate axis used to associate the three-dimensional terrain data with the coordinates of the world coordinate system is estimated based on the analysis result.
  • Japanese Patent Application Laid-Open No. H10-228707 describes clustering point groups that are relatively close to each other.
  • Patent Document 2 describes that a point group is separated for each side surface based on the distribution of normal vectors on the side surface of the building.
  • the area associated with the position (coordinates) in the camera coordinate system is limited to a city area where a landmark such as a high-rise building or a lighting column exists, or a place where a road drawing exists. It will be. Therefore, when a place where a landmark does not exist (for example, a remote island, a port, or a mountainous area) is monitored in a wide area, Method 1 and Method 2 can associate the coordinates of the camera coordinate system with the coordinates of the world coordinate system. Absent. That is, in the above method, the method 1 and the method 2 cannot obtain the coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Furthermore, when there are undulations between landmarks, method 1 and method 2 need to interpolate the coordinate transformation of the point according to the undulations. Therefore, when a simple linear transformation is used, the estimation accuracy deteriorates in Method 1 and Method 2.
  • the area in which the camera field of view (camera coordinate system) and the real coordinates (world coordinate system) can be associated with each other is limited.
  • the associated area area where coordinate transformation can be obtained
  • the associated area is an area where a landmark exists, or a terrain area with little undulation. Or, it is limited to the area where the surveying vehicle can travel. Therefore, when monitoring a wide area outside, in the area where there are no landmarks, the area of terrain with little undulations, or the area where the surveying vehicle cannot run, the position in the world coordinate system of the object shown in the image taken by the camera ( It was difficult to accurately obtain the coordinates.
  • the methods 1 to 3 and the method described in Patent Document 1 have a problem in that the coordinates of the camera coordinate system and the coordinates of the world coordinate system cannot be associated with each other in the region. That is, the methods 1 to 3 and the method described in Patent Document 1 have a problem that coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system cannot be obtained in the region.
  • the method described in Patent Document 2 is a method of determining a gravity method from the outer shape of a building and cannot solve the above problem.
  • An object of the present invention is to solve the above-mentioned problems, and an information processing apparatus, an information processing system, and an information processing method capable of calculating coordinate transformation between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regardless of the target region And providing a recording medium.
  • An information processing apparatus includes a small area formed on the basis of a point having three-dimensional information regarding a position on the terrain corresponding to an area included in captured image data captured by the imaging apparatus.
  • An information processing system includes the above information processing apparatus, display means for displaying three-dimensional information and / or measurement point candidates received from the information processing apparatus, three-dimensional information and / or Input means for acquiring candidate information in the measurement point candidates.
  • an information processing method includes a small area formed on the basis of a point having three-dimensional information regarding a position on the terrain corresponding to an area included in captured image data captured by the imaging apparatus. Based on the normal direction and altitude of the area, it is divided into small area groups that are groups of small areas, and using the small area group and candidate information that is information related to coordinate transformation, the coordinates of the camera coordinate system that is the coordinates in the captured image data A coordinate conversion table that is information on coordinate conversion between the coordinates and coordinates in the world coordinate system that is coordinates in a small area corresponding to the captured image data is created.
  • a recording medium including a small area formed based on a point having three-dimensional information regarding a position on the terrain corresponding to the area included in the captured image data captured by the imaging device.
  • the camera coordinate system that is the coordinates in the captured image data using the process of dividing into small area groups that are groups of small areas based on the normal direction and elevation of the image, and candidate information that is information related to the small area groups and coordinate transformation
  • a computer readable recording process for creating a coordinate conversion table, which is information of coordinate conversion between the coordinates of the image and the coordinates in the world coordinate system, which are the coordinates in the small area corresponding to the captured image data, and the program to be executed by the computer are recorded.
  • FIG. 1 is a block diagram illustrating an example of a configuration of a coordinate association system including a coordinate conversion table creation device according to a first embodiment of the present invention.
  • FIG. 2 is a schematic diagram illustrating an example of 3D terrain data stored in the 3D terrain database storage unit.
  • FIG. 3 is a flowchart illustrating an example of the operation in the coordinate conversion table creating apparatus according to the first embodiment.
  • FIG. 4 is a schematic diagram illustrating an example of a small region group according to the first embodiment.
  • FIG. 5 is a block diagram showing an example of the configuration of the object position measuring apparatus according to the first embodiment.
  • FIG. 6 is a schematic diagram illustrating a situation in which coordinates in the camera coordinate system of an object such as a suspicious vehicle in the object position measurement apparatus according to the first embodiment are converted into coordinates in the world coordinate system.
  • FIG. 7 is a block diagram illustrating an example of a configuration of a coordinate association system according to the second embodiment.
  • FIG. 8 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the second embodiment.
  • FIG. 9 is a schematic diagram illustrating an example of a group obtained as a result of step S203 in FIG.
  • FIG. 10 is a block diagram illustrating an example of a configuration of a coordinate association system according to the third embodiment.
  • FIG. 11 is a flowchart illustrating an example of the operation of the coordinate conversion table creating apparatus according to the third embodiment.
  • FIG. 12 is a schematic diagram for explaining a method of extracting measurement point candidates by the measurement point extraction unit according to the third embodiment.
  • FIG. 13 is a block diagram illustrating an example of a configuration of a coordinate association system according to the fourth embodiment.
  • FIG. 14 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the fourth embodiment.
  • FIG. 15 is a schematic diagram illustrating an example of extraction of measurement point candidates in the fourth embodiment.
  • FIG. 16 is a block diagram illustrating an example of a configuration of a coordinate association system according to the sixth embodiment.
  • FIG. 17 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the sixth embodiment.
  • FIG. 18 is an explanatory diagram illustrating an example of a measurement point candidate and a calculated shortest path in the sixth embodiment.
  • FIG. 19 is a block diagram illustrating an example of a configuration of a coordinate association system according to the seventh embodiment.
  • FIG. 20 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the seventh embodiment.
  • FIG. 21 is a schematic diagram for explaining the operation in step S606 in the seventh embodiment.
  • FIG. 22 is a block diagram illustrating an example of a configuration of a coordinate association system according to the eighth embodiment.
  • FIG. 23 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the eighth embodiment.
  • FIG. 24 is a schematic diagram for explaining the operation in step S708 in FIG.
  • FIG. 25 is a block diagram illustrating an example of a hardware configuration of the coordinate conversion table creation device according to each embodiment of the present invention.
  • FIG. 26 is a block diagram showing an example of the configuration of the information processing apparatus according to the embodiment of the present invention.
  • FIG. 27 is a block diagram showing an example of the configuration of the information processing system according to the embodiment of the present invention.
  • the information processing apparatus creates information related to coordinate transformation (correspondence) between the coordinates of the camera coordinate system and the coordinates of the world coordinate system.
  • the information processing apparatus is included in, for example, a predetermined information processing system (for example, a coordinate association system).
  • the information processing system performs an operation related to coordinate transformation (correspondence) created by the information processing apparatus. Therefore, in the following description, as an example of the information processing apparatus, coordinates for creating a coordinate conversion table (correspondence relationship table) that is information on coordinate conversion (correspondence relationship) between coordinates in the camera coordinate system and coordinates in the world coordinate system. This will be described using a conversion table creation device.
  • the information processing apparatus As an example of the information processing system, a description will be given using a coordinate association system including a device that transmits information used for the operation of the coordinate conversion table creation device.
  • the information processing apparatus according to each embodiment is not limited to the coordinate conversion table creation apparatus.
  • the information processing system according to each embodiment is not limited to the coordinate correspondence system.
  • the following description is demonstrated using a coordinate conversion table.
  • the coordinate conversion table may be called a correspondence table.
  • FIG. 1 is a block diagram showing an example of a configuration of a coordinate association system 100 including a coordinate conversion table creation device 1 according to the first embodiment of the present invention.
  • a coordinate association system 100 according to the first embodiment includes an imaging device 101, a three-dimensional terrain database storage unit 102, a coordinate conversion table creation device 1, a display device 104, a coordinate input device 105, and a storage device 107.
  • the coordinate conversion table creation device 1 includes a small area grouping unit 103 and a coordinate conversion table creation unit 106.
  • the imaging apparatus 101 is an apparatus (for example, a camera) that is installed at a monitoring target point and images a monitoring target area. An image photographed by the photographing apparatus 101 is referred to as “photographed image data”.
  • the 3D terrain database storage unit 102 is a storage device that stores terrain data in the monitoring target area (hereinafter referred to as “3D terrain data”) in advance.
  • the three-dimensional terrain data is a small area (for example, three points) formed based on point data including three-dimensional information (for example, latitude, longitude, and elevation values) and a predetermined number of points. Data).
  • the 3D terrain data stored in the 3D terrain database storage unit 102 is not limited to the above.
  • the data format of the three-dimensional terrain data is not particularly limited.
  • the three-dimensional landform database storage unit 102 may store, for example, three-dimensional landform data using a database format.
  • FIG. 2 is a schematic diagram showing an example of 3D terrain data stored in the 3D terrain database storage unit 102.
  • the three-dimensional terrain database storage unit 102 may store a three-dimensional map database owned by the Geographical Survey Institute or the like, or three-dimensional terrain data created based on the topographic survey of the monitoring target area.
  • the 3D terrain database storage unit 102 includes at least data corresponding to a region (location) included in an image (captured image data) captured by the imaging apparatus 101 as 3D terrain data.
  • the small area grouping unit 103 divides small areas included in the 3D terrain data into groups in the 3D terrain data corresponding to the locations included in the captured image data. That is, the small area grouping unit 103 creates a group in the small area included in the three-dimensional terrain data corresponding to the captured image data.
  • the created small area group may be simply referred to as a “small area group”.
  • the display device 104 displays 3D terrain data grouped into small area groups.
  • the coordinate input device 105 acquires information (candidate information) related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regarding the three-dimensional terrain data displayed on the display device 104.
  • the coordinate input device 105 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion.
  • the coordinate input device 105 acquires information (candidate information) regarding coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
  • the coordinate conversion table creation unit 106 converts the coordinates of the camera coordinate system, which are the coordinates in the captured image data, into the coordinates of the world coordinate system, which is the coordinates of the three-dimensional terrain data, using the small area group and information related to the coordinate conversion.
  • a coordinate conversion table that is information to be created is created. That is, the coordinate conversion table is a table of information related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the captured image data.
  • the coordinate conversion table creation device 1 creates a coordinate conversion table.
  • the storage device 107 stores the created coordinate conversion table.
  • the small area grouping unit 103 and the coordinate conversion table creating unit 106 are realized by using, for example, a CPU (Central Processing Unit) of a computer that operates based on a coordinate conversion program.
  • the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program.
  • the elements are the small region grouping unit 103 and the coordinate conversion table creation unit 106.
  • the computer will be described in detail later.
  • FIG. 3 is a flowchart showing an example of the operation in the coordinate conversion table creating apparatus 1 according to the first embodiment. Note that the image capturing apparatus 101 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 106.
  • the small area grouping unit 103 acquires the 3D terrain data corresponding to the location included in the captured image data from the 3D terrain database storage unit 102 (step S101).
  • the small area grouping unit 103 performs grouping (grouping) on the small areas of the acquired three-dimensional terrain data based on the normal direction and elevation information in each small area included in the acquired three-dimensional terrain data ( Step S102).
  • FIG. 4 is a schematic diagram illustrating an example of a small region group according to the first embodiment.
  • the small area grouping unit 103 performs grouping using the following method.
  • the small area grouping unit 103 obtains normal vectors (for example, normalized normal vectors) of all small areas included in the target three-dimensional terrain data and the average elevation of the small areas.
  • the small area grouping unit 103 divides all small areas into pairs according to a predetermined rule.
  • the small region grouping unit 103 calculates the inner product of the normal vectors and the elevation difference (the above-described difference in average elevation) for each pair of all the small regions.
  • the small area grouping unit 103 uses a pair of small areas in which the inner product and the altitude difference are included in a certain range of values as grouping targets.
  • the small area grouping unit 103 selects a small area pair whose normal direction is substantially the same using the inner product value, and further uses a difference in altitude to form a pair of small areas having the same altitude. Select. In other words, the small area grouping unit 103 selects a pair of small areas that have substantially the same elevation in substantially the same direction. Then, the small area grouping unit 103 groups the small area pairs using the altitude. Note that the small area grouping unit 103 may select a small area whose normal direction is a predetermined direction (for example, a vertical direction) as a processing target, and execute the grouping. For example, as illustrated in FIG.
  • the small region grouping unit 103 may select a substantially horizontal small region (small region pair) and divide it into groups.
  • a set of small areas with low elevation is a set of small areas included in group 1.
  • a set of small areas whose altitude is higher than a certain value than the altitude of group 1 is a set of small areas included in group 2.
  • the method of grouping small areas is not limited to the above method.
  • the small area grouping method may be any grouping technique that uses the normal direction and elevation information of each small area, and may be an existing grouping technique or clustering technique.
  • the display device 104 displays 3D terrain data grouped into small area groups.
  • the coordinate input device 105 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system for each small region group with respect to the three-dimensional terrain data displayed on the display device 104 (step). S103).
  • the coordinate input device 105 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion.
  • the coordinate input device 105 acquires information related to coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
  • the coordinate conversion table creation unit 106 coordinates the coordinates of the camera coordinate system, which is the coordinate system of the imaging apparatus 101, and the coordinates of the world coordinate system (for example, latitude, longitude, and altitude). Ask for conversion. Specifically, the coordinate conversion table creation unit 106 obtains coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system for all pixels on which the ground surface in the captured image is displayed. Then, the coordinate conversion table creation unit 106 creates a coordinate conversion table including the coordinate conversion of all the small area groups based on the calculated coordinate conversion (step S104).
  • the coordinate conversion table creation unit 106 may obtain coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system as follows, for example.
  • the coordinate conversion table creation unit 106 uses information regarding coordinate conversion between the camera coordinate system and the world coordinate system of each plane acquired by the coordinate input device 105 and the plane that approximates the small region group.
  • the coordinate conversion table creation unit 106 obtains a plane projective conversion parameter for performing plane projective conversion to the coordinates of a plane that approximates the coordinates of the camera coordinate system for each small region group.
  • the coordinate conversion table creation unit 106 performs planar projection corresponding to the small region group with respect to the position of the pixel corresponding to the ground surface in the captured image data in which the location corresponding to the small region group is captured (the coordinates in the camera coordinate system). A coordinate transformation using the transformation parameter is calculated. As described above, the coordinate conversion table creation unit 106 creates a coordinate conversion table using coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system.
  • the parameters related to the coordinate conversion of the small area group are not limited to the parameters of the planar projective conversion.
  • the parameter relating to coordinate transformation may be a parameter that is an approximation of affine transformation or other linear transformation.
  • the coordinate conversion table creation unit 106 obtains continuous coordinate conversion for pixels in each small region group using nonlinear conversion such as spline interpolation or TPS (ThinSPlate Spline) interpolation. May be.
  • the coordinate input device 105 acquires information related to the coordinate transformation between the camera coordinate system and the world coordinate system regarding the number of points necessary and sufficient to estimate each transformation parameter. Assuming that
  • the coordinate conversion table creation unit 106 stores the created coordinate conversion table in the storage device 107.
  • the small area grouping unit 103 divides the small areas into groups (small area groups) that can be approximated to a plane based on the normal direction and the elevation information. Then, the coordinate conversion table creation unit 106 uses the plane that approximates the small region group to convert the coordinates of the camera coordinate system of the imaging device 101 arranged at the monitoring target point and the coordinates of the world coordinate system. Create a conversion table. As described above, the coordinate conversion table creation device 1 can create a coordinate conversion table using conversion using a plane (for example, plane projection conversion) regardless of the topography of the monitoring target region.
  • a plane for example, plane projection conversion
  • the coordinate conversion table creation device 1 can determine the coordinates of the camera coordinate system and the world even if the monitoring target area is an area where no landmark is present, a complex terrain with undulations, or an area where a survey vehicle cannot travel. Coordinate conversion with the coordinates of the coordinate system can be realized.
  • the coordinate conversion table can be used to measure the position coordinates of an object such as a suspicious vehicle.
  • FIG. 5 is a block diagram illustrating an example of a configuration of the object position measurement device 2001 and the coordinate association system 100 according to the first embodiment.
  • the object position measuring apparatus 2001 illustrated in FIG. 5 is suspicious in the captured image data captured by the imaging apparatus 101 using the coordinate conversion table created by the coordinate conversion table creating apparatus 1 and stored in the storage device 107. Measure the position coordinates of an object such as a vehicle. Therefore, the object position measurement device 2001 includes an object detection device 2002 and an object position coordinate conversion device 2003.
  • the object detection device 2002 detects an object in the captured image data captured by the imaging device 101.
  • the object position coordinate conversion device 2003 uses the coordinate conversion table to convert object coordinates (camera coordinate system coordinates) in the captured image data into world coordinate system coordinates.
  • the object position measuring apparatus 2001 measures the position of the object (for example, coordinates such as latitude, longitude, and altitude) in the captured image data captured by the image capturing apparatus 101.
  • FIG. 6 illustrates a situation in which coordinates in the camera coordinate system (position in the captured image data) of an object such as a suspicious vehicle in the object position measurement apparatus 2001 according to the first embodiment are converted into coordinates in the world coordinate system. It is a schematic diagram. The coordinates of the camera coordinate system of each car included in the photographed image data shown on the left side of FIG. 6 are converted into the coordinates of the world coordinate system shown on the right side of FIG.
  • the coordinate conversion table stored in the storage device 107 includes a setting change of the photographing apparatus 101 (a change in resolution, a change in focus or angle of view accompanying a lens change, or a change in position or orientation of the photographing apparatus). It does not need to be updated unless it occurs. Therefore, when the coordinate conversion table is stored in the storage device 107, the object detection device 2002 can operate using the coordinate conversion table unless the photographing apparatus 101 is changed. That is, the object detection device 2002 uses the captured image data obtained from the imaging device 101 even after the coordinate conversion table creation device 1 does not operate unless the imaging device 101 is changed after the creation of the coordinate conversion table.
  • the coordinates of the contained object in the world coordinate system can be obtained.
  • the object is, for example, a suspicious person or a suspicious vehicle.
  • the coordinate conversion table creation device 1 can achieve the effect of calculating coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regardless of the target region.
  • the small area grouping unit 103 divides the small areas in the 3D terrain data corresponding to the captured image data into groups based on the 3D terrain data stored in the 3D terrain database storage unit 102. More specifically, the small area grouping unit 103 divides the small areas into groups using the normal direction and the altitude of the small areas. Then, the coordinate conversion table creation unit 106 calculates coordinate conversion (coordinate conversion table) for converting the coordinates of the camera coordinate system into the coordinates of the world coordinate system for each group of small regions. Here, the small area grouping unit 103 divides the small areas into small area groups so as to be substantially flat based on the normal direction and the altitude.
  • the coordinate conversion table creation unit 106 can create a coordinate conversion table for converting the coordinates of the camera coordinate system to the coordinates of the world coordinate system using a plane that approximates each small region group.
  • the coordinate conversion table creation device 1 is for creating a coordinate conversion table using plane approximation regardless of the target region.
  • FIG. 7 is a block diagram illustrating an example of a configuration of the coordinate association system 200 according to the second embodiment.
  • the coordinate association system 200 includes an imaging device 201, a three-dimensional landform database storage unit 202, a coordinate conversion table creation device 2, a display device 205, a coordinate input device 206, and a storage device 208.
  • the coordinate conversion table creation device 2 includes a position / orientation acquisition unit 203, a small area grouping unit 204, and a coordinate conversion table creation unit 207.
  • the imaging device 201, the three-dimensional terrain database storage unit 202, and the storage device 208 are the same as the imaging device 101, the three-dimensional terrain database storage unit 102, and the storage device 107, respectively, according to the first embodiment.
  • the imaging device 201 outputs information regarding the imaging device 201 to the coordinate conversion table creation device 2 in addition to the captured image data.
  • the information related to the imaging apparatus 201 includes information related to the position of the imaging apparatus 201 (position information) and information related to the orientation of the imaging apparatus 201.
  • the position information is position information (for example, latitude, longitude, and altitude) in the world coordinate system of the photographing apparatus 201.
  • the information related to the orientation of the image capturing apparatus 201 is information related to the image capturing direction of the image capturing apparatus 201 (orientation information).
  • the position / orientation acquisition unit 203 acquires position information and direction information from the photographing apparatus 201.
  • the small area grouping unit 204 generates a small area of the 3D terrain data based on the 3D terrain data corresponding to the location included in the captured image data and the distance from the imaging device 201 to the location (3D terrain data). Create a group.
  • the display device 205 displays 3D terrain data grouped into small area groups.
  • the coordinate input device 206 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regarding the three-dimensional terrain data displayed on the display device 205.
  • the coordinate input device 206 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion.
  • the coordinate input device 206 acquires information related to coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
  • the coordinate conversion table creation unit 207 creates a coordinate conversion table for converting the coordinates of the camera coordinate system in the captured image data into the coordinates of the world coordinate system using the small area group and the information related to the coordinate conversion.
  • the position / orientation acquisition unit 203, the small area grouping unit 204, and the coordinate conversion table creation unit 207 are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program.
  • the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program.
  • the computer will be described in detail later.
  • FIG. 8 is a flowchart showing an example of the operation of the coordinate conversion table creation device 2 according to the second embodiment. Note that the image capturing apparatus 201 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 207.
  • the position / orientation acquisition unit 203 acquires position information and direction information of the photographing apparatus 201. Similar to the small region grouping unit 103 of the first embodiment, the small region grouping unit 204 acquires three-dimensional landform data corresponding to the location of the captured image data from the three-dimensional landform database storage unit 202 (step S201). .
  • the position / orientation acquisition unit 203 may acquire the position information of the image capturing apparatus 201 using, for example, Exif (Exchangeable image file format) information of the captured image data. Further, the position / orientation acquisition unit 203 may acquire position information of the image capturing apparatus 201 from a GPS attached to the image capturing apparatus 201. Further, the position / orientation acquisition unit 203 may acquire the orientation information of the imaging apparatus 201 from a magnetic compass attached to the imaging apparatus 201. However, the method by which the position / orientation acquisition unit 203 acquires the position information and the direction information of the imaging apparatus 201 is not limited to the above. The position / orientation acquisition unit 203 may acquire the position information and the direction information of the photographing apparatus 201 from other sensors (not shown). Further, the position / orientation acquisition unit 203 may acquire the position information and the direction information of the photographing apparatus 201 based on an operation of an operator on an input device (not shown).
  • Exif Exchangeable image file format
  • the small region grouping unit 204 groups small regions of the acquired three-dimensional terrain data based on the normal direction and elevation information of each small region (step S202).
  • the small area grouping unit 204 obtains a distance from the photographing apparatus 201 to the small area for each small area based on the position information and the azimuth information of the photographing apparatus 201 acquired by the position / orientation acquisition unit 203.
  • the small area grouping unit 204 groups the small areas again based on the distance from the photographing apparatus 201 to the small area (step S203).
  • the small area grouping unit 204 further subdivides the group created in step S202 according to the distance from the imaging device 201 to the small area.
  • the small region grouping unit 204 divides at least a part of the groups into a plurality of groups based on the distance.
  • FIG. 9 is a schematic diagram showing an example of a group obtained as a result of step S203 in FIG. 9, in FIG. 9, a set of small areas in a short distance in a small area having a low altitude is group 1.
  • a group of small areas at a long distance is group 2.
  • a set of small areas at a short distance is Group 3.
  • a group of small areas at a long distance (on the right side in FIG. 9) in the small area having a high altitude is group 4.
  • groups 1 and 2 are divided into two groups based on the distance from the photographing apparatus 101.
  • the display device 205 displays the three-dimensional terrain data grouped in the subdivided small area groups.
  • the coordinate input device 206 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system for each small region group with respect to the three-dimensional terrain data displayed on the display device 205 (step). S204).
  • the coordinate input device 206 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion.
  • the coordinate input device 206 acquires information related to coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
  • the coordinate conversion table creation unit 207 creates a coordinate conversion table based on the small area group, similarly to the coordinate conversion table creation unit 106 of the first embodiment (step S205).
  • the coordinate conversion table creation unit 207 stores the created coordinate conversion table in the storage device 208.
  • the small area grouping unit 204 groups small areas using the distance. That is, the small area group of the second embodiment includes small areas having the same distance from the imaging device 201.
  • the accuracy of the coordinate conversion obtained by the coordinate conversion table creation unit 207 may be reduced.
  • the coordinate conversion table creation unit 207 creates a coordinate conversion table using the small area groups grouped based on the distance. Therefore, the coordinate conversion table creation device 2 can create a coordinate conversion table with high accuracy. Therefore, even when an object far from the photographing apparatus 201 is detected in the photographed image data, the coordinate conversion table creating apparatus 2 creates a coordinate conversion table using a small area group that is substantially the same distance as the object. is doing. Therefore, the coordinates of the object in the world coordinate system are calculated with high accuracy.
  • each embodiment described below may be configured not to execute this operation. That is, in each embodiment described below, the small areas may be grouped without using the distance from the imaging device to the small areas.
  • FIG. 10 is a block diagram illustrating an example of a configuration of a coordinate association system 300 according to the third embodiment.
  • a coordinate association system 300 according to the third embodiment includes an imaging device 301, a three-dimensional landform database storage unit 302, a coordinate conversion table creation device 3, a display device 306, a coordinate input device 307, and a storage device 309. including.
  • the coordinate conversion table creation device 3 includes a position / orientation acquisition unit 303, a small area grouping unit 304, a measurement point extraction unit 305, and a coordinate conversion table creation unit 308.
  • the photographing device 301, the three-dimensional landform database storage unit 302, and the storage device 309 are the same as the photographing device 201, the three-dimensional landform database storage unit 202, and the storage device 208 in the second embodiment.
  • the position / orientation acquisition unit 303 and the small region grouping unit 304 are the same as the position / orientation acquisition unit 203 and the small region grouping unit 204 in the second embodiment.
  • the measurement point extraction unit 305 extracts measurement point candidates in each small region group based on the small region grouping result in the small region grouping unit 304.
  • a measurement point candidate is a point from which information (candidate information) regarding coordinate transformation between the coordinates of the camera coordinate system and the corresponding coordinates (position) of the world coordinate system is acquired.
  • a measurement point candidate may be simply referred to as a “measurement point”. Note that the measurement point candidates are displayed on the display device 306, as will be described later.
  • Display device 306 displays measurement point candidates. For example, the display device 306 indicates a measurement point candidate to the worker.
  • the coordinate input device 307 is a device that acquires candidate information on measurement point candidates.
  • the coordinate input device 307 is a device for acquiring the candidate information based on the operation of the worker.
  • the operator's operation specifically includes information (coordinate conversion information) about a pair of coordinates (the coordinates of the camera coordinate system and the coordinates of the world coordinate system) in the measurement point candidate displayed on the display device 306. ) Input. That is, the coordinate input device 307 acquires information (candidate information) related to coordinate conversion in a coordinate pair of the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate.
  • the coordinate conversion table creation unit 308 acquires candidate information related to the measurement point candidate from the coordinate input device 307, and based on the acquired candidate information, coordinate conversion related to coordinate conversion from the coordinates of the camera coordinate system to the coordinates of the world coordinate system. Create a table.
  • the position / orientation acquisition unit 303, the small area grouping unit 304, the measurement point extraction unit 305, and the coordinate conversion table creation unit 308 are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program.
  • the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program.
  • the CPU executes an operation of transmitting information (candidate for measurement point) to the display device 306 and an operation of acquiring information (candidate information) from the coordinate input device 307 based on the coordinate conversion program.
  • This also applies to other embodiments described later.
  • the computer will be described in detail later.
  • FIG. 11 is a flowchart showing an example of the operation of the coordinate conversion table creation device 3 according to the third embodiment. Note that the imaging apparatus 301 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 308.
  • the position / orientation acquisition unit 303 acquires the position information and the direction information in the world coordinate system of the image capturing apparatus 301 in the same manner as the position / orientation acquisition unit 203 of the second embodiment. Further, the small area grouping unit 304 acquires the three-dimensional terrain data corresponding to the location of the captured image data from the three-dimensional terrain database storage unit 302, similarly to the small region grouping unit 204 of the second embodiment (step S301). ).
  • the small region grouping unit 304 divides the small regions of the acquired three-dimensional terrain data into groups based on the normal direction and elevation information of each small region (Ste S302).
  • the small region grouping unit 304 is a place corresponding to a small region from the imaging device 301 based on the position information and orientation information of the imaging device 301 acquired by the position / orientation acquisition unit 303. Find the distance to.
  • the small area grouping unit 304 groups the small area groups again based on the distance from the photographing apparatus 301 to the place corresponding to the small area (step S303).
  • the measurement point extraction unit 305 extracts a measurement point candidate for each small area group (step S304).
  • FIG. 12 is a schematic diagram for explaining a method of extracting measurement point candidates by the measurement point extraction unit 305 in the third embodiment.
  • FIG. 12 shows the measurement point candidates by using the group shown in FIG. 4 instead of the group regrouped based on the distance shown in FIG. 9 for easy understanding of the operation. It was.
  • the measurement point extraction unit 305 calculates the position (coordinates) of the center of gravity for each small area group. Next, the measurement point extraction unit 305 selects a plurality of points whose distance from the center of gravity is a certain value or more. Then, the measurement point extraction unit 305 extracts, as measurement point candidates, a predetermined number of points at which the angle formed by all line segments connecting each point and the center of gravity is equal to or greater than a predetermined angle from the selected points. That is, the measurement point extraction unit 305 extracts the measurement point candidate points so that they are separated from the center of gravity of the small region group by a predetermined distance or more and are not adjacent to each other.
  • the measurement point extraction unit 305 extracts a plurality of measurement point candidates for each small region group.
  • the predetermined number of measurement point candidates extracted here is a predetermined number or more, or a predetermined number of ranges. Then, the measurement point extraction unit 305 transmits the measurement point candidate to the display device 306.
  • the display device 306 displays the acquired measurement point candidates. At this time, the display device 306 may display the measurement point candidates together with the three-dimensional terrain data, as shown in FIG.
  • the coordinate input device 307 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 306 (step S305).
  • the coordinate input device 307 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion.
  • the worker confirms the captured image data displayed on the display device 306 and the map data or the aerial image. Then, the operator may input information (candidate information) related to coordinate transformation between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the position corresponding to the measurement point candidate to the coordinate input device 307.
  • the worker has a sensor (for example, GPS) and a marker that can acquire coordinates in the world coordinate system, and goes to a measurement point candidate.
  • an operator measures the coordinate of the world coordinate system of a measurement point candidate using a sensor. Further, the operator places a marker on the measurement point candidate.
  • the imaging device 301 acquires captured image data in this state.
  • the operator obtains information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the position corresponding to the measurement point candidate, and sends the information to the coordinate input device 307. You may enter.
  • the coordinate input device 307 transmits information (candidate information) related to coordinate conversion of the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the position corresponding to the acquired measurement point candidate to the coordinate conversion table creation unit 308.
  • the coordinate conversion table creation unit 308 uses the acquired candidate information to calculate the coordinates of the camera coordinate system of the small area group and the coordinates of the world coordinate system.
  • a coordinate conversion table is created (step S306). That is, the coordinate conversion table creation unit 308 creates a coordinate conversion table using information (candidate information) related to coordinate conversion of measurement point candidates.
  • the coordinate conversion table creation unit 308 causes the storage device 309 to store the created coordinate conversion table.
  • the measurement point extraction unit 305 of this embodiment extracts measurement point candidates in each small area group. Then, the coordinate conversion table creation unit 308 acquires information (candidate information) related to coordinate conversion in the above measurement point candidates.
  • the candidate information is information relating to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate.
  • the candidate information includes, for example, coordinate information measured by an operator or the like. That is, the candidate information (information regarding coordinate conversion) includes at least information regarding accurate coordinate conversion in the measurement point candidate.
  • the coordinate conversion table creation device 3 creates the coordinate conversion table using the candidate information, so that the accuracy of the coordinate conversion table can be improved.
  • the coordinate conversion table creation device 3 can improve the accuracy of the coordinate conversion table using the candidate information.
  • the acquired candidate information includes information related to accurate coordinate conversion in the small area group.
  • the processing amount for ensuring a predetermined accuracy in coordinate transformation is generally inversely proportional to the accuracy of the initial value. When the accuracy of the initial value is high, the processing amount decreases. Therefore, the coordinate conversion table creation device 3 can reduce the calculation cost when creating the coordinate conversion table using the acquired candidate information.
  • FIG. 13 is a block diagram illustrating an example of a configuration of a coordinate association system 400 according to the fourth embodiment.
  • a coordinate association system 400 according to the fourth embodiment includes an imaging device 401, a three-dimensional terrain database storage unit 402, a coordinate conversion table creation device 4, a display device 407, a coordinate input device 408, and a storage device 410. including.
  • the coordinate matching system 400 of the fourth embodiment includes a measurement ease database storage unit 405.
  • the coordinate conversion table creation device 4 includes a position / orientation acquisition unit 403, a small area grouping unit 404, a measurement point extraction unit 406, and a coordinate conversion table creation unit 409.
  • the imaging device 401, the three-dimensional terrain database storage unit 402, and the storage device 410 are the same as the imaging device 301, the three-dimensional terrain database storage unit 302, and the storage device 309 in the third embodiment.
  • the display device 407 and the coordinate input device 408 are the same as the display device 306 and the coordinate input device 307 in the third embodiment.
  • the position / orientation acquisition unit 403, the small region grouping unit 404, and the coordinate conversion table creation unit 409 are the same as the position / orientation acquisition unit 303, the small region grouping unit 304, and the coordinate conversion table creation unit 308 in the third embodiment. It is.
  • the measurement ease database storage unit 405 is a storage device that stores in advance data obtained by quantifying the ease of measurement of coordinates in the world coordinate system at each point included in the three-dimensional terrain data.
  • the storage format of data obtained by digitizing the measurement ease is not particularly limited.
  • the measurement ease database storage unit 405 may store measurement ease data as a database format.
  • data obtained by quantifying measurement ease may be simply referred to as “measurement ease data”.
  • a region such as a pond or a swamp is a region where it is difficult for an operator to go to that point and measure the coordinates of the world coordinate system.
  • the measurement ease data of the points included in the difficult region is a small value.
  • a region such as a flat land or a road is a region where an operator can easily go to that point and measure the coordinates of the world coordinate system.
  • the measurement ease data of the points included in such a region is a large value. As described above, in the following description, it is assumed that a point where the coordinates of the world coordinate system are easy to measure has a larger value of measurement ease data.
  • the measurement point extraction unit 406 extracts measurement point candidates in the small region group based on the small region group grouped by the small region grouping unit 404 and the measurement ease data. That is, the measurement point extraction unit 406 extracts measurement point candidates that can be easily measured.
  • the position / orientation acquisition unit 403, the small area grouping unit 404, the measurement point extraction unit 406, and the coordinate conversion table creation unit 409 are realized using a CPU of a computer that operates based on a coordinate conversion program, for example.
  • the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program.
  • the computer will be described in detail later.
  • FIG. 14 is a flowchart showing an example of the operation of the coordinate conversion table creation device 4 according to the fourth embodiment. Note that the imaging apparatus 401 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 409.
  • the position / orientation acquisition unit 403 acquires the position information and the direction information in the world coordinate system of the imaging apparatus 401, as with the position / orientation acquisition unit 303 of the third embodiment.
  • the small area grouping unit 404 acquires the 3D terrain data corresponding to the location of the captured image data from the 3D terrain database storage unit 402, similarly to the small area grouping unit 304 of the third embodiment (step S401). ).
  • the small region grouping unit 404 groups small regions of the acquired three-dimensional terrain data based on the normal direction and elevation information of each small region (step) S402).
  • the small region grouping unit 404 calculates the distance from the image capturing device 401 to the small region based on the position information and the direction information of the image capturing device 401 acquired by the position / orientation acquiring unit 403. Ask.
  • the small area grouping unit 404 divides the small area group according to the distance from the photographing apparatus 401 to the small area (step S403).
  • the measurement point extraction unit 406 extracts a plurality of measurement point candidates for each small region group, similarly to the measurement point extraction unit 305 of the third embodiment (step S404).
  • the measurement point extraction unit 406 ranks the measurement point candidates extracted in step S404 based on the measurement ease data of the measurement point candidates.
  • the measurement point extraction unit 406 performs this process for each small area group. That is, the measurement point extraction unit 406 ranks the measurement point candidates in the order in which the coordinates of the world coordinate system are easily measured in each small region group.
  • the measurement point extraction unit 406 may rank the measurement point candidates in descending order of the measurement ease data for each small region group. Then, the measurement point extraction unit 406 extracts up to a predetermined number of measurement point candidates for each small region group based on the rank (step S405).
  • the measurement point extraction unit 406 is set to extract measurement point candidates from the highest level to a predetermined number. In this case, the measurement point extraction unit 406 extracts (selects) the measurement point candidates from the highest level to the predetermined number for each small region group.
  • the aspect of extracting the measurement point candidates based on the rank is not limited to the above.
  • the measurement point extraction unit 406 may extract measurement point candidates whose measurement ease data value is greater than a predetermined threshold.
  • FIG. 15 is a schematic diagram showing an example of extraction of measurement point candidates in the fourth embodiment.
  • FIG. 15 shows a measurement point candidate that is desired to be extracted (selected) with a low rank as a triangular marker, and shows the extracted measurement point candidate using an X-type mark.
  • the upper part of FIG. 15 shows positions corresponding to measurement point candidates in the captured image data.
  • the lower diagram in FIG. 15 shows the positions of the measurement point candidates in the three-dimensional terrain data.
  • the lower figure of FIG. 15 is not shown in FIG. 4 but a group regrouped based on the distance shown in FIG. Using groups, candidate measurement points were shown.
  • the measurement point extraction unit 406 has extracted a measurement point candidate in step S404, and a measurement point candidate is further extracted from the measurement point candidates in step S405.
  • the operation of the measurement point extraction unit 406 is not limited to such an operation.
  • the measurement point extracting unit 406 may extract the measurement point candidates from the top to the predetermined order in descending order of the value of the measurement ease data for each small region group without executing Step S404.
  • the operation of the measurement point extraction unit 406 is the same in each embodiment described later.
  • the display device 407 displays the measurement point candidates extracted (selected) in step S405, similarly to the display device 306 of the third embodiment.
  • the coordinate input device 408 operates in the same manner as the coordinate input device 307 of the third embodiment. That is, the coordinate input device 408 obtains information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 407 (step S406).
  • the coordinate conversion table creation unit 409 creates a coordinate conversion table between the coordinates of the camera coordinate system and the coordinates of the world coordinate system, using the acquired candidate information, similarly to the coordinate conversion table creation unit 308 of the third embodiment. (Step S407).
  • the coordinate conversion table creation unit 409 causes the storage device 410 to store the created coordinate conversion table.
  • the fourth embodiment has an effect of facilitating acquisition of candidate information for further improving accuracy.
  • the reason is as follows.
  • the measurement point extraction unit 406 of the fourth embodiment extracts measurement point candidates that can be easily measured based on the measurement ease data stored in the measurement ease database storage unit 405. Therefore, the candidate information acquired by the coordinate input device 408 is information that can be easily obtained. Therefore, 4th Embodiment also has an effect of reducing a worker's load.
  • the coordinate conversion table creation unit 409 can acquire highly accurate candidate information.
  • each embodiment as in the case of the fourth embodiment, a case will be described in which measurement point candidates are ranked, and measurement point candidates are extracted based on the ranks.
  • each embodiment described below may be configured not to perform this operation.
  • a coordinate association system 400 according to the fifth embodiment will be described.
  • the configuration of the coordinate association system 400 according to the fifth embodiment is the same as that of the coordinate association system 400 according to the fourth embodiment. Therefore, the fifth embodiment will be described below with reference to FIG.
  • the coordinate conversion table creation unit 409 creates a coordinate conversion table for at least one small area group, and then performs coordinate conversion in the remaining small area groups based on the positional relationship between the small area group and the remaining small area groups. presume. Then, the coordinate conversion table creation unit 409 creates a coordinate conversion table for the remaining small region groups based on the estimated coordinate conversion.
  • the operation of the fifth embodiment is different from the operations of steps S406 and S407 in the flowchart of FIG. 14 showing the operation of the fourth embodiment.
  • the display device 407 according to the fifth embodiment displays the measurement point candidates extracted in step S405 in the same manner as the display device 407 according to the fourth embodiment.
  • the coordinate input device 408 of the fifth embodiment acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system with respect to the measurement point candidates of at least one small region group (steps). S406).
  • the coordinate conversion table creation unit 409 obtains coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system with respect to the small area group (hereinafter referred to as “small area group A ”) corresponding to the acquired candidate information. . More specifically, for the small area group A , the coordinate conversion table creation unit 409 obtains a coordinate conversion parameter for coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Then, the coordinate conversion table generation unit 409, by using the coordinate transformation parameters for all the pixels surface of the region corresponding to the small region group A is displayed, to create the coordinate conversion table.
  • the coordinate conversion table creation unit 409 performs coordinate conversion (coordinate conversion parameters) in another small region group (hereinafter referred to as “small region group B ”) based on the relative positional relationship with the small region group A. ).
  • the coordinate conversion table creation unit 409 calculates a rotation matrix and a translation vector representing a relative positional relationship between the small area groups based on the three-dimensional terrain data.
  • the coordinate conversion table creation unit 409 may calculate a rotation matrix and a translation vector in advance.
  • the coordinate conversion table creation unit 409 calculates the coordinate conversion parameter in the small region group B from the coordinate conversion parameter in the small region group A based on the positional relationship between the small region group B and the small region group A. Specifically, the coordinate conversion table creation unit 409 calculates the coordinate conversion parameter in the small region group B from the coordinate conversion parameter in the small region group A using the rotation matrix and the translation vector representing the positional relationship of the small region group. To do.
  • the coordinate conversion table creation unit 409 creates a coordinate conversion table for all the pixels on which the ground surface in the region corresponding to the small region group B is displayed, using the calculated coordinate conversion parameter. As described above, the coordinate conversion table creation unit 409 creates a coordinate conversion table for the small area group B based on the positional relationship between the small area groups and the coordinate conversion parameters for the small area group A for which candidate information has been acquired ( Step S407).
  • the coordinate conversion table creation unit 409 causes the storage device 410 to store the created coordinate conversion table.
  • the fifth embodiment has the effect of facilitating acquisition of candidate information.
  • the reason is as follows.
  • the coordinate conversion table creation unit 409 of the fifth embodiment estimates the coordinate conversion parameters of other small region groups based on at least some of the small region group candidate information, and the coordinate conversion table based on the estimated parameters. Create This is because the coordinate conversion table creation device 4 only needs to acquire candidate information for some of the measurement point candidates. Therefore, the fifth embodiment also has an effect of reducing the load on the worker.
  • a correspondence relationship regarding one or a part of small region groups may be used as the correspondence relationship of the small region groups.
  • FIG. 16 is a block diagram illustrating an example of a configuration of a coordinate association system 500 according to the sixth embodiment.
  • a coordinate association system 500 according to the sixth embodiment includes an imaging device 501, a three-dimensional landform database storage unit 502, a coordinate conversion table creation device 5, a display device 508, a coordinate input device 509, and a storage device 511. including.
  • the coordinate association system 500 of the sixth embodiment includes a measurement ease database storage unit 505.
  • the coordinate conversion table creation device 5 includes a position / orientation acquisition unit 503, a small area grouping unit 504, a measurement point extraction unit 506, a route calculation unit 507, and a coordinate conversion table creation unit 510.
  • the photographing device 501, the three-dimensional terrain database storage unit 502, and the storage device 511 are the same as the photographing device 401, the three-dimensional terrain database storage unit 402, and the storage device 410 in the fourth embodiment.
  • the measurement ease database storage unit 505, the display device 508, and the coordinate input device 509 are the same as the measurement ease database storage unit 405, the display device 407, and the coordinate input device 408 in the fourth embodiment.
  • the display device 508 displays the shortest path as described later.
  • the position / orientation acquisition unit 503, the small region grouping unit 504, and the coordinate conversion table creation unit 510 are the same as the position / orientation acquisition unit 403, the small region grouping unit 404, and the coordinate conversion table creation unit 409 in the fourth embodiment. It is.
  • the measurement point extraction unit 506 is the same as the measurement point extraction unit 406 in the fourth embodiment.
  • the route calculation unit 507 calculates the shortest route that passes through all the measurement point candidates extracted by the measurement point extraction unit 506. Then, the route calculation unit 507 outputs (transmits) the calculated shortest route and measurement point candidate to the display device 508.
  • the display device 508 displays the measurement point candidates and the shortest route.
  • the position / orientation acquisition unit 503, the small area grouping unit 504, the measurement point extraction unit 506, the route calculation unit 507, and the coordinate conversion table creation unit 510 are realized as follows, for example. These elements are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
  • FIG. 17 is a flowchart showing an example of the operation of the coordinate conversion table creation device 5 according to the sixth embodiment. Note that the image capturing apparatus 501 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 510.
  • steps S501 to S505 shown in FIG. 17 are the same as the operations of steps S401 to S405 in the fourth embodiment shown in FIG. Therefore, the detailed description is abbreviate
  • step S505 after acquiring the measurement point candidates extracted by the measurement point extraction unit 506, the route calculation unit 507 calculates the shortest route that passes through all the measurement point candidates based on the distance between the measurement point candidates (step S506). ).
  • the method for calculating the shortest route in the measurement point extraction unit 506 is not particularly limited.
  • the route calculation unit 507 may calculate the shortest route as follows.
  • the route calculation unit 507 creates a graph in which measurement point candidates are nodes and nodes (measurement point candidates) are connected by edges. At this time, the route calculation unit 507 associates the distance information of the measurement point candidate with the edge. The route calculation unit 507 determines the shortest route that passes through all nodes (all measurement point candidates) for this graph using the Dijkstra method. Note that the route calculation unit 507 may consider not only distance information associated with an edge but also three-dimensional terrain data between nodes (measurement point candidates) in calculating the shortest route.
  • the route calculation unit 507 numerically represents the ease of travel between the nodes (measurement point candidates) (for example, the ease of travel of the vehicle whose coordinates are measured) based on the three-dimensional landform data between the nodes (measurement point candidates). Parameterized). Then, the route calculation unit 507 may perform weighting on the edge using the parameter. However, the route calculation unit 507 may use a route determination method other than the Dijkstra method.
  • the display device 508 displays the measurement point candidates extracted in step S505 and the shortest route calculated in step S506.
  • FIG. 18 is a diagram illustrating an example of a measurement point candidate and a calculated shortest route in the sixth embodiment.
  • the operator moves a moving object having means for measuring the coordinates of the world coordinate system along the displayed shortest path, and uses the moving object to measure the measurement point candidate. Measure the coordinates of the world coordinate system corresponding to. For example, an operator who inputs candidate information to the coordinate input device 509 performs the measurement of the coordinates of the world coordinate system and the arrangement of the markers at the measurement candidate points described in the third embodiment along the displayed shortest path. Execute.
  • the coordinate input device 408 operates in the same manner as the coordinate input device 408 of the fourth embodiment. That is, the coordinate input device 408 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 508 (step S508).
  • the coordinate conversion table creation unit 510 creates a coordinate conversion table between the coordinates of the camera coordinate system and the coordinates of the world coordinate system, using the acquired candidate information, similarly to the coordinate conversion table creation unit 409 of the fourth embodiment. (Step S509).
  • the coordinate conversion table creation unit 510 stores the created coordinate conversion table in the storage device 511.
  • the sixth embodiment has the effect of further reducing the load for acquiring candidate information.
  • the reason is as follows.
  • the route calculation unit 507 of the present embodiment outputs the measurement point candidate and the shortest route to the display device 508. Therefore, the display device 508 can display the shortest path passing through the measurement point candidate in addition to the measurement point candidate. Therefore, an operator who measures candidate information can move a moving body (for example, a measurement vehicle) used for measurement along the displayed shortest route, reduce the time required for measurement, and measure coordinates. it can.
  • a moving body for example, a measurement vehicle
  • FIG. 19 is a block diagram illustrating an example of a configuration of a coordinate association system 600 according to the seventh embodiment.
  • a coordinate association system 600 according to the seventh embodiment includes a three-dimensional landform database storage unit 602, a coordinate conversion table creation device 6, a measurement ease database storage unit 605, and a storage device 611.
  • the coordinate association system 600 of the seventh embodiment includes a display device 608 and a coordinate input device 609.
  • a coordinate association system 600 according to the seventh embodiment includes a plurality of imaging devices 601.
  • the coordinate conversion table creation device 6 includes a position / orientation acquisition unit 603, a small region grouping unit 604, a measurement point extraction unit 606, a measurement point grouping unit 607, and a coordinate conversion table creation unit 610.
  • the three-dimensional landform database storage unit 602, the measurement ease database storage unit 605, and the storage device 611 are the three-dimensional landform database storage unit 402, the measurement ease database storage unit 405, and the storage device 410 in the fourth embodiment. It is the same.
  • the display device 608 and the coordinate input device 609 are the same as the display device 407 and the coordinate input device 408 in the fourth embodiment. However, the display device 608 displays the measurement point candidates for each photographing device 601.
  • the small region grouping unit 604 and the measurement point extraction unit 606 are the same as the small region grouping unit 404 and the measurement point extraction unit 406 in the fourth embodiment.
  • the individual photographing devices 601 are the same as the photographing device 401 in the fourth embodiment.
  • the position / orientation acquisition unit 603 acquires position information and direction information in the world coordinate system of the image capturing device 601 for each image capturing device 601.
  • the other points are the same as the position / orientation acquisition unit 403 in the fourth embodiment.
  • the coordinate conversion table creation unit 610 receives photographed image data for each photographing apparatus 601 and creates a coordinate conversion table. Regarding the other points, the coordinate conversion table creation unit 610 is the same as the coordinate conversion table creation unit 409 in the fourth embodiment.
  • the measurement point grouping unit 607 corresponds to each photographing apparatus 601 from the measurement point candidates extracted by the measurement point extraction unit 606 based on the reliability of coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Create a group to be used.
  • the reliability is a value indicating the degree of matching (for example, the magnitude of error) between the coordinates of the camera coordinate system and the coordinates of the world coordinate system.
  • the measurement point grouping unit 607 is not limited to a value used as the reliability. However, in the description of the present embodiment, as an example, a case will be described in which the distance between each imaging device 601 and a measurement point candidate is used as the reliability.
  • the measurement point candidate is farther from the image capturing device 601, the error in the coordinate system of the world coordinate system (error in the camera depth direction) that is assumed to be a deviation per pixel of the image capturing device 601 (camera) increases. Therefore, the farther the measurement point candidate is from the imaging device 601, the greater the error in the coordinate relationship between the coordinates of the camera coordinate system and the coordinates of the world coordinate system.
  • the coordinate conversion table creation unit 610 can improve accuracy when operated using candidate information in measurement point candidates close to each imaging device 601. Therefore, the measurement point grouping unit 607 can use the distance between the imaging device 601 and the measurement point candidate as the reliability.
  • the measurement point grouping unit 607 divides the measurement point candidates into groups corresponding to the respective image capturing apparatuses 601 based on the distance between the measurement point candidates and the image capturing apparatus 601. Specifically, the measurement point grouping unit 607 creates a group of measurement point candidates whose distance from the imaging device 601 is less than a predetermined threshold as a group for each imaging device 601. That is, the measurement point grouping unit 607 creates a group of measurement point candidates for each photographing apparatus 601 based on the reliability of the coordinates of the world coordinate system in the measurement point candidates and the coordinates of the camera coordinates in the image data.
  • the position / orientation acquisition unit 603, the small area grouping unit 604, the measurement point extraction unit 606, the measurement point grouping unit 607, and the coordinate conversion table creation unit 610 are realized as follows. These elements are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
  • FIG. 20 is a flowchart showing an example of the operation of the coordinate conversion table creation device 6 according to the seventh embodiment. Note that each imaging device 601 captures a monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 610.
  • steps S601 to S605 shown in FIG. 20 are the same as the operations in steps S401 to S405 in the fourth embodiment shown in FIG. 14, respectively, and detailed description thereof will be omitted.
  • step S603 the small area grouping unit 604 performs the same operation as that in step S403 in FIG. That is, the small area grouping unit 604 obtains the distance from the image capturing apparatus 601 to the small area for each image capturing apparatus 601. Then, the small region grouping unit 604 further divides the small region group grouped in step S602 into groups based on the distance from the photographing device 601 to the small region for each photographing device 601.
  • step S604 the measurement point extraction unit 606 performs the same operation as that in step S404 in FIG. 14 for each photographing apparatus 601. That is, the measurement point extraction unit 606 performs a process of extracting measurement point candidates in the small area group for each photographing apparatus 601. Furthermore, in step S605, the measurement point extraction unit 606 executes the same operation as in step S405 of FIG. That is, the measurement point extraction unit 606 extracts measurement point candidates for each photographing apparatus 601.
  • the measurement point grouping unit 607 divides the measurement point candidates into groups based on the distance to each image capturing device 601 for each image capturing device 601 (step S606). Specifically, the measurement point grouping unit 607 creates a group of measurement point candidates whose distance from the imaging device 601 is less than a threshold for each imaging device 601. That is, in step S606, the measurement point grouping unit 607 determines a measurement point candidate for each photographing apparatus 601.
  • FIG. 21 is a schematic diagram for explaining the operation in step S606 in the seventh embodiment.
  • FIG. 21 uses the group shown in FIG. 4 instead of the group regrouped based on the distance shown in FIG. 9 in order to make the operation easy to understand.
  • the measurement point candidate was shown.
  • FIG. 21 illustrates a case where there are two imaging devices 601.
  • the two photographing devices 601 are denoted by alphabetical signs and are distinguished as the photographing device 601 a and the photographing device 601 b .
  • Measurement point candidate shown with a square marker in FIG. 21 is a measurement point candidate distance from the photographing apparatus 601 a and the imaging device 601 b is less than the threshold. Measurement point candidates are shown using markers triangle, the distance from the imaging device 601 a is less than the threshold value, a measurement point candidate distance from the photographing device 601 b is greater than or equal to the threshold. X-type marker measurement point candidates are shown with the distance from the imaging device 601 a and a is equal to or larger than the threshold, a measurement point candidate distance is less than the threshold value from the imaging device 601 b.
  • Measurement point grouping unit 607 based on the distance from the imaging device 601 a, as a group on imaging device 601 a, selects the measurement point candidates are shown using markers square and triangle. That is, the measurement point grouping unit 607, a group for capturing apparatus 601 a, excludes measurement point candidate indicated by X-type marker.
  • measurement point grouping unit 607 based on the distance from the imaging device 601 b, as a group on imaging device 601 b, selects the measurement point candidates are shown with triangles, and X-type marker. That is, the measurement point grouping unit 607, as a group on imaging device 601 b, excludes measurement point candidate indicated by the marker triangle.
  • the measurement point grouping unit 607 transmits to the display device 608 the measurement point candidates and information regarding the group for each photographing device 601.
  • the display device 608 displays measurement point candidates included in the corresponding group for each photographing device 601.
  • the coordinate input device 609 operates in the same manner as the coordinate input device 408 of the fourth embodiment for each imaging device 601. That is, the coordinate input device 609 obtains information (candidate information) related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 608 for each photographing device 601. (Step S608).
  • the coordinate conversion table creation unit 610 uses the acquired candidate information to determine the coordinates of the camera coordinate system and the coordinates of the world coordinate system for each imaging device 601. Coordinate conversion table is created (step S609).
  • the coordinate conversion table creation unit 610 stores the coordinate conversion table created for each photographing device 601 in the storage device 611.
  • the seventh embodiment has the effect of further improving accuracy.
  • the reason is as follows.
  • the measurement point grouping unit 607 creates a group of measurement point candidates for each photographing apparatus 601 based on the distance from each photographing apparatus 601. In other words, the measurement point grouping unit 607 creates a group that does not include measurement point candidates for which the reliability of coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system is low. Then, the measurement point grouping unit 607 transmits the measurement point candidates and the created group to the display device 608.
  • Display device 608 displays the measurement point candidates and groups. That is, the display device 608 displays a measurement point candidate with high reliability for each photographing device 601.
  • the coordinate input device 609 acquires information (candidate information) related to coordinate conversion for a measurement point candidate with high reliability. Since the coordinate conversion table creation unit 610 creates the coordinate conversion table based on the candidate information acquired as described above, the accuracy of the coordinate conversion table can be improved.
  • grouping of measurement point candidates in the seventh embodiment may be used.
  • a coordinate association system 700 according to the eighth embodiment includes a plurality of imaging devices 701 as in the seventh embodiment. Then, the coordinate association system 700 of the eighth embodiment creates a coordinate conversion table for the captured image data of at least one imaging device 701. Then, the coordinate association system 700 of the eighth embodiment creates a coordinate conversion table related to the captured image data of the other imaging device 701 based on the coordinate conversion table and the relative positional relationship in the imaging device 701. To do.
  • FIG. 22 is a block diagram illustrating an example of a configuration of the coordinate association system 700 according to the eighth embodiment.
  • a coordinate association system 700 according to the eighth embodiment includes a three-dimensional landform database storage unit 702, a coordinate conversion table creation device 7, a measurement ease database storage unit 705, and a storage device 711. Furthermore, the coordinate association system 700 includes a display device 707 and a coordinate input device 708.
  • the coordinate association system 700 includes a plurality of imaging devices 701.
  • the coordinate conversion table creation device 7 includes a position / orientation acquisition unit 703, a small area grouping unit 704, a measurement point extraction unit 706, an imaging device relative position calculation unit 709, and a coordinate conversion table creation unit 710.
  • the imaging device 701 is the same as the imaging device 601 in the seventh embodiment.
  • the three-dimensional landform database storage unit 702, the measurement ease database storage unit 705, and the storage device 711 are the same as the three-dimensional landform database storage unit 602, the measurement ease database storage unit 605, and the storage device 611 in the seventh embodiment. It is the same.
  • the display device 707 and the coordinate input device 708 are the same as the display device 608 and the coordinate input device 609 in the seventh embodiment. However, the display device 707 does not use a group for each photographing device 701 when displaying the measurement point candidate for each photographing device 701.
  • the position / orientation acquisition unit 703, the small region grouping unit 704, and the measurement point extraction unit 706 are the same as the position / orientation acquisition unit 603, the small region grouping unit 604, and the measurement point extraction unit 606 in the seventh embodiment. .
  • the imaging device relative position calculation unit 709 acquires information (candidate information) on coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate from the coordinate input device 708.
  • the imaging device relative position calculation unit 709 calculates the relative positional relationship of the imaging device 701 based on the information. That is, the imaging device relative position calculation unit 709 calculates information related to the relative position of the imaging device 701 based on the candidate information of the measurement point candidates.
  • the coordinate conversion table creation unit 710 creates a coordinate conversion table for at least one imaging device 701 using candidate information. Then, the coordinate conversion table creation unit 710 creates a coordinate conversion table related to the other imaging device 701 based on the coordinate conversion table and the relative positional relationship between the imaging devices 701. That is, the coordinate conversion table creation unit 710 creates a coordinate conversion table based on information (candidate information) related to coordinate conversion of at least one photographing apparatus 701, and based on the created coordinate conversion table and information related to the relative position, A coordinate conversion table for another imaging apparatus 701 is created.
  • the position / orientation acquisition unit 703, the small area grouping unit 704, the measurement point extraction unit 706, the imaging device relative position calculation unit 709, and the coordinate conversion table creation unit 710 are realized as follows. These elements are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
  • FIG. 23 is a flowchart showing an example of the operation of the coordinate conversion table creation device 7 according to the eighth embodiment.
  • each imaging device 701 captures a monitoring target region, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 710.
  • step S705 when a measurement point candidate is extracted for each photographing device 701, the display device 707 displays the measurement point candidate for each photographing device 701 as in the sixth embodiment. That is, as described above, the display device 707 does not use a group for each photographing device 701.
  • the coordinate input device 708 operates in the same manner as the coordinate input device 609 of the sixth embodiment for each imaging device 701. That is, the coordinate input device 708 acquires, for each photographing device 701, information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate displayed on the display device 707. (Step S707).
  • the imaging device relative position calculation unit 709 calculates the relative positional relationship of the imaging device 701 for each imaging device 701 based on the candidate information of the measurement point candidates for each imaging device 701 (step S708). Specifically, the imaging device relative position calculation unit 709 calculates a rotation matrix and a translation vector that represent the relative positional relationship of the imaging device 701.
  • FIG. 24 is a schematic diagram for explaining the operation in step S708 in FIG.
  • FIG. 24 uses the group shown in FIG. 4 instead of the group regrouped based on the distance shown in FIG. 9 in order to make the operation easy to understand.
  • the measurement point candidate was shown.
  • FIG. 24 illustrates a case where there are two imaging devices 701.
  • the two photographing devices 701 are denoted by alphabetical signs and are distinguished as photographing devices 701 a and 701 b .
  • Imaging device relative position calculating unit 709 obtains a candidate information at measurement point candidate corresponding to the imaging apparatus 701 a. Similarly, imaging device relative position calculating unit 709 obtains a candidate information at measurement point candidate corresponding to the photographing apparatus 701 b.
  • the imaging device relative position calculation unit 709 is a rotation matrix that represents the relative positional relationship between the imaging devices 701 a and 701 b based on the candidate information of the imaging device 701 a and the candidate information of the imaging device 701 b. And a translation vector is calculated.
  • FIG. 24 shows two imaging devices 701. However, this is exemplary. Three or more imaging devices 701 may be included.
  • the imaging device relative position calculation unit 709 determines, for example, a reference imaging device 701 (hereinafter referred to as “imaging device 701 a ”).
  • the photographing device relative position calculation unit 709 may calculate a relative positional relationship between the photographing device 701 a and the other photographing device 701 (hereinafter referred to as “photographing device 701 b ”).
  • the coordinate transformation table creating unit 710 first creates a coordinate conversion table of the imaging apparatus 701 a.
  • the imaging device relative position calculation unit 709 may use a plurality of imaging devices 701 as the imaging device 701 used as a reference. Alternatively, the imaging device relative position calculation unit 709 may calculate the positional relationship of the imaging device 701 in a column.
  • the coordinate conversion table creation unit 710 creates a coordinate conversion table for at least one imaging device 701 based on information (candidate information) related to coordinate conversion. Hereinafter, to simplify the description, it is assumed that the coordinate conversion table creation unit 710 first obtains a coordinate conversion table for one imaging device 701 (imaging device 701 a ).
  • Coordinate conversion table generating unit 710 with respect to imaging device 701 a, using the methods already described, to create a coordinate conversion table. That is, the coordinate transformation table creating unit 710, for each small region groups associated with imaging device 701 a, (more specifically coordinate transformation parameters) coordinate transformation between the camera coordinate system of coordinates and the world coordinate system of the coordinates determining the . Then, the coordinate conversion table creation unit 710 uses the coordinate conversion parameters for each small region group to determine the coordinates of the camera coordinate system and the coordinates of the world coordinate system for all pixels on which the ground surface in the captured image data is displayed. Find the coordinate transformation of. Then, the coordinate conversion table creation unit 710 creates a coordinate conversion table based on the coordinate conversion.
  • the coordinate conversion table generation unit 710 based on the coordinate conversion table created, and information indicating a relative positional relationship between the imaging device 701 a and another imaging device 701 b, other imaging devices 701 b A coordinate conversion table is created (step S709). That is, the coordinate transformation table generation unit 710, based on the information representing the relative positional relationship between the imaging apparatus 701 a and the imaging apparatus 701 b (the rotation matrix and translation vector), the coordinate transformation was developed for capturing apparatus 701 a Convert the table. The converted coordinate transformation table, the coordinate transformation table for imaging apparatus 701 b. Coordinate conversion table generation unit 710 similarly to all of the imaging device 701 b, to create a coordinate conversion table.
  • the coordinate conversion table creation unit 710 stores the created coordinate conversion table in the storage device 711.
  • the eighth embodiment has the effect of reducing the load for creating the coordinate conversion table. The reason is as follows.
  • the imaging device relative position calculation unit 709 calculates information (rotation matrix and translation vector) regarding the relative position of the imaging device 701. Then, the coordinate conversion table creation unit 710 creates a coordinate conversion table for one or more other image capturing apparatuses 701 based on the coordinate conversion table for one or more image capturing apparatuses 701 and information related to the relative position.
  • the process of creating the coordinate conversion table based on the information on the relative position is matrix multiplication and translation vector addition. This process is less burdensome than the process of creating a coordinate conversion table using information (candidate information) related to coordinate conversion acquired from the coordinate input device 708. Therefore, the coordinate conversion table creation device 7 can reduce the processing load for creating the coordinate conversion table.
  • FIG. 25 is a block diagram illustrating an example of a hardware configuration of the coordinate conversion table creation device according to each embodiment of the present invention.
  • the coordinate conversion table creating apparatus shown in FIG. 25 is configured using a computer 1000.
  • the computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, an interface 1004, a display device 1005, and an input device 1006.
  • the CPU 1001 realizes the functions of each embodiment based on a program (coordinate conversion program) for realizing the operation of the coordinate conversion table creation device of each embodiment.
  • the CPU 1001 reads a coordinate conversion program from the auxiliary storage device 1003, develops it in the main storage device 1002, and executes the above-described operation based on the program.
  • the CPU 1001 may acquire the program via a communication line (not shown) and store the program in the auxiliary storage device 1003 or expand the program in the main storage device 1002 to execute the above operation.
  • the program acquired via this communication line may be a program for realizing a part of the processing of the CPU 1001 described above.
  • the program acquired via this communication line may be a program (difference program) used in combination with a program stored in the auxiliary storage device 1003.
  • the main storage device 1002 temporarily stores programs executed by the CPU 1001 and data.
  • the main storage device 1002 is, for example, a D-RAM (Dynamic-RAM).
  • the auxiliary storage device 1003 stores the program (coordinate conversion program) and fixed data of each embodiment.
  • the auxiliary storage device 1003 is a non-volatile tangible medium that can be read by a computer.
  • the auxiliary storage device 1003 may be a storage device connected via the interface 1004.
  • the auxiliary storage device 1003 may operate as a storage device, a three-dimensional terrain database storage unit, and / or a measurement ease database storage unit.
  • the auxiliary storage device 1003 is, for example, a magnetic disk, a magneto-optical disk, a CD (Compact Disc) -ROM (Read Only Memory), a DVD (Digital Versatile Disc) -ROM, or a semiconductor memory.
  • the interface 1004 relays transmission and reception of information between the CPU 1001 and an external device.
  • the interface 1004 is, for example, a USB (Universal Serial Bus) card or a LAN (Local Area Network) card.
  • the display device 1005 is a device that displays information to the operator of the computer 1000.
  • the display device 1005 is, for example, a liquid crystal display.
  • the input device 1006 is a device that receives an input operation from an operator of the computer 1000.
  • the input device 1006 is, for example, a keyboard, a mouse, or a touch panel.
  • the coordinate matching system of each embodiment may be realized using the computer 1000 shown in FIG.
  • the display device 1005 may operate as a display device.
  • the input device 1006 may operate as a coordinate input device.
  • each component of the coordinate conversion table creation device may be configured with a hardware circuit. Further, in the coordinate conversion table creation device, each component may be configured using a plurality of devices connected via a network (not shown). In the coordinate conversion table creation device, the plurality of components may be configured with a single piece of hardware.
  • FIG. 26 is a block diagram showing an example of the configuration of the information processing apparatus 10 corresponding to the outline of the coordinate conversion table creation apparatuses 1 to 7 according to the embodiment of the present invention. That is, the information processing apparatus 10 is an apparatus corresponding to the minimum configuration of the coordinate conversion table creation apparatus.
  • the information processing apparatus 10 includes a small area grouping unit 71 corresponding to a small area grouping unit and a coordinate conversion table creating unit 72 corresponding to a coordinate conversion table creating unit.
  • the small area grouping means 71 converts a small area formed based on a point having three-dimensional information on the terrain corresponding to the area included in the photographed image data photographed by the photographing device into a normal direction and an altitude of the small area. Based on this, it is divided into small area groups, which are small area groups.
  • the coordinate conversion table creating means 72 uses the group of small regions and the information related to coordinate conversion, the coordinates of the camera coordinate system, which are the coordinates in the captured image data, and the coordinates of the world coordinate system, which are the coordinates of the 3D terrain data.
  • a coordinate conversion table showing the coordinate conversion of is created.
  • the coordinate conversion table may be referred to as a correspondence table.
  • the information processing apparatus 10 realizes coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regardless of the target region, as in the first embodiment.
  • the effect of. More specifically, the information processing apparatus 10 can determine the coordinates of the camera coordinate system and the world coordinate system even in an area where no landmark exists, an area of undulating complex terrain, or an area where a survey vehicle cannot travel. Coordinates can be converted between coordinates.
  • FIG. 27 is a block diagram showing an example of the configuration of the information processing system 800 corresponding to the outline of the coordinate association systems 100 to 700 according to the embodiment of the present invention.
  • the information processing system 800 is a system corresponding to the minimum configuration of the coordinate association systems 100 to 700.
  • the information processing system 800 includes a display unit 81 corresponding to a display device, an input unit 82 corresponding to a coordinate input device, and an association unit 83 corresponding to the information processing device 10 (coordinate conversion table creation device).
  • association unit 83 corresponds to the information processing apparatus 10.
  • the display unit 81 displays the three-dimensional information received from the association unit 83 and / or the measurement point candidate.
  • the input means 82 acquires candidate information on 3D terrain data and / or measurement point candidates.
  • the information processing system 800 has the same effects as those of the first embodiment.
  • a small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area.
  • An information processing apparatus comprising: a coordinate conversion table creating means for creating a coordinate conversion table that is conversion information.
  • (Appendix 2) It further includes position and orientation acquisition means for acquiring the distance from the imaging device to the small area and the orientation of the imaging device, Small area grouping means The information processing apparatus according to claim 1, further dividing the small area group based on the distance and the direction.
  • (Appendix 3) Calculate the center of gravity of the small area group and obtain candidate information that is information related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Extract a point included in a predetermined number of small region groups that are separated by a predetermined distance or more and the angle between all line segments connecting each point included in the small region group and the center of gravity is equal to or greater than the predetermined angle. Further including a measuring point extracting means for The coordinate conversion table creation means The information processing apparatus according to Supplementary Note 1 or Supplementary Note 2, wherein candidate information for a measurement point candidate is acquired and a coordinate conversion table is created based on the candidate information.
  • Measurement 4 And further comprising a measurement ease data storage means for storing measurement ease data, which is data obtained by quantifying the ease of measurement of coordinates in the coordinates of the world coordinate system, Measuring point extraction means Extract measurement point candidates based on the measurement ease data.
  • measurement ease data which is data obtained by quantifying the ease of measurement of coordinates in the coordinates of the world coordinate system
  • Measuring point extraction means Extract measurement point candidates based on the measurement ease data.
  • the coordinate conversion table creation means Coordinate conversion for creating a coordinate conversion table in a small area group for which a coordinate conversion table has not been created, based on parameters used for coordinate conversion for creating a coordinate conversion table in a small area group for which a coordinate conversion table has been created.
  • the information processing apparatus according to appendix 3 or appendix 4, wherein the parameter is estimated and a coordinate conversion table of a small area group for which no coordinate conversion table has been generated is generated based on the estimated parameter.
  • Appendix 6 The information processing apparatus according to any one of appendix 3 to appendix 5, further including route calculation means for calculating a shortest route that passes through all the measurement point candidates.
  • (Appendix 7) Including multiple photographic devices, Based on the reliability of the coordinates of the world coordinate system and the coordinates of the camera coordinate system in the measurement point candidates, further includes a measurement point grouping means for creating a group of measurement point candidates for each photographing device,
  • the coordinate conversion table creation means The information processing apparatus according to any one of supplementary notes 3 to 6, wherein candidate information is acquired for each photographing apparatus and a coordinate conversion table is created.
  • (Appendix 8) Including multiple photographic devices, Based on the candidate information of the measurement point candidate, further includes an imaging device relative position calculation means for calculating information on the relative position of the imaging device,
  • the coordinate conversion table creation means A coordinate conversion table is created based on the candidate information of at least one imaging device, and the coordinate conversion table of the imaging device for which no coordinate conversion table is created based on the created coordinate conversion table and information relating to the imaging device and relative position.
  • Appendix 9 The information processing apparatus according to any one of appendices 1 to 8, Display means for displaying three-dimensional information received from the information processing apparatus and / or measurement point candidates; An information processing system including input means for acquiring candidate information on three-dimensional information and / or measurement point candidates.
  • a small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area.
  • Divide into small area groups that are groups, Coordinates between the coordinates of the camera coordinate system, which are the coordinates in the captured image data, and the coordinates of the world coordinate system, which is the coordinates of the small area corresponding to the captured image data, using the small area group and candidate information that is information relating to coordinate transformation
  • a small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area.
  • Processing to divide into small area groups that are groups, Coordinates between the coordinates of the camera coordinate system, which are the coordinates in the captured image data, and the coordinates of the world coordinate system, which is the coordinates of the small area corresponding to the captured image data, using the small area group and candidate information that is information relating to coordinate transformation
  • a recording medium on which a computer-readable program for causing a computer to execute a process of creating a coordinate conversion table as conversion information is recorded.
  • the present invention is suitable for associating the coordinates of the camera coordinate system in the image photographed by the camera with the coordinates of the world coordinate system in the three-dimensional terrain data.

Abstract

In order to calculate a coordinate transformation between coordinates of a camera coordinate system and coordinates of a world coordinate system, regardless of target regions, an information processing apparatus according to the present invention includes: a small region grouping means for dividing small regions, which are formed on the basis of points having three-dimensional information about a location in a terrain corresponding to a region included in captured image data captured by an image capture device, into small region groups, which are groups of a small region, on the basis of the normal direction and altitude of the small region; and a coordinate transformation table creation means for creating a coordinate transformation table which contains information for the coordinate transformation between the coordinates of the camera coordinate system, which are coordinates in the captured image data, and coordinates of the world coordinate system, which are coordinates in a small region that corresponds to the captured image data, using the small region groups and candidate information which is related to the coordinate transformation.

Description

情報処理装置、情報処理システム、情報処理方法、及び、記録媒体Information processing apparatus, information processing system, information processing method, and recording medium
 本発明は、情報の処理に関し、特に、位置の情報を処理する情報処理装置、情報処理システム、情報処理方法、及び、記録媒体に関する。 The present invention relates to information processing, and more particularly, to an information processing apparatus, an information processing system, an information processing method, and a recording medium that process position information.
 広域監視システムは、一般的に、撮影した画像から車両及び/又は人物を検出し、車両及び/又は人物の位置を把握する。 A wide area monitoring system generally detects a vehicle and / or a person from a captured image and grasps the position of the vehicle and / or the person.
 カメラで撮影された画像に含まれる車両の位置を正確に求めるためには、広域監視システムは、予め、その車両が写っているカメラ座標系での各画素の座標と、世界座標系の座標とを対応付けしておくこと必要がある。つまり、広域監視システムは、カメラ座標系での各画素の座標と世界座標系の座標との座標変換を算出しておくことが必要である。 In order to accurately determine the position of the vehicle included in the image captured by the camera, the wide area monitoring system preliminarily calculates the coordinates of each pixel in the camera coordinate system in which the vehicle is captured, the coordinates in the world coordinate system, and Must be associated with each other. That is, the wide area monitoring system needs to calculate the coordinate conversion between the coordinates of each pixel in the camera coordinate system and the coordinates of the world coordinate system.
 しかし、一般的に、車両が走行する路面は、単純な平面ではないことが多い。このような場合、カメラ座標系に投影される路面形状は、複雑に歪んでいる。そのため、この場合の座標変換は、単純な線形変換を用いて表現されえない。そのため、カメラ座標系と世界座標系との正確な対応付けは、容易ではない。 However, in general, the road surface on which the vehicle travels is often not a simple plane. In such a case, the road surface shape projected on the camera coordinate system is complicatedly distorted. Therefore, the coordinate transformation in this case cannot be expressed using a simple linear transformation. Therefore, accurate association between the camera coordinate system and the world coordinate system is not easy.
 そこで、例えば、道路の路側に交通車両を監視するカメラ等を新しく設置する場合、最初に、カメラ座標系の位置(座標)と世界座標系の位置(座標)とを正確に対応づける対応関係テーブルを作成することが、重要である。ここで、対応テーブルとは、カメラ座標系である2次元座標テーブルを世界座標系である3次元座標テーブルに変換するテーブルである。一般的に、この対応付けを行う方法として、主に、以下に述べる方法1ないし3が考えられる。 Therefore, for example, when a new camera or the like for monitoring a traffic vehicle is installed on the roadside of the road, first, a correspondence table that accurately associates the position (coordinates) of the camera coordinate system with the position (coordinates) of the world coordinate system. It is important to create Here, the correspondence table is a table for converting a two-dimensional coordinate table that is a camera coordinate system into a three-dimensional coordinate table that is a world coordinate system. Generally, methods 1 to 3 described below are mainly conceivable as a method for performing this association.
(方法1)
 以下に述べる方法を「方法1」と記す。
(Method 1)
The method described below is referred to as “Method 1”.
 方法1は、一般の地図、航空写真、又は、道路図面等を基に、カメラ視野上にある主要な目標物(以下、「ランドマーク(Landmark)」と記す)の世界座標系での位置を導出する。ランドマークの例として、照明柱等が挙げられる。そして、方法1は、導出したランドマークの世界座標系での位置(緯度、経度、及び、標高などの座標)と、撮影した画像上の位置(すなわちカメラ座標系での座標)とを比較して、両者を対応づける。また、方法1は、各ランドマーク間の座標について、補間等を行い、連続的な対応テーブルを作成する。 Method 1 determines the position of the main target (hereinafter referred to as “Landmark”) on the camera field of view in the world coordinate system based on general maps, aerial photographs or road drawings. To derive. An example of a landmark is an illumination column. Then, the method 1 compares the position of the derived landmark in the world coordinate system (coordinates such as latitude, longitude, and altitude) with the position on the captured image (that is, coordinates in the camera coordinate system). And associate the two. In Method 1, a continuous correspondence table is created by interpolating the coordinates between the landmarks.
(方法2)
 以下に述べる方法を「方法2」と記す。
(Method 2)
The method described below is referred to as “Method 2”.
 方法2は、トータルステーション(Total Station)等の道路測量用の機材を用いて、カメラ視野上にあるランドマークの世界座標系での位置(座標)を導出する。そして、方法2は、導出したランドマークの世界座標系での位置(座標)と、撮影した画像上の位置(すなわちカメラ座標系での座用)とを比較し、両者を対応づける。方法2は、各ランドマーク間の座標について、補間等を行い、連続的な対応テーブルを作成する。 Method 2 derives the position (coordinates) of the landmark on the camera field of view in the world coordinate system using road surveying equipment such as Total Station. Then, in the method 2, the position (coordinate) of the derived landmark in the world coordinate system is compared with the position on the photographed image (that is, sitting in the camera coordinate system), and the two are associated with each other. Method 2 creates a continuous correspondence table by interpolating the coordinates between the landmarks.
(方法3)
 以下に述べる方法を「方法3」と記す。
(Method 3)
The method described below is referred to as “Method 3”.
 方法3は、GPS(Global Positioning System)/慣性航法装置、ステレオカメラ、又は、レーザレーダ(Laser radar)等を搭載した測量車を用いる。そして、方法3は、世界座標系の位置(座標)として、3次元の連続した道路形状データ(マップデータ)を導出する。そして、方法3は、カメラ視野上にあるランドマークのマップデータ値と、それらを撮影した画像上の位置(すなわちカメラ座標系での座標)とを比較し、両者を対応づける。方法3は、各ランドマーク間の座標について、補間等を用いない。方法3は、各ランドマーク間の座標について、マップデータを用いて、連続的な対応テーブルを作成する。 Method 3 uses a survey vehicle equipped with a GPS (Global Positioning System) / inertial navigation system, stereo camera, laser radar (Laser radar) or the like. Method 3 derives three-dimensional continuous road shape data (map data) as a position (coordinates) in the world coordinate system. Then, in the method 3, the map data values of the landmarks on the camera field of view are compared with the positions on the image obtained by photographing them (that is, the coordinates in the camera coordinate system), and the two are associated with each other. Method 3 does not use interpolation or the like for the coordinates between the landmarks. Method 3 creates a continuous correspondence table using the map data for the coordinates between the landmarks.
 また、特許文献1には、次の方法が、開示されている。特許文献1に記載されている方法は、GPSを搭載した測量車が記録した世界座標系の座標と、カメラで撮影した動画像のフレームとを完全に同期させて記録する。そして、この方法は、上記の記録を基に、路面形状の測量を行わずに、世界座標系の座標とカメラ座標系の座標との連続的な対応テーブルを作成する。 Further, Patent Document 1 discloses the following method. The method described in Patent Document 1 records the coordinates of the world coordinate system recorded by a survey vehicle equipped with GPS and the frame of a moving image captured by the camera in complete synchronization. This method creates a continuous correspondence table between the coordinates of the world coordinate system and the coordinates of the camera coordinate system without performing the road surface shape surveying based on the above record.
 また、特許文献2には、次の方法が開示されている。特許文献2に記載されている方法は、3次元の地形データとして、統計処理に基づき複数の地物等の形状を表した3次元点群を解析する。そして、この方法は、解析結果を基に、3次元地形データと世界座標系の座標とを対応づけるために用いる座標軸を推定する。また、特許文献2には、比較的近くにある点群をクラスタ化することが、記載されている。また、特許文献2には、建物の側面の法線ベクトルの分布に基づき、側面毎に点群を分離することが、記載されている。 Further, Patent Document 2 discloses the following method. The method described in Patent Document 2 analyzes a three-dimensional point group representing the shape of a plurality of features and the like based on statistical processing as three-dimensional topographic data. In this method, the coordinate axis used to associate the three-dimensional terrain data with the coordinates of the world coordinate system is estimated based on the analysis result. Japanese Patent Application Laid-Open No. H10-228707 describes clustering point groups that are relatively close to each other. Further, Patent Document 2 describes that a point group is separated for each side surface based on the distribution of normal vectors on the side surface of the building.
特開2010-236891号公報Japanese Patent Application Laid-Open No. 2010-236891 特開2014-186565号公報JP 2014-186565 A
 しかし、方法1及び方法2では、カメラ座標系での位置(座標)と対応付けられる地域とが、高層ビル若しくは照明柱等のランドマークが存在する市街地、又は、道路図面が存在する場所に限定されてしまう。そのため、ランドマークが存在しない場所(例えば、離島、港湾、又は、山岳地帯等)を広域監視する場合、方法1及び方法2は、カメラ座標系の座標と世界座標系の座標とを対応づけられない。つまり、方法1及び方法2は、上記の場合、カメラ座標系の座標と世界座標系の座標とを座標変換を求めることができない。さらに、ランドマーク間に起伏がある場合、方法1及び方法2は、起伏に応じて、その地点の座標変換を補間する必要がある。そのため、単純な線形変換を用いた場合、方法1及び方法2において、推定精度が、悪化する。 However, in the method 1 and the method 2, the area associated with the position (coordinates) in the camera coordinate system is limited to a city area where a landmark such as a high-rise building or a lighting column exists, or a place where a road drawing exists. It will be. Therefore, when a place where a landmark does not exist (for example, a remote island, a port, or a mountainous area) is monitored in a wide area, Method 1 and Method 2 can associate the coordinates of the camera coordinate system with the coordinates of the world coordinate system. Absent. That is, in the above method, the method 1 and the method 2 cannot obtain the coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Furthermore, when there are undulations between landmarks, method 1 and method 2 need to interpolate the coordinate transformation of the point according to the undulations. Therefore, when a simple linear transformation is used, the estimation accuracy deteriorates in Method 1 and Method 2.
 また、方法3及び特許文献1に記載されている方法では、測量車を用いるため、ランドマークに関する問題は、生じない。しかし、カメラの視野全体に関してカメラ座標系の座標と世界座標系の座標とを対応づけるためには、広域に渡って測量車を走らせている状況において、カメラを用いた撮影を行う必要がある。したがって、作業コストが、大きくなる。さらに、方法3及び特許文献1に記載されている方法では、測量車が走行可能な領域において、マップデータが導出される。そのため、方法3及び特許文献1に記載されている方法において、カメラ座標系の座標と世界座標系の座標とを対応付けられる領域が、限定される可能性がある。 In the method described in Method 3 and Patent Document 1, since a surveying vehicle is used, there is no problem with the landmark. However, in order to associate the coordinates of the camera coordinate system and the coordinates of the world coordinate system with respect to the entire field of view of the camera, it is necessary to perform shooting using the camera in a situation where the survey vehicle is running over a wide area. Therefore, the work cost is increased. Furthermore, in the method described in Method 3 and Patent Document 1, map data is derived in an area where the survey vehicle can travel. For this reason, in the method described in Method 3 and Patent Document 1, there is a possibility that the region in which the coordinates of the camera coordinate system and the coordinates of the world coordinate system are associated with each other may be limited.
 このように、方法1ないし3、及び、特許文献1に記載の方法において、カメラの視野(カメラ座標系)と実座標(世界座標系)とを対応付けられる領域が、限定される。具体的には、方法1ないし3、及び、特許文献1に記載の方法は、対応付けられる領域(座標変換を求めることができる領域)が、ランドマークが存在する領域、起伏が少ない地形の領域、又は、測量車が走行可能な領域に限定される。したがって、屋外を広域監視する場合、ランドマークが存在しない領域、起伏が少ない地形の領域、又は、測量車が走行不能な領域では、カメラで撮影した画像に写る物体の世界座標系での位置(座標)を正確に求めることは、困難であった。このように、方法1ないし3、及び、特許文献1に記載の方法は、上記領域において、カメラ座標系の座標と世界座標系の座標とを対応づけられないという問題点があった。つまり、方法1ないし3、及び、特許文献1に記載の方法は、上記領域において、カメラ座標系の座標と世界座標系の座標との座標変換を求められないという問題点があった。なお、特許文献2に記載の方法は、建物の外形から重力方法を決定する方法であり、上記問題点を解決できない。 Thus, in the methods 1 to 3 and the method described in Patent Document 1, the area in which the camera field of view (camera coordinate system) and the real coordinates (world coordinate system) can be associated with each other is limited. Specifically, in the methods 1 to 3 and the method described in Patent Document 1, the associated area (area where coordinate transformation can be obtained) is an area where a landmark exists, or a terrain area with little undulation. Or, it is limited to the area where the surveying vehicle can travel. Therefore, when monitoring a wide area outside, in the area where there are no landmarks, the area of terrain with little undulations, or the area where the surveying vehicle cannot run, the position in the world coordinate system of the object shown in the image taken by the camera ( It was difficult to accurately obtain the coordinates. As described above, the methods 1 to 3 and the method described in Patent Document 1 have a problem in that the coordinates of the camera coordinate system and the coordinates of the world coordinate system cannot be associated with each other in the region. That is, the methods 1 to 3 and the method described in Patent Document 1 have a problem that coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system cannot be obtained in the region. Note that the method described in Patent Document 2 is a method of determining a gravity method from the outer shape of a building and cannot solve the above problem.
 本発明の目的は、上記問題点を解決し、対象となる領域に係わらず、カメラ座標系の座標と世界座標系の座標との座標変換を算出できる情報処理装置、情報処理システム、情報処理方法、及び、記録媒体を提供することにある。 SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems, and an information processing apparatus, an information processing system, and an information processing method capable of calculating coordinate transformation between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regardless of the target region And providing a recording medium.
 本発明の一形態における情報処理装置は、撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、小領域の法線方向及び標高に基づいて小領域のグループである小領域グループに分ける小領域グルーピング手段と、小領域グループと座標変換に関する情報である候補情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標と撮影画像データに対応した小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する座標変換テーブル作成手段と含む。 An information processing apparatus according to an aspect of the present invention includes a small area formed on the basis of a point having three-dimensional information regarding a position on the terrain corresponding to an area included in captured image data captured by the imaging apparatus. Cameras that are coordinates in captured image data using small region grouping means that divides into small region groups that are groups of small regions based on the normal direction and elevation, and candidate information that is information regarding small region groups and coordinate transformation Coordinate conversion table creating means for creating a coordinate conversion table that is information on coordinate conversion between coordinates in the coordinate system and coordinates in the world coordinate system that is coordinates in a small area corresponding to the captured image data.
 また、本発明の一形態における情報処理システムは、上記の情報処理装置と、情報処理装置から受信した3次元の情報及び/又は計測地点候補を表示する表示手段と、3次元の情報及び/又は計測地点候補における候補情報を取得する入力手段と含む。 An information processing system according to an aspect of the present invention includes the above information processing apparatus, display means for displaying three-dimensional information and / or measurement point candidates received from the information processing apparatus, three-dimensional information and / or Input means for acquiring candidate information in the measurement point candidates.
 また、本発明の一形態における情報処理方法は、撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、小領域の法線方向及び標高に基づいて小領域のグループである小領域グループに分け、小領域グループと座標変換に関する情報である候補情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標と撮影画像データに対応した小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する。 In addition, an information processing method according to an embodiment of the present invention includes a small area formed on the basis of a point having three-dimensional information regarding a position on the terrain corresponding to an area included in captured image data captured by the imaging apparatus. Based on the normal direction and altitude of the area, it is divided into small area groups that are groups of small areas, and using the small area group and candidate information that is information related to coordinate transformation, the coordinates of the camera coordinate system that is the coordinates in the captured image data A coordinate conversion table that is information on coordinate conversion between the coordinates and coordinates in the world coordinate system that is coordinates in a small area corresponding to the captured image data is created.
 また、本発明の一形態における記録媒体は、撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、小領域の法線方向及び標高に基づいて小領域のグループである小領域グループに分ける処理と、小領域グループと座標変換に関する情報である候補情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標と撮影画像データに対応した小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する処理とコンピュータに実行させるプログラムをコンピュータ読み取り可能に記録する。 According to another aspect of the present invention, there is provided a recording medium including a small area formed based on a point having three-dimensional information regarding a position on the terrain corresponding to the area included in the captured image data captured by the imaging device. The camera coordinate system that is the coordinates in the captured image data using the process of dividing into small area groups that are groups of small areas based on the normal direction and elevation of the image, and candidate information that is information related to the small area groups and coordinate transformation A computer readable recording process for creating a coordinate conversion table, which is information of coordinate conversion between the coordinates of the image and the coordinates in the world coordinate system, which are the coordinates in the small area corresponding to the captured image data, and the program to be executed by the computer are recorded.
 本発明に基づけば、対象となる領域に係わらず、カメラ座標系の座標と世界座標系の座標との座標変換を算出できるとの効果を奏することができる。 According to the present invention, it is possible to obtain an effect that coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system can be calculated regardless of the target region.
図1は、本発明における第1に実施形態に係る座標変換テーブル作成装置を含む座標対応付けシステムの構成の一例を示すブロック図である。FIG. 1 is a block diagram illustrating an example of a configuration of a coordinate association system including a coordinate conversion table creation device according to a first embodiment of the present invention. 図2は、3次元地形データベース記憶部に記憶されている3次元地形データの一例を示す模式図である。FIG. 2 is a schematic diagram illustrating an example of 3D terrain data stored in the 3D terrain database storage unit. 図3は、第1の実施形態に係る座標変換テーブル作成装置における動作の一例を示すフローチャートである。FIG. 3 is a flowchart illustrating an example of the operation in the coordinate conversion table creating apparatus according to the first embodiment. 図4は、第1の実施形態に係る小領域グループの一例を示す模式図である。FIG. 4 is a schematic diagram illustrating an example of a small region group according to the first embodiment. 図5は、第1に実施形態に係る物体位置計測装置の構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the configuration of the object position measuring apparatus according to the first embodiment. 図6は、第1の実施形態に係る物体位置計測装置おける不審車両等の物体のカメラ座標系の座標を世界座標系の座標に変換する状況を示す模式図である。FIG. 6 is a schematic diagram illustrating a situation in which coordinates in the camera coordinate system of an object such as a suspicious vehicle in the object position measurement apparatus according to the first embodiment are converted into coordinates in the world coordinate system. 図7は、第2の実施形態に係る座標対応付けシステムの構成の一例を示すブロック図である。FIG. 7 is a block diagram illustrating an example of a configuration of a coordinate association system according to the second embodiment. 図8は、第2の実施形態に係る座標変換テーブル作成装置の動作の一例を示すフローチャートである。FIG. 8 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the second embodiment. 図9は、図8のステップS203の結果として得られるグループの一例を示す模式図である。FIG. 9 is a schematic diagram illustrating an example of a group obtained as a result of step S203 in FIG. 図10は、第3の実施形態に係る座標対応付けシステムの構成の一例を示すブロック図である。FIG. 10 is a block diagram illustrating an example of a configuration of a coordinate association system according to the third embodiment. 図11は、第3の実施形態に係る座標変換テーブル作成装置の動作の例を示すフローチャートである。FIG. 11 is a flowchart illustrating an example of the operation of the coordinate conversion table creating apparatus according to the third embodiment. 図12は、第3の実施形態における計測地点抽出部が計測地点候補の抽出する方法を説明するための模式図である。FIG. 12 is a schematic diagram for explaining a method of extracting measurement point candidates by the measurement point extraction unit according to the third embodiment. 図13は、第4の実施形態に係る座標対応付けシステムの構成の一例を示すブロック図である。FIG. 13 is a block diagram illustrating an example of a configuration of a coordinate association system according to the fourth embodiment. 図14は、第4の実施形態に係る座標変換テーブル作成装置の動作の一例を示すフローチャートである。FIG. 14 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the fourth embodiment. 図15は、第4の実施形態における計測地点候補の抽出例を示す模式図である。FIG. 15 is a schematic diagram illustrating an example of extraction of measurement point candidates in the fourth embodiment. 図16は、第6の実施形態に係る座標対応付けシステムの構成の一例を示すブロック図である。FIG. 16 is a block diagram illustrating an example of a configuration of a coordinate association system according to the sixth embodiment. 図17は、第6の実施形態に係る座標変換テーブル作成装置の動作の一例を示すフローチャートである。FIG. 17 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the sixth embodiment. 図18は、第6の実施形態において、計測地点候補及び算出された最短経路の一例を示す説明図である。FIG. 18 is an explanatory diagram illustrating an example of a measurement point candidate and a calculated shortest path in the sixth embodiment. 図19は、第7の実施形態に係る座標対応付けシステムの構成の一例を示すブロック図である。FIG. 19 is a block diagram illustrating an example of a configuration of a coordinate association system according to the seventh embodiment. 図20は、第7の実施形態に係る座標変換テーブル作成装置の動作の一例を示すフローチャートである。FIG. 20 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the seventh embodiment. 図21は、第7の実施形態におけるステップS606の動作を説明するための模式図である。FIG. 21 is a schematic diagram for explaining the operation in step S606 in the seventh embodiment. 図22は、第8の実施形態に係る座標対応付けシステムの構成の一例を示すブロック図である。FIG. 22 is a block diagram illustrating an example of a configuration of a coordinate association system according to the eighth embodiment. 図23は、第8の実施形態に係る座標変換テーブル作成装置の動作の一例を示すフローチャートである。FIG. 23 is a flowchart illustrating an example of the operation of the coordinate conversion table creation device according to the eighth embodiment. 図24は、図23のステップS708の動作を説明するための模式図である。FIG. 24 is a schematic diagram for explaining the operation in step S708 in FIG. 図25は、本発明における各実施形態に係る座標変換テーブル作成装置のハードウェア構成の一例を示すブロック図である。FIG. 25 is a block diagram illustrating an example of a hardware configuration of the coordinate conversion table creation device according to each embodiment of the present invention. 図26は、本発明における実施形態に係る情報処理装置の構成の一例を示すブロック図である。FIG. 26 is a block diagram showing an example of the configuration of the information processing apparatus according to the embodiment of the present invention. 図27は、本発明における実施形態に係る情報処理システムの構成の一例を示すブロック図である。FIG. 27 is a block diagram showing an example of the configuration of the information processing system according to the embodiment of the present invention.
 以下、図面を参照して、本発明における実施形態を説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、各図面は、本発明の実施形態を説明するものである。ただし、本発明は、各図面の記載に限られるわけではない。また、各図面の同様の構成には、その繰り返しの説明を、省略する場合がある。また、以下の説明に用いる図面において、本発明の説明に関係しない部分の構成については、記載を省略し、図示しない場合もある。 Each drawing explains an embodiment of the present invention. However, the present invention is not limited to the description of each drawing. In addition, repeated description of the same configuration in each drawing may be omitted. Further, in the drawings used for the following description, the description of the configuration of the part not related to the description of the present invention is omitted, and there are cases where it is not illustrated.
 本発明における実施形態に係る情報処理装置は、カメラ座標系の座標と、世界座標系の座標とを座標変換(対応関係)に関する情報を作成する。情報処理装置は、例えば、所定の情報処理システム(例えば、座標対応付けシステム)に含まれる。情報処理システムは、情報処理装置が作成する座標変換(対応関係)に関する動作を実行する。そのため、以下の説明において、情報処理装置の一例として、カメラ座標系の座標と、世界座標系に座標とを座標変換(対応関係)に関する情報である座標変換テーブル(対応関係テーブル)を作成する座標変換テーブル作成装置を用いて説明する。また、情報処理システムの一例として、座標変換テーブル作成装置の動作に用いる情報を送信する装置を含む座標対応付けシステムを用いて説明する。ただし、各実施形態に係る情報処理装置は、座標変換テーブル作成装置に限定されない。また、各実施形態に係る情報処理システムは、座標対応システムに限定されない。なお、以下の説明は、座標変換テーブルを用いて説明する。ただし、座標変換テーブルは、対応関係テーブルと呼んでもよい。 The information processing apparatus according to the embodiment of the present invention creates information related to coordinate transformation (correspondence) between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. The information processing apparatus is included in, for example, a predetermined information processing system (for example, a coordinate association system). The information processing system performs an operation related to coordinate transformation (correspondence) created by the information processing apparatus. Therefore, in the following description, as an example of the information processing apparatus, coordinates for creating a coordinate conversion table (correspondence relationship table) that is information on coordinate conversion (correspondence relationship) between coordinates in the camera coordinate system and coordinates in the world coordinate system. This will be described using a conversion table creation device. Further, as an example of the information processing system, a description will be given using a coordinate association system including a device that transmits information used for the operation of the coordinate conversion table creation device. However, the information processing apparatus according to each embodiment is not limited to the coordinate conversion table creation apparatus. Further, the information processing system according to each embodiment is not limited to the coordinate correspondence system. In addition, the following description is demonstrated using a coordinate conversion table. However, the coordinate conversion table may be called a correspondence table.
 <第1の実施形態>
 図1は、本発明における第1の実施形態に係る座標変換テーブル作成装置1を含む座標対応付けシステム100の構成の一例を示すブロック図である。第1の実施形態の座標対応付けシステム100は、撮影装置101と、3次元地形データベース記憶部102と、座標変換テーブル作成装置1と、表示装置104と、座標入力装置105と、記憶装置107とを含む。座標変換テーブル作成装置1は、小領域グルーピング部103と、座標変換テーブル作成部106とを含む。
<First Embodiment>
FIG. 1 is a block diagram showing an example of a configuration of a coordinate association system 100 including a coordinate conversion table creation device 1 according to the first embodiment of the present invention. A coordinate association system 100 according to the first embodiment includes an imaging device 101, a three-dimensional terrain database storage unit 102, a coordinate conversion table creation device 1, a display device 104, a coordinate input device 105, and a storage device 107. including. The coordinate conversion table creation device 1 includes a small area grouping unit 103 and a coordinate conversion table creation unit 106.
 撮影装置101は、監視対象の地点に設置され、監視対象領域を撮影する装置(例えば、カメラ)である。撮影装置101が撮影した画像を、「撮影画像データ」と記す。 The imaging apparatus 101 is an apparatus (for example, a camera) that is installed at a monitoring target point and images a monitoring target area. An image photographed by the photographing apparatus 101 is referred to as “photographed image data”.
 3次元地形データベース記憶部102は、予め、監視対象領域における地形のデータ(以下、「3次元地形データ」と記す)を、記憶する記憶装置である。3次元地形データは、位置に関する3次元の情報(例えば、緯度、経度、及び、標高の値)を含む点のデータと、所定の数の点を基に形成される小領域(例えば、3点を結んだ三角形)のデータとを含む。ただし、3次元地形データベース記憶部102が記憶する3次元地形データは、上記に限られない。また、3次元地形データのデータ形式は、特に制限されない。3次元地形データベース記憶部102は、例えば、3次元地形データを、データベース形式を用いて記憶してもよい。 The 3D terrain database storage unit 102 is a storage device that stores terrain data in the monitoring target area (hereinafter referred to as “3D terrain data”) in advance. The three-dimensional terrain data is a small area (for example, three points) formed based on point data including three-dimensional information (for example, latitude, longitude, and elevation values) and a predetermined number of points. Data). However, the 3D terrain data stored in the 3D terrain database storage unit 102 is not limited to the above. The data format of the three-dimensional terrain data is not particularly limited. The three-dimensional landform database storage unit 102 may store, for example, three-dimensional landform data using a database format.
 図2は、3次元地形データベース記憶部102に記憶されている3次元地形データの一例を示す模式図である。例えば、3次元地形データベース記憶部102は、国土地理院等が所有する3次元地図データベース、又は、監視対象領域の地形測量を基に作成された3次元地形データを記憶してもよい。なお、3次元地形データベース記憶部102は、少なくとも、3次元地形データとして、撮影装置101が撮影した画像(撮影画像データ)に含まれる領域(場所)に対応したデータを含む。 FIG. 2 is a schematic diagram showing an example of 3D terrain data stored in the 3D terrain database storage unit 102. For example, the three-dimensional terrain database storage unit 102 may store a three-dimensional map database owned by the Geographical Survey Institute or the like, or three-dimensional terrain data created based on the topographic survey of the monitoring target area. Note that the 3D terrain database storage unit 102 includes at least data corresponding to a region (location) included in an image (captured image data) captured by the imaging apparatus 101 as 3D terrain data.
 小領域グルーピング部103は、撮影画像データに含まれる場所に対応する3次元地形データにおいて、その3次元地形データに含まれる小領域をグループに分ける。つまり、小領域グルーピング部103は、撮影画像データに対応する3次元地形データに含まれる小領域におけるグループを作成する。以下、作成された小領域のグループを、単に「小領域グループ」と記す場合がある。 The small area grouping unit 103 divides small areas included in the 3D terrain data into groups in the 3D terrain data corresponding to the locations included in the captured image data. That is, the small area grouping unit 103 creates a group in the small area included in the three-dimensional terrain data corresponding to the captured image data. Hereinafter, the created small area group may be simply referred to as a “small area group”.
 表示装置104は、小領域グループにグルーピングされた3次元地形データを表示する。 The display device 104 displays 3D terrain data grouped into small area groups.
 座標入力装置105は、表示装置104に表示された3次元地形データに関するカメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する。例えば、座標入力装置105は、図示しない入力機器を含み、座標変換に関する情報として、作業者の入力操作を取得してもよい。座標入力装置105は、小領域グループ毎に、小領域内部の任意の点の少なくとも4点について、カメラ座標系と世界座標系との座標変換に関する情報(候補情報)を取得する。 The coordinate input device 105 acquires information (candidate information) related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regarding the three-dimensional terrain data displayed on the display device 104. For example, the coordinate input device 105 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion. The coordinate input device 105 acquires information (candidate information) regarding coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
 座標変換テーブル作成部106は、小領域グループと座標変換に関する情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標を、3次元地形データの座標である世界座標系の座標に変換する情報である座標変換テーブルを作成する。つまり、座標変換テーブルは、撮影画像データにおけるカメラ座標系の座標と、世界座標系の座標との座標変換に関する情報のテーブルである。 The coordinate conversion table creation unit 106 converts the coordinates of the camera coordinate system, which are the coordinates in the captured image data, into the coordinates of the world coordinate system, which is the coordinates of the three-dimensional terrain data, using the small area group and information related to the coordinate conversion. A coordinate conversion table that is information to be created is created. That is, the coordinate conversion table is a table of information related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the captured image data.
 このように、座標変換テーブル作成装置1は、座標変換テーブルを作成する。 In this way, the coordinate conversion table creation device 1 creates a coordinate conversion table.
 記憶装置107は、作成された座標変換テーブルを記憶する。 The storage device 107 stores the created coordinate conversion table.
 小領域グルーピング部103及び座標変換テーブル作成部106は、例えば、座標変換プログラムに基づいて動作するコンピュータのCPU(Central Processing Unit)を用いて実現される。この場合、CPUは、図示しないプログラム記憶装置等のプログラム記録媒体から座標変換プログラムを読み込み、読み込んだ座標変換プログラムに基づいて、上記の各要素として動作すればよい。ここで要素とは、小領域グルーピング部103及び座標変換テーブル作成部106である。コンピュータについては、後ほど詳細に説明する。 The small area grouping unit 103 and the coordinate conversion table creating unit 106 are realized by using, for example, a CPU (Central Processing Unit) of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. Here, the elements are the small region grouping unit 103 and the coordinate conversion table creation unit 106. The computer will be described in detail later.
 次に、第1の実施形態の動作について説明する。 Next, the operation of the first embodiment will be described.
 図3は、第1の実施形態に係る座標変換テーブル作成装置1における動作の一例を示すフローチャートである。なお、撮影装置101は、監視対象領域を撮影して撮影画像データを生成し、座標変換テーブル作成部106に送っているものとする。 FIG. 3 is a flowchart showing an example of the operation in the coordinate conversion table creating apparatus 1 according to the first embodiment. Note that the image capturing apparatus 101 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 106.
 小領域グルーピング部103は、3次元地形データベース記憶部102から、撮影画像データに含まれる場所に対応する3次元地形データを取得する(ステップS101)。 The small area grouping unit 103 acquires the 3D terrain data corresponding to the location included in the captured image data from the 3D terrain database storage unit 102 (step S101).
 小領域グルーピング部103は、取得した3次元地形データに含まれる各小領域における法線方向、及び、標高情報に基づき、取得した3次元地形データの小領域に対するグルーピング(グループ分け)を実行する(ステップS102)。 The small area grouping unit 103 performs grouping (grouping) on the small areas of the acquired three-dimensional terrain data based on the normal direction and elevation information in each small area included in the acquired three-dimensional terrain data ( Step S102).
 図4は、第1の実施形態に係る小領域グループの一例を示す模式図である。 FIG. 4 is a schematic diagram illustrating an example of a small region group according to the first embodiment.
 図4に示されている小領域グループは、小領域グルーピング部103が、以下の方法を用いて、グルーピングした場合の一例である。まず、小領域グルーピング部103は、対象となる3次元地形データに含まれる全小領域の法線ベクトル(例えば、正規化した法線ベクトル)と、小領域の平均標高とを求める。そして、小領域グルーピング部103は、所定の規則に沿って、全ての小領域をペアに分ける。そして、小領域グルーピング部103は、全ての小領域のペア毎における、法線ベクトルの内積及び標高差(前述の平均標高の差)を算出する。小領域グルーピング部103は、この内積と標高差とが、それぞれ、ある一定の値の範囲内に含まれる小領域のペアを、グルーピングの対象として用いる。詳細には、小領域グルーピング部103は、内積の値を用いて法線方向が概ね同じ方向の小領域ペアを選択し、さらに、標高差を用いて概ね同じ標高となっている小領域のペアを選択する。つまり、小領域グルーピング部103は、概ね同じ方向で概ね同じ標高となっている小領域のペアを選択する。そして、小領域グルーピング部103は、標高を用いて、小領域ペアをグルーピングする。なお、小領域グルーピング部103は、処理の対象として、法線方向が所定に方向(例えば、垂直方向)となっている小領域を選択して、グルーピングを実行してもよい。例えば、図4に示されているように、小領域グルーピング部103は、概ね水平な小領域(小領域ペア)を選択し、グループに分けてもよい。図4において、標高が低い小領域の集合が、グループ1に含まれる小領域の集合である。グループ1の標高よりも、一定の値以上に標高が高い小領域の集合が、グループ2に含まれる小領域の集合である。 4 is an example when the small region grouping unit 103 performs grouping using the following method. First, the small area grouping unit 103 obtains normal vectors (for example, normalized normal vectors) of all small areas included in the target three-dimensional terrain data and the average elevation of the small areas. Then, the small area grouping unit 103 divides all small areas into pairs according to a predetermined rule. Then, the small region grouping unit 103 calculates the inner product of the normal vectors and the elevation difference (the above-described difference in average elevation) for each pair of all the small regions. The small area grouping unit 103 uses a pair of small areas in which the inner product and the altitude difference are included in a certain range of values as grouping targets. In detail, the small area grouping unit 103 selects a small area pair whose normal direction is substantially the same using the inner product value, and further uses a difference in altitude to form a pair of small areas having the same altitude. Select. In other words, the small area grouping unit 103 selects a pair of small areas that have substantially the same elevation in substantially the same direction. Then, the small area grouping unit 103 groups the small area pairs using the altitude. Note that the small area grouping unit 103 may select a small area whose normal direction is a predetermined direction (for example, a vertical direction) as a processing target, and execute the grouping. For example, as illustrated in FIG. 4, the small region grouping unit 103 may select a substantially horizontal small region (small region pair) and divide it into groups. In FIG. 4, a set of small areas with low elevation is a set of small areas included in group 1. A set of small areas whose altitude is higher than a certain value than the altitude of group 1 is a set of small areas included in group 2.
 なお、小領域のグルーピング方法は、上記の方法に限定されない。小領域のグルーピング方法は、各小領域の法線方向と標高情報とを用いるグルーピング手法であればよく、既存のグルーピング手法又はクラスタリング手法でもよい。 Note that the method of grouping small areas is not limited to the above method. The small area grouping method may be any grouping technique that uses the normal direction and elevation information of each small area, and may be an existing grouping technique or clustering technique.
 表示装置104は、小領域グループにグルーピングされた3次元地形データを表示する。 The display device 104 displays 3D terrain data grouped into small area groups.
 座標入力装置105は、表示装置104に表示された3次元地形データに関して、小領域グループごとにカメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する(ステップS103)。例えば、座標入力装置105は、図示しない入力機器を含み、座標変換に関する情報として、作業者の入力操作を取得してもよい。座標入力装置105は、小領域グループ毎に、小領域内部の任意の点の少なくとも4点について、カメラ座標系と世界座標系との座標変換に関する情報を取得する。 The coordinate input device 105 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system for each small region group with respect to the three-dimensional terrain data displayed on the display device 104 (step). S103). For example, the coordinate input device 105 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion. The coordinate input device 105 acquires information related to coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
 次に、座標変換テーブル作成部106は、小領域グループ毎に、撮影装置101の座標系であるカメラ座標系の座標と世界座標系の座標(例えば、緯度、経度、及び、標高)との座標変換を求める。詳細には、座標変換テーブル作成部106は、撮影画像中の地表が表示されている全ピクセルについて、カメラ座標系の座標と世界座標系の座標との座標変換を求める。そして、座標変換テーブル作成部106は、算出した座標変換を基に、全ての小領域グループの座標変換を含む座標変換テーブルを作成する(ステップS104)。 Next, for each small region group, the coordinate conversion table creation unit 106 coordinates the coordinates of the camera coordinate system, which is the coordinate system of the imaging apparatus 101, and the coordinates of the world coordinate system (for example, latitude, longitude, and altitude). Ask for conversion. Specifically, the coordinate conversion table creation unit 106 obtains coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system for all pixels on which the ground surface in the captured image is displayed. Then, the coordinate conversion table creation unit 106 creates a coordinate conversion table including the coordinate conversion of all the small area groups based on the calculated coordinate conversion (step S104).
 座標変換テーブル作成部106は、カメラ座標系の座標と世界座標系の座標との座標変換を、例えば、以下のように求めればよい。座標変換テーブル作成部106は、小領域グループを近似する平面、及び、座標入力装置105が取得した各平面のカメラ座標系と世界座標系との座標変換に関する情報を用いる。例えば、座標変換テーブル作成部106は、小領域グループ毎に、カメラ座標系の座標を近似した平面の座標に平面射影変換するための平面射影変換パラメータを求める。そして、座標変換テーブル作成部106は、小領域グループに相当する場所が写っている撮影画像データ内の地表に相当する画素の位置(カメラ座標系の座標)について、小領域グループに対応した平面射影変換パラメータを用いた座標変換を算出する。このように、座標変換テーブル作成部106は、カメラ座標系の座標と世界座標系の座標との座標変換を用いて座標変換テーブルを作成する。 The coordinate conversion table creation unit 106 may obtain coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system as follows, for example. The coordinate conversion table creation unit 106 uses information regarding coordinate conversion between the camera coordinate system and the world coordinate system of each plane acquired by the coordinate input device 105 and the plane that approximates the small region group. For example, the coordinate conversion table creation unit 106 obtains a plane projective conversion parameter for performing plane projective conversion to the coordinates of a plane that approximates the coordinates of the camera coordinate system for each small region group. Then, the coordinate conversion table creation unit 106 performs planar projection corresponding to the small region group with respect to the position of the pixel corresponding to the ground surface in the captured image data in which the location corresponding to the small region group is captured (the coordinates in the camera coordinate system). A coordinate transformation using the transformation parameter is calculated. As described above, the coordinate conversion table creation unit 106 creates a coordinate conversion table using coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system.
 なお、小領域グループの座標変換に関するパラメータは、平面射影変換のパラメータに限られない。座標変換に関するパラメータは、アフィン変換又はその他線形変換の近似となるパラメータでもよい。また、複雑な地形の場合、座標変換テーブル作成部106は、スプライン補間又はTPS(Thin Plate Spline)補間等の非線形変換を用いて、各小領域グループ内の画素についての連続的な座標変換を求めてもよい。なお、平面射影変換以外の各変換を適用する場合は、座標入力装置105において、各変換パラメータを推定するのに必要十分な点数に関して、カメラ座標系と世界座標系との座標変換に関する情報を取得していることを前提とする。 Note that the parameters related to the coordinate conversion of the small area group are not limited to the parameters of the planar projective conversion. The parameter relating to coordinate transformation may be a parameter that is an approximation of affine transformation or other linear transformation. In the case of complex terrain, the coordinate conversion table creation unit 106 obtains continuous coordinate conversion for pixels in each small region group using nonlinear conversion such as spline interpolation or TPS (ThinSPlate Spline) interpolation. May be. In addition, when applying each transformation other than the planar projective transformation, the coordinate input device 105 acquires information related to the coordinate transformation between the camera coordinate system and the world coordinate system regarding the number of points necessary and sufficient to estimate each transformation parameter. Assuming that
 座標変換テーブル作成部106は、作成した座標変換テーブルを、記憶装置107に記憶させる。 The coordinate conversion table creation unit 106 stores the created coordinate conversion table in the storage device 107.
 このように、小領域グルーピング部103は、法線方向及び標高情報を基に、小領域を、概ね平面に近似できるグループ(小領域グループ)に分ける。そして、座標変換テーブル作成部106は、小領域グループを近似した平面を用いて、監視対象の地点に配置された撮影装置101のカメラ座標系の座標と、世界座標系の座標とを変換する座標変換テーブルを作成する。このように、座標変換テーブル作成装置1は、監視対象領域の地形に係わらず、平面を用いた変換(例えば、平面射影変換)を用いて、座標変換テーブルを作成できる。そのため、座標変換テーブル作成装置1は、監視対象領域が、ランドマークが存在しない領域、起伏のある複雑な地形、又は、測量車が走行不能な領域であっても、カメラ座標系の座標と世界座標系の座標との座標変換を実現できる。 As described above, the small area grouping unit 103 divides the small areas into groups (small area groups) that can be approximated to a plane based on the normal direction and the elevation information. Then, the coordinate conversion table creation unit 106 uses the plane that approximates the small region group to convert the coordinates of the camera coordinate system of the imaging device 101 arranged at the monitoring target point and the coordinates of the world coordinate system. Create a conversion table. As described above, the coordinate conversion table creation device 1 can create a coordinate conversion table using conversion using a plane (for example, plane projection conversion) regardless of the topography of the monitoring target region. For this reason, the coordinate conversion table creation device 1 can determine the coordinates of the camera coordinate system and the world even if the monitoring target area is an area where no landmark is present, a complex terrain with undulations, or an area where a survey vehicle cannot travel. Coordinate conversion with the coordinates of the coordinate system can be realized.
 記憶装置107に記憶された座標変換テーブルについては、各種の利用方法が想定される。 Various types of usage methods are assumed for the coordinate conversion table stored in the storage device 107.
 例えば、座標変換テーブルは、不審車両等の物体の位置座標の計測に利用可能である。 For example, the coordinate conversion table can be used to measure the position coordinates of an object such as a suspicious vehicle.
 図5は、第1に実施形態に係る物体位置計測装置2001と座標対応付けシステム100との構成の一例を示すブロック図である。図5に例示されている物体位置計測装置2001は、座標変換テーブル作成装置1が作成し、記憶装置107に記憶されている座標変換テーブルを用いて、撮影装置101が撮影した撮影画像データにおける不審車両等の物体の位置座標を計測する。そのため、物体位置計測装置2001は、物体検出装置2002と、物体位置座標変換装置2003とを含む。物体検出装置2002は、撮影装置101が撮影した撮影画像データ内の物体を検出する。物体位置座標変換装置2003は、座標変換テーブルを用いて、撮影画像データにおける物体の座標(カメラ座標系の座標)を世界座標系の座標に変換する。このように、物体位置計測装置2001は、撮影装置101が撮影した撮影画像データ内の物体の位置(例えば、緯度、経度、及び、標高等の座標)を計測する。 FIG. 5 is a block diagram illustrating an example of a configuration of the object position measurement device 2001 and the coordinate association system 100 according to the first embodiment. The object position measuring apparatus 2001 illustrated in FIG. 5 is suspicious in the captured image data captured by the imaging apparatus 101 using the coordinate conversion table created by the coordinate conversion table creating apparatus 1 and stored in the storage device 107. Measure the position coordinates of an object such as a vehicle. Therefore, the object position measurement device 2001 includes an object detection device 2002 and an object position coordinate conversion device 2003. The object detection device 2002 detects an object in the captured image data captured by the imaging device 101. The object position coordinate conversion device 2003 uses the coordinate conversion table to convert object coordinates (camera coordinate system coordinates) in the captured image data into world coordinate system coordinates. As described above, the object position measuring apparatus 2001 measures the position of the object (for example, coordinates such as latitude, longitude, and altitude) in the captured image data captured by the image capturing apparatus 101.
 図6は、第1の実施形態に係る物体位置計測装置2001おける不審車両等の物体のカメラ座標系の座標(撮影画像データ内での位置)を、世界座標系の座標に変換する状況を示す模式図である。図6の左側に示されている、撮影画像データに含まれる各車のカメラ座標系の座標が、図6の右側に示されている世界座標系の座標に変換されている。 FIG. 6 illustrates a situation in which coordinates in the camera coordinate system (position in the captured image data) of an object such as a suspicious vehicle in the object position measurement apparatus 2001 according to the first embodiment are converted into coordinates in the world coordinate system. It is a schematic diagram. The coordinates of the camera coordinate system of each car included in the photographed image data shown on the left side of FIG. 6 are converted into the coordinates of the world coordinate system shown on the right side of FIG.
 なお、記憶装置107に格納される座標変換テーブルは、撮影装置101の設定変更(解像度の変更、レンズの変更に伴う焦点若しくは画角の変更、又は、撮影装置の位置若しくは姿勢の変動等)が発生しない限り、更新される必要がない。そのため、座標変換テーブルが記憶装置107に格納されると、撮影装置101が変更されない限り、物体検出装置2002は、その座標変換テーブルを用いて、動作可能となる。つまり、物体検出装置2002は、座標変換テーブルの作成後は、撮影装置101に変更が発生しない限り、座標変換テーブル作成装置1が動作しなくても、撮影装置101から得られた撮影画像データに含まれる物体の世界座標系の座標を求めることができる。ここで、物体とは、例えば、不審人物、又は、不審車両である。 Note that the coordinate conversion table stored in the storage device 107 includes a setting change of the photographing apparatus 101 (a change in resolution, a change in focus or angle of view accompanying a lens change, or a change in position or orientation of the photographing apparatus). It does not need to be updated unless it occurs. Therefore, when the coordinate conversion table is stored in the storage device 107, the object detection device 2002 can operate using the coordinate conversion table unless the photographing apparatus 101 is changed. That is, the object detection device 2002 uses the captured image data obtained from the imaging device 101 even after the coordinate conversion table creation device 1 does not operate unless the imaging device 101 is changed after the creation of the coordinate conversion table. The coordinates of the contained object in the world coordinate system can be obtained. Here, the object is, for example, a suspicious person or a suspicious vehicle.
 [効果の説明]
 第1の実施形態の効果について説明する。
[Description of effects]
The effect of the first embodiment will be described.
 第1の実施形態に係る座標変換テーブル作成装置1は、対象となる領域に係わらず、カメラ座標系の座標と世界座標系の座標との座標変換を算出するとの効果を奏することができる。 The coordinate conversion table creation device 1 according to the first embodiment can achieve the effect of calculating coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regardless of the target region.
 その理由は、次のとおりである。 The reason is as follows.
 小領域グルーピング部103が、3次元地形データベース記憶部102に記憶されている3次元地形データに基づいて、撮影画像データに対応する3次元地形データにおける小領域を、グループに分ける。より詳細には、小領域グルーピング部103は、小領域の法線方向と標高とを用いて、小領域をグループに分ける。そして、座標変換テーブル作成部106が、小領域のグループ毎に、カメラ座標系の座標を世界座標系の座標に変換する座標変換(座標変換テーブル)を算出する。ここで、小領域グルーピング部103は、法線方向と標高とを基に、概ね平面となるように、小領域を小領域グループに分ける。そのため、座標変換テーブル作成部106は、各小領域グループを近似する平面を用いて、カメラ座標系の座標を世界座標系の座標に変換する座標変換テーブルを作成することができる。このように、座標変換テーブル作成装置1は、対象となる領域に係わらず、平面近似を用いて座標変換テーブルを作成するためである。 The small area grouping unit 103 divides the small areas in the 3D terrain data corresponding to the captured image data into groups based on the 3D terrain data stored in the 3D terrain database storage unit 102. More specifically, the small area grouping unit 103 divides the small areas into groups using the normal direction and the altitude of the small areas. Then, the coordinate conversion table creation unit 106 calculates coordinate conversion (coordinate conversion table) for converting the coordinates of the camera coordinate system into the coordinates of the world coordinate system for each group of small regions. Here, the small area grouping unit 103 divides the small areas into small area groups so as to be substantially flat based on the normal direction and the altitude. Therefore, the coordinate conversion table creation unit 106 can create a coordinate conversion table for converting the coordinates of the camera coordinate system to the coordinates of the world coordinate system using a plane that approximates each small region group. Thus, the coordinate conversion table creation device 1 is for creating a coordinate conversion table using plane approximation regardless of the target region.
 <第2の実施形態>
 図7は、第2の実施形態に係る座標対応付けシステム200の構成の一例を示すブロック図である。座標対応付けシステム200は、撮影装置201と、3次元地形データベース記憶部202と、座標変換テーブル作成装置2と、表示装置205と、座標入力装置206と、記憶装置208とを含む。座標変換テーブル作成装置2は、位置方位取得部203と、小領域グルーピング部204と、座標変換テーブル作成部207とを含む。
<Second Embodiment>
FIG. 7 is a block diagram illustrating an example of a configuration of the coordinate association system 200 according to the second embodiment. The coordinate association system 200 includes an imaging device 201, a three-dimensional landform database storage unit 202, a coordinate conversion table creation device 2, a display device 205, a coordinate input device 206, and a storage device 208. The coordinate conversion table creation device 2 includes a position / orientation acquisition unit 203, a small area grouping unit 204, and a coordinate conversion table creation unit 207.
 撮影装置201、3次元地形データベース記憶部202、及び、記憶装置208は、それぞれ、第1の実施形態に係る撮影装置101、3次元地形データベース記憶部102、及び、記憶装置107と同様である。ただし、撮影装置201は、座標変換テーブル作成装置2に、撮影画像データに加え、撮影装置201に関する情報を出力する。撮影装置201に関する情報とは、撮影装置201の位置に関する情報(位置情報)と、撮影装置201の向きに関する情報を含む。位置情報は、撮影装置201の世界座標系における位置情報(例えば、緯度、経度、及び、標高)である。また、撮影装置201の向きに関する情報は、撮影装置201の撮影方位に関する情報(方位情報)である。 The imaging device 201, the three-dimensional terrain database storage unit 202, and the storage device 208 are the same as the imaging device 101, the three-dimensional terrain database storage unit 102, and the storage device 107, respectively, according to the first embodiment. However, the imaging device 201 outputs information regarding the imaging device 201 to the coordinate conversion table creation device 2 in addition to the captured image data. The information related to the imaging apparatus 201 includes information related to the position of the imaging apparatus 201 (position information) and information related to the orientation of the imaging apparatus 201. The position information is position information (for example, latitude, longitude, and altitude) in the world coordinate system of the photographing apparatus 201. Further, the information related to the orientation of the image capturing apparatus 201 is information related to the image capturing direction of the image capturing apparatus 201 (orientation information).
 位置方位取得部203は、撮影装置201から、位置情報、及び、方位情報を取得する。 The position / orientation acquisition unit 203 acquires position information and direction information from the photographing apparatus 201.
 小領域グルーピング部204は、撮影画像データに含まれる場所に対応する3次元地形データ、及び、撮影装置201からその場所(3次元地形データ)までの距離に基づいて、3次元地形データの小領域グループを作成する。 The small area grouping unit 204 generates a small area of the 3D terrain data based on the 3D terrain data corresponding to the location included in the captured image data and the distance from the imaging device 201 to the location (3D terrain data). Create a group.
 表示装置205は、小領域グループにグルーピングされた3次元地形データを表示する。 The display device 205 displays 3D terrain data grouped into small area groups.
 座標入力装置206は、表示装置205に表示された3次元地形データに関するカメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する。例えば、座標入力装置206は、図示しない入力機器を含み、座標変換に関する情報として、作業者の入力操作を取得してもよい。座標入力装置206は、小領域グループ毎に、小領域内部の任意の点の少なくとも4点について、カメラ座標系と世界座標系との座標変換に関する情報を取得する。 The coordinate input device 206 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regarding the three-dimensional terrain data displayed on the display device 205. For example, the coordinate input device 206 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion. The coordinate input device 206 acquires information related to coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
 座標変換テーブル作成部207は、小領域グループと座標変換に関する情報とを用いて、撮影画像データにおけるカメラ座標系の座標を世界座標系の座標に変換する座標変換テーブルを作成する。 The coordinate conversion table creation unit 207 creates a coordinate conversion table for converting the coordinates of the camera coordinate system in the captured image data into the coordinates of the world coordinate system using the small area group and the information related to the coordinate conversion.
 位置方位取得部203、小領域グルーピング部204、及び、座標変換テーブル作成部207は、例えば、座標変換プログラムに基づいて動作するコンピュータのCPUを用いて実現される。この場合、CPUは、図示しないプログラム記憶装置等のプログラム記録媒体から座標変換プログラムを読み込み、読み込んだ座標変換プログラムに基づいて、上記の各要素として動作すればよい。コンピュータについては、後ほど詳細に説明する。 The position / orientation acquisition unit 203, the small area grouping unit 204, and the coordinate conversion table creation unit 207 are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
 次に、第2の実施形態の動作について説明する。なお、第1の実施形態と同様の動作については、適宜、詳細な説明を省略する。 Next, the operation of the second embodiment will be described. Note that detailed description of operations similar to those of the first embodiment is omitted as appropriate.
 図8は、第2の実施形態に係る座標変換テーブル作成装置2の動作の一例を示すフローチャートである。なお、撮影装置201は、監視対象領域を撮影して撮影画像データを生成し、座標変換テーブル作成部207に送っているものとする。 FIG. 8 is a flowchart showing an example of the operation of the coordinate conversion table creation device 2 according to the second embodiment. Note that the image capturing apparatus 201 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 207.
 位置方位取得部203は、撮影装置201の位置情報及び方位情報を取得する。小領域グルーピング部204は、第1の実施形態の小領域グルーピング部103と同様に、撮影画像データの場所に対応する3次元地形データを、3次元地形データベース記憶部202から取得する(ステップS201)。 The position / orientation acquisition unit 203 acquires position information and direction information of the photographing apparatus 201. Similar to the small region grouping unit 103 of the first embodiment, the small region grouping unit 204 acquires three-dimensional landform data corresponding to the location of the captured image data from the three-dimensional landform database storage unit 202 (step S201). .
 位置方位取得部203は、例えば、撮影画像データのExif(Exchangeable image file format)情報を用いて、撮影装置201の位置情報を取得してもよい。また、位置方位取得部203は、撮影装置201に取り付けられたGPSから撮影装置201の位置情報を取得してもよい。また、位置方位取得部203は、撮影装置201に取り付けられた磁気コンパスから、撮影装置201の方位情報を取得してもよい。ただし、位置方位取得部203が撮影装置201の位置情報及び方位情報を取得する方法は、上記に限定されない。位置方位取得部203は、撮影装置201の位置情報及び方位情報を、図示しないその他のセンサから取得してもよい。また、位置方位取得部203は、図示しない入力機器に対する作業者の操作に基づいて、撮影装置201の位置情報及び方位情報を取得してもよい。 The position / orientation acquisition unit 203 may acquire the position information of the image capturing apparatus 201 using, for example, Exif (Exchangeable image file format) information of the captured image data. Further, the position / orientation acquisition unit 203 may acquire position information of the image capturing apparatus 201 from a GPS attached to the image capturing apparatus 201. Further, the position / orientation acquisition unit 203 may acquire the orientation information of the imaging apparatus 201 from a magnetic compass attached to the imaging apparatus 201. However, the method by which the position / orientation acquisition unit 203 acquires the position information and the direction information of the imaging apparatus 201 is not limited to the above. The position / orientation acquisition unit 203 may acquire the position information and the direction information of the photographing apparatus 201 from other sensors (not shown). Further, the position / orientation acquisition unit 203 may acquire the position information and the direction information of the photographing apparatus 201 based on an operation of an operator on an input device (not shown).
 小領域グルーピング部204は、第1の実施形態の小領域グルーピング部103と同様に、各小領域の法線方向及び標高情報に基づき、取得した3次元地形データの小領域を、グルーピングする(ステップS202)。 Similar to the small region grouping unit 103 of the first embodiment, the small region grouping unit 204 groups small regions of the acquired three-dimensional terrain data based on the normal direction and elevation information of each small region (step S202).
 次に、小領域グルーピング部204は、位置方位取得部203が取得した撮影装置201の位置情報及び方位情報に基づいて、小領域毎に、撮影装置201から小領域までの距離を求める。小領域グルーピング部204は、撮影装置201から小領域までの距離に基づいて、小領域を、再度グルーピングする(ステップS203)。換言すれば、小領域グルーピング部204は、ステップS202において作成されたグループを、撮影装置201から小領域までの距離に応じて、さらに細分化する。このように、小領域グルーピング部204は、距離に基づいて、少なくとも一部のグループを、複数のグループに分割する。 Next, the small area grouping unit 204 obtains a distance from the photographing apparatus 201 to the small area for each small area based on the position information and the azimuth information of the photographing apparatus 201 acquired by the position / orientation acquisition unit 203. The small area grouping unit 204 groups the small areas again based on the distance from the photographing apparatus 201 to the small area (step S203). In other words, the small area grouping unit 204 further subdivides the group created in step S202 according to the distance from the imaging device 201 to the small area. Thus, the small region grouping unit 204 divides at least a part of the groups into a plurality of groups based on the distance.
 図9は、図8のステップS203の結果として得られるグループの一例を示す模式図である。図9において、図9において、標高が低い小領域において、近距離の小領域の集合が、グループ1である。標高が低い小領域において、遠距離の小領域の集合が、グループ2である。標高が高い小領域において、近距離(図9において左側)の小領域の集合が、グループ3である。標高が高い小領域において遠距離(図9において右側)の小領域の集合が、グループ4である。グループ1及び2において、法線ベクトル及び標高は、それぞれ同様である。しかし、グループ1とグループ2は、撮影装置101からの距離に基づいて、2つのグループに分けられている。 FIG. 9 is a schematic diagram showing an example of a group obtained as a result of step S203 in FIG. 9, in FIG. 9, a set of small areas in a short distance in a small area having a low altitude is group 1. In a small area with a low altitude, a group of small areas at a long distance is group 2. In a small area with a high altitude, a set of small areas at a short distance (left side in FIG. 9) is Group 3. A group of small areas at a long distance (on the right side in FIG. 9) in the small area having a high altitude is group 4. In groups 1 and 2, the normal vector and the elevation are the same. However, group 1 and group 2 are divided into two groups based on the distance from the photographing apparatus 101.
 表示装置205は、再分割された小領域グループにグルーピングされた3次元地形データを表示する。 The display device 205 displays the three-dimensional terrain data grouped in the subdivided small area groups.
 座標入力装置206は、表示装置205に表示された3次元地形データに関して、小領域グループごとにカメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する(ステップS204)。例えば、座標入力装置206は、図示しない入力機器を含み、座標変換に関する情報として、作業者の入力操作を取得してもよい。座標入力装置206は、小領域グループ毎に、小領域内部の任意の点の少なくとも4点について、カメラ座標系と世界座標系との座標変換に関する情報を取得する。 The coordinate input device 206 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system for each small region group with respect to the three-dimensional terrain data displayed on the display device 205 (step). S204). For example, the coordinate input device 206 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion. The coordinate input device 206 acquires information related to coordinate conversion between the camera coordinate system and the world coordinate system for at least four arbitrary points within the small region for each small region group.
 座標変換テーブル作成部207は、第1の実施形態の座標変換テーブル作成部106と同様に、小領域グループを基に座標変換テーブルを作成する(ステップS205)。 The coordinate conversion table creation unit 207 creates a coordinate conversion table based on the small area group, similarly to the coordinate conversion table creation unit 106 of the first embodiment (step S205).
 座標変換テーブル作成部207は、作成した座標変換テーブルを記憶装置208に記憶させる。 The coordinate conversion table creation unit 207 stores the created coordinate conversion table in the storage device 208.
 [効果の説明]
 第2の実施形態の効果について説明する。第2の実施形態は、第1の実施形態の効果に加え、カメラ座標系の座標と世界座標系の座標との変換を、より精度良く、求めることができる。例えば、座標変換テーブル作成装置2は、撮影装置201から遠方にある物体が撮影画像データにおいて検出された場合でも、その物体の世界座標系における位置座標を、精度良く、求めることができる。その理由は、次のとおりである。
[Description of effects]
The effect of the second embodiment will be described. In the second embodiment, in addition to the effects of the first embodiment, conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system can be obtained with higher accuracy. For example, even when an object far from the image capturing device 201 is detected in the captured image data, the coordinate conversion table creating device 2 can obtain the position coordinates of the object in the world coordinate system with high accuracy. The reason is as follows.
 小領域グルーピング部204は、距離を用いて、小領域をグルーピングしている。つまり、第2の実施形態の小領域グループは、撮影装置201からの距離が同程度の小領域を含む。座標変換の各処理の対象となる座標の範囲が広い場合、座標変換テーブル作成部207が求める座標変換は、精度が低下する可能性がある。しかし、座標変換テーブル作成部207は、距離を基にグループ分けされた小領域グループを用いて座標変換テーブルを作成する。そのため、座標変換テーブル作成装置2は、精度のよい座標変換テーブルを作成できる。そのため、撮影画像データにおいて撮影装置201から遠方にある物体が検出された場合でも、座標変換テーブル作成装置2は、その物体と概ね同距離となっている小領域グループを用いた座標変換テーブルを作成している。そのため、その物体の世界座標系の座標は、精度良く、算出される。 The small area grouping unit 204 groups small areas using the distance. That is, the small area group of the second embodiment includes small areas having the same distance from the imaging device 201. When the range of coordinates to be subjected to each process of coordinate conversion is wide, the accuracy of the coordinate conversion obtained by the coordinate conversion table creation unit 207 may be reduced. However, the coordinate conversion table creation unit 207 creates a coordinate conversion table using the small area groups grouped based on the distance. Therefore, the coordinate conversion table creation device 2 can create a coordinate conversion table with high accuracy. Therefore, even when an object far from the photographing apparatus 201 is detected in the photographed image data, the coordinate conversion table creating apparatus 2 creates a coordinate conversion table using a small area group that is substantially the same distance as the object. is doing. Therefore, the coordinates of the object in the world coordinate system are calculated with high accuracy.
 以下に示す各実施形態の説明は、撮影装置から小領域までの距離を用いて、小領域をグループ分けする場合を説明する。ただし、以下に示す各実施形態は、この動作を実行しない構成でもよい。つまり、以下に示す各実施形態は、撮影装置から小領域までの距離を用いないで、小領域をグループ分けしてもよい。 In the following description of each embodiment, a case where small areas are grouped using a distance from the photographing apparatus to the small area will be described. However, each embodiment described below may be configured not to execute this operation. That is, in each embodiment described below, the small areas may be grouped without using the distance from the imaging device to the small areas.
 <第3の実施形態>
 図10は、第3の実施形態に係る座標対応付けシステム300の構成の一例を示すブロック図である。第3の実施形態の座標対応付けシステム300は、撮影装置301と、3次元地形データベース記憶部302と、座標変換テーブル作成装置3と、表示装置306と、座標入力装置307と、記憶装置309とを含む。座標変換テーブル作成装置3は、位置方位取得部303と、小領域グルーピング部304と、計測地点抽出部305と、座標変換テーブル作成部308とを含む。
<Third Embodiment>
FIG. 10 is a block diagram illustrating an example of a configuration of a coordinate association system 300 according to the third embodiment. A coordinate association system 300 according to the third embodiment includes an imaging device 301, a three-dimensional landform database storage unit 302, a coordinate conversion table creation device 3, a display device 306, a coordinate input device 307, and a storage device 309. including. The coordinate conversion table creation device 3 includes a position / orientation acquisition unit 303, a small area grouping unit 304, a measurement point extraction unit 305, and a coordinate conversion table creation unit 308.
 撮影装置301、3次元地形データベース記憶部302、及び、記憶装置309は、第2の実施形態における撮影装置201、3次元地形データベース記憶部202、及び、記憶装置208と同様である。位置方位取得部303、及び、小領域グルーピング部304は、第2の実施形態における位置方位取得部203、及び、小領域グルーピング部204と同様である。 The photographing device 301, the three-dimensional landform database storage unit 302, and the storage device 309 are the same as the photographing device 201, the three-dimensional landform database storage unit 202, and the storage device 208 in the second embodiment. The position / orientation acquisition unit 303 and the small region grouping unit 304 are the same as the position / orientation acquisition unit 203 and the small region grouping unit 204 in the second embodiment.
 計測地点抽出部305は、小領域グルーピング部304における小領域のグルーピング結果に基づいて、各小領域グループにおける計測地点候補を抽出する。計測地点候補とは、カメラ座標系の座標と対応する世界座標系の座標(位置)との座標変換に関する情報(候補情報)を取得する地点である。計測地点候補は、単に「計測地点」と呼ばれる場合もある。なお、後ほど説明するように、計測地点候補は、表示装置306に表示され。 The measurement point extraction unit 305 extracts measurement point candidates in each small region group based on the small region grouping result in the small region grouping unit 304. A measurement point candidate is a point from which information (candidate information) regarding coordinate transformation between the coordinates of the camera coordinate system and the corresponding coordinates (position) of the world coordinate system is acquired. A measurement point candidate may be simply referred to as a “measurement point”. Note that the measurement point candidates are displayed on the display device 306, as will be described later.
 表示装置306は、計測地点候補を表示する。例えば、表示装置306は、作業者に計測地点候補を示す。 Display device 306 displays measurement point candidates. For example, the display device 306 indicates a measurement point candidate to the worker.
 座標入力装置307は、計測地点候補における候補情報を取得する装置である。例えば、座標入力装置307は、作業者の操作を基に、上記の候補情報を取得するための装置である。ここで、作業者の操作は、具体的には、上記の表示装置306に表示されている計測地点候補における座標のペア(カメラ座標系の座標と世界座標系の座標)に関する情報(座標変換情報)の入力である。つまり、座標入力装置307は、計測地点候補におけるカメラ座標系の座標と世界座標系の座標との座標ペアにおける座標変換に関する情報(候補情報)を取得する。 The coordinate input device 307 is a device that acquires candidate information on measurement point candidates. For example, the coordinate input device 307 is a device for acquiring the candidate information based on the operation of the worker. Here, the operator's operation specifically includes information (coordinate conversion information) about a pair of coordinates (the coordinates of the camera coordinate system and the coordinates of the world coordinate system) in the measurement point candidate displayed on the display device 306. ) Input. That is, the coordinate input device 307 acquires information (candidate information) related to coordinate conversion in a coordinate pair of the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate.
 座標変換テーブル作成部308は、座標入力装置307から、計測地点候補に関する候補情報を取得し、取得した候補情報を基に、カメラ座標系の座標から世界座標系の座標への座標変換に関する座標変換テーブルを作成する。 The coordinate conversion table creation unit 308 acquires candidate information related to the measurement point candidate from the coordinate input device 307, and based on the acquired candidate information, coordinate conversion related to coordinate conversion from the coordinates of the camera coordinate system to the coordinates of the world coordinate system. Create a table.
 位置方位取得部303、小領域グルーピング部304、計測地点抽出部305、及び、座標変換テーブル作成部308は、例えば、座標変換プログラムに基づいて動作するコンピュータのCPUを用いて実現される。この場合、CPUは、図示しないプログラム記憶装置等のプログラム記録媒体から座標変換プログラムを読み込み、読み込んだ座標変換プログラムに基づいて、上記の各要素として動作すればよい。なお、CPUは、表示装置306に情報(計測地点候補)を送信する動作及び座標入力装置307から情報(候補情報)を取得する動作を、座標変換プログラムに基づいて実行する。この点は、後ほど説明するその他の実施形態でも同様である。コンピュータについては、後ほど詳細に説明する。 The position / orientation acquisition unit 303, the small area grouping unit 304, the measurement point extraction unit 305, and the coordinate conversion table creation unit 308 are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The CPU executes an operation of transmitting information (candidate for measurement point) to the display device 306 and an operation of acquiring information (candidate information) from the coordinate input device 307 based on the coordinate conversion program. This also applies to other embodiments described later. The computer will be described in detail later.
 次に、第3の実施形態の動作について説明する。なお、第1及び2の実施形態と同様の動作については、適宜、詳細な説明を省略する。 Next, the operation of the third embodiment will be described. Note that detailed description of operations similar to those in the first and second embodiments is omitted as appropriate.
 図11は、第3の実施形態に係る座標変換テーブル作成装置3の動作の一例を示すフローチャートである。なお、撮影装置301は、監視対象領域を撮影して撮影画像データを生成し、座標変換テーブル作成部308に送っているものとする。 FIG. 11 is a flowchart showing an example of the operation of the coordinate conversion table creation device 3 according to the third embodiment. Note that the imaging apparatus 301 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 308.
 位置方位取得部303は、第2の実施形態の位置方位取得部203と同様に、撮影装置301の世界座標系における位置情報及び方位情報を取得する。また、小領域グルーピング部304は、第2の実施形態の小領域グルーピング部204と同様に、撮影画像データの場所に対応する3次元地形データを3次元地形データベース記憶部302から取得する(ステップS301)。 The position / orientation acquisition unit 303 acquires the position information and the direction information in the world coordinate system of the image capturing apparatus 301 in the same manner as the position / orientation acquisition unit 203 of the second embodiment. Further, the small area grouping unit 304 acquires the three-dimensional terrain data corresponding to the location of the captured image data from the three-dimensional terrain database storage unit 302, similarly to the small region grouping unit 204 of the second embodiment (step S301). ).
 小領域グルーピング部304は、第2の実施形態の小領域グルーピング部204と同様に、取得した3次元地形データの小領域を、各小領域の法線方向、標高情報に基づき、グループに分ける(ステップS302)。 Similar to the small region grouping unit 204 of the second embodiment, the small region grouping unit 304 divides the small regions of the acquired three-dimensional terrain data into groups based on the normal direction and elevation information of each small region ( Step S302).
 次に、小領域グルーピング部304は、第2の実施形態の同様に、位置方位取得部303が取得した撮影装置301の位置情報及び方位情報に基づいて、撮影装置301から小領域に相当する場所までの距離を求める。小領域グルーピング部304は、撮影装置301から小領域に相当する場所までの距離を基に、小領域グループを再度グルーピングする(ステップS303)。 Next, as in the second embodiment, the small region grouping unit 304 is a place corresponding to a small region from the imaging device 301 based on the position information and orientation information of the imaging device 301 acquired by the position / orientation acquisition unit 303. Find the distance to. The small area grouping unit 304 groups the small area groups again based on the distance from the photographing apparatus 301 to the place corresponding to the small area (step S303).
 計測地点抽出部305は、小領域グループ毎に、計測地点候補を抽出する(ステップS304)。 The measurement point extraction unit 305 extracts a measurement point candidate for each small area group (step S304).
 図12は、第3の実施形態における計測地点抽出部305が、計測地点候補の抽出する方法を説明するための模式図である。ただし、図12は、動作を理解しやすくするため、図9に示されている距離を基に再グループ化したグループではなく、図4に示されているグループを用いて、計測地点候補を示した。 FIG. 12 is a schematic diagram for explaining a method of extracting measurement point candidates by the measurement point extraction unit 305 in the third embodiment. However, FIG. 12 shows the measurement point candidates by using the group shown in FIG. 4 instead of the group regrouped based on the distance shown in FIG. 9 for easy understanding of the operation. It was.
 計測地点抽出部305は、小領域グループ毎に重心の位置(座標)を算出する。次に、計測地点抽出部305は、重心からの距離がある一定の値以上となる複数の点を選択する。そして、計測地点抽出部305は、計測地点候補として、選択した点の中から、各点と重心とを結ぶ全ての線分なす角度が所定の角度以上となる所定の数の点を抽出する。つまり、計測地点抽出部305は、小領域グループの重心から所定以上離れ、かつ、隣接しないように、計測地点候補の点を抽出する。このように、計測地点抽出部305は、小領域グループ毎に、複数の計測地点候補を抽出する。ここで抽出される計測地点候補の所定の数とは、予め決められた数以上、又は、予め決められた数の範囲である。そして、計測地点抽出部305は、計測地点候補を表示装置306に送信する。 The measurement point extraction unit 305 calculates the position (coordinates) of the center of gravity for each small area group. Next, the measurement point extraction unit 305 selects a plurality of points whose distance from the center of gravity is a certain value or more. Then, the measurement point extraction unit 305 extracts, as measurement point candidates, a predetermined number of points at which the angle formed by all line segments connecting each point and the center of gravity is equal to or greater than a predetermined angle from the selected points. That is, the measurement point extraction unit 305 extracts the measurement point candidate points so that they are separated from the center of gravity of the small region group by a predetermined distance or more and are not adjacent to each other. As described above, the measurement point extraction unit 305 extracts a plurality of measurement point candidates for each small region group. The predetermined number of measurement point candidates extracted here is a predetermined number or more, or a predetermined number of ranges. Then, the measurement point extraction unit 305 transmits the measurement point candidate to the display device 306.
 表示装置306は、取得した計測地点候補を表示する。このとき、表示装置306は、図12に示されているように、3次元地形データとともに計測地点候補を表示してもよい。 The display device 306 displays the acquired measurement point candidates. At this time, the display device 306 may display the measurement point candidates together with the three-dimensional terrain data, as shown in FIG.
 座標入力装置307は、表示装置306に表示された計測地点候補における、カメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する(ステップS305)。例えば、座標入力装置307は、図示しない入力機器を含み、座標変換に関する情報として、作業者の入力操作を取得してもよい。 The coordinate input device 307 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 306 (step S305). For example, the coordinate input device 307 may include an input device (not shown) and acquire an operator's input operation as information related to coordinate conversion.
 例えば、作業者は、表示装置306に表示された撮影画像データと、地図データ又は航空画像等とを確認する。そして、作業者が、計測地点候補に相当する位置のカメラ座標系の座標と世界座標系の座標とを座標変換に関連する情報(候補情報)を、座標入力装置307に入力してもよい。また、作業者が、世界座標系の座標を取得できるセンサ(例えば、GPS)及びマーカを所持して計測地点候補に行く。そして、作業者は、センサを用いて、計測地点候補の世界座標系の座標を計測する。さらに、作業者は、計測地点候補にマーカを配置する。撮影装置301は、この状態で撮影画像データを取得する。このような動作を基に、作業者は、計測地点候補に相当する位置のカメラ座標系の座標と世界座標系の座標とを座標変換に関する情報(候補情報)を取得し、座標入力装置307に入力してもよい。 For example, the worker confirms the captured image data displayed on the display device 306 and the map data or the aerial image. Then, the operator may input information (candidate information) related to coordinate transformation between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the position corresponding to the measurement point candidate to the coordinate input device 307. In addition, the worker has a sensor (for example, GPS) and a marker that can acquire coordinates in the world coordinate system, and goes to a measurement point candidate. And an operator measures the coordinate of the world coordinate system of a measurement point candidate using a sensor. Further, the operator places a marker on the measurement point candidate. The imaging device 301 acquires captured image data in this state. Based on such an operation, the operator obtains information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the position corresponding to the measurement point candidate, and sends the information to the coordinate input device 307. You may enter.
 座標入力装置307は、取得した計測地点候補に相当する位置のカメラ座標系の座標と世界座標系の座標とを座標変換に関する情報(候補情報)を座標変換テーブル作成部308に送信する。 The coordinate input device 307 transmits information (candidate information) related to coordinate conversion of the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the position corresponding to the acquired measurement point candidate to the coordinate conversion table creation unit 308.
 座標変換テーブル作成部308は、第2の実施形態の座標変換テーブル作成部207の動作に加え、取得した候補情報を用いて、小領域グループのカメラ座標系の座標と世界座標系の座標との座標変換テーブルを作成する(ステップS306)。つまり、座標変換テーブル作成部308は、計測地点候補の座標変換に関する情報(候補情報)を用いて、座標変換テーブルを作成する。 In addition to the operation of the coordinate conversion table creation unit 207 of the second embodiment, the coordinate conversion table creation unit 308 uses the acquired candidate information to calculate the coordinates of the camera coordinate system of the small area group and the coordinates of the world coordinate system. A coordinate conversion table is created (step S306). That is, the coordinate conversion table creation unit 308 creates a coordinate conversion table using information (candidate information) related to coordinate conversion of measurement point candidates.
 座標変換テーブル作成部308は、作成した座標変換テーブルを記憶装置309に記憶させる。 The coordinate conversion table creation unit 308 causes the storage device 309 to store the created coordinate conversion table.
 [効果の説明]
 第3の実施形態の効果について説明する。第3の実施形態は、第1及び第2の実施形態の効果に加え、さらに精度を向上するとの効果を奏する。その理由は、次のとおりである。
[Description of effects]
The effect of the third embodiment will be described. In addition to the effects of the first and second embodiments, the third embodiment has the effect of further improving accuracy. The reason is as follows.
 本実施形態の計測地点抽出部305は、各小領域グループにおいて計測地点候補を抽出する。そして、座標変換テーブル作成部308は、上記の計測地点候補における座標変換に関する情報(候補情報)を取得する。ここで、候補情報は、計測地点候補におけるカメラ座標系の座標と世界座標系の座標との座標変換に関する情報である。候補情報は、例えば、作業者などが計測した座標情報を含む。つまり、候補情報(座標変換に関する情報)は、少なくとも計測地点候補における正確な座標変換に関する情報を含む。このように、座標変換テーブル作成装置3は、候補情報を用いて、座標変換テーブルを作成するため、座標変換テーブルの精度を向上できる。 The measurement point extraction unit 305 of this embodiment extracts measurement point candidates in each small area group. Then, the coordinate conversion table creation unit 308 acquires information (candidate information) related to coordinate conversion in the above measurement point candidates. Here, the candidate information is information relating to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate. The candidate information includes, for example, coordinate information measured by an operator or the like. That is, the candidate information (information regarding coordinate conversion) includes at least information regarding accurate coordinate conversion in the measurement point candidate. As described above, the coordinate conversion table creation device 3 creates the coordinate conversion table using the candidate information, so that the accuracy of the coordinate conversion table can be improved.
 例えば、利用できる3次元地形データの分解能(解像度)が低い場合、又は、3次元地形データに計測誤差が多く含まれている場合がある。しかし、そのような場合でも、座標変換テーブル作成装置3は、上記の候補情報を用いて座標変換テーブルの精度を向上させることができる。 For example, there are cases where the resolution (resolution) of available 3D terrain data is low, or there are many measurement errors included in the 3D terrain data. However, even in such a case, the coordinate conversion table creation device 3 can improve the accuracy of the coordinate conversion table using the candidate information.
 また、取得した候補情報は、小領域グループにおける正確な座標変換に関する情報を含む。一般的に、座標変換における所定の精度を確保するための処理量は、初期値の精度に概ね反比例する。初期値の精度が高い場合、処理量は少なくなる。そのため、座標変換テーブル作成装置3は、取得した候補情報を用いて、座標変換テーブルを作成する際の演算コストを低減することができる。 Also, the acquired candidate information includes information related to accurate coordinate conversion in the small area group. In general, the processing amount for ensuring a predetermined accuracy in coordinate transformation is generally inversely proportional to the accuracy of the initial value. When the accuracy of the initial value is high, the processing amount decreases. Therefore, the coordinate conversion table creation device 3 can reduce the calculation cost when creating the coordinate conversion table using the acquired candidate information.
 <第4の実施形態>
 図13は、第4の実施形態に係る座標対応付けシステム400の構成の一例を示すブロック図である。第4の実施形態の座標対応付けシステム400は、撮影装置401と、3次元地形データベース記憶部402と、座標変換テーブル作成装置4と、表示装置407と、座標入力装置408と、記憶装置410とを含む。さらに、第4の実施形態の座標対応付けシステム400は、計測容易性データベース記憶部405を含む。座標変換テーブル作成装置4は、位置方位取得部403と、小領域グルーピング部404と、計測地点抽出部406と、座標変換テーブル作成部409とを含む。
<Fourth Embodiment>
FIG. 13 is a block diagram illustrating an example of a configuration of a coordinate association system 400 according to the fourth embodiment. A coordinate association system 400 according to the fourth embodiment includes an imaging device 401, a three-dimensional terrain database storage unit 402, a coordinate conversion table creation device 4, a display device 407, a coordinate input device 408, and a storage device 410. including. Furthermore, the coordinate matching system 400 of the fourth embodiment includes a measurement ease database storage unit 405. The coordinate conversion table creation device 4 includes a position / orientation acquisition unit 403, a small area grouping unit 404, a measurement point extraction unit 406, and a coordinate conversion table creation unit 409.
 撮影装置401、3次元地形データベース記憶部402、及び、記憶装置410は、第3の実施形態における撮影装置301、3次元地形データベース記憶部302、及び記憶装置309と同様である。表示装置407、及び、座標入力装置408は、第3の実施形態における表示装置306、及び、座標入力装置307と同様である。位置方位取得部403、小領域グルーピング部404、及び、座標変換テーブル作成部409は、第3の実施形態における位置方位取得部303、小領域グルーピング部304、及び、座標変換テーブル作成部308と同様である。 The imaging device 401, the three-dimensional terrain database storage unit 402, and the storage device 410 are the same as the imaging device 301, the three-dimensional terrain database storage unit 302, and the storage device 309 in the third embodiment. The display device 407 and the coordinate input device 408 are the same as the display device 306 and the coordinate input device 307 in the third embodiment. The position / orientation acquisition unit 403, the small region grouping unit 404, and the coordinate conversion table creation unit 409 are the same as the position / orientation acquisition unit 303, the small region grouping unit 304, and the coordinate conversion table creation unit 308 in the third embodiment. It is.
 計測容易性データベース記憶部405は、予め、3次元地形データに含まれる各地点での、世界座標系の座標の計測の容易性を数値化したデータを記憶する記憶装置である。なお、計測容易性を数値化したデータの記憶形式は、特に制限されない。計測容易性データベース記憶部405は、例えば、計測容易性のデータを、データベース形式として記憶してもよい。計測容易性を数値化したデータを、以下、単に「計測容易性データ」と記す場合もある。 The measurement ease database storage unit 405 is a storage device that stores in advance data obtained by quantifying the ease of measurement of coordinates in the world coordinate system at each point included in the three-dimensional terrain data. Note that the storage format of data obtained by digitizing the measurement ease is not particularly limited. For example, the measurement ease database storage unit 405 may store measurement ease data as a database format. Hereinafter, data obtained by quantifying measurement ease may be simply referred to as “measurement ease data”.
 計測容易性データについてさらに説明する。例えば、池又は沼等の領域は、作業者がその地点に赴き、世界座標系の座標を計測することが難しい領域である。このように計測が難しい領域に含まれる地点の計測容易性データは、小さな値となる。また、平地又は道路等の領域は、作業者がその地点に赴き、世界座標系の座標を計測することが容易な領域である。このような領域に含まれる地点の計測容易性データは、大きな値となる。このように、以下の説明では、世界座標系の座標を計測しやすい地点ほど、大きな計測容易性データの値を持つとして説明する。 計 測 Further explanation of the measurement ease data. For example, a region such as a pond or a swamp is a region where it is difficult for an operator to go to that point and measure the coordinates of the world coordinate system. Thus, the measurement ease data of the points included in the difficult region is a small value. A region such as a flat land or a road is a region where an operator can easily go to that point and measure the coordinates of the world coordinate system. The measurement ease data of the points included in such a region is a large value. As described above, in the following description, it is assumed that a point where the coordinates of the world coordinate system are easy to measure has a larger value of measurement ease data.
 計測地点抽出部406は、小領域グルーピング部404がグルーピング化した小領域グループと、計測容易性データとに基づいて、小領域グループにおける計測地点候補を抽出する。つまり、計測地点抽出部406は、計測が容易な計測地点候補を抽出する。 The measurement point extraction unit 406 extracts measurement point candidates in the small region group based on the small region group grouped by the small region grouping unit 404 and the measurement ease data. That is, the measurement point extraction unit 406 extracts measurement point candidates that can be easily measured.
 位置方位取得部403、小領域グルーピング部404、計測地点抽出部406、及び、座標変換テーブル作成部409は、例えば、座標変換プログラムに基づいて動作するコンピュータのCPUを用いて実現される。この場合、CPUは、図示しないプログラム記憶装置等のプログラム記録媒体から座標変換プログラムを読み込み、読み込んだ座標変換プログラムに基づいて、上記の各要素として動作すればよい。コンピュータについては、後ほど詳細に説明する。 The position / orientation acquisition unit 403, the small area grouping unit 404, the measurement point extraction unit 406, and the coordinate conversion table creation unit 409 are realized using a CPU of a computer that operates based on a coordinate conversion program, for example. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
 次に、第4の実施形態の動作について説明する。なお、第1ないし第3の実施形態と同様の動作については、適宜、詳細な説明を省略する。 Next, the operation of the fourth embodiment will be described. Note that detailed descriptions of operations similar to those in the first to third embodiments are omitted as appropriate.
 図14は、第4の実施形態に係る座標変換テーブル作成装置4の動作の一例を示すフローチャートである。なお、撮影装置401は、監視対象領域を撮影して撮影画像データを生成し、座標変換テーブル作成部409に送っているものとする。 FIG. 14 is a flowchart showing an example of the operation of the coordinate conversion table creation device 4 according to the fourth embodiment. Note that the imaging apparatus 401 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 409.
 位置方位取得部403は、第3の実施形態の位置方位取得部303と同様に、撮影装置401の世界座標系における位置情報及び方位情報を取得する。また、小領域グルーピング部404は、第3の実施形態の小領域グルーピング部304と同様に、撮影画像データの場所に対応する3次元地形データを3次元地形データベース記憶部402から取得する(ステップS401)。 The position / orientation acquisition unit 403 acquires the position information and the direction information in the world coordinate system of the imaging apparatus 401, as with the position / orientation acquisition unit 303 of the third embodiment. In addition, the small area grouping unit 404 acquires the 3D terrain data corresponding to the location of the captured image data from the 3D terrain database storage unit 402, similarly to the small area grouping unit 304 of the third embodiment (step S401). ).
 小領域グルーピング部404は、第3の実施形態の小領域グルーピング部304と同様に、取得した3次元地形データの小領域を、各小領域の法線方向及び標高情報に基づき、グルーピングする(ステップS402)。 Similar to the small region grouping unit 304 of the third embodiment, the small region grouping unit 404 groups small regions of the acquired three-dimensional terrain data based on the normal direction and elevation information of each small region (step) S402).
 次に、小領域グルーピング部404は、第3の実施形態と同様に、位置方位取得部403が取得した撮影装置401の位置情報及び方位情報に基づいて、撮影装置401から小領域までの距離を求める。小領域グルーピング部404は、撮影装置401から小領域までの距離に応じて、小領域グループを分割する(ステップS403)。 Next, as in the third embodiment, the small region grouping unit 404 calculates the distance from the image capturing device 401 to the small region based on the position information and the direction information of the image capturing device 401 acquired by the position / orientation acquiring unit 403. Ask. The small area grouping unit 404 divides the small area group according to the distance from the photographing apparatus 401 to the small area (step S403).
 計測地点抽出部406は、第3の実施形態の計測地点抽出部305と同様に、小領域グループ毎に、複数の計測地点候補を抽出する(ステップS404)。 The measurement point extraction unit 406 extracts a plurality of measurement point candidates for each small region group, similarly to the measurement point extraction unit 305 of the third embodiment (step S404).
 次に、計測地点抽出部406は、ステップS404で抽出した計測地点候補に対して、計測地点候補の計測容易性データに基づいて、順位を付ける。計測地点抽出部406は、この処理を、小領域グループ毎に行う。つまり、計測地点抽出部406は、各小領域グループにおいて、世界座標系の座標を計測しやすい順に、計測地点候補に順位を付ける。 Next, the measurement point extraction unit 406 ranks the measurement point candidates extracted in step S404 based on the measurement ease data of the measurement point candidates. The measurement point extraction unit 406 performs this process for each small area group. That is, the measurement point extraction unit 406 ranks the measurement point candidates in the order in which the coordinates of the world coordinate system are easily measured in each small region group.
 なお、計測容易性データの値は、世界座標系の座標を計測しやすい地点ほど、大きい。したがって、計測地点抽出部406は、小領域グループ毎に、計測容易性データの降順に、計測地点候補に順位を付ければよい。そして、計測地点抽出部406は、小領域グループ毎に、その順位に基づいて、所定の数までの計測地点候補を抽出する(ステップS405)。 It should be noted that the value of the measurement ease data is larger at a point where the coordinates of the world coordinate system are easier to measure. Therefore, the measurement point extraction unit 406 may rank the measurement point candidates in descending order of the measurement ease data for each small region group. Then, the measurement point extraction unit 406 extracts up to a predetermined number of measurement point candidates for each small region group based on the rank (step S405).
 例えば、計測地点抽出部406が、最上位から所定番目までの計測地点候補を抽出すると設定されているとする。この場合、計測地点抽出部406は、小領域グループ毎に、最上位から所定番目までの計測地点候補を抽出(選択)する。ただし、順位に基づいて計測地点候補を抽出する態様は、上記に限定されない。例えば、計測地点抽出部406は、計測容易性データの値が所定の閾値より大きい計測地点候補を抽出してもよい。 For example, it is assumed that the measurement point extraction unit 406 is set to extract measurement point candidates from the highest level to a predetermined number. In this case, the measurement point extraction unit 406 extracts (selects) the measurement point candidates from the highest level to the predetermined number for each small region group. However, the aspect of extracting the measurement point candidates based on the rank is not limited to the above. For example, the measurement point extraction unit 406 may extract measurement point candidates whose measurement ease data value is greater than a predetermined threshold.
 図15は、第4の実施形態における計測地点候補の抽出例を示す模式図である。図15は、順位が低く抽出(選択)されたかった計測地点候補を三角形のマーカで示し、抽出された計測地点候補をX型のマークを用いて示している。図15の上の図は、撮影画像データにおける計測地点候補に相当する位置を示している。また、図15における下の図は、3次元地形データにおける計測地点候補の位置を示している。ただし、図15の下の図は、動作を理解しやすくするため、図12と同様に、図9に示されている距離を基に再グループ化したグループではなく、図4に示されているグループを用いて、計測地点候補を示した。 FIG. 15 is a schematic diagram showing an example of extraction of measurement point candidates in the fourth embodiment. FIG. 15 shows a measurement point candidate that is desired to be extracted (selected) with a low rank as a triangular marker, and shows the extracted measurement point candidate using an X-type mark. The upper part of FIG. 15 shows positions corresponding to measurement point candidates in the captured image data. Further, the lower diagram in FIG. 15 shows the positions of the measurement point candidates in the three-dimensional terrain data. However, the lower figure of FIG. 15 is not shown in FIG. 4 but a group regrouped based on the distance shown in FIG. Using groups, candidate measurement points were shown.
 なお、上記の説明では、計測地点抽出部406がステップS404で計測地点候補を抽出し、ステップS405でその計測地点候補の中からさらに計測地点候補を抽出する場合を示した。しかし、計測地点抽出部406の動作は、このような動作に限られない。例えば、計測地点抽出部406は、ステップS404を実行せず、小領域グループ毎に、計測容易性データの値が大きい順に、上位から所定番目までの計測地点候補を抽出してもよい。計測地点抽出部406の動作は、後述の各実施形態でも同様である。 In the above description, the measurement point extraction unit 406 has extracted a measurement point candidate in step S404, and a measurement point candidate is further extracted from the measurement point candidates in step S405. However, the operation of the measurement point extraction unit 406 is not limited to such an operation. For example, the measurement point extracting unit 406 may extract the measurement point candidates from the top to the predetermined order in descending order of the value of the measurement ease data for each small region group without executing Step S404. The operation of the measurement point extraction unit 406 is the same in each embodiment described later.
 表示装置407は、第3の実施形態の表示装置306と同様に、ステップS405で抽出(選択)された計測地点候補を表示する。 The display device 407 displays the measurement point candidates extracted (selected) in step S405, similarly to the display device 306 of the third embodiment.
 座標入力装置408は、第3の実施形態の座標入力装置307と同様に動作する。すなわち、座標入力装置408は、表示装置407に表示された計測地点候補における、カメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する(ステップS406)。 The coordinate input device 408 operates in the same manner as the coordinate input device 307 of the third embodiment. That is, the coordinate input device 408 obtains information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 407 (step S406).
 座標変換テーブル作成部409は、第3の実施形態の座標変換テーブル作成部308と同様に、取得した候補情報を用いて、カメラ座標系の座標と世界座標系の座標との座標変換テーブルを作成する(ステップS407)。 The coordinate conversion table creation unit 409 creates a coordinate conversion table between the coordinates of the camera coordinate system and the coordinates of the world coordinate system, using the acquired candidate information, similarly to the coordinate conversion table creation unit 308 of the third embodiment. (Step S407).
 座標変換テーブル作成部409は、作成した座標変換テーブルを記憶装置410に記憶させる。 The coordinate conversion table creation unit 409 causes the storage device 410 to store the created coordinate conversion table.
 [効果の説明]
 第4の実施形態の効果について説明する。第4の実施形態は、第1ないし第3の実施形態の効果に加え、さらに精度を向上するための候補情報の取得を容易にするとの効果を奏する。その理由は、次のとおりである。
[Description of effects]
The effect of the fourth embodiment will be described. In addition to the effects of the first to third embodiments, the fourth embodiment has an effect of facilitating acquisition of candidate information for further improving accuracy. The reason is as follows.
 第4の実施形態の計測地点抽出部406が、計測容易性データベース記憶部405が記憶している計測容易性データを基に、計測が容易な計測地点候補を抽出する。そのため、座標入力装置408が取得する候補情報は、入手が容易な情報となるためである。そのため、第4の実施形態は、作業者の負荷を低減するとの効果も奏する。 The measurement point extraction unit 406 of the fourth embodiment extracts measurement point candidates that can be easily measured based on the measurement ease data stored in the measurement ease database storage unit 405. Therefore, the candidate information acquired by the coordinate input device 408 is information that can be easily obtained. Therefore, 4th Embodiment also has an effect of reducing a worker's load.
 また、一般的に、測定容易な地点の測定は、測定が難しい地点の測定より、高精度の測定が容易である。そのため、座標変換テーブル作成部409は、高精度の候補情報を取得できる。 Also, in general, measurement at a point that is easy to measure is easier to measure with higher accuracy than measurement at a point where measurement is difficult. Therefore, the coordinate conversion table creation unit 409 can acquire highly accurate candidate information.
 以下に示す各実施形態の説明は、第4の実施形態と同様に、計測地点候補に順位付けを行い、その順位に基づいて、計測地点候補を抽出する場合を説明する。ただし、以下に示す各実施形態は、この動作を行わない構成でもよい。 In the following description of each embodiment, as in the case of the fourth embodiment, a case will be described in which measurement point candidates are ranked, and measurement point candidates are extracted based on the ranks. However, each embodiment described below may be configured not to perform this operation.
 <第5の実施形態>
 次に、第5の実施形態に係る座標対応付けシステム400について説明する。第5の実施形態に係る座標対応付けシステム400の構成は、第4の実施形態に係る座標対応付けシステム400と同様である。そのため、以下、図13を用いて第5の実施形態を説明する。
<Fifth Embodiment>
Next, a coordinate association system 400 according to the fifth embodiment will be described. The configuration of the coordinate association system 400 according to the fifth embodiment is the same as that of the coordinate association system 400 according to the fourth embodiment. Therefore, the fifth embodiment will be described below with reference to FIG.
 また、第5の実施形態に係る座標対応付けシステム400において、座標変換テーブル作成部409以外の要素は、第4の実施形態と同様である。そのため、第4の実施形態と同様の構成についての説明を省略する。 Further, in the coordinate association system 400 according to the fifth embodiment, elements other than the coordinate conversion table creation unit 409 are the same as those in the fourth embodiment. Therefore, the description of the same configuration as that of the fourth embodiment is omitted.
 座標変換テーブル作成部409は、少なくとも1つの小領域グループの座標変換テーブルを作成した後、その小領域グループと残りの小領域グループとの位置関係に基づいて、残りの小領域グループにおける座標変換を推定する。そして、座標変換テーブル作成部409は、推定した座標変換を基に、残りの小領域グループの座標変換テーブルを作成する。 The coordinate conversion table creation unit 409 creates a coordinate conversion table for at least one small area group, and then performs coordinate conversion in the remaining small area groups based on the positional relationship between the small area group and the remaining small area groups. presume. Then, the coordinate conversion table creation unit 409 creates a coordinate conversion table for the remaining small region groups based on the estimated coordinate conversion.
 第5の実施形態の動作は、第4の実施形態の動作を示す図14のフローチャートにおけるステップS406及びS407の動作が異なる。 The operation of the fifth embodiment is different from the operations of steps S406 and S407 in the flowchart of FIG. 14 showing the operation of the fourth embodiment.
 そこで、第5の実施形態におけるステップS401ないしS405の動作の説明を省略する。 Therefore, description of the operations in steps S401 to S405 in the fifth embodiment is omitted.
 第5の実施形態に係る表示装置407は、第4の実施形態の表示装置407と同様に、ステップS405で抽出された計測地点候補を表示する。 The display device 407 according to the fifth embodiment displays the measurement point candidates extracted in step S405 in the same manner as the display device 407 according to the fourth embodiment.
 第5の実施形態の座標入力装置408は、少なくとも1つの小領域グループの計測地点候補に関して、カメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する(ステップS406)。 The coordinate input device 408 of the fifth embodiment acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system with respect to the measurement point candidates of at least one small region group (steps). S406).
 座標変換テーブル作成部409は、取得された候補情報に対応する小領域グループ(以下、「小領域グループ」と記す)に関して、カメラ座標系の座標と世界座標系の座標との座標変換を求める。より具体的には、座標変換テーブル作成部409は、小領域グループに関して、カメラ座標系の座標と世界座標系の座標との座標変換における座標変換パラメータを求める。そして、座標変換テーブル作成部409は、その座標変換パラメータを用いて、小領域グループに相当する領域の地表が表示されている全ピクセルについて、座標変換テーブルを作成する。 The coordinate conversion table creation unit 409 obtains coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system with respect to the small area group (hereinafter referred to as “small area group A ”) corresponding to the acquired candidate information. . More specifically, for the small area group A , the coordinate conversion table creation unit 409 obtains a coordinate conversion parameter for coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Then, the coordinate conversion table generation unit 409, by using the coordinate transformation parameters for all the pixels surface of the region corresponding to the small region group A is displayed, to create the coordinate conversion table.
 次に、座標変換テーブル作成部409は、小領域グループとの相対的な位置関係に基づいて、他の小領域グループ(以下、「小領域グループ」と記す)における座標変換(座標変換パラメータ)を推定する。 Next, the coordinate conversion table creation unit 409 performs coordinate conversion (coordinate conversion parameters) in another small region group (hereinafter referred to as “small region group B ”) based on the relative positional relationship with the small region group A. ).
 例えば、座標変換テーブル作成部409は、3次元地形データを基に、小領域グループ間の相対的な位置関係を表す回転行列及び並進ベクトルを算出する。座標変換テーブル作成部409は、予め、回転行列と並進ベクトルとを算出しておいてもよい。 For example, the coordinate conversion table creation unit 409 calculates a rotation matrix and a translation vector representing a relative positional relationship between the small area groups based on the three-dimensional terrain data. The coordinate conversion table creation unit 409 may calculate a rotation matrix and a translation vector in advance.
 そして、座標変換テーブル作成部409は、小領域グループと小領域グループとの位置関係を基に、小領域グループにおける座標変換パラメータから、小領域グループにおける座標変換パラメータを算出する。具体的には、座標変換テーブル作成部409は、小領域グループの位置関係を表す回転行列及び並進ベクトルを用いて、小領域グループにおける座標変換パラメータから、小領域グループにおける座標変換パラメータを算出する。 Then, the coordinate conversion table creation unit 409 calculates the coordinate conversion parameter in the small region group B from the coordinate conversion parameter in the small region group A based on the positional relationship between the small region group B and the small region group A. Specifically, the coordinate conversion table creation unit 409 calculates the coordinate conversion parameter in the small region group B from the coordinate conversion parameter in the small region group A using the rotation matrix and the translation vector representing the positional relationship of the small region group. To do.
 そして、座標変換テーブル作成部409は、算出した座標変換パラメータを用いて、小領域グループに相当する領域における地表が表示されている全ピクセルについて座標変換テーブルを作成する。このように、座標変換テーブル作成部409は、小領域グループの位置関係と、候補情報を取得した小領域グループの座標変換パラメータとを基に、小領域グループの座標変換テーブルを作成する(ステップS407)。 Then, the coordinate conversion table creation unit 409 creates a coordinate conversion table for all the pixels on which the ground surface in the region corresponding to the small region group B is displayed, using the calculated coordinate conversion parameter. As described above, the coordinate conversion table creation unit 409 creates a coordinate conversion table for the small area group B based on the positional relationship between the small area groups and the coordinate conversion parameters for the small area group A for which candidate information has been acquired ( Step S407).
 座標変換テーブル作成部409は、作成した座標変換テーブルを記憶装置410に記憶させる。 The coordinate conversion table creation unit 409 causes the storage device 410 to store the created coordinate conversion table.
 [効果の説明]
 第5の実施形態の効果について説明する。第5の実施形態は、第4の実施形態の効果に加え、候補情報の取得を容易にするとの効果を奏する。その理由は、次のとおりである。
[Description of effects]
The effect of the fifth embodiment will be described. In addition to the effects of the fourth embodiment, the fifth embodiment has the effect of facilitating acquisition of candidate information. The reason is as follows.
 第5の実施形態の座標変換テーブル作成部409が、少なくとも一部の小領域グループの候補情報を基に、その他の小領域グループの座標変換パラメータを推定し、推定したパラメータを基に座標変換テーブルを作成する。このように、座標変換テーブル作成装置4は、一部の計測地点候補における候補情報を取得すればよいためである。そのため、そのため、第5の実施形態は、作業者の負荷を低減するとの効果も奏する。 The coordinate conversion table creation unit 409 of the fifth embodiment estimates the coordinate conversion parameters of other small region groups based on at least some of the small region group candidate information, and the coordinate conversion table based on the estimated parameters. Create This is because the coordinate conversion table creation device 4 only needs to acquire candidate information for some of the measurement point candidates. Therefore, the fifth embodiment also has an effect of reducing the load on the worker.
 以下に示す各実施形態は、第5の実施形態と同様に、小領域グループの対応関係として、1つ又は一部の小領域グループに関する対応関係を用いてもよい。 In each of the embodiments described below, as in the fifth embodiment, a correspondence relationship regarding one or a part of small region groups may be used as the correspondence relationship of the small region groups.
 <第6の実施形態>
 図16は、第6の実施形態に係る座標対応付けシステム500の構成の一例を示すブロック図である。第6の実施形態の座標対応付けシステム500は、撮影装置501と、3次元地形データベース記憶部502と、座標変換テーブル作成装置5と、表示装置508と、座標入力装置509と、記憶装置511とを含む。さらに、第6の実施形態の座標対応付けシステム500は、計測容易性データベース記憶部505を含む。座標変換テーブル作成装置5は、位置方位取得部503と、小領域グルーピング部504と、計測地点抽出部506と、経路算出部507と、座標変換テーブル作成部510とを含む。
<Sixth Embodiment>
FIG. 16 is a block diagram illustrating an example of a configuration of a coordinate association system 500 according to the sixth embodiment. A coordinate association system 500 according to the sixth embodiment includes an imaging device 501, a three-dimensional landform database storage unit 502, a coordinate conversion table creation device 5, a display device 508, a coordinate input device 509, and a storage device 511. including. Furthermore, the coordinate association system 500 of the sixth embodiment includes a measurement ease database storage unit 505. The coordinate conversion table creation device 5 includes a position / orientation acquisition unit 503, a small area grouping unit 504, a measurement point extraction unit 506, a route calculation unit 507, and a coordinate conversion table creation unit 510.
 撮影装置501、3次元地形データベース記憶部502、及び、記憶装置511は、第4の実施形態における撮影装置401、3次元地形データベース記憶部402、及び、記憶装置410と同様である。計測容易性データベース記憶部505、表示装置508、及び、座標入力装置509は、第4の実施形態における計測容易性データベース記憶部405、表示装置407、及び、座標入力装置408と同様である。ただし、本実施形態において、表示装置508は、後述のように最短経路を表示する。位置方位取得部503、小領域グルーピング部504、及び、座標変換テーブル作成部510は、第4の実施形態における位置方位取得部403、小領域グルーピング部404、及び、座標変換テーブル作成部409と同様である。計測地点抽出部506は、第4の実施形態における計測地点抽出部406と同様である。 The photographing device 501, the three-dimensional terrain database storage unit 502, and the storage device 511 are the same as the photographing device 401, the three-dimensional terrain database storage unit 402, and the storage device 410 in the fourth embodiment. The measurement ease database storage unit 505, the display device 508, and the coordinate input device 509 are the same as the measurement ease database storage unit 405, the display device 407, and the coordinate input device 408 in the fourth embodiment. However, in the present embodiment, the display device 508 displays the shortest path as described later. The position / orientation acquisition unit 503, the small region grouping unit 504, and the coordinate conversion table creation unit 510 are the same as the position / orientation acquisition unit 403, the small region grouping unit 404, and the coordinate conversion table creation unit 409 in the fourth embodiment. It is. The measurement point extraction unit 506 is the same as the measurement point extraction unit 406 in the fourth embodiment.
 経路算出部507は、計測地点抽出部506が抽出した全ての計測地点候補を通過する最短経路を算出する。そして、経路算出部507は、算出した最短経路と計測地点候補とを、表示装置508に出力する(送信する)。表示装置508は、計測地点候補、及び、最短経路を表示する。 The route calculation unit 507 calculates the shortest route that passes through all the measurement point candidates extracted by the measurement point extraction unit 506. Then, the route calculation unit 507 outputs (transmits) the calculated shortest route and measurement point candidate to the display device 508. The display device 508 displays the measurement point candidates and the shortest route.
 位置方位取得部503、小領域グルーピング部504、計測地点抽出部506、経路算出部507、及び、座標変換テーブル作成部510は、例えば、次のように、実現される。これら要素は、例えば、座標変換プログラムに基づいて動作するコンピュータのCPUを用いて実現される。この場合、CPUは、図示しないプログラム記憶装置等のプログラム記録媒体から座標変換プログラムを読み込み、読み込んだ座標変換プログラムに基づいて、上記の各要素として動作すればよい。コンピュータについては、後ほど詳細に説明する。 The position / orientation acquisition unit 503, the small area grouping unit 504, the measurement point extraction unit 506, the route calculation unit 507, and the coordinate conversion table creation unit 510 are realized as follows, for example. These elements are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
 次に、第6の実施形態の動作について説明する。なお、第1ないし第5の実施形態と同様の動作については、適宜、詳細な説明を省略する。 Next, the operation of the sixth embodiment will be described. Note that detailed description of operations similar to those in the first to fifth embodiments is omitted as appropriate.
 図17は、第6の実施形態に係る座標変換テーブル作成装置5の動作の一例を示すフローチャートである。なお、撮影装置501は、監視対象領域を撮影して撮影画像データを生成し、座標変換テーブル作成部510に送っているものとする。 FIG. 17 is a flowchart showing an example of the operation of the coordinate conversion table creation device 5 according to the sixth embodiment. Note that the image capturing apparatus 501 captures the monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 510.
 図17に示されているステップS501~S505の動作は、それぞれ、図14に示されている第4の実施形態におけるステップS401~S405の動作と同様である。そのため、その詳細な説明を省略する。 The operations of steps S501 to S505 shown in FIG. 17 are the same as the operations of steps S401 to S405 in the fourth embodiment shown in FIG. Therefore, the detailed description is abbreviate | omitted.
 ステップS505において、計測地点抽出部506が抽出した計測地点候補を取得後、経路算出部507は、計測地点候補間の距離に基づき、全ての計測地点候補を通過する最短経路を算出する(ステップS506)。計測地点抽出部506における最短経路の算出方法は、特に制限されない。経路算出部507は、例えば、次のように最短経路を算出してもよい。 In step S505, after acquiring the measurement point candidates extracted by the measurement point extraction unit 506, the route calculation unit 507 calculates the shortest route that passes through all the measurement point candidates based on the distance between the measurement point candidates (step S506). ). The method for calculating the shortest route in the measurement point extraction unit 506 is not particularly limited. For example, the route calculation unit 507 may calculate the shortest route as follows.
 経路算出部507は、計測地点候補をノードとし、ノード(計測地点候補)間をエッジで結んだグラフを作成する。このとき、経路算出部507は、エッジに、計測地点候補の距離の情報を対応づける。経路算出部507は、このグラフに対して、ダイキストラ法を用いて、全ノード(全計測地点候補)を通過する最短経路を決定する。なお、経路算出部507は、最短経路の算出において、エッジに対応付けられた距離情報だけでなく、ノード(計測地点候補)間の3次元地形データを考慮してもよい。例えば、経路算出部507は、ノード(計測地点候補)間の3次元地形データを基に、ノード(計測地点候補)間における走行容易性(例えば、座標を計測する車両の走行の容易性を数値化した値)をパラメータ化する。そして、経路算出部507は、そのパラメータを用いて、エッジに対して重み付けを実行してもよい。ただし、経路算出部507は、ダイキストラ法以外の経路決定方法を用いてもよい。 The route calculation unit 507 creates a graph in which measurement point candidates are nodes and nodes (measurement point candidates) are connected by edges. At this time, the route calculation unit 507 associates the distance information of the measurement point candidate with the edge. The route calculation unit 507 determines the shortest route that passes through all nodes (all measurement point candidates) for this graph using the Dijkstra method. Note that the route calculation unit 507 may consider not only distance information associated with an edge but also three-dimensional terrain data between nodes (measurement point candidates) in calculating the shortest route. For example, the route calculation unit 507 numerically represents the ease of travel between the nodes (measurement point candidates) (for example, the ease of travel of the vehicle whose coordinates are measured) based on the three-dimensional landform data between the nodes (measurement point candidates). Parameterized). Then, the route calculation unit 507 may perform weighting on the edge using the parameter. However, the route calculation unit 507 may use a route determination method other than the Dijkstra method.
 表示装置508は、ステップS505で抽出された計測地点候補、及び、ステップS506で算出された最短経路を表示する。 The display device 508 displays the measurement point candidates extracted in step S505 and the shortest route calculated in step S506.
 図18は、第6の実施形態において、計測地点候補及び算出された最短経路の一例を示す図である。 FIG. 18 is a diagram illustrating an example of a measurement point candidate and a calculated shortest route in the sixth embodiment.
 計測地点候補の座標を測定する場合、作業者は、表示された最短経路に沿って、世界座標系の座標を計測する手段を有する移動体を移動させ、その移動体を用いて、計測地点候補に相当する世界座標系の座標を計測する。例えば、座標入力装置509に候補情報を入力する作業者は、表示された最短経路に沿って、第3の実施形態において説明した計測候補点における世界座標系の座標の計測とマーカの配置とを実行する。 When measuring the coordinates of a measurement point candidate, the operator moves a moving object having means for measuring the coordinates of the world coordinate system along the displayed shortest path, and uses the moving object to measure the measurement point candidate. Measure the coordinates of the world coordinate system corresponding to. For example, an operator who inputs candidate information to the coordinate input device 509 performs the measurement of the coordinates of the world coordinate system and the arrangement of the markers at the measurement candidate points described in the third embodiment along the displayed shortest path. Execute.
 そして、座標入力装置408は、第4の実施形態の座標入力装置408と同様に、動作する。すなわち、座標入力装置408は、表示装置508に表示された計測地点候補における、カメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する(ステップS508)。 The coordinate input device 408 operates in the same manner as the coordinate input device 408 of the fourth embodiment. That is, the coordinate input device 408 acquires information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 508 (step S508).
 座標変換テーブル作成部510は、第4の実施形態の座標変換テーブル作成部409と同様に、取得した候補情報を用いて、カメラ座標系の座標と世界座標系の座標との座標変換テーブルを作成する(ステップS509)。 The coordinate conversion table creation unit 510 creates a coordinate conversion table between the coordinates of the camera coordinate system and the coordinates of the world coordinate system, using the acquired candidate information, similarly to the coordinate conversion table creation unit 409 of the fourth embodiment. (Step S509).
 座標変換テーブル作成部510は、作成した座標変換テーブルを記憶装置511に記憶させる。 The coordinate conversion table creation unit 510 stores the created coordinate conversion table in the storage device 511.
 [効果の説明]
 第6の実施形態の効果について説明する。第6の実施形態は、第1ないし第4の実施形態の効果に加え、さらに候補情報を取得するための負荷を低減するとの効果を奏する。その理由は、次のとおりである。
[Description of effects]
The effect of the sixth embodiment will be described. In addition to the effects of the first to fourth embodiments, the sixth embodiment has the effect of further reducing the load for acquiring candidate information. The reason is as follows.
 本実施形態の経路算出部507は、表示装置508に、計測地点候補とその最短経路とを出力する。そのため、表示装置508は、計測地点候補に加え、計測地点候補を通過する最短経路も表示できる。したがって、候補情報を計測する作業者は、表示された最短経路に沿って計測に用いる移動体(例えば、計測車両)を移動させ、計測に必要な時間を削減して、座標を計測することができる。 The route calculation unit 507 of the present embodiment outputs the measurement point candidate and the shortest route to the display device 508. Therefore, the display device 508 can display the shortest path passing through the measurement point candidate in addition to the measurement point candidate. Therefore, an operator who measures candidate information can move a moving body (for example, a measurement vehicle) used for measurement along the displayed shortest route, reduce the time required for measurement, and measure coordinates. it can.
 なお、後述の各実施形態は、第6の実施形態と同様に、最短経路の算出を用いてもよい。 Note that each embodiment described later may use the shortest path calculation as in the sixth embodiment.
 <第7の実施形態>
 図19は、第7の実施形態に係る座標対応付けシステム600の構成の一例を示すブロック図である。第7の実施形態の座標対応付けシステム600は、3次元地形データベース記憶部602と、座標変換テーブル作成装置6と、計測容易性データベース記憶部605と、記憶装置611とを含む。さらに、第7の実施形態の座標対応付けシステム600は、表示装置608と、座標入力装置609とを含む。そして、第7の実施形態の座標対応付けシステム600は、複数の撮影装置601を含む。座標変換テーブル作成装置6は、位置方位取得部603と、小領域グルーピング部604と、計測地点抽出部606と、計測地点グルーピング部607と、座標変換テーブル作成部610とを含む。
<Seventh Embodiment>
FIG. 19 is a block diagram illustrating an example of a configuration of a coordinate association system 600 according to the seventh embodiment. A coordinate association system 600 according to the seventh embodiment includes a three-dimensional landform database storage unit 602, a coordinate conversion table creation device 6, a measurement ease database storage unit 605, and a storage device 611. Furthermore, the coordinate association system 600 of the seventh embodiment includes a display device 608 and a coordinate input device 609. A coordinate association system 600 according to the seventh embodiment includes a plurality of imaging devices 601. The coordinate conversion table creation device 6 includes a position / orientation acquisition unit 603, a small region grouping unit 604, a measurement point extraction unit 606, a measurement point grouping unit 607, and a coordinate conversion table creation unit 610.
 3次元地形データベース記憶部602、計測容易性データベース記憶部605、及び、記憶装置611は、第4の実施形態における3次元地形データベース記憶部402、計測容易性データベース記憶部405、及び、記憶装置410と同様である。表示装置608、及び、座標入力装置609は、第4の実施形態における表示装置407、及び、座標入力装置408と同様である。ただし、表示装置608は、撮影装置601毎に計測地点候補を表示する。小領域グルーピング部604、及び、計測地点抽出部606は、第4の実施形態における小領域グルーピング部404、及び、計測地点抽出部406と同様である。 The three-dimensional landform database storage unit 602, the measurement ease database storage unit 605, and the storage device 611 are the three-dimensional landform database storage unit 402, the measurement ease database storage unit 405, and the storage device 410 in the fourth embodiment. It is the same. The display device 608 and the coordinate input device 609 are the same as the display device 407 and the coordinate input device 408 in the fourth embodiment. However, the display device 608 displays the measurement point candidates for each photographing device 601. The small region grouping unit 604 and the measurement point extraction unit 606 are the same as the small region grouping unit 404 and the measurement point extraction unit 406 in the fourth embodiment.
 個々の撮影装置601は、それぞれ、第4の実施形態における撮影装置401と同様である。 The individual photographing devices 601 are the same as the photographing device 401 in the fourth embodiment.
 位置方位取得部603は、撮影装置601毎に、撮影装置601の世界座標系における位置情報及び方位情報を取得する。その他の点に関しては、第4の実施形態における位置方位取得部403と同様である。 The position / orientation acquisition unit 603 acquires position information and direction information in the world coordinate system of the image capturing device 601 for each image capturing device 601. The other points are the same as the position / orientation acquisition unit 403 in the fourth embodiment.
 座標変換テーブル作成部610は、撮影装置601毎に、撮影画像データを受信し、座標変換テーブルを作成する。その他の点に関しては、座標変換テーブル作成部610は、第4の実施形態における座標変換テーブル作成部409と同様である。 The coordinate conversion table creation unit 610 receives photographed image data for each photographing apparatus 601 and creates a coordinate conversion table. Regarding the other points, the coordinate conversion table creation unit 610 is the same as the coordinate conversion table creation unit 409 in the fourth embodiment.
 計測地点グルーピング部607は、カメラ座標系の座標と世界座標系の座標との座標変換の信頼度を基に、計測地点抽出部606が抽出した計測地点候補の中から、各撮影装置601に対応するグループを作成する。信頼度とは、カメラ座標系の座標と世界座標系の座標との適合の程度(例えば、誤差の大小)を示す値である。計測地点グルーピング部607は、信頼度として用いる値を制限されない。ただし、本実施形態の説明では、一例として、上記の信頼度として、各撮影装置601と計測地点候補との距離を用いる場合について説明する。 The measurement point grouping unit 607 corresponds to each photographing apparatus 601 from the measurement point candidates extracted by the measurement point extraction unit 606 based on the reliability of coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Create a group to be used. The reliability is a value indicating the degree of matching (for example, the magnitude of error) between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. The measurement point grouping unit 607 is not limited to a value used as the reliability. However, in the description of the present embodiment, as an example, a case will be described in which the distance between each imaging device 601 and a measurement point candidate is used as the reliability.
 計測地点候補が撮影装置601から遠方にあるほど、撮影装置601(カメラ)の1ピクセル当たりのずれに想定される世界座標系の座標の誤差(カメラ奥行き方向の誤差)が、大きくなる。そのため、計測地点候補が撮影装置601から遠方にあるほど、カメラ座標系の座標と世界座標系の座標との座標関係における誤差が大きくなりやすい。つまり、座標変換テーブル作成部610は、各撮影装置601に近い計測地点候補における候補情報を用いて動作した方が、精度を向上できる。したがって、計測地点グルーピング部607は、上記の信頼度として、撮影装置601と計測地点候補との距離を用いることができる。 As the measurement point candidate is farther from the image capturing device 601, the error in the coordinate system of the world coordinate system (error in the camera depth direction) that is assumed to be a deviation per pixel of the image capturing device 601 (camera) increases. Therefore, the farther the measurement point candidate is from the imaging device 601, the greater the error in the coordinate relationship between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. In other words, the coordinate conversion table creation unit 610 can improve accuracy when operated using candidate information in measurement point candidates close to each imaging device 601. Therefore, the measurement point grouping unit 607 can use the distance between the imaging device 601 and the measurement point candidate as the reliability.
 そこで、本実施形態に係る計測地点グルーピング部607は、計測地点候補と撮影装置601との距離を基に、計測地点候補を、各撮影装置601に対応したグループに分ける。具体的には、計測地点グルーピング部607は、各撮影装置601に対するグループとして、撮影装置601からの距離が所定に閾値未満である計測地点候補のグループを作成する。つまり、計測地点グルーピング部607は、計測地点候補における世界座標系の座標と画像データにおけるカメラ座標の座標との信頼度を基に、撮影装置601毎の計測地点候補のグループを作成する。 Therefore, the measurement point grouping unit 607 according to the present embodiment divides the measurement point candidates into groups corresponding to the respective image capturing apparatuses 601 based on the distance between the measurement point candidates and the image capturing apparatus 601. Specifically, the measurement point grouping unit 607 creates a group of measurement point candidates whose distance from the imaging device 601 is less than a predetermined threshold as a group for each imaging device 601. That is, the measurement point grouping unit 607 creates a group of measurement point candidates for each photographing apparatus 601 based on the reliability of the coordinates of the world coordinate system in the measurement point candidates and the coordinates of the camera coordinates in the image data.
 位置方位取得部603、小領域グルーピング部604、計測地点抽出部606、計測地点グルーピング部607、及び、座標変換テーブル作成部610は、次のように実現される。これらの要素は、例えば、座標変換プログラムに基づいて動作するコンピュータのCPUを用いて実現される。この場合、CPUは、図示しないプログラム記憶装置等のプログラム記録媒体から座標変換プログラムを読み込み、読み込んだ座標変換プログラムに基づいて、上記の各要素として動作すればよい。コンピュータについては、後ほど詳細に説明する。 The position / orientation acquisition unit 603, the small area grouping unit 604, the measurement point extraction unit 606, the measurement point grouping unit 607, and the coordinate conversion table creation unit 610 are realized as follows. These elements are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
 次に、第7の実施形態の動作について説明する。なお、第1ないし第6の実施形態と同様の動作については、適宜、詳細な説明を省略する。 Next, the operation of the seventh embodiment will be described. Note that detailed description of operations similar to those in the first to sixth embodiments is omitted as appropriate.
 図20は、第7の実施形態に係る座標変換テーブル作成装置6の動作の一例を示すフローチャートである。なお、各撮影装置601は、監視対象領域を撮影して撮影画像データを生成し、座標変換テーブル作成部610に送っているものとする。 FIG. 20 is a flowchart showing an example of the operation of the coordinate conversion table creation device 6 according to the seventh embodiment. Note that each imaging device 601 captures a monitoring target area, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 610.
 図20に示されているステップS601~S605の動作は、それぞれ、図14に示されている第4の実施形態におけるステップS401~S405の動作と同様であり、詳細な説明を省略する。 The operations in steps S601 to S605 shown in FIG. 20 are the same as the operations in steps S401 to S405 in the fourth embodiment shown in FIG. 14, respectively, and detailed description thereof will be omitted.
 ただし、本実施形態では、撮影装置601が、複数存在する。 However, in the present embodiment, there are a plurality of imaging devices 601.
 したがって、ステップS603において、小領域グルーピング部604は、撮影装置601毎に、図14のステップS403と同様の動作を実行する。すなわち、小領域グルーピング部604は、撮影装置601毎に、撮影装置601から小領域までの距離を求める。そして、小領域グルーピング部604は、撮影装置601毎に、撮影装置601から小領域までの距離を基に、ステップS602においてグルーピングされた小領域グループを、さらにグループに分割する。 Therefore, in step S603, the small area grouping unit 604 performs the same operation as that in step S403 in FIG. That is, the small area grouping unit 604 obtains the distance from the image capturing apparatus 601 to the small area for each image capturing apparatus 601. Then, the small region grouping unit 604 further divides the small region group grouped in step S602 into groups based on the distance from the photographing device 601 to the small region for each photographing device 601.
 また、ステップS604において、計測地点抽出部606は、撮影装置601毎に、図14のステップS404と同様の動作を実行する。すなわち、計測地点抽出部606は、撮影装置601毎に、小領域グループにおける計測地点候補を抽出する処理を行う。さらに、ステップS605において、計測地点抽出部606は、図14のステップS405と同様の動作を実行する。すなわち、計測地点抽出部606は、撮影装置601毎に、計測地点候補を抽出する。 In step S604, the measurement point extraction unit 606 performs the same operation as that in step S404 in FIG. 14 for each photographing apparatus 601. That is, the measurement point extraction unit 606 performs a process of extracting measurement point candidates in the small area group for each photographing apparatus 601. Furthermore, in step S605, the measurement point extraction unit 606 executes the same operation as in step S405 of FIG. That is, the measurement point extraction unit 606 extracts measurement point candidates for each photographing apparatus 601.
 次に、計測地点グルーピング部607は、撮影装置601毎に、各撮影装置601に対する距離を基に、計測地点候補をグループに分ける(ステップS606)。具体的には、計測地点グルーピング部607は、撮影装置601毎に、撮影装置601からの距離が閾値未満である計測地点候補のグループを作成する。つまり、ステップS606において、計測地点グルーピング部607は、撮影装置601毎の計測地点候補を決定している。 Next, the measurement point grouping unit 607 divides the measurement point candidates into groups based on the distance to each image capturing device 601 for each image capturing device 601 (step S606). Specifically, the measurement point grouping unit 607 creates a group of measurement point candidates whose distance from the imaging device 601 is less than a threshold for each imaging device 601. That is, in step S606, the measurement point grouping unit 607 determines a measurement point candidate for each photographing apparatus 601.
 図21は、第7の実施形態におけるステップS606の動作を説明するための模式図である。ただし、図21は、動作を理解しやすくするため、図12などと同様に、図9に示されている距離を基に再グループ化したグループではなく、図4に示されているグループを用いて、計測地点候補を示した。 FIG. 21 is a schematic diagram for explaining the operation in step S606 in the seventh embodiment. However, FIG. 21 uses the group shown in FIG. 4 instead of the group regrouped based on the distance shown in FIG. 9 in order to make the operation easy to understand. The measurement point candidate was shown.
 図21は、2台の撮影装置601が存在する場合を例示している。以下の説明において、2台の撮影装置601は、アルファベットの符号を付して、撮影装置601、及び、撮影装置601として、区別するものとする。 FIG. 21 illustrates a case where there are two imaging devices 601. In the following description, the two photographing devices 601 are denoted by alphabetical signs and are distinguished as the photographing device 601 a and the photographing device 601 b .
 図21において四角形のマーカを用いて示されている計測地点候補は、撮影装置601及び撮影装置601からの距離が閾値未満である計測地点候補である。三角形のマーカを用いて示されている計測地点候補は、撮影装置601からの距離が閾値未満であり、撮影装置601からの距離が閾値以上である計測地点候補である。X型のマーカを用いて示されている計測地点候補は、撮影装置601からの距離が閾値以上であり、撮影装置601からの距離が閾値未満である計測地点候補である。 Measurement point candidate shown with a square marker in FIG. 21 is a measurement point candidate distance from the photographing apparatus 601 a and the imaging device 601 b is less than the threshold. Measurement point candidates are shown using markers triangle, the distance from the imaging device 601 a is less than the threshold value, a measurement point candidate distance from the photographing device 601 b is greater than or equal to the threshold. X-type marker measurement point candidates are shown with the distance from the imaging device 601 a and a is equal to or larger than the threshold, a measurement point candidate distance is less than the threshold value from the imaging device 601 b.
 計測地点グルーピング部607は、撮影装置601からの距離を基に、撮影装置601に関するグループとして、四角形及び三角形のマーカを用いて示されている計測地点候補を選択する。つまり、計測地点グルーピング部607は、撮影装置601に関するグループとして、X型のマーカで示された計測地点候補を除外する。 Measurement point grouping unit 607, based on the distance from the imaging device 601 a, as a group on imaging device 601 a, selects the measurement point candidates are shown using markers square and triangle. That is, the measurement point grouping unit 607, a group for capturing apparatus 601 a, excludes measurement point candidate indicated by X-type marker.
 同様に、計測地点グルーピング部607は、撮影装置601からの距離を基に、撮影装置601に関するグループとして、三角形及びX型のマーカを用いて示されている計測地点候補を選択する。つまり、計測地点グルーピング部607は、撮影装置601に関するグループとして、三角形のマーカで示された計測地点候補を除外する。 Similarly, measurement point grouping unit 607, based on the distance from the imaging device 601 b, as a group on imaging device 601 b, selects the measurement point candidates are shown with triangles, and X-type marker. That is, the measurement point grouping unit 607, as a group on imaging device 601 b, excludes measurement point candidate indicated by the marker triangle.
 計測地点グルーピング部607は、計測地点候補と、撮影装置601毎のグループに関する情報とを、表示装置608に送信する。表示装置608は、撮影装置601毎に、対応するグループに含まれる計測地点候補を表示する。 The measurement point grouping unit 607 transmits to the display device 608 the measurement point candidates and information regarding the group for each photographing device 601. The display device 608 displays measurement point candidates included in the corresponding group for each photographing device 601.
 座標入力装置609は、撮影装置601毎に、第4の実施形態の座標入力装置408と同様に動作する。すなわち、座標入力装置609は、撮影装置601毎に、表示装置608に表示された計測地点候補における、カメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を、取得する(ステップS608)。 The coordinate input device 609 operates in the same manner as the coordinate input device 408 of the fourth embodiment for each imaging device 601. That is, the coordinate input device 609 obtains information (candidate information) related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system in the measurement point candidates displayed on the display device 608 for each photographing device 601. (Step S608).
 座標変換テーブル作成部610は、撮影装置601毎に、第4の実施形態の座標変換テーブル作成部409と同様に、取得した候補情報を用いて、カメラ座標系の座標と世界座標系の座標との座標変換テーブルを作成する(ステップS609)。 As with the coordinate conversion table creation unit 409 of the fourth embodiment, the coordinate conversion table creation unit 610 uses the acquired candidate information to determine the coordinates of the camera coordinate system and the coordinates of the world coordinate system for each imaging device 601. Coordinate conversion table is created (step S609).
 座標変換テーブル作成部610は、撮影装置601毎に作成した座標変換テーブルを、記憶装置611に記憶させる。 The coordinate conversion table creation unit 610 stores the coordinate conversion table created for each photographing device 601 in the storage device 611.
 [効果の説明]
 第7の実施形態の効果について説明する。第7の実施形態は、第1ないし第6の実施形態の効果に加え、さらに精度を向上するとの効果を奏する。その理由は、次のとおりである。
[Description of effects]
The effect of the seventh embodiment will be described. In addition to the effects of the first to sixth embodiments, the seventh embodiment has the effect of further improving accuracy. The reason is as follows.
 計測地点グルーピング部607は、各撮影装置601からの距離を基に、各撮影装置601に対する計測地点候補のグループを作成する。つまり、計測地点グルーピング部607は、カメラ座標系の座標と世界座標系の座標との座標変換の信頼度が低くなる計測地点候補を含まないグループを作成する。そして、計測地点グルーピング部607は、計測地点候補と作成したグループを表示装置608に送信する。 The measurement point grouping unit 607 creates a group of measurement point candidates for each photographing apparatus 601 based on the distance from each photographing apparatus 601. In other words, the measurement point grouping unit 607 creates a group that does not include measurement point candidates for which the reliability of coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system is low. Then, the measurement point grouping unit 607 transmits the measurement point candidates and the created group to the display device 608.
 表示装置608は、その計測地点候補とグループを表示する。つまり、表示装置608は、撮影装置601毎に、信頼度が高い計測地点候補を表示する。 Display device 608 displays the measurement point candidates and groups. That is, the display device 608 displays a measurement point candidate with high reliability for each photographing device 601.
 座標入力装置609は、信頼度が高い計測地点候補に対する座標変換に関する情報(候補情報)を取得する。そして、座標変換テーブル作成部610は、そのように取得された候補情報を基に座標変換テーブルを作成するため、座標変換テーブルの精度を向上できる。 The coordinate input device 609 acquires information (candidate information) related to coordinate conversion for a measurement point candidate with high reliability. Since the coordinate conversion table creation unit 610 creates the coordinate conversion table based on the candidate information acquired as described above, the accuracy of the coordinate conversion table can be improved.
 次に示す第8の実施形態は、第7の実施形態における計測地点候補のグルーピングを用いてもよい。 In the following eighth embodiment, grouping of measurement point candidates in the seventh embodiment may be used.
 <第8の実施形態>
 第8の実施形態の座標対応付けシステム700は、第7の実施形態の同様に、複数の撮影装置701を含む。そして、第8の実施形態の座標対応付けシステム700は、少なくとも1つの撮影装置701の撮影画像データに関して座標変換テーブルを作成する。そして、第8の実施形態の座標対応付けシステム700は、その座標変換テーブルと、撮影装置701における相対的な位置関係とに基づいて、他の撮影装置701の撮影画像データに関する座標変換テーブルを作成する。
<Eighth Embodiment>
A coordinate association system 700 according to the eighth embodiment includes a plurality of imaging devices 701 as in the seventh embodiment. Then, the coordinate association system 700 of the eighth embodiment creates a coordinate conversion table for the captured image data of at least one imaging device 701. Then, the coordinate association system 700 of the eighth embodiment creates a coordinate conversion table related to the captured image data of the other imaging device 701 based on the coordinate conversion table and the relative positional relationship in the imaging device 701. To do.
 図22は、第8の実施形態に係る座標対応付けシステム700構成の一例を示すブロック図である。第8の実施形態の座標対応付けシステム700は、3次元地形データベース記憶部702と、座標変換テーブル作成装置7と、計測容易性データベース記憶部705と、記憶装置711とを含む。さらに、座標対応付けシステム700は、表示装置707と、座標入力装置708とを含む。そして、座標対応付けシステム700は、複数の撮影装置701を含む。座標変換テーブル作成装置7は、位置方位取得部703と、小領域グルーピング部704と、計測地点抽出部706と、撮影装置相対位置算出部709と、座標変換テーブル作成部710とを含む。 FIG. 22 is a block diagram illustrating an example of a configuration of the coordinate association system 700 according to the eighth embodiment. A coordinate association system 700 according to the eighth embodiment includes a three-dimensional landform database storage unit 702, a coordinate conversion table creation device 7, a measurement ease database storage unit 705, and a storage device 711. Furthermore, the coordinate association system 700 includes a display device 707 and a coordinate input device 708. The coordinate association system 700 includes a plurality of imaging devices 701. The coordinate conversion table creation device 7 includes a position / orientation acquisition unit 703, a small area grouping unit 704, a measurement point extraction unit 706, an imaging device relative position calculation unit 709, and a coordinate conversion table creation unit 710.
 撮影装置701は、第7の実施形態における撮影装置601と同様である。3次元地形データベース記憶部702、計測容易性データベース記憶部705、及び、記憶装置711は、第7の実施形態における3次元地形データベース記憶部602、計測容易性データベース記憶部605、及び、記憶装置611と同様である。表示装置707、及び、座標入力装置708は、第7の実施形態における表示装置608、及び、座標入力装置609と同様である。ただし、表示装置707は、撮影装置701毎に計測地点候補を表示する際に、撮影装置701毎のグループを用いない。位置方位取得部703、小領域グルーピング部704、及び、計測地点抽出部706は、第7の実施形態における位置方位取得部603、小領域グルーピング部604、及び、計測地点抽出部606と同様である。 The imaging device 701 is the same as the imaging device 601 in the seventh embodiment. The three-dimensional landform database storage unit 702, the measurement ease database storage unit 705, and the storage device 711 are the same as the three-dimensional landform database storage unit 602, the measurement ease database storage unit 605, and the storage device 611 in the seventh embodiment. It is the same. The display device 707 and the coordinate input device 708 are the same as the display device 608 and the coordinate input device 609 in the seventh embodiment. However, the display device 707 does not use a group for each photographing device 701 when displaying the measurement point candidate for each photographing device 701. The position / orientation acquisition unit 703, the small region grouping unit 704, and the measurement point extraction unit 706 are the same as the position / orientation acquisition unit 603, the small region grouping unit 604, and the measurement point extraction unit 606 in the seventh embodiment. .
 撮影装置相対位置算出部709は、座標入力装置708から、計測地点候補におけるカメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を取得する。撮影装置相対位置算出部709は、その情報に基づいて、撮影装置701の相対的な位置関係を算出する。つまり、撮影装置相対位置算出部709は、計測地点候補の候補情報を基に、撮影装置701の相対位置に関する情報を算出する。 The imaging device relative position calculation unit 709 acquires information (candidate information) on coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate from the coordinate input device 708. The imaging device relative position calculation unit 709 calculates the relative positional relationship of the imaging device 701 based on the information. That is, the imaging device relative position calculation unit 709 calculates information related to the relative position of the imaging device 701 based on the candidate information of the measurement point candidates.
 座標変換テーブル作成部710は、少なくとも1つの撮影装置701について、候補情報を用いて、座標変換テーブルを作成する。そして、座標変換テーブル作成部710は、その座標変換テーブルと、撮影装置701間の相対的な位置関係とに基づいて、他の撮影装置701に関する座標変換テーブルを作成する。つまり、座標変換テーブル作成部710は、少なく1つの撮影装置701の座標変換に関する情報(候補情報)を基に座標変換テーブルを作成し、作成した座標変換テーブルと相対位置に関する情報とを基に、他の撮影装置701の座標変換テーブルを作成する。 The coordinate conversion table creation unit 710 creates a coordinate conversion table for at least one imaging device 701 using candidate information. Then, the coordinate conversion table creation unit 710 creates a coordinate conversion table related to the other imaging device 701 based on the coordinate conversion table and the relative positional relationship between the imaging devices 701. That is, the coordinate conversion table creation unit 710 creates a coordinate conversion table based on information (candidate information) related to coordinate conversion of at least one photographing apparatus 701, and based on the created coordinate conversion table and information related to the relative position, A coordinate conversion table for another imaging apparatus 701 is created.
 位置方位取得部703、小領域グルーピング部704、計測地点抽出部706、撮影装置相対位置算出部709、及び、座標変換テーブル作成部710は、次のように実現される。これらの要素は、例えば、座標変換プログラムに基づいて動作するコンピュータのCPUを用いて実現される。この場合、CPUは、図示しないプログラム記憶装置等のプログラム記録媒体から座標変換プログラムを読み込み、読み込んだ座標変換プログラムに基づいて、上記の各要素として動作すればよい。コンピュータについては、後ほど詳細に説明する。 The position / orientation acquisition unit 703, the small area grouping unit 704, the measurement point extraction unit 706, the imaging device relative position calculation unit 709, and the coordinate conversion table creation unit 710 are realized as follows. These elements are realized using, for example, a CPU of a computer that operates based on a coordinate conversion program. In this case, the CPU may read a coordinate conversion program from a program recording medium such as a program storage device (not shown) and operate as each of the above elements based on the read coordinate conversion program. The computer will be described in detail later.
 次に、第8の実施形態の動作について説明する。なお、第1ないし第7の実施形態と同様の動作については、適宜、詳細な説明を省略する。 Next, the operation of the eighth embodiment will be described. Note that detailed description of operations similar to those of the first to seventh embodiments is omitted as appropriate.
 図23は、第8の実施形態に係る座標変換テーブル作成装置7の動作の一例を示すフローチャートである。なお、各撮影装置701は、監視対象領域を撮影して撮影画像データを生成し、座標変換テーブル作成部710に送っているものとする。 FIG. 23 is a flowchart showing an example of the operation of the coordinate conversion table creation device 7 according to the eighth embodiment. In addition, each imaging device 701 captures a monitoring target region, generates captured image data, and sends the captured image data to the coordinate conversion table creation unit 710.
 図23に示されているステップS701~S705の動作は、それぞれ、図20に示されている第7の実施形態におけるステップS601~S605の動作と同様であり、説明を省略する。ステップS705において、撮影装置701毎に計測地点候補が抽出されると、表示装置707は、第6の実施形態の同様に、撮影装置701毎に、計測地点候補を表示する。つまり、上記のように、表示装置707は、撮影装置701毎のグループを用いない。 23. The operations in steps S701 to S705 shown in FIG. 23 are the same as the operations in steps S601 to S605 in the seventh embodiment shown in FIG. In step S705, when a measurement point candidate is extracted for each photographing device 701, the display device 707 displays the measurement point candidate for each photographing device 701 as in the sixth embodiment. That is, as described above, the display device 707 does not use a group for each photographing device 701.
 座標入力装置708は、撮影装置701毎に、第6の実施形態の座標入力装置609と同様に動作する。すなわち、座標入力装置708は、撮影装置701毎に、表示装置707に表示された計測地点候補におけるカメラ座標系の座標と世界座標系の座標との座標変換に関する情報(候補情報)を、取得する(ステップS707)。 The coordinate input device 708 operates in the same manner as the coordinate input device 609 of the sixth embodiment for each imaging device 701. That is, the coordinate input device 708 acquires, for each photographing device 701, information (candidate information) regarding coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system at the measurement point candidate displayed on the display device 707. (Step S707).
 撮影装置相対位置算出部709は、撮影装置701毎に、撮影装置701毎の計測地点候補の候補情報に基づいて、撮影装置701の相対的な位置関係を算出する(ステップS708)。具体的には、撮影装置相対位置算出部709は、撮影装置701の相対的な位置関係を表す回転行列及び並進ベクトルを算出する。 The imaging device relative position calculation unit 709 calculates the relative positional relationship of the imaging device 701 for each imaging device 701 based on the candidate information of the measurement point candidates for each imaging device 701 (step S708). Specifically, the imaging device relative position calculation unit 709 calculates a rotation matrix and a translation vector that represent the relative positional relationship of the imaging device 701.
 図24は、図23のステップS708の動作を説明するための模式図である。ただし、図24は、動作を理解しやすくするため、図12などと同様に、図9に示されている距離を基に再グループ化したグループではなく、図4に示されているグループを用いて、計測地点候補を示した。 FIG. 24 is a schematic diagram for explaining the operation in step S708 in FIG. However, FIG. 24 uses the group shown in FIG. 4 instead of the group regrouped based on the distance shown in FIG. 9 in order to make the operation easy to understand. The measurement point candidate was shown.
 図24は、2台の撮影装置701が存在する場合を例示している。以下の説明において、2台の撮影装置701は、アルファベットの符号を付して、撮影装置701、及び、撮影装置701として、区別するものとする。 FIG. 24 illustrates a case where there are two imaging devices 701. In the following description, the two photographing devices 701 are denoted by alphabetical signs and are distinguished as photographing devices 701 a and 701 b .
 撮影装置相対位置算出部709は、撮影装置701に対応する計測地点候補における候補情報を取得する。同様に、撮影装置相対位置算出部709は、撮影装置701に対応する計測地点候補における候補情報を取得する。撮影装置相対位置算出部709は、撮影装置701の候補情報と撮影装置701の候補情報とを基に、撮影装置701、及び、撮影装置701の相対的な位置関係を表す回転行列及び並進ベクトルを算出する。 Imaging device relative position calculating unit 709 obtains a candidate information at measurement point candidate corresponding to the imaging apparatus 701 a. Similarly, imaging device relative position calculating unit 709 obtains a candidate information at measurement point candidate corresponding to the photographing apparatus 701 b. The imaging device relative position calculation unit 709 is a rotation matrix that represents the relative positional relationship between the imaging devices 701 a and 701 b based on the candidate information of the imaging device 701 a and the candidate information of the imaging device 701 b. And a translation vector is calculated.
 図24は、2台の撮影装置701を示している。しかし、これは、例示である。撮影装置701は、3台以上含まれていてもよい。撮影装置701が3台以上含まれる場合、撮影装置相対位置算出部709は、例えば、基準とする撮影装置701(以下の説明では「撮影装置701」とする)を決定する。そして、撮影装置相対位置算出部709は、撮影装置701とその他の撮影装置701(以下の説明では「撮影装置701」とする)との相対的な位置関係を算出すればよい。この場合、後述のステップS709において、座標変換テーブル作成部710は、最初に、撮影装置701の座標変換テーブルを作成する。 FIG. 24 shows two imaging devices 701. However, this is exemplary. Three or more imaging devices 701 may be included. When three or more imaging devices 701 are included, the imaging device relative position calculation unit 709 determines, for example, a reference imaging device 701 (hereinafter referred to as “imaging device 701 a ”). The photographing device relative position calculation unit 709 may calculate a relative positional relationship between the photographing device 701 a and the other photographing device 701 (hereinafter referred to as “photographing device 701 b ”). In this case, in step S709 described later, the coordinate transformation table creating unit 710 first creates a coordinate conversion table of the imaging apparatus 701 a.
 なお、撮影装置相対位置算出部709は、基準として用いる撮影装置701として、複数の撮影装置701を用いてもよい。あるいは、撮影装置相対位置算出部709は、縦列的に、撮影装置701の位置関係を算出してもよい。 Note that the imaging device relative position calculation unit 709 may use a plurality of imaging devices 701 as the imaging device 701 used as a reference. Alternatively, the imaging device relative position calculation unit 709 may calculate the positional relationship of the imaging device 701 in a column.
 座標変換テーブル作成部710は、少なくとも1つの撮影装置701に関して、座標変換に関する情報(候補情報)に基づいて、座標変換テーブルを作成する。以下、説明を簡単にするため、座標変換テーブル作成部710が、最初に1つの撮影装置701(撮影装置701)に関して座標変換テーブルを求めるものとする。 The coordinate conversion table creation unit 710 creates a coordinate conversion table for at least one imaging device 701 based on information (candidate information) related to coordinate conversion. Hereinafter, to simplify the description, it is assumed that the coordinate conversion table creation unit 710 first obtains a coordinate conversion table for one imaging device 701 (imaging device 701 a ).
 座標変換テーブル作成部710は、撮影装置701に関して、既に説明した方法を用いて、座標変換テーブルを作成する。すなわち、座標変換テーブル作成部710は、撮影装置701に関連する小領域グループ毎に、カメラ座標系の座標と世界座標系の座標との座標変換(より具体的には座標変換パラメータ)を求める。そして、座標変換テーブル作成部710は、小領域グループ毎に、その座標変換パラメータを用いて、撮影画像データ中の地表が表示されている全ピクセルについてカメラ座標系の座標と世界座標系の座標との座標変換を求める。そして、座標変換テーブル作成部710は、その座標変換を基に座標変換テーブルを作成する。 Coordinate conversion table generating unit 710, with respect to imaging device 701 a, using the methods already described, to create a coordinate conversion table. That is, the coordinate transformation table creating unit 710, for each small region groups associated with imaging device 701 a, (more specifically coordinate transformation parameters) coordinate transformation between the camera coordinate system of coordinates and the world coordinate system of the coordinates determining the . Then, the coordinate conversion table creation unit 710 uses the coordinate conversion parameters for each small region group to determine the coordinates of the camera coordinate system and the coordinates of the world coordinate system for all pixels on which the ground surface in the captured image data is displayed. Find the coordinate transformation of. Then, the coordinate conversion table creation unit 710 creates a coordinate conversion table based on the coordinate conversion.
 次に、座標変換テーブル作成部710は、作成した座標変換テーブルと、撮影装置701と他の撮影装置701との相対的な位置関係を表す情報とを基に、他の撮影装置701に関する座標変換テーブルを作成する(ステップS709)。すなわち、座標変換テーブル作成部710は、撮影装置701と撮影装置701との相対的な位置関係を表す情報(回転行列及び並進ベクトル)とに基づいて、撮影装置701について作成した座標変換テーブルを変換する。この変換された座標変換テーブルが、撮影装置701に関する座標変換テーブルとなる。座標変換テーブル作成部710は、同様に、全ての撮影装置701に対して、座標変換テーブルを作成する。 Next, the coordinate conversion table generation unit 710, based on the coordinate conversion table created, and information indicating a relative positional relationship between the imaging device 701 a and another imaging device 701 b, other imaging devices 701 b A coordinate conversion table is created (step S709). That is, the coordinate transformation table generation unit 710, based on the information representing the relative positional relationship between the imaging apparatus 701 a and the imaging apparatus 701 b (the rotation matrix and translation vector), the coordinate transformation was developed for capturing apparatus 701 a Convert the table. The converted coordinate transformation table, the coordinate transformation table for imaging apparatus 701 b. Coordinate conversion table generation unit 710 similarly to all of the imaging device 701 b, to create a coordinate conversion table.
 座標変換テーブル作成部710は、作成した座標変換テーブルを記憶装置711に記憶させる。 The coordinate conversion table creation unit 710 stores the created coordinate conversion table in the storage device 711.
 [効果の説明]
 第8の実施形態の効果について説明する。第8の実施形態は、第1ないし第7の実施形態の効果に加え、座標変換テーブルを作成する負荷を低減するとの効果を奏する。その理由は、次のとおりである。
[Description of effects]
The effect of the eighth embodiment will be described. In addition to the effects of the first to seventh embodiments, the eighth embodiment has the effect of reducing the load for creating the coordinate conversion table. The reason is as follows.
 撮影装置相対位置算出部709が、撮影装置701の相対位置に関する情報(回転行列と並進ベクトル)を算出する。そして、座標変換テーブル作成部710は、1つ又は複数の撮影装置701の座標変換テーブルと相対位置に関する情報とを基に、その他の1つ又は複数の撮影装置701の座標変換テーブルを作成する。相対位置に関する情報を基に座標変換テーブルを作成する処理は、行列の掛け算と、並進ベクトルの加算となる。この処理は、座標入力装置708から取得する座標変換に関する情報(候補情報)を用いて座標変換テーブルを作成する処理より負荷が少ない。そのため、座標変換テーブル作成装置7は、座標変換テーブルを作成する処理の負荷を低減することができる。 The imaging device relative position calculation unit 709 calculates information (rotation matrix and translation vector) regarding the relative position of the imaging device 701. Then, the coordinate conversion table creation unit 710 creates a coordinate conversion table for one or more other image capturing apparatuses 701 based on the coordinate conversion table for one or more image capturing apparatuses 701 and information related to the relative position. The process of creating the coordinate conversion table based on the information on the relative position is matrix multiplication and translation vector addition. This process is less burdensome than the process of creating a coordinate conversion table using information (candidate information) related to coordinate conversion acquired from the coordinate input device 708. Therefore, the coordinate conversion table creation device 7 can reduce the processing load for creating the coordinate conversion table.
 <各実施形態のハードウェア構成>
 図25は、本発明における各実施形態に係る座標変換テーブル作成装置のハードウェア構成の一例を示すブロック図である。図25に示されている座標変換テーブル作成装置は、コンピュータ1000を用いて構成されている。コンピュータ1000は、CPU1001と、主記憶装置1002と、補助記憶装置1003と、インタフェース1004と、ディスプレイ装置1005と、入力デバイス1006とを含む。
<Hardware configuration of each embodiment>
FIG. 25 is a block diagram illustrating an example of a hardware configuration of the coordinate conversion table creation device according to each embodiment of the present invention. The coordinate conversion table creating apparatus shown in FIG. 25 is configured using a computer 1000. The computer 1000 includes a CPU 1001, a main storage device 1002, an auxiliary storage device 1003, an interface 1004, a display device 1005, and an input device 1006.
 CPU1001は、各実施形態の座標変換テーブル作成装置の動作を実現するためのプログラム(座標変換プログラム)を基に、各実施形態の機能を実現する。CPU1001は、補助記憶装置1003から座標変換プログラムを読み出し、主記憶装置1002に展開し、そのプログラムに基づいて上記の動作を実行する。あるいは、CPU1001は、このプログラムが図示しない通信回線を介してこのプログラムを取得し、補助記憶装置1003に保存する、又は、主記憶装置1002に展開し、上記の動作を実行してもよい。この通信回線を介して取得されるプログラムは、上記のCPU1001の処理の一部を実現するためのプログラムでもよい。さらに、この通信回線を介して取得されるプログラムは、補助記憶装置1003に記憶されているプログラムとの組み合わされて用いられるプログラム(差分プログラム)でもよい。 The CPU 1001 realizes the functions of each embodiment based on a program (coordinate conversion program) for realizing the operation of the coordinate conversion table creation device of each embodiment. The CPU 1001 reads a coordinate conversion program from the auxiliary storage device 1003, develops it in the main storage device 1002, and executes the above-described operation based on the program. Alternatively, the CPU 1001 may acquire the program via a communication line (not shown) and store the program in the auxiliary storage device 1003 or expand the program in the main storage device 1002 to execute the above operation. The program acquired via this communication line may be a program for realizing a part of the processing of the CPU 1001 described above. Furthermore, the program acquired via this communication line may be a program (difference program) used in combination with a program stored in the auxiliary storage device 1003.
 主記憶装置1002は、CPU1001が実行するプログラム及びデータを一時的に記憶する。主記憶装置1002は、例えば、D-RAM(Dynamic-RAM)である。 The main storage device 1002 temporarily stores programs executed by the CPU 1001 and data. The main storage device 1002 is, for example, a D-RAM (Dynamic-RAM).
 補助記憶装置1003は、各実施形態のプログラム(座標変換プログラム)及び固定的なデータを記憶する。補助記憶装置1003は、コンピュータで読み取り可能な、不揮発性の有形の媒体である。補助記憶装置1003は、インタフェース1004を介して接続される記憶装置でもよい。補助記憶装置1003は、記憶装置、3次元地形データベース記憶部、及び/又は、計測容易性データベース記憶部として動作してもよい。補助記憶装置1003は、例えば、磁気ディスク、光磁気ディスク、CD(Compact Disc)-ROM(Read Only Memory)、DVD(Digital Versatile Disc)-ROM、又は、半導体メモリである。 The auxiliary storage device 1003 stores the program (coordinate conversion program) and fixed data of each embodiment. The auxiliary storage device 1003 is a non-volatile tangible medium that can be read by a computer. The auxiliary storage device 1003 may be a storage device connected via the interface 1004. The auxiliary storage device 1003 may operate as a storage device, a three-dimensional terrain database storage unit, and / or a measurement ease database storage unit. The auxiliary storage device 1003 is, for example, a magnetic disk, a magneto-optical disk, a CD (Compact Disc) -ROM (Read Only Memory), a DVD (Digital Versatile Disc) -ROM, or a semiconductor memory.
 インタフェース1004は、CPU1001と外部の装置との情報の送信及び受信を中継する。インタフェース1004は、例えば、USB(Universal Serial Bus)カード又はLAN(Local Area Network)カードである。 The interface 1004 relays transmission and reception of information between the CPU 1001 and an external device. The interface 1004 is, for example, a USB (Universal Serial Bus) card or a LAN (Local Area Network) card.
 ディスプレイ装置1005は、コンピュータ1000の作業者に情報を表示する装置である。ディスプレイ装置1005は、例えば、液晶ディスプレイである。 The display device 1005 is a device that displays information to the operator of the computer 1000. The display device 1005 is, for example, a liquid crystal display.
 入力デバイス1006は、コンピュータ1000の作業者からの入力操作を受け取る機器である。入力デバイス1006は、例えば、キーボード、マウス又はタッチパネルである。 The input device 1006 is a device that receives an input operation from an operator of the computer 1000. The input device 1006 is, for example, a keyboard, a mouse, or a touch panel.
 なお、各実施形態の座標対応付けシステムが、図25に示されているコンピュータ1000を用いて実現されてもよい。その際、ディスプレイ装置1005は、表示装置として動作してもよい。また、入力デバイス1006は、座標入力装置として動作してもよい。 In addition, the coordinate matching system of each embodiment may be realized using the computer 1000 shown in FIG. At that time, the display device 1005 may operate as a display device. The input device 1006 may operate as a coordinate input device.
 以上の説明した各実施形態に係る座標変換テーブル作成装置は、次のように構成される。例えば、座標変換テーブル作成装置の各構成部は、ハードウェア回路で構成されてもよい。また、座標変換テーブル作成装置において、各構成部は、図示しないネットワークを介して接続した複数の装置を用いて、構成されてもよい。また、座標変換テーブル作成装置において、複数の構成部は、1つのハードウェアで構成されてもよい。 The coordinate conversion table creation device according to each embodiment described above is configured as follows. For example, each component of the coordinate conversion table creation device may be configured with a hardware circuit. Further, in the coordinate conversion table creation device, each component may be configured using a plurality of devices connected via a network (not shown). In the coordinate conversion table creation device, the plurality of components may be configured with a single piece of hardware.
 <発明の概要>
 次に、本発明における各実施形態の概要について説明する。
<Outline of the invention>
Next, the outline of each embodiment in the present invention will be described.
 図26は、本発明における実施形態に係る座標変換テーブル作成装置1ないし7の概要に相当する情報処理装置10の構成の一例を示すブロック図である。つまり、情報処理装置10は、座標変換テーブル作成装置の最小構成に相当する装置である。 FIG. 26 is a block diagram showing an example of the configuration of the information processing apparatus 10 corresponding to the outline of the coordinate conversion table creation apparatuses 1 to 7 according to the embodiment of the present invention. That is, the information processing apparatus 10 is an apparatus corresponding to the minimum configuration of the coordinate conversion table creation apparatus.
 情報処理装置10は、小領域グルーピング部に相当する小領域グルーピング手段71と、座標変換テーブル作成部に相当する座標変換テーブル作成手段72とを含む。 The information processing apparatus 10 includes a small area grouping unit 71 corresponding to a small area grouping unit and a coordinate conversion table creating unit 72 corresponding to a coordinate conversion table creating unit.
 小領域グルーピング手段71は、撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における3次元の情報を持つ点を基に形成される小領域を、小領域の法線方向及び標高に基づいて、小領域のグループである小領域グループに分ける。 The small area grouping means 71 converts a small area formed based on a point having three-dimensional information on the terrain corresponding to the area included in the photographed image data photographed by the photographing device into a normal direction and an altitude of the small area. Based on this, it is divided into small area groups, which are small area groups.
 座標変換テーブル作成手段72は、小領域のグループと座標変換に関する情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標と、3次元地形データの座標である世界座標系の座標との座標変換を示す座標変換テーブルを作成する。 The coordinate conversion table creating means 72 uses the group of small regions and the information related to coordinate conversion, the coordinates of the camera coordinate system, which are the coordinates in the captured image data, and the coordinates of the world coordinate system, which are the coordinates of the 3D terrain data. A coordinate conversion table showing the coordinate conversion of is created.
 なお、上記のカメラ座標系の座標と世界座標系の座標との座標変換は、カメラ座標系の座標と世界座標系の座標との対応関係に相当する。つまり、繰り返しとなるが、座標変換テーブルは、対応関係テーブルと呼ばれてもよい。 Note that the above coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system corresponds to the correspondence between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. That is, it is repeated, but the coordinate conversion table may be referred to as a correspondence table.
 上記のような構成に基づいて、情報処理装置10は、第1の実施形態の同様に、対象となる領域に係わらず、カメラ座標系の座標と世界座標系の座標とを座標変換を実現するとの効果を奏する。より具体的には、情報処理装置10は、ランドマークが存在しない領域、起伏のある複雑な地形の領域、又は、測量車が走行不能な領域においても、カメラ座標系の座標と世界座標系の座標とを座標変換できる。 Based on the configuration as described above, the information processing apparatus 10 realizes coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system regardless of the target region, as in the first embodiment. The effect of. More specifically, the information processing apparatus 10 can determine the coordinates of the camera coordinate system and the world coordinate system even in an area where no landmark exists, an area of undulating complex terrain, or an area where a survey vehicle cannot travel. Coordinates can be converted between coordinates.
 図27は、本発明における実施形態に係る座標対応付けシステム100ないし700の概要に相当する情報処理システム800の構成の一例を示すブロック図である。情報処理システム800は、座標対応付けシステム100ないし700の最小構成に相当するシステムである。 FIG. 27 is a block diagram showing an example of the configuration of the information processing system 800 corresponding to the outline of the coordinate association systems 100 to 700 according to the embodiment of the present invention. The information processing system 800 is a system corresponding to the minimum configuration of the coordinate association systems 100 to 700.
 情報処理システム800は、表示装置に相当する表示手段81と、座標入力装置に相当する入力手段82と、情報処理装置10(座標変換テーブル作成装置)に相当する対応付け手段83とを含む。 The information processing system 800 includes a display unit 81 corresponding to a display device, an input unit 82 corresponding to a coordinate input device, and an association unit 83 corresponding to the information processing device 10 (coordinate conversion table creation device).
 すなわち、対応付け手段83は、情報処理装置10に相当する。 That is, the association unit 83 corresponds to the information processing apparatus 10.
 表示手段81は、対応付け手段83から受信した3次元の情報及び/又は計測地点候補を表示する。 The display unit 81 displays the three-dimensional information received from the association unit 83 and / or the measurement point candidate.
 入力手段82は、3次元地形データ及び/又は計測地点候補における候補情報を取得する。 The input means 82 acquires candidate information on 3D terrain data and / or measurement point candidates.
 このような構成に基づいて、情報処理システム800は、第1の実施形態と同様な効果を奏する。 Based on such a configuration, the information processing system 800 has the same effects as those of the first embodiment.
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。 The present invention has been described above with reference to the embodiments, but the present invention is not limited to the above embodiments. Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
 この出願は、2015年 3月27日に出願された日本出願特願2015-065610を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese Patent Application No. 2015-0665610 filed on Mar. 27, 2015, the entire disclosure of which is incorporated herein.
 上記の実施形態は、以下の付記のようにも記載され得るが、以下に限定されるわけではない。 The above embodiment can be described as the following supplementary notes, but is not limited to the following.
(付記1)
 撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、小領域の法線方向及び標高に基づいて小領域のグループである小領域グループに分ける小領域グルーピング手段と、
 小領域グループと座標変換に関する情報である候補情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標と撮影画像データに対応した小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する座標変換テーブル作成手段と
 を含む情報処理装置。
(Appendix 1)
A small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area. A small area grouping means for dividing the small area group into groups,
Coordinates between the coordinates of the camera coordinate system, which are the coordinates in the captured image data, and the coordinates of the world coordinate system, which is the coordinates of the small area corresponding to the captured image data, using the small area group and candidate information that is information relating to coordinate transformation An information processing apparatus comprising: a coordinate conversion table creating means for creating a coordinate conversion table that is conversion information.
(付記2)
 撮影装置から小領域までの距離及び撮影装置の方位を取得する位置方位取得手段をさらに含み、
 小領域グルーピング手段が、
 距離及び方位に基づいて、小領域グループをさらに分割する
 付記1に記載の情報処理装置。
(Appendix 2)
It further includes position and orientation acquisition means for acquiring the distance from the imaging device to the small area and the orientation of the imaging device,
Small area grouping means
The information processing apparatus according to claim 1, further dividing the small area group based on the distance and the direction.
(付記3)
 小領域グループの重心を算出し、カメラ座標系の座標と世界座標系の座標との座標変換に関する情報である候補情報を取得する計測地点候補として、小領域グループに含まれる点の中から、重心から所定の距離以上と離れて、小領域グループに含まれる各点と重心とを結ぶ全ての線分の間の角度が所定の角度以上になる所定の数の小領域グループに含まれる点を抽出する計測地点抽出手段をさらに含み、
 座標変換テーブル作成手段が、
 計測地点候補における候補情報を取得し、候補情報に基づいて、座標変換テーブルを作成する
 付記1又は付記2に記載の情報処理装置。
(Appendix 3)
Calculate the center of gravity of the small area group and obtain candidate information that is information related to coordinate conversion between the coordinates of the camera coordinate system and the coordinates of the world coordinate system. Extract a point included in a predetermined number of small region groups that are separated by a predetermined distance or more and the angle between all line segments connecting each point included in the small region group and the center of gravity is equal to or greater than the predetermined angle. Further including a measuring point extracting means for
The coordinate conversion table creation means
The information processing apparatus according to Supplementary Note 1 or Supplementary Note 2, wherein candidate information for a measurement point candidate is acquired and a coordinate conversion table is created based on the candidate information.
(付記4)
 世界座標系の座標における座標の計測の容易性を数値化したデータである計測容易性データを記憶する計測容易性データ記憶手段をさらに含み、
 計測地点抽出手段が、
 計測容易性データに基づいて、計測地点候補を抽出する、
 付記3に記載の情報処理装置。
(Appendix 4)
And further comprising a measurement ease data storage means for storing measurement ease data, which is data obtained by quantifying the ease of measurement of coordinates in the coordinates of the world coordinate system,
Measuring point extraction means
Extract measurement point candidates based on the measurement ease data.
The information processing apparatus according to attachment 3.
(付記5)
 座標変換テーブル作成手段が、
 座標変換テーブルを作成した小領域グループにおける座標変換テーブルを作成するための座標変換に用いるパラメータを基に、座標変換テーブルを作成していない小領域グループにおいて座標変換テーブルを作成するための座標変換に関するパラメータを推定し、推定したパラメータを基に座標変換テーブルを作成していない小領域グループの座標変換テーブルを作成する
 付記3又は付記4に記載の情報処理装置。
(Appendix 5)
The coordinate conversion table creation means
Coordinate conversion for creating a coordinate conversion table in a small area group for which a coordinate conversion table has not been created, based on parameters used for coordinate conversion for creating a coordinate conversion table in a small area group for which a coordinate conversion table has been created The information processing apparatus according to appendix 3 or appendix 4, wherein the parameter is estimated and a coordinate conversion table of a small area group for which no coordinate conversion table has been generated is generated based on the estimated parameter.
(付記6)
 全ての計測地点候補を通過する最短経路を算出する経路算出手段を
 さらに含む付記3ないし付記5のいずれか1項に記載の情報処理装置。
(Appendix 6)
The information processing apparatus according to any one of appendix 3 to appendix 5, further including route calculation means for calculating a shortest route that passes through all the measurement point candidates.
(付記7)
 撮影装置を複数含み、
 計測地点候補における世界座標系の座標とカメラ座標系の座標との信頼度を基に、撮影装置毎に、計測地点候補のグループを作成する計測地点グルーピング手段をさらに含み、
 座標変換テーブル作成手段が、
 撮影装置毎に候補情報を取得し、座標変換テーブルを作成する
 付記3ないし付記6のいずれか1項に記載の情報処理装置。
(Appendix 7)
Including multiple photographic devices,
Based on the reliability of the coordinates of the world coordinate system and the coordinates of the camera coordinate system in the measurement point candidates, further includes a measurement point grouping means for creating a group of measurement point candidates for each photographing device,
The coordinate conversion table creation means
The information processing apparatus according to any one of supplementary notes 3 to 6, wherein candidate information is acquired for each photographing apparatus and a coordinate conversion table is created.
(付記8)
 撮影装置を複数含み、
 計測地点候補の候補情報を基に、撮影装置の相対位置に関する情報を算出する撮影装置相対位置算出手段をさらに含み、
 座標変換テーブル作成手段が、
 少なくとも1つの撮影装置の候補情報を基に座標変換テーブルを作成し、作成した座標変換テーブルと撮影装置と相対位置に関する情報とを基に、座標変換テーブルを作成していない撮影装置の座標変換テーブルを作成する
 付記3から付記6のいずれか1項に記載の情報処理装置。
(Appendix 8)
Including multiple photographic devices,
Based on the candidate information of the measurement point candidate, further includes an imaging device relative position calculation means for calculating information on the relative position of the imaging device,
The coordinate conversion table creation means
A coordinate conversion table is created based on the candidate information of at least one imaging device, and the coordinate conversion table of the imaging device for which no coordinate conversion table is created based on the created coordinate conversion table and information relating to the imaging device and relative position The information processing apparatus according to any one of appendix 3 to appendix 6.
(付記9)
 付記1ないし8のいずれか1項に記載の情報処理装置と、
 情報処理装置から受信した3次元の情報及び/又は計測地点候補を表示する表示手段と、
 3次元の情報及び/又は計測地点候補における候補情報を取得する入力手段とを含む
 情報処理システム。
(Appendix 9)
The information processing apparatus according to any one of appendices 1 to 8,
Display means for displaying three-dimensional information received from the information processing apparatus and / or measurement point candidates;
An information processing system including input means for acquiring candidate information on three-dimensional information and / or measurement point candidates.
(付記10)
 撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、小領域の法線方向及び標高に基づいて小領域のグループである小領域グループに分け、
 小領域グループと座標変換に関する情報である候補情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標と撮影画像データに対応した小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する
 情報処理方法。
(Appendix 10)
A small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area. Divide into small area groups that are groups,
Coordinates between the coordinates of the camera coordinate system, which are the coordinates in the captured image data, and the coordinates of the world coordinate system, which is the coordinates of the small area corresponding to the captured image data, using the small area group and candidate information that is information relating to coordinate transformation An information processing method for creating a coordinate conversion table, which is conversion information.
(付記11)
 撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、小領域の法線方向及び標高に基づいて小領域のグループである小領域グループに分ける処理と、
 小領域グループと座標変換に関する情報である候補情報とを用いて、撮影画像データにおける座標であるカメラ座標系の座標と撮影画像データに対応した小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する処理と
 をコンピュータに実行させるプログラムをコンピュータ読み取り可能に記録した記録媒体。
(Appendix 11)
A small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area. Processing to divide into small area groups that are groups,
Coordinates between the coordinates of the camera coordinate system, which are the coordinates in the captured image data, and the coordinates of the world coordinate system, which is the coordinates of the small area corresponding to the captured image data, using the small area group and candidate information that is information relating to coordinate transformation A recording medium on which a computer-readable program for causing a computer to execute a process of creating a coordinate conversion table as conversion information is recorded.
 本発明は、カメラで撮影された画像におけるカメラ座標系の座標と3次元地形データにおける世界座標系の座標との対応付けに好適である。 The present invention is suitable for associating the coordinates of the camera coordinate system in the image photographed by the camera with the coordinates of the world coordinate system in the three-dimensional terrain data.
 1  座標変換テーブル作成装置
 2  座標変換テーブル作成装置
 3  座標変換テーブル作成装置
 4  座標変換テーブル作成装置
 5  座標変換テーブル作成装置
 6  座標変換テーブル作成装置
 7  座標変換テーブル作成装置
 10  情報処理装置
 71  小領域グルーピング手段
 72  座標変換テーブル作成手段
 81  表示手段
 82  入力手段
 83  対応付け手段
 100  座標対応付けシステム
 101  撮影装置
 102  3次元地形データベース記憶部
 103  小領域グルーピング部
 104  表示装置
 105  座標入力装置
 106  座標変換テーブル作成部
 107  記憶装置
 200  座標対応付けシステム
 201  撮影装置
 202  3次元地形データベース記憶部
 203  位置方位取得部
 204  小領域グルーピング部
 205  表示装置
 206  座標入力装置
 207  座標変換テーブル作成部
 208  記憶装置
 300  座標対応付けシステム
 301  撮影装置
 302  3次元地形データベース記憶部
 303  位置方位取得部
 304  小領域グルーピング部
 305  計測地点抽出部
 306  表示装置
 307  座標入力装置
 308  座標変換テーブル作成部
 309  記憶装置
 400  座標対応付けシステム
 401  撮影装置
 402  3次元地形データベース記憶部
 403  位置方位取得部
 404  小領域グルーピング部
 405  計測容易性データベース記憶部
 406  計測地点抽出部
 407  表示装置
 408  座標入力装置
 409  座標変換テーブル作成部
 410  記憶装置
 500  座標対応付けシステム
 501  撮影装置
 502  3次元地形データベース記憶部
 503  位置方位取得部
 504  小領域グルーピング部
 505  計測容易性データベース記憶部
 506  計測地点抽出部
 507  経路算出部
 508  表示装置
 509  座標入力装置
 510  座標変換テーブル作成部
 511  記憶装置
 600  座標対応付けシステム
 601  撮影装置
 602  3次元地形データベース記憶部
 603  位置方位取得部
 604  小領域グルーピング部
 605  計測容易性データベース記憶部
 606  計測地点抽出部
 607  計測地点グルーピング部
 608  表示装置
 609  座標入力装置
 610  座標変換テーブル作成部
 611  記憶装置
 700  座標対応付けシステム
 701  撮影装置
 702  3次元地形データベース記憶部
 703  位置方位取得部
 704  小領域グルーピング部
 705  計測容易性データベース記憶部
 706  計測地点抽出部
 707  表示装置
 708  座標入力装置
 709  撮影装置相対位置算出部
 710  座標変換テーブル作成部
 711  記憶装置
 800  情報処理システム
 1000  コンピュータ
 1001  CPU
 1002  主記憶装置
 1003  補助記憶装置
 1004  インタフェース
 1005  ディスプレイ装置
 1006  入力デバイス
 2001  物体位置計測装置
 2002  物体検出装置
 2003  物体位置座標変換装置
DESCRIPTION OF SYMBOLS 1 Coordinate conversion table creation apparatus 2 Coordinate conversion table creation apparatus 3 Coordinate conversion table creation apparatus 4 Coordinate conversion table creation apparatus 5 Coordinate conversion table creation apparatus 6 Coordinate conversion table creation apparatus 7 Coordinate conversion table creation apparatus 10 Information processing apparatus 71 Small area grouping Means 72 Coordinate conversion table creation means 81 Display means 82 Input means 83 Association means 100 Coordinate association system 101 Imaging device 102 Three-dimensional terrain database storage section 103 Small area grouping section 104 Display apparatus 105 Coordinate input apparatus 106 Coordinate conversion table creation section DESCRIPTION OF SYMBOLS 107 Memory | storage device 200 Coordinate matching system 201 Image pick-up device 202 Three-dimensional landform database memory | storage part 203 Position direction acquisition part 204 Small area grouping part 205 Display apparatus 206 Coordinate Force device 207 Coordinate conversion table creation unit 208 Storage device 300 Coordinate association system 301 Imaging device 302 Three-dimensional terrain database storage unit 303 Position and orientation acquisition unit 304 Small region grouping unit 305 Measurement point extraction unit 306 Display device 307 Coordinate input device 308 Coordinates Conversion table creation unit 309 Storage device 400 Coordinate association system 401 Imaging device 402 Three-dimensional terrain database storage unit 403 Position orientation acquisition unit 404 Small region grouping unit 405 Measurement ease database storage unit 406 Measurement point extraction unit 407 Display device 408 Coordinate input Device 409 Coordinate conversion table creation unit 410 Storage device 500 Coordinate association system 501 Imaging device 502 3D terrain database storage unit 503 Position / orientation acquisition unit 504 Small area grouping unit 505 Measurement ease database storage unit 506 Measurement point extraction unit 507 Route calculation unit 508 Display device 509 Coordinate input device 510 Coordinate conversion table creation unit 511 Storage device 600 Coordinate association system 601 Imaging device 602 3D terrain database storage Unit 603 position / orientation acquisition unit 604 small area grouping unit 605 measurement ease database storage unit 606 measurement point extraction unit 607 measurement point grouping unit 608 display device 609 coordinate input device 610 coordinate conversion table creation unit 611 storage device 700 coordinate association system 701 Imaging device 702 3D terrain database storage unit 703 Position / orientation acquisition unit 704 Small area grouping unit 705 Measurement ease database storage unit 706 Measurement point extraction unit 707 Display device 708 Coordinate input device 709 Imaging device relative position calculation unit 710 Coordinate conversion table creation unit 711 Storage device 800 Information processing system 1000 Computer 1001 CPU
1002 Main storage device 1003 Auxiliary storage device 1004 Interface 1005 Display device 1006 Input device 2001 Object position measurement device 2002 Object detection device 2003 Object position coordinate conversion device

Claims (11)

  1.  撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、前記小領域の法線方向及び標高に基づいて前記小領域のグループである小領域グループに分ける小領域グルーピング手段と、
     前記小領域グループと座標変換に関する情報である候補情報とを用いて、前記撮影画像データにおける座標であるカメラ座標系の座標と前記撮影画像データに対応した前記小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する座標変換テーブル作成手段と
     を含む情報処理装置。
    A small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area. Small area grouping means for dividing into small area groups, which are groups of areas;
    Using the candidate information that is information related to the small area group and coordinate transformation, the coordinates of the camera coordinate system that are the coordinates in the captured image data and the coordinates in the small area that correspond to the captured image data An information processing apparatus comprising: coordinate conversion table creating means for creating a coordinate conversion table that is information of coordinate conversion with coordinates.
  2.  前記撮影装置から前記小領域までの距離及び前記撮影装置の方位を取得する位置方位取得手段をさらに含み、
     前記小領域グルーピング手段が、
     前記距離及び前記方位に基づいて、前記小領域グループをさらに分割する
     請求項1に記載の情報処理装置。
    It further includes a position and orientation acquisition means for acquiring a distance from the imaging device to the small area and an orientation of the imaging device,
    The small area grouping means includes
    The information processing apparatus according to claim 1, wherein the small area group is further divided based on the distance and the orientation.
  3.  前記小領域グループの重心を算出し、前記候補情報を取得する計測地点候補として、前記小領域グループに含まれる前記点の中から、前記重心から所定の距離以上と離れ、前記小領域グループに含まれる各前記点と前記重心とを結ぶ全ての線分の間の角度が所定の角度以上になる所定の数の前記小領域グループに含まれる前記点を抽出する計測地点抽出手段をさらに含み、
     座標変換テーブル作成手段が、
     前記計測地点候補における前記候補情報を取得し、前記候補情報に基づいて、前記座標変換テーブルを作成する
     請求項1又は請求項2に記載の情報処理装置。
    The center of gravity of the small area group is calculated and the candidate information is obtained as a measurement point candidate from among the points included in the small area group at a predetermined distance or more away from the center of gravity and included in the small area group Further comprising a measurement point extracting means for extracting the points included in a predetermined number of the small region groups in which an angle between all line segments connecting the points and the center of gravity is equal to or greater than a predetermined angle;
    The coordinate conversion table creation means
    The information processing apparatus according to claim 1, wherein the candidate information for the measurement point candidate is acquired, and the coordinate conversion table is created based on the candidate information.
  4.  世界座標系の座標における座標の計測の容易性を数値化したデータである計測容易性データを記憶する計測容易性データ記憶手段をさらに含み、
     前記計測地点抽出手段が、
     前記計測容易性データに基づいて、前記計測地点候補を抽出する、
     請求項3に記載の情報処理装置。
    And further comprising a measurement ease data storage means for storing measurement ease data, which is data obtained by quantifying the ease of measurement of coordinates in the coordinates of the world coordinate system,
    The measurement point extracting means is
    Based on the measurement ease data, the measurement point candidates are extracted.
    The information processing apparatus according to claim 3.
  5.  前記座標変換テーブル作成手段が、
     前記座標変換テーブルを作成した前記小領域グループにおける前記座標変換テーブルを作成するための前記座標変換に用いるパラメータを基に、前記座標変換テーブルを作成していない前記小領域グループにおいて前記座標変換テーブルを作成するための前記座標変換に関する前記パラメータを推定し、推定した前記パラメータを基に前記座標変換テーブルを作成していない前記小領域グループの前記座標変換テーブルを作成する
     請求項3又は請求項4に記載の情報処理装置。
    The coordinate conversion table creating means includes
    Based on the parameters used for the coordinate transformation for creating the coordinate transformation table in the small region group that created the coordinate transformation table, the coordinate transformation table in the small region group that has not created the coordinate transformation table. 5. The parameter conversion table of the small region group that does not create the coordinate conversion table based on the estimated parameter is estimated based on the estimated parameter conversion. The information processing apparatus described.
  6.  全ての前記計測地点候補を通過する最短経路を算出する経路算出手段を
     さらに含む請求項3ないし請求項5のいずれか1項に記載の情報処理装置。
    The information processing apparatus according to claim 3, further comprising a route calculation unit that calculates a shortest route that passes through all the measurement point candidates.
  7.  前記撮影装置を複数含み、
     前記計測地点候補における前記世界座標系の座標と前記カメラ座標系の座標との信頼度を基に、前記撮影装置毎に、前記計測地点候補のグループを作成する計測地点グルーピング手段をさらに含み、
     座標変換テーブル作成手段が、
     前記撮影装置毎に前記候補情報を取得し、前記座標変換テーブルを作成する
     請求項3ないし請求項6のいずれか1項に記載の情報処理装置。
    Including a plurality of the photographing devices,
    Based on the reliability of the coordinates of the world coordinate system and the coordinates of the camera coordinate system in the measurement point candidates, further includes a measurement point grouping means for creating a group of measurement point candidates for each of the imaging devices,
    The coordinate conversion table creation means
    The information processing apparatus according to any one of claims 3 to 6, wherein the candidate information is acquired for each of the photographing apparatuses and the coordinate conversion table is created.
  8.  前記撮影装置を複数含み、
     前記計測地点候補の前記候補情報を基に、前記撮影装置の相対位置に関する情報を算出する撮影装置相対位置算出手段をさらに含み、
     前記座標変換テーブル作成手段が、
     少なくとも1つの前記撮影装置の前記候補情報を基に前記座標変換テーブルを作成し、作成した前記座標変換テーブルと前記撮影装置と前記相対位置に関する情報とを基に、前記座標変換テーブルを作成していない前記撮影装置の前記座標変換テーブルを作成する
     請求項3から請求項6のいずれか1項に記載の情報処理装置。
    Including a plurality of the photographing devices,
    Based on the candidate information of the measurement point candidate, further includes imaging device relative position calculation means for calculating information on the relative position of the imaging device,
    The coordinate conversion table creating means includes
    The coordinate conversion table is created based on the candidate information of at least one of the imaging devices, and the coordinate conversion table is created based on the created coordinate conversion table, the imaging device, and information on the relative position. The information processing apparatus according to any one of claims 3 to 6, wherein the coordinate conversion table of the imaging apparatus that is not present is created.
  9.  請求項1ないし8のいずれか1項に記載の前記情報処理装置と、
     前記情報処理装置から受信した前記3次元の情報及び/又は計測地点候補を表示する表示手段と、
     前記3次元の情報及び/又は前記計測地点候補における前記候補情報を取得する入力手段とを含む
     情報処理システム。
    The information processing apparatus according to any one of claims 1 to 8,
    Display means for displaying the three-dimensional information and / or measurement point candidates received from the information processing apparatus;
    An information processing system comprising: input means for acquiring the candidate information in the three-dimensional information and / or the measurement point candidate.
  10.  撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、前記小領域の法線方向及び標高に基づいて前記小領域のグループである小領域グループに分け、
     前記小領域グループと座標変換に関する情報である候補情報とを用いて、前記撮影画像データにおける座標であるカメラ座標系の座標と前記撮影画像データに対応した前記小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する
     情報処理方法。
    A small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area. Divide into small area groups, which are groups of areas,
    Using the candidate information that is information related to the small area group and coordinate transformation, the coordinates of the camera coordinate system that are the coordinates in the captured image data and the coordinates in the small area that correspond to the captured image data An information processing method for creating a coordinate conversion table which is information of coordinate conversion with coordinates.
  11.  撮影装置が撮影した撮影画像データに含まれる領域に対応する地形における位置に関する3次元の情報を持つ点を基に形成される小領域を、前記小領域の法線方向及び標高に基づいて前記小領域のグループである小領域グループに分ける処理と、
     前記小領域グループと座標変換に関する情報である候補情報とを用いて、前記撮影画像データにおける座標であるカメラ座標系の座標と前記撮影画像データに対応した前記小領域における座標である世界座標系の座標との座標変換の情報である座標変換テーブルを作成する処理と
     をコンピュータに実行させるプログラムをコンピュータ読み取り可能に記録した記録媒体。
    A small area formed on the basis of a point having three-dimensional information regarding the position on the terrain corresponding to the area included in the photographed image data photographed by the photographing device is determined based on the normal direction and the altitude of the small area. Processing to divide into small area groups that are area groups;
    Using the candidate information that is information related to the small area group and coordinate transformation, the coordinates of the camera coordinate system that are the coordinates in the captured image data and the coordinates in the small area that correspond to the captured image data The recording medium which recorded the program which makes a computer perform the process which produces the coordinate conversion table which is the information of coordinate conversion with a coordinate so that computer reading is possible.
PCT/JP2016/001595 2015-03-27 2016-03-18 Information processing apparatus, information processing system, information processing method, and storage medium WO2016157802A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017509251A JP6683195B2 (en) 2015-03-27 2016-03-18 Information processing apparatus, information processing system, information processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-065610 2015-03-27
JP2015065610 2015-03-27

Publications (1)

Publication Number Publication Date
WO2016157802A1 true WO2016157802A1 (en) 2016-10-06

Family

ID=57004900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/001595 WO2016157802A1 (en) 2015-03-27 2016-03-18 Information processing apparatus, information processing system, information processing method, and storage medium

Country Status (2)

Country Link
JP (1) JP6683195B2 (en)
WO (1) WO2016157802A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109785376A (en) * 2017-11-15 2019-05-21 富士通株式会社 Training method, estimation of Depth equipment and the storage medium of estimation of Depth device
JP2019121176A (en) * 2018-01-05 2019-07-22 オムロン株式会社 Position specifying apparatus, position specifying method, position specifying program, and camera apparatus
CN114332228A (en) * 2021-12-30 2022-04-12 高德软件有限公司 Data processing method, electronic device and computer storage medium

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240421A (en) * 1995-03-06 1996-09-17 Meidensha Corp Estimating method for camera parameter and object recognizing method utilizing the parameter
JPH08255239A (en) * 1995-03-17 1996-10-01 Hitachi Denshi Ltd Geographical information processor
JPH09305746A (en) * 1996-05-21 1997-11-28 Oki Electric Ind Co Ltd Terrain data interpolation device
JP2004133094A (en) * 2002-10-09 2004-04-30 Zenrin Co Ltd Generating method of three dimensional electronic map data
US20110122257A1 (en) * 2009-11-25 2011-05-26 Honeywell International Inc. Geolocation of objects in an area of interest
JP2011133840A (en) * 2009-11-27 2011-07-07 Asia Air Survey Co Ltd Interlocked display measuring system using monitor camera image
JP2013088999A (en) * 2011-10-18 2013-05-13 Aero Asahi Corp Building extraction device, method, and program
JP2014137321A (en) * 2013-01-18 2014-07-28 Nec Corp Position coordinate conversion system, position coordinate conversion method, on-vehicle device, global coordinate measurement device and position coordinate conversion program

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240421A (en) * 1995-03-06 1996-09-17 Meidensha Corp Estimating method for camera parameter and object recognizing method utilizing the parameter
JPH08255239A (en) * 1995-03-17 1996-10-01 Hitachi Denshi Ltd Geographical information processor
JPH09305746A (en) * 1996-05-21 1997-11-28 Oki Electric Ind Co Ltd Terrain data interpolation device
JP2004133094A (en) * 2002-10-09 2004-04-30 Zenrin Co Ltd Generating method of three dimensional electronic map data
US20110122257A1 (en) * 2009-11-25 2011-05-26 Honeywell International Inc. Geolocation of objects in an area of interest
JP2011133840A (en) * 2009-11-27 2011-07-07 Asia Air Survey Co Ltd Interlocked display measuring system using monitor camera image
JP2013088999A (en) * 2011-10-18 2013-05-13 Aero Asahi Corp Building extraction device, method, and program
JP2014137321A (en) * 2013-01-18 2014-07-28 Nec Corp Position coordinate conversion system, position coordinate conversion method, on-vehicle device, global coordinate measurement device and position coordinate conversion program

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109785376A (en) * 2017-11-15 2019-05-21 富士通株式会社 Training method, estimation of Depth equipment and the storage medium of estimation of Depth device
CN109785376B (en) * 2017-11-15 2023-02-28 富士通株式会社 Training method of depth estimation device, depth estimation device and storage medium
JP2019121176A (en) * 2018-01-05 2019-07-22 オムロン株式会社 Position specifying apparatus, position specifying method, position specifying program, and camera apparatus
CN114332228A (en) * 2021-12-30 2022-04-12 高德软件有限公司 Data processing method, electronic device and computer storage medium

Also Published As

Publication number Publication date
JP6683195B2 (en) 2020-04-15
JPWO2016157802A1 (en) 2018-02-01

Similar Documents

Publication Publication Date Title
JP7398506B2 (en) Methods and systems for generating and using localization reference data
CN106461402B (en) For determining the method and system of the position relative to numerical map
JP5389964B2 (en) Map information generator
JP6456405B2 (en) Three-dimensional information calculation device, three-dimensional information calculation method, and autonomous mobile device
US11237005B2 (en) Method and arrangement for sourcing of location information, generating and updating maps representing the location
KR101444685B1 (en) Method and Apparatus for Determining Position and Attitude of Vehicle by Image based Multi-sensor Data
US9098088B2 (en) Method for building outdoor map for moving object and apparatus thereof
JP6178704B2 (en) Measuring point height assigning system, measuring point height assigning method, and measuring point height assigning program
AU2018253534A1 (en) Information processing device and information processing system
JP6683195B2 (en) Information processing apparatus, information processing system, information processing method, and program
JP5814620B2 (en) POSITION CORRECTION DATA GENERATION DEVICE, POSITION LOCATION DEVICE, POSITION CORRECTION DATA GENERATION DEVICE POSITION CORRECTION DATA GENERATION METHOD, POSITION POSITION DEVICE POSITION POSITIONING METHOD, POSITION CORRECTION DATA GENERATION PROGRAM, AND POSITION POSITION PROGRAM
JP6589410B2 (en) Map generating apparatus and program
Khoshelham et al. Vehicle positioning in the absence of GNSS signals: Potential of visual-inertial odometry
US20220148216A1 (en) Position coordinate derivation device, position coordinate derivation method, position coordinate derivation program, and system
KR102174729B1 (en) Method and system for recognizing lane using landmark
Koppanyi et al. Experiences with acquiring highly redundant spatial data to support driverless vehicle technologies
JP7431320B2 (en) Methods and systems for using digital map data
Lin et al. Research on the production of 3D image cadastral map
Zomrawi et al. Accuracy evaluation of digital aerial triangulation
Wu et al. An Assessment of Errors Using Unconventional Photogrammetric Measurement Technology-with UAV Photographic Images as an Example
JP7345153B2 (en) Geographical coordinate estimation device, geographic coordinate estimation system, geographic coordinate estimation method, and computer program for flying objects
KR102612216B1 (en) Method and system for matching point of interest map using ground information and terminal attitude with 6 degrees of freedom
Geitner et al. Spatial Grid-Based Object Localization from A Single Passive Sensor: A Deep Learning-Integrated Approach
Sharma et al. A framework to Georeference Point Cloud in GPS Shadowed Urban Environment by Integrating Computer Vision Algorithms and Photogrammetric Techniques
JP2022108298A (en) Self-map-generation device and self-position-estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771695

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017509251

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771695

Country of ref document: EP

Kind code of ref document: A1