WO2016157513A1 - Method and device for identifying amount of antigen-antibody interaction - Google Patents

Method and device for identifying amount of antigen-antibody interaction Download PDF

Info

Publication number
WO2016157513A1
WO2016157513A1 PCT/JP2015/060557 JP2015060557W WO2016157513A1 WO 2016157513 A1 WO2016157513 A1 WO 2016157513A1 JP 2015060557 W JP2015060557 W JP 2015060557W WO 2016157513 A1 WO2016157513 A1 WO 2016157513A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecule
measured
carrier
antibody
site
Prior art date
Application number
PCT/JP2015/060557
Other languages
French (fr)
Japanese (ja)
Inventor
洋一 西田
小原 賢信
樹 高倉
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2015/060557 priority Critical patent/WO2016157513A1/en
Publication of WO2016157513A1 publication Critical patent/WO2016157513A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/536Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase
    • G01N33/537Immunoassay; Biospecific binding assay; Materials therefor with immune complex formed in liquid phase with separation of immune complex from unbound antigen or antibody

Definitions

  • Patent Document 1 cannot remove a buffering action caused by a substance that causes a measurement interference action only when an antibody is present. Further, when the inter-bead adsorption promoting substance (lipid or the like) contained in the molecule solution to be measured is a small amount and is exhausted in the first step, it is impossible to calculate the degree of this effect in the second step. In this method, only the adsorption promoting substance between the fine particle bodies is an interference substance, and the influence of the interference substance can be eliminated only when it is contained in a sufficiently large amount in the solution.
  • An object of the present invention is to provide a method for accurately calculating the influence of a non-specific aggregation element contained in a specimen in a measurement method using the immunoagglutination method as a measurement principle.
  • the first step of Patent Document 1 is used as it is, using a capture site molecule (a molecule consisting of or including only a peptide molecule or sugar chain molecule as an epitope) in which the molecule to be measured is captured by an antibody in the second step.
  • a capture site molecule a molecule consisting of or including only a peptide molecule or sugar chain molecule as an epitope
  • the difference in the degree of aggregation before and after deaggregation is measured.
  • the degree of aggregation caused only by the molecule to be measured regardless of the amount of adsorption promoting substances (lipids, etc.) between the supports (beads) and regardless of the presence of measurement interference substances that act only when antibodies are present Can be calculated.
  • FIG. 1 is a schematic diagram showing the principle of detecting a molecule to be measured with high sensitivity by a sandwich method using antibody-immobilized beads.
  • FIG. 2 is a schematic diagram showing a phenomenon in which nonspecific adsorption, which is a problem in the detection of highly sensitive molecules to be measured by the sandwich method using beads, occurs.
  • FIG. 3 is a schematic diagram showing a method of disaggregating only specific bead aggregation by using a site (capture site molecule) captured by an antibody.
  • FIG. 4 is a schematic diagram showing a method of dissociating only specific bead attachment by using a site (capture site molecule) captured by an antibody.
  • FIG. 5 is a schematic diagram showing a configuration example of an apparatus according to the present invention.
  • the purpose of the present invention is to detect a molecule to be measured in a sample.
  • “detection” is not only the detection of the presence or absence of a molecule to be measured in a sample, but also quantitative measurement of the molecule to be measured. Detection (ie, determining the amount or concentration), and determining the abundance ratio of the molecule to be measured.
  • the molecule to be measured is added by adding the capture site molecule to a reaction solution in which bead aggregation caused by the molecule to be measured and bead aggregation not caused by the molecule to be measured are mixed. Only the bead aggregation resulting from the can be disaggregated. As a result, the difference between the aggregation degree measured before adding the capture site molecule (aggregation due to specific binding + nonspecific aggregation) and the aggregation degree measured after addition (nonspecific aggregation) is measured. It is possible to calculate the bead aggregation due to the molecule and detect the molecule to be measured.
  • the carrier can be of any material and shape as long as it is a carrier generally used in immunoassays.
  • the material of the carrier is not particularly limited as long as it is a carrier generally used in this technical field.
  • metals such as precious metals (gold, silver, platinum, palladium, rhodium, iridium, ruthenium, etc.), copper, aluminum, tungsten, molybdenum, chromium, titanium, nickel, etc .; stainless steel, hastelloy, inconel, monel, duralumin, etc.
  • Electrodes of semiconductor elements Transistors, FETs, etc.
  • Silicon Glass materials such as glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; polyester, polystyrene, polyethylene , Polypropylene, nylon, acrylic, polycarbonate, polyethylene terephthalate (PET), polyurethane, phenolic resin, melamine resin, epoxy resin and polyvinyl chloride; agarose, dextran, cellulose Scan, polyvinyl alcohol, nitrocellulose, latex and the like.
  • a capture site molecule consisting of or including the site to which the first antibody binds and / or the site to which the second antibody binds is added to the reaction solution.
  • the specific binding between the molecule to be measured and the first antibody and / or the specific binding between the molecule to be measured and the second antibody is inhibited or dissociated.
  • the first carrier and the second carrier are disaggregated, or the second carrier attached to the first carrier is dissociated.
  • the capture site molecule may consist of or include a part of such an epitope as long as the ability to bind to the antibody is retained.
  • the capture site molecule may be a peptide or sugar molecule in which a part of the amino acid or sugar of the epitope is modified as long as the binding ability to the antibody is maintained.
  • the modification includes when the epitope is a sugar molecule, as long as the antibody-binding ability is maintained, a part of the functional group is substituted with another functional group, or the sugar molecule is a polysaccharide. A part of the monosaccharide unit is replaced with another monosaccharide.
  • only the aggregation of the carrier due to the binding to the molecule to be measured is disaggregated (or the adhesion of the carrier is dissociated), and the number thereof is calculated. Regardless of the amount of aggregation or adhesion (not due to the measurement molecule), only the aggregation or adhesion of the carrier due to the binding to the molecule to be measured can be calculated.
  • a cell in which the inside of a container is partitioned by a bottleneck and voltage can be applied before and after that, and current can be measured simultaneously also referred to as “cell A partitioned by bottleneck”.
  • the cell A partitioned by a bottleneck is filled with a buffer suitable for performing an antigen-antibody reaction.
  • a current measuring device B that can measure a current generated through a bottleneck by applying a DC voltage before and after the partition is disposed. It is generated by introducing beads into one of the partitions in the cell and applying a DC voltage so that the beads pass through the bottleneck and the current path is blocked when the beads pass through the bottleneck of the divider. Measure the instantaneous current phenomenon (blocking current). Since this blocking current amount increases according to the degree of aggregation of beads, the degree of aggregation of beads can be calculated.
  • capture site molecule A molecule consisting only of or containing a capture site (peptide molecule or sugar chain molecule serving as an epitope) where the molecule to be measured is captured by an antibody (referred to as “capture site molecule”).
  • the capture site molecule used in the present invention is desirably the epitope (peptide or sugar molecule) itself used in producing the antibody molecule.
  • the epitope peptide or sugar molecule
  • Epitopes can be used as capture site molecules.
  • the capture site molecule used in the present invention may be a part of an epitope (peptide or sugar molecule) as long as the binding ability to the antibody is maintained. In addition, as long as the capture site molecule retains the ability to bind to an antibody, some of the amino acids of the epitope may be modified.
  • the bead used in the present invention may be one kind of bead on which one kind of antibody molecule is immobilized.
  • FIG. 8 is a diagram showing an outline of the specific binding disaggregation process.
  • the antibody-immobilized beads (E) are allowed to act on the sample solution containing or possibly containing the molecule to be measured, thereby producing a bead aggregation state.
  • one capture site molecule (semi-circle) and another capture site molecule (triangle) complement the antibody binding (capture) shape that recognizes the site on each measured molecule.
  • a large excess amount of the capture site molecule (C) is added to the beads (E), and the aggregated beads are deaggregated (by heating and shaking).
  • Example 2 Surface plasmon resonance (SPR) experiment showing the antibody molecule binding inhibitory effect of the molecule to be measured by the capture site molecule Human cardiac toroponin I (hcTnI) and its amino acid sequence from the 41st to the 49th
  • the IgG antibody 19C7 produced using the amino acids up to and including the epitope sequence oligopeptide (Ile-Ser-Ala-Ser-Arg-Lys-Leu-Gln-Leu (SEQ ID NO: 1); ISApep) was prepared.
  • Biotinylated IgG antibody 19C7 is immobilized on GE Healthcare Biacore sensor chip SA, and a constant concentration of hcTnI solution is allowed to act. The molecular weight to be reacted was found to decrease, and the inhibition of the interaction between the molecule to be measured (hcTnI) and the antibody molecule (IgG antibody 19C7) by the capture site molecule (ISApep) was confirmed.
  • Example 3 Aggregate formation inhibition experiment using a capture site (epitope) peptide for the formation of bead aggregates by antigen binding to antibody molecule physical adsorption beads. Using antibody-immobilized beads, an antigen sandwich bead aggregate formation experiment was performed by antigen-antibody molecule interaction.
  • the number of antigen molecules relative to the number of beads is approximately as follows: 1: 0 (+0 ⁇ L), 1: 0.1 (+2 ⁇ L), 1 : 0.3 (+6 ⁇ L), 1: 1 (+20 ⁇ L), 1: 3 (+60 ⁇ L).

Abstract

The present invention relates to a method for differentiating undesirable agglutination such as non-specific adsorption, and agglutination derived from molecules to be measured, such differentiation conducted by means of disagglutination, of only agglutination derived from molecules to be measured, which uses molecules comprising a portion (epitope) of the molecules to be measured captured by an antibody in a system for analyzing the agglutination (immunoagglutination) generated when a carrier (microparticles, beads, and the like) on which an antibody specific to the molecules to be measured has been fixed is exposed to a sample that comprises or possibly comprises the molecules to be measured.

Description

抗原抗体間相互作用量の同定法及び装置Method and apparatus for identifying antigen-antibody interaction amount
 本発明は、サンプル中の被測定分子を測定するための装置及び方法、具体的には特定の抗原抗体ペア間の相互作用を同定することにより、サンプル中の被測定分子を測定するための装置及び方法に関する。また本発明は、サンプル中の被測定分子を測定するためのキットに関する。 The present invention relates to an apparatus and method for measuring a molecule to be measured in a sample, specifically an apparatus for measuring a molecule to be measured in a sample by identifying an interaction between a specific antigen-antibody pair. And a method. The present invention also relates to a kit for measuring a molecule to be measured in a sample.
 免疫測定法は、抗原と抗体の特異的な相互作用を利用して疾患由来のタンパク質や病原体を検出する分析方法として、医療・製薬分野で広く用いられている。免疫分析は一般の生化学分析と比較すると検体中のターゲット濃度が低濃度であり、高感度な測定が必要とされている。現在、免疫検査の高感度化が推進されており、免疫検査の4割を占める感染症検査の定量性向上や、新規な腫瘍マーカの発掘が期待されている。 Immunoassay is widely used in the medical and pharmaceutical fields as an analytical method for detecting disease-derived proteins and pathogens using specific interactions between antigens and antibodies. Compared with general biochemical analysis, immunoassay has a low target concentration in a sample, and requires highly sensitive measurement. Improving the sensitivity of immunological tests is currently promoted, and it is expected to improve the quantitativeness of infectious disease tests, which account for 40% of immunological tests, and to discover new tumor markers.
 現行の免疫検査装置の大半は、対象物質に酵素などを標識した抗体を結合させ、標識が触媒となって生じる蛍光や発光等の信号から対象物質を測定する酵素免疫吸着法(Enzyme-Linked Immunosorbent Assay,ELISA)を基本としている。これらの装置は複数分子(1万個程度)からのアナログ値を測定しているため、標識からの信号ゆらぎがノイズとなり更なる高感度化は容易ではない。近年になって、多数の微小体積空間(数万個以上、1個あたりの体積が50fl程度)でELISAを同時に行い、各空間での対象物質の有無をデジタル計測して計算する手法が提案・実証され(デジタルELISA法)、実検体の測定において10-15mol/Lの検出感度が得られた(非特許文献1)。しかし、元来原理がアナログ計測であるために依然として信号揺らぎは抑制できておらず、安定して高感度計測を行うことは困難である。 Most of the current immunoassay devices bind an antibody labeled with an enzyme to a target substance, and measure the target substance from signals such as fluorescence and luminescence generated by the label as a catalyst (Enzyme-Linked Immunosorbent) (Assay, ELISA). Since these devices measure analog values from a plurality of molecules (about 10,000), signal fluctuation from the label becomes noise, and further enhancement of sensitivity is not easy. In recent years, a method has been proposed in which ELISA is performed simultaneously in a large number of microvolume spaces (more than tens of thousands, each volume is about 50 fl), and the presence or absence of target substances in each space is digitally measured and calculated. It has been demonstrated (digital ELISA method), and a detection sensitivity of 10 −15 mol / L was obtained in the measurement of real samples (Non-patent Document 1). However, since the original principle is analog measurement, signal fluctuation cannot be suppressed yet, and it is difficult to stably perform high-sensitivity measurement.
 高感度化に付随するこれらの問題を解決するため、抗体を微粒子(ビーズ)に付着させたものを利用する方法が各種開発されている。これにより抗原抗体反応による会合をビーズの会合に変換し、会合現象を拡大させることで散乱光などによる測定を容易にし、高感度化につなげる。しかし、この方法ではビーズ自身の非特異吸着現象が伴うため、バックグラウンドが高くなり、抗原抗体反応特異的に生じた凝集現象を正確に抽出する技術が必要となり、以下に述べるような各種方法が開発されている(特許文献1~3)。 In order to solve these problems associated with higher sensitivity, various methods have been developed that utilize antibodies attached to fine particles (beads). As a result, the association by the antigen-antibody reaction is converted into the association of beads, and the association phenomenon is expanded to facilitate measurement by scattered light and the like, thereby leading to higher sensitivity. However, this method involves a non-specific adsorption phenomenon of the beads themselves, so the background is high, and a technique for accurately extracting the aggregation phenomenon that occurs specifically in the antigen-antibody reaction is required. It has been developed (Patent Documents 1 to 3).
 特許文献1では、検体に被測定分子に特異的に結合する特異的結合物質(抗体)を付加した微粒子(ビーズ)を添加して、凝集反応させ、吸光度変化を測定する第一の工程と、次に抗体を付加していないビーズを添加して凝集反応させて測定した吸光度変化を測定する第二の工程、及び第一の工程と第二の工程で得られた吸光度変化の差を求める第三の工程とからなる方法が記載されている。これによりビーズ等微粒子の非特異的吸着によるバックグラウンド、又は、被測定分子溶液に含まれるビーズ間吸着促進物質(脂質など)によるバックグラウンドを効果的に取り除くことができる。  In Patent Document 1, a first step of adding a fine particle (bead) to which a specific binding substance (antibody) that specifically binds to a molecule to be measured is added to a specimen, agglutinating reaction, and measuring a change in absorbance; Next, the second step of measuring the change in absorbance measured by adding beads not added with antibodies and agglutination reaction, and the difference between the changes in absorbance obtained in the first step and the second step A method comprising three steps is described. Thereby, the background caused by non-specific adsorption of fine particles such as beads or the background caused by the inter-bead adsorption promoting substance (lipid etc.) contained in the molecule solution to be measured can be effectively removed.
 特許文献1の方法では抗体が存在するときにのみ測定干渉作用を起こす物質に起因する緩衝作用を取り除くことはできない。また、被測定分子溶液に含まれるビーズ間吸着促進物質(脂質など)が少量であり、第一の工程で消尽される場合、第二の工程でこの効果の多寡について算出することはできない。この方法では、微粒子本体同士の吸着促進物質だけが干渉物質であり、それが溶液中に十分多量に含まれる場合にのみ、干渉物質の影響を排除することができる。 The method of Patent Document 1 cannot remove a buffering action caused by a substance that causes a measurement interference action only when an antibody is present. Further, when the inter-bead adsorption promoting substance (lipid or the like) contained in the molecule solution to be measured is a small amount and is exhausted in the first step, it is impossible to calculate the degree of this effect in the second step. In this method, only the adsorption promoting substance between the fine particle bodies is an interference substance, and the influence of the interference substance can be eliminated only when it is contained in a sufficiently large amount in the solution.
 特許文献2では、被測定分子に特異的に結合可能な抗体とルシフェリルペプチド化合物とが結合した抗体-ルシフェリルペプチド複合体を用いる。抗体-ルシフェリルペプチド複合体と被測定分子を含む検体とを溶液中に共存させて、被測定分子とルシフェリルペプチドの置換によってルシフェリルペプチドを解離させた後、解離したルシフェリルペプチドから切断したルシフェリンをルシフェラーゼ反応を用いて測定する方法が記載されている。これにより簡便に被測定分子を測定でき、かつ被測定分子に対する特異性の高い検出系を提供する。  In Patent Document 2, an antibody-luciferyl peptide complex in which an antibody capable of specifically binding to a molecule to be measured and a luciferyl peptide compound are used is used. The antibody-luciferyl peptide complex and the sample containing the molecule to be measured were allowed to coexist in the solution, the luciferyl peptide was dissociated by substitution of the molecule to be measured and the luciferyl peptide, and then cleaved from the dissociated luciferyl peptide A method for measuring luciferin using a luciferase reaction is described. This provides a detection system that can easily measure a molecule to be measured and has high specificity for the molecule to be measured.
 特許文献2の方法では被測定分子ごと専用のルシフェリルペプチド複合体を合成して用いる必要があり、試薬系のコストが高くなる。また、光学検出系を必要とするため、筐体が大型化しかつ高コストになる。さらに、被測定分子とルシフェリルペプチド複合体置換反応後、酵素的にペプチド分解反応過程が必要で、さらにコストがかかり、かつ、この反応効率が検出効率を左右する。 In the method of Patent Document 2, it is necessary to synthesize and use a dedicated luciferyl peptide complex for each molecule to be measured, which increases the cost of the reagent system. In addition, since an optical detection system is required, the housing becomes large and expensive. Furthermore, after the substitution reaction between the molecule to be measured and the luciferyl peptide complex, a peptide degradation reaction process is required enzymatically, which is further costly, and this reaction efficiency affects the detection efficiency.
 特許文献3では、第1回目の検体測定時に反応が起こった検体に対して、試薬構成中の測定に供する緩衝液を、不溶性担体(微粒子など)に担持したものと同じ抗体又は抗原を含む緩衝液と入れ替えた後に第2回目の測定をし、最初の反応に対する、前記緩衝液での反応の減少度合いを測定することにより特異的反応であるか非特異的反応であるかを判定する抗原抗体反応の判定方法が記載されている。これにより抗原抗体反応特異的に不溶性担体の凝集が起こっているのかどうかの確認を行うことができる。 In Patent Document 3, a buffer containing the same antibody or antigen as that carried on an insoluble carrier (such as microparticles) is used as a buffer solution for measurement in the reagent configuration for a sample that has undergone a reaction during the first sample measurement. Antigen antibody to determine whether it is a specific reaction or a non-specific reaction by measuring the second time after replacing the solution and measuring the degree of decrease in the reaction with the buffer relative to the first reaction A method for determining the reaction is described. As a result, it is possible to confirm whether or not aggregation of the insoluble carrier occurs specifically in the antigen-antibody reaction.
 特許文献3の方法では被測定分子溶液を分割し、抗原抗体反応を2度以上行い、各回ごとに吸光度等反応強度の測定を行う必要がある。また、通常高価な抗体溶液を多量に消費する。 In the method of Patent Document 3, it is necessary to divide the molecule solution to be measured, perform the antigen-antibody reaction twice or more, and measure the reaction intensity such as absorbance each time. In addition, usually a large amount of expensive antibody solution is consumed.
特開2009-042057号公報JP 2009-042057 A 特表2011-037791号公報Special table 2011-037791 特開2003-004741号公報JP 2003-004741 A 国際公開WO2007/032266International Publication WO2007 / 032266 特開2010-019553号公報(国際公開WO2008/053822)JP 2010-019553 A (International Publication WO 2008/053822)
 本発明は、免疫凝集法を測定原理とする測定法において、検体に含まれる非特異的凝集要素の影響を正確に算出する方法を提供することを目的とする。 An object of the present invention is to provide a method for accurately calculating the influence of a non-specific aggregation element contained in a specimen in a measurement method using the immunoagglutination method as a measurement principle.
 本発明者らは、被測定分子である糖タンパク質又はタンパク質などを抗体で捕捉して検出する系において、被測定分子を認識することで凝集したビーズを解離し、脱凝集現象を、例えば封鎖電流測定装置を用いて観察することで、特異的結合による凝集と非特異結合による凝集との識別を行い、実効的な検出感度を上昇させることができることを見出した。 The present inventors dissociate the aggregated beads by recognizing the molecule to be measured in a system that captures and detects the glycoprotein or protein that is the molecule to be measured with an antibody and detect the disaggregation phenomenon, for example, a blocking current. By observing with a measuring device, it was found that the aggregation by specific binding and the aggregation by non-specific binding can be distinguished, and the effective detection sensitivity can be increased.
 すなわち本発明は、サンプル中の被測定分子を検出するための装置であって、
 被測定分子の一の部位に結合する第一抗体を固定した第一担体及び被測定分子の別の部位に結合する第二抗体を固定した第二担体をサンプルと接触させる反応を行う反応部と、
 上記サンプルを上記反応部に導入するためのサンプル導入部と、
 第一担体及び第二担体を上記反応部に供給するための試薬供給部と、
 上記被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子を上記反応部に供給するための試薬供給部と、
 第一担体と第二担体との凝集又は付着を測定する測定部と、
 上記測定部によって得られた測定結果を分析する算出部と
を備えることを特徴とする装置に関する。
That is, the present invention is an apparatus for detecting a molecule to be measured in a sample,
A reaction unit for performing a reaction in which a first carrier immobilizing a first antibody that binds to one site of a molecule to be measured and a second carrier immobilizing a second antibody that binds to another site of the molecule to be measured are brought into contact with a sample; ,
A sample introduction part for introducing the sample into the reaction part;
A reagent supply unit for supplying the first carrier and the second carrier to the reaction unit;
A reagent supply unit for supplying a capture site molecule comprising or including a site to which the first antibody of the molecule to be measured binds and / or a site to which the second antibody binds to the reaction unit;
A measurement unit for measuring aggregation or adhesion between the first carrier and the second carrier;
The present invention relates to an apparatus comprising: a calculation unit that analyzes a measurement result obtained by the measurement unit.
 また本発明は、サンプル中の被測定分子を検出する方法であって、
 被測定分子の一の部位に結合する第一抗体を固定した第一担体及び被測定分子の別の部位に結合する第二抗体を固定した第二担体をサンプルと接触させ、それにより第一担体と第二担体とが凝集又は付着する工程、
 第一担体と第二担体との凝集又は付着を測定する工程、
 上記被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子を反応溶液に添加し、それにより被測定分子と第一抗体との特異的結合及び/又は被測定分子と第二抗体との特異的結合が阻害され又は解離する工程、
 第一担体と第二担体との凝集又は付着を測定する工程、
 上記捕捉部位分子の添加前及び後の担体の凝集度又は付着度の差に基づいて、上記被測定分子と第一抗体及び第二抗体との特異的結合を算出する工程
を含む方法に関する。
The present invention also provides a method for detecting a molecule to be measured in a sample,
A first carrier immobilizing a first antibody that binds to one site of the molecule to be measured and a second carrier immobilizing a second antibody that binds to another site of the molecule to be measured are brought into contact with the sample, whereby the first carrier A step of agglomerating or adhering to the second carrier,
Measuring aggregation or adhesion between the first carrier and the second carrier;
A capture site molecule consisting of or containing the site to which the first antibody of the molecule to be measured binds and / or the site to which the second antibody binds is added to the reaction solution, whereby the molecule to be measured and the first antibody Specific binding and / or specific binding between the molecule to be measured and the second antibody is inhibited or dissociated,
Measuring aggregation or adhesion between the first carrier and the second carrier;
The present invention relates to a method including a step of calculating specific binding between a molecule to be measured and a first antibody and a second antibody based on a difference in aggregation degree or adhesion degree of a carrier before and after addition of the capture site molecule.
 さらに本発明は、サンプル中の被測定分子を検出するためのキットであって、
 被測定分子の一の部位に結合する第一抗体を固定した第一担体と、
 上記被測定分子の別の部位に結合する第二抗体を固定した第二担体と、
 上記被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子と
を含むことを特徴とするキットに関する。
Furthermore, the present invention is a kit for detecting a molecule to be measured in a sample,
A first carrier immobilizing a first antibody that binds to one site of a molecule to be measured;
A second carrier immobilizing a second antibody that binds to another site of the molecule to be measured;
The present invention relates to a kit comprising a site to which a first antibody binds and / or a capture site molecule comprising or including a site to which a second antibody binds.
 本発明によれば、ビーズ等の微粒子や他の基材を含む担体に抗体を固定したものを用いることによって、抗原抗体間相互作用現象を効率的に測定する際に必ず生じる担体間の非特異的相互作用の多寡にかかわらず抗原抗体間相互作用量を算出することができる。 According to the present invention, the non-specificity between the carriers that is inevitably generated when the antigen-antibody interaction phenomenon is efficiently measured by using a carrier in which the antibody is immobilized on a carrier containing fine particles such as beads or other base materials. The amount of antigen-antibody interaction can be calculated regardless of the number of interactions.
 本発明によれば、先の特許文献1の方法で残る問題として指摘された内容に対して以下の解決を与える。 According to the present invention, the following solution is given to the contents pointed out as a problem remaining in the method of Patent Document 1.
 特許文献1の第一の工程はそのままに第二の工程において被測定分子が抗体により捕捉される捕捉部位分子(エピトープとなるペプチド分子若しくは糖鎖分子のみからなる若しくはこれを含む分子)を用いて脱凝集させることにより、脱凝集前後の凝集度の差を測定する。これにより、担体(ビーズ)間吸着促進物質(脂質など)の多寡に関わらず、かつ抗体が存在するときにのみ作用する測定干渉物質の存在に関わらず、被測定分子のみに起因する凝集の程度を算出することができる。  The first step of Patent Document 1 is used as it is, using a capture site molecule (a molecule consisting of or including only a peptide molecule or sugar chain molecule as an epitope) in which the molecule to be measured is captured by an antibody in the second step. By deaggregating, the difference in the degree of aggregation before and after deaggregation is measured. As a result, the degree of aggregation caused only by the molecule to be measured, regardless of the amount of adsorption promoting substances (lipids, etc.) between the supports (beads) and regardless of the presence of measurement interference substances that act only when antibodies are present Can be calculated.
 本発明によれば、先の特許文献2の方法で残る問題として指摘された内容に対して以下の解決を与える。 According to the present invention, the following solution is given to the content pointed out as a problem remaining in the method of Patent Document 2 above.
 本発明及び特許文献2は、被測定分子ごとに抗体により捕捉される捕捉部位分子(エピトープ)を用いる点で類似しているが、特許文献2のようにルシフェリルペプチドのような高価な物質を合成することなくエピトープをそのまま用いることができるため、試薬コストを低減することができる。また、光学検出系を必要としないため、コンパクトな装置構成が可能である。さらに、酵素反応過程を経ず、被測定分子とペプチド(エピトープ)置換反応を微粒子の凝集状態変化に変換することで、巨視的かつより簡便な測定系による検出を可能としている。 The present invention and Patent Document 2 are similar in that a capture site molecule (epitope) captured by an antibody is used for each molecule to be measured. However, as in Patent Document 2, an expensive substance such as a luciferyl peptide is used. Since the epitope can be used as it is without being synthesized, the reagent cost can be reduced. In addition, since an optical detection system is not required, a compact device configuration is possible. Furthermore, detection by a macroscopic and simpler measurement system is possible by converting the molecule to be measured and the peptide (epitope) substitution reaction into a change in the aggregation state of the fine particles without going through an enzyme reaction process.
 本発明によれば、先の特許文献3の方法で残る問題として指摘された内容に対して以下の解決を与える。 According to the present invention, the following solution is given to the content pointed out as a problem remaining in the method of Patent Document 3 above.
 本発明では被測定分子を含む可能性のあるサンプルを分割する必要なく、反応容器又は流路に連続的に捕捉部位分子(ペプチド又は糖)を添加し、連続計測することができる。 In the present invention, the capture site molecule (peptide or sugar) can be continuously added to the reaction vessel or the flow path and the measurement can be continuously performed without the need to divide the sample that may contain the molecule to be measured.
図1は、抗体固定ビーズを用いたサンドウィッチ法による高感度被測定分子検出の原理を示す模式図である。FIG. 1 is a schematic diagram showing the principle of detecting a molecule to be measured with high sensitivity by a sandwich method using antibody-immobilized beads. 図2は、ビーズを用いたサンドウィッチ法による高感度被測定分子検出において問題となる非特異吸着が生じる現象を示す模式図である。FIG. 2 is a schematic diagram showing a phenomenon in which nonspecific adsorption, which is a problem in the detection of highly sensitive molecules to be measured by the sandwich method using beads, occurs. 図3は、抗体により捕捉される部位(捕捉部位分子)を用いることによって特異的ビーズ凝集のみを脱凝集させる方法を示す模式図である。FIG. 3 is a schematic diagram showing a method of disaggregating only specific bead aggregation by using a site (capture site molecule) captured by an antibody. 図4は、抗体により捕捉される部位(捕捉部位分子)を用いることによって特異的ビーズ付着のみを解離させる方法を示す模式図である。FIG. 4 is a schematic diagram showing a method of dissociating only specific bead attachment by using a site (capture site molecule) captured by an antibody. 図5は、本発明に係る装置の構成例を示す模式図である。FIG. 5 is a schematic diagram showing a configuration example of an apparatus according to the present invention. 図6は、本発明に係る装置を用いて被測定分子を検出する場合のフローチャートである。FIG. 6 is a flowchart for detecting a molecule to be measured using the apparatus according to the present invention. 図7は、封鎖電流測定を利用した場合のビーズ凝集度測定工程を構成する要素の一例を示す模式図である。Aは容器内を隘路で仕切り電圧印加を行うことのできるセルを表し、Bは電流測定装置を表す。FIG. 7 is a schematic diagram showing an example of elements constituting the bead aggregation degree measurement step when the blocking current measurement is used. A represents a cell capable of partitioning the inside of the container with a bottleneck and applying a voltage, and B represents a current measuring device. 図8は、特異結合脱凝集工程を構成する要素の一例を示す模式図である。FIG. 8 is a schematic diagram showing an example of elements constituting the specific binding disaggregation step. 図9は、封鎖電流測定を利用した場合の、ビーズ凝集度測定工程と特異結合脱凝集工程のフロー図と、瞬間的電流量減少(封鎖電流)測定を示す模式図である。FIG. 9 is a schematic diagram showing a flow chart of the bead aggregation degree measurement step and the specific binding disaggregation step and an instantaneous current amount decrease (blocking current) measurement in the case of using the blocking current measurement. 図10は、封鎖電流測定を利用した場合の、ビーズ凝集度測定工程と特異結合脱凝集工程の関係を表した構成図にフロー順を示した図である。FIG. 10 is a diagram showing the flow order in the configuration diagram showing the relationship between the bead aggregation degree measurement step and the specific binding disaggregation step when the blocking current measurement is used. 図11は、ヒト心筋トロポニンI(hcTnI)を被測定分子として、その抗体分子との相互作用の捕捉部位分子による阻害を表面プラズモン共鳴により測定した結果を示すセンサグラムである。FIG. 11 is a sensorgram showing the result of measuring the inhibition by the capture site molecule of the interaction with the antibody molecule by surface plasmon resonance using human cardiac troponin I (hcTnI) as a molecule to be measured.
 以下、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail.
 本発明は、被測定分子を含有するサンプルに、被測定分子に特異的な抗体を固定した担体(微粒子、ビーズなど)を作用させることにより生じた凝集(免疫凝集)を測定する系において、被測定分子が抗体により捕捉される部位(エピトープ)を含む分子(本明細書中、「捕捉部位分子」ともいう)を用いて被測定分子由来の凝集のみを脱凝集することにより、非特異的吸着等の望ましくない凝集と被測定分子由来の凝集を識別する方法に関する。 The present invention relates to a system for measuring agglutination (immunoaggregation) caused by the action of a carrier (microparticles, beads, etc.) on which an antibody specific to the molecule to be measured is immobilized on a sample containing the molecule to be measured. Nonspecific adsorption by disaggregating only aggregates derived from the molecule to be measured using a molecule containing the site (epitope) captured by the antibody (also referred to as “capture site molecule” in this specification). The present invention relates to a method for discriminating undesired aggregation such as from a molecule to be measured.
 すなわち、本発明は、サンプル中の被測定分子を検出する方法に関し、この方法は、
 被測定分子の一の部位に結合する第一抗体を固定した第一担体及び被測定分子の別の部位に結合する第二抗体を固定した第二担体をサンプルと接触させ、それにより第一担体と第二担体とが凝集又は付着する工程、
 第一担体と第二担体との凝集又は付着を測定する工程、
 上記被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子を反応溶液に添加し、それにより被測定分子と第一抗体との特異的結合及び/又は被測定分子と第二抗体との特異的結合が阻害され又は解離する工程、
 第一担体と第二担体との凝集又は付着を測定する工程、
 上記捕捉部位分子の添加前及び後の担体の凝集度又は付着度の差に基づいて、上記被測定分子と第一抗体及び第二抗体との特異的結合を算出する工程
を含む。
That is, the present invention relates to a method for detecting a molecule to be measured in a sample.
A first carrier immobilizing a first antibody that binds to one site of the molecule to be measured and a second carrier immobilizing a second antibody that binds to another site of the molecule to be measured are brought into contact with the sample, whereby the first carrier A step of agglomerating or adhering to the second carrier,
Measuring aggregation or adhesion between the first carrier and the second carrier;
A capture site molecule consisting of or containing the site to which the first antibody of the molecule to be measured binds and / or the site to which the second antibody binds is added to the reaction solution, whereby the molecule to be measured and the first antibody Specific binding and / or specific binding between the molecule to be measured and the second antibody is inhibited or dissociated,
Measuring aggregation or adhesion between the first carrier and the second carrier;
A step of calculating specific binding between the molecule to be measured and the first antibody and the second antibody based on the difference in the degree of aggregation or adhesion of the carrier before and after the addition of the capture site molecule.
 検出対象となる被測定分子は、抗体と結合可能なものであれば特に限定されず、ペプチド、タンパク質及び糖鎖、これらを表面に含む細胞、ウイルス、細菌などが挙げられる。 The molecule to be measured to be detected is not particularly limited as long as it can bind to the antibody, and examples thereof include peptides, proteins and sugar chains, cells containing these on the surface, viruses and bacteria.
 対象となるサンプルとしては、被測定分子を含むサンプル又は被測定分子を含む可能性のあるサンプルであれば特に限定されるものではなく、液体、固体若しくは気体サンプル、又はこれらの混合サンプルであってよい。サンプルは、具体的には、生体液サンプル(唾液、鼻汁、血液、血清、血漿、尿など)、細胞又は組織サンプル(口腔スワブ、癌組織又は細胞など)、環境サンプル(海水、河川水、工業用水、土壌など)を包含する。液体サンプルは、そのまま、又は溶媒で希釈若しくは濃縮して使用することができる。固体サンプルは、溶媒に懸濁するか、粉砕機などによりホモジナイズするか、あるいは溶媒と共に攪拌して得られる上清を使用してもよい。例えば綿棒などのスティックを無菌水で湿らせ、測定箇所をぬぐった後に、溶媒の中ですすぎ、得られる液体をサンプルとしてもよい。溶媒としては、例えば、蒸留水、生理食塩水、リン酸緩衝液、トリス緩衝液などが挙げられる。さらには、サンプルをフィルターでろ過し、サンプル成分(細胞、細菌、ウイルス等)を捕捉したフィルターを用いることも可能である。そのようなフィルターは、被測定分子を捕捉できるサイズであれば特に限定されない。 The target sample is not particularly limited as long as it is a sample containing the molecule to be measured or a sample that may contain the molecule to be measured, and it is a liquid, solid or gas sample, or a mixed sample thereof. Good. Specifically, the sample is a biological fluid sample (saliva, nasal discharge, blood, serum, plasma, urine, etc.), cell or tissue sample (oral swab, cancer tissue or cell, etc.), environmental sample (seawater, river water, industrial, etc.) Water, soil, etc.). The liquid sample can be used as it is, or diluted or concentrated with a solvent. The solid sample may be suspended in a solvent, homogenized by a pulverizer or the like, or a supernatant obtained by stirring with a solvent may be used. For example, a stick such as a cotton swab may be moistened with sterile water and the measurement location may be wiped, then rinsed in a solvent, and the resulting liquid may be used as a sample. Examples of the solvent include distilled water, physiological saline, phosphate buffer, Tris buffer, and the like. Furthermore, it is also possible to use a filter obtained by filtering a sample with a filter and capturing sample components (cells, bacteria, viruses, etc.). Such a filter is not particularly limited as long as it has a size that can capture a molecule to be measured.
 本発明では、サンプル中の被測定分子を検出することを目的とするが、「検出」とは、サンプル中の被測定分子の存在の有無を検出することだけではなく、被測定分子を定量的に検出(すなわち量又は濃度を決定)すること、被測定分子の存在比を決定することも含む。 The purpose of the present invention is to detect a molecule to be measured in a sample. However, “detection” is not only the detection of the presence or absence of a molecule to be measured in a sample, but also quantitative measurement of the molecule to be measured. Detection (ie, determining the amount or concentration), and determining the abundance ratio of the molecule to be measured.
 本発明の原理を図1~4に示す。 The principle of the present invention is shown in FIGS.
 図1には、抗体固定ビーズの凝集による被測定分子検出の原理を示す。ここでは被測定分子の一の部位を認識して結合する抗体を固定したビーズ1と被測定分子の別の部位を認識して結合する抗体を固定したビーズ2を示す。被測定分子が存在すると被測定分子にビーズ1とビーズ2が同時に結合して凝集する。この凝集を測定することで、被測定分子を検出することが可能となる。 FIG. 1 shows the principle of detecting a molecule to be measured by aggregation of antibody-immobilized beads. Here, a bead 1 on which an antibody that recognizes and binds to one site of the molecule to be measured is immobilized and a bead 2 on which an antibody that recognizes and binds to another site of the molecule to be measured is immobilized are shown. When the molecule to be measured is present, the beads 1 and 2 are simultaneously bonded to the molecule to be measured and aggregate. By measuring this aggregation, it becomes possible to detect the molecule to be measured.
 しかしながら、図2に示すように、被測定分子を含むサンプル溶液に抗体固定ビーズを作用させたとき、被測定分子に起因するビーズ凝集(図2中、「抗原認識ペア」として示す)と、被測定分子に起因するものでないビーズ凝集の両者が混在する。被測定分子に起因するものでないビーズ凝集として、抗体間の非特異吸着によるビーズ凝集(図2中、「非特異吸着ペア」として示す)、被測定分子とは異なる抗原を認識して抗体が結合しているビーズ凝集(図2中、「非抗原認識ペア」として示す)がある。そのため、単にビーズの凝集を測定しただけでは、被測定分子を正確に検出することはできない。 However, as shown in FIG. 2, when antibody-immobilized beads are allowed to act on a sample solution containing a molecule to be measured, bead aggregation caused by the molecule to be measured (shown as “antigen recognition pair” in FIG. 2), Both bead agglomeration that does not originate from the measurement molecule are mixed. As the bead aggregation not caused by the molecule to be measured, bead aggregation due to nonspecific adsorption between the antibodies (shown as “nonspecific adsorption pair” in FIG. 2), the antibody binds by recognizing an antigen different from the molecule to be measured. Bead aggregation (shown as “non-antigen recognition pair” in FIG. 2). Therefore, the molecule to be measured cannot be accurately detected simply by measuring the bead aggregation.
 本発明では、図3に示すように、捕捉部位分子を、被測定分子に起因するビーズ凝集と被測定分子に起因するものでないビーズ凝集とが混在する反応溶液に添加することで、被測定分子に起因するビーズ凝集のみを脱凝集させることができる。これにより、捕捉部位分子を添加する前に測定した凝集度(特異的結合による凝集+非特異的な凝集)と、添加後に測定した凝集度(非特異的な凝集)との差から、被測定分子に起因するビーズ凝集を算出し、被測定分子を検出することが可能となる。 In the present invention, as shown in FIG. 3, the molecule to be measured is added by adding the capture site molecule to a reaction solution in which bead aggregation caused by the molecule to be measured and bead aggregation not caused by the molecule to be measured are mixed. Only the bead aggregation resulting from the can be disaggregated. As a result, the difference between the aggregation degree measured before adding the capture site molecule (aggregation due to specific binding + nonspecific aggregation) and the aggregation degree measured after addition (nonspecific aggregation) is measured. It is possible to calculate the bead aggregation due to the molecule and detect the molecule to be measured.
 別の実施形態として、図4は、抗体固定ビーズと抗体固定基板とを用いたサンドイッチ法に基づいて被測定分子を検出する原理を示す。ここでは、被測定分子の一の部位を認識して結合する抗体を固定したビーズと被測定分子の別の部位を認識して結合する抗体を固定した基板を示す。図4の(A)に示すように、被測定分子が存在すると被測定分子にビーズに固定された抗体と基板に固定された抗体が同時に結合して、基板上にビーズが付着する。この付着を測定することで、被測定分子を検出することが可能となる。 As another embodiment, FIG. 4 shows the principle of detecting a molecule to be measured based on a sandwich method using antibody-immobilized beads and an antibody-immobilized substrate. Here, a bead on which an antibody that recognizes and binds to one site of a molecule to be measured is immobilized and a substrate on which an antibody that recognizes and binds to another site of the molecule to be measured is immobilized are shown. As shown in FIG. 4A, when a molecule to be measured is present, the antibody immobilized on the bead and the antibody immobilized on the substrate are simultaneously bound to the molecule to be measured, and the bead adheres to the substrate. By measuring this adhesion, it becomes possible to detect the molecule to be measured.
 しかしながら、図4(A)に示すように、被測定分子を含むサンプル溶液を抗体固定ビーズ及び抗体固定基板に作用させたとき、被測定分子に起因するビーズ付着と、被測定分子に起因するものでないビーズ付着の両者が混在する。被測定分子に起因するものでないビーズ付着として、抗体間の非特異吸着によるビーズ付着、被測定分子とは異なる抗原を認識して抗体が結合しているビーズ付着がある。そのため、単に基板へのビーズの付着を測定しただけでは、被測定分子を正確に検出することはできない。 However, as shown in FIG. 4 (A), when a sample solution containing a molecule to be measured is allowed to act on an antibody-immobilized bead and an antibody-immobilized substrate, the beads attached due to the molecule to be measured and those caused by the molecule to be measured Both non-bead attachments are mixed. Examples of the bead attachment not caused by the molecule to be measured include bead attachment by non-specific adsorption between antibodies, and bead attachment in which an antibody different from the molecule to be measured is recognized and bound to the antibody. Therefore, the molecule to be measured cannot be accurately detected simply by measuring the adhesion of the beads to the substrate.
 続いて、図4の(B)及び(C)に示すように、捕捉部位分子を基板に添加することで、被測定分子に起因するビーズの付着のみを解離させることができる。これにより、捕捉部位分子を添加する前に測定した付着度(特異的結合による付着+非特異的な付着)と、添加後に測定した付着度(非特異的な付着)との差から、被測定分子に起因するビーズ付着を算出し、被測定分子を検出することが可能となる。 Subsequently, as shown in FIGS. 4B and 4C, by adding the capture site molecule to the substrate, it is possible to dissociate only the beads attached due to the molecule to be measured. As a result, the difference between the degree of adhesion measured before adding the capture site molecule (adhesion due to specific binding + nonspecific adhesion) and the degree of adhesion measured after addition (nonspecific adhesion) It is possible to detect the measurement target molecule by calculating the bead adhesion caused by the molecule.
 したがって、まず本発明に係る方法では、被測定分子の一の部位に結合する第一抗体を固定した第一担体及び被測定分子の別の部位に結合する第二抗体を固定した第二担体を準備する。 Therefore, first, in the method according to the present invention, a first carrier that fixes a first antibody that binds to one site of a molecule to be measured and a second carrier that fixes a second antibody that binds to another site of the molecule to be measured. prepare.
 第一抗体及び第二抗体は、被測定分子の種類に応じて異なり、市販品を利用してもよいし、あるいは当技術分野で公知の方法により作製してもよい。抗体は、被測定分子を特異的に認識し、溶液中において安定に被測定分子に結合し、その状態を維持するものであることが好ましい。また、後述する捕捉部位分子との結合のため、被測定分子との結合部位(エピトープ)が判明していることが好ましい。 The first antibody and the second antibody differ depending on the type of molecule to be measured, and may be commercially available or may be prepared by methods known in the art. It is preferable that the antibody specifically recognizes the molecule to be measured, binds to the molecule to be measured stably in a solution, and maintains the state. Moreover, it is preferable that the binding site (epitope) with the molecule to be measured is known for binding with a capture site molecule described later.
 抗体は、被測定分子との特異的結合能を有する限り、ポリクローナル抗体であってもモノクローナル抗体であってもよい。また、完全な抗体、抗体フラグメント(Favフラグメント、一本鎖Fvフラグメント(scFv)など)、ドメイン抗体などのいずれの形態であってもよい。そのような抗体の調製は、当技術分野で公知である。対象となる被測定分子に応じて、エピトープの選択及び抗体の種類の決定を行うことによって、より高感度に被測定分子の量又は濃度を検出することが可能となる。 The antibody may be a polyclonal antibody or a monoclonal antibody as long as it has a specific binding ability to the molecule to be measured. Further, it may be in any form such as a complete antibody, an antibody fragment (Fav fragment, single chain Fv fragment (scFv), etc.), a domain antibody and the like. The preparation of such antibodies is known in the art. By selecting the epitope and determining the type of antibody according to the target molecule to be measured, it is possible to detect the amount or concentration of the molecule to be measured with higher sensitivity.
 なお、本発明は、サンドイッチ法に基づくため、第一抗体及び第二抗体が被測定分子に同時に結合することが望ましい。あるいは、被測定分子がホモ多量体である場合には、第一抗体及び第二抗体は、同じものであってもよく、被測定分子であるホモ多量体上に2個以上の抗体分子が同時に安定に結合することが望ましい。実際に被測定分子の検出を行う前に、第一抗体及び第二抗体が被測定分子に同時に結合することを確認することが望ましい。 Since the present invention is based on the sandwich method, it is desirable that the first antibody and the second antibody bind to the molecule to be measured simultaneously. Alternatively, when the molecule to be measured is a homomultimer, the first antibody and the second antibody may be the same, and two or more antibody molecules are simultaneously formed on the homomultimer that is the molecule to be measured. It is desirable to bond stably. It is desirable to confirm that the first antibody and the second antibody are simultaneously bound to the molecule to be measured before actually detecting the molecule to be measured.
 さらに本発明に係る方法において使用する抗体は、溶液中において安定に被測定分子に結合するため、その結合平衡定数は10-9M程度以下であることが望ましい。 Furthermore, since the antibody used in the method according to the present invention stably binds to the molecule to be measured in a solution, its binding equilibrium constant is desirably about 10 −9 M or less.
 また担体も、免疫アッセイにおいて一般的に使用されている担体であれば、任意の材質及び形状のものを用いることができる。 The carrier can be of any material and shape as long as it is a carrier generally used in immunoassays.
 例えば担体の材質は、当技術分野で一般的に使用される担体であれば特に限定されるものではない。具体的には、貴金属(金、銀、白金、パラジウム、ロジウム、イリジウム、ルテニウム等)、銅、アルミニウム、タングステン、モリブデン、クロム、チタン、ニッケル等の金属;ステンレス、ハステロイ、インコネル、モネル、ジュラルミン等の合金;半導体素子等の電極(トランジスタ、FETなど);シリコン;ガラス、石英ガラス、溶融石英、合成石英、アルミナ、サファイア、セラミクス、フォルステライト及び感光性ガラス等のガラス材料;ポリエステル、ポリスチレン、ポリエチレン、ポリプロピレン、ナイロン、アクリル、ポリカーボネート、ポリエチレンテレフタレート(PET)、ポリウレタン、フェノール樹脂、メラミン樹脂、エポキシ樹脂及びポリ塩化ビニル等のプラスチック;アガロース、デキストラン、セルロース、ポリビニルアルコール、ニトロセルロース、ラテックスが挙げられる。 For example, the material of the carrier is not particularly limited as long as it is a carrier generally used in this technical field. Specifically, metals such as precious metals (gold, silver, platinum, palladium, rhodium, iridium, ruthenium, etc.), copper, aluminum, tungsten, molybdenum, chromium, titanium, nickel, etc .; stainless steel, hastelloy, inconel, monel, duralumin, etc. Alloys: Electrodes of semiconductor elements (transistors, FETs, etc.); Silicon; Glass materials such as glass, quartz glass, fused silica, synthetic quartz, alumina, sapphire, ceramics, forsterite and photosensitive glass; polyester, polystyrene, polyethylene , Polypropylene, nylon, acrylic, polycarbonate, polyethylene terephthalate (PET), polyurethane, phenolic resin, melamine resin, epoxy resin and polyvinyl chloride; agarose, dextran, cellulose Scan, polyvinyl alcohol, nitrocellulose, latex and the like.
 担体の形状も、特に限定はなく、基板(例えばタイタープレート、多孔質若しくは細孔アレー、マイクロ流路、平板、フィルム等)、及び微粒子(例えば磁性粒子、ビーズ等)が挙げられる。微粒子は、適当なサイズのものを使用することができ、例えば1nm~50μm、好ましくは10nm~10μmの直径を有する微粒子を使用する。 The shape of the carrier is not particularly limited, and examples thereof include substrates (for example, titer plates, porous or pore arrays, microchannels, flat plates, films, etc.) and fine particles (for example, magnetic particles, beads, etc.). Fine particles having an appropriate size can be used. For example, fine particles having a diameter of 1 nm to 50 μm, preferably 10 nm to 10 μm are used.
 使用する担体は、被測定分子の種類や、後述する測定方法の種類に応じて、適当なものを選択する。例えば、ビーズの凝集により被測定分子を検出する場合には、第一担体及び第二担体の両方を微粒子とし、第一担体に固定した抗体と第二担体に固定した抗体が同時に被測定分子に結合することによって、微粒子である第一担体と第二担体とが凝集する。一方、第一担体及び第二担体の一方を微粒子とし、他方を基板とした場合には、第一担体に固定した抗体と第二担体に固定した抗体が同時に被測定分子に結合することによって、微粒子である担体が基板である担体に付着する。 The carrier to be used is selected appropriately depending on the type of molecule to be measured and the type of measurement method described below. For example, when detecting a molecule to be measured by agglutination of beads, both the first carrier and the second carrier are made into fine particles, and the antibody immobilized on the first carrier and the antibody immobilized on the second carrier simultaneously become molecules to be measured. By bonding, the first carrier and the second carrier which are fine particles are aggregated. On the other hand, when one of the first carrier and the second carrier is a fine particle and the other is a substrate, the antibody immobilized on the first carrier and the antibody immobilized on the second carrier are simultaneously bound to the molecule to be measured, A carrier that is a fine particle adheres to a carrier that is a substrate.
 抗体の担体への固定もまた当技術分野では公知であり、特に限定されるものではない。例えば、共有結合、イオン結合、物理吸着によって抗体を担体に固定することができる。 Immobilization of an antibody on a carrier is also known in the art and is not particularly limited. For example, the antibody can be immobilized on a carrier by covalent bond, ionic bond, or physical adsorption.
 続いて、第一抗体を固定した第一担体及び第二抗体を固定した第二担体をサンプルと接触させる。「接触」は、サンプル中に存在する被測定分子と第一抗体及び第二抗体とが結合できるように近接することができる状態にすることを意味し、例えば、サンプルと抗体を固定した担体を含む溶液とを混合すること、サンプルと抗体を固定した担体を含む溶液を抗体を固定した基板担体に流すことなどの操作が含まれる。接触の条件も免疫反応の分野で通常採用されている条件とすることができ、例えば接触は20~45℃にて1分~4時間、好ましくは25~37℃にて1分~1時間行う。 Subsequently, the first carrier immobilizing the first antibody and the second carrier immobilizing the second antibody are brought into contact with the sample. “Contact” means that a molecule to be measured existing in a sample can be brought into close proximity so that the first antibody and the second antibody can bind to each other. Operations such as mixing the solution containing the solution and flowing the solution containing the sample and the carrier on which the antibody is immobilized on the substrate carrier on which the antibody is immobilized are included. The contact conditions may be those usually employed in the field of immune reactions. For example, the contact is performed at 20 to 45 ° C. for 1 minute to 4 hours, preferably at 25 to 37 ° C. for 1 minute to 1 hour. .
 上記操作により、サンプル中の被測定分子と第一抗体及び第二抗体とが結合する。また、第一担体と第二担体とが凝集又は付着する。 By the above operation, the molecule to be measured in the sample is bound to the first antibody and the second antibody. Further, the first carrier and the second carrier are aggregated or adhered.
 次に、第一担体と第二担体の凝集又は付着を測定する。担体の凝集又は付着の測定は、当技術分野で公知の方法によって行うことができ、使用した担体の種類及び形状に応じて適宜選択することができる。例えば、第一担体及び第二担体の両方が微粒子である場合、担体の凝集は、例えば微細流路の封鎖電流により測定することができる。第一担体又は第二担体の一方が微粒子であり、他方が基板である場合には、第一担体と第二担体との付着を、例えば、前記基板を測定基板として用いて、表面プラズモン共鳴法、水晶発振子マイクロバランス法、表面散乱光測定、又は電界効果トランジスタにより測定することができる。 Next, the aggregation or adhesion of the first carrier and the second carrier is measured. The measurement of the aggregation or adhesion of the carrier can be performed by a method known in the art, and can be appropriately selected according to the type and shape of the carrier used. For example, when both the first carrier and the second carrier are fine particles, the aggregation of the carrier can be measured by, for example, a blocking current of a fine channel. In the case where one of the first carrier and the second carrier is a fine particle and the other is a substrate, adhesion between the first carrier and the second carrier, for example, using the substrate as a measurement substrate, surface plasmon resonance method It can be measured by a quartz crystal microbalance method, surface scattering light measurement, or a field effect transistor.
 続いて、被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子を反応溶液に添加する。それにより被測定分子と第一抗体との特異的結合及び/又は被測定分子と第二抗体との特異的結合が阻害され又は解離する。結果として、第一担体と第二担体とが脱凝集し、あるいは第一担体に付着した第二担体が解離する。 Subsequently, a capture site molecule consisting of or including the site to which the first antibody binds and / or the site to which the second antibody binds is added to the reaction solution. Thereby, the specific binding between the molecule to be measured and the first antibody and / or the specific binding between the molecule to be measured and the second antibody is inhibited or dissociated. As a result, the first carrier and the second carrier are disaggregated, or the second carrier attached to the first carrier is dissociated.
 被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位(抗体により捕捉される部位)は、これらの抗体が結合する被測定分子上のエピトープであることが好ましい。したがって、捕捉部位分子は、そのようなエピトープからなる又はエピトープを含むオリゴペプチド、単糖類及び多糖類分子などとすることができる。好ましくは、捕捉部位分子は、抗体の作製時に用いられた抗原からなるペプチド又は糖分子である。 The site to which the first antibody of the molecule to be measured binds and / or the site to which the second antibody binds (the site captured by the antibody) is preferably an epitope on the molecule to be measured to which these antibodies bind. Thus, capture site molecules can be oligopeptides, monosaccharides and polysaccharide molecules consisting of or containing such epitopes. Preferably, the capture site molecule is a peptide or sugar molecule consisting of the antigen used in the production of the antibody.
 あるいは、捕捉部位分子は、抗体への結合能が保持されている限り、そのようなエピトープの一部からなる又は一部を含むものであってもよい。また、捕捉部位分子は、抗体への結合能が保持されている限り、エピトープの一部のアミノ酸又は糖が改変されたペプチド又は糖分子であってもよい。ここで改変とは、エピトープが糖分子の場合、抗体結合能を保持している限りにおいて、一部の官能基を別の官能基に置換したもの、あるいは糖分子が多糖類である場合、含まれる単糖類単位の一部が別の単糖類に置換されたものを指す。一方、エピトープがオリゴペプチドである場合、改変とは、抗体結合能を保持している限りにおいて、アミノ酸上の一部の官能基を別の官能基に置換したもの、あるいはオリゴペプチドのアミノ酸配列の一部(1若しくは数個)のアミノ酸を別のアミノ酸に置換したものでもよい。 Alternatively, the capture site molecule may consist of or include a part of such an epitope as long as the ability to bind to the antibody is retained. Further, the capture site molecule may be a peptide or sugar molecule in which a part of the amino acid or sugar of the epitope is modified as long as the binding ability to the antibody is maintained. Here, the modification includes when the epitope is a sugar molecule, as long as the antibody-binding ability is maintained, a part of the functional group is substituted with another functional group, or the sugar molecule is a polysaccharide. A part of the monosaccharide unit is replaced with another monosaccharide. On the other hand, when the epitope is an oligopeptide, the modification means that a part of the functional group on the amino acid is substituted with another functional group or the amino acid sequence of the oligopeptide as long as the antibody binding ability is maintained. Some (one or several) amino acids may be substituted with other amino acids.
 捕捉部位分子を、サンプル、第一担体及び第二担体を含む反応溶液へ添加する。添加後、脱凝集又は付着の解離が生じる温度及び時間にわたり、例えば20~45℃にて1分~4時間、好ましくは25~37℃にて1分~1時間、反応を行う。 The capture site molecule is added to the reaction solution containing the sample, the first carrier and the second carrier. After the addition, the reaction is carried out at a temperature and time at which disaggregation or dissociation of adhesion occurs, for example, at 20 to 45 ° C. for 1 minute to 4 hours, preferably at 25 to 37 ° C. for 1 minute to 1 hour.
 次に、第一担体と第二担体の凝集又は付着を再度測定する。好ましくは、上述した1回目の測定方法と同じ方法により測定を行う。 Next, the aggregation or adhesion of the first carrier and the second carrier is measured again. Preferably, the measurement is performed by the same method as the first measurement method described above.
 そして、捕捉部位分子の添加前及び後の担体の凝集度又は付着度の差を求めることにより、被測定分子と第一抗体及び第二抗体との特異的結合を算出する。これによって、サンプル中に存在する被測定分子を検出することができる。 Then, the specific binding between the molecule to be measured and the first and second antibodies is calculated by determining the difference in the degree of aggregation or adhesion of the carrier before and after the addition of the capture site molecule. Thereby, the molecule to be measured present in the sample can be detected.
 本発明に係る方法では、被測定分子との結合に起因した担体の凝集のみを脱凝集させ(又は担体の付着を解離させ)、その数を算出するので、非特異吸着等の要因による(被測定分子に起因するものでない)凝集又は付着の多寡にかかわらず、被測定分子との結合に起因した担体の凝集又は付着のみを算出することができる。 In the method according to the present invention, only the aggregation of the carrier due to the binding to the molecule to be measured is disaggregated (or the adhesion of the carrier is dissociated), and the number thereof is calculated. Regardless of the amount of aggregation or adhesion (not due to the measurement molecule), only the aggregation or adhesion of the carrier due to the binding to the molecule to be measured can be calculated.
 本発明に係る方法は、適当な要素により構成された装置及び/又はキットを用いることによって、容易かつ簡便に行うことができる。
 本発明に係るサンプル中の被測定分子を検出するための装置1は、例えば図5に示すように、
 被測定分子の一の部位に結合する第一抗体を固定した第一担体及び被測定分子の別の部位に結合する第二抗体を固定した第二担体をサンプルと接触させる反応を行う反応部2と、
 サンプルを反応部2に導入するためのサンプル導入部3と、
 第一担体及び第二担体を反応部2に供給するための試薬供給部4と、
 被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子を反応部2に供給するための試薬供給部4と、
 第一担体と第二担体との凝集又は付着を測定する測定部5と、
 測定部5によって得られた測定結果を分析する算出部6と
を備えている。
The method according to the present invention can be carried out easily and simply by using an apparatus and / or kit composed of appropriate elements.
An apparatus 1 for detecting a molecule to be measured in a sample according to the present invention, for example, as shown in FIG.
Reaction unit 2 for performing a reaction in which a first carrier immobilizing a first antibody that binds to one site of a molecule to be measured and a second carrier immobilizing a second antibody that binds to another site of the molecule to be measured are brought into contact with the sample. When,
A sample introduction unit 3 for introducing a sample into the reaction unit 2;
A reagent supply unit 4 for supplying the first carrier and the second carrier to the reaction unit 2;
A reagent supply unit 4 for supplying the reaction site 2 with a capture site molecule comprising or including a site to which the first antibody of the molecule to be measured binds and / or a site to which the second antibody binds;
A measuring unit 5 for measuring aggregation or adhesion between the first carrier and the second carrier;
And a calculation unit 6 for analyzing the measurement result obtained by the measurement unit 5.
 ここで、反応部2は、抗原となる被測定分子と抗体との反応、及び/又は抗体と捕捉部位分子との反応を行う領域であり、例えば、シングル若しくはマルチウェルのプレート、シャーレ、ディッシュ、チューブ、セルなどである。反応部2は、各反応に適した温度及び条件を維持することができることが好ましい。 Here, the reaction unit 2 is a region that performs a reaction between a molecule to be measured as an antigen and an antibody, and / or a reaction between an antibody and a capture site molecule. For example, a single or multiwell plate, petri dish, dish, Tube, cell, etc. It is preferable that the reaction part 2 can maintain the temperature and conditions suitable for each reaction.
 サンプル導入部3及び試薬供給部4は、それぞれ反応部2にサンプルを導入し、試薬(第一担体、第二担体、及び捕捉部位分子)を供給することができるものであれば、当技術分野で公知の任意のものとすることができる。 As long as the sample introduction unit 3 and the reagent supply unit 4 can introduce a sample into the reaction unit 2 and supply reagents (first carrier, second carrier, and capture site molecule), respectively, this technical field. And can be any known one.
 測定部5は、上述のように、担体の凝集を測定する場合には、例えば、微細流路の封鎖電流を測定するデバイスを備えている。一方、担体の付着を測定する場合には、測定部5は、例えば、表面プラズモン共鳴法、水晶発振子マイクロバランス法、表面散乱光測定又は電界効果トランジスタにより測定するためのデバイスを備える。測定部5は、担体の凝集又は付着を測定することができるデバイス又は装置であれば、特に限定されるものではない。 As described above, the measurement unit 5 includes, for example, a device for measuring the blocking current of the fine channel when measuring the aggregation of the carrier. On the other hand, when measuring the adhesion of the carrier, the measuring unit 5 includes a device for measuring by, for example, a surface plasmon resonance method, a crystal oscillator microbalance method, a surface scattered light measurement, or a field effect transistor. The measuring unit 5 is not particularly limited as long as it is a device or an apparatus that can measure the aggregation or adhesion of the carrier.
 算出部6は、測定部5から得られた測定結果を分析するものであり、例えば、測定結果を処理するソフトウエアと計算機よりなるデータ解析部を備えている。算出部6は、測定部5から得られた測定結果を、記憶部7に記憶されたデータ(例えば検量線等のデータ)を参照することで、被測定分子と第一抗体及び第二抗体との特異的結合の量、すなわちサンプル中の被測定分子の量又は濃度を算出する。算出部6は、例えば、測定結果表示部分、測定結果を分析するユニット、コンピュータユニット等を含むことができる。 The calculation unit 6 analyzes the measurement result obtained from the measurement unit 5 and includes, for example, a data analysis unit including software and a computer for processing the measurement result. The calculation unit 6 refers to the measurement result obtained from the measurement unit 5 with reference to data stored in the storage unit 7 (for example, data such as a calibration curve), so that the molecule to be measured, the first antibody, the second antibody, Specific binding amount, that is, the amount or concentration of the molecule to be measured in the sample is calculated. The calculation unit 6 can include, for example, a measurement result display part, a unit for analyzing the measurement result, a computer unit, and the like.
 本発明に係る装置を用いて、サンプル中の被測定分子を検出する方法を実施する際のフローチャートを図6に示す。まず、試薬供給部4に試薬、すなわち第一担体、第二担体、及び捕捉部位分子を充填する。サンプル導入部3には、被測定分子の存在又は量について検出しようとするサンプルを充填する。 FIG. 6 shows a flowchart for carrying out a method for detecting a molecule to be measured in a sample using the apparatus according to the present invention. First, the reagent supply unit 4 is filled with a reagent, that is, a first carrier, a second carrier, and a capture site molecule. The sample introduction unit 3 is filled with a sample to be detected for the presence or amount of the molecule to be measured.
 次に、サンプル導入部3から反応部2へサンプルが導入され、試薬供給部4から反応部2へ第一担体及び第二担体が供給されて、反応部2において、サンプル中の被測定分子と第一担体に固定された第一抗体及び第二担体に固定された第二抗体との反応を行う。その後、反応溶液中の担体の凝集又は付着を測定部5において測定する。測定結果は、記憶部7に記憶される。 Next, the sample is introduced from the sample introduction unit 3 to the reaction unit 2, and the first carrier and the second carrier are supplied from the reagent supply unit 4 to the reaction unit 2. Reaction is performed with the first antibody immobilized on the first carrier and the second antibody immobilized on the second carrier. Thereafter, the aggregation or adhesion of the carrier in the reaction solution is measured in the measurement unit 5. The measurement result is stored in the storage unit 7.
 続いて、試薬供給部4から反応部2へ捕捉部位分子が供給されて、反応部2において、捕捉部位分子と第一抗体及び/又は第二抗体との反応を行う。その結果、反応溶液中の担体の凝集又は付着のうち、被測定分子と抗体との特異的結合に由来する凝集又は付着が脱凝集又は解離する。次に、反応溶液中の担体の凝集又は付着を測定部5において測定する。算出部6において、捕捉部位分子の添加前の測定結果と捕捉部位分子の添加後の測定結果とを比較し、必要であれば記憶部7に記憶された検量線などのデータを利用して、分析を行う。 Subsequently, the capture site molecule is supplied from the reagent supply unit 4 to the reaction unit 2, and the reaction unit 2 reacts the capture site molecule with the first antibody and / or the second antibody. As a result, among the aggregation or attachment of the carrier in the reaction solution, the aggregation or attachment derived from the specific binding between the molecule to be measured and the antibody is disaggregated or dissociated. Next, the aggregation or adhesion of the carrier in the reaction solution is measured in the measurement unit 5. In the calculation unit 6, the measurement result before addition of the capture site molecule is compared with the measurement result after addition of the capture site molecule, and if necessary, using data such as a calibration curve stored in the storage unit 7, Perform analysis.
 算出部6において、被測定分子と抗体との特異的結合に由来する凝集又は付着から、サンプル中の被測定分子の存在又は量に関する検出データを取得する。必要であれば、測定結果表示部分において得られたデータを表示する。 In the calculation unit 6, detection data relating to the presence or amount of the molecule to be measured in the sample is acquired from the aggregation or adhesion resulting from the specific binding between the molecule to be measured and the antibody. If necessary, the data obtained in the measurement result display part is displayed.
 これらの手順は、例えば制御部8によって自動的に処理されるものであってもよい。制御部8は、独立したものであってもよいし、又は算出部6及び/又は記憶部7と統合されていてもよい。 These procedures may be automatically processed by the control unit 8, for example. The control unit 8 may be independent, or may be integrated with the calculation unit 6 and / or the storage unit 7.
 また本発明に係るサンプル中の被測定分子を検出するためのキットは、
 被測定分子の一の部位に結合する第一抗体を固定した第一担体と、
 被測定分子の別の部位に結合する第二抗体を固定した第二担体と、
 被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子と
を含むものである。
Further, a kit for detecting a molecule to be measured in a sample according to the present invention,
A first carrier immobilizing a first antibody that binds to one site of a molecule to be measured;
A second carrier immobilizing a second antibody that binds to another site of the molecule to be measured;
The molecule to be measured includes a site to which the first antibody binds and / or a site to which the second antibody binds or a capture site molecule containing the site.
 本発明に係るキットは、サンドイッチ法による免疫アッセイに適した他の要素、例えば希釈用緩衝液、洗浄用緩衝液等を含んでいてもよい。また本発明に係るキットは、サンプル中の被測定分子を検出するための手順及びプロトコールを記載した説明書、検出において使用する基準値又は基準範囲を示した表などを含んでもよい。 The kit according to the present invention may contain other elements suitable for immunoassay by the sandwich method, such as a dilution buffer and a washing buffer. The kit according to the present invention may include a manual describing a procedure and protocol for detecting a molecule to be measured in a sample, a table indicating a reference value or a reference range used in detection, and the like.
 キットに含まれる構成要素は、個別に提供されてもよいし、又は単一の容器内に提供されてもよい。好ましくは、本発明に係るキットは、上述したサンプル中の被測定分子の検出方法を実施するために必要な構成要素の全てを、即時に使用することができるように、例えば調整された濃度の構成要素として含む。 The components included in the kit may be provided individually or may be provided in a single container. Preferably, the kit according to the present invention can be used in such a manner that all the components necessary for carrying out the above-described method for detecting a molecule to be measured in a sample can be used immediately. Include as a component.
 以下、実施例により、本発明をより詳細に説明するが、本発明の技術範囲は以下の実施例に限定されるものではない。当業者には、本明細書に記載した本発明の発想に基づく様々な実施形態が可能であることは明らかである。 Hereinafter, the present invention will be described in more detail by way of examples. However, the technical scope of the present invention is not limited to the following examples. It will be apparent to those skilled in the art that various embodiments based on the inventive concepts described herein are possible.
[実施例1]方法及び装置の具体例
 一実施形態において、本発明に係る方法は、以下のA及びBの要素により実施する[1]ビーズ凝集度測定工程と、D~Fの各要素により実施する[2]特異結合脱凝集工程を包含する。図7~10を参照しながら説明する。
[Example 1] Specific Example of Method and Apparatus In one embodiment, the method according to the present invention is performed by the following elements A and B: [1] a bead aggregation measurement step and elements D to F [2] A specific binding disaggregation step is performed. This will be described with reference to FIGS.
[1]ビーズ凝集度測定工程
 本発明に係る方法の[1]ビーズ凝集度測定工程は以下の各要素からなる(図7)。例えば、非特許文献2で示される公知の構成とすることができる。
[1] Bead aggregation degree measuring step [1] Bead aggregation degree measuring step of the method according to the present invention comprises the following elements (FIG. 7). For example, it can be set as the well-known structure shown by the nonpatent literature 2. FIG.
 A)容器内を隘路で仕切りその前後に電圧印加、同時に電流測定を行うことのできるセル(「隘路で仕切ったセルA」とも言う)。 A) A cell in which the inside of a container is partitioned by a bottleneck and voltage can be applied before and after that, and current can be measured simultaneously (also referred to as “cell A partitioned by bottleneck”).
 B)印加直流電圧により隘路をビーズが通過する際、通過するビーズの体積に応じた大きさの瞬間的電流減少(封鎖電流)が観察することのできる電流測定装置(「電流測定装置B」とも言う。測定部に相当する)。 B) When the beads pass through the bottleneck by the applied DC voltage, a current measuring device ("current measuring device B") that can observe an instantaneous current decrease (blocking current) having a magnitude corresponding to the volume of the passing beads Corresponds to the measuring part).
 本発明に係る方法の[1]ビーズ凝集度測定工程において、「隘路で仕切ったセルA」は、被測定分子を含有する又は含有する可能性のあるサンプル溶液を受容し、単一粒子又は凝集状態のビーズを多数包含するために、ビーズ体積に比して十分な容量を有している必要がある。具体的には数マイクロリットルから数ミリリットルの範囲内の体積の容器であることが望ましい。 In the [1] bead aggregation measurement step of the method according to the present invention, the “cell A partitioned by a bottleneck” receives a sample solution containing or possibly containing a molecule to be measured, and is a single particle or aggregate. In order to include many beads in a state, it is necessary to have a sufficient capacity compared to the bead volume. Specifically, a container having a volume in the range of several microliters to several milliliters is desirable.
 隘路で仕切ったセルAは、中央部を隘路を含む仕切りで分割されているものであり、隘路の径と本発明で用いるビーズの径と同程度であることが望ましく、隘路の長さは本発明で用いるビーズの径と同程度かその2倍程度であることが望ましい。 The cell A partitioned by the Kushiro is divided at the center by the partition including the Kushiro, and it is desirable that the diameter of the Kushiro is the same as the diameter of the beads used in the present invention. It is desirable that the diameter be the same as or twice the diameter of the beads used in the invention.
 隘路で仕切ったセルAは、仕切りの前後に電極を配し、その電極がセル内部の溶液と電気的に接続しうる形態である。また隘路で仕切ったセルAは、仕切りの前後に電極を配し、その電極を通じて内部の分割されたセルに電圧を印加することができる電源を擁している。 Cell A partitioned by a bottleneck has a configuration in which electrodes are arranged before and after the partition, and the electrodes can be electrically connected to the solution inside the cell. Further, the cell A partitioned by a bottleneck has an electric power source that can arrange an electrode before and after the partition and can apply a voltage to the divided cell inside through the electrode.
 隘路で仕切ったセルAは、仕切りの前後に電極を配し、その電極を通じて内部の分割されたセルに電圧を印加することができる電源を要しており、その結果形成された閉回路内の電流値を測定することができる「電流測定装置B」が接続できる。 The cell A partitioned by a bottleneck requires an electric power source that can arrange an electrode before and after the partition, and can apply a voltage to the divided cell inside through the electrode. A “current measuring device B” capable of measuring a current value can be connected.
 本発明に係る方法の[1]ビーズ凝集度測定工程における「電流測定装置B」は、ビーズの通過前後の微小な電流変化、及びビーズの凝集度の違いに応じて異なる微小な電流変化の差を測定できるのに十分な感度と精度を有している。 In the [1] bead aggregation degree measuring step of the method according to the present invention, the “current measuring device B” is a method of measuring a minute current change before and after passing through the beads and a difference in minute current change that varies depending on the difference in the degree of aggregation of the beads. Sufficient sensitivity and accuracy to measure
 本発明に係る方法の[1]ビーズ凝集度測定工程においては、隘路で仕切ったセルA内を抗原抗体反応を行うのにふさわしい緩衝液で満たす。仕切りの前後に直流電圧印加し、隘路を通じて生じる電流を測定できる電流測定装置Bを配置する。同セル内の仕切りの一方にビーズを導入し、直流電圧を印加することでビーズが隘路を通過するようにして、ビーズが仕切りの隘路を通過した際に電流路が封鎖されることで、生じる瞬間的な電流現象(封鎖電流)を測定する。この封鎖電流量はビーズの凝集度に応じて大きくなるためビーズ凝集度を算出することが可能となる。 In the [1] bead aggregation measurement step of the method according to the present invention, the cell A partitioned by a bottleneck is filled with a buffer suitable for performing an antigen-antibody reaction. A current measuring device B that can measure a current generated through a bottleneck by applying a DC voltage before and after the partition is disposed. It is generated by introducing beads into one of the partitions in the cell and applying a DC voltage so that the beads pass through the bottleneck and the current path is blocked when the beads pass through the bottleneck of the divider. Measure the instantaneous current phenomenon (blocking current). Since this blocking current amount increases according to the degree of aggregation of beads, the degree of aggregation of beads can be calculated.
 図7は、ビーズ凝集度測定工程の概略を示した図である。はじめにセルAの上流セル内において被測定分子を含む又はその可能性のあるサンプル溶液に抗体固定ビーズを作用させ、一部のビーズが凝集する状態にして、電圧印加して隘路を通って下流セル側にビーズが流れるようにする。その過程で電流測定装置Bにより瞬間的電流量減少(電流低下ピーク)を測定する。脱凝集反応後も同様のプロセスにより、電流測定装置により電流低下ピーク測定を行う。 FIG. 7 is a diagram showing an outline of the bead aggregation degree measuring step. First, an antibody-immobilized bead is allowed to act on a sample solution containing or possibly containing a molecule to be measured in the upstream cell of cell A, and a part of the beads is aggregated, and a voltage is applied to the downstream cell through a bottleneck. Allow the beads to flow to the side. During this process, the current measurement device B measures the instantaneous decrease in current amount (current decrease peak). After the deagglomeration reaction, the current drop peak measurement is performed with a current measuring device by the same process.
[2]特異結合脱凝集工程
 本発明に係る方法の[2]特異結合脱凝集工程は以下の各要素からなる(図8)。
[2] Specific binding disaggregation step The [2] specific binding disaggregation step of the method according to the present invention comprises the following elements (FIG. 8).
 C)被測定分子が抗体により捕捉される捕捉部位(エピトープとなるペプチド分子若しくは糖鎖分子)のみからなる若しくは該捕捉部位を含む分子(「捕捉部位分子」という)。 C) A molecule consisting only of or containing a capture site (peptide molecule or sugar chain molecule serving as an epitope) where the molecule to be measured is captured by an antibody (referred to as “capture site molecule”).
 一実施形態では、本発明において使用する捕捉部位分子は、抗体分子を作製する際に用いたエピトープ(ペプチド又は糖分子)そのものであることが望ましい。典型例としては、抗体を作製する際に抗原(被測定分子に対応するもの)となる糖タンパク質若しくはタンパク質の一部である糖分子、又はオリゴペプチドで、抗体を産生する動物体内に注入されるエピトープを捕捉部位分子として用いることができる。本発明において使用する捕捉部位分子は、抗体への結合能が保持されている限りエピトープ(ペプチド又は糖分子)の一部であってもよい。また、捕捉部位分子は、抗体への結合能が保持されている限りエピトープの一部のアミノ酸が改変されていてもよい。ここで改変とは、エピトープが糖分子の場合、抗体結合能を保持している限りにおいて、一部の官能基を別の官能基に置換したもの、あるいは糖分子が多糖類である場合、含まれる単糖類単位の一部が別の単糖類に置換されたものを指す。一方、エピトープがオリゴペプチドである場合、改変とは、抗体結合能を保持している限りにおいて、アミノ酸上の一部の官能基を別の官能基に置換したもの、あるいはオリゴペプチドのアミノ酸配列の一部(1若しくは数個)のアミノ酸を別のアミノ酸に置換したものでもよい。 In one embodiment, the capture site molecule used in the present invention is desirably the epitope (peptide or sugar molecule) itself used in producing the antibody molecule. As a typical example, a glycoprotein that is an antigen (corresponding to a molecule to be measured) or a glycomolecule that is a part of a protein, or an oligopeptide, which is injected into an animal body that produces an antibody. Epitopes can be used as capture site molecules. The capture site molecule used in the present invention may be a part of an epitope (peptide or sugar molecule) as long as the binding ability to the antibody is maintained. In addition, as long as the capture site molecule retains the ability to bind to an antibody, some of the amino acids of the epitope may be modified. Here, the modification includes when the epitope is a sugar molecule, as long as the antibody-binding ability is maintained, a part of the functional group is substituted with another functional group, or the sugar molecule is a polysaccharide. A part of the monosaccharide unit is replaced with another monosaccharide. On the other hand, when the epitope is an oligopeptide, the modification means that a part of the functional group on the amino acid is substituted with another functional group or the amino acid sequence of the oligopeptide as long as the antibody binding ability is maintained. Some (one or several) amino acids may be substituted with other amino acids.
 D)被測定分子を2箇所以上の異なる部位で認識して結合(捕捉)する2種以上の抗体分子(第一抗体及び第二抗体に相当する)。 D) Two or more types of antibody molecules (corresponding to the first antibody and the second antibody) that recognize and bind (capture) the molecule to be measured at two or more different sites.
 本発明において使用する抗体分子は、同時に被測定分子に結合しうることが望ましい。しかし、被測定分子がホモ多量体である場合には、抗体分子は1種でもよく、被測定分子の1分子に抗体分子が2以上結合することになる。 It is desirable that the antibody molecule used in the present invention can simultaneously bind to the molecule to be measured. However, when the molecule to be measured is a homomultimer, the number of antibody molecules may be one, and two or more antibody molecules bind to one molecule of the molecule to be measured.
 また本発明において使用する抗体分子は、被測定分子を特異的に認識し、溶液中において安定に被測定分子に結合し、その状態を維持するものであることが好ましい。 The antibody molecule used in the present invention is preferably one that specifically recognizes the molecule to be measured, binds to the molecule to be measured stably in a solution, and maintains the state.
 本発明において使用する抗体分子は、被測定分子上の2箇所以上を同時に認識して結合することのできる2種以上の抗体分子のペアであることが好ましい。しかしながら、被測定分子がホモ多量体である場合には、被測定分子上の1箇所を認識して結合する1種の抗体分子を使用することができ、その場合、被測定分子であるホモ多量体上に2個以上の抗体分子が同時に安定に結合できることが好ましい。 The antibody molecule used in the present invention is preferably a pair of two or more antibody molecules capable of simultaneously recognizing and binding two or more sites on the molecule to be measured. However, when the molecule to be measured is a homomultimer, one type of antibody molecule that recognizes and binds to one site on the molecule to be measured can be used. It is preferable that two or more antibody molecules can be stably and simultaneously bound on the body.
 本発明において使用する抗体分子は、溶液中において安定に被測定分子に結合するため、その結合平衡定数は10-9M程度以下であることが望ましい。 Since the antibody molecule used in the present invention stably binds to the molecule to be measured in a solution, its binding equilibrium constant is desirably about 10 −9 M or less.
 また本発明において使用する抗体分子は、ビーズ上に固定した状態で溶液中において安定に被測定分子に結合し、その状態を維持するものであることが望ましい。 In addition, it is desirable that the antibody molecule used in the present invention is one that stably binds to a molecule to be measured in a solution while being immobilized on a bead and maintains that state.
 E)上記2種以上の抗体分子を独立に別々のビーズに固定したもの又は混在させて固定したビーズ(「抗体固定ビーズ」とも言う。第一担体及び第二担体に相当する)。 E) Beads in which two or more types of antibody molecules are independently fixed to separate beads or mixed and fixed (also referred to as “antibody-fixed beads”, which corresponds to a first carrier and a second carrier).
 本発明において使用するビーズは、被測定分子がホモ多量体である場合には、1種の抗体分子を固定した1種のビーズでもよい。 When the molecule to be measured is a homomultimer, the bead used in the present invention may be one kind of bead on which one kind of antibody molecule is immobilized.
 本発明おいて使用するビーズは、固定されている抗体が被測定分子を特異的に認識し、溶液中において安定に被測定分子に結合することにより凝集し、またビーズの凝集状態を被測定分子の濃度に応じて変化させるものであることが望ましい。 In the beads used in the present invention, the immobilized antibody specifically recognizes the molecule to be measured and aggregates by binding to the molecule to be measured stably in a solution. It is desirable that it be changed according to the concentration of.
 本発明おいて使用するビーズのビーズ径は隘路で仕切ったセルの隘路と拮抗する程度の大きさであることが望ましい。 The bead diameter of the beads used in the present invention is desirably large enough to antagonize the bottleneck of the cell partitioned by the bottleneck.
 また、本発明おいて使用するビーズのビーズ径は隘路で仕切ったセル内で印加電圧により容易に泳動される程度の大きさであることが望ましい。具体的には直径数十ナノメートルから数マイクロメートル程度の大きさであることが望ましい。 In addition, the bead diameter of the beads used in the present invention is desirably large enough to be easily migrated by an applied voltage in a cell partitioned by a bottleneck. Specifically, it is desirable that the diameter is about several tens of nanometers to several micrometers.
 本発明おいて使用するビーズの材質は、隘路で仕切ったセル内で印加電圧により容易に泳動される程度の比重を持つ材質であることが望ましい。しかし緩衝液より比重が軽いと浮力を受け、セル内の壁に付着する恐れがあるため、緩衝液と同程度で少し比重が高いものが望ましい。 The material of the beads used in the present invention is preferably a material having a specific gravity that can be easily migrated by an applied voltage in a cell partitioned by a bottleneck. However, if the specific gravity is lighter than that of the buffer solution, it may receive buoyancy and may adhere to the walls in the cell.
 図8は、特異結合脱凝集工程の概略を示した図である。(1)から(2)の過程で、被測定分子を含む又はその可能性があるサンプル溶液に抗体固定ビーズ(E)を作用させ、ビーズ凝集状態を生じさせる。図中、左側の点線囲み内に、一の捕捉部位分子(半円形)と、別の捕捉部位分子(三角形)がそれぞれの被測定分子上の部位を認識する抗体の結合(捕捉)形状に相補的になるようデザインされていることを示す。(2)から(3)の過程で、捕捉部位分子(C)をビーズ(E)に対して大過剰量添加し、(加熱・振盪などを行い)凝集ビーズを脱凝集させる。 FIG. 8 is a diagram showing an outline of the specific binding disaggregation process. In the process of (1) to (2), the antibody-immobilized beads (E) are allowed to act on the sample solution containing or possibly containing the molecule to be measured, thereby producing a bead aggregation state. In the figure, within the dotted box on the left side, one capture site molecule (semi-circle) and another capture site molecule (triangle) complement the antibody binding (capture) shape that recognizes the site on each measured molecule. Indicates that it is designed to be In the process from (2) to (3), a large excess amount of the capture site molecule (C) is added to the beads (E), and the aggregated beads are deaggregated (by heating and shaking).
 本発明に係る方法の[2]特異結合脱凝集工程では、予め抗体分子(D)を固定したビーズを被測定分子を含む又はその可能性があるサンプル溶液に作用させることでビーズが凝集した状態にしたものを用意しておいて、しかる後に捕捉部位分子(C)を作用させることで、被測定分子に起因する凝集のみを解離させ、Cの作用前後における解離状態を比較することで抗原抗体間相互作用のみを抽出する。 In the [2] specific binding disaggregation step of the method according to the present invention, the beads are aggregated by allowing the beads to which the antibody molecule (D) has been immobilized in advance to act on a sample solution containing or possibly having a molecule to be measured. And then the capture site molecule (C) is allowed to act to dissociate only the aggregate caused by the molecule to be measured, and the dissociation state before and after the action of C is compared to obtain the antigen antibody Extract only interactions.
 本発明では、最初に被測定分子に作用させることで凝集したビーズを含む溶液について[1]ビーズ凝集度測定工程を用いてビーズ凝集度を算出し、次に回収した溶液について[2]特異結合脱凝集工程で抗原抗体間相互作用に起因するビーズ凝集のみを脱凝集させ、最後に再度[1]ビーズ凝集度測定工程を用いてビーズ凝集度を算出し、最初の凝集度との差をもって、抗原抗体間相互作用の量を算出する。 In the present invention, for a solution containing beads aggregated by first acting on a molecule to be measured, [1] the degree of bead aggregation is calculated using the bead aggregation degree measurement step, and then [2] specific binding for the recovered solution. In the disaggregation step, only the bead aggregation resulting from the antigen-antibody interaction is disaggregated, and finally [1] the bead aggregation degree measurement step is used again to calculate the bead aggregation degree, and with the difference from the initial aggregation degree, The amount of antigen-antibody interaction is calculated.
 図9は、上述した具体的な一実施形態のフロー図を示す。図中、右側の囲み内に第一回目の電流測定時と第二回目の電流測定時における電流低下ピークの測定結果の模式図を示す。ここで、第一回目の電流測定時には大きなピーク(被測定分子に起因するビーズ凝集と、非特異吸着等を要因とするビーズ凝集との和)が多く観察され、捕捉部位分子添加による脱凝集反応後の第二回目の電流測定時には大きなピークが減少している。この減少数が被測定分子に起因するビーズ凝集数を示している。 FIG. 9 shows a flowchart of the specific embodiment described above. In the drawing, the schematic diagram of the measurement result of the current drop peak during the first current measurement and the second current measurement is shown in the right box. Here, during the first current measurement, many large peaks (the sum of bead aggregation due to the molecule to be measured and bead aggregation due to non-specific adsorption, etc.) are often observed, and the disaggregation reaction due to the addition of the capture site molecule At the later second current measurement, a large peak decreases. This decrease number indicates the number of beads aggregated due to the molecule to be measured.
 図10は、封鎖電流測定を利用した場合の、ビーズ凝集度測定工程と特異結合脱凝集工程の関係を表した構成図にフロー順を示した図である。 FIG. 10 is a diagram showing the flow order in the configuration diagram showing the relationship between the bead aggregation degree measurement step and the specific binding disaggregation step when the blocking current measurement is used.
 具体的な一実施形態では、予め被測定分子を含む又はその可能性があるサンプル溶液に予想される被測定分子の数より十分に多い数の抗体固定ビーズ(E)を作用させ、一部のビーズが凝集する状態にする。このとき非特異吸着等の要因により、被測定分子に起因するものでないビーズ凝集も起こる。この溶液を隘路で仕切ったセル(A)の一方のセルに導入し、電圧印加してビーズが隘路を通過するように一方のセルから他方のセルに通過させるようにする。このとき第一回目の電流測定(3)を行う。即ち電流測定装置(B)を用いてビーズ通過時にビーズの凝集度に応じて変化する瞬間的な電流低下現象を連続的に測定する。 In a specific embodiment, a sufficiently larger number of antibody-immobilized beads (E) than the expected number of molecules to be measured are allowed to act on a sample solution that previously contains or possibly contains the molecules to be measured. The beads are aggregated. At this time, due to factors such as nonspecific adsorption, bead aggregation that is not caused by the molecule to be measured also occurs. This solution is introduced into one of the cells (A) partitioned by a bottleneck, and a voltage is applied so that the beads pass from one cell to the other so that the bottles pass through the bottleneck. At this time, the first current measurement (3) is performed. That is, the instantaneous current drop phenomenon which changes according to the degree of aggregation of the beads when passing the beads is continuously measured using the current measuring device (B).
 このとき生じる瞬間的な電流低下現象(電流低下ピーク)は、その現象が観察されたときに通過したビーズ凝集の有無、凝集の度合い、に比例して大きさが異なる。大きなピークが多いほどビーズ凝集の数が大きく、従って被測定分子に起因するビーズ凝集と、非特異吸着等の要因による(被測定分子に起因するものでない)ビーズ凝集との和が多いことになる。 The momentary current drop phenomenon (current drop peak) that occurs at this time varies in proportion to the presence or absence of the bead aggregation that passed when the phenomenon was observed and the degree of aggregation. The larger the number of large peaks, the larger the number of bead aggregations. Therefore, the sum of the bead aggregation caused by the molecule to be measured and the bead aggregation due to nonspecific adsorption and other factors (not caused by the molecule to be measured) is larger. .
 電流低下現象が終息したら、他方のセルに移動した凝集ビーズを含む溶液を取り出し、捕捉部位分子(C)を添加し、被測定分子による凝集ビーズのみ脱凝集させる反応を行う。 When the current lowering phenomenon has ended, the solution containing the aggregated beads that have moved to the other cell is taken out, a capture site molecule (C) is added, and a reaction is performed to deaggregate only the aggregated beads by the molecule to be measured.
 捕捉部位分子(C)を添加し、被測定分子による凝集ビーズのみ脱凝集させる反応を行う際は、温度を上昇させ反応を促進したり、攪拌によって反応を促進したりすることなども望ましい。 When adding a capture site molecule (C) and performing a reaction for deaggregating only the aggregated beads of the molecule to be measured, it is also desirable to increase the temperature to promote the reaction or to accelerate the reaction by stirring.
 脱凝集反応の終息を見計らって、同溶液を再度隘路で仕切ったセル(A)の一方のセルに導入し、電圧印加してビーズが隘路を通過するように一方のセルから他方のセルに通過させるようにする。このとき第二回目の電流測定を行う(7)。即ち電流測定装置(B)を用いてビーズ通過時にビーズの凝集度に応じて変化する瞬間的な電流低下現象を連続的に測定する。 In anticipation of the end of the deagglomeration reaction, the same solution is again introduced into one cell of the cell (A) partitioned by a bottleneck, and a voltage is applied so that the beads pass from one cell to the other cell so as to pass through the bottleneck. I will let you. At this time, the second current measurement is performed (7). That is, the instantaneous current drop phenomenon which changes according to the degree of aggregation of the beads when passing the beads is continuously measured using the current measuring device (B).
 このとき生じる瞬間的な電流低下現象(電流低下ピーク)のうち大きなピークは、被測定分子による凝集ビーズのみ脱凝集させる反応を行った後であるため、非特異吸着等の要因による(被測定分子に起因するものでない)ビーズ凝集に起因するものが主となる。 The large peak of the instantaneous current drop phenomenon (current drop peak) that occurs at this time is after the reaction to disaggregate only the aggregated beads by the molecule to be measured. It is mainly due to bead aggregation.
 第一回目の電流測定時と第二回目の電流測定時における大きなピークの数の差が被測定分子に起因する凝集を表すことになる(8)。 The difference in the number of large peaks between the first current measurement and the second current measurement represents aggregation caused by the molecule to be measured (8).
 この方法では、被測定分子による凝集ビーズのみ脱凝集させ、その数を算出するので、非特異吸着等の要因による(被測定分子に起因するものでない)ビーズ凝集の多寡にかかわらず、被測定分子による凝集ビーズの数を算出することができる。 In this method, only aggregated beads by the molecule to be measured are disaggregated and the number is calculated, so the molecule to be measured regardless of the number of bead aggregations due to factors such as non-specific adsorption (not due to the molecule to be measured) The number of aggregated beads can be calculated.
 別の一実施形態では、第一回目の電流測定(3)を終了した際、他方のセルに移動した凝集ビーズを含む溶液を取り出さずに同セル内に捕捉部位分子(C)を添加し、被測定分子による凝集ビーズのみ脱凝集させる反応を行う。 In another embodiment, when the first current measurement (3) is completed, the capture site molecule (C) is added to the cell without removing the solution containing the aggregated beads that have moved to the other cell, A reaction for deaggregating only the aggregated beads by the molecule to be measured is performed.
 脱凝集反応の終息を見計らって、同セルから最初に添加したほうのセルに向かってビーズが隘路を通過するように逆方向の電圧を印加してビーズを元のセルに移動させる。このとき第二回目の電流測定を行う(7)。 When the end of the deagglomeration reaction is expected, a reverse voltage is applied so that the beads pass through the bottleneck toward the first added cell from the same cell, and the beads are moved to the original cell. At this time, the second current measurement is performed (7).
 この実施形態においても、第一回目の電流測定時と第二回目の電流測定時における大きなピークの数の差が被測定分子に起因する凝集を表すことになる(8)。 Also in this embodiment, the difference in the number of large peaks between the first current measurement and the second current measurement represents aggregation caused by the molecule to be measured (8).
 この実施形態においては、セル内で脱凝集反応を促進させるために、セルの温度を高温側に調節できる機能が付与されていることが望ましい。 In this embodiment, in order to promote the deagglomeration reaction in the cell, it is desirable to have a function capable of adjusting the cell temperature to the high temperature side.
 好ましい一実施形態では、被測定分子を含む又はその可能性があるサンプルは、非特異吸着が極端に多くなることを避けるために、血清又は血漿であることが望ましい。 In a preferred embodiment, it is desirable that the sample containing or possibly containing the molecule to be measured is serum or plasma in order to avoid excessive nonspecific adsorption.
 本発明に係る装置及び方法を用いることにより、例えば被測定分子を癌細胞により特異的に分泌される分子とした場合には、癌の早期診断や予後判定、癌の進行のモニタリングへの応用が可能となる。 By using the apparatus and method according to the present invention, for example, when the molecule to be measured is a molecule that is specifically secreted by cancer cells, it can be applied to early diagnosis and prognosis of cancer and monitoring of cancer progression. It becomes possible.
[実施例2]捕捉部位分子による被測定分子の抗体分子結合阻害効果を示した表面プラズモン共鳴(SPR)実験
 ヒト心筋トロポニンI(human cardiac toroponin I; hcTnI)とそのアミノ酸配列中41番目から49番目までのアミノ酸をエピトープとして作製されたIgG抗体19C7、及びそのエピトープ配列のオリゴペプチド(Ile-Ser-Ala-Ser-Arg-Lys-Leu-Gln-Leu(配列番号1);ISApep)を準備した。ビオチン化したIgG抗体19C7をGEヘルスケア社ビアコアのセンサチップSAに固定したものに対し、一定濃度のhcTnI溶液を作用させ、これに順に濃度を上げたISApepを添加することで、センサチップ上に反応する分子量が減少することを見出し、捕捉部位分子(ISApep)による被測定分子(hcTnI)と抗体分子(IgG抗体19C7)間の相互作用の阻害を確認した。
[Example 2] Surface plasmon resonance (SPR) experiment showing the antibody molecule binding inhibitory effect of the molecule to be measured by the capture site molecule Human cardiac toroponin I (hcTnI) and its amino acid sequence from the 41st to the 49th The IgG antibody 19C7 produced using the amino acids up to and including the epitope sequence oligopeptide (Ile-Ser-Ala-Ser-Arg-Lys-Leu-Gln-Leu (SEQ ID NO: 1); ISApep) was prepared. Biotinylated IgG antibody 19C7 is immobilized on GE Healthcare Biacore sensor chip SA, and a constant concentration of hcTnI solution is allowed to act. The molecular weight to be reacted was found to decrease, and the inhibition of the interaction between the molecule to be measured (hcTnI) and the antibody molecule (IgG antibody 19C7) by the capture site molecule (ISApep) was confirmed.
 測定はGEヘルスケア社のビアコアX100を用いて行った。IgG抗体19C7を固定したセンサチップSAはGEヘルスケア社の説明書に従い作製した。IgG抗体19C7を固定したセンサチップSAをビアコアX100に装着し、HBS-EP+緩衝液(10mM HEPES、150mM NaCl、3mM EDTA、0.05%v/v SurfactantP20)で十分平衡化を行った。そこに10μL/minの流速でHBS-EP+緩衝液を用いて0.1μMに調整したhcTnI溶液を90秒間添加し、センサグラムを測定した。つぎに0.1μMに調整したhcTnI溶液に1μM ISApepを加えた溶液を90秒間添加し、センサグラムを測定した。さらに、0.1μMに調整したhcTnI溶液に100μM ISApepを加えた溶液を90秒間添加し、センサグラムを測定した。最後に、0.1μMに調整したhcTnI溶液に1mM ISApepを加えた溶液を90秒間添加し、センサグラムを測定した。 The measurement was performed using GE Healthcare Biacore X100. The sensor chip SA on which the IgG antibody 19C7 was immobilized was prepared according to the instructions of GE Healthcare. The sensor chip SA on which the IgG antibody 19C7 was fixed was mounted on the Biacore X100, and sufficiently equilibrated with HBS-EP + buffer (10 mM HEPES, 150 mM NaCl, 3 mM EDTA, 0.05% v / v Surfactant P20). The hcTnI solution adjusted to 0.1 μM using HBS-EP + buffer at a flow rate of 10 μL / min was added thereto for 90 seconds, and the sensorgram was measured. Next, a solution obtained by adding 1 μM ISApep to the hcTnI solution adjusted to 0.1 μM was added for 90 seconds, and the sensorgram was measured. Further, a solution obtained by adding 100 μM ISApep to the hcTnI solution adjusted to 0.1 μM was added for 90 seconds, and the sensorgram was measured. Finally, a solution obtained by adding 1 mM ISApep to the hcTnI solution adjusted to 0.1 μM was added for 90 seconds, and the sensorgram was measured.
 図11に、上述の計4回の試行におけるセンサグラムを重ね書きしたものを示す。添加した捕捉部位分子(ISApep)が高濃度になるに従い被測定分子(hcTnI)と抗体分子(IgG抗体19C7)間の相互作用を示すセンサグラムの高さが低くなっており、これは即ち捕捉部位分子(ISApep)による拮抗阻害作用を示すものである。 FIG. 11 shows the sensorgrams overwritten for the above four trials. As the added capture site molecule (ISApep) increases in concentration, the height of the sensorgram indicating the interaction between the molecule to be measured (hcTnI) and the antibody molecule (IgG antibody 19C7) decreases, that is, the capture site. It shows an antagonistic inhibitory action by a molecule (ISApep).
[実施例3]抗体分子物理吸着ビーズへの抗原結合によるビーズ凝集体の形成に対し、捕捉部位(エピトープ)ペプチドを用いた凝集体形成阻害実験
1.抗体固定ビーズを用いて、抗原-抗体分子間相互作用による抗原サンドイッチビーズ凝集体形成実験を行った。
[Example 3] Aggregate formation inhibition experiment using a capture site (epitope) peptide for the formation of bead aggregates by antigen binding to antibody molecule physical adsorption beads. Using antibody-immobilized beads, an antigen sandwich bead aggregate formation experiment was performed by antigen-antibody molecule interaction.
 保存溶液で最終的に0.2%w/vとなるポリスチレンビーズは比重を1.0とするとφ83nmの粒子の濃度は10.7nMとなる。各抗体保存溶液から100μLをとり混合し、そこに分散媒保存溶液で希釈し50nMに調整したcTnI溶液を、0、2、6、20、60μL混合して37℃、60分間振盪した。cTnI溶液を0、2、6、20、60μL混合した際の、ビーズ個数に対する抗原分子数は各々、おおよそ次のとおりとなる;1:0(+0μL)、1:0.1(+2μL)、1:0.3(+6μL)、1:1(+20μL)、1:3(+60μL)。反応後のビーズ混和液について動的光散乱測定装置(LB550、堀場製作所)を用いた粒径測定実験を行った。その結果、1:3(+60μL)混和条件で80%<の2ビーズ凝集状態となった。(100%が2ビーズ凝集すると2^1/3=25%の径増大となるはずで、下表より20%程度の径増大となっていることからもわかる)。 When the specific gravity of a polystyrene bead that is 0.2% w / v in the storage solution is 1.0, the concentration of particles having a diameter of 83 nm is 10.7 nM. 100 μL of each antibody stock solution was mixed and mixed therewith, and 0, 2, 6, 20, 60 μL of the cTnI solution diluted with the dispersion medium stock solution and adjusted to 50 nM was mixed and shaken at 37 ° C. for 60 minutes. When the cTnI solution is mixed with 0, 2, 6, 20, 60 μL, the number of antigen molecules relative to the number of beads is approximately as follows: 1: 0 (+0 μL), 1: 0.1 (+2 μL), 1 : 0.3 (+6 μL), 1: 1 (+20 μL), 1: 3 (+60 μL). The bead mixture after the reaction was subjected to a particle size measurement experiment using a dynamic light scattering measurement device (LB550, HORIBA, Ltd.). As a result, a 2-bead aggregation state of 80% <under the mixing condition of 1: 3 (+60 μL) was obtained. (If 100% aggregates 2 beads, the diameter should increase 2 ^ 1/3 = 25%, and the diameter increases by about 20% from the table below).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
2.上記の抗原サンドイッチビーズ凝集体形成に捕捉部位(エピトープ)ペプチドを添加し凝集体形成阻害を行った。 2. The capture site (epitope) peptide was added to the above-mentioned antigen sandwich bead aggregate formation to inhibit aggregate formation.
 保存溶液で最終的に0.2%w/vとなるポリスチレンビーズは比重を1.0とするとφ83nmの粒子の濃度は10.7nMとなる。各抗体保存溶液から100μLをとり混合し、そこに分散媒保存溶液で希釈し50nMに調整したcTnI溶液を、60μL混合して37℃、60分間振盪した。cTnI溶液を60μL混合した際の、ビーズ個数に対する抗原分子数は1:3となる。このとき、2ビーズ凝集体系成立は最大となる(80%<、(表1))。ここに捕捉部位分子としてエピトープペプチド溶液を混和し、エピトープペプチドの濃度に応じて競合的に凝集体形成阻害がおこるかどうかを観測した。 When the specific gravity of a polystyrene bead that is 0.2% w / v in the storage solution is 1.0, the concentration of particles having a diameter of 83 nm is 10.7 nM. 100 μL of each antibody stock solution was taken and mixed, and 60 μL of the cTnI solution diluted with the dispersion medium stock solution and adjusted to 50 nM was mixed and shaken at 37 ° C. for 60 minutes. When 60 μL of cTnI solution is mixed, the number of antigen molecules relative to the number of beads is 1: 3. At this time, the formation of the two-bead aggregation system is maximized (80% <, (Table 1)). Here, an epitope peptide solution was mixed as a capture site molecule, and it was observed whether or not aggregate formation inhibition occurred competitively depending on the concentration of the epitope peptide.
 分散媒保存溶液で希釈し1μMとしたエピトープペプチド溶液を順に0、1、10、100μL混合して37℃、60分間振盪した。cTnI溶液を0、1、10、100μL混合した際の、ビーズ個数に対する抗原分子数は各々、おおよそ次のとおりとなる;1:0(+0μL)、1:1(+1μL)、1:10(+10μL)、1:100(+100μL)。 The epitope peptide solution diluted to 1 μM with a dispersion medium storage solution was mixed in order with 0, 1, 10, 100 μL and shaken at 37 ° C. for 60 minutes. When the cTnI solution is mixed with 0, 1, 10, 100 μL, the number of antigen molecules relative to the number of beads is approximately as follows: 1: 0 (+0 μL), 1: 1 (+1 μL), 1:10 (+10 μL) ), 1: 100 (+100 μL).
 その結果、1:0(+0μL)、1:1(+1μL)混和条件では20%増大した径の減少は見られなかったが、1:10(+10μL)で約10%増大に減じ、1:100(+100μL)でほぼもとの径に戻った。 As a result, although a decrease in diameter increased by 20% was not observed under mixing conditions of 1: 0 (+0 μL) and 1: 1 (+1 μL), it decreased to about 10% increase at 1:10 (+10 μL), and 1: 100 (+100 μL) almost returned to the original diameter.
 本発明に係る装置及び方法は、高感度かつ正確にサンプル中の被測定分子を検出するのに有用であり、疾患等の早期診断法を含む医療、医薬、食品、環境などの分野に応用可能である。 The apparatus and method according to the present invention are useful for detecting a molecule to be measured in a sample with high sensitivity and accuracy, and can be applied to medical, pharmaceutical, food, environmental and other fields including early diagnosis of diseases and the like. It is.

Claims (15)

  1.  サンプル中の被測定分子を検出するための装置であって、
     被測定分子の一の部位に結合する第一抗体を固定した第一担体及び被測定分子の別の部位に結合する第二抗体を固定した第二担体をサンプルと接触させる反応を行う反応部と、
     上記サンプルを上記反応部に導入するためのサンプル導入部と、
     第一担体及び第二担体を上記反応部に供給するための試薬供給部と、
     上記被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子を上記反応部に供給するための試薬供給部と、
     第一担体と第二担体との凝集又は付着を測定する測定部と、
     上記測定部によって得られた測定結果を分析する算出部と
    を備えることを特徴とする装置。
    An apparatus for detecting a molecule to be measured in a sample,
    A reaction unit for performing a reaction in which a first carrier immobilizing a first antibody that binds to one site of a molecule to be measured and a second carrier immobilizing a second antibody that binds to another site of the molecule to be measured are brought into contact with a sample; ,
    A sample introduction part for introducing the sample into the reaction part;
    A reagent supply unit for supplying the first carrier and the second carrier to the reaction unit;
    A reagent supply unit for supplying a capture site molecule comprising or including a site to which the first antibody of the molecule to be measured binds and / or a site to which the second antibody binds to the reaction unit;
    A measurement unit for measuring aggregation or adhesion between the first carrier and the second carrier;
    An apparatus comprising: a calculation unit that analyzes a measurement result obtained by the measurement unit.
  2.  第一担体及び第二担体の両方が微粒子である、請求項1に記載の装置。 The apparatus according to claim 1, wherein both the first carrier and the second carrier are fine particles.
  3.  前記測定部が、微細流路の封鎖電流を測定するデバイスを備える、請求項2に記載の装置。 The apparatus according to claim 2, wherein the measurement unit includes a device that measures a blocking current of a fine channel.
  4.  前記微粒子が10 nm~10μmの直径を有する、請求項2に記載の装置。 The apparatus according to claim 2, wherein the fine particles have a diameter of 10 nm to 10 μm.
  5.  第一担体及び第二担体の一方が微粒子であり、他方が基板である、請求項1に記載の装置。 The apparatus according to claim 1, wherein one of the first carrier and the second carrier is a fine particle, and the other is a substrate.
  6.  前記測定部が、表面プラズモン共鳴法、水晶発振子マイクロバランス法、表面散乱光測定又は電界効果トランジスタにより測定するためのデバイスを備える、請求項5に記載の装置。 The apparatus according to claim 5, wherein the measurement unit includes a device for measuring by a surface plasmon resonance method, a crystal oscillator microbalance method, a surface scattered light measurement, or a field effect transistor.
  7.  被測定分子の一の部位に結合する第一抗体を固定した第一担体及び被測定分子の別の部位に結合する第二抗体を固定した第二担体をサンプルと接触させ、それにより第一担体と第二担体とが凝集又は付着する工程、
     第一担体と第二担体との凝集又は付着を測定する工程、
     上記被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子を反応溶液に添加し、それにより被測定分子と第一抗体との特異的結合及び/又は被測定分子と第二抗体との特異的結合が阻害され又は解離する工程、
     第一担体と第二担体との凝集又は付着を測定する工程、
     上記捕捉部位分子の添加前及び後の担体の凝集度又は付着度の差に基づいて、上記被測定分子と第一抗体及び第二抗体との特異的結合を算出する工程
    を含む、サンプル中の被測定分子を検出する方法。
    A first carrier immobilizing a first antibody that binds to one site of the molecule to be measured and a second carrier immobilizing a second antibody that binds to another site of the molecule to be measured are brought into contact with the sample, whereby the first carrier A step of agglomerating or adhering to the second carrier,
    Measuring aggregation or adhesion between the first carrier and the second carrier;
    A capture site molecule consisting of or containing the site to which the first antibody of the molecule to be measured binds and / or the site to which the second antibody binds is added to the reaction solution, whereby the molecule to be measured and the first antibody Specific binding and / or specific binding between the molecule to be measured and the second antibody is inhibited or dissociated,
    Measuring aggregation or adhesion between the first carrier and the second carrier;
    Including the step of calculating specific binding between the molecule to be measured and the first antibody and the second antibody based on the difference in the degree of aggregation or adhesion of the carrier before and after the addition of the capture site molecule. A method for detecting a molecule to be measured.
  8.  第一担体及び第二担体の両方が微粒子である、請求項7に記載の方法。 The method according to claim 7, wherein both the first carrier and the second carrier are fine particles.
  9.  第一担体と第二担体との凝集を微細流路の封鎖電流により測定する、請求項8に記載の方法。 The method according to claim 8, wherein the aggregation of the first carrier and the second carrier is measured by a blocking current of a fine channel.
  10.  前記微粒子が10 nm~10μmの直径を有する、請求項8に記載の方法。 The method according to claim 8, wherein the fine particles have a diameter of 10 nm to 10 µm.
  11.  第一担体及び第二担体の一方が微粒子であり、他方が基板である、請求項7に記載の方法。 The method according to claim 7, wherein one of the first carrier and the second carrier is a fine particle, and the other is a substrate.
  12.  第一担体と第二担体との付着を、前記基板を測定基板として用いた、表面プラズモン共鳴法、水晶発振子マイクロバランス法、表面散乱光測定、又は電界効果トランジスタにより測定する、請求項11に記載の方法。 The adhesion between the first carrier and the second carrier is measured by a surface plasmon resonance method, a crystal oscillator microbalance method, a surface scattered light measurement, or a field effect transistor using the substrate as a measurement substrate. The method described.
  13.  前記被測定分子が、ペプチド、タンパク質、糖鎖、細胞、ウイルス、及び細菌からなる群より選択されるものである、請求項7に記載の方法。 The method according to claim 7, wherein the molecule to be measured is selected from the group consisting of peptides, proteins, sugar chains, cells, viruses, and bacteria.
  14.  前記捕捉部位分子が、単糖類及び多糖類分子、並びにオリゴペプチドからなる群より選択されるものである、請求項7に記載の方法。 The method according to claim 7, wherein the capture site molecule is selected from the group consisting of monosaccharide and polysaccharide molecules, and oligopeptides.
  15.  サンプル中の被測定分子を検出するためのキットであって、
     被測定分子の一の部位に結合する第一抗体を固定した第一担体と、
     上記被測定分子の別の部位に結合する第二抗体を固定した第二担体と、
     上記被測定分子の第一抗体が結合する部位及び/又は第二抗体が結合する部位からなる又は該部位を含む捕捉部位分子と
    を含むことを特徴とするキット。
    A kit for detecting a molecule to be measured in a sample,
    A first carrier immobilizing a first antibody that binds to one site of a molecule to be measured;
    A second carrier immobilizing a second antibody that binds to another site of the molecule to be measured;
    A kit comprising: a capture site molecule comprising or including a site to which the first antibody of the molecule to be measured binds and / or a site to which the second antibody binds.
PCT/JP2015/060557 2015-04-03 2015-04-03 Method and device for identifying amount of antigen-antibody interaction WO2016157513A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060557 WO2016157513A1 (en) 2015-04-03 2015-04-03 Method and device for identifying amount of antigen-antibody interaction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/060557 WO2016157513A1 (en) 2015-04-03 2015-04-03 Method and device for identifying amount of antigen-antibody interaction

Publications (1)

Publication Number Publication Date
WO2016157513A1 true WO2016157513A1 (en) 2016-10-06

Family

ID=57004038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/060557 WO2016157513A1 (en) 2015-04-03 2015-04-03 Method and device for identifying amount of antigen-antibody interaction

Country Status (1)

Country Link
WO (1) WO2016157513A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176199A (en) * 1995-12-26 1997-07-08 Iatron Lab Inc Anti-factor xa-tissue factor pathway inhibitor complex moanoclonal antibody and its use
JP2003527068A (en) * 1998-05-19 2003-09-16 ノースウエスタン・ユニバーシテイ Angiostatin receptor
JP2007093559A (en) * 2005-09-30 2007-04-12 Kyushu Univ Sensor for detecting and classifying chemical substance by specific molecular structure
JP2010071693A (en) * 2008-09-16 2010-04-02 Fujifilm Corp Sensing method, sensing device, inspection chip, and inspection kit
JP2013036865A (en) * 2011-08-09 2013-02-21 Hitachi High-Technologies Corp Nanopore-based analyzer
JP2013524829A (en) * 2010-04-30 2013-06-20 テクノロジアン テュトキムスケスクス ヴェーテーテー Method for diagnosing the risk of type 1 diabetes and preventing the onset of type 1 diabetes
JP2013543978A (en) * 2010-11-16 2013-12-09 ベス・イスラエル・ディーコネス・メディカル・センター,インコーポレイテッド GPR101 transgenic mouse, its use and screening method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09176199A (en) * 1995-12-26 1997-07-08 Iatron Lab Inc Anti-factor xa-tissue factor pathway inhibitor complex moanoclonal antibody and its use
JP2003527068A (en) * 1998-05-19 2003-09-16 ノースウエスタン・ユニバーシテイ Angiostatin receptor
JP2007093559A (en) * 2005-09-30 2007-04-12 Kyushu Univ Sensor for detecting and classifying chemical substance by specific molecular structure
JP2010071693A (en) * 2008-09-16 2010-04-02 Fujifilm Corp Sensing method, sensing device, inspection chip, and inspection kit
JP2013524829A (en) * 2010-04-30 2013-06-20 テクノロジアン テュトキムスケスクス ヴェーテーテー Method for diagnosing the risk of type 1 diabetes and preventing the onset of type 1 diabetes
JP2013543978A (en) * 2010-11-16 2013-12-09 ベス・イスラエル・ディーコネス・メディカル・センター,インコーポレイテッド GPR101 transgenic mouse, its use and screening method
JP2013036865A (en) * 2011-08-09 2013-02-21 Hitachi High-Technologies Corp Nanopore-based analyzer

Similar Documents

Publication Publication Date Title
US20220033918A1 (en) Co-binder assisted assay methods
US20200191779A1 (en) Methods for conducting assays
Mohammadi et al. Emerging technologies and commercial products in exosome-based cancer diagnosis and prognosis
JP5677835B2 (en) Blood group antibody screening
JP2022522480A (en) Electrochemiluminescent labeled probe for use in immunoassays, method of using the probe and kit containing the probe
EP3460474B1 (en) Method and kit for target molecule detection
JP2003527606A5 (en)
WO2018000898A1 (en) Zinc transporter protein 8 antibody chemiluminescence immunoassay kit and preparation method therefor
JP5401724B2 (en) Biosensing method using coated magnetic fine particles and biosensing device used in the method
WO2008053822A1 (en) Method of detecting specific bond reaction of molecule by single molecule fluorometry
US10241112B2 (en) Serology assays
JP2011027421A (en) Analysis chip and method of analyzing specimen
JP2010505107A (en) Ultrasonic method
Zhao et al. Competitive immunoassay for microliter protein samples with magnetic beads and near-infrared fluorescence detection
EP2796880B1 (en) Platelet allo-antigen typing and platelet antibody tests
JP6386591B2 (en) Novel detection method for detection object in sample and detection kit using the same
JP2003014765A (en) Sensor and method for detecting reaction of substance using the same
WO2016157513A1 (en) Method and device for identifying amount of antigen-antibody interaction
JP2009128233A (en) Detecting method of target material
JP2010002393A (en) Detection method of target material
JP2010266218A (en) Immunological sensor chip and immunological sensor device equipped with the same
JP2008002959A (en) Biological material interaction-detecting/recovering method, and device therefor
JP2008002961A (en) Biological material detecting/recovering method, device therefor, recognizing element, and biological material analytical method
JP2006329756A (en) Quality inspection method of probe beads
JP2022158808A (en) Test method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887659

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP