WO2016157317A1 - Substrate processing device, semiconductor device production method, and recording medium - Google Patents

Substrate processing device, semiconductor device production method, and recording medium Download PDF

Info

Publication number
WO2016157317A1
WO2016157317A1 PCT/JP2015/059708 JP2015059708W WO2016157317A1 WO 2016157317 A1 WO2016157317 A1 WO 2016157317A1 JP 2015059708 W JP2015059708 W JP 2015059708W WO 2016157317 A1 WO2016157317 A1 WO 2016157317A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
substrate
etching
processing chamber
dispersion plate
Prior art date
Application number
PCT/JP2015/059708
Other languages
French (fr)
Japanese (ja)
Inventor
野内 英博
Original Assignee
株式会社日立国際電気
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立国際電気 filed Critical 株式会社日立国際電気
Priority to PCT/JP2015/059708 priority Critical patent/WO2016157317A1/en
Publication of WO2016157317A1 publication Critical patent/WO2016157317A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching

Definitions

  • the present disclosure relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a recording medium.
  • a gas having a characteristic of etching a silicon layer for example, when performing a process of removing (etching) a silicon (Si) layer formed on a substrate) (for example, The substrate is treated with iodine heptafluoride (IF 7 ) gas.
  • IF 7 iodine heptafluoride
  • An object of the present disclosure is to provide a substrate processing technique suitable for performing a silicon layer removal process using a gas having a characteristic of etching a silicon layer.
  • a processing chamber in which a substrate having a silicon layer on the surface is accommodated, a gas supply system that supplies an etching gas for etching the silicon layer, and the etching that is supplied from the gas supply system
  • a dispersion plate configured to pass the etching gas supplied from the supply pipe of the gas supply system to the gas introduction unit.
  • a shower plate configured to allow the etching gas that has passed through the dispersion plate to pass through and be introduced into the processing chamber, and the supply pipe with respect to the pressure in the space between the dispersion plate and the shower plate
  • the dispersion plate is configured such that the ratio of the pressure in the space between the dispersion plate and the dispersion plate is 1.07 or less.
  • the above substrate processing technology it is possible to improve the quality of the substrate to be processed in the process of etching the silicon layer on the substrate using the etching gas.
  • FIG. 5 is a cross-sectional view taken along line AA in FIG.
  • FIG. 5 is a sectional view taken along line BB in FIG. It is an upper surface sectional view for explaining the composition of the conveyance system of the substrate processing apparatus concerning an example.
  • the partial pressure of the IF 7 gas is a diagram showing an evaluation result of the etching rate and uniformity in 80 Pa.
  • the partial pressure of the IF 7 gas is a diagram showing an evaluation result of the etching rate and uniformity in 300 Pa. Is a diagram showing the correlation between the partial pressure and the etching rate of the IF 7 gas.
  • the substrate processing apparatus 10R is a substrate processing apparatus that performs an etching process on a silicon layer on a substrate using a processing gas including an etching gas.
  • the substrate processing apparatus 10R includes a main body container 31 and a gas introduction unit 5R.
  • the main body container 31 includes a susceptor 2 on which a substrate is placed.
  • the gas introduction unit 5R is configured such that the processing gas supplied to the gas introduction port 516 passes through the dispersion plate 512R and the processing gas that passes through the dispersion plate 512R passes through and is introduced into the processing chamber 50R.
  • a shower plate 511R A shower plate 511R.
  • the dispersion plate 512R and the shower plate 511R are provided so as to be parallel to each other, and each of the dispersion plate 512R and the shower plate 511R includes a plurality of holes through which the processing gas passes.
  • the distance (Hs) between the shower plate 511R and the susceptor 2 is 5 to 10 mm.
  • IF 7 gas as an etching gas under such conditions, it was confirmed that a spot-like singular point (Spot) was generated immediately below the hole of the dispersion plate 512R. That is, etching progresses only at a specific portion on the substrate, and the etching process is uneven. This may be caused by the fact that the etching gas IF 7 gas is not stably supplied into the wafer surface.
  • FIG. 10 is a diagram showing the pressure ratio of Pu and Ps (Pu / Ps) and the state of occurrence of point-like singularities.
  • FIG. 11 is a diagram showing the calculation result of the gas temperature change due to the adiabatic expansion effect with respect to Pu / Ps.
  • FIG. 12A and FIG. 12B are diagrams showing the generation mechanism of point-like singularities.
  • the temperature decrease of the IF 7 gas due to adiabatic expansion is one factor in the generation of point singularities. That is, the larger the Pu / Ps, the larger the volume change before and after the dispersion plate 512R, and the greater the degree of temperature decrease. It is presumed that the IF 7 gas whose temperature has decreased is discharged from the holes of the dispersion plate 512R, passes through the shower plate 511R without obtaining sufficient diffusion, and proceeds to adsorption and desorption on the wafer.
  • FIG. 11 shows an example of diatomic molecule A and monoatomic molecule B assuming that the supplied IF 7 gas exists as IF 7 and decomposition is proceeding.
  • the temperature instantaneously drops below the boiling point of IF 7 (about 5 ° C.), and a part of IF 7 Or the whole may be liquefied.
  • FIG. 12A when the IF 7 gas at normal temperature passes through the holes of the dispersion plate 512R, the temperature decreases due to adiabatic expansion and becomes low temperature IF 7 gas. Thereafter, as shown in FIG.
  • the low-temperature IF 7 gas repeatedly collides with the surrounding normal-temperature gas and the wall surface, and the temperature rise gradually proceeds (temperature recovery).
  • the wafer processing temperature is, for example, about 20 to 60 ° C. and the chamber temperature of the processing chamber 50R is also a low temperature such as room temperature (about 25 ° C.)
  • the low temperature IF 7 gas arrives at the wafer 200 without recovering the temperature.
  • the possibility of low temperature adsorption is high.
  • sufficient heat exchange is performed by colliding with the shower plate 511R between the dispersion plate 512R and the shower plate 511R. it IF 7 that cold IF 7 and gas and liquefaction could not be assumed that form a point-like singularities at the core on the wafer 200.
  • FIG. 13 is a sectional view schematically showing the substrate processing apparatus according to the embodiment.
  • the substrate processing apparatus 10 is a substrate processing apparatus that performs an etching process on a silicon layer formed on a substrate using a processing gas containing an etching gas.
  • the substrate processing apparatus 10 includes a main body container 31 and a gas introduction unit 5.
  • the main body container 31 includes a susceptor 2 on which a substrate is placed.
  • the gas introduction unit 5 is configured such that the processing gas supplied from the gas introduction port 516 passes therethrough, and the processing gas that passes through the dispersion plate 512 passes through and is introduced into the processing chamber 50.
  • the dispersion plate 512 and the shower plate 511 are provided so as to be parallel to each other, and each of the dispersion plate 512 and the shower plate 511 includes a plurality of holes through which the processing gas passes.
  • the pressure in the processing chamber 50 is Pc
  • the pressure in the space 513 above the shower plate 511 is Ps
  • the pressure in the space 515 above the dispersion plate 512 is Pu
  • the dispersion plate 512 is configured as described above.
  • Pu is larger than Ps, and the difference (pressure loss) between Pu and Ps is set to 7% or less.
  • the rapid temperature drop or liquefaction of etching gas such as in the comparative example due to adiabatic expansion (mist) is not generated, when using the IF 7 as an etching gas Even so, the occurrence of point-like singularities in etching can be suppressed.
  • IF 7 has a very high boiling point (about 5 ° C. at atmospheric pressure) compared to a general etching gas, and therefore liquefaction due to adiabatic expansion is particularly likely to occur. Therefore, the effect by the structure of the gas introduction part 5 is remarkable.
  • the shower plate 511 has a pressure difference between the pressure (Ps) in the space 513 between the dispersion plate 512 and the shower plate 511 and the pressure (Pc) in the processing chamber 50, that is, the pressure difference between the front and back of the shower plate 511 is 1 Pa or more and 10 Pa or less. Configured to be within range. Further, it is desirable that the pressure loss before and after the shower plate 511 is smaller than that of the dispersion plate 512.
  • the processing gas diffused by the dispersion plate 512 can be further diffused and rectified to uniformly supply the processing gas (etching gas) to the substrate in the processing chamber 50.
  • the holes of the dispersion plate 512 and the shower plate 511 are provided at positions that do not overlap each other. Accordingly, it is possible to reduce the probability that the processing gas whose temperature has decreased when passing through the holes of the dispersion plate 512 directly enters the processing chamber 50 without colliding with the shower plate 511. Accordingly, since the processing gas whose temperature has been increased by colliding with the shower plate 511 can be supplied into the processing chamber 50, it is possible to prevent the gas from adsorbing to the substrate at a low temperature and the liquefied gas from directly adhering to the substrate. Generation of point-like singularities in the etching of the layer can be suppressed.
  • the temperature control is performed by the temperature adjustment unit of the susceptor 2 so that the processing temperature of the substrate in the processing chamber 50 is maintained in a range of 20 ° C. or more and 60 ° C. or less, for example.
  • the temperature adjustment unit is configured by at least one of a heater and a chiller.
  • the temperature of the processing chamber 50 (particularly the temperature of the wall surface) is set to room temperature (about 25 ° C.). Note that the temperature of the processing chamber 50 may be higher than room temperature.
  • IF 7 gas is used as an etching gas, the melting point (97 ° C.) of IF 5 that is a reaction byproduct when the silicon layer is etched. ).
  • the silicon layer is etched using IF 7 gas as an etching gas
  • the temperature of the dispersion plate 512, the shower plate 511, and the surrounding gas is low, when the temperature of the etching gas is reduced due to adiabatic expansion, even if the etching gas collides with these, the temperature recovery does not proceed and the liquefaction occurs. (Misting) is particularly likely to occur. Therefore, under this condition, the effect (liquefaction suppression) by the configuration of the present embodiment becomes more remarkable.
  • the susceptor 2 can be moved up and down by an elevating mechanism (not shown), a substrate transfer position (height when a wafer is carried in / out of the processing chamber 50), and a substrate processing position (substrate) It is possible to move to the height at the time of etching.
  • the partial pressure of the etching gas is the partial pressure of the etching gas supplied to the substrate, for example, the partial pressure of the etching gas with respect to the total pressure in the processing chamber 50.
  • FIG. 14 is a diagram showing the results of trials for evaluating the etching rate and uniformity multiple times (12 times) when IF 7 gas is used as the etching gas and the partial pressure of IF 7 gas is 80 Pa.
  • FIG. 15 is a diagram showing the results of trials for evaluating the etching rate and uniformity multiple times (11 times) when IF 7 gas is used as the etching gas and the partial pressure of IF 7 gas is 300 Pa.
  • FIG. 16 is a diagram showing the correlation between the partial pressure of IF 7 gas, which is an etching gas, and the etching rate.
  • an etching rate defect (E / R defect) sometimes occurs even in a process condition where etching proceeds. Sometimes.
  • the etching rate (Etch Rate) is approximately 600 to 800 nm / min. On the other hand, it was confirmed that the etching rate did not suddenly occur like # 6 and # 12.
  • Such a phenomenon is assumed to be caused by a reaction process between the IF 7 gas and the silicon layer. That is, it is considered that IF 7 is caused to undergo etching in the reaction process of the silicon layer formed on the substrate surface and IF 7 + Si ⁇ SiF 4 + IF 5 . More specifically, when the surface of the substrate after etching is observed with an SEM or the like, it progresses in the form of a fine crater, so that the fluorine component of IF 7 is separated from silicon where the silicon bond is easily cut off in sequence. It is considered that the etching of silicon proceeds by separating from the substrate surface as SiF 4 (silicon tetrafluoride) and IF 5 (iodine pentafluoride).
  • etching process of silicon using IF 7 gas in order to maintain high selectivity of silicon removal by IF 7 gas, it goes through a reaction process in a low temperature range (for example, about 20 to 60 ° C.), and plasma or high temperature heating is performed. Etching proceeds slowly at the initial stage of the reaction because there is no supply of such high energy. For this reason, the variation in incubation time until SiF 4 and IF 5 are separated increases, and it is considered that an etching rate defect occurs due to a slight difference in conditions even under the same process conditions.
  • a low temperature range for example, about 20 to 60 ° C.
  • the etching progress is very slow when the partial pressure of the IF 7 gas is 40-50 Pa or less. In the range of 50 Pa to 200 Pa, although etching (etching) proceeds, the state is unstable. On the other hand, when the partial pressure of IF 7 gas is 300 Pa or more, stable etching (Etching) can be performed.
  • the partial pressure of IF 7 gas is desirably 1000 Pa or less.
  • etching defects can be prevented by setting the partial pressure (component force) of IF 7 in the processing chamber to a certain value or more, preferably 300 Pa or more.
  • the pressure condition before and after the dispersion plate 512 is set to Pu / Ps ⁇ 1.07, thereby reducing the occurrence of point-like singularities on the wafer surface in the etching process of the silicon layer using the etching gas. It becomes possible to do. Further, when the partial pressure of the etching gas in the processing chamber is set to a certain value or more, preferably 300 Pa or more, it is possible to reduce the occurrence of defective etching of the silicon layer. These effects are more remarkable when IF 7 gas is used as an etching gas for removing silicon.
  • the substrate processing apparatus according to the present embodiment is a single-wafer type substrate processing apparatus for carrying out one step of a semiconductor device manufacturing method.
  • FIG. 1 is a cross-sectional view of the main part during processing in the substrate processing apparatus according to the embodiment.
  • FIG. 2 is a cross-sectional view of a main part of the substrate processing apparatus according to the embodiment, and shows a state where the susceptor is lowered and is in a transfer position where the transfer process can be performed.
  • FIG. 3 is a cross-sectional view showing a gas introduction part according to the embodiment.
  • FIG. 4 is a cross-sectional view for explaining the configuration of the susceptor of the substrate processing apparatus according to the embodiment.
  • 5A is a cross-sectional view taken along the line AA in FIG. 4, and shows a heating element path.
  • FIG. 5B is a cross-sectional view taken along the line BB in FIG. 4 and shows a cooling flow path.
  • FIG. 6 is a top cross-sectional view for explaining the configuration of the transport system of the substrate processing apparatus according to the embodiment.
  • FIG. 7 is a block diagram for explaining the structure of the controller of the substrate processing
  • the substrate processing apparatus 10 includes a processing container 30 for processing a substrate 1 such as a wafer, a substrate transport container 39 in which the substrate 1 is carried in and out adjacent to the processing container 30, and And a gas supply unit (gas supply system) 6 for supplying gas to the processing container 30.
  • a processing container 30 for processing a substrate 1 such as a wafer
  • a substrate transport container 39 in which the substrate 1 is carried in and out adjacent to the processing container 30, and
  • a gas supply unit (gas supply system) 6 for supplying gas to the processing container 30.
  • the processing container 30 is composed of a container main body 31 having an upper opening and a lid 32 that closes the upper opening of the container main body 31, and forms a sealed processing chamber 50 therein.
  • the processing chamber 50 may be formed in a space surrounded by the lid 32 and the substrate mounting table (hereinafter referred to as susceptor) 2.
  • the container body 31 is provided with a susceptor 2 having a built-in exhaust port 7, a transfer port 8, and a temperature adjustment unit.
  • the exhaust port 7 is provided on the upper portion of the container body 31 and communicates with the annular passage 14 formed in the upper inner periphery of the container body 31 so as to exhaust the inside of the processing chamber 50 through the annular passage 14.
  • the transfer port 8 is provided on one side below the exhaust port 7 of the container body 31, and the transfer port 8 is transferred from the substrate transfer chamber 40 formed in the transfer container 39 to the processing chamber 50 in the processing container 30.
  • the unprocessed substrate 1 such as a silicon wafer is carried in via the substrate, or the processed substrate 1 is unloaded from the processing chamber 50 to the substrate transfer chamber 40.
  • a gate valve 9 for isolating the atmosphere between the substrate transfer chamber 40 and the processing chamber 50 is provided at the transfer port 8 of the container body 31 so as to be openable and closable.
  • the susceptor 2 is provided in the processing chamber 50 of the processing container 30 so as to be movable up and down, and the substrate 1 is held on the surface of the susceptor 2.
  • the substrate 1 is adjusted to a temperature within a predetermined range by a temperature adjusting unit (described later) built in the susceptor 2.
  • a plurality of support pins 4 are erected on the substrate support pin up-and-down mechanism 11, and these support pins 4 are provided so as to penetrate the temperature adjusting unit and the susceptor 2.
  • the support pin 4 is configured to be able to protrude and retract from the surface of the susceptor 2 in accordance with raising or lowering one or both of the susceptor 2 and the substrate support pin raising / lowering mechanism 11.
  • the plurality of support pins 4 include the susceptor. 2, the substrate 1 can be supported on a plurality of support pins 4, and the substrate 1 can be loaded and unloaded between the processing chamber 50 and the substrate transfer chamber 40 via the transfer port 8. . Further, as shown in FIG. 1, the substrate processing apparatus 10 is in a position where the susceptor 2 is raised and can be processed through an intermediate position above the transfer position A (hereinafter, this position is set). The support pins 4 do not protrude from the susceptor 2 (that is, they are hidden below the upper surface of the susceptor 2), and the substrate 1 is placed on the susceptor 2.
  • the susceptor 2 is provided such that its support shaft 24 is connected to an elevating mechanism and moves up and down in the processing chamber 50.
  • the lifting mechanism can adjust the vertical position of the susceptor 2 (processing position A, substrate processing position B, etc.) in the processing chamber 50 in multiple stages in each process such as a substrate loading process, a substrate processing process, and a substrate unloading process. It is configured as follows.
  • the susceptor 2 is mainly composed of a plate portion 241 and a stem portion 242, and is designed so that it can be deployed to various devices by changing the design of the attachment portion 243.
  • a heating element (heater) 244 that is a heating unit of the temperature adjustment unit and a cooling flow path (chiller) 245 that is a cooling unit are arranged on the plate unit 241 from above.
  • the heating element 244 and the cooling channel 245 are based on an arc-shaped element arrangement, and are arranged so as to be double or multiple.
  • the diameters of the heating element 244 and the cooling channel 245 are, for example, as follows.
  • the portion indicated by the width D4 forms the inner peripheral portion
  • the portion indicated by the width D5 forms the outer peripheral portion. That is, the heating element 244 and the cooling flow path 245 are each composed of at least an inner peripheral part and an outer peripheral part, and the inner peripheral part of the heating element 244 is provided so as to overlap the inner peripheral part of the cooling flow path 245 in the vertical direction.
  • the outer peripheral portion of the heating element 244 is provided so as to overlap with the outer peripheral portion of the cooling channel 245 in the vertical direction. With such a configuration, heat transfer loss from the heating element 244 to the cooling flow path 245 can be reduced, and temperature control can be facilitated.
  • the temperature adjustment unit may be configured by one of the heating element 244 and the cooling flow path 245.
  • the material of the susceptor 2 main body includes aluminum, stainless steel, Hastelloy and the like.
  • An interface plate 246 is provided on the bottom surface of the stem portion 242, and is fixed to the attachment portion 243 with bolts (not shown) from the back surface. Further, a heat detector (T / C) 247 for detecting the temperature of the plate part 241 is inserted from below the attachment part 243. Since the plate portion 241 of the susceptor 2 needs to be integrally formed with the T / C guide tube 248, a material suitable for welding such as stainless steel or hastelloy is preferable.
  • the heat detector 247 is configured such that the tip (heat detector) is disposed below the upper surface of the susceptor 2 and above the lower end of the heating element 244.
  • the control unit 500 by controlling a heating element power supply 253 and a refrigerant supply unit 264, which will be described later, by the control unit 500, electric power is supplied to the heating element 244 while supplying the refrigerant to the cooling channel 245.
  • the tip of the heat detector 247 below the upper surface of the susceptor 2 and above the lower end of the heating element 244
  • the temperature of the substrate due to reaction heat generated during substrate processing (etching processing) can be reduced. Changes can be detected.
  • the cooling channel 245 below the heating element 244 (away from the substrate 1), it is possible to prevent the substrate 1 from being overcooled. Even if it is cooled too much, the substrate 1 can be heated because the heating element 244 is on the upper side. Furthermore, when the substrate 1 is placed on the susceptor 2, the temperature overshoot due to reaction heat generated when the substrate 1 is processed can be suppressed by reducing the power supply.
  • the initial temperature Tw of the substrate 1 is assumed to be around room temperature (about 20 to 25 ° C.).
  • the susceptor 2 always introduces a refrigerant having a set temperature Tc (about 15 to 20 ° C.) into the cooling channel 245.
  • the heat generating body 244 is adjusted to a set temperature Th (about 40 to 50 ° C.), and heat transfer between the heat generating body 244 and the cooling channel 245 is mainly performed when substrate processing is not performed. . After the substrate processing is started, the temperature of the substrate 1 rises due to reaction heat.
  • the control unit 500 performs monitoring and control.
  • the temperature of the substrate 1 after the process becomes Ttg, and the temperature can be kept below a predetermined temperature (for example, about 50 to 60 ° C.), suppressing deterioration of selectivity in silicon etching, It becomes possible to stabilize the performance of substrate processing.
  • the thickness of the substrate 1 is about 0.8 mm, and the substrate 1 is placed on a float pin (not shown) made of a material such as ceramics or quartz in order to prevent the back surface of the substrate 1 from coming into direct contact with the metal on the upper surface of the susceptor 2. Can also be placed.
  • the height of the float pin is about 0.1 to 0.3 mm.
  • the gas supply unit (gas supply system) 6 is connected to the gas introduction unit 5 and configured to supply a processing gas into the processing chamber 50 via the gas introduction unit 5. Specifically, the gas supply unit 6 is connected to the gas introduction unit 5 and communicates with the gas introduction port 516. The gas supply unit 6 opens and closes the gas flow paths provided in the gas supply tubes 15a and 15b. Provided with valves 18a and 18b and mass flow controllers (MFC) 16a and 16b as gas flow controllers, a desired type of gas is supplied into the processing chamber 50 at a desired gas flow rate and a desired gas ratio. It is configured to be possible.
  • MFC mass flow controllers
  • an IF 7 gas that is an etching gas in the processing gas is supplied from the gas supply source 17a
  • an N 2 gas that is an additive gas in the processing gas is supplied from the gas supply source 17b.
  • the gas supply sources 17 a and 17 b may be included in the gas supply unit 6. Further, the N 2 gas supplied from the gas supply source 17b may be used as an inert gas (purge gas) in a purge process described later.
  • the substrate processing apparatus 10 includes an exhaust unit 60 that exhausts the atmosphere in the processing chamber 50.
  • the exhaust unit 60 includes an exhaust pipe 231, a pressure regulator (APC) 59, an on-off valve 243, and a vacuum pump 51, and is configured to exhaust the atmosphere in the processing chamber 50 from the exhaust port 7.
  • the pressure in the processing chamber 50 is controlled to a desired value by adjusting the gas supply amount and the exhaust amount by the MFCs 16a and 16b and the APC 59 provided in the exhaust part.
  • the lid 32 is provided with a gas introduction part 5 and a gas supply part 6.
  • the gas introduction unit 5 is disposed to face the substrate 1 in the processing chamber 50 and is provided to supply the processing gas into the processing chamber 50.
  • the gas introduction part 5 is provided so as to fit into the hole of the lid 32, and has a shower plate 511 that has a large number of gas holes and disperses the gas in a shower shape, and a plurality of gas holes.
  • a gas inlet 516 provided in the main body.
  • the dispersion plate 512 is provided with gas holes so as to realize a pressure condition where the pressure ratio Pu / Ps ⁇ 1.07 before and after the dispersion plate 512. (That is, the pressure Pu of the space 515 is larger than the pressure Ps of the space 513, and the difference between Pu and Ps is 7% or less.)
  • the hole diameter of the gas holes of the dispersion plate 512 is ⁇ 1.0 mm. above ⁇ 2.0mm less, the distribution of the pore provided such that the 0.5 / cm 2 or less 0.1 / cm 2 or more. Thereby, the pressure condition of Pu / Ps ⁇ 1.07 is realized.
  • the hole diameter of the dispersion plate 512 is 30 cm, it is more preferable that the hole diameter is 1.0 mm and the number of holes is 110 (the hole distribution is 0.16 holes / cm 2 ).
  • the case of one dispersion plate 512 is shown, but the present invention is not limited to this, and a plurality of dispersion plates may be used.
  • the ratio of the upper pressure Pu of the uppermost dispersion plate to the lower pressure Ps of the lowermost dispersion plate may satisfy Pu / Ps ⁇ 1.07. .
  • the upper limit of Pu / Ps is usually Pu / Ps> 1.
  • the shower plate 511 is provided with gas holes so as to realize a pressure condition in which the pressure difference Pc ⁇ Ps before and after the shower plate 511 is in a range of 1 Pa to 10 Pa.
  • the diameter of the gas holes of the shower plate 511 is set to ⁇ 1.0 mm to ⁇ 3.0 mm, and the hole distribution is set to 2.9 / cm 2 to 10 / cm 2 .
  • the gas holes of the shower plate 511 have a hole diameter of ⁇ 1.0 mm and the number of holes of 2600 (the distribution of the holes is 3.68 / cm 2 ).
  • the hole of the dispersion plate 512 and the hole of the shower plate 511 are provided at positions that do not overlap each other.
  • a point-like singular point is likely to be generated particularly in the etching process.
  • the structure of the dispersion plate 512 is configured as described above to realize the condition that the pressure ratio Pu / Pc ⁇ 1.07 before and after the dispersion plate 512.
  • the MFC 16a, 16b or APC59 The pressure ratio Pu / Pc may be adjusted by controlling at least one of them. That is, the pressure ratio Pu / Pc is adjusted to a desired ratio by controlling the MFCs 16a and 16b and the APC 59 to adjust the pressure Pu in the space 515 and the pressure in the processing chamber 50.
  • the distance (Hs) between the shower plate 511 and the upper surface of the susceptor 2 is preferably set in the range of 10 to 30 mm.
  • the etching rate can be kept high as compared with the case where the distance is set to another distance.
  • a transport system for transporting a substrate includes an EFEM (Equipment FrontEnd Module) 100, a load lock chamber unit 200, and a transfer module unit (substrate transport chamber) 40.
  • EFEM Equipment FrontEnd Module
  • load lock chamber unit 200 load lock chamber unit
  • transfer module unit substrate transport chamber
  • the EFEM 100 includes an FOUP (Front Opening Unified Unified Pod) 110 and 120 and an atmospheric transfer robot 130 which is a first transfer unit that transfers a wafer from each FOUP to the load lock chambers 250 and 260.
  • the FOUPs 110 and 120 have 25 wafers mounted thereon, and the arm unit of the atmospheric transfer robot 130 extracts the wafers from the FOUPs five by five.
  • the load lock chamber unit 200 includes load lock chambers 250 and 260 and buffer units for holding the wafers transferred from the FOUP in the load lock chambers 250 and 260, respectively.
  • the substrate transfer chamber 40 includes a transfer module 310 used as a transfer chamber, and the load lock chambers 250 and 260 described above are transferred via a gate valve 313 (corresponding to the gate valve 9 in FIGS. 1 and 2). Attached to the module 310.
  • the transfer module 310 is provided with a vacuum arm robot unit 320 used as a second transfer unit.
  • the processing containers 30a and 30b constituting the process chamber unit 400 are attached to the transfer module 310 via gate valves 313 and 314.
  • the processing containers 30 a and 30 b have the same configuration as the processing container 30.
  • the controller 500 controls the above-described units so as to perform a substrate processing process described later.
  • a controller 500 as a control unit (control means) is configured as a computer including a CPU (Central Processing Unit) 500a, a RAM (Random Access Memory) 500b, a storage device 500c, and an I / O port 500d.
  • the RAM 500b, the storage device 500c, and the I / O port 500d are configured to exchange data with the CPU 500a via the internal bus 500e.
  • an input / output device 501 configured as a touch panel or the like is connected to the controller 500.
  • the storage device 500c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like.
  • a control program for controlling the operation of the substrate processing apparatus 10 a process recipe in which a procedure and conditions for substrate processing described later, and the like are stored are readable.
  • the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 500 to execute each procedure in a substrate processing step to be described later, and functions as a program.
  • the process recipe, the control program, and the like are collectively referred to as simply a program.
  • program When the term “program” is used in this specification, it may include only a process recipe alone, may include only a control program alone, or may include both.
  • the RAM 500b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 500a are temporarily stored.
  • the I / O port 500d includes the above-described substrate support pin vertical mechanism 11, heating element power supply 253, APC 59, MFCs 16a and 16b, on-off valves 18a and 18b, exhaust pump 51, atmospheric transfer robot 52, gate valve 313, and vacuum arm robot unit. 320 or the like.
  • the CPU 500a is configured to read and execute a control program from the storage device 500c, and to read a process recipe from the storage device 500c in response to an operation command input from the input / output device 501. Then, the CPU 500a performs the vertical movement of the support pins 4 by the substrate support pin vertical mechanism 11, the heating / cooling operation of the substrate 1 by the temperature adjustment unit, the pressure adjustment operation by the APC 59, the mass flow so as to follow the contents of the read process recipe.
  • the controller 16a, 16b and the on-off valves 18a, 18b are configured to control the flow rate adjustment operation of the processing gas, and the like. In FIG. 7, for example, a configuration such as a robot rotating unit or an atmospheric transfer robot surrounded by a broken line may be provided.
  • the controller 500 is an external storage device (eg, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, USB memory (USB FlashMODrive), memory card, etc.
  • the above-mentioned program stored in the (semiconductor memory) 123 can be configured by installing it in a computer.
  • the storage device 500c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium.
  • recording medium may include only the storage device 500c, only the external storage device 123, or both.
  • the program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
  • the substrate 1 having a silicon-containing film is carried into the processing chamber 50 from the substrate transfer chamber 40 through the transfer port 8 by the substrate transfer robot.
  • the substrate 1 carried into the processing chamber 50 is placed on the support pins 4.
  • the substrate support pin up / down mechanism 11 is lowered to place the substrate 1 on the susceptor 2.
  • the temperature adjusting unit provided in the susceptor 2 is set in advance to a predetermined temperature, and adjusts the substrate 1 to a predetermined substrate temperature of about 20 ° C. to a low temperature (for example, 20 ° C. to 60 ° C.).
  • the low temperature is a temperature range in which the processing gas including the etching gas is sufficiently vaporized, and is a temperature at which the film characteristics formed on the substrate 1 do not change.
  • the susceptor 2 or the susceptor 2 and the substrate support pin up / down mechanism 11 are raised, the susceptor 2 is moved to the substrate processing position B, and the substrate 1 is placed on the susceptor 2.
  • the silicon layer to be etched is a layer composed of Si element, such as polysilicon (Poly-Si), amorphous silicon (a-Si), single crystal silicon (c-Si), or the like.
  • a halogen-containing gas for example, a gas containing two or more halogen elements selected from fluorine (F), chlorine (Cl), bromine (Br), and iodine (I).
  • a gas containing two types of halogen elements is used.
  • chlorine (ClF 3 ) and the like is chlorine (ClF 3 ) and the like.
  • IF 7 gas having a characteristic capable of removing the silicon layer with high selectivity is used.
  • “selective” means, for example, that the etching rate of the silicon layer is higher than the etching rates of other types of layers.
  • a mixed gas obtained by mixing N 2 gas as an additive gas in addition to the etching gas is supplied as a processing gas from the gas supply pipe 6 to the substrate 1 through the gas introduction part 5.
  • the on-off valves 18a and 18b are opened and the MFCs 16a and 16b are controlled to supply the gas introduction source 5 with IF 7 gas and N 2 gas as processing gases from the gas supply sources 17a and 17b, respectively.
  • the pressure in the processing chamber 50 is maintained at a predetermined pressure by controlling the APC 59 simultaneously with the supply of the processing gas to adjust the exhaust amount.
  • the supply amount (gas flow rate) of IF 7 gas controlled by the MFC 16a is 10 to 1,000 sccm
  • the supply pressure pressure in the supply pipe on the gas supply source 17a side as viewed from the MFC 16a
  • the pressure in the supply pipe of the processing gas before the gas introduction port 516 is set to about 1 to 10 kPa.
  • the pressure in the processing chamber 50 is set to 300 to 1000 Pa.
  • the partial pressure of the IF 7 gas in the processing chamber 50 is 300 Pa or higher, the occurrence of defective etching of the silicon layer can be suppressed.
  • the pressure (total pressure) in the processing chamber 50 is 550 Pa and the pressure ratio (partial pressure ratio) of IF 7 gas and N 2 gas is 4: 3
  • the partial pressure of IF 7 gas is 315 Pa.
  • the processing gas used for the etching process is discharged from the exhaust port 7 provided on the side surface of the processing chamber 50 and communicating with the annular path 14.
  • N 2 gas which is an inert gas is supplied into the processing chamber 50 from the gas supply pipe 15b. At this time, the supplied N 2 gas is preferably supplied in a heated state. The supplied inert gas is preferably heated to a temperature higher than that of the above-described etching gas.
  • the temperature of the inert gas supplied to the processing chamber 50 is preferably heated to the sublimation temperature of either or both of by-products and residues generated in the etching process and supplied to the substrate. As a result, it is possible to further improve the removal efficiency of by-products generated during etching. More preferably, the temperature of the inert gas is higher than the sublimation temperature of the by-product and the residue generated in the etching process, or both, the heat resistance temperature of the circuit formed on the substrate, or around the processing chamber 50. Heat to a temperature lower than the heat resistance temperature of the O-ring.
  • Substrate unloading step S40 After the purging process is finished, the temperature is cooled to a temperature at which conveyance is possible. At this time, the support pins 4 may be raised to separate the substrate 1 from the susceptor 2. When the substrate 1 is cooled to a temperature at which the substrate 1 can be transported and ready to be unloaded from the processing chamber 50, the substrate 1 is unloaded in the reverse procedure of the above-described substrate loading step S10.
  • the present invention is not limited to a semiconductor manufacturing apparatus that processes a semiconductor wafer such as the substrate processing apparatus according to the present embodiment, but an LCD (Liquid Crystal Display) manufacturing apparatus that processes a glass substrate, a solar cell manufacturing apparatus, or the like.
  • the present invention can also be applied to a substrate processing apparatus and a MEMS (Micro Electro Mechanical Systems) manufacturing apparatus.
  • the present invention can be applied to a process for processing a transistor for driving an LCD or single crystal silicon, polycrystalline silicon, or amorphous silicon used for a solar battery.
  • a processing chamber in which a substrate having a silicon layer on the surface is accommodated;
  • a gas supply system for supplying an etching gas for etching the silicon layer;
  • a gas introduction part for introducing the etching gas supplied from the gas supply system into the processing chamber;
  • the gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe of the gas supply system to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes through the dispersion plate.
  • a shower plate configured to be introduced into the processing chamber,
  • the dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
  • a substrate processing apparatus is provided.
  • IF7 gas iodine heptafluoride gas
  • the substrate processing apparatus according to appendix 1 or 2 preferably, The processing temperature of the substrate in the processing chamber ranges from 20 ° C. to 60 ° C.
  • ⁇ Appendix 4> The substrate processing apparatus according to appendix 1 or 2, preferably, A temperature adjustment unit configured to change the temperature of the substrate; A control unit configured to control the temperature adjusting unit so as to maintain a temperature of the substrate in a range of 20 ° C. or more and 60 ° C. or less.
  • ⁇ Appendix 5> The substrate processing apparatus according to appendix 4, preferably, The temperature adjusting unit is provided on a substrate mounting table on which the substrate is mounted, and is configured by at least one of a heater and a chiller.
  • ⁇ Appendix 6> The substrate processing apparatus according to any one of appendices 1 to 5, preferably, The temperature of the processing chamber is room temperature.
  • ⁇ Appendix 7> The substrate processing apparatus according to any one of appendices 2 to 6, preferably, The partial pressure of the iodine heptafluoride gas in the processing chamber is in the range of 300 Pa to 1000 Pa.
  • ⁇ Appendix 8> The substrate processing apparatus according to appendix 7, preferably, A pressure adjusting valve (APC valve) for adjusting the pressure in the processing chamber in an exhaust pipe for exhausting the processing chamber; A controller configured to control the pressure regulating valve so that the pressure in the processing chamber is 300 Pa or more and 1000 Pa or less; Is provided.
  • APC valve pressure adjusting valve
  • ⁇ Appendix 9> The substrate processing apparatus according to any one of appendices 1 to 8, preferably, The shower plate is configured such that a pressure difference between a pressure in a space between the dispersion plate and the shower plate and a pressure in the processing chamber is in a range of 1 Pa to 10 Pa.
  • ⁇ Appendix 10> The substrate processing apparatus according to any one of appendices 1 to 9, preferably, The dispersion plate and the shower plate are provided to be parallel to each other, Each of the dispersion plate and the shower plate includes a plurality of holes through which the etching gas passes, The hole of the dispersion plate and the hole of the shower plate are provided at positions that do not overlap each other.
  • ⁇ Appendix 11> The substrate processing apparatus according to any one of appendices 1 to 10, preferably, The dispersion plate has a plurality of holes in which the etching gas passes, the diameter of each hole or 1.0 mm, the distribution of holes per unit area is 0.1 / cm 2 or more.
  • ⁇ Appendix 12> The substrate processing apparatus according to any one of appendices 1 to 11, preferably A plurality of the dispersion plates are provided.
  • ⁇ Appendix 14> Carrying a substrate having a silicon layer on the surface into the processing chamber; Supplying an etching gas for etching the silicon layer from a supply pipe into the processing chamber through a gas introduction unit; Etching the silicon layer on the substrate surface with the etching gas supplied into the processing chamber,
  • the gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes and is introduced into the processing chamber.
  • the dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
  • a semiconductor device manufacturing method or a substrate processing method is provided.
  • a procedure for carrying a substrate having a silicon layer on the surface thereof into the processing chamber A procedure for supplying an etching gas for etching the silicon layer from a supply pipe into the processing chamber through a gas introduction unit; A program for causing a computer to execute a procedure for etching a silicon layer on the surface of the substrate with the etching gas supplied into the processing chamber, or a computer-readable recording medium recording the program,
  • the gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes and is introduced into the processing chamber.
  • the dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
  • a program or recording medium is provided.
  • the quality of the substrate to be processed can be improved in the process of etching the silicon layer on the substrate using the etching gas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Problem: To improve the quality of a substrate being processed in a process wherein an etching gas is used to etch a silicon layer on the substrate. Solution: Provided is a configuration comprising: a processing chamber for housing a substrate having a silicon layer on the surface thereof; and a gas introducing part for introducing, into the processing chamber, the etching gas for etching the silicon layer. The gas introducing part comprises: a dispersion plate configured in such a manner that the etching gas, which has been supplied from an etching gas supply tube to the gas introducing part, passes therethrough; and a shower plate configured in such a manner that the etching gas, which has passed through the dispersion plate, passes therethrough and enters the processing chamber. The dispersion plate is configured in such a manner that the ratio of the pressure in the space between the supply tube and the dispersion plate, over the pressure in the space between the dispersion plate and the shower plate, is 1.07 or less.

Description

基板処理装置、半導体装置の製造方法および記録媒体Substrate processing apparatus, semiconductor device manufacturing method, and recording medium
 本開示は、基板処理装置、半導体装置の製造方法および記録媒体に関する。 The present disclosure relates to a substrate processing apparatus, a semiconductor device manufacturing method, and a recording medium.
 半導体装置の回路パターンを形成する工程の一つとして、基板上に形成されたシリコン(Si)層を除去(エッチング)する工程を実施する際に、シリコン層をエッチングする特性を有するガス(例えば、七フッ化ヨウ素(IF)ガス)を用いて基板を処理することが行われている。 As one of the processes for forming a circuit pattern of a semiconductor device, a gas having a characteristic of etching a silicon layer (for example, when performing a process of removing (etching) a silicon (Si) layer formed on a substrate) (for example, The substrate is treated with iodine heptafluoride (IF 7 ) gas.
 本開示の課題は、シリコン層をエッチングする特性を有するガスを用いてシリコン層除去処理を行うのに適した基板処理技術を提供することである。 An object of the present disclosure is to provide a substrate processing technique suitable for performing a silicon layer removal process using a gas having a characteristic of etching a silicon layer.
 本発明の一態様によれば、表面にシリコン層を有する基板が収容される処理室と、前記シリコン層をエッチングするエッチングガスを供給するガス供給系と、前記ガス供給系から供給される前記エッチングガスを前記処理室内へ導入するガス導入部と、を備え、前記ガス導入部は、前記ガス供給系の供給管から前記ガス導入部に供給された前記エッチングガスが通過するよう構成された分散板と、前記分散板を通過した前記エッチングガスが通過して前記処理室内に導入されるよう構成されたシャワープレートと、を備え、前記分散板と前記シャワープレートの間の空間の圧力に対する前記供給管と前記分散板の間の空間の圧力の比は1.07以下となるように前記分散板は構成される、基板処理装置が提供される。 According to one aspect of the present invention, a processing chamber in which a substrate having a silicon layer on the surface is accommodated, a gas supply system that supplies an etching gas for etching the silicon layer, and the etching that is supplied from the gas supply system A dispersion plate configured to pass the etching gas supplied from the supply pipe of the gas supply system to the gas introduction unit. And a shower plate configured to allow the etching gas that has passed through the dispersion plate to pass through and be introduced into the processing chamber, and the supply pipe with respect to the pressure in the space between the dispersion plate and the shower plate There is provided a substrate processing apparatus in which the dispersion plate is configured such that the ratio of the pressure in the space between the dispersion plate and the dispersion plate is 1.07 or less.
 上記基板処理技術によれば、基板上のシリコン層をエッチングガスを用いてエッチングする処理において、処理される基板の品質を向上させることが可能となる。 According to the above substrate processing technology, it is possible to improve the quality of the substrate to be processed in the process of etching the silicon layer on the substrate using the etching gas.
実施例に係る基板処理装置の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the substrate processing apparatus which concerns on an Example. 実施例に係る基板処理装置の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the substrate processing apparatus which concerns on an Example. 実施例に係る基板処理装置のガス導入部の構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the gas introduction part of the substrate processing apparatus which concerns on an Example. 実施例に係る基板処理装置のサセプタの構成を説明するための断面図である。It is sectional drawing for demonstrating the structure of the susceptor of the substrate processing apparatus which concerns on an Example. 図4におけるA-A断面図である。FIG. 5 is a cross-sectional view taken along line AA in FIG. 図4におけるB-B断面図である。FIG. 5 is a sectional view taken along line BB in FIG. 実施例に係る基板処理装置の搬送系の構成を説明するための上面断面図である。It is an upper surface sectional view for explaining the composition of the conveyance system of the substrate processing apparatus concerning an example. 実施例に係る基板処理装置のコントローラの構造を説明するためのブロック図である。It is a block diagram for demonstrating the structure of the controller of the substrate processing apparatus which concerns on an Example. 実施例に係る基板処理工程を説明するためのフロー図である。It is a flowchart for demonstrating the substrate processing process which concerns on an Example. 比較例に係る基板処理装置のガス導入部を説明するための断面図である。It is sectional drawing for demonstrating the gas introduction part of the substrate processing apparatus which concerns on a comparative example. 圧力比と点状特異点の発生状況を説明するための図である。It is a figure for demonstrating the generation | occurrence | production condition of a pressure ratio and a point-like singularity. 圧力比における断熱膨張効果によるガス温度変化の計算結果を示す図である。It is a figure which shows the calculation result of the gas temperature change by the adiabatic expansion effect in a pressure ratio. 点状特異点の発生メカニズムを説明するための図である。It is a figure for demonstrating the generation | occurrence | production mechanism of a point-like singularity. 点状特異点の発生メカニズムを説明するための図である。It is a figure for demonstrating the generation | occurrence | production mechanism of a point-like singularity. 実施形態に係る基板処理装置のガス導入部を説明するための断面図である。It is sectional drawing for demonstrating the gas introduction part of the substrate processing apparatus which concerns on embodiment. IFガスの分圧が80Paにおけるエッチングレートと均一性の評価結果を示す図である。The partial pressure of the IF 7 gas is a diagram showing an evaluation result of the etching rate and uniformity in 80 Pa. IFガスの分圧が300Paにおけるエッチングレートと均一性の評価結果を示す図である。The partial pressure of the IF 7 gas is a diagram showing an evaluation result of the etching rate and uniformity in 300 Pa. IFガスの分圧とエッチングレートとの相関を示す図である。Is a diagram showing the correlation between the partial pressure and the etching rate of the IF 7 gas.
 以下、実施形態及び実施例について、図面を用いて説明する。ただし、以下の説明において、同一構成要素には同一符号を付し繰り返しの説明を省略することがある。なお、図面は説明をより明確にするため、実際の態様に比べ、各部の幅、厚さ、形状等について模式的に表される場合があるが、あくまで一例であって、本発明の解釈を限定するものではない。 Hereinafter, embodiments and examples will be described with reference to the drawings. However, in the following description, the same components may be denoted by the same reference numerals and repeated description may be omitted. In order to clarify the description, the drawings may be schematically represented with respect to the width, thickness, shape, etc. of each part as compared to the actual embodiment, but are merely examples, and the interpretation of the present invention is not limited to them. It is not limited.
 <比較例>
 まず、本願発明者が本願に先立って検討した技術(以下、比較例という。)に係るガス導入部について図9を用いて説明する。
<Comparative example>
First, a gas introduction part according to a technique (hereinafter referred to as a comparative example) studied by the inventor prior to the present application will be described with reference to FIG.
 基板処理装置10Rは、エッチングガスを含む処理ガス用いて基板上のシリコン層をエッチング処理する基板処理装置である。基板処理装置10Rは本体容器31とガス導入部5Rとを備える。本体容器31は基板を載置するサセプタ2を備える。ガス導入部5Rは、ガス導入口516に供給された処理ガスが通過するよう構成された分散板512Rと、分散板512Rを通過した処理ガスが通過して処理室50R内に導入されるよう構成されたシャワープレート511Rと、を備える。分散板512Rとシャワープレート511Rは互いに平行になるように設けられ、分散板512Rとシャワープレート511Rはそれぞれ、処理ガスが通過する複数の孔を備える。 The substrate processing apparatus 10R is a substrate processing apparatus that performs an etching process on a silicon layer on a substrate using a processing gas including an etching gas. The substrate processing apparatus 10R includes a main body container 31 and a gas introduction unit 5R. The main body container 31 includes a susceptor 2 on which a substrate is placed. The gas introduction unit 5R is configured such that the processing gas supplied to the gas introduction port 516 passes through the dispersion plate 512R and the processing gas that passes through the dispersion plate 512R passes through and is introduced into the processing chamber 50R. A shower plate 511R. The dispersion plate 512R and the shower plate 511R are provided so as to be parallel to each other, and each of the dispersion plate 512R and the shower plate 511R includes a plurality of holes through which the processing gas passes.
 処理室50Rの圧力をPc、シャワープレート511Rの上の空間513の圧力をPs、分散板512Rの上の空間515の圧力をPuとすると、比較例に係る基板処理装置10Rでは、Pu>>Ps≒Pcとなる圧力条件を実現するようにされる。PuとPsとの差を大きくし、ガス導入口516から導入されたガスを分散板512R上で半径・周方向に拡散させる。シャワープレート511Rでは整流効果を主と考え、処理室50Rとの圧力損失はつけないようにするため、Ps≒Pcとし、シャワープレート511Rからの流速を抑えて孔影響を緩和する。シャワープレート511Rとサセプタ2の間の距離(Hs)は5~10mmとしている。しかし、このような条件において、エッチングガスとしてIFガスを使用した結果、分散板512Rの孔直下にて点状特異点(Spot)が発生する現象が確認された。すなわち、基板上の特定部分のみでエッチングが進んでエッチング処理にムラが生じている。これは、エッチングガスであるIFガスが安定的にウェハ面内に供給されていないことにより発生した可能性があると考えられる。 When the pressure in the processing chamber 50R is Pc, the pressure in the space 513 above the shower plate 511R is Ps, and the pressure in the space 515 above the dispersion plate 512R is Pu, in the substrate processing apparatus 10R according to the comparative example, Pu >> Ps A pressure condition of ≈Pc is realized. The difference between Pu and Ps is increased, and the gas introduced from the gas inlet 516 is diffused in the radial and circumferential directions on the dispersion plate 512R. In the shower plate 511R, the rectifying effect is assumed to be the main, so that pressure loss with the processing chamber 50R is not applied, Ps≈Pc is set, and the flow velocity from the shower plate 511R is suppressed to reduce the influence of the hole. The distance (Hs) between the shower plate 511R and the susceptor 2 is 5 to 10 mm. However, as a result of using IF 7 gas as an etching gas under such conditions, it was confirmed that a spot-like singular point (Spot) was generated immediately below the hole of the dispersion plate 512R. That is, etching progresses only at a specific portion on the substrate, and the etching process is uneven. This may be caused by the fact that the etching gas IF 7 gas is not stably supplied into the wafer surface.
 点状特異点発生の原因について発明者は以下の通り推察した。図10はPuとPsの圧力比(Pu/Ps)と点状特異点の発生状況を示す図である。図11はPu/Psに対する断熱膨張効果によるガス温度変化の計算結果を示す図である。図12A及び図12Bは点状特異点の発生メカニズムを示す図である。 The inventors inferred the cause of the occurrence of point-like singularities as follows. FIG. 10 is a diagram showing the pressure ratio of Pu and Ps (Pu / Ps) and the state of occurrence of point-like singularities. FIG. 11 is a diagram showing the calculation result of the gas temperature change due to the adiabatic expansion effect with respect to Pu / Ps. FIG. 12A and FIG. 12B are diagrams showing the generation mechanism of point-like singularities.
 図10にて示されるように、分散板512Rにおける圧力損失の指標として、Pu/Psが異なる4つのパターンについて点状特異点の発生有無を検証してみると、Pu/Psが小さい条件(Pu/Ps≦1.07)においては点状特異点が発生していないのに対し、Pu/Psが大きい条件において点状特異点が発生していることが分る。また、孔配置を装置形状と比較すると、点状特異点の発生位置が分散板512Rの孔位置と一致することが分った。 As shown in FIG. 10, as an index of pressure loss in the dispersion plate 512R, when the presence / absence of a point-like singular point is verified for four patterns having different Pu / Ps, a condition (Pu) with a small Pu / Ps is obtained. /Ps≦1.07), point-like singularities are not generated, whereas point-like singularities are generated under conditions where Pu / Ps is large. Further, when the hole arrangement was compared with the apparatus shape, it was found that the generation position of the point-like singular point coincided with the hole position of the dispersion plate 512R.
 これらのことから、断熱膨張によるIFガスの温度低下が点状特異点発生の一要因となっていると考えられる。すなわち、Pu/Psが大きい条件程、分散板512R前後における体積変化が大きくなり、温度低下の度合いも併せて大きくなる。温度が低下したIFガスは分散板512Rの孔から吐出された後、十分な拡散を得られずにシャワープレート511Rを通過し、ウェハ上に吸着・脱離と進むものと推定される。 From these facts, it is considered that the temperature decrease of the IF 7 gas due to adiabatic expansion is one factor in the generation of point singularities. That is, the larger the Pu / Ps, the larger the volume change before and after the dispersion plate 512R, and the greater the degree of temperature decrease. It is presumed that the IF 7 gas whose temperature has decreased is discharged from the holes of the dispersion plate 512R, passes through the shower plate 511R without obtaining sufficient diffusion, and proceeds to adsorption and desorption on the wafer.
 図11では供給されたIFガスがIFとして存在している場合、及び分解が進行している場合を想定し、2原子分子A、及び単原子分子Bの例をそれぞれ示している。点状特異点が発生している圧力の比(Pu/Ps>1.07)の領域SOAでは、IFの沸点(約5℃)以下まで瞬間的に温度が低下し、IFの一部又は全部が液化している可能性がある。また、図12Aに示すように、常温のIFガスは、分散板512Rの孔を通過すると断熱膨張によって温度が低下し低温IFガスになる。低温IFガスはその後、図12Bに示すように、周りの常温ガスや壁面との衝突を繰り返し、徐々に温度上昇が進行(温度回復)する。しかし、ウェハ処理温度が例えば20~60℃程度であり、且つ処理室50Rのチャンバ温度も室温(25℃程度)と低温である場合、温度が回復しないまま低温IFガスはウェハ200へ到着し、低温吸着している可能性が高い。また、点状特異点発生は分散板512Rの孔直下に集中して発生していることから、分散板512Rとシャワープレート511Rとの間でシャワープレート511Rと衝突することによって十分な熱交換を行うことができなかった低温IFガスや液化したIFが、ウェハ200上で核となって点状特異点を形成しているものと推察される。 FIG. 11 shows an example of diatomic molecule A and monoatomic molecule B assuming that the supplied IF 7 gas exists as IF 7 and decomposition is proceeding. In the region SOA of the pressure ratio (Pu / Ps> 1.07) where the point singularities are generated, the temperature instantaneously drops below the boiling point of IF 7 (about 5 ° C.), and a part of IF 7 Or the whole may be liquefied. Also, as shown in FIG. 12A, when the IF 7 gas at normal temperature passes through the holes of the dispersion plate 512R, the temperature decreases due to adiabatic expansion and becomes low temperature IF 7 gas. Thereafter, as shown in FIG. 12B, the low-temperature IF 7 gas repeatedly collides with the surrounding normal-temperature gas and the wall surface, and the temperature rise gradually proceeds (temperature recovery). However, when the wafer processing temperature is, for example, about 20 to 60 ° C. and the chamber temperature of the processing chamber 50R is also a low temperature such as room temperature (about 25 ° C.), the low temperature IF 7 gas arrives at the wafer 200 without recovering the temperature. The possibility of low temperature adsorption is high. In addition, since the generation of point singularities is concentrated and directly below the holes of the dispersion plate 512R, sufficient heat exchange is performed by colliding with the shower plate 511R between the dispersion plate 512R and the shower plate 511R. it IF 7 that cold IF 7 and gas and liquefaction could not be assumed that form a point-like singularities at the core on the wafer 200.
 <実施形態>
 続いて本願の一実施形態に係る基板処理装置及びガス導入部について図13を用いて説明する。図13は実施形態に係る基板処理装置を模式的に表した断面図である。
  (ガス導入部)
 基板処理装置10は、エッチングガスを含む処理ガスを用いて基板上に形成されたシリコン層をエッチング処理する基板処理装置である。基板処理装置10は本体容器31とガス導入部5とを備える。本体容器31は基板を載置するサセプタ2を備える。ガス導入部5は、ガス導入口516から供給される処理ガスが通過するよう構成された分散板512と、分散板512を通過した処理ガスが通過して処理室50内に導入されるよう構成されたシャワープレート511と、を備える。分散板512とシャワープレート511は互いに平行になるように設けられ、分散板512とシャワープレート511はそれぞれ、処理ガスが通過する複数の孔を備える。処理室50の圧力をPc、シャワープレート511の上の空間513の圧力をPs、分散板512の上の空間515の圧力をPuとすると、Pu/Ps≦1.07となる圧力条件を実現するように分散板512を構成する。PuはPsよりも大きく、PuとPsの差(圧力損失)を7%以下とする。
  このような圧力条件を満たす分散板512の前後では、断熱膨張による比較例のようなエッチングガスの急激な温度低下や液化(ミスト化)が発生しないため、エッチングガスとしてIFガスを使用した場合であっても、エッチングの点状特異点発生を抑制できる。
<Embodiment>
Next, a substrate processing apparatus and a gas introduction unit according to an embodiment of the present application will be described with reference to FIG. FIG. 13 is a sectional view schematically showing the substrate processing apparatus according to the embodiment.
(Gas introduction part)
The substrate processing apparatus 10 is a substrate processing apparatus that performs an etching process on a silicon layer formed on a substrate using a processing gas containing an etching gas. The substrate processing apparatus 10 includes a main body container 31 and a gas introduction unit 5. The main body container 31 includes a susceptor 2 on which a substrate is placed. The gas introduction unit 5 is configured such that the processing gas supplied from the gas introduction port 516 passes therethrough, and the processing gas that passes through the dispersion plate 512 passes through and is introduced into the processing chamber 50. A shower plate 511. The dispersion plate 512 and the shower plate 511 are provided so as to be parallel to each other, and each of the dispersion plate 512 and the shower plate 511 includes a plurality of holes through which the processing gas passes. When the pressure in the processing chamber 50 is Pc, the pressure in the space 513 above the shower plate 511 is Ps, and the pressure in the space 515 above the dispersion plate 512 is Pu, a pressure condition of Pu / Ps ≦ 1.07 is realized. The dispersion plate 512 is configured as described above. Pu is larger than Ps, and the difference (pressure loss) between Pu and Ps is set to 7% or less.
Before and after such a pressure satisfying the distribution plate 512, because the rapid temperature drop or liquefaction of etching gas, such as in the comparative example due to adiabatic expansion (mist) is not generated, when using the IF 7 as an etching gas Even so, the occurrence of point-like singularities in etching can be suppressed.
 なお、一般的なエッチングガス(Cl(沸点-34℃)、HBr(沸点-66℃)、CF(沸点-127℃)、SF(沸点-63℃)等)はIFガスに比べて沸点が低いため断熱膨張による液化が起こりにくい。また、一般的にはガスを均一に分散させるためには分散板の前後の圧力差をある程度大きくすることが望ましい。従って通常は断熱膨張による液化を抑制するために本実施形態のような分散板の構造を採る必然性がない。一方、一般的なエッチングガスに比べてIFは沸点が非常に高い(大気圧で約5℃)ため、断熱膨張による液化が特に起きやすい。したがって、ガス導入部5の構成による効果が顕著である。 General etching gases (Cl 2 (boiling point −34 ° C.), HBr (boiling point −66 ° C.), CF 4 (boiling point −127 ° C.), SF 6 (boiling point −63 ° C.), etc.) are compared to IF 7 gas. Because of its low boiling point, liquefaction due to adiabatic expansion hardly occurs. In general, in order to uniformly disperse the gas, it is desirable to increase the pressure difference before and after the dispersion plate to some extent. Therefore, normally, there is no necessity to adopt the structure of the dispersion plate as in this embodiment in order to suppress liquefaction due to adiabatic expansion. On the other hand, IF 7 has a very high boiling point (about 5 ° C. at atmospheric pressure) compared to a general etching gas, and therefore liquefaction due to adiabatic expansion is particularly likely to occur. Therefore, the effect by the structure of the gas introduction part 5 is remarkable.
 シャワープレート511は、分散板512とシャワープレート511の間の空間513の圧力(Ps)と処理室50内の圧力(Pc)の圧力差、すなわちシャワープレート511前後の圧力差が1Pa以上10Pa以下の範囲内となるように構成される。また、シャワープレート511前後の圧力損失は、分散板512よりも小さいことが望ましい。 The shower plate 511 has a pressure difference between the pressure (Ps) in the space 513 between the dispersion plate 512 and the shower plate 511 and the pressure (Pc) in the processing chamber 50, that is, the pressure difference between the front and back of the shower plate 511 is 1 Pa or more and 10 Pa or less. Configured to be within range. Further, it is desirable that the pressure loss before and after the shower plate 511 is smaller than that of the dispersion plate 512.
 当該シャワープレート511を備えることにより、分散板512により拡散された処理ガスを更に拡散させると共に整流して、処理室50内の基板に処理ガス(エッチングガス)を均一に供給することができる。 By providing the shower plate 511, the processing gas diffused by the dispersion plate 512 can be further diffused and rectified to uniformly supply the processing gas (etching gas) to the substrate in the processing chamber 50.
 分散板512の孔とシャワープレート511の孔は互いに重ならない位置に設けるのが好ましい。これにより、分散板512の孔を通過する際に温度低下した処理ガスがシャワープレート511に衝突せずに直接処理室50内に侵入する確率を減らすことができる。従って、シャワープレート511に衝突して温度が上昇した処理ガスを処理室50内に供給できるので、ガスが基板に低温吸着したり、液化したガスが基板に直接付着したりするのを防ぎ、シリコン層のエッチングにおいて点状特異点が発生するのを抑制することができる。 It is preferable that the holes of the dispersion plate 512 and the shower plate 511 are provided at positions that do not overlap each other. Accordingly, it is possible to reduce the probability that the processing gas whose temperature has decreased when passing through the holes of the dispersion plate 512 directly enters the processing chamber 50 without colliding with the shower plate 511. Accordingly, since the processing gas whose temperature has been increased by colliding with the shower plate 511 can be supplied into the processing chamber 50, it is possible to prevent the gas from adsorbing to the substrate at a low temperature and the liquefied gas from directly adhering to the substrate. Generation of point-like singularities in the etching of the layer can be suppressed.
 処理室50内における基板の処理温度は例えば20℃以上60℃以下の範囲に維持されるようにサセプタ2の温度調整部で温度制御が行われる。温度調整部は、ヒータ及びチラーの少なくとも一方により構成される。また、処理室50の温度(特に壁面の温度)は室温(25℃程度)とする。なお、処理室50の温度は室温よりも高くてもよく、IFガスをエッチングガスとして用いた場合には、シリコン層をエッチング処理した際の反応副生成物であるIFの融点(97℃)まで上げてもよい。 The temperature control is performed by the temperature adjustment unit of the susceptor 2 so that the processing temperature of the substrate in the processing chamber 50 is maintained in a range of 20 ° C. or more and 60 ° C. or less, for example. The temperature adjustment unit is configured by at least one of a heater and a chiller. The temperature of the processing chamber 50 (particularly the temperature of the wall surface) is set to room temperature (about 25 ° C.). Note that the temperature of the processing chamber 50 may be higher than room temperature. When IF 7 gas is used as an etching gas, the melting point (97 ° C.) of IF 5 that is a reaction byproduct when the silicon layer is etched. ).
 但し、IFガスをエッチングガスとしてシリコン層をエッチング処理する場合、シリコン層のエッチングに関する高選択性(後述する)を維持するため、基板の処理温度及び処理室50の温度は低くすることが望ましい。この場合、分散板512やシャワープレート511、周りのガスなどの温度が低いため、断熱膨張によるエッチングガスの温度低下が起きた際、エッチングガスがこれらと衝突しても温度回復が進まず、液化(ミスト化)が特に起きやすい。従ってこの条件において、本実施形態の構成による効果(液化抑制)がより顕著になる。 However, when the silicon layer is etched using IF 7 gas as an etching gas, it is desirable to lower the substrate processing temperature and the processing chamber 50 temperature in order to maintain high selectivity (described later) regarding the etching of the silicon layer. . In this case, since the temperature of the dispersion plate 512, the shower plate 511, and the surrounding gas is low, when the temperature of the etching gas is reduced due to adiabatic expansion, even if the etching gas collides with these, the temperature recovery does not proceed and the liquefaction occurs. (Misting) is particularly likely to occur. Therefore, under this condition, the effect (liquefaction suppression) by the configuration of the present embodiment becomes more remarkable.
 サセプタ2は昇降機構(図示せず)により上下に移動することが可能となっており、基板搬送位置(ウェハを処理室50内から搬入・搬出する時の高さ)、及び基板処理位置(基板をエッチング処理する時の高さ)にそれぞれ移動することが可能である。 The susceptor 2 can be moved up and down by an elevating mechanism (not shown), a substrate transfer position (height when a wafer is carried in / out of the processing chamber 50), and a substrate processing position (substrate) It is possible to move to the height at the time of etching.
 上述した実施形態によれば、ウェハ表面上に点状特異点が発生することを低減することが可能となる。 According to the above-described embodiment, it is possible to reduce the occurrence of point-like singular points on the wafer surface.
 (エッチングガスの分圧)
 次に、基板に供給されるエッチングガスの分圧について図14から図16を用いて説明する。ここで、エッチングガスの分圧とは、基板に供給されるエッチングガスの分圧であり、例えば処理室50内における全圧に対するエッチングガスの分圧である。
  図14は、エッチングガスとしてIFガスを用いて、IFガスの分圧が80Paの場合におけるエッチングレートと均一性の評価を複数回(12回)試行した結果を示す図である。図15は、同じくエッチングガスとしてIFガスを用いて、IFガスの分圧が300Paの場合におけるエッチングレートと均一性の評価を複数回(11回)試行した結果を示す図である。図16はエッチングガスであるIFガスの分圧とエッチングレートとの相関を示す図である。
(Etching gas partial pressure)
Next, the partial pressure of the etching gas supplied to the substrate will be described with reference to FIGS. Here, the partial pressure of the etching gas is the partial pressure of the etching gas supplied to the substrate, for example, the partial pressure of the etching gas with respect to the total pressure in the processing chamber 50.
FIG. 14 is a diagram showing the results of trials for evaluating the etching rate and uniformity multiple times (12 times) when IF 7 gas is used as the etching gas and the partial pressure of IF 7 gas is 80 Pa. FIG. 15 is a diagram showing the results of trials for evaluating the etching rate and uniformity multiple times (11 times) when IF 7 gas is used as the etching gas and the partial pressure of IF 7 gas is 300 Pa. FIG. 16 is a diagram showing the correlation between the partial pressure of IF 7 gas, which is an etching gas, and the etching rate.
 図14に示すように、シリコン層の高速除去エッチング特性を持つIFガスをエッチングガスとしてウェハを処理する場合、エッチングが進行するプロセス条件においても時折エッチングレート不良(E/R不良)が発生することがある。 As shown in FIG. 14, when the wafer is processed using an IF 7 gas having a high-speed removal etching characteristic of the silicon layer as an etching gas, an etching rate defect (E / R defect) sometimes occurs even in a process condition where etching proceeds. Sometimes.
 例えば、シリコン層であるポリシリコン(Poly-Si)膜をIFガスの分圧が80Paの条件でエッチングする場合、図14に示すように、概ね600-800nm/minのエッチングレート(Etch Rate)が出ていることが確認された一方、#6、#12のように突発的にエッチングレートが出ない現象が確認された。 For example, when a polysilicon (Poly-Si) film as a silicon layer is etched under the condition that the partial pressure of IF 7 gas is 80 Pa, as shown in FIG. 14, the etching rate (Etch Rate) is approximately 600 to 800 nm / min. On the other hand, it was confirmed that the etching rate did not suddenly occur like # 6 and # 12.
 このような現象は、IFガスとシリコン層との反応過程に起因するものと推察される。すなわち、IFは基板表面に形成されたシリコン層と、IF+Si⇒SiF+IFの反応過程にてエッチングを進行させているものと考えられる。より具体的には、エッチング後の基板表面をSEM等にて観察すると、微小クレーター状に進行していることから、IFのフッ素成分がシリコン結合の切れやすい箇所から順次速やかにシリコンを切り離しながら、SiF(四フッ化ケイ素)とIF(五フッ化ヨウ素)となって基板表面から離脱することにより、シリコンのエッチングが進行するものと考えられる。 Such a phenomenon is assumed to be caused by a reaction process between the IF 7 gas and the silicon layer. That is, it is considered that IF 7 is caused to undergo etching in the reaction process of the silicon layer formed on the substrate surface and IF 7 + Si⇒SiF 4 + IF 5 . More specifically, when the surface of the substrate after etching is observed with an SEM or the like, it progresses in the form of a fine crater, so that the fluorine component of IF 7 is separated from silicon where the silicon bond is easily cut off in sequence. It is considered that the etching of silicon proceeds by separating from the substrate surface as SiF 4 (silicon tetrafluoride) and IF 5 (iodine pentafluoride).
 IFガスを用いたシリコンのエッチング処理では、IFガスによるシリコン除去の高選択性を維持するため、低温域(例えば20~60℃程度)における反応過程を経由しており、プラズマや高温加熱等の高いエネルギーの供給が無いため、反応初期は緩やかにエッチングが進行する。そのため、SiFやIFが離脱するまでの潜伏時間(Incubation Time)のバラツキが大きくなり、同じプロセス条件においても僅かな条件の差でエッチングレート不良が発生していると考えられる。 In the etching process of silicon using IF 7 gas, in order to maintain high selectivity of silicon removal by IF 7 gas, it goes through a reaction process in a low temperature range (for example, about 20 to 60 ° C.), and plasma or high temperature heating is performed. Etching proceeds slowly at the initial stage of the reaction because there is no supply of such high energy. For this reason, the variation in incubation time until SiF 4 and IF 5 are separated increases, and it is considered that an etching rate defect occurs due to a slight difference in conditions even under the same process conditions.
 一方、シリコン層であるポリシリコン(Poly-Si)を、IFガスの分圧が300Paの条件下でエッチング処理する場合、図15に示すように、概ね1000-1200nm/minのエッチングレート(Etch Rate)が出ている。この場合、IFガスの分圧が80Paの場合に発生したような突発的なエッチングレートの低下現象は確認されず、安定的なエッチング(Etching)が再現されることが確認された。 On the other hand, when polysilicon (Poly-Si), which is a silicon layer, is etched under the condition that the partial pressure of IF 7 gas is 300 Pa, as shown in FIG. 15, the etching rate (Etch) is about 1000 to 1200 nm / min. Rate) is out. In this case, the sudden etching rate reduction phenomenon that occurred when the partial pressure of the IF 7 gas was 80 Pa was not confirmed, and it was confirmed that stable etching (Etching) was reproduced.
 また、図16に示すように、IFガスの分圧が40-50Pa以下の範囲ではエッチング(Etching)進行が非常に遅い。50Pa~200Paの範囲ではエッチング(Etching)進行するものの不安定な状態となっている。一方、IFガスの分圧が300Pa以上では安定したエッチング(Etching)を行うことが可能である。なお、IFガスの分圧は1000Pa以下とするのが望ましい。 Further, as shown in FIG. 16, the etching progress is very slow when the partial pressure of the IF 7 gas is 40-50 Pa or less. In the range of 50 Pa to 200 Pa, although etching (etching) proceeds, the state is unstable. On the other hand, when the partial pressure of IF 7 gas is 300 Pa or more, stable etching (Etching) can be performed. The partial pressure of IF 7 gas is desirably 1000 Pa or less.
 従って、処理室内のIFの分圧(分力)を一定値以上、好ましくは300Pa以上にすることによってエッチング不良の発生を防止することができる。 Therefore, the occurrence of etching defects can be prevented by setting the partial pressure (component force) of IF 7 in the processing chamber to a certain value or more, preferably 300 Pa or more.
 (本実施形態による効果)
 本実施形態によれば、分散板512前後の圧力条件をPu/Ps≦1.07とすることにより、エッチングガスを用いたシリコン層のエッチング処理において、ウェハ表面における点状特異点の発生を低減することが可能となる。
  また、処理室内のエッチングガスの分圧を一定値以上、好ましくは300Pa以上にすることによって、シリコン層のエッチング不良の発生を低減することが可能となる。
  これらの効果は、シリコン除去におけるエッチングガスとしてIFガスを用いる場合により顕著である。
(Effects of this embodiment)
According to the present embodiment, the pressure condition before and after the dispersion plate 512 is set to Pu / Ps ≦ 1.07, thereby reducing the occurrence of point-like singularities on the wafer surface in the etching process of the silicon layer using the etching gas. It becomes possible to do.
Further, when the partial pressure of the etching gas in the processing chamber is set to a certain value or more, preferably 300 Pa or more, it is possible to reduce the occurrence of defective etching of the silicon layer.
These effects are more remarkable when IF 7 gas is used as an etching gas for removing silicon.
(1)基板処理装置の構成
 以下、上述の実施形態の具体的な実施例に係る基板処理装置の構成について、図1乃至7を用いて説明する。本実施例に係る基板処理装置は半導体デバイスの製造方法の一工程を実施するための枚葉式の基板処理装置である。
(1) Configuration of Substrate Processing Apparatus Hereinafter, a configuration of a substrate processing apparatus according to a specific example of the above-described embodiment will be described with reference to FIGS. The substrate processing apparatus according to the present embodiment is a single-wafer type substrate processing apparatus for carrying out one step of a semiconductor device manufacturing method.
 図1は実施例に係る基板処理装置における処理時の要部断面図である。図2は実施例に係る基板処理装置の要部断面図であり、サセプタが下降して搬送工程を行うことが可能な搬送位置にある状態を示す図である。図3は実施例に係るガス導入部を示す断面図である。図4は実施例に係る基板処理装置のサセプタの構成を説明するための断面図である。図5Aは図4におけるA-A断面図であり、発熱体経路を示す図である。図5Bは図4におけるB-B断面図であり、冷却流路経路を示す図である。図6は実施例に係る基板処理装置の搬送系の構成を説明するための上面断面図である。図7は実施例に係る基板処理装置のコントローラの構造を説明するためのブロック図である。 FIG. 1 is a cross-sectional view of the main part during processing in the substrate processing apparatus according to the embodiment. FIG. 2 is a cross-sectional view of a main part of the substrate processing apparatus according to the embodiment, and shows a state where the susceptor is lowered and is in a transfer position where the transfer process can be performed. FIG. 3 is a cross-sectional view showing a gas introduction part according to the embodiment. FIG. 4 is a cross-sectional view for explaining the configuration of the susceptor of the substrate processing apparatus according to the embodiment. 5A is a cross-sectional view taken along the line AA in FIG. 4, and shows a heating element path. FIG. 5B is a cross-sectional view taken along the line BB in FIG. 4 and shows a cooling flow path. FIG. 6 is a top cross-sectional view for explaining the configuration of the transport system of the substrate processing apparatus according to the embodiment. FIG. 7 is a block diagram for explaining the structure of the controller of the substrate processing apparatus according to the embodiment.
 (処理容器)
 実施例に係る基板処理装置10は、ウェハ等の基板1を処理する処理容器30と、処理容器30と隣接してこれとの間で基板1の搬入・搬出が行われる基板搬送容器39と、処理容器30にガスを供給するガス供給部(ガス供給系)6と、を有する。
(Processing container)
The substrate processing apparatus 10 according to the embodiment includes a processing container 30 for processing a substrate 1 such as a wafer, a substrate transport container 39 in which the substrate 1 is carried in and out adjacent to the processing container 30, and And a gas supply unit (gas supply system) 6 for supplying gas to the processing container 30.
 処理容器30は、上部が開口した容器本体31と、容器本体31の上部開口を塞ぐ蓋体32とから構成されて、内部に密閉構造の処理室50を形成している。なお、処理室50を、蓋体32と基板載置台(以下、サセプタという。)2とで囲まれた空間で形成するようにしても良い。 The processing container 30 is composed of a container main body 31 having an upper opening and a lid 32 that closes the upper opening of the container main body 31, and forms a sealed processing chamber 50 therein. Note that the processing chamber 50 may be formed in a space surrounded by the lid 32 and the substrate mounting table (hereinafter referred to as susceptor) 2.
 容器本体31には排気口7、搬送口8、及び温度調整部を内蔵したサセプタ2が設けられる。排気口7は、容器本体31の上側部に設けられ、容器本体31の上部内周に形成された環状路14と連通し、環状路14を介して処理室50内を排気するように構成されている。また、搬送口8は、容器本体31の排気口7よりも下方の一側部に設けられ、搬送容器39内に形成される基板搬送室40から処理容器30内の処理室50に搬送口8を介してシリコンウェハ等の処理前の基板1を搬入し、または処理室50から基板搬送室40に処理後の基板1を搬出するように構成されている。なお、容器本体31の搬送口8には、基板搬送室40と処理室50との雰囲気隔離を行うゲートバルブ9が開閉自在に設けられている。 The container body 31 is provided with a susceptor 2 having a built-in exhaust port 7, a transfer port 8, and a temperature adjustment unit. The exhaust port 7 is provided on the upper portion of the container body 31 and communicates with the annular passage 14 formed in the upper inner periphery of the container body 31 so as to exhaust the inside of the processing chamber 50 through the annular passage 14. ing. The transfer port 8 is provided on one side below the exhaust port 7 of the container body 31, and the transfer port 8 is transferred from the substrate transfer chamber 40 formed in the transfer container 39 to the processing chamber 50 in the processing container 30. The unprocessed substrate 1 such as a silicon wafer is carried in via the substrate, or the processed substrate 1 is unloaded from the processing chamber 50 to the substrate transfer chamber 40. A gate valve 9 for isolating the atmosphere between the substrate transfer chamber 40 and the processing chamber 50 is provided at the transfer port 8 of the container body 31 so as to be openable and closable.
 (サセプタ)
 処理容器30の処理室50内に、サセプタ2が昇降自在に設けられ、サセプタ2の表面に基板1が保持される。基板1はサセプタ2に内蔵された後述する温度調整部によって所定範囲内の温度に調整されるようになっている。
(Susceptor)
The susceptor 2 is provided in the processing chamber 50 of the processing container 30 so as to be movable up and down, and the substrate 1 is held on the surface of the susceptor 2. The substrate 1 is adjusted to a temperature within a predetermined range by a temperature adjusting unit (described later) built in the susceptor 2.
 基板支持ピン上下機構11には複数の支持ピン4が立設され、これらの支持ピン4は温度調整部及びサセプタ2を貫通するように設けられている。支持ピン4は、サセプタ2及び基板支持ピン上下機構11の一方、又は両方の昇降に応じて、サセプタ2の表面から出没自在になるように構成されている。 A plurality of support pins 4 are erected on the substrate support pin up-and-down mechanism 11, and these support pins 4 are provided so as to penetrate the temperature adjusting unit and the susceptor 2. The support pin 4 is configured to be able to protrude and retract from the surface of the susceptor 2 in accordance with raising or lowering one or both of the susceptor 2 and the substrate support pin raising / lowering mechanism 11.
 図2に示すように、基板処理装置10は、サセプタ2が下降して搬送工程を行うことが可能な位置にあるとき(以下、この位置を搬送位置Aという)、複数の支持ピン4がサセプタ2から突出して複数の支持ピン4上に基板1を支持可能にし、処理室50と基板搬送室40との間で搬送口8を介して基板1の搬入、搬出が行えるように構成されている。また、図1に示すように、基板処理装置10は、サセプタ2が上昇して、搬送位置Aより上方の中間位置を経て処理工程を行うことが可能な位置にあるとき(以下、この位置を基板処理位置Bという)、支持ピン4はサセプタ2から突出せず(即ち、サセプタ2の上面よりも下方に隠れ)、サセプタ2上に基板1が載置されるように構成されている。 As shown in FIG. 2, when the substrate processing apparatus 10 is at a position where the susceptor 2 is lowered and can perform a transport process (hereinafter, this position is referred to as a transport position A), the plurality of support pins 4 include the susceptor. 2, the substrate 1 can be supported on a plurality of support pins 4, and the substrate 1 can be loaded and unloaded between the processing chamber 50 and the substrate transfer chamber 40 via the transfer port 8. . Further, as shown in FIG. 1, the substrate processing apparatus 10 is in a position where the susceptor 2 is raised and can be processed through an intermediate position above the transfer position A (hereinafter, this position is set). The support pins 4 do not protrude from the susceptor 2 (that is, they are hidden below the upper surface of the susceptor 2), and the substrate 1 is placed on the susceptor 2.
 サセプタ2は、その支持軸24が昇降機構に連結されて処理室50内を昇降するように設けられている。昇降機構は、基板搬入工程、基板処理工程、基板搬出工程などの各工程で、処理室50内のサセプタ2の上下方向の位置(搬送位置A、基板処理位置B等)を多段階に調整できるよう構成されている。 The susceptor 2 is provided such that its support shaft 24 is connected to an elevating mechanism and moves up and down in the processing chamber 50. The lifting mechanism can adjust the vertical position of the susceptor 2 (processing position A, substrate processing position B, etc.) in the processing chamber 50 in multiple stages in each process such as a substrate loading process, a substrate processing process, and a substrate unloading process. It is configured as follows.
 図4に示すように、サセプタ2はプレート部241とステム部242より主に構成されており、アタッチメント部243のデザイン変更にて多様な装置に展開出来るように配慮している。プレート部241には上方より、温度調整部の加熱手段である発熱体(ヒータ)244及び冷却手段である冷却流路(チラー)245が配置されている。図5A及び図5Bに示すように、発熱体244及び冷却流路245は円弧状のエレメント配置を基本としており、2重又は多重となるように配置されている。発熱体244及び冷却流路245のそれぞれの径は、例えば以下の通りである。D3:φ20~40mm、D4:φ130~170mm、D5:φ230~270mmである。図5A及び図5Bに示すように、幅D4で示される部分が内周部を形成し、幅D5で示される部分が外周部を形成している。つまり発熱体244及び冷却流路245は、それぞれ、少なくとも内周部と外周部から構成され、発熱体244の内周部が冷却流路245の内周部と垂直方向で重なるように設けられ、発熱体244の外周部は、冷却流路245の外周部と垂直方向で重なるように設けられている。このような構成とすることにより、発熱体244から冷却流路245への熱の伝達損失を少なくすることができ、温度制御を容易にすることができる。温度調整部は発熱体244及び冷却流路245のいずれか一方により構成するようにしてもよい。 As shown in FIG. 4, the susceptor 2 is mainly composed of a plate portion 241 and a stem portion 242, and is designed so that it can be deployed to various devices by changing the design of the attachment portion 243. A heating element (heater) 244 that is a heating unit of the temperature adjustment unit and a cooling flow path (chiller) 245 that is a cooling unit are arranged on the plate unit 241 from above. As shown in FIGS. 5A and 5B, the heating element 244 and the cooling channel 245 are based on an arc-shaped element arrangement, and are arranged so as to be double or multiple. The diameters of the heating element 244 and the cooling channel 245 are, for example, as follows. D3: φ20 to 40 mm, D4: φ130 to 170 mm, D5: φ230 to 270 mm. As shown in FIGS. 5A and 5B, the portion indicated by the width D4 forms the inner peripheral portion, and the portion indicated by the width D5 forms the outer peripheral portion. That is, the heating element 244 and the cooling flow path 245 are each composed of at least an inner peripheral part and an outer peripheral part, and the inner peripheral part of the heating element 244 is provided so as to overlap the inner peripheral part of the cooling flow path 245 in the vertical direction. The outer peripheral portion of the heating element 244 is provided so as to overlap with the outer peripheral portion of the cooling channel 245 in the vertical direction. With such a configuration, heat transfer loss from the heating element 244 to the cooling flow path 245 can be reduced, and temperature control can be facilitated. The temperature adjustment unit may be configured by one of the heating element 244 and the cooling flow path 245.
 サセプタ2本体の材質は、アルミやステンレス、ハステロイ等が挙げられる。ステム部242底面にはインターフェースプレート246が設けられており、裏面よりボルト(図示せず)にてアタッチメント部243に固定するようにしてある。また、アッタッチメント部243の下方から、プレート部241の温度を検知するための熱検出器(T/C)247が挿入されている。サセプタ2のプレート部241はT/Cガイドチューブ248との一体形成が必要となるため、ステンレスやハステロイ等の溶接加工に適した材質が好ましい。 The material of the susceptor 2 main body includes aluminum, stainless steel, Hastelloy and the like. An interface plate 246 is provided on the bottom surface of the stem portion 242, and is fixed to the attachment portion 243 with bolts (not shown) from the back surface. Further, a heat detector (T / C) 247 for detecting the temperature of the plate part 241 is inserted from below the attachment part 243. Since the plate portion 241 of the susceptor 2 needs to be integrally formed with the T / C guide tube 248, a material suitable for welding such as stainless steel or hastelloy is preferable.
 図4に示すように、熱検出器247は、サセプタ2の上面より下側であって、発熱体244の下端よりも上側に先端(熱検出部)が配置されるように構成されている。また、後述する発熱体電源253と冷媒供給部264を制御部500により制御することにより、冷却流路245に冷媒を供給しながら、発熱体244に電力を供給する。このように、熱検出器247の先端を、サセプタ2の上面よりも下側かつ、発熱体244の下端よりも上側に設けることによって、基板処理(エッチング処理)時に発生する反応熱による基板温度の変化を検出することができる。また、冷却流路245を発熱体244の下側に設ける(基板1から遠ざける)ことで、基板1を過冷却することを防止することができる。たとえ、冷却しすぎたとしても、発熱体244が上側にあることで、基板1を加熱することができる。更に、サセプタ2上に基板1を載置したときに、供給電力を小さくすることで、基板1を処理する際に発生する反応熱による温度のオーバーシュートを抑制することができる。 As shown in FIG. 4, the heat detector 247 is configured such that the tip (heat detector) is disposed below the upper surface of the susceptor 2 and above the lower end of the heating element 244. In addition, by controlling a heating element power supply 253 and a refrigerant supply unit 264, which will be described later, by the control unit 500, electric power is supplied to the heating element 244 while supplying the refrigerant to the cooling channel 245. In this way, by providing the tip of the heat detector 247 below the upper surface of the susceptor 2 and above the lower end of the heating element 244, the temperature of the substrate due to reaction heat generated during substrate processing (etching processing) can be reduced. Changes can be detected. Further, by providing the cooling channel 245 below the heating element 244 (away from the substrate 1), it is possible to prevent the substrate 1 from being overcooled. Even if it is cooled too much, the substrate 1 can be heated because the heating element 244 is on the upper side. Furthermore, when the substrate 1 is placed on the susceptor 2, the temperature overshoot due to reaction heat generated when the substrate 1 is processed can be suppressed by reducing the power supply.
 基板1の初期温度Twは室温付近(20~25℃程度)を想定している。サセプタ2は常時冷却流路245に設定温度Tc(15~20℃程度)の冷媒を導入している。発熱体244は設定温度Th(40~50℃程度)に調整しており、基板処理を実施していないときは、発熱体244と冷却流路245との熱の授受が主に行われている。基板処理開始後、反応熱により基板1の温度は上昇する。基板1の温度が上昇するに従い発熱体244の設定温度を変更、又は熱検出器247の温度上昇結果より電力供給を絞り、発熱体244と基板1の発熱によるトータル熱供給量が同等となるように制御部500にて監視、制御を行う。前記処理を行うことにより、処理後の基板1の温度はTtgとなり、所定の温度以下(例えば50~60℃程度)に温度を保持することが出来、シリコンエッチングにおける選択性の劣化を抑制し、基板処理の性能安定化につなげることが可能となる。 The initial temperature Tw of the substrate 1 is assumed to be around room temperature (about 20 to 25 ° C.). The susceptor 2 always introduces a refrigerant having a set temperature Tc (about 15 to 20 ° C.) into the cooling channel 245. The heat generating body 244 is adjusted to a set temperature Th (about 40 to 50 ° C.), and heat transfer between the heat generating body 244 and the cooling channel 245 is mainly performed when substrate processing is not performed. . After the substrate processing is started, the temperature of the substrate 1 rises due to reaction heat. As the temperature of the substrate 1 rises, the set temperature of the heating element 244 is changed, or the power supply is narrowed down based on the temperature rise result of the heat detector 247 so that the total heat supply amount due to the heat generation of the heating element 244 and the substrate 1 becomes equal. The control unit 500 performs monitoring and control. By performing the above process, the temperature of the substrate 1 after the process becomes Ttg, and the temperature can be kept below a predetermined temperature (for example, about 50 to 60 ° C.), suppressing deterioration of selectivity in silicon etching, It becomes possible to stabilize the performance of substrate processing.
 基板1の厚みは約0.8mmであり、基板1の裏面がサセプタ2上面の金属に直接接触するのを避けるため、基板1をセラミックス、又は石英等の材質によるフロートピン(図示せず)上に載置することもできる。フロートピン高さは約0.1~0.3mm程度である。 The thickness of the substrate 1 is about 0.8 mm, and the substrate 1 is placed on a float pin (not shown) made of a material such as ceramics or quartz in order to prevent the back surface of the substrate 1 from coming into direct contact with the metal on the upper surface of the susceptor 2. Can also be placed. The height of the float pin is about 0.1 to 0.3 mm.
 (ガス供給部)
 ガス供給部(ガス供給系)6はガス導入部5に接続され、ガス導入部5を介して処理室50内に処理ガスを供給するように構成されている。ガス供給部6は、具体的にはガス導入部5に接続されてガス導入口516と連通するガス供給管15a、15bと、ガス供給管15a、15bに設けられたガス流路を開閉する開閉弁18a、18b及びガス流量制御器であるマスフロコントローラ(MFC)16a、16bを備えて、処理室50内に所望の種類のガスを、所望のガス流量、所望のガス比率で供給することが可能となるように構成されている。本実施例では、ガス供給源17aから、処理ガス中のエッチングガスであるIFガスが供給され、ガス供給源17bから、処理ガス中の添加ガスであるNガスが供給される。なお、ガス供給源17a、17bをガス供給部6に含めて構成しても良い。また、ガス供給源17bから供給されるNガスは、後述するパージ工程における不活性ガス(パージガス)として用いてもよい。
(Gas supply part)
The gas supply unit (gas supply system) 6 is connected to the gas introduction unit 5 and configured to supply a processing gas into the processing chamber 50 via the gas introduction unit 5. Specifically, the gas supply unit 6 is connected to the gas introduction unit 5 and communicates with the gas introduction port 516. The gas supply unit 6 opens and closes the gas flow paths provided in the gas supply tubes 15a and 15b. Provided with valves 18a and 18b and mass flow controllers (MFC) 16a and 16b as gas flow controllers, a desired type of gas is supplied into the processing chamber 50 at a desired gas flow rate and a desired gas ratio. It is configured to be possible. In this embodiment, an IF 7 gas that is an etching gas in the processing gas is supplied from the gas supply source 17a, and an N 2 gas that is an additive gas in the processing gas is supplied from the gas supply source 17b. The gas supply sources 17 a and 17 b may be included in the gas supply unit 6. Further, the N 2 gas supplied from the gas supply source 17b may be used as an inert gas (purge gas) in a purge process described later.
 (排気部)
 基板処理装置10は処理室50内の雰囲気を排気する排気部60を備えている。排気部60は、排気配管231、圧力調整器(APC)59、開閉弁243、真空ポンプ51を有しており、排気口7から処理室50内の雰囲気を排気するように構成されている。
処理室50内の圧力は、MFC16a、16bと、排気部に設けられたAPC59とによってガスの供給量及び排気量を調整することにより、所望の値に制御される。
(Exhaust part)
The substrate processing apparatus 10 includes an exhaust unit 60 that exhausts the atmosphere in the processing chamber 50. The exhaust unit 60 includes an exhaust pipe 231, a pressure regulator (APC) 59, an on-off valve 243, and a vacuum pump 51, and is configured to exhaust the atmosphere in the processing chamber 50 from the exhaust port 7.
The pressure in the processing chamber 50 is controlled to a desired value by adjusting the gas supply amount and the exhaust amount by the MFCs 16a and 16b and the APC 59 provided in the exhaust part.
 (ガス導入部)
 蓋体32にはガス導入部5とガス供給部6が設けられる。ガス導入部5は、処理室50内の基板1と対向するように配置され、処理室50内に処理ガスを供給するために設けられる。図3に示すように、ガス導入部5は、蓋体32の孔に嵌るように設けられ、多数のガス孔を有してガスをシャワー状に分散させるシャワープレート511と、複数のガス孔を有する分散板512と、シャワープレート511と分散板512との間に設けられた空間513と、分散板512とガス導入部5の天井板514との間に設けられた空間515と、天井板514に設けられたガス導入口516とを有するように構成される。
(Gas introduction part)
The lid 32 is provided with a gas introduction part 5 and a gas supply part 6. The gas introduction unit 5 is disposed to face the substrate 1 in the processing chamber 50 and is provided to supply the processing gas into the processing chamber 50. As shown in FIG. 3, the gas introduction part 5 is provided so as to fit into the hole of the lid 32, and has a shower plate 511 that has a large number of gas holes and disperses the gas in a shower shape, and a plurality of gas holes. The dispersion plate 512, the space 513 provided between the shower plate 511 and the dispersion plate 512, the space 515 provided between the dispersion plate 512 and the ceiling plate 514 of the gas introduction unit 5, and the ceiling plate 514. And a gas inlet 516 provided in the main body.
 ここで分散板512は、分散板512の前後の圧力比Pu/Ps≦1.07となる圧力条件を実現するようにガス孔が設けられている。(即ち、空間515の圧力Puは空間513の圧力Psよりも大きく、PuとPsの差を7%以下とする。)具体的には、例えば、分散板512のガス孔の孔径はφ1.0mm以上φ2.0mm以下、孔の分布は0.1個/cm以上0.5個/cm以下となるように設ける。これによりPu/Ps≦1.07となる圧力条件を実現する。分散板512の直径が30cmの場合、孔径φ1.0mm、孔数110個(孔の分布は0.16個/cm)とするのがより好ましい。なお、図3では分散板512は1枚の場合が示されているが、これに限定されるものではなく、複数枚でもよい。複数枚の分散板512を備える場合、最上部の分散板の上部の圧力Puと、最下部の分散板の下部の圧力Psの比がPu/Ps≦1.07を満たすように構成すればよい。なお、Pu/Psの上限については通常Pu/Ps>1となる。 Here, the dispersion plate 512 is provided with gas holes so as to realize a pressure condition where the pressure ratio Pu / Ps ≦ 1.07 before and after the dispersion plate 512. (That is, the pressure Pu of the space 515 is larger than the pressure Ps of the space 513, and the difference between Pu and Ps is 7% or less.) Specifically, for example, the hole diameter of the gas holes of the dispersion plate 512 is φ1.0 mm. above φ2.0mm less, the distribution of the pore provided such that the 0.5 / cm 2 or less 0.1 / cm 2 or more. Thereby, the pressure condition of Pu / Ps ≦ 1.07 is realized. When the diameter of the dispersion plate 512 is 30 cm, it is more preferable that the hole diameter is 1.0 mm and the number of holes is 110 (the hole distribution is 0.16 holes / cm 2 ). In FIG. 3, the case of one dispersion plate 512 is shown, but the present invention is not limited to this, and a plurality of dispersion plates may be used. When a plurality of dispersion plates 512 are provided, the ratio of the upper pressure Pu of the uppermost dispersion plate to the lower pressure Ps of the lowermost dispersion plate may satisfy Pu / Ps ≦ 1.07. . The upper limit of Pu / Ps is usually Pu / Ps> 1.
 また、シャワープレート511は、その前後の圧力差Pc-Psが1Pa以上10Pa以下の範囲となる圧力条件を実現するようにガス孔が設けられている。具体的には、例えば、シャワープレート511のガス孔の孔径はφ1.0mm以上φ3.0mm以下、孔の分布は2.9個/cm以上10個/cm以下となるように設ける。シャワープレート511の直径が30cmの場合、シャワープレート511のガス孔は孔径φ1.0mm、孔数2600個(孔の分布は3.68個/cm)とするのがより好ましい。シャワープレート511を備えることにより、分散板512により拡散された処理ガスを更に拡散させると共に整流して、処理室50内の基板に処理ガス(エッチングガス)を均一に供給することができる。 Further, the shower plate 511 is provided with gas holes so as to realize a pressure condition in which the pressure difference Pc−Ps before and after the shower plate 511 is in a range of 1 Pa to 10 Pa. Specifically, for example, the diameter of the gas holes of the shower plate 511 is set to φ1.0 mm to φ3.0 mm, and the hole distribution is set to 2.9 / cm 2 to 10 / cm 2 . When the diameter of the shower plate 511 is 30 cm, it is more preferable that the gas holes of the shower plate 511 have a hole diameter of φ1.0 mm and the number of holes of 2600 (the distribution of the holes is 3.68 / cm 2 ). By providing the shower plate 511, the processing gas diffused by the dispersion plate 512 can be further diffused and rectified to uniformly supply the processing gas (etching gas) to the substrate in the processing chamber 50.
 また、分散板512の孔とシャワープレート511の孔は互いに重ならない位置に設ける。特にシャワープレート511は、プレートの中央にガス孔を設けると特にエッチング処理において点状特異点が発生しやすいため、中央にはガス孔を設けないことが望ましい。 Also, the hole of the dispersion plate 512 and the hole of the shower plate 511 are provided at positions that do not overlap each other. In particular, in the shower plate 511, when a gas hole is provided in the center of the plate, a point-like singular point is likely to be generated particularly in the etching process.
 なお、本実施例では、分散板512の構造を上述の通りに構成することにより、分散板512の前後の圧力比Pu/Pc≦1.07という条件を実現するが、MFC16a、16b又はAPC59の少なくとも何れかを制御して、圧力比Pu/Pcを調整してもよい。すなわち、MFC16a、16bやAPC59を制御して、空間515の圧力Puや処理室50内の圧力を調整することにより、圧力比Pu/Pcを所望の比率になるように調整する。 In the present embodiment, the structure of the dispersion plate 512 is configured as described above to realize the condition that the pressure ratio Pu / Pc ≦ 1.07 before and after the dispersion plate 512. However, the MFC 16a, 16b or APC59 The pressure ratio Pu / Pc may be adjusted by controlling at least one of them. That is, the pressure ratio Pu / Pc is adjusted to a desired ratio by controlling the MFCs 16a and 16b and the APC 59 to adjust the pressure Pu in the space 515 and the pressure in the processing chamber 50.
 また、IFガスを用いたエッチング処理において、シャワープレート511とサセプタ2の上面との間の距離(Hs)は10~30mmの範囲に設定することが望ましい。他の距離に設定した場合に比べてエッチングレートを高く保つことができる。 In the etching process using IF 7 gas, the distance (Hs) between the shower plate 511 and the upper surface of the susceptor 2 is preferably set in the range of 10 to 30 mm. The etching rate can be kept high as compared with the case where the distance is set to another distance.
 (基板搬送系)
 次に、本実施例における基板の搬送系について、図6を用いて説明する。基板を搬送する搬送系は、EFEM(Equipment FrontEnd Module)100と、ロードロックチャンバ部200と、トランスファーモジュール部(基板搬送室)40を有する。
(Substrate transport system)
Next, the substrate transport system in this embodiment will be described with reference to FIG. A transport system for transporting a substrate includes an EFEM (Equipment FrontEnd Module) 100, a load lock chamber unit 200, and a transfer module unit (substrate transport chamber) 40.
 EFEM100は、FOUP(Front Opening Unified Pod)110、120及びそれぞれのFOUPからロードロックチャンバ250、260へウェハを搬送する第1の搬送部である大気搬送ロボット130を備える。FOUP110、120には25枚のウェハが搭載され、大気搬送ロボット130のアーム部がFOUPから5枚ずつウェハを抜き出す。 The EFEM 100 includes an FOUP (Front Opening Unified Unified Pod) 110 and 120 and an atmospheric transfer robot 130 which is a first transfer unit that transfers a wafer from each FOUP to the load lock chambers 250 and 260. The FOUPs 110 and 120 have 25 wafers mounted thereon, and the arm unit of the atmospheric transfer robot 130 extracts the wafers from the FOUPs five by five.
 ロードロックチャンバ部200は、ロードロックチャンバ250、260と、FOUPから搬送されたウェハをロードロックチャンバ250、260内でそれぞれ保持するバッファユニットを備えている。 The load lock chamber unit 200 includes load lock chambers 250 and 260 and buffer units for holding the wafers transferred from the FOUP in the load lock chambers 250 and 260, respectively.
 基板搬送室40は、搬送室として用いられるトランスファーモジュール310を備えており、先述のロードロックチャンバ250、260は、ゲートバルブ313(図1および図2におけるゲートバルブ9に対応)を介して、トランスファーモジュール310に取り付けられている。トランスファーモジュール310には、第2の搬送部として用いられる真空アームロボットユニット320が設けられている。 The substrate transfer chamber 40 includes a transfer module 310 used as a transfer chamber, and the load lock chambers 250 and 260 described above are transferred via a gate valve 313 (corresponding to the gate valve 9 in FIGS. 1 and 2). Attached to the module 310. The transfer module 310 is provided with a vacuum arm robot unit 320 used as a second transfer unit.
 プロセスチャンバ部400を構成する処理容器30a、30bは、ゲートバルブ313、314を介してトランスファーモジュール310に取り付けられている。ここで、処理容器30a、30bは処理容器30と同様の構成である。 The processing containers 30a and 30b constituting the process chamber unit 400 are attached to the transfer module 310 via gate valves 313 and 314. Here, the processing containers 30 a and 30 b have the same configuration as the processing container 30.
 (コントローラ)
 コントローラ500は、後述の基板処理工程を行うように、上述の各部を制御する。図7に示すように、制御部(制御手段)であるコントローラ500は、CPU(Central Processing Unit)500a、RAM(Random Access Memory)500b、記憶装置500c、I/Oポート500dを備えたコンピュータとして構成されている。RAM500b、記憶装置500c、I/Oポート500dは、内部バス500eを介して、CPU500aとデータ交換可能なように構成されている。コントローラ500には、例えばタッチパネル等として構成された入出力装置501が接続されている。
(controller)
The controller 500 controls the above-described units so as to perform a substrate processing process described later. As shown in FIG. 7, a controller 500 as a control unit (control means) is configured as a computer including a CPU (Central Processing Unit) 500a, a RAM (Random Access Memory) 500b, a storage device 500c, and an I / O port 500d. Has been. The RAM 500b, the storage device 500c, and the I / O port 500d are configured to exchange data with the CPU 500a via the internal bus 500e. For example, an input / output device 501 configured as a touch panel or the like is connected to the controller 500.
 記憶装置500cは、例えばフラッシュメモリ、HDD(Hard Disk Drive)等で構成されている。記憶装置500c内には、基板処理装置10の動作を制御する制御プログラムや、後述する基板処理の手順や条件などが記載されたプロセスレシピ等が、読み出し可能に格納されている。なお、プロセスレシピは、後述する基板処理工程における各手順をコントローラ500に実行させ、所定の結果を得ることができるように組み合わされたものであり、プログラムとして機能する。以下、このプロセスレシピや制御プログラム等を総称して、単にプログラムともいう。なお、本明細書においてプログラムという言葉を用いた場合は、プロセスレシピ単体のみを含む場合、制御プログラム単体のみを含む場合、または、その両方を含む場合がある。また、RAM500bは、CPU500aによって読み出されたプログラムやデータ等が一時的に保持されるメモリ領域(ワークエリア)として構成されている。 The storage device 500c includes, for example, a flash memory, a HDD (Hard Disk Drive), and the like. In the storage device 500c, a control program for controlling the operation of the substrate processing apparatus 10, a process recipe in which a procedure and conditions for substrate processing described later, and the like are stored are readable. Note that the process recipe is a combination of functions so that a predetermined result can be obtained by causing the controller 500 to execute each procedure in a substrate processing step to be described later, and functions as a program. Hereinafter, the process recipe, the control program, and the like are collectively referred to as simply a program. When the term “program” is used in this specification, it may include only a process recipe alone, may include only a control program alone, or may include both. The RAM 500b is configured as a memory area (work area) in which programs, data, and the like read by the CPU 500a are temporarily stored.
 I/Oポート500dは、上述の基板支持ピン上下機構11、発熱体電源253、APC59、MFC16a、16b、開閉弁18a、18b、排気ポンプ51、大気搬送ロボット52、ゲートバルブ313、真空アームロボットユニット320等に接続されている。 The I / O port 500d includes the above-described substrate support pin vertical mechanism 11, heating element power supply 253, APC 59, MFCs 16a and 16b, on-off valves 18a and 18b, exhaust pump 51, atmospheric transfer robot 52, gate valve 313, and vacuum arm robot unit. 320 or the like.
 CPU500aは、記憶装置500cから制御プログラムを読み出して実行すると共に、入出力装置501からの操作コマンドの入力等に応じて記憶装置500cからプロセスレシピを読み出すように構成されている。そして、CPU500aは、読み出したプロセスレシピの内容に沿うように、基板支持ピン上下機構11による支持ピン4の上下動作、温度調整部による基板1の加熱・冷却動作、APC59による圧力調整動作、マスフロコントローラ16a、16bと開閉弁18a、18bによる処理ガスの流量調整動作、等を制御するように構成されている。なお、図7において、破線にて囲まれている、例えばロボット回転部や大気搬送ロボット等の構成を設けても良いのはもちろんである。 The CPU 500a is configured to read and execute a control program from the storage device 500c, and to read a process recipe from the storage device 500c in response to an operation command input from the input / output device 501. Then, the CPU 500a performs the vertical movement of the support pins 4 by the substrate support pin vertical mechanism 11, the heating / cooling operation of the substrate 1 by the temperature adjustment unit, the pressure adjustment operation by the APC 59, the mass flow so as to follow the contents of the read process recipe. The controller 16a, 16b and the on-off valves 18a, 18b are configured to control the flow rate adjustment operation of the processing gas, and the like. In FIG. 7, for example, a configuration such as a robot rotating unit or an atmospheric transfer robot surrounded by a broken line may be provided.
 なお、コントローラ500は、外部記憶装置(例えば、磁気テープ、フレキシブルディスクやハードディスク等の磁気ディスク、CDやDVD等の光ディスク、MO等の光磁気ディスク、USBメモリ(USB Flash Drive)やメモリカード等の半導体メモリ)123に格納された上述のプログラムを、コンピュータにインストールすることにより構成することができる。記憶装置500cや外部記憶装置123は、コンピュータ読み取り可能な記録媒体として構成されている。以下、これらを総称して、単に記録媒体ともいう。本明細書において記録媒体という言葉を用いた場合は、記憶装置500c単体のみを含む場合、外部記憶装置123単体のみを含む場合、または、その両方を含む場合がある。なお、コンピュータへのプログラムの提供は、外部記憶装置123を用いず、インターネットや専用回線等の通信手段を用いて行ってもよい。 The controller 500 is an external storage device (eg, magnetic tape, magnetic disk such as a flexible disk or hard disk, optical disk such as CD or DVD, magneto-optical disk such as MO, USB memory (USB FlashMODrive), memory card, etc. The above-mentioned program stored in the (semiconductor memory) 123 can be configured by installing it in a computer. The storage device 500c and the external storage device 123 are configured as computer-readable recording media. Hereinafter, these are collectively referred to simply as a recording medium. When the term “recording medium” is used in this specification, it may include only the storage device 500c, only the external storage device 123, or both. The program may be provided to the computer using a communication means such as the Internet or a dedicated line without using the external storage device 123.
 (2)基板処理工程
 続いて、図8を用いて、実施例にかかる半導体製造工程の一工程として実施される基板処理工程について説明する。かかる工程は、上述の基板処理装置10により実施される。なお、以下の説明において、基板処理装置10を構成する各部の動作は、コントローラ500により制御される。
(2) Substrate Processing Step Next, a substrate processing step that is performed as one step of the semiconductor manufacturing process according to the embodiment will be described with reference to FIG. Such a process is performed by the substrate processing apparatus 10 described above. In the following description, the operation of each unit constituting the substrate processing apparatus 10 is controlled by the controller 500.
 (基板の搬入工程S10)
 まず、図2に示すように、シリコン含有膜を有する基板1が、基板搬送室40から基板搬送ロボットによって、搬送口8を介して、処理室50内に搬入される。処理室50内に搬入された基板1は、支持ピン4上に載置される。
(Substrate loading step S10)
First, as shown in FIG. 2, the substrate 1 having a silicon-containing film is carried into the processing chamber 50 from the substrate transfer chamber 40 through the transfer port 8 by the substrate transfer robot. The substrate 1 carried into the processing chamber 50 is placed on the support pins 4.
 次に、基板支持ピン上下機構11を下降させ、基板1をサセプタ2上に載置する。ここで基板支持ピン上下機構11の昇降は、昇降駆動部により昇降されることで行われる。サセプタ2に具備された温度調整部は、予め所定の温度に設定されており、基板1を20℃~低温程度(例えば20℃以上60℃以下)、所定の基板温度になる様に調整する。ここで、低温とは、エッチングガスを含む処理ガスが十分に気化している温度帯であって、基板1に形成された膜特性が変化しない温度とする。基板1の温度を20℃~低温程度とすることにより、本実施例のようにエッチングガスとしてIFガスを用いる場合、エッチング処理におけるシリコン層に対する高選択性(後述する)を発揮させることができる。 Next, the substrate support pin up / down mechanism 11 is lowered to place the substrate 1 on the susceptor 2. Here, the raising / lowering of the substrate support pin raising / lowering mechanism 11 is performed by being raised / lowered by the raising / lowering driving unit. The temperature adjusting unit provided in the susceptor 2 is set in advance to a predetermined temperature, and adjusts the substrate 1 to a predetermined substrate temperature of about 20 ° C. to a low temperature (for example, 20 ° C. to 60 ° C.). Here, the low temperature is a temperature range in which the processing gas including the etching gas is sufficiently vaporized, and is a temperature at which the film characteristics formed on the substrate 1 do not change. By setting the temperature of the substrate 1 to about 20 ° C. to a low temperature, when IF 7 gas is used as an etching gas as in this embodiment, high selectivity (described later) with respect to the silicon layer in the etching process can be exhibited. .
 続いて、サセプタ2、或いはサセプタ2及び基板支持ピン上下機構11を上昇させ、サセプタ2を基板処理位置Bへ移動し、サセプタ2上に基板1が載置されるようにする。 Subsequently, the susceptor 2 or the susceptor 2 and the substrate support pin up / down mechanism 11 are raised, the susceptor 2 is moved to the substrate processing position B, and the substrate 1 is placed on the susceptor 2.
 (シリコン膜除去工程S20)
 次に、ガス供給管6から所定のエッチングガスを含む処理ガスをガス導入部5を介して基板1に供給し、基板1の表面上に形成されたシリコン層(シリコン膜)のエッチングを行う。ここで、エッチングされるシリコン層とは、Si元素で構成される層であり、例えばポリシリコン(Poly-Si)やアモルファスシリコン(a-Si)、単結晶シリコン(c-Si)などである。
(Silicon film removal step S20)
Next, a processing gas containing a predetermined etching gas is supplied from the gas supply pipe 6 to the substrate 1 through the gas introduction unit 5, and the silicon layer (silicon film) formed on the surface of the substrate 1 is etched. Here, the silicon layer to be etched is a layer composed of Si element, such as polysilicon (Poly-Si), amorphous silicon (a-Si), single crystal silicon (c-Si), or the like.
 エッチングガスとしては、ハロゲン含有ガスが用いられ、例えばフッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)の中から選択される二つ以上のハロゲン元素を含むガスである。好ましくは、ハロゲン元素を2種類含むガスが用いられる。例えば、五フッ化ヨウ素(IF)、七フッ化ヨウ素(IF)、三フッ化臭素(BrF)、五フッ化臭素(BrF)、二フッ化キセノン(XeF)、三フッ化塩素(ClF)などが有る。さらに好ましくは、シリコン層を高い選択性をもって除去させることができる特性を有しているIFガスが用いられる。ここで、「選択的」とは、例えば、シリコン層のエッチングレートが他の種類の層のエッチングレートよりも高いことを言う。例えば、他の種類の層であるSiO層、SiN層、TiO層のエッチングレートに対するシリコン層のエッチングレートの比率はそれぞれ、1E+5(=1×10)、1E+5(=1×10)、1E+3(=1×10)である。 As the etching gas, a halogen-containing gas is used, for example, a gas containing two or more halogen elements selected from fluorine (F), chlorine (Cl), bromine (Br), and iodine (I). Preferably, a gas containing two types of halogen elements is used. For example, iodine pentafluoride (IF 5 ), iodine heptafluoride (IF 7 ), bromine trifluoride (BrF 3 ), bromine pentafluoride (BrF 5 ), xenon difluoride (XeF 2 ), trifluoride There is chlorine (ClF 3 ) and the like. More preferably, IF 7 gas having a characteristic capable of removing the silicon layer with high selectivity is used. Here, “selective” means, for example, that the etching rate of the silicon layer is higher than the etching rates of other types of layers. For example, the ratio of the etching rate of the silicon layer to the etching rate of other types of layers, SiO layer, SiN layer, and TiO layer, is 1E + 5 (= 1 × 10 5 ), 1E + 5 (= 1 × 10 5 ), 1E + 3, respectively. (= 1 × 10 3 ).
 なお、本実施例ではエッチングガスの他に添加ガスとしてNガスを混合した混合ガスを、処理ガスとしてガス供給管6からガス導入部5を介して基板1に供給している。 In the present embodiment, a mixed gas obtained by mixing N 2 gas as an additive gas in addition to the etching gas is supplied as a processing gas from the gas supply pipe 6 to the substrate 1 through the gas introduction part 5.
 すなわち、シリコン膜除去工程では、開閉弁18a,18bを開くと共に、MFC16a,16bを制御して、ガス供給源17a、17bからそれぞれIFガスとNガスを処理ガスとしてガス導入部5へ供給する。また、処理ガスの供給と同時にAPC59を制御して、排気量を調整することにより、処理室50内の圧力を所定の圧力に維持する。 That is, in the silicon film removal process, the on-off valves 18a and 18b are opened and the MFCs 16a and 16b are controlled to supply the gas introduction source 5 with IF 7 gas and N 2 gas as processing gases from the gas supply sources 17a and 17b, respectively. To do. Further, the pressure in the processing chamber 50 is maintained at a predetermined pressure by controlling the APC 59 simultaneously with the supply of the processing gas to adjust the exhaust amount.
 例えば、MFC16aで制御されるIFガスの供給量(ガス流量)は10~1,000sccm、供給圧力(MFC16aからみてガス供給源17a側の供給管内圧力)は0.005~0.2MPaとする。また、ガス導入口516の手前における処理ガスの供給管内圧力(空間515にガスが供給される直前の供給管内圧力)は1~10kPa程度とする。また、処理室50内の圧力は300~1000Paとする。 For example, the supply amount (gas flow rate) of IF 7 gas controlled by the MFC 16a is 10 to 1,000 sccm, and the supply pressure (pressure in the supply pipe on the gas supply source 17a side as viewed from the MFC 16a) is 0.005 to 0.2 MPa. . Further, the pressure in the supply pipe of the processing gas before the gas introduction port 516 (pressure in the supply pipe immediately before the gas is supplied to the space 515) is set to about 1 to 10 kPa. The pressure in the processing chamber 50 is set to 300 to 1000 Pa.
 特に、処理室50内におけるIFガスの分圧は300Pa以上となるように、MFC16aとAPC59の少なくとも一方を制御することにより、シリコン層のエッチング不良の発生を抑制することができる。例えば、処理室50内の圧力(全圧)を550Paとし、IFガスとNガスの圧力の比(分圧比)を4:3とすると、IFガスの分圧は315Paとなる。 In particular, by controlling at least one of the MFC 16a and the APC 59 so that the partial pressure of the IF 7 gas in the processing chamber 50 is 300 Pa or higher, the occurrence of defective etching of the silicon layer can be suppressed. For example, if the pressure (total pressure) in the processing chamber 50 is 550 Pa and the pressure ratio (partial pressure ratio) of IF 7 gas and N 2 gas is 4: 3, the partial pressure of IF 7 gas is 315 Pa.
 このとき、ガス導入部5を前述の通りに構成し、分散板512の前後の圧力比Pu/Pc=1.07、シャワープレート511の前後の圧力差Pc-Ps=2Paの条件を満たす場合、Pc=550Pa、Ps=552Pa、Pu=593Paとなる。 At this time, when the gas introduction part 5 is configured as described above and satisfies the conditions of the pressure ratio Pu / Pc = 1.07 before and after the dispersion plate 512 and the pressure difference Pc−Ps = 2 Pa before and after the shower plate 511, Pc = 550 Pa, Ps = 552 Pa, Pu = 593 Pa.
 (パージ工程S30)
 シリコン膜のエッチング後は、処理室50内の処理ガスをパージする処理を行うことが好ましい。パージ工程S30において、エッチング処理に用いられた処理ガスは、処理室50の側面に設けられた、環状路14と連通した、排気口7より排出される。また、ガス供給管15bからは、処理室50内に不活性ガスである例えばNガスが供給される。この際、供給されるNガスは加熱された状態で供給されるのが好ましい。また、供給される不活性ガスは、前述のエッチングガスよりも高い温度に加熱されているとなお良い。このように、不活性ガスをエッチングガスよりも高い温度に加熱することによって、エッチングの際に発生する副生成物の除去効率を向上させることが可能となる。更に、処理室50に供給する不活性ガスの温度は、エッチング工程で発生した副生成物と残渣のいずれか、もしくは両方の昇華温度以上に加熱されて基板上に供給するとなお良い。これにより、エッチングの際に発生する副生成物の除去効率を更に向上させることが可能となる。更に好ましくは、不活性ガスの温度は、エッチング工程で発生した副生成物と残渣のいずれか、もしくは両方の昇華温度以上、基板上に形成された回路の耐熱温度又は処理室50の周囲に設けられたOリングの耐熱温度以下になるように加熱する。
(Purge step S30)
After the silicon film is etched, it is preferable to perform a process of purging the processing gas in the processing chamber 50. In the purge step S <b> 30, the processing gas used for the etching process is discharged from the exhaust port 7 provided on the side surface of the processing chamber 50 and communicating with the annular path 14. Further, for example, N 2 gas which is an inert gas is supplied into the processing chamber 50 from the gas supply pipe 15b. At this time, the supplied N 2 gas is preferably supplied in a heated state. The supplied inert gas is preferably heated to a temperature higher than that of the above-described etching gas. As described above, by heating the inert gas to a temperature higher than that of the etching gas, it is possible to improve the removal efficiency of by-products generated during the etching. Furthermore, the temperature of the inert gas supplied to the processing chamber 50 is preferably heated to the sublimation temperature of either or both of by-products and residues generated in the etching process and supplied to the substrate. As a result, it is possible to further improve the removal efficiency of by-products generated during etching. More preferably, the temperature of the inert gas is higher than the sublimation temperature of the by-product and the residue generated in the etching process, or both, the heat resistance temperature of the circuit formed on the substrate, or around the processing chamber 50. Heat to a temperature lower than the heat resistance temperature of the O-ring.
 (基板搬出工程S40)
 パージ工程を終えた後、搬送可能な温度まで冷却する。この際、支持ピン4を上昇させ、基板1をサセプタ2から離すようにしてもよい。
  基板1が搬送可能な温度まで冷却され、処理室50内から搬出する準備が整ったら、上述の基板搬入工程S10の逆の手順で搬出する。
(Substrate unloading step S40)
After the purging process is finished, the temperature is cooled to a temperature at which conveyance is possible. At this time, the support pins 4 may be raised to separate the substrate 1 from the susceptor 2.
When the substrate 1 is cooled to a temperature at which the substrate 1 can be transported and ready to be unloaded from the processing chamber 50, the substrate 1 is unloaded in the reverse procedure of the above-described substrate loading step S10.
 <本発明の他の実施形態>
 以上、本発明の実施形態を具体的に説明したが、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
  また、本発明は、本実施形態に係る基板処理装置のような半導体ウェハを処理する半導体製造装置などに限らず、ガラス基板を処理するLCD(Liquid Crystal Display)製造装置、太陽電池製造装置等の基板処理装置、MEMS(Micro Electro Mechanical Systems)製造装置にも適用できる。例えば、LCDを駆動させるトランジスタや、太陽電池に用いられる単結晶シリコン、多結晶シリコン、アモルファスシリコンを加工する処理にも適用することができる。
<Other Embodiments of the Present Invention>
As mentioned above, although embodiment of this invention was described concretely, this invention is not limited to the above-mentioned embodiment, It can change variously in the range which does not deviate from the summary.
Further, the present invention is not limited to a semiconductor manufacturing apparatus that processes a semiconductor wafer such as the substrate processing apparatus according to the present embodiment, but an LCD (Liquid Crystal Display) manufacturing apparatus that processes a glass substrate, a solar cell manufacturing apparatus, or the like. The present invention can also be applied to a substrate processing apparatus and a MEMS (Micro Electro Mechanical Systems) manufacturing apparatus. For example, the present invention can be applied to a process for processing a transistor for driving an LCD or single crystal silicon, polycrystalline silicon, or amorphous silicon used for a solar battery.
 <本発明の好ましい態様>
 以下に、本発明の好ましい態様について付記する。
<付記1>
 一態様によれば、
 表面にシリコン層を有する基板が収容される処理室と、
 前記シリコン層をエッチングするエッチングガスを供給するガス供給系と、
前記ガス供給系から供給される前記エッチングガスを前記処理室内へ導入するガス導入部と、
を備え、
 前記ガス導入部は、前記ガス供給系の供給管から前記ガス導入部に供給された前記エッチングガスが通過するよう構成された分散板と、前記分散板を通過した前記エッチングガスが通過して前記処理室内に導入されるよう構成されたシャワープレートと、を備え、
 前記分散板と前記シャワープレートの間の空間の圧力に対する、前記供給管と前記分散板の間の空間の圧力の比は、1.07以下となるように前記分散板は構成される、
 基板処理装置が提供される。
<付記2>
 付記1の基板処理装置であって、好ましくは、
 前記ガス供給系は前記エッチングガスとして七フッ化ヨウ素ガス(IF7ガス)を供給するよう構成される。
<付記3>
 付記1又は2の基板処理装置であって、好ましくは、
 前記処理室内における前記基板の処理温度は20℃以上60℃以下の範囲である。
<付記4>
 付記1又は2の基板処理装置であって、好ましくは、
 前記基板の温度を変化させるよう構成される温度調整部と、
 前記基板の温度が20℃以上60℃以下の範囲の温度を維持するように前記温度調整部を制御するよう構成された制御部と、を備える。
<付記5>
 付記4の基板処理装置であって、好ましくは、
 前記温度調整部は、前記基板が載置される基板載置台に設けられ、ヒータ及びチラーの少なくとも一方により構成される。
<付記6>
 付記1乃至5のいずれかの基板処理装置であって、好ましくは、
 前記処理室の温度は室温である。
<付記7>
 付記2乃至6のいずれかの基板処理装置であって、好ましくは、
 前記処理室内における前記七フッ化ヨウ素ガスの分圧は300Pa以上1000Pa以下の範囲である。
<付記8>
 付記7の基板処理装置であって、好ましくは、
 前記処理室内を排気する排気管において前記処理室内の圧力を調整する圧力調整バルブ(APCバルブ)と、
 前記処理室内の圧力が300Pa以上1000Pa以下となるように前記圧力調整バルブを制御するよう構成される制御部と、
を備える。
<付記9>
 付記1乃至8のいずれかの基板処理装置であって、好ましくは、
 前記シャワープレートは、前記分散板と前記シャワープレートの間の空間の圧力と前記処理室内の圧力の圧力差が1Pa以上10Pa以下の範囲内となるように構成される。
<付記10>
 付記1乃至9のいずれかの基板処理装置であって、好ましくは、
 前記分散板と前記シャワープレートは互いに平行になるように設けられ、
 前記分散板と前記シャワープレートはそれぞれ、前記エッチングガスが通過する複数の孔を備え、
 前記分散板の孔と前記シャワープレートの孔は互いに重ならない位置に設けられる。
<付記11>
 付記1乃至10のいずれかの基板処理装置であって、好ましくは、
 前記分散板は前記エッチングガスが通過する複数の孔を備え、各孔の直径はΦ1.0mm以上、単位面積当たりの孔の分布は0.1個/cm以上である。
<付記12>
 付記1乃至11のいずれかの基板処理装置であって、好ましくは、
 前記分散板は複数設けられる。
<付記13>
 付記1乃至12のいずれかの基板処理装置において、
 前記シャワープレートは前記エッチングガスが通過する複数の孔を備え、各孔の直径はΦ1.0mm以上、単位面積当たりの孔の分布は2.9個/cm以上である。
<付記14>
 更に他の態様によれば、
 表面にシリコン層を有する基板を処理室内に搬入する工程と、
 前記シリコン層をエッチングするエッチングガスを、供給管からガス導入部を介して前記処理室内に供給する工程と、
 前記処理室内に供給された前記エッチングガスにより前記基板表面のシリコン層をエッチングする工程と、を有し、
 前記ガス導入部は、前記供給管から前記ガス導入部に供給された前記エッチングガスが通過するよう構成された分散板と、前記分散板を通過した前記エッチングガスが通過して前記処理室内に導入されるよう構成されたシャワープレートを備え、
 前記分散板と前記シャワープレートの間の空間の圧力に対する、前記供給管と前記分散板の間の空間の圧力の比は、1.07以下となるように前記分散板は構成される、
 半導体装置の製造方法、又は基板処理方法が提供される。
<付記15>
 更に他の態様によれば、
 表面にシリコン層を有する基板を処理室内に搬入する手順と、
 前記シリコン層をエッチングするエッチングガスを、供給管からガス導入部を介して前記処理室内に供給する手順と、
 前記処理室内に供給された前記エッチングガスにより前記基板表面のシリコン層をエッチングする手順と、をコンピュータに実行させるプログラム、またはプログラムを記録したコンピュータが読み取り可能な記録媒体であって、
 前記ガス導入部は、前記供給管から前記ガス導入部に供給された前記エッチングガスが通過するよう構成された分散板と、前記分散板を通過した前記エッチングガスが通過して前記処理室内に導入されるよう構成されたシャワープレートを備え、
 前記分散板と前記シャワープレートの間の空間の圧力に対する、前記供給管と前記分散板の間の空間の圧力の比は、1.07以下となるように前記分散板は構成される、
 プログラム、又は記録媒体が提供される。
<Preferred embodiment of the present invention>
Hereinafter, preferred embodiments of the present invention will be additionally described.
<Appendix 1>
According to one aspect,
A processing chamber in which a substrate having a silicon layer on the surface is accommodated;
A gas supply system for supplying an etching gas for etching the silicon layer;
A gas introduction part for introducing the etching gas supplied from the gas supply system into the processing chamber;
With
The gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe of the gas supply system to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes through the dispersion plate. A shower plate configured to be introduced into the processing chamber,
The dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
A substrate processing apparatus is provided.
<Appendix 2>
The substrate processing apparatus according to appendix 1, preferably,
The gas supply system is configured to supply iodine heptafluoride gas (IF7 gas) as the etching gas.
<Appendix 3>
The substrate processing apparatus according to appendix 1 or 2, preferably,
The processing temperature of the substrate in the processing chamber ranges from 20 ° C. to 60 ° C.
<Appendix 4>
The substrate processing apparatus according to appendix 1 or 2, preferably,
A temperature adjustment unit configured to change the temperature of the substrate;
A control unit configured to control the temperature adjusting unit so as to maintain a temperature of the substrate in a range of 20 ° C. or more and 60 ° C. or less.
<Appendix 5>
The substrate processing apparatus according to appendix 4, preferably,
The temperature adjusting unit is provided on a substrate mounting table on which the substrate is mounted, and is configured by at least one of a heater and a chiller.
<Appendix 6>
The substrate processing apparatus according to any one of appendices 1 to 5, preferably,
The temperature of the processing chamber is room temperature.
<Appendix 7>
The substrate processing apparatus according to any one of appendices 2 to 6, preferably,
The partial pressure of the iodine heptafluoride gas in the processing chamber is in the range of 300 Pa to 1000 Pa.
<Appendix 8>
The substrate processing apparatus according to appendix 7, preferably,
A pressure adjusting valve (APC valve) for adjusting the pressure in the processing chamber in an exhaust pipe for exhausting the processing chamber;
A controller configured to control the pressure regulating valve so that the pressure in the processing chamber is 300 Pa or more and 1000 Pa or less;
Is provided.
<Appendix 9>
The substrate processing apparatus according to any one of appendices 1 to 8, preferably,
The shower plate is configured such that a pressure difference between a pressure in a space between the dispersion plate and the shower plate and a pressure in the processing chamber is in a range of 1 Pa to 10 Pa.
<Appendix 10>
The substrate processing apparatus according to any one of appendices 1 to 9, preferably,
The dispersion plate and the shower plate are provided to be parallel to each other,
Each of the dispersion plate and the shower plate includes a plurality of holes through which the etching gas passes,
The hole of the dispersion plate and the hole of the shower plate are provided at positions that do not overlap each other.
<Appendix 11>
The substrate processing apparatus according to any one of appendices 1 to 10, preferably,
The dispersion plate has a plurality of holes in which the etching gas passes, the diameter of each hole or 1.0 mm, the distribution of holes per unit area is 0.1 / cm 2 or more.
<Appendix 12>
The substrate processing apparatus according to any one of appendices 1 to 11, preferably
A plurality of the dispersion plates are provided.
<Appendix 13>
In the substrate processing apparatus of any one of appendices 1 to 12,
The shower plate has a plurality of holes through which the etching gas passes, the diameter of each hole is Φ1.0 mm or more, and the distribution of holes per unit area is 2.9 / cm 2 or more.
<Appendix 14>
According to yet another aspect,
Carrying a substrate having a silicon layer on the surface into the processing chamber;
Supplying an etching gas for etching the silicon layer from a supply pipe into the processing chamber through a gas introduction unit;
Etching the silicon layer on the substrate surface with the etching gas supplied into the processing chamber,
The gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes and is introduced into the processing chamber. With a shower plate configured to be
The dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
A semiconductor device manufacturing method or a substrate processing method is provided.
<Appendix 15>
According to yet another aspect,
A procedure for carrying a substrate having a silicon layer on the surface thereof into the processing chamber;
A procedure for supplying an etching gas for etching the silicon layer from a supply pipe into the processing chamber through a gas introduction unit;
A program for causing a computer to execute a procedure for etching a silicon layer on the surface of the substrate with the etching gas supplied into the processing chamber, or a computer-readable recording medium recording the program,
The gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes and is introduced into the processing chamber. With a shower plate configured to be
The dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
A program or recording medium is provided.
 本発明に係る技術によれば、基板上のシリコン層をエッチングガスを用いてエッチングする処理において、処理される基板の品質を向上させることができる。 According to the technique according to the present invention, the quality of the substrate to be processed can be improved in the process of etching the silicon layer on the substrate using the etching gas.
1    基板
2    サセプタ
5    ガス導入部
6    ガス供給部(ガス供給系)
8    搬送口
10   基板処理装置
30   処理容器
31   容器本体
32   蓋体
50   処理室
60   排気部(排気系)
1 Substrate 2 Susceptor 5 Gas introduction part 6 Gas supply part (gas supply system)
8 Transport Port 10 Substrate Processing Apparatus 30 Processing Container 31 Container Body 32 Lid 50 Processing Chamber 60 Exhaust Portion (Exhaust System)

Claims (16)

  1.  表面にシリコン層を有する基板が収容される処理室と、
     前記シリコン層をエッチングするエッチングガスを供給するガス供給系と、
     前記ガス供給系から供給される前記エッチングガスを前記処理室内へ導入するガス導入部と、を備え、
     前記ガス導入部は、前記ガス供給系の供給管から前記ガス導入部に供給された前記エッチングガスが通過するよう構成された分散板と、前記分散板を通過した前記エッチングガスが通過して前記処理室内に導入されるよう構成されたシャワープレートと、を備え、
     前記分散板と前記シャワープレートの間の空間の圧力に対する前記供給管と前記分散板の間の空間の圧力の比は1.07以下となるように前記分散板は構成される、
     基板処理装置。
    A processing chamber in which a substrate having a silicon layer on the surface is accommodated;
    A gas supply system for supplying an etching gas for etching the silicon layer;
    A gas introduction part for introducing the etching gas supplied from the gas supply system into the processing chamber,
    The gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe of the gas supply system to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes through the dispersion plate. A shower plate configured to be introduced into the processing chamber,
    The dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
    Substrate processing equipment.
  2.  前記ガス供給系は前記エッチングガスとして七フッ化ヨウ素ガスを供給するよう構成される、請求項1記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the gas supply system is configured to supply iodine heptafluoride gas as the etching gas.
  3.  前記基板の温度を変化させるように構成される温度調整部と、
     前記基板の温度が20℃以上60℃以下の範囲の温度を維持するように前記温度調整部を制御するよう構成される制御部と、を備える請求項2記載の基板処理装置。
    A temperature adjustment unit configured to change the temperature of the substrate;
    The substrate processing apparatus according to claim 2, further comprising: a control unit configured to control the temperature adjusting unit so as to maintain a temperature of the substrate in a range of 20 ° C. or more and 60 ° C. or less.
  4.  前記温度調整部は、前記基板が載置される基板載置台に設けられ、ヒータ及びチラーの少なくとも一方により構成される、請求項3記載の基板処理装置。 4. The substrate processing apparatus according to claim 3, wherein the temperature adjustment unit is provided on a substrate mounting table on which the substrate is mounted, and is configured by at least one of a heater and a chiller.
  5.  前記処理室の温度は室温である、請求項1記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the temperature of the processing chamber is room temperature.
  6.  前記処理室内における前記エッチングガスの分圧は300Pa以上である、請求項2記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein a partial pressure of the etching gas in the processing chamber is 300 Pa or more.
  7.  前記処理室内を排気する排気管に設けられて前記処理室内の圧力を調整する圧力調整バルブと、
     前記処理室内の圧力が300Pa以上1000Pa以下となるように前記圧力調整バルブを制御するよう構成される制御部と、を備える請求項2記載の基板処理装置。
    A pressure adjusting valve provided in an exhaust pipe for exhausting the processing chamber to adjust the pressure in the processing chamber;
    The substrate processing apparatus according to claim 2, further comprising: a control unit configured to control the pressure adjustment valve so that the pressure in the processing chamber is 300 Pa or more and 1000 Pa or less.
  8.  前記シャワープレートは、前記分散板と前記シャワープレートの間の空間の圧力と前記処理室内の圧力の圧力差が1Pa以上10Pa以下の範囲内となるように構成される、請求項2記載の基板処理装置。 The substrate processing according to claim 2, wherein the shower plate is configured such that a pressure difference between a pressure in a space between the dispersion plate and the shower plate and a pressure in the processing chamber is within a range of 1 Pa to 10 Pa. apparatus.
  9.  前記分散板と前記シャワープレートは互いに平行になるように設けられ、
     前記分散板と前記シャワープレートはそれぞれ、前記エッチングガスが通過する複数の孔を備え、
     前記分散板の孔と前記シャワープレートの孔は互いに重ならない位置に設けられる、請求項2記載の基板処理装置。
    The dispersion plate and the shower plate are provided to be parallel to each other,
    Each of the dispersion plate and the shower plate includes a plurality of holes through which the etching gas passes,
    The substrate processing apparatus according to claim 2, wherein the holes of the dispersion plate and the holes of the shower plate are provided at positions that do not overlap each other.
  10.  前記分散板が備える前記複数の孔の直径はΦ1.0mm以上、単位面積当たりの前記複数の孔の分布は0.1個/cm以上である、請求項9記載の基板処理装置。 The substrate processing apparatus according to claim 9, wherein a diameter of the plurality of holes provided in the dispersion plate is Φ1.0 mm or more, and a distribution of the plurality of holes per unit area is 0.1 or more / cm 2 .
  11.  前記分散板は複数設けられる、請求項9記載の基板処理装置。 10. The substrate processing apparatus according to claim 9, wherein a plurality of the dispersion plates are provided.
  12.  前記シャワープレートが備える前記複数の孔の直径はΦ1.0mm以上、単位面積当たりの前記複数の孔の分布は2.9個/cm以上である、請求項9記載の基板処理装置。 The substrate processing apparatus according to claim 9, wherein a diameter of the plurality of holes provided in the shower plate is Φ1.0 mm or more, and a distribution of the plurality of holes per unit area is 2.9 pieces / cm 2 or more.
  13.  表面にシリコン層を有する基板を処理室内に搬入する工程と、
     前記シリコン層をエッチングするエッチングガスを、供給管からガス導入部を介して前記処理室内に供給する工程と、
     前記処理室内に供給された前記エッチングガスにより前記基板表面のシリコン層をエッチングする工程と、を有し、
     前記ガス導入部は、前記供給管から前記ガス導入部に供給された前記エッチングガスが通過するよう構成された分散板と、前記分散板を通過した前記エッチングガスが通過して前記処理室内に導入されるよう構成されたシャワープレートを備え、
     前記分散板と前記シャワープレートの間の空間の圧力に対する前記供給管と前記分散板の間の空間の圧力の比は1.07以下となるように前記分散板は構成される、
     半導体装置の製造方法。
    Carrying a substrate having a silicon layer on the surface into the processing chamber;
    Supplying an etching gas for etching the silicon layer from a supply pipe into the processing chamber through a gas introduction unit;
    Etching the silicon layer on the substrate surface with the etching gas supplied into the processing chamber,
    The gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe to the gas introduction unit, and the etching gas that has passed through the dispersion plate passes and is introduced into the processing chamber. With a shower plate configured to be
    The dispersion plate is configured such that the ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less.
    A method for manufacturing a semiconductor device.
  14.  前記エッチングガスは七フッ化ヨウ素ガスである、請求項13記載の半導体装置の製造方法。 14. The method of manufacturing a semiconductor device according to claim 13, wherein the etching gas is iodine heptafluoride gas.
  15.  前記エッチングガスにより前記基板表面のシリコン層をエッチングする工程では、前記基板の温度を20℃以上60℃以下の範囲の温度とする、請求項14記載の半導体装置の製造方法。 15. The method of manufacturing a semiconductor device according to claim 14, wherein in the step of etching the silicon layer on the surface of the substrate with the etching gas, the temperature of the substrate is set in a range of 20 ° C. or more and 60 ° C. or less.
  16.  表面にシリコン層を有する基板を処理室内に搬入する手順と、
     前記シリコン層をエッチングするエッチングガスを、供給管からガス導入部を介して前記処理室内に供給する手順であって、
     前記ガス導入部は、供給管から前記ガス導入部に供給された前記エッチングガスが通過するよう構成された分散板と、前記分散板を通過した前記エッチングガスが通過して前記処理室内に導入されるよう構成されたシャワープレートを備え、前記分散板と前記シャワープレートの間の空間の圧力に対する、前記供給管と前記分散板の間の空間の圧力の比は、1.07以下となるように前記分散板が構成されている、前記エッチングガスを前記処理室内に供給する手順と、
     前記処理室内に供給された前記エッチングガスにより前記基板表面のシリコン層をエッチングする手順と、をコンピュータに実行させるプログラムを記録したコンピュータが読み取り可能な記録媒体。
    A procedure for carrying a substrate having a silicon layer on the surface thereof into the processing chamber;
    An etching gas for etching the silicon layer is a procedure for supplying the processing chamber from a supply pipe through the gas introduction unit,
    The gas introduction unit includes a dispersion plate configured to pass the etching gas supplied from the supply pipe to the gas introduction unit, and the etching gas that has passed through the dispersion plate is introduced into the processing chamber. And a ratio of the pressure in the space between the supply pipe and the dispersion plate to the pressure in the space between the dispersion plate and the shower plate is 1.07 or less. A plate is configured, and a procedure for supplying the etching gas into the processing chamber;
    A computer-readable recording medium storing a program for causing a computer to execute a procedure for etching a silicon layer on the substrate surface with the etching gas supplied into the processing chamber.
PCT/JP2015/059708 2015-03-27 2015-03-27 Substrate processing device, semiconductor device production method, and recording medium WO2016157317A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059708 WO2016157317A1 (en) 2015-03-27 2015-03-27 Substrate processing device, semiconductor device production method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059708 WO2016157317A1 (en) 2015-03-27 2015-03-27 Substrate processing device, semiconductor device production method, and recording medium

Publications (1)

Publication Number Publication Date
WO2016157317A1 true WO2016157317A1 (en) 2016-10-06

Family

ID=57004880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059708 WO2016157317A1 (en) 2015-03-27 2015-03-27 Substrate processing device, semiconductor device production method, and recording medium

Country Status (1)

Country Link
WO (1) WO2016157317A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188030A1 (en) * 2018-03-29 2019-10-03 セントラル硝子株式会社 Substrate processing gas, storage container, and substrate processing method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046029A (en) * 1983-08-24 1985-03-12 Hitachi Ltd Equipment for manufacturing semiconductor
JPH11265884A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Method and equipment for manufacturing semiconductor
JP2000290777A (en) * 1999-04-07 2000-10-17 Tokyo Electron Ltd Gas treating device, buffle member, and gas treating method
WO2010079738A1 (en) * 2009-01-09 2010-07-15 株式会社アルバック Plasma processing apparatus and plasma cvd film-forming method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6046029A (en) * 1983-08-24 1985-03-12 Hitachi Ltd Equipment for manufacturing semiconductor
JPH11265884A (en) * 1998-03-18 1999-09-28 Hitachi Ltd Method and equipment for manufacturing semiconductor
JP2000290777A (en) * 1999-04-07 2000-10-17 Tokyo Electron Ltd Gas treating device, buffle member, and gas treating method
WO2010079738A1 (en) * 2009-01-09 2010-07-15 株式会社アルバック Plasma processing apparatus and plasma cvd film-forming method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019188030A1 (en) * 2018-03-29 2019-10-03 セントラル硝子株式会社 Substrate processing gas, storage container, and substrate processing method
CN111886674A (en) * 2018-03-29 2020-11-03 中央硝子株式会社 Gas for substrate treatment, storage container, and substrate treatment method
JPWO2019188030A1 (en) * 2018-03-29 2021-04-01 セントラル硝子株式会社 Substrate processing gas, storage container and substrate processing method
US11447697B2 (en) 2018-03-29 2022-09-20 Central Glass Company, Limited Substrate processing gas, storage container, and substrate processing method
JP7185148B2 (en) 2018-03-29 2022-12-07 セントラル硝子株式会社 SUBSTRATE PROCESSING GAS, STORAGE CONTAINER, AND SUBSTRATE PROCESSING METHOD
CN111886674B (en) * 2018-03-29 2024-03-12 中央硝子株式会社 Gas for substrate processing, storage container, and substrate processing method

Similar Documents

Publication Publication Date Title
WO2015115002A1 (en) Fine pattern forming method, semiconductor device manufacturing method, substrate processing device, and recording medium
JP6210039B2 (en) Deposit removal method and dry etching method
US20110304078A1 (en) Methods for removing byproducts from load lock chambers
US20160218012A1 (en) Method of forming fine pattern, method of manufacturing semiconductor device, substrate processing apparatus and recording medium
JP5809144B2 (en) Substrate processing method and substrate processing apparatus
US20160379848A1 (en) Substrate Processing Apparatus
KR101276262B1 (en) Apparatus and method for manufacturing semiconductor devices
JP2016063033A (en) Substrate processing device, method of manufacturing semiconductor device, and recording medium
US20170186634A1 (en) Substrate processing apparatus
WO2015016149A1 (en) Substrate processing device, method for producing semiconductor device, and recording medium
US11745231B2 (en) Cleaning method and processing apparatus
WO2017022086A1 (en) Semiconductor device manufacturing method, etching method, substrate processing device and recording medium
KR102443968B1 (en) Cleaning method and film forming method
WO2016157317A1 (en) Substrate processing device, semiconductor device production method, and recording medium
JP2016072465A (en) Method of manufacturing semiconductor device and substrate processing apparatus
US10177017B1 (en) Method for conditioning a processing chamber for steady etching rate control
US11594417B2 (en) Etching method and apparatus
WO2015011829A1 (en) Substrate treatment device and method for manufacturing semiconductor device
WO2017026001A1 (en) Method for manufacturing semiconductor device, substrate processing apparatus, and recording medium
JP6630237B2 (en) Semiconductor device manufacturing method, substrate processing apparatus, and program
US20230110474A1 (en) Selective silicon deposition
US20160244892A1 (en) Method for Crystallizing Group IV Semiconductor, and Film Forming Apparatus
TW202425148A (en) Selective gas phase etch of silicon germanium alloys
KR20240132375A (en) Highly selective silicon etching

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP