WO2016156646A1 - Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto; procedimiento de calibración de dicho dispositivo; y procedimiento para generar dichas imágenes radiográficas - Google Patents

Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto; procedimiento de calibración de dicho dispositivo; y procedimiento para generar dichas imágenes radiográficas Download PDF

Info

Publication number
WO2016156646A1
WO2016156646A1 PCT/ES2016/070216 ES2016070216W WO2016156646A1 WO 2016156646 A1 WO2016156646 A1 WO 2016156646A1 ES 2016070216 W ES2016070216 W ES 2016070216W WO 2016156646 A1 WO2016156646 A1 WO 2016156646A1
Authority
WO
WIPO (PCT)
Prior art keywords
ray
contour
sensor
images
radiographic
Prior art date
Application number
PCT/ES2016/070216
Other languages
English (en)
French (fr)
Inventor
Francisco Javier ALBIOL COLOMER
Alberto CORBI BELLOT
Celso BELLOT ROMERO
Alberto ALBIOL COLOMER
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Universitat Politècnica De València
Universitat De València
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Universitat Politècnica De València, Universitat De València filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Priority to US15/563,312 priority Critical patent/US10672145B2/en
Priority to EP16771447.6A priority patent/EP3279860A4/en
Publication of WO2016156646A1 publication Critical patent/WO2016156646A1/es

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/80Analysis of captured images to determine intrinsic or extrinsic camera parameters, i.e. camera calibration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/58Testing, adjusting or calibrating thereof
    • A61B6/582Calibration
    • A61B6/585Calibration of detector units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/30Determination of transform parameters for the alignment of images, i.e. image registration
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/50Depth or shape recovery
    • G06T7/55Depth or shape recovery from multiple images
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/30Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from X-rays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N5/00Details of television systems
    • H04N5/30Transforming light or analogous information into electric information
    • H04N5/32Transforming X-rays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10116X-ray image

Definitions

  • the present invention can be included within the technological field of medical application devices. More particularly, the object of the present invention relates, according to a first aspect of the invention, to a device for extracting 3D information from radiographic images. According to a second aspect, the invention relates to a method for calibrating said device. According to a third object, the invention describes a method for generating said radiographic images.
  • CT computed tomography
  • the present invention provides a more affordable alternative solution, in terms of cost and equipment availability, than the solutions contemplated by the current state of the art, to the problem of extracting three-dimensional information from radiographic images.
  • the invention describes, in a first aspect, a device for extracting three-dimensional information from radiographic images of an object. According to a second aspect of the invention, a calibration procedure of said device is described. According to a third aspect, the invention relates to a method for generating said radiographic images.
  • the device comprises the following elements: an X-ray camera, a contour sensor, and a calibration frame, as explained below.
  • the X-ray camera is composed of an X-ray emitter and an X-ray receiver, with which radiographic images of an object of study are generated and taken and, as will be explained below, in certain circumstances the object of study Radiographed can be the calibration framework. In other circumstances, the object of study may be another element to be examined. The object of study may also be a patient or an industrial product that one wishes to diagnose and / or inspect.
  • the contour sensor is a device designed to take contour information of the scene and objects helping to identify a plurality of contour points of the object of study and / or of the calibration frame and / or the scene. This detection may have to do with the capture of radiation directly present (and emitted) from the scene (object of study included).
  • the contour detection process can also be based on the collection of radiation reflected by the object of study (and the scene, if possible) by being previously irradiated (s) from the contour detector. Conventional cameras, depth cameras, or multispectral cameras, would fulfill this function.
  • the calibration frame is fixed to the X-ray sensor. It comprises a plurality of markers, also called fiducials.
  • the markers comprise X-ray markers, which are identifiable, manually or computationally, in radiographic images; and contour markers, which are identifiable, also manually or computationally, against the radiation on which the operation of the contour sensor is based.
  • scene represents the "set of spatial and temporal circumstances in which an image acquisition takes place.” This document translates as the joint relative arrangement of the X-ray emitter, the X-ray receiver, the contour sensor and the calibration frame. Likewise, the term “pose”, which has already been identified above, is identified with the “posture or position adopted by a person who is to be photographed, portrayed or painted by another.” In the context of this document, it is specified in the relative position between two particular elements considered, for example, the object of study with respect to the X-ray emitter, or the contour sensor with respect to the X-ray emitter.
  • the invention additionally allows a professional, both in the examination of patients and objects in industrial settings, to obtain scale factors directly on radiographic images, which allow a direct reliable comparison of the dimensions that appear in said radiographic images, no need to use markers for external X-rays as a scale reference. Similarly, the need to define a specific calibration frame for each scene or each pose is eliminated, for a period of time in which the device of the invention remains calibrated.
  • a calibration procedure of the aforementioned device is presented.
  • the calibration procedure has two stages.
  • first images are taken from the calibration frame, preferably without the presence of the object of study.
  • These first images comprise a first contour image, using the contour sensor, and a first X-ray image, using the X-ray camera.
  • the position of the calibration frame with respect to the X-ray emitter and the contour sensor is identical. In the first two images.
  • the position of the contour sensor with respect to the X-ray emitter is also identical in both first images.
  • a matrix called a camera projection matrix (P x ) is determined, which corresponds to a transformation that relates, with respect to the reference system in solidarity with the X-ray collector, the 2D coordinates of the points of the first radiographic image with the 3D coordinates of the points in space.
  • P x a matrix called a camera projection matrix
  • both the relative position between the contour sensor and the X-ray emitter are determined, as well as the intrinsic parameters of the X-ray chamber, which are collected in a K x matrix.
  • the relative position D x between the contour sensor and the X-ray sensor is determined, using the contour markers.
  • a method for generating radiographic images incorporating three-dimensional information is presented.
  • a first step of the procedure at least two sessions are taken from the object of study together with the calibration framework, where each session comprises two second images: a second contour image, taken using the contour sensor, and a corresponding second Radiographic image, taken using the X-ray emitter.
  • the object of study has varied its position and / or its orientation with respect to the contour sensor and / or the X-ray emitter and / or the sensor X-ray, although said position / orientation is the same for the two second images of the same session, for example, but not necessarily, by means of a simultaneous acquisition of both second images.
  • the contour sensor remains fixed in relation to the X-ray emitter.
  • the X-ray emitter can be oriented, in the different sessions, according to linear transformations T ⁇ composed of a rotation R ⁇ and a translation t ⁇ between some sessions and others.
  • T ⁇ composed of a rotation R ⁇ and a translation t ⁇ between some sessions and others.
  • the position of the contour sensor remains invariant with respect to the X-ray emitter.
  • only contour markers are necessary.
  • the corresponding rotations R ⁇ and translations t ⁇ referred to above are determined, using the markers for contour in the second contour images and in the second radiographic images, and taking into account that the contour sensor has been jointly displaced with respect to the X-ray emitter.
  • the related transformation matrix of each of the sessions from K x and the rotation R ⁇ and translation t ⁇ just calculated.
  • the information of the matrix P ⁇ is subsequently used to determine the projection, in a second radiographic image / ' , of a point of another second radiographic image k.
  • Figures 1 and 2. They show corresponding schematic views in plan (figure 1) and front (figure 2) of the device of the invention.
  • Figure 3. Shows a schematic image of the arrangement of the elements represented in Figure 1, and the optical properties of the X-ray camera and the contour sensor.
  • Figure 4. Shows a relationship between the calibration frame (left) and a first radiographic image (right) of said calibration frame, where the representation in the first radiographic image of the X-ray markers of the calibration frame is shown.
  • Figure 5. It shows two different poses of the X-ray emitter and the contour sensor with respect to the calibration frame, for taking two sessions of second images, where the object of study has not been represented.
  • Figure 6. It shows two second radiographic images corresponding to different poses, where in one of them (left) points of interest of the object of study are appreciated, and in another of them (right), the epipolar corresponding to the points of interest.
  • the invention describes, according to a first aspect, a device for extracting three-dimensional information from radiographic images of an object. According to a second aspect of the invention, a calibration procedure of said device is described. According to a third aspect, the invention relates to a method for generating said radiographic images.
  • the device of the invention comprises an X-ray camera (also called an X-ray scanner), for taking radiographic images of a study object (1).
  • the X-ray camera is formed by an X-ray emitter (2) and an X-ray sensor (3), also called a plate, which defines an X-ray projection plane (4), for example a film, which can be subsequently subjected to some type of computerized treatment, such as: being digitized, in the case of Computerized Radiography (CR); or stored in memory in situ, in the case of Direct Radiography (DR), or directly scanned from a radiographic plate ("imaging p ⁇ ate" IP).
  • CR Computerized Radiography
  • DR Direct Radiography
  • the optical characteristics of the X-ray camera depend on the relative location (pose) between the X-ray emitter (2) and the X-ray sensor (3) in each radiographic image, so they are unknown in each case.
  • 35x43 cm fixed CR plates with a maximum resolution of 100 ⁇ and FireCR TM plate readers have been used. It has been verified that the successive placement and removal of the plates do not affect the results obtained.
  • the related 2D transformations between two radiographs taken from the same position and with the same plate remain mostly at a tolerance below 1 px and 0.5% grade. That is, it can be assumed that the plates and the plate reading mechanism behave for practical purposes as a fixed radiological equipment.
  • the X-ray emitter (2) has been modeled as a pinhole camera (also referred to, according to its English name, as a "pinhole" camera), where the diaphragm (5) of the X-ray emitter (2) represents both the anode and the optical center.
  • a pinhole camera also referred to, according to its English name, as a "pinhole” camera
  • the diaphragm (5) of the X-ray emitter (2) represents both the anode and the optical center.
  • the effects associated with spherical aberrations, radial distortions and obliqueness can be ignored without loss of generality.
  • the device additionally incorporates a contour sensor (6), being understood as such a device designed to identify a plurality of contour points of the object of study (1).
  • the contour sensor (6) is preferably configured to capture emitted radiation and / or radiation reflected by the object of study (1).
  • the contour sensor (6) can be, by way of example, a visible light camera, an infrared camera, etc. More preferably, the radiation is visible radiation, so that the contour sensor (6) is preferably a visible light camera, such as an RGB video camera, a depth camera, a combination of both, etc. In the example shown in the figures, the contour sensor (6) is an RGB video camera.
  • the optical characteristics of the contour sensor (6) are considered known. A determination of said optical characteristics of the contour sensor (6) may be necessary, but said task is a task known in the field of the art to which the invention pertains and is not considered an essential part of the invention.
  • the device of the invention additionally incorporates a plurality of markers (7, 8, 9), also called fiducials.
  • the markers (7, 8, 9) are divided into markers for contour (7), which offer contrast in the images generated by the contour sensor (6), and markers for X-rays (8), which are contrast with the rays X, as will be explained below.
  • the contour markers (7) have patterns of identifiable shapes by segmentation algorithms, as well as their dimensions and shape are known. It is preferred that the contour markers (7) have an essentially binary color pattern.
  • the configuration of the contour markers (7), as well as the position of one or more points of the contour markers (7), are known with respect to a first three-dimensional coordinate system integral with the X-ray sensor (3). As will be explained later, contour markers (7) allow estimate the relative orientation and distance (pose) of the contour sensor (6) with respect to the first coordinate system in solidarity with the X-ray sensor (3).
  • the markers for X-rays (8) are made of material or materials that produce contrast (generally due to opacity differences) sufficient to X-rays, such that lead, for example.
  • the function of the X-ray markers (8) is to generate a legible and well-defined symbol in the 2D projection represented in a radiographic negative, as will be explained later in the description of the process of the invention.
  • the X-ray markers (8) also have certain dimensions and position with respect to a second coordinate system integral with the X-ray sensor (3).
  • the first and the second coordinate system may be the same, but it is also possible that they are different, if the related transformation leading from one to another is known.
  • the X-ray markers (8) will allow determining the relative position between the contour sensor (6) and the X-ray emitter (2), with respect to the second coordinate system.
  • markers (7, 8) are configured according to mixed markers (9), each of which incorporates, in a compact unit, a contour marker (7) and a marker for X-rays (8).
  • the set of markers (7, 8, 9), whether contour markers (7), X-ray markers (8) and / or, where appropriate, mixed markers (9), is called the calibration frame (10 ).
  • the calibration frame (10) is fixed to the X-ray sensor (3) outside the area of interest of the X-ray sensor (3), that is, in an area where the markers (7, 8, 9) affect as little as possible the radiographic image, for example in a structural component (11), such as a chassis, of the X-ray sensor (3).
  • the calibration procedure object of the second aspect of the invention comprises the following steps:
  • a calibration step is performed, which consists of two stages described below.
  • two first images of the calibration frame (10) are taken, namely: a first radiographic image, taken with the X-ray emitter ( 2), and depicted on the right side of Figure 4; and a first contour image, taken with the contour sensor (6).
  • the relative position between the X-ray collector (3) and the X-ray emitter (2) must remain invariant in the first two images with respect to each other. The same consideration applies to the relative position between the X-ray emitter (2) and the contour sensor (6).
  • this step is a previous step related to the determination of the relative locations that involve the X-ray emitter (2), the X-ray collector ( 3) and to the contour sensor (6) and that, therefore, is foreign to the object of study (1), so, preferably, the object of study (1) is not represented in the first images.
  • the relative position D x between the contour sensor (6) and the X-ray sensor (3) is determined, using the contour markers (7).
  • each session comprises two second images: a second contour image, taken using the contour sensor (6) , and a corresponding second radiographic image, taken using the X-ray emitter (2).
  • the object of study (1) has varied its position and / or its orientation with respect to the contour sensor (6) and / or the X-ray emitter (2) and / or the lightning sensor X (3), although said position / orientation is the same for the second two images of the same session.
  • the contour sensor (6) remains fixed in relation to the X-ray emitter (2), in accordance with a relative position designated as DRX. In figure 5 two positions are shown, with respect to which the second images are taken.
  • the object of study (1) can be moved, keeping the X-ray emitter (2) and / or the X-ray sensor (3) and / or the contour sensor (6) static. Alternatively, these can be moved leaving the object of study static (1). Both the object of study (1) and the X-ray emitter (2) and the two sensors (3, 6) can also be moved. Any of the three situations described is possible without loss of generality, with the computational complexity required within the scope of the person skilled in the art.
  • the X-ray emitter (2) may be oriented, relative to itself. same, according to linear transformations T ⁇ composed of a rotation R ⁇ and a translation t ⁇ between sessions. In all orientation images, the position of the contour sensor (6) remains invariant with respect to the X-ray emitter (2).
  • the contour markers (7) are necessary, so that, preferably, the X-ray markers (8) that, where appropriate, are not part of mixed markers (9), they can be removed, to avoid undesirable effects, such as: excessive radiation dispersion; artifacts in the images; and a subsequent reading of the most difficult images.
  • the contour sensor (6) and the X-ray emitter (2) are required to have the same relative position and orientation, it is preferred that the contour sensor (6) and the X-ray emitter (2) are physically linked in solidarity.
  • the corresponding rotations R ⁇ and translations t ⁇ referred to above are determined.
  • the rotations R ⁇ and the translations t ⁇ referred to the contour sensor (6) can be calculated. Since the contour sensor (6) has shifted, for all images, jointly with respect to the X-ray emitter (2), said rotations R ⁇ and translations t ⁇ correspond to rotations R ⁇ and translations t ⁇ , Previously defined.
  • K x K x * [R ⁇ ⁇ t]
  • K x is a matrix previously defined in the calibration step, and which incorporates the optical characteristics of the X-ray emitter (2).
  • said matrices P ⁇ can be combined to add, to a certain radiographic image / ' , information regarding a third dimension not represented in the radiographic image k.
  • a first example are determined in a second radiographic / image ', the two - dimensional coordinates of a point of interest (13) of said radiographic / image'.
  • the ray defined by the point of interest of the image / ' and the optical center of the X-ray emitter (2) are determined, which, as indicated above, coincides with the diaphragm (5) , where the ray corresponds to an epipolar line (12) associated with the point of interest (13) in the second radiographic image / ' .
  • the epipolar line (12) corresponding to the point of interest is represented in the second radiographic image k). (13) of the image / ' , where said representation may be informatically limited, if desired, to the area that makes physical sense (the one included in the object of study).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Biophysics (AREA)
  • Image Analysis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto; procedimiento de calibración de dicho dispositivo; y procedimiento para generar dichas imágenes radiográficas. El dispositivo comprende: emisor de rayos X (2); captador de rayos X (3); captador de contorno (6), para representar puntos del contorno de un objeto, mediante radiación emitida o reflejada por el objeto; marco de calibración (10) con marcadores de rayos X (8), y marcadores de contorno (7). Los procedimientos se basan en tomar imágenes de contorno y de rayos X del marco de calibración (10) primero sin y luego con un objeto de estudio (1), teniendo en cuenta la información proporcionada por los marcadores (7, 8, 9), y el hecho de que el captador de contorno (6) está dispuesto en relación al emisor de rayos X (2) de la misma manera en todas las imágenes tomadas.

Description

DISPOSITIVO PARA EXTRAER INFORMACIÓN TRIDIMENSIONAL DE IMÁGENES
RADIOGRÁFICAS DE UN OBJETO; PROCEDIMIENTO DE CALIBRACIÓN DE DICHO DISPOSITIVO; Y PROCEDIMIENTO PARA GENERAR DICHAS IMÁGENES
RADIOGRÁFICAS
D E S C R I P C I Ó N
OBJETO DE LA INVENCIÓN La presente invención se puede incluir dentro del campo tecnológico de los dispositivos de aplicación médica. De manera más particular, el objeto de la presente invención se refiere, de acuerdo con un primer aspecto de la invención a un dispositivo para extraer información 3D de imágenes radiográficas. De acuerdo con un segundo aspecto, la invención se refiere a un procedimiento para calibrar dicho dispositivo. De acuerdo con un tercer objeto, la invención describe un procedimiento para generar dichas imágenes radiográficas.
ANTECEDENTES DE LA INVENCIÓN La toma de imágenes radiográficas de un objeto de estudio, ya sea un paciente o un objeto, desde diferentes ángulos, posiciones y/o distancias ("poses", término muy usado en este campo tecnológico), ha adquirido especial relevancia en campos como la medicina, la vigilancia y la producción industrial. En particular resulta de gran utilidad identificar en una imagen radiográfica información correspondiente a la localización de puntos de interés presentes en otra imagen radiológica del mismo objeto de estudio, pero generada desde una localización y/u orientación (pose) distinta.
Este objetivo de obtener varias imágenes radiográficas del objeto de estudio en posiciones distintas para obtener información ampliada se viene llevando a cabo empleando típicamente la tomografía computarizada (CT, de las siglas en inglés de "computed tomography). Sin embargo, de cara a las aplicaciones industriales o médicas en las que está técnica se aplica mayormente, como puede ser el análisis preliminar del objeto de estudio, donde para un funcionamiento eficiente se requieren equipos modestos y, a su vez, relativamente veloces, la tecnología CT resulta ser una técnica particularmente cara y compleja. Adicionalmente, el empleo de instrumental CT requiere adoptar una serie de principios internacionales referentes a seguridad y de los criterios de protección radiológica ALARA. Existe una alternativa, empleando sistemas puramente radiográficos, de coste más reducido y mayor disponibilidad, que no está sin embargo exenta de la dificultad inicial que tiene que ver con que la imagen que produce es plana y para la reconstrucción tridimensional no se conoce con suficiente precisión la ubicación relativa de la fuente de rayos X respecto de la placa que actúa como captador de rayos X o del objeto de estudio. Expresado en otras palabras, no se conoce la pose del sistema. Adicionalmente es complicado, a partir del registro de varias imágenes radiográficas, obtener información tridimensional de zonas de interés simultáneamente presentes en distintas tomas desde distintas distancias y orientaciones. En particular, cuando el objeto de estudio es un paciente, existe una mayor exigencia dado el interés clínico subyacente.
DESCRIPCIÓN DE LA INVENCIÓN
La presente invención proporciona una solución alternativa más asequible, en cuanto a coste y a disponibilidad de equipos, que las soluciones contempladas por el estado de la técnica actual, al problema de extraer información tridimensional de imágenes radiográficas.
La invención describe, en un primer aspecto, un dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto. De acuerdo con un segundo aspecto de la invención, se describe un procedimiento de calibración del mencionado dispositivo. De acuerdo con un tercer aspecto, la invención se refiere a un procedimiento para generar las mencionadas imágenes radiográficas.
El dispositivo comprende los siguientes elementos: una cámara de rayos X, un captador de contorno, y un marco de calibración, según se explica seguidamente.
- La cámara de rayos X está compuesta por un emisor de rayos X y un receptor de rayos X, con los que se generan y toman imágenes radiográficas de un objeto de estudio y, tal como se explicará seguidamente, en determinadas circunstancias el objeto de estudio radioagrafiado puede ser el marco de calibración. En otras circunstancias, el objeto de estudio puede ser otro elemento que se desea someter a examen. El objeto de estudio puede ser también un paciente o un producto industrial que se desea diagnosticar y/o inspeccionar.
- El captador de contorno es un dispositivo destinado a tomar información de contorno de la escena y objetos ayudando a identificar una pluralidad de puntos del contorno del objeto de estudio y/o del marco de calibración y/o la escena. Esta detección puede tener que ver con la captación de radiación directamente presente (y emitida) desde la escena (objeto de estudio incluido). El proceso de detección del contorno también puede estar basado en la captación de radiación reflejada por el objeto de estudio (y la escena, si cabe) al ser previamente irradiado(s) desde el detector de contorno. Cámaras convencionales, cámaras de profundidad, o cámaras multiespectrales, cumplirían esta función.
- El marco de calibración está fijado al captador de rayos X. Comprende una pluralidad de marcadores, también denominados fiduciales. Por un lado, los marcadores comprenden marcadores para rayos X, que son identificables, manual o computacionalmente, en imágenes radiográficas; y marcadores para contorno, que son identificables, también manual o computacionalmente, frente a la radiación en la que está basado el funcionamiento del captador de contorno.
El término "escena" representa el "conjunto de circunstancias espaciales y temporales en que tiene lugar una adquisición de imágenes". En el presente documento se traduce como la disposición relativa conjunta del emisor de rayos X, el receptor de rayos X, el captador de contorno y el marco de calibración. Asimismo, el término "pose", que ya se ha identificado anteriormente, se identifica con la "postura o posición que adopta una persona que va ser fotografiada, retratada o pintada por otra". En el contexto del presente documento se concretiza en la posición relativa entre dos elementos particulares considerados, como por ejemplo, el objeto de estudio respecto del emisor de rayos X, o el captador de contorno respecto del emisor de rayos X.
En el estado de la técnica referido en un apartado anterior, existen limitaciones inherentes a la información que, de forma autónoma, puede obtenerse del dispositivo de rayos X. Estas limitaciones tienen que ver con la imposibilidad de tomar información del contorno de la escena, tales como las posiciones relativas de la propia cámara (emisor de rayos X + receptor de rayos X) en el sistema de coordenadas de la ubicación del dispositivo (generalmente la clínica) así como la orientación o información del propio objeto de estudio. La presente invención obtiene dichos datos, y los integra para obtener información tridimensional de índole radiográfica.
La invención permite adicionalmente a un profesional, tanto en el examen de pacientes como en el de objetos en entornos industriales, la obtención de factores de escala directamente sobre imágenes radiográficas, que permiten una comparación fidedigna directa de las dimensiones que aparecen en dichas imágenes radiográficas, sin necesidad de emplear marcadores para rayos X externos a modo de referencias de escala. De igual manera, se elimina la necesidad de definir un marco de calibración específico para cada escena o cada pose, durante un período de tiempo en que el dispositivo de la invención permanece calibrado.
Por otra parte, de acuerdo con un segundo aspecto de la presente invención, se presenta un procedimiento de calibración del dispositivo antes mencionado. El procedimiento de calibración presenta dos etapas.
En una primera etapa del procedimiento de calibración, se toman imágenes denominadas primeras imágenes, del marco de calibración, preferentemente sin presencia del objeto de estudio. Estas primeras imágenes comprenden una primera imagen de contorno, empleando el captador de contorno, y una primera imagen de rayos X, empleando la cámara de rayos X. La posición del marco de calibración respecto del emisor de rayos X y del captador de contorno es idéntica en las dos primeras imágenes. Igualmente, la posición del captador de contorno respecto del emisor de rayos X es también idéntica en ambas primeras imágenes. En una segunda etapa del procedimiento de calibración, a partir de la primera imagen radiográfica y de los marcadores para rayos X, se determina una matriz denominada matriz de proyección de cámara (Px), que se corresponde con una transformación que relaciona, respecto del sistema de referencia solidario al captador de rayos X, las coordenadas 2D de los puntos de la primera imagen radiográfica con las coordenadas 3D de los puntos en el espacio. A partir de Px, empleando técnicas conocidas, se determinan tanto la posición relativa entre el captador de contorno y el emisor de rayos X, así como los parámetros intrínsecos de la cámara de rayos X, que se recogen en una matriz Kx. Análogamente, a partir de la primera imagen de contorno, se determina la posición relativa Dx entre el captador de contorno y el captador de rayos X, haciendo uso de los marcadores para contorno.
Finalmente, de acuerdo con un tercer objeto de la presente invención, se presenta un procedimiento para generar imágenes radiográficas que incorporan información tridimensional. En un primer paso del procedimiento, se toman del objeto de estudio conjuntamente con el marco de calibración, al menos dos sesiones, donde cada sesión comprende dos segundas imágenes: una segunda imagen de contorno, tomada empleando el captador de contorno, y una correspondiente segunda imagen radiográfica, tomada empleando el emisor de rayos X. En cada una de las sesiones, el objeto de estudio ha variado su posición y/o su orientación con respecto al captador de contorno y/o al emisor de rayos X y/o al captador de rayos X, aunque dicha posición/orientación es la misma para las dos segundas imágenes de una misma sesión, por ejemplo, aunque no necesariamente, por medio de una adquisición simultánea de ambas segundas imágenes. Asimismo, en todas las sesiones, el captador de contorno permanece fijo en relación al emisor de rayos X.
Por tanto, el emisor de rayos X puede estar orientado, en las diferentes sesiones, de acuerdo con transformaciones lineales T¡ compuestas de una rotación R¡ y una traslación t¡ entre unas sesiones y otras. En todas las segundas imágenes, la posición del captador de contorno permanece invariante respecto del emisor de rayos X. Para la toma de las segundas imágenes, solo son necesarios los marcadores para contorno.
En un segundo paso del procedimiento, se determinan las correspondientes rotaciones R¡ y traslaciones t¡ antes referidas, empleando los marcadores para contorno en las segundas imágenes de contorno y en las segundas imágenes radiográficas, y teniendo en cuenta que el captador de contorno se ha desplazado de manera solidaria respecto del emisor de rayos X.
En un tercer paso del procedimiento, se determina la matriz de transformación afín de cada una de las sesiones, a partir de Kx y de la rotación R¡ y traslación t¡ recién calculadas. La información de la matriz P¡ se emplea posteriormente para determinar la proyección, en una segunda imagen radiográfica /', de un punto de otra segunda imagen radiográfica k.
DESCRIPCIÓN DE LOS DIBUJOS
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, de acuerdo con un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figuras 1 y 2.- Muestran correspondientes vistas esquemáticas en planta (figura 1) y frontal (figura 2) del dispositivo de la invención.
Figura 3.- Muestra una imagen esquemática de la ordenación de los elementos representados en la figura 1 , y las propiedades ópticas de la cámara de rayos X y del captador de contorno.
Figura 4.- Muestra una relación entre el marco de calibración (izquierda) y una primera imagen radiográfica (derecha) de dicho marco de calibración, donde se muestra la representación en la primera imagen radiográfica de los marcadores para rayos X del marco de calibración.
Figura 5.- Muestra dos poses distintas del emisor de rayos X y del captador de contorno respecto del marco de calibración, para la toma de dos sesiones de segundas imágenes, donde el objeto de estudio no se ha representado. Figura 6.- Muestra dos segundas imágenes radiográficas correspondientes a diferentes poses, donde en una de ellas (izquierda) se aprecian puntos de interés del objeto de estudio, y en otra de ellas (derecha), se muestran las epipolares correspondientes a los puntos de interés. REALIZACIÓN PREFERENTE DE LA INVENCIÓN
Seguidamente se proporciona, con ayuda de las figuras adjuntas 1-6 anteriormente referidas, una descripción detallada de un ejemplo de realización preferente de la presente invención.
La invención describe, de acuerdo con un primer aspecto, un dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto. De acuerdo con un segundo aspecto de la invención, se describe un procedimiento de calibración del mencionado dispositivo. De acuerdo con un tercer aspecto, la invención se refiere a un procedimiento para generar las mencionadas imágenes radiográficas.
Según se muestra en las figuras 1 a 3, el dispositivo de la invención comprende una cámara de rayos X (también denominada escáner de rayos X), para tomar imágenes radiográficas de un objeto de estudio (1). La cámara de rayos X está formada por un emisor de rayos X (2) y un captador de rayos X (3), también denominado placa, que define un plano de proyección de rayos X (4), por ejemplo una película, que puede ser sometida posteriormente a algún tipo de tratamiento informatizado, como por ejemplo: ser digitalizada, en el caso de Radiografía Computerizada (CR); o almacenada en memoria in situ, en el caso de Radiografía Directa (DR), o directamente escaneada de una placa radiográfica ("imaging píate" IP). Las características ópticas de la cámara de rayos X dependen de la ubicación relativa (pose) entre el emisor de rayos X (2) y el captador de rayos X (3) en cada imagen radiográfica, por lo que son desconocidas en cada caso. En los experimentos realizados, se han empleado placas CR fijas de 35x43 cm con una resolución máxima de 100 μηι y lectores de placas FireCR™. Se ha verificado que las sucesivas colocaciones y extracciones de las placas no afectan los resultados obtenidos. En particular, se ha verificado que las transformaciones afines 2D entre dos radiografías tomadas desde la misma posición y con la misma placa permanecen la mayor parte de las veces en una tolerancia por debajo de 1 px y del 0,5 % de grado. Es decir, se puede asumir que las placas y el mecanismo de lectura de placas se comportan a efectos prácticos como un equipo radiológico fijo. Esta verificación se ha llevado a cabo empleando Insight Toolkit de Kitware entre pares correspondientes aleatorios de radiografías. Se ha modelado el emisor de rayos X (2) como una cámara estenopeica (también referida, de acuerdo con su denominación en inglés, como cámara "pinhole"), donde el diafragma (5) del emisor de rayos X (2) representa a la vez el ánodo y el centro óptico. Al no haber involucradas lentes, se pueden ignorar, sin pérdida de generalidad, los efectos asociados a aberraciones esféricas, distorsiones radiales y la oblicuidad.
El dispositivo incorpora adicionalmente un captador de contorno (6), entendiéndose como tal un dispositivo destinado a identificar una pluralidad de puntos del contorno del objeto de estudio (1). El captador de contorno (6) está preferentemente configurado para captar radiación emitida y/o radiación reflejada por el objeto de estudio (1). El captador de contorno (6) puede ser, a modo de ejemplo, una cámara de luz visible, una cámara de infrarrojos, etc. De manera más preferente, la radiación es radiación visible, de manera que el captador de contorno (6) es preferentemente una cámara de luz visible, como puede ser una cámara de vídeo RGB, una cámara de profundidad, una combinación de ambas, etc. En el ejemplo representado en las figuras, el captador de contorno (6) es una cámara de vídeo RGB. Las características ópticas del captador de contorno (6) se consideran conocidas. Puede ser necesaria una determinación de dichas características ópticas del captador de contorno (6), pero dicha tarea es una tarea conocida en el campo de la técnica al que pertenece la invención y no se considera parte esencial de la invención.
El dispositivo de la invención incorpora adicionalmente una pluralidad de marcadores (7, 8, 9), también denominados fiduciales. Los marcadores (7, 8, 9) se dividen en marcadores para contorno (7), que ofrecen contraste en las imágenes generadas por el captador de contorno (6), y marcadores para rayos X (8), que son contrastables a los rayos X, según se explicará seguidamente.
Los marcadores para contorno (7) presentan patrones de formas identificables mediante algoritmos de segmentación, así como sus dimensiones y su forma son conocidas. Se prefiere que los marcadores para contorno (7) presenten una trama de colores esencialmente binaria. La configuración de los marcadores para contorno (7), así como la posición de uno o varios puntos de los marcadores para contorno (7), son conocidas respecto de un primer sistema de coordenadas tridimensional solidario al captador de rayos X (3). Según se explicará más adelante, los marcadores para contorno (7) permiten estimar la orientación y la distancia relativas (pose) del captador de contorno (6) respecto del primer sistema de coordenadas solidario al captador de rayos X (3).
Por su parte, los marcadores para rayos X (8) están fabricados en material o materiales que produzcan contraste (generalmente por diferencias de opacidad) suficiente a los rayos X, tal que plomo, por ejemplo. La función de los marcadores para rayos X (8) es generar un símbolo legible y bien delimitado en la proyección 2D representada en un negativo radiográfico, según se explicará más adelante en la descripción del procedimiento de la invención. Los marcadores para rayos X (8) presentan asimismo unas dimensiones y posición determinadas respecto de un segundo sistema de coordenadas solidario al captador de rayos X (3). El primer y el segundo sistema de coordenadas pueden ser el mismo, pero también es posible que sean distintos, si se conoce la transformación afín que lleva de uno a otro. Según se explicará seguidamente, los marcadores para rayos X (8) permitirán determinar la posición relativa entre el captador de contorno (6) y el emisor de rayos X (2), con respecto al segundo sistema de coordenadas.
De manera preferente, se prevé que algunos de los marcadores (7, 8) estén configurados de acuerdo con marcadores mixtos (9), cada uno de los cuales incorpora, en una unidad compacta, un marcador para contorno (7) y un marcador para rayos X (8).
El conjunto de los marcadores (7, 8, 9), ya sean marcadores para contorno (7), marcadores para rayos X (8) y/o, en su caso, marcadores mixtos (9), se denomina marco de calibración (10). De acuerdo con una realización preferente, el marco de calibración (10) está fijado al captador de rayos X (3) fuera de la zona de interés del captador de rayos X (3), es decir, en una zona en la que los marcadores (7, 8, 9) afecten lo menos posible la imagen radiográfica, por ejemplo en un componente estructural (11), tal que un chasis, del captador de rayos X (3). El procedimiento de calibración objeto del segundo aspecto de la invención comprende los siguientes pasos:
- En primer lugar, se disponen: el emisor de rayos X (2) y el captador de rayos X (3) que constituyen la cámara de rayos X; el captador de contorno (6); y el marco de calibración (10), en una situación de partida en la que tanto el emisor de rayos X (2) como el captador de contorno (6) se encuentran preparados para funcionamiento y enfocando hacia el captador de rayos X (3). - A continuación, se realiza un paso de calibración, que consta de dos etapas que se describen seguidamente.
De acuerdo con una primera etapa del paso de calibración, ilustrada mediante las figuras 1 , 2 y 4, se toman dos primeras imágenes del marco de calibración (10), en concreto: una primera imagen radiográfica, tomada con el emisor de rayos X (2), y representada en la parte derecha de la figura 4; y una primera imagen de contorno, tomada con el captador de contorno (6). La posición relativa entre el captador de rayos X (3) y el emisor de rayos X (2) debe permanecer invariante en las dos primeras imágenes una con respecto de la otra. La misma consideración aplica para la posición relativa entre el emisor de rayos X (2) y el captador de contorno (6). No es necesario disponer el objeto de estudio (1) para tomar las primeras imágenes, puesto que este paso es un paso previo relacionado con la determinación de las ubicaciones relativas que involucran al emisor de rayos X (2), al captador de rayos X (3) y al captador de contorno (6) y que, por tanto, es ajeno al objeto de estudio (1), por lo que, de manera preferente, el objeto de estudio (1) no se representa en las primeras imágenes.
- De acuerdo con una segunda etapa del paso de calibración, efectuada a continuación de la primera etapa, a partir de la primera imagen radiográfica, y haciendo uso de los marcadores para rayos X (8), se determina una matriz denominada matriz de proyección de cámara (Px), que se corresponde con una transformación afín que relaciona, respecto del sistema de referencia solidario al captador de rayos X (3), las coordenadas 2D de los puntos de la primera imagen radiográfica con las coordenadas 3D de los puntos en el espacio y, a partir de Px, empleando técnicas conocidas, se determinan tanto la posición relativa entre el captador de contorno (6) y el emisor de rayos X (2), así como los parámetros intrínsecos de la cámara de rayos X, que se recogen en una matriz Kx. Análogamente, a partir de la primera imagen de contorno, se determina la posición relativa Dx entre el captador de contorno (6) y el captador de rayos X (3), haciendo uso de los marcadores para contorno (7). Con la primera etapa y la segunda etapa, anteriormente descritas, del paso de calibración, se han obtenido todos los datos necesarios para caracterizar el comportamiento de la cámara de rayos X y del captador de contorno (6). Una vez llevado a cabo el paso de calibración, el dispositivo descrito está preparado para generar imágenes radiográficas de las que se puede extraer información tridimensional, según se explica a continuación.
Para llevar a cabo la mencionada generación, se parte de un dispositivo como el anteriormente descrito, que ha sido previamente calibrado, o que al menos está calibrado, de modo que son conocidos tanto Kx como Dx. De acuerdo con un ejemplo preferente, para obtener Kx y Dx se ha aplicado el método de calibración anteriormente descrito.
Seguidamente, se toman, del objeto de estudio (1) conjuntamente con el marco de calibración (10), al menos dos sesiones, donde cada sesión comprende dos segundas imágenes: una segunda imagen de contorno, tomada empleando el captador de contorno (6), y una correspondiente segunda imagen radiográfica, tomada empleando el emisor de rayos X (2). En cada una de las sesiones, el objeto de estudio (1) ha variado su posición y/o su orientación con respecto al captador de contorno (6) y/o al emisor de rayos X (2) y/o al captador de rayos X (3), aunque dicha posición/orientación es la misma para las dos segundas imágenes de una misma sesión. Asimismo, en todas las sesiones, el captador de contorno (6) permanece fijo en relación al emisor de rayos X (2), de acuerdo con una posición relativa designada como DRX. En la figura 5 se muestran dos posiciones, respecto de las cuales se toman las segundas imágenes.
El objeto de estudio (1) puede desplazarse, manteniéndose estáticos el emisor de rayos X (2) y/o el captador de rayos X (3) y/o el captador de contorno (6). Alternativamente, se pueden desplazar estos dejando estático el objeto de estudio (1). También pueden desplazarse tanto el objeto de estudio (1) como el emisor de rayos X (2) y los dos captadores (3, 6). Cualquiera de las tres situaciones descritas es posible sin pérdida de generalidad, estando la complejidad computacional requerida al alcance del experto en la materia.
Lo anterior implica que el emisor de rayos X (2) puede estar orientado, respecto de sí mismo, de acuerdo con transformaciones lineales T¡ compuestas de una rotación R¡ y una traslación t¡ entre unas sesiones y otras. En todas las imágenes de orientación, la posición del captador de contorno (6) permanece invariante respecto del emisor de rayos X (2).
Para la toma de las segundas imágenes, solo son necesarios los marcadores para contorno (7), de tal manera que, preferentemente, los marcadores para rayos X (8) que, en su caso, no formen parte de marcadores mixtos (9), pueden ser retirados, para evitar efectos indeseables, como pueden ser: una excesiva dispersión de radiación; artefactos en las imágenes; y una consiguiente lectura de las imágenes más dificultosa.
Debido a que, tanto para la toma de las primeras imágenes como para la toma de las segundas imágenes, se requiere que el captador de contorno (6) y el emisor de rayos X (2) tengan la misma posición y orientación relativas, se prefiere que el captador de contorno (6) y el emisor de rayos X (2) se encuentren físicamente vinculados de manera solidaria.
- A continuación, se determinan las correspondientes rotaciones R¡ y traslaciones t¡ antes referidas. Para ello, primero se determinan las coordenadas bidimensionales de los marcadores para visible (7) en las segundas imágenes de contorno, y se relacionan con las coordenadas tridimensionales de los marcadores para visible (7), que son conocidas. A partir de ahí, se pueden calcular las rotaciones R¡ y las traslaciones t¡ referidas al captador de contorno (6). Puesto que el captador de contorno (6) se ha desplazado, para todas las imágenes, de manera solidaria respecto del emisor de rayos X (2), dichas rotaciones R¡ y traslaciones t¡ se corresponden con las rotaciones R¡ y las traslaciones t¡, anteriormente definidas.
- A continuación, se determina, para cada una de las sesiones, una correspondiente matriz de proyección (P¡) asociada, de acuerdo con la siguiente expresión:
Pi = Kx * [R¡ \ t] donde Kx es una matriz anteriormente definida en el paso de calibración, y que incorpora las características ópticas del emisor de rayos X (2). - Una vez determinada la matriz P¡ correspondiente a cada segunda imagen radiográfica i asociada a cada sesión, dichas matrices P¡ se pueden combinar para añadir, a una determinada imagen radiográfica /', información respecto de una tercera dimensión no representada en la imagen radiográfica k. Seguidamente, se explica un ejemplo de aplicación que ilustra una correspondiente aplicación de lo que se acaba de mencionar.
De acuerdo con un primer ejemplo, se determinan, en una segunda imagen radiográfica /', las coordenadas bidimensionales de un punto de interés (13) de dicha imagen radiográfica /'. Seguidamente, empleando un tratamiento informático, se determinan el rayo definido por el punto de interés de la imagen /' y el centro óptico del emisor de rayos X (2) que, tal como se ha indicado anteriormente, coincide con el diafragma (5), donde el rayo se corresponde con una línea epipolar (12) asociada al punto de interés (13) en la segunda imagen radiográfica /'. A continuación, empleando el tratamiento informático referido, y una matriz Pk, correspondiente a una segunda imagen radiográfica /( tomada con otra orientación distinta, se representa, en la segunda imagen radiográfica k, la línea epipolar (12) correspondiente al punto de interés (13) de la imagen /', donde dicha representación puede estar informáticamente limitada, si se desea, a la zona que tiene sentido físico (la que está comprendida en el objeto de estudio). De esta manera, se consigue, en una segunda imagen radiográfica bidimensional k, identificar la proyección de la línea epipolar (12) correspondiente al punto de interés (13) de la segunda imagen radiográfica /', que no se apreciaba en dicha segunda imagen radiográfica /'.

Claims

R E I V I N D I C A C I O N E S
1.- Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto, caracterizado por que comprende:
- una cámara de rayos X, que está compuesta por un emisor de rayos X (2) y un captador de rayos X (3), para obtener imágenes radiográficas de un objeto;
- un captador de contorno (6), para captar imágenes de contorno en las que se muestran puntos de contorno del objeto, a partir de radiación emitida o reflejada por el objeto; y
- un marco de calibración (10), fijado al captador de rayos X (3), y que comprende una pluralidad de marcadores para contorno (7), contrastables frente a la radiación en la que está basado el funcionamiento del captador de contorno (6);
donde el objeto se selecciona entre un objeto de estudio (1) y el marco de calibración (10).
2.- Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto, de acuerdo con la reivindicación 1 , caracterizado por que el marco de calibración (10) adicionalmente comprende una pluralidad de marcadores para rayos X (8), contrastables frente a rayos X.
3.- Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto, de acuerdo con la reivindicación 2, caracterizado por que al menos uno de los marcadores (7, 8, 9) es un marcador mixto (9), que incorpora en una unidad compacta un marcador para contorno (7) y un marcador para rayos X (8).
4.- Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto, de acuerdo con una cualquiera de las reivindicaciones 1-3, caracterizado por que el marco de calibración (10) está fijado a un componente estructural (11) del captador de rayos X (3), fuera de una zona de interés de dicho captador de rayos X (3).
5.- Procedimiento de calibración del dispositivo descrito en una cualquiera de las reivindicaciones anteriores, caracterizado por que comprende:
- tomar, del marco de calibración (10), una primera imagen de contorno, empleando el captador de contorno (6), y una primera imagen de rayos X, empleando la cámara de rayos X, donde la posición del marco de calibración (10) respecto del emisor de rayos X (2) y del captador de contorno (6) es idéntica en las dos primeras imágenes, así como la posición del captador de rayos X (3) respecto del emisor de rayos X (2) es también idéntica en ambas primeras imágenes;
- a partir de la primera imagen radiográfica y de los marcadores para rayos X (8), determinar una matriz de proyección de cámara (Px), que se corresponde con una transformación afín que relaciona, respecto de un sistema de referencia solidario al captador de rayos X, las coordenadas 2D de los puntos de la primera imagen radiográfica con las coordenadas 3D de los puntos en el espacio;
- a partir de Px, determinar tanto la posición relativa entre el captador de contorno (6) y el emisor de rayos X (2), así como los parámetros intrínsecos de la cámara de rayos X, que se recogen en una matriz Kx; y
- a partir de la primera imagen de contorno, determinar un vector Dx representativo de la posición relativa entre el captador de contorno (6) y el captador de rayos X (3), haciendo uso de los marcadores para contorno (7).
6. - Procedimiento de calibración de acuerdo con la reivindicación 5, caracterizado por que el objeto de estudio (1) no está presente en la toma de las primeras imágenes.
7. - Procedimiento para generar imágenes radiográficas que contienen información tridimensional, caracterizado por que comprende:
- partir del dispositivo descrito en una cualquiera de las reivindicaciones 1-4, donde son conocidos tanto la matriz Kx como el vector Dx;
- tomar, del objeto de estudio (1) conjuntamente con el marco de calibración (10), al menos dos sesiones, donde cada sesión comprende dos segundas imágenes: una segunda imagen de contorno, tomada empleando el captador de contorno (6), y una correspondiente segunda imagen radiográfica, tomada empleando el emisor de rayos X (2), donde, en cada una de las sesiones, el objeto de estudio (1) ha variado su posición y/o su orientación con respecto al captador de contorno (6) y/o al emisor de rayos X (2) y/o al captador de rayos X (3), siendo dicha posición/orientación la misma para las dos segundas imágenes de una misma sesión, así como la posición relativa entre el captador de contorno (6) y el emisor de rayos X (2) es la misma en todas las segundas imágenes, de modo que el emisor de rayos X (2) está orientado, de acuerdo con transformaciones lineales T¡ compuestas de una rotación R¡ y una traslación t¡ entre unas sesiones y otras; determinar las correspondientes rotaciones R¡ y traslaciones t¡ antes referidas, empleando los marcadores para contorno (7) en las segundas imágenes de contorno y en las segundas imágenes radiográficas, y teniendo en cuenta que el captador de contorno (6) se ha desplazado de manera solidaria respecto del emisor de rayos X (2);
- determinar una matriz de transformación afín P¡ de cada una de las sesiones, a partir de Kx y de las correspondientes rotación R¡ y traslación t¡ recién calculadas;
- determinar la proyección, en una segunda imagen radiográfica k, de un punto de otra segunda imagen radiográfica /', a partir de la información de la matriz P¡.
8. - Procedimiento para generar imágenes radiográficas que contienen información tridimensional, de acuerdo con la reivindicación 7, caracterizado por que, para determinar
Kx y Dx, se aplica el procedimiento de calibración descrito en cualquiera de las reivindicaciones 5-6.
9. - Procedimiento para generar imágenes radiográficas que contienen información tridimensional, de acuerdo con una cualquiera de las reivindicaciones 7 y 8, caracterizado por que el paso de determinar la proyección comprende las siguientes etapas:
- determinar, en una segunda imagen radiográfica /', las coordenadas bidimensionales de un punto de interés de dicha imagen radiográfica /';
- determinar el rayo definido por el punto de interés de la imagen /' y el centro óptico del emisor de rayos X (2), donde el rayo se corresponde con una línea epipolar (12) asociada al punto de interés en la segunda imagen radiográfica /'; y
- representar, en la segunda imagen radiográfica k, la línea epipolar (12) correspondiente al punto de interés de la imagen /'.
PCT/ES2016/070216 2015-03-31 2016-03-29 Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto; procedimiento de calibración de dicho dispositivo; y procedimiento para generar dichas imágenes radiográficas WO2016156646A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/563,312 US10672145B2 (en) 2015-03-31 2016-03-29 Device for extracting three-dimensional information from X-ray images of an object, method for calibrating said device, and method for generating said X-ray images
EP16771447.6A EP3279860A4 (en) 2015-03-31 2016-03-29 Device for extracting three-dimensional information from x-ray images of an object, method for calibrating said device, and method for generating said x-ray images

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201530432 2015-03-31
ES201530432A ES2588257B1 (es) 2015-03-31 2015-03-31 Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto; procedimiento de calibración de dicho dispositivo; y procedimiento para generar dichas imágenes radiográficas

Publications (1)

Publication Number Publication Date
WO2016156646A1 true WO2016156646A1 (es) 2016-10-06

Family

ID=57005720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2016/070216 WO2016156646A1 (es) 2015-03-31 2016-03-29 Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto; procedimiento de calibración de dicho dispositivo; y procedimiento para generar dichas imágenes radiográficas

Country Status (4)

Country Link
US (1) US10672145B2 (es)
EP (1) EP3279860A4 (es)
ES (1) ES2588257B1 (es)
WO (1) WO2016156646A1 (es)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2536650A (en) 2015-03-24 2016-09-28 Augmedics Ltd Method and system for combining video-based and optic-based augmented reality in a near eye display
CA3107069A1 (en) * 2018-07-24 2020-01-30 Amdt Holdings, Inc. Methods and systems of registering a radiographic image and a 3d model of an external fixation device
CA3131071A1 (en) 2019-04-04 2020-10-08 Centerline Biomedical, Inc. Spatial registration of tracking system with an image using two-dimensional image projections
US11980506B2 (en) 2019-07-29 2024-05-14 Augmedics Ltd. Fiducial marker
US11382712B2 (en) 2019-12-22 2022-07-12 Augmedics Ltd. Mirroring in image guided surgery
WO2024057210A1 (en) 2022-09-13 2024-03-21 Augmedics Ltd. Augmented reality eyewear for image-guided medical intervention

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060262894A1 (en) * 2005-05-17 2006-11-23 Siemens Aktiengesellschaft Method for minimizing image artifacts and medical imaging system
US20090074136A1 (en) * 2004-11-12 2009-03-19 Shimadzu Corportion X-ray ct system and x-ray ct method
JP2011139761A (ja) * 2010-01-06 2011-07-21 Toshiba Corp X線診断装置及びx線診断装置の制御方法
US20120294504A1 (en) * 2011-05-16 2012-11-22 Siemens Aktiengesellschaft Method for providing an image data record with suppressed aliasing artifacts overlapping the field of view and x-ray image recording apparatus
WO2015011987A1 (ja) * 2013-07-22 2015-01-29 株式会社島津製作所 X線撮影装置
US20150103969A1 (en) * 2013-10-14 2015-04-16 Siemens Aktiengesellschaft Reconstruction of image data by means of contour data
US20160055639A1 (en) * 2014-08-22 2016-02-25 Rigaku Corporation Image processing apparatus, image processing method and image processing program

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7747312B2 (en) * 2000-01-04 2010-06-29 George Mason Intellectual Properties, Inc. System and method for automatic shape registration and instrument tracking
US6978040B2 (en) * 2001-12-19 2005-12-20 Canon Kabushiki Kaisha Optical recovery of radiographic geometry
FR2904455B1 (fr) * 2006-07-27 2009-04-17 Axs Ingenierie Procede d'imagerie informatise permettant une reconstruction tridimensionnelle a partir d'images radiographiques bidimensionnelles ; dispositif de mise en oeuvre.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090074136A1 (en) * 2004-11-12 2009-03-19 Shimadzu Corportion X-ray ct system and x-ray ct method
US20060262894A1 (en) * 2005-05-17 2006-11-23 Siemens Aktiengesellschaft Method for minimizing image artifacts and medical imaging system
JP2011139761A (ja) * 2010-01-06 2011-07-21 Toshiba Corp X線診断装置及びx線診断装置の制御方法
US20120294504A1 (en) * 2011-05-16 2012-11-22 Siemens Aktiengesellschaft Method for providing an image data record with suppressed aliasing artifacts overlapping the field of view and x-ray image recording apparatus
WO2015011987A1 (ja) * 2013-07-22 2015-01-29 株式会社島津製作所 X線撮影装置
US20150103969A1 (en) * 2013-10-14 2015-04-16 Siemens Aktiengesellschaft Reconstruction of image data by means of contour data
US20160055639A1 (en) * 2014-08-22 2016-02-25 Rigaku Corporation Image processing apparatus, image processing method and image processing program

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3279860A4 *

Also Published As

Publication number Publication date
EP3279860A1 (en) 2018-02-07
EP3279860A4 (en) 2018-10-10
ES2588257A1 (es) 2016-10-31
US20180144501A1 (en) 2018-05-24
US10672145B2 (en) 2020-06-02
ES2588257B1 (es) 2017-08-04

Similar Documents

Publication Publication Date Title
ES2588257B1 (es) Dispositivo para extraer información tridimensional de imágenes radiográficas de un objeto; procedimiento de calibración de dicho dispositivo; y procedimiento para generar dichas imágenes radiográficas
JP5906015B2 (ja) 特徴に基づいた2次元/3次元画像のレジストレーション
US7372935B2 (en) Method for minimizing image artifacts and medical imaging system
Yao Assessing accuracy factors in deformable 2D/3D medical image registration using a statistical pelvis model
US8121380B2 (en) Computerized imaging method for a three-dimensional reconstruction from two-dimensional radiological images; implementation device
EP3332711B1 (en) Dental image collection device providing optical alignment features and related methods
Lichti et al. Rigorous geometric self-calibrating bundle adjustment for a dual fluoroscopic imaging system
WO2016124554A1 (en) Object localization in projective x-ray images by geometric considerations
JP2008216089A (ja) 被験体の3次元的位置及び向き測定装置
JP2002531209A (ja) X線検査装置及び歪みのないx線画像を形成する方法
CN110740687A (zh) X射线照相装置
CN112258593A (zh) 单目相机下ct或pet-ct智能定位扫描方法
Wang et al. MARS: a mouse atlas registration system based on a planar x-ray projector and an optical camera
JP7463625B2 (ja) ナビゲーションサポート
KR102223769B1 (ko) 방사선 진단 및 치료 장치의 모션 평가 시스템 및 방법
US20070019787A1 (en) Fusion imaging using gamma or x-ray cameras and a photographic-camera
WO2014020202A1 (es) Dispositivo y procedimiento de obtención de imágenes densitométricas de objetos mediante combinación de sistemas radiológicos y cámaras de profundidad
CN115908121B (zh) 内窥镜配准方法及装置和标定系统
Bennani et al. Three dimensional (3D) lumbar vertebrae data set
JP2019032211A (ja) 核医学診断装置
KR102313801B1 (ko) 의료 영상 시스템의 자세 교정 가이드 장치 및 그 방법
Zhang et al. An automatic ICP-based 2D-3D registration method for a high-speed biplanar videoradiography imaging system
Corbi et al. Joint calibration of RGB and X-ray cameras
US20170206679A1 (en) System and method for three-dimensional depth imaging
Thürauf et al. A realistic X-ray simulation for C-arm geometry calibration

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15563312

Country of ref document: US