WO2016156589A1 - Aqueous dispersion of particles of at least one thermoplastic polymer, process for preparing it and applications thereof, especially for sizing reinforcing fibres - Google Patents

Aqueous dispersion of particles of at least one thermoplastic polymer, process for preparing it and applications thereof, especially for sizing reinforcing fibres Download PDF

Info

Publication number
WO2016156589A1
WO2016156589A1 PCT/EP2016/057260 EP2016057260W WO2016156589A1 WO 2016156589 A1 WO2016156589 A1 WO 2016156589A1 EP 2016057260 W EP2016057260 W EP 2016057260W WO 2016156589 A1 WO2016156589 A1 WO 2016156589A1
Authority
WO
WIPO (PCT)
Prior art keywords
aqueous dispersion
fibers
particles
thermoplastic polymer
organic
Prior art date
Application number
PCT/EP2016/057260
Other languages
French (fr)
Inventor
Brigitte Defoort
Aurélie MALHO RODRIGUES
Sophie FRANCESCHI
Emile Perez
Original Assignee
Airbus Defence And Space Sas
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Defence And Space Sas, Centre National De La Recherche Scientifique filed Critical Airbus Defence And Space Sas
Priority to US15/564,044 priority Critical patent/US20180094105A1/en
Priority to EP16714853.5A priority patent/EP3277420B1/en
Publication of WO2016156589A1 publication Critical patent/WO2016156589A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/07Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media from polymer solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/02Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/10Reinforcing macromolecular compounds with loose or coherent fibrous material characterised by the additives used in the polymer mixture
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/17Amines; Quaternary ammonium compounds
    • C08K5/19Quaternary ammonium compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/06Polysulfones; Polyethersulfones
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/02Emulsion paints including aerosols
    • C09D5/024Emulsion paints including aerosols characterised by the additives
    • C09D5/027Dispersing agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/45Anti-settling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/06Polysulfones; Polyethersulfones

Definitions

  • the invention relates to the field of coating substrates with thermoplastic polymer films.
  • the invention relates to an aqueous dispersion of particles of at least one thermoplastic polymer which has, among other advantages, those of having rheological properties such that it is viscous at rest but fluid under shear - which has , in particular, as a result that it is stable for several hours in the absence of agitation and easily redispersible after destabilization - and lead, after deposition on a substrate and evaporation of the water it contains, to the formation on this substrate a homogeneous thermoplastic film.
  • this aqueous dispersion can be prepared by a process which is simple to implement and which does not require the use of additives of high molecular weight, that is to say, in practice, molecular weight greater than 1000 g / mol.
  • the invention thus also relates to this method of preparation.
  • the invention can find applications in all fields where it may be desired to coat a substrate with a thermoplastic film, for example to protect this substrate against corrosion, abrasion or other, to modify its surface properties (wettability resistance, adsorption, adhesion, compatibility with another material, etc.), to improve the appearance or to give it a particular finish, or even to decorate it.
  • a thermoplastic film for example to protect this substrate against corrosion, abrasion or other, to modify its surface properties (wettability resistance, adsorption, adhesion, compatibility with another material, etc.), to improve the appearance or to give it a particular finish, or even to decorate it.
  • the invention also relates to the use of said aqueous dispersion for coating at least one substrate with a thermoplastic film and, in particular, for sizing reinforcing fibers for thermoplastic matrix composite materials.
  • Composite materials are heterogeneous materials that make it possible to exploit the exceptional mechanical properties of materials that we do not know how to manufacture in a massive form but only in the form of fibers by embedding them in a polymer matrix which makes it possible to bind the fibers between them, to ensure a distribution of the stresses in the composite materials and to protect the fibers against the chemical aggressions.
  • a prerequisite for obtaining a high performance composite material is that the bond between the reinforcing fibers and the polymer matrix that constitute it is good.
  • the reinforcing fiber / matrix bond is insufficient, then a composite material with poor transverse mechanical properties (such as shear strength) is obtained and, therefore, with very limited possibilities of use, the composite material parts being , in fact, most often intended to work in a tridirectional constraint state.
  • manufacturers of reinforcing fibers have sought to adapt their fibers to polymers that can be used as dies by manufacturers of composite parts.
  • sizes are also applied to the reinforcing fibers for purposes other than improving their bond with a polymer matrix such as, for example, that of facilitating their handling, lubricating and protecting them from the abrasion that they can undergo while being rubbed against each other.
  • a size must, itself, be compatible with this matrix, that is to say be of the same chemical nature as it.
  • thermosetting resins of the epoxy resin or epoxyvinylester type are used to make the matrices of the composite materials, the sizes proposed to date are for the most part based on an epoxidized polymer.
  • thermoplastic polymers and in particular of so-called “thermostable” thermoplastic polymers (because they retain their mechanical properties at a continuous use temperature greater than 150 ° C.) for producing matrices potentially of great interest, especially for the aeronautics and space industries, because, on the one hand, they make it possible to envisage an improvement of the chemical resistance, the resistance to shocks and the aging behavior of composite materials, and, on the other hand, the Composite materials with thermosetting matrix are not recyclable.
  • thermoplastic matrices which are, therefore, themselves based on one or more thermoplastic polymers.
  • the size of reinforcing fibers is generally made by immersing the parade of these fibers in a bath where there is a sizing formulation, and drying the fibers out of this bath.
  • thermoplastic polymers and, in particular, thermostable thermoplastic polymers are typically insoluble in water.
  • thermoplastic polymers can therefore, a priori, only be in the form of aqueous dispersions in which these polymers are present in the form of particles.
  • these aqueous dispersions are sufficiently fluid to spread easily on the surface of the fibers when they are immersed in the sizing bath but that despite this fluidity, the fibers do not drip once out of the sizing bath.
  • the particles of the polymer (s) present in these aqueous dispersions should also be sufficient in addition to being in sufficient quantity (generally it is desirable that the polymer (s) be present at a level of from 0.1% to 1% by weight relative to to the mass of the fibers), have a smallest possible size and, in any case, less than 1 ⁇ so that these particles can penetrate and insinuate between the elementary filaments which are formed the reinforcing fibers and thus form by coalescence a homogeneous thermoplastic film on the surface of the fibers or elementary filaments after evaporation of the water.
  • aqueous dispersions should furthermore have these properties while including as few additives as possible and, above all, while being examples of high molecular weight additives such as viscosity agents (alginates, pectins, carboxymethylcellulose, etc.) which are conventionally used to stabilize aqueous dispersions of particles.
  • viscosity agents alginates, pectins, carboxymethylcellulose, etc.
  • the sizing bath comprises only low molecular weight additives, easily removed by calcination during the drying phase of the fibers following their passage through the dye bath. sizing.
  • these aqueous dispersions can be obtained by an emulsion / solvent evaporation or solvent dispersion / evaporation process, allowing said aqueous dispersions to comprise thermoplastic polymer particles of very low cut.
  • the invention therefore, first of all, relates to the use of giant micelles as rheofluidifying agent and, in particular, as a stabilizing agent in an aqueous dispersion of particles of at least one thermoplastic polymer.
  • the invention also relates to an aqueous dispersion of particles of at least one thermoplastic polymer, which is characterized in that it comprises giant micelles which are located around the particles of the thermoplastic polymer or polymers.
  • giant micelles must be understood in the sense that they are given in the literature, namely that they are objects which are in the form of cylinders which can to reach several microns in length for a diameter of a few nanometers and which result from the aggregation by self-assembly of surfactant molecules in aqueous solution. In solution, these objects behave analogously to polymers. However, they are likely to break and reform spontaneously under the effect of shear, which has sometimes earned them the nickname "living polymers”.
  • the giant micelles preferably comprise molecules of a cationic or zwitterionic surfactant.
  • cationic surfactant it is especially possible to use a salt chosen from:
  • alkyldimethylethylammonium salts of formula (CnH2n + 1) N + (CH3) 2 (C2H5), X " (in which n is greater than or equal to 10 and X " is an inorganic or organic counterion), such as hexadecyldimethylethylammonium bromide (or CDMEAB, also called cetyldimethylethylammonium bromide) or hexadecyldimethylethylammonium chloride (or CDMEAC, also called cetyldimethylethylammonium chloride);
  • CDMEAB hexadecyldimethylethylammonium bromide
  • CDMEAC hexadecyldimethylethylammonium chloride
  • alkylpyridinium salts of formula (Cnh CsHsN H ⁇ X "(wherein n is greater than or equal to 10 and X" is an inorganic or organic against ion) such as hexadecylpyridinium bromide (or PBO, also called decylpyridinium bromide), hexadecylpyridinium chloride (or CPC, also known as cetylpyridinium chloride) or hexadecylpyridinium chlorate (or CPCIO3, also known as cetylpyridinium chlorate), and
  • benzyldimethylammonium salts such as benzyldimethyl (hydrogenated tallow) ammonium chloride (or DMHTC).
  • the zwitterionic surfactant may especially be chosen from betaines with a fatty chain (s), typically C10 to C26, such as betaine of erucyldimethylamidopropyl.
  • the surfactant is a cationic surfactant with a quaternary ammonium group, more particularly an alkyltrimethylammonium salt as defined above and, more preferably, a hexadecyltrimethylammonium salt such as CTAB, CTAC, CTAT or Ci6AASa, preference being given to all the CTACs.
  • a salt which may be inorganic (sodium chloride, sodium bromide, potassium bromide for example) or organic (sodium salicylate, sodium phthalate for example), or an organic acid such as salicylic acid, phthalic acid, chlorobenzoic acid or a hydroxynaphthoic acid such as 5-hydroxy-1-naphthoic acid, 6-hydroxy-1-naphthoic acid, 7-hydroxy-1-naphthoic acid, 1-hydroxy-2-naphthoic acid or 3-hydroxy-2-naphthoic acid.
  • a salt which may be inorganic (sodium chloride, sodium bromide, potassium bromide for example) or organic (sodium salicylate, sodium phthalate for example), or an organic acid such as salicylic acid, phthalic acid, chlorobenzoic acid or a hydroxynaphthoic acid such as 5-hydroxy-1-naphthoic acid, 6-hydroxy-1-naphth
  • the giant micelles additionally comprise, advantageously, an inorganic or organic salt or an organic acid and, preferably, salicylic acid.
  • thermoplastic polymer or polymers may be chosen from any thermoplastic polymer that may be used for coating a substrate with a thermoplastic film.
  • this or these thermoplastic polymers may in particular be chosen from polyaryletherketones (or PAEK) such as polyetherketones (or PEK), polyetheretherketones (or PEEK) or polyetherketoneketones (or PEKK), polyethyleneimines (or PEthl), polyetherimides (or PEI), polyimides (or PI), polyolefins such as polyethylenes, especially of high density, polypropylenes or copolymers of ethylene and polypropylene, polyamides such as polyamides 6 (or PA-6), 1.1 (or PA-1.1), 12 (or PA-12), 6.6 (or PA-6.6), 4.6 (or PA-4.6), 6.10 (or PA-6.10), 6.12 (or PA-6.12) or polyamides aromatic compounds, in particular polyphthalamides or aramids, thermoplastic polyurethanes (or
  • PAEK
  • thermoplastic polymer or polymers are preferably chosen from thermostable thermoplastic polymers, that is to say in practice among polyaryletherketones, polyetherimides and polysulfones.
  • the giant micelles are preferably formed from a mixture of CTAC and salicylic acid molecules, the inventors having, in fact, demonstrated by thermogravimetric analysis, that the CTAC is degraded to 75% by mass. at 150 ° C while salicylic acid is completely degraded at 180 ° C, ie temperatures which are below the degradation temperature typically exhibited by these thermoplastic polymers. It is thus possible to perform the drying of the reinforcing fibers out of the sizing bath at a temperature to eliminate the 3 ⁇ 4 mass of the CTAC and the totality of the salicylic acid without affecting the structure of the thermoplastic polymer (s).
  • the 25% by weight of CTAC, which are not degraded correspond to a tertiary amine residue which is not likely to disturb the quality of the sizing of the reinforcing fibers or their subsequent implementation for the manufacture of composite material parts.
  • This mixture of CTAC and salicylic acid which is preferably an equimolar mixture, is advantageously present in the aqueous dispersion at a concentration ranging from 5 mmol / L to 100 mmol / L and, preferably, from 40 mmol / L to 50 mmol / L. mmol / L.
  • the mass content of the aqueous dispersion of particles or thermoplastic polymers ranges from 0.1% to 3%, preferably from 0.1% to 1% and more preferably 0.4% to 0.6%.
  • the aqueous dispersion can be obtained by an emulsion / solvent evaporation or solvent dispersion / evaporation process.
  • the subject of the invention is also a process for preparing an aqueous dispersion of particles of at least one thermoplastic polymer as defined above, which is characterized in that it comprises:
  • the steps a) and b) are carried out simultaneously, the organic solvent being advantageously a volatile solvent at ambient temperature (chloroform, dichloromethane, dichloroethane, ethyl acetate, ethyl formate, cyclohexane, diethyl ether or a mixture of these for example) so that it can be evaporated only under the effect of the agitation to which the organic and aqueous phases are subjected when they come into contact.
  • the organic solvent being advantageously a volatile solvent at ambient temperature (chloroform, dichloromethane, dichloroethane, ethyl acetate, ethyl formate, cyclohexane, diethyl ether or a mixture of these for example) so that it can be evaporated only under the effect of the agitation to which the organic and aqueous phases are subjected when they come into contact.
  • this process is advantageously implemented by adding dropwise the organic phase comprising the thermoplastic polymer or polymers dissolved or dispersed in the organic solvent to an aqueous solution comprising the elements necessary for the formation of giant micelles (namely a surfactant which is preferably a cationic or zwitterionic surfactant as well as optionally an inorganic or organic salt or an organic acid), and this, under strong agitation, (typically greater than 10,000 rpm if using stirring of the Ultra-Turrax TM type), and maintaining this agitation until complete evaporation of the organic solvent.
  • giant micelles namely a surfactant which is preferably a cationic or zwitterionic surfactant as well as optionally an inorganic or organic salt or an organic acid
  • the subject of the invention is also the use of an aqueous dispersion of particles of at least one thermoplastic polymer as defined above for coating at least one substrate with a thermoplastic film and, in particular, for the sizing of fibers. reinforcement for thermoplastic matrix composite materials.
  • the reinforcing fibers may be chosen from all the fibers that may be used as reinforcement in the manufacture of parts made of composite materials.
  • it may especially be glass fibers, quartz fibers, carbon fibers, graphite fibers, silica fibers, metal fibers such as steel fibers, aluminum fibers or boron fibers, ceramic fibers such as silicon carbide or boron carbide fibers, synthetic organic fibers such as aramid fibers, polyethylene fibers, polyester fibers or poly (p-phenylene) fibers benzobisoxazole), better known by the acronym PBO, natural organic fibers such as hemp fibers, flax fibers or silk fibers, or mixtures of such fibers.
  • the reinforcing fibers are preferably in the form of yarns comprising several thousand elementary filaments (typically from 3000 to 48000), for example measuring 6 to 10 ⁇ m in diameter in the case of carbon fibers.
  • This type of fiber is known under the English names "rovings" or “tapes”.
  • the size of the reinforcing fibers preferably comprises the immersion of these reinforcing fibers in the aqueous dispersion and then drying them. Alternatively, however, it can also be achieved by spraying the aqueous dispersion onto the reinforcing fibers and then drying these fibers.
  • FIG. 1 illustrates the evolution of the stability of a first aqueous dispersion according to the invention, as determined by multiple light scattering over a period of 50 hours, this first aqueous dispersion being a dispersion of particles of a polyetherimide.
  • FIG. 2 illustrates the rheograms of said first aqueous dispersion as established twice, on the one hand, on the day of its preparation (symbols ⁇ and ⁇ ) and, on the other hand, after 7 days of rest and redispersion by simple manual agitation (symbols ⁇ and O).
  • FIG. 3 is a transmission electron microscope (TEM) image of said first aqueous dispersion.
  • FIG. 4 is a scanning electron microscope (SEM) image of a film obtained by depositing said first aqueous dispersion on a graphite plate and drying this plate.
  • Figure 5 is a diagram illustrating the sizing device having been used to size carbon fibers with said first aqueous dispersion.
  • Figs. 6A and 6B are M EB images of filaments of a carbon fiber which has been sized with said first aqueous dispersion by means of the device shown in Fig. 5 and using a running speed of 10 m / min.
  • Figs. 7A and 7B are M EB images of filaments of a carbon fiber that has been sized with said first aqueous dispersion by means of the device shown in Fig. 5 and using a running speed of 15 m / min.
  • FIGS. 8A and 8B are images taken at the EB of filaments of carbon fiber that have not been sized, these images being given for comparison purposes.
  • FIG. 9 is an image taken at the M EB of a film formed by deposition of a second aqueous dispersion according to the invention on a graphite plate and drying of this plate, this second aqueous dispersion being a dispersion of particles of a polyethersulfone.
  • FIG. 10 is an image taken at the M EB of a film formed by deposition of a third aqueous dispersion according to the invention on a graphite plate and drying of this plate, this third aqueous dispersion being a dispersion of particles of a polysulfone.
  • An aqueous dispersion of particles of a polyetherimide (PEI Ultem TM 1000 resin - GE Plastics), hereinafter referred to as dispersion 1, is prepared by emulsion / evaporation.
  • This PEI has a glass transition temperature of 217 ° C.
  • CTAC cetyltrimethylammonium chloride
  • the organic resin solution is added dropwise to the aqueous solution of CTAC / salicylic acid with stirring with Ultra-Turrax TM - I KA. The addition lasts about 5 minutes. The stirring is set at 12,000 rpm and is maintained until complete evaporation of the dichloromethane, ie for about 30 minutes.
  • the average diameter and the polydispersity index of the particles of the dispersion 1 are determined by means of a dynamic light scattering apparatus Zetasizer Nano S - MALVERN I nstruments, using a high power laser (50 mW) emitting at the wavelength of 532 nm and by collecting the light signal scattered by the sample to be analyzed backscattering (173 ° angle). The measurement is carried out at 25 ° C.
  • the average particle intensity diameter is 209 nm.
  • the stability of the dispersion 1 is assessed by means of a Turbiscan TM LAB-FORM ULACTION apparatus which makes it possible to precisely and quickly characterize the stability of a liquid dispersion by multiple light scattering (MLS).
  • MLS multiple light scattering
  • the curve shows a change in slope, characteristic of a beginning of sedimentation of the particles from 22 hours.
  • the dispersion 1 begins to destabilize only after 22 hours.
  • the dispersion 1 rheology is evaluated by tests that include measuring the viscosity of this dispersion by applying a shear rate of 0.6 s went nt 1 to 500 s "1, and that, on the one hand, the the day of its preparation and, on the other hand, after 7 days of rest and redispersion by simple manual agitation, each test is performed twice.
  • FIG. 2 illustrates the rheograms thus obtained, the viscosity being expressed in mPa.s and the shear rate in s.sup.- 1 .
  • the symbols ⁇ and ⁇ correspond to the rheograms obtained on the day of the preparation of the dispersion 1 while the symbols ⁇ and O correspond to the rheograms obtained after the 7 days of rest of this dispersion.
  • the dispersion 1 exhibits, on the day of its preparation, a viscosity of the order of 800 mPa.s without shear and its viscosity drops to 500 mPa.s from the application of a shear rate. of 1 s "1 .
  • this dispersion comprises spherical particles (present on the image in the form of white circles) which have a maximum diameter of 200 nm, contained in FIG. middle of cylindrical micelles.
  • the size distribution of these particles is polydisperse (the size of the particles ranging from 20 nm to 200 nm) in agreement with the results obtained by dynamic light scattering.
  • the ability of the dispersion 1 to form a film on a substrate is first tested by depositing a drop of this dispersion on a graphite plate using a Pasteur pipette, spreading this drop and then placing the plate in an oven at 100 ° C to dry this deposit.
  • FIG. 4 which corresponds to an image taken at the SEM of the graphite plate after drying of the deposit, the film obtained is homogeneous and shows good coalescence of the PEI particles.
  • the ability of the dispersion 1 to form a film on a substrate is also tested by sizing multifilament carbon fibers (IM7 fibers with 12,000 filaments - HEXCEL) with this dispersion.
  • This size is produced using the device 10 which is illustrated schematically in FIG. 5 and which comprises:
  • a tank 11 which is filled with a sizing bath 12 (here, the dispersion 1);
  • a coil 13 which is situated upstream (in the direction of travel of the carbon fibers in the device 10) of the tank 11 and on which are wound the carbon fibers 14 before their introduction into the sizing bath;
  • an oven 15 which is situated downstream of the tank 11 and which makes it possible to dry the carbon fibers at their exit from the sizing bath;
  • a coil 16 which is located downstream of the oven 15 and on which are wound the carbon fibers at their outlet from this oven; and a drive system comprising in particular a set of pulleys 17 and ensuring the running of the reinforcing fiber strands from the spool 13 to the spool 16.
  • the temperature of the oven is set at 200 ° C so that it is lower than the glass transition temperature of the PEI.
  • Two speeds of travel of the carbon fibers in the device 10 are used: 10 m / min on the one hand, and 15 m / min on the other hand.
  • FIGS. 6A, 6B, 7A, 7B, 8A and 8B which correspond to images taken at the M EB:
  • filaments of carbon fiber having been sized at the running speed of 10 m / min (Figs. 6A and 6B);
  • aqueous dispersion of particles of a polyethersulfone (PES 4100 P-SUM IMOTO Chemical), hereinafter referred to as dispersion 2, is prepared by proceeding as described in point 1.1 above, except that the PEI is replaced by PES, which forms a stable dispersion in the organic solvent.
  • This PES has a glass transition temperature of 225 ° C. II.2 - Properties of the dispersion:
  • Dispersion 2 shows:
  • this dispersion makes it possible to form a homogeneous film of PES on the surface of a substrate.
  • EXAMPLE III Aqueous dispersion of particles of a polysulfone:
  • An aqueous dispersion of particles of a polysulfone (PSU Ultrason TM S 2010 Natural - BASF), hereinafter referred to as dispersion 3, is prepared by proceeding as described in point 1.1 above, except that the PEI is replaced. by the PSU.
  • This PSU has a glass transition temperature of 187 ° C.
  • Dispersion 3 shows:
  • this dispersion also makes it possible to form a homogeneous PSU film on the surface of a substrate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

The invention relates to the use of giant micelles as shear-thinning agent in an aqueous dispersion of particles of at least one thermoplastic polymer. It also relates to an aqueous dispersion of particles of at least one thermoplastic polymer, comprising giant micelles located around the particles of the thermoplastic polymer(s), and also to a process that makes it possible to prepare this aqueous dispersion. Applications: all fields in which it is desirable to coat a substrate with a thermoplastic film and, in particular, the sizing of reinforcing fibres intended to be incorporated into the composition of parts made of thermoplastic matrix composite materials and, in particular, of structural parts for the aeronautical and space industries.

Description

DISPERSION AQUEUSE DE PARTICULES D'AU MOINS UN POLYMÈRE THERMOPLASTIQUE, SON PROCÉDÉ DE PRÉPARATION ET SES APPLICATIONS, NOTAMMENT POUR  AQUEOUS DISPERSION OF PARTICLES OF AT LEAST ONE THERMOPLASTIC POLYMER, ITS PREPARATION METHOD AND ITS APPLICATIONS, IN PARTICULAR FOR
L'ENSIMAGE DE FIBRES DE RENFORT DESCRIPTION  ENSIMAGE OF FIBERS REINFORCEMENT DESCRIPTION
DOMAINE TECHNIQUE TECHNICAL AREA
L'invention se rapporte au domaine du revêtement de substrats par des films de polymères thermoplastiques. The invention relates to the field of coating substrates with thermoplastic polymer films.
Plus précisément, l'invention se rapporte à une dispersion aqueuse de particules d'au moins un polymère thermoplastique qui présente, entre autres avantages, ceux de présenter des propriétés rhéologiques telles qu'elle est visqueuse au repos mais fluide sous cisaillement - ce qui a, notamment, pour conséquence qu'elle est stable pendant plusieurs heures en l'absence d'agitation et aisément redispersable après déstabilisation - et de conduire, après dépôt sur un substrat et évaporation de l'ea u qu'elle contient, à la formation sur ce substrat d'un film thermoplastique homogène.  More specifically, the invention relates to an aqueous dispersion of particles of at least one thermoplastic polymer which has, among other advantages, those of having rheological properties such that it is viscous at rest but fluid under shear - which has , in particular, as a result that it is stable for several hours in the absence of agitation and easily redispersible after destabilization - and lead, after deposition on a substrate and evaporation of the water it contains, to the formation on this substrate a homogeneous thermoplastic film.
Au surplus, cette dispersion aqueuse peut être préparée par un procédé qui est simple à mettre en œuvre et qui ne nécessite pas d'utiliser d'additifs de ha ute masse moléculaire, c'est-à-dire, en pratique, de masse moléculaire supérieure à 1 000 g/mol.  In addition, this aqueous dispersion can be prepared by a process which is simple to implement and which does not require the use of additives of high molecular weight, that is to say, in practice, molecular weight greater than 1000 g / mol.
L'invention se rapporte donc également à ce procédé de préparation. The invention thus also relates to this method of preparation.
L'invention peut trouver des applications dans tous les domaines où l'on peut souhaiter revêtir un substrat d'un film thermoplastique, par exemple pour protéger ce substrat contre la corrosion, l'abrasion ou autre, pour modifier ses propriétés de surface (mouillabilité, résistance, adsorption, adhésion, compatibilité vis-à-vis d'un autre matériau, etc.), pour en améliorer l'aspect ou lui donner une finition particulière, voire pour le décorer. The invention can find applications in all fields where it may be desired to coat a substrate with a thermoplastic film, for example to protect this substrate against corrosion, abrasion or other, to modify its surface properties (wettability resistance, adsorption, adhesion, compatibility with another material, etc.), to improve the appearance or to give it a particular finish, or even to decorate it.
Toutefois, elle trouve un intérêt tout particulier dans le domaine de l'ensimage de fibres de renfort destinées à entrer dans la constitution de pièces en matériaux composites à matrice thermoplastique et, notamment, de pièces de structure pour les industries aéronautique et spatiale. However, it finds a particular interest in the field of the sizing of reinforcing fibers intended to enter the constitution of parts in thermoplastic matrix composite materials and, in particular, structural parts for the aerospace industry.
Aussi, l'invention se rapporte-t-elle également à l'utilisation de ladite dispersion aqueuse pour revêtir au moins un substrat d'un film thermoplastique et, en particulier, pour ensimer des fibres de renfort pour matériaux composites à matrice thermoplastique.  Also, the invention also relates to the use of said aqueous dispersion for coating at least one substrate with a thermoplastic film and, in particular, for sizing reinforcing fibers for thermoplastic matrix composite materials.
ÉTAT DE LA TECHNIQUE ANTÉRIEURE STATE OF THE PRIOR ART
Les matériaux composites sont des matériaux hétérogènes qui permettent d'exploiter les propriétés mécaniques exceptionnelles de matériaux que l'on ne sait pas fabriquer sous une forme massive mais seulement sous la forme de fibres en les noyant dans une matrice polymère qui permet de lier les fibres entre elles, d'assurer une répartition des contraintes dans les matériaux composites et de protéger les fibres contre les agressions chimiques. Composite materials are heterogeneous materials that make it possible to exploit the exceptional mechanical properties of materials that we do not know how to manufacture in a massive form but only in the form of fibers by embedding them in a polymer matrix which makes it possible to bind the fibers between them, to ensure a distribution of the stresses in the composite materials and to protect the fibers against the chemical aggressions.
Une condition indispensable à l'obtention d'un matériau composite à hautes performances est que la liaison entre les fibres de renfort et la matrice polymère qui le constituent soit bonne. En effet, si la liaison fibres de renfort/matrice est insuffisante, alors on obtient un matériau composite aux propriétés mécaniques transverses (comme la résistance au cisaillement) médiocres et, donc, aux possibilités d'utilisation très limitées, les pièces en matériaux composites étant, en effet, le plus souvent destinées à travailler en état de contrainte tridirectionnelle.  A prerequisite for obtaining a high performance composite material is that the bond between the reinforcing fibers and the polymer matrix that constitute it is good. In fact, if the reinforcing fiber / matrix bond is insufficient, then a composite material with poor transverse mechanical properties (such as shear strength) is obtained and, therefore, with very limited possibilities of use, the composite material parts being , in fact, most often intended to work in a tridirectional constraint state.
Les fibres qui sont classiquement utilisées comme matériau de renfort, telles que les fibres de carbone, présentent naturellement une faible adhésion vis-à-vis des matrices polymères.  The fibers which are conventionally used as reinforcing material, such as carbon fibers, naturally have a low adhesion to the polymer matrices.
Aussi, les fabricants de fibres de renfort ont-ils cherché à adapter leurs fibres aux polymères susceptibles d'être utilisés comme matrices par les fabricants de pièces en matériaux composites.  Also, manufacturers of reinforcing fibers have sought to adapt their fibers to polymers that can be used as dies by manufacturers of composite parts.
Cette adaptation a été réalisée de deux façons différentes et complémentaires : * d'une part, par des traitements de surface qui visent tous à créer à la surface des fibres des groupes fonctionnels aptes à réagir avec des fonctions chimiques présentées par le ou les polymères de la matrice ; il s'agit principalement de traitements d'oxydation chimique ou électrolytique mais d'autres types de traitement ont également été proposés comme des traitements thermiques par plasma, des traitements électrolytiques en milieu acide ou basique et des traitements d'implantation d'atomes de type Si ou B ; et This adaptation was carried out in two different and complementary ways: on the one hand, by surface treatments which all aim to create on the surface of the fibers functional groups capable of reacting with chemical functions presented by the polymer (s) of the matrix; these are mainly chemical or electrolytic oxidation treatments but other types of treatment have also been proposed such as plasma heat treatments, electrolytic treatments in acidic or basic medium and type implantation treatments of atoms. If or B; and
* d'autre part, par l'utilisation d'ensimages spécifiques, c'est-à-dire par le dépôt sur la surface des fibres d'un film d'un matériau dont le rôle est d'augmenter la compatibilité entre les fibres et le ou les polymères de la matrice, de faciliter l'imprégnation des fibres par ce ou ces polymères et d'assurer un « accrochage » entre les fibres et ledit ou lesdits polymères.  * on the other hand, by the use of specific sizes, that is to say by the deposit on the surface of the fibers of a film of a material whose role is to increase the compatibility between the fibers and the polymer or polymers of the matrix, to facilitate the impregnation of the fibers with this or these polymers and to ensure a "hooking-up" between the fibers and the at least one polymer.
Il est à noter que des ensimages sont également appliqués sur les fibres de renfort dans d'autres buts que celui d'améliorer leur liaison avec une matrice polymère comme, par exemple, celui de faciliter leur manipulation, de les lubrifier et de les protéger de l'abrasion qu'elles peuvent subir en étant frottées les unes contre les autres.  It should be noted that sizes are also applied to the reinforcing fibers for purposes other than improving their bond with a polymer matrix such as, for example, that of facilitating their handling, lubricating and protecting them from the abrasion that they can undergo while being rubbed against each other.
Pour être en mesure d'améliorer la compatibilité entre des fibres de renfort et une matrice polymère, un ensimage doit, lui-même, être compatible avec cette matrice, c'est-à-dire être de même nature chimique qu'elle.  To be able to improve the compatibility between reinforcing fibers and a polymer matrix, a size must, itself, be compatible with this matrix, that is to say be of the same chemical nature as it.
Étant donné qu'actuellement, on utilise essentiellement des résines thermodurcissables du type résines époxydes ou époxyvinylesters pour réaliser les matrices des matériaux composites, les ensimages proposés à ce jour sont pour la plupart à base d'un polymère époxydé.  Since at present essentially thermosetting resins of the epoxy resin or epoxyvinylester type are used to make the matrices of the composite materials, the sizes proposed to date are for the most part based on an epoxidized polymer.
Par contre, il existe très peu d'ensimages destinés à des matrices constituées d'un ou de polymères thermoplastiques.  On the other hand, there are very few sizes intended for matrices consisting of one or more thermoplastic polymers.
Or, l'utilisation de polymères thermoplastiques, et en particulier de polymères thermoplastiques dits « thermostables » (en raison de ce qu'ils conservent leurs propriétés mécaniques à une température d'utilisation en continu supérieure à 150°C) pour la réalisation de matrices présente potentiellement un grand intérêt, notamment pour les industries aéronautique et spatiale, parce que, d'une part, ils permettent d'envisager une amélioration de la résistance chimique, de la résistance aux chocs et du comportement en vieillissement des matériaux composites, et, d'autre part, les matériaux composites à matrice thermodurcissable ne sont pas recyclables. However, the use of thermoplastic polymers, and in particular of so-called "thermostable" thermoplastic polymers (because they retain their mechanical properties at a continuous use temperature greater than 150 ° C.) for producing matrices potentially of great interest, especially for the aeronautics and space industries, because, on the one hand, they make it possible to envisage an improvement of the chemical resistance, the resistance to shocks and the aging behavior of composite materials, and, on the other hand, the Composite materials with thermosetting matrix are not recyclable.
II est donc souhaitable de disposer d'ensimages qui soient adaptés à l'utilisation de matrices thermoplastiques et qui soient donc, eux-mêmes, à base d'un ou plusieurs polymères thermoplastiques.  It is therefore desirable to have sizes which are adapted to the use of thermoplastic matrices and which are, therefore, themselves based on one or more thermoplastic polymers.
L'ensimage de fibres de renfort est généralement réalisé par immersion au défilé de ces fibres dans un bain où se trouve une formulation d'ensimage, puis séchage des fibres au sortir de ce bain.  The size of reinforcing fibers is generally made by immersing the parade of these fibers in a bath where there is a sizing formulation, and drying the fibers out of this bath.
Pour des raisons de sécurité, de santé publique mais également de protection environnementale (respect du Règlement (CE) n° 1907/2006 du Parlement Européen et du Conseil dit « REACH »), on cherche de plus en plus à ce que les bains d'ensimage soient aqueux et non pas organiques.  For reasons of safety, public health and environmental protection (compliance with Regulation (EC) No 1907/2006 of the European Parliament and the REACH Council), we are increasingly looking for The size is aqueous and not organic.
Or, il se trouve que les polymères thermoplastiques et, notamment, les polymères thermoplastiques thermostables sont typiquement insolubles dans l'eau.  However, it turns out that thermoplastic polymers and, in particular, thermostable thermoplastic polymers are typically insoluble in water.
Les bains d'ensimage à base de tels polymères thermoplastiques ne peuvent donc, a priori, que se présenter sous la forme de dispersions aqueuses dans lesquelles ces polymères sont présents sous la forme de particules.  The sizing baths based on such thermoplastic polymers can therefore, a priori, only be in the form of aqueous dispersions in which these polymers are present in the form of particles.
Pour pouvoir être utilisées comme bains d'ensimage à une échelle industrielle et conduire à un ensimage de bonne qualité, il est souhaitable que ces dispersions aqueuses satisfassent à un certain nombre d'exigences.  To be able to be used as sizing baths on an industrial scale and lead to a good quality sizing, it is desirable that these aqueous dispersions meet a number of requirements.
Notamment, il conviendrait qu'elles aient une stabilité en l'absence d'agitation compatible de leur utilisation (quelques heures suffisent) tout en étant aisément redispersables après déstabilisation.  In particular, they should have stability in the absence of compatible agitation of their use (a few hours are sufficient) while being easily redispersible after destabilization.
Il conviendrait également que ces dispersions aqueuses soient suffisamment fluides pour s'étaler facilement sur la surface des fibres lorsque celles-ci sont immergées dans le bain d'ensimage mais qu'en dépit de cette fluidité, les fibres ne gouttent pas une fois sorties du bain d'ensimage. I l conviendrait encore que les particules du ou des polymères présents dans ces dispersions aqueuses, outre d'être en quantité suffisante (généralement, il est souhaitable que le ou les polymères soient présents à hauteur de 0,1% à 1% massique par rapport à la masse des fibres), aient une taille la plus faible possible et, en tout état de cause, inférieure à 1 μιη pour que ces particules puissent pénétrer et s'insinuer entre les filaments élémentaires dont sont formées les fibres de renfort et former ainsi par coalescence un film thermoplastique homogène sur la surface des fibres ou des filaments élémentaires après évaporation de l'eau. It should also be that these aqueous dispersions are sufficiently fluid to spread easily on the surface of the fibers when they are immersed in the sizing bath but that despite this fluidity, the fibers do not drip once out of the sizing bath. The particles of the polymer (s) present in these aqueous dispersions should also be sufficient in addition to being in sufficient quantity (generally it is desirable that the polymer (s) be present at a level of from 0.1% to 1% by weight relative to to the mass of the fibers), have a smallest possible size and, in any case, less than 1 μιη so that these particles can penetrate and insinuate between the elementary filaments which are formed the reinforcing fibers and thus form by coalescence a homogeneous thermoplastic film on the surface of the fibers or elementary filaments after evaporation of the water.
I l conviendrait en outre que ces dispersions aqueuses aient ces propriétés tout en comprenant le moins d'additifs possible et, surtout, tout en étant exem ptes d'additifs de haute masse moléculaire tels que les agents viscosa nts (alginates, pectines, carboxyméthylcellulose, etc.) qui sont classiquement utilisés pour stabiliser des dispersions aqueuses de particules. En effet, il est souhaitable qu'au sortir du bain d'ensimage, il ne reste sur la surface des fibres aucun composé susceptible de se dégrader lors de la mise en œuvre ultérieure des fibres ensimées pour faire des pièces en matériaux composites et, par la même, de perturber cette mise en oeuvre, ce qui est possible si le bain d'ensimage ne comprend que des additifs de faible masse moléculaire, facilement éliminables par calcination lors de la phase de séchage des fibres qui suit leur passage dans le bain d'ensimage.  These aqueous dispersions should furthermore have these properties while including as few additives as possible and, above all, while being examples of high molecular weight additives such as viscosity agents (alginates, pectins, carboxymethylcellulose, etc.) which are conventionally used to stabilize aqueous dispersions of particles. Indeed, it is desirable that out of the sizing bath, there remains on the surface of the fibers no compound likely to degrade during the subsequent implementation of the sized fibers to make composite parts and, by the same, to disrupt this implementation, which is possible if the sizing bath comprises only low molecular weight additives, easily removed by calcination during the drying phase of the fibers following their passage through the dye bath. sizing.
I I conviendrait enfin qu'elles puissent être obtenues par un procédé compatible, ta nt au niveau de sa mise en œuvre que de son coût, avec une exploitation à une échelle industrielle.  Finally, it should be possible to obtain them by a compatible process, both in terms of its implementation and cost, with exploitation on an industrial scale.
Parmi les travaux ayant porté sur la mise au point de dispersions aqueuses de particules d'un polymère thermoplastique pour l'ensimage de fibres de renfort, on peut citer les travaux de Broyles et al. relatifs à un ensimage à base d'une poudre d'un phénoxy polyhydroxyéther simplement dispersée dans l'eau (Polymer 1998, 39(15), 3417-3424, ci-après référence [1]), ainsi que les travaux de Giraud et al. relatifs à des ensimages à base de particules d'un polyétherimide ou d'une polyéthercétone- cétone, stabilisés par du dodécylsulfate de sodium, du dioctylsulfosuccinate de sodium ou du chlorure de benzalkonium (FR-A-2 960 878 ; Applied Surface Science 2013, 266, 94-99, ci-après références [2] et [3]). Among the works having focused on the development of aqueous dispersions of particles of a thermoplastic polymer for the sizing of reinforcing fibers, mention may be made of the work of Broyles et al. relating to a size based on a powder of a phenoxy polyhydroxyether simply dispersed in water (Polymer 1998, 39 (15), 3417-3424, hereinafter reference [1]), as well as the work of Giraud and al. relating to particle sizes based on polyetherimide or polyetherketoneketone, stabilized with sodium dodecyl sulphate, sodium dioctylsulphosuccinate or benzalkonium chloride (FR-A-2,960,878; Applied Surface Science 2013, 266, 94-99, hereinafter references [2] and [3]).
Toutefois, il s'avère que les dispersions aqueuses de particules proposées par ces auteurs ne répondent pas aux exigences précédemment mentionnées.  However, it turns out that the aqueous dispersions of particles proposed by these authors do not meet the requirements mentioned above.
Par contre, dans le cadre de leurs travaux, les I nventeurs ont constaté que la présence de micelles géantes dans des dispersions aqueuses de particules d'un ou de plusieurs polymères thermoplastiques permet de conférer à ces dispersions des propriétés rhéologiques telles qu'elles sont visqueuses au repos mais fluides sous cisaillement, ce qui leur permet :  On the other hand, in the course of their work, the inventors have found that the presence of giant micelles in aqueous dispersions of particles of one or more thermoplastic polymers makes it possible to confer on these dispersions rheological properties such that they are viscous. at rest but fluid under shear, which allows them:
- d'une part, de présenter une certaine stabilité en l'absence d'agitation tout en étant redispersables, après déstabilisation, par une simple agitation manuelle ou mécanique, et  on the one hand, to have a certain stability in the absence of agitation while being redispersible, after destabilization, by simple manual or mechanical agitation, and
- d'autre part, de s'étaler facilement sur la surface d'un substrat (telle que la surface de fibres de renfort) sous l'effet d'un cisaillement (tel que l'agitation à laquelle est soumis un bain d'ensimage) tout en étant capables de redevenir visqueuses après l'arrêt de ce cisaillement.  on the other hand, to spread easily on the surface of a substrate (such as the surface of reinforcing fibers) under the effect of a shear (such as the agitation to which a bath of sizing) while being able to become viscous after stopping this shear.
I ls ont également constaté que ces dispersions aqueuses peuvent être obtenues par un procédé d'émulsion/évaporation de solvant ou de dispersion/ évaporation de solvant, permettant auxdites dispersions aqueuses de comprendre des particules de polymère(s) thermoplastique(s) de très faible taille.  They have also found that these aqueous dispersions can be obtained by an emulsion / solvent evaporation or solvent dispersion / evaporation process, allowing said aqueous dispersions to comprise thermoplastic polymer particles of very low cut.
Et c'est sur ces constatations qu'est basée la présente invention.  And it is on these findings that the present invention is based.
EXPOSÉ DE L'INVENTION STATEMENT OF THE INVENTION
L'invention a donc, en premier lieu, pour objet l'utilisation de micelles géantes comme agent rhéofluidifiant et, notamment, comme agent stabilisant dans une dispersion aqueuse de particules d'au moins un polymère thermoplastique. The invention therefore, first of all, relates to the use of giant micelles as rheofluidifying agent and, in particular, as a stabilizing agent in an aqueous dispersion of particles of at least one thermoplastic polymer.
L'invention a également pour objet une dispersion aqueuse de particules d'au moins un polymère thermoplastique, laquelle est caractérisée en ce qu'elle comprend des micelles géantes qui sont situées autour des particules du ou des polymères thermoplastiques. Dans le cadre de la présente invention, les termes « micelles géantes », doivent être pris au sens qu'il leur est donné dans la littérature, à savoir qu'il s'agit d'objets qui se présentent sous la forme de cylindres pouvant atteindre plusieurs microns de longueur pour un diamètre de quelques nanomètres et qui résultent de l'agrégation par auto-assemblage de molécules de tensioactifs en solution aqueuse. En solution, ces objets se comportent de façon analogue à des polymères. Toutefois, ils sont susceptibles de se briser et de se reformer de façon spontanée sous l'effet d'un cisaillement, ce qui leur a valu parfois le surnom de « polymères vivants ». Ces micelles, qui sont également connues sous le nom de micelles allongées (ou « worm-like micelles » en anglais) ont notamment été décrites par Cates et al. (Journal of Physics: Condensed Matter 1990, 2, 6869-6892, ci-après référence [4]), Hassan et al. {Current Science 2001, 80(8), 980-989, ci- après référence [5]) et par Walker (Current Opinion in Colloid & Interface Science 2001, 6, 451-456, ci-après référence [6]). The invention also relates to an aqueous dispersion of particles of at least one thermoplastic polymer, which is characterized in that it comprises giant micelles which are located around the particles of the thermoplastic polymer or polymers. In the context of the present invention, the terms "giant micelles" must be understood in the sense that they are given in the literature, namely that they are objects which are in the form of cylinders which can to reach several microns in length for a diameter of a few nanometers and which result from the aggregation by self-assembly of surfactant molecules in aqueous solution. In solution, these objects behave analogously to polymers. However, they are likely to break and reform spontaneously under the effect of shear, which has sometimes earned them the nickname "living polymers". These micelles, which are also known as elongated micelles (or "worm-like micelles" in English) have been described by Cates et al. (Journal of Physics: Condensed Matter 1990, 2, 6869-6892, hereinafter reference [4]), Hassan et al. {Current Science 2001, 80 (8), 980-989, hereinafter reference [5]) and Walker (Current Opinion in Colloid & Interface Science 2001, 6, 451-456, hereinafter reference [6]).
Conformément à l'invention, les micelles géantes comprennent, de préférence, des molécules d'un tensioactif cationique ou zwittérionique.  According to the invention, the giant micelles preferably comprise molecules of a cationic or zwitterionic surfactant.
Comme tensioactif cationique, on peut notamment utiliser un sel choisi parmi :  As cationic surfactant, it is especially possible to use a salt chosen from:
- les sels d'alkyltriméthylammonium de formule (CnH2n+i)N+(CH3)3,X~ (dans laquelle n est supérieur ou égal à 10 et X" est un contre-ion inorganique ou organique) tels que le bromure de décyltriméthylammonium (ou CioTAB), le bromure de dodécyltriméthylammonium (ou DTAB), le bromure de tétradécyltriméthylammonium (ou TTAB), le bromure d'hexadécyltriméthylammonium (ou CTAB, encore appelé bromure de cétyltriméthylammonium), le bromure d'octadécyltriméthylammonium (ou OTAB), le chlorure de décyltriméthylammonium (ou CioTAC), le chlorure de dodécyltriméthyl- ammonium (ou DTAC), le chlorure de tétradécyltriméthylammonium (ou TTAC), le chlorure d'hexadécyltriméthylammonium (ou CTAC, encore appelé chlorure de cétyltriméthylammonium), le chlorure d'octadécyltriméthylammonium (ou OTAC), le p-tosylate d'hexadécyltriméthylammonium (ou CTAT, encore appelé p-tosylate de cétyltriméthylammonium), le salicylate de tétradécyltriméthylammonium (ou Ci4TASal), le salicylate d'hexadécyltriméthylammonium (ou Ci6TASal, encore appelé salicylate de cétyltriméthylammonium) ou le 3-hydroxynaphtalène-2-carboxylate de cétyltriméthyl- ammonium (ou CTAHNC) ; the alkyltrimethylammonium salts of formula (C n H 2n + 1) N + (CH 3) 3, X ~ (in which n is greater than or equal to 10 and X " is an inorganic or organic counterion), such as bromide; decyltrimethylammonium (or CioTAB), dodecyltrimethylammonium bromide (or DTAB), tetradecyltrimethylammonium bromide (or TTAB), hexadecyltrimethylammonium bromide (or CTAB, also called cetyltrimethylammonium bromide), octadecyltrimethylammonium bromide (or OTAB) , decyltrimethylammonium chloride (or CioTAC), dodecyltrimethylammonium chloride (or DTAC), tetradecyltrimethylammonium chloride (or TTAC), hexadecyltrimethylammonium chloride (or CTAC, also called cetyltrimethylammonium chloride), chloride of octadecyltrimethylammonium (or OTAC), hexadecyltrimethylammonium p-tosylate (or CTAT, also called cetyltrimethylammonium p-tosylate), tetradecyltrimethylammonium salicylate (or Ci 4 TASal), hexadecyltrimethylammonium salicylate (or Ci6TASal, also known as salicylate cetyltrimethylammonium) or cetyltrimethylammonium 3-hydroxynaphthalene-2-carboxylate (or CTAHNC);
- les sels d'alkyldiméthyléthylammonium de formule (CnH2n+i)N+(CH3)2(C2H5),X" (dans laquelle n est supérieur ou égal à 10 et X" est un contre- ion inorganique ou organique) tels que le bromure d'hexadécyldiméthyléthylammonium (ou CDMEAB, encore appelé bromure de cétyldiméthyléthylammonium) ou le chlorure d'hexadécyldiméthyléthylammonium (ou CDMEAC, encore appelé chlorure de cétyldiméthyléthylammonium) ; the alkyldimethylethylammonium salts of formula (CnH2n + 1) N + (CH3) 2 (C2H5), X " (in which n is greater than or equal to 10 and X " is an inorganic or organic counterion), such as hexadecyldimethylethylammonium bromide (or CDMEAB, also called cetyldimethylethylammonium bromide) or hexadecyldimethylethylammonium chloride (or CDMEAC, also called cetyldimethylethylammonium chloride);
- les sels d'alkylpyridinium de formule (Cnh CsHsN H^X" (dans laquelle n est supérieur ou égal à 10 et X" est un contre-ion inorganique ou organique) tels que le bromure d'hexadécylpyridinium (ou DPB, encore appelé bromure de décyl- pyridinium), le chlorure d'hexadécylpyridinium (ou CPC, encore appelé chlorure de cétylpyridinium) ou le chlorate d'hexadécylpyridinium (ou CPCIO3, encore appelé chlorate de cétylpyridinium) ; et - alkylpyridinium salts of formula (Cnh CsHsN H ^ X "(wherein n is greater than or equal to 10 and X" is an inorganic or organic against ion) such as hexadecylpyridinium bromide (or PBO, also called decylpyridinium bromide), hexadecylpyridinium chloride (or CPC, also known as cetylpyridinium chloride) or hexadecylpyridinium chlorate (or CPCIO3, also known as cetylpyridinium chlorate), and
- les sels de benzyldiméthylammonium tels que le chlorure de benzyldiméthyl(suif hydrogéné)ammonium (ou DMHTC).  benzyldimethylammonium salts such as benzyldimethyl (hydrogenated tallow) ammonium chloride (or DMHTC).
Quant au tensioactif zwittérionique, il peut notamment être choisi parmi les bétaïnes à chaîne(s) grasse(s), typiquement en C10 à C26, telles que la bétaïne d'érucyldiméthylamidopropyle.  As for the zwitterionic surfactant, it may especially be chosen from betaines with a fatty chain (s), typically C10 to C26, such as betaine of erucyldimethylamidopropyl.
Selon une disposition préférée de l'invention, le tensioactif est un tensioactif cationique à groupe ammonium quaternaire, plus particulièrement un sel d'alkyltriméthylammonium tel que précédemment défini et, mieux encore, un sel d'hexadécyltriméthylammonium tel que le CTAB, le CTAC, le CTAT ou le Ci6ÎASa l, préférence étant donnée entre toutes au CTAC.  According to a preferred embodiment of the invention, the surfactant is a cationic surfactant with a quaternary ammonium group, more particularly an alkyltrimethylammonium salt as defined above and, more preferably, a hexadecyltrimethylammonium salt such as CTAB, CTAC, CTAT or Ci6AASa, preference being given to all the CTACs.
Comme connu en soi, la formation de micelles géantes par des tensioactifs nécessite, à quelques exceptions près, que soit ajouté à ces tensioactifs un sel, qui peut être inorganique (chlorure de sodium, bromure de sodium, bromure de potassium par exemple) ou organique (salicylate de sodium, phtalate de sodium par exemple), ou bien un acide organique comme l'acide salicylique, l'acide phtalique, l'acide chlorobenzoïque ou un acide hydroxynaphtoïque tel que l'acide 5-hydroxy-l-naphtoïque, l'acide 6-hydroxy-l-naphtoïque, l'acide 7-hydroxy-l-naphtoïque, l'acide l-hydroxy-2- naphtoïque ou l'acide 3-hydroxy-2-naphtoïque. As known per se, the formation of giant micelles by surfactants requires, with a few exceptions, to be added to these surfactants a salt, which may be inorganic (sodium chloride, sodium bromide, potassium bromide for example) or organic (sodium salicylate, sodium phthalate for example), or an organic acid such as salicylic acid, phthalic acid, chlorobenzoic acid or a hydroxynaphthoic acid such as 5-hydroxy-1-naphthoic acid, 6-hydroxy-1-naphthoic acid, 7-hydroxy-1-naphthoic acid, 1-hydroxy-2-naphthoic acid or 3-hydroxy-2-naphthoic acid.
Aussi, les micelles géantes comprennent-elles de plus, avantageusement, un sel inorganique ou organique ou un acide organique et, de préférence, de l'acide salicylique.  Also, the giant micelles additionally comprise, advantageously, an inorganic or organic salt or an organic acid and, preferably, salicylic acid.
Conformément à l'invention, le ou les polymères thermoplastiques peuvent être choisis parmi tous les polymères thermoplastiques susceptibles d'être utilisés pour revêtir un substrat d'un film thermoplastique. Ainsi, ce ou ces polymères thermoplastiques peuvent notamment être choisis parmi les polyaryléthercétones (ou PAEK) telles que les polyéthercétones (ou PEK), les polyétheréthercétones (ou PEEK) ou les polyéthercétonecétones (ou PEKK), les polyéthylèneimines (ou PEthl), les polyétherimides (ou PEI), les polyimides (ou PI), les polyoléfines telles que les polyéthylènes, notamment de haute densité, les polypropylènes ou les copolymères d'éthylène et de polypropylène, les polyamides tels que les polyamides 6 (ou PA-6), 1.1 (ou PA-1.1), 12 (ou PA-12), 6.6 (ou PA-6.6), 4.6 (ou PA-4.6), 6.10 (ou PA-6.10), 6.12 (ou PA- 6.12) ou les polyamides aromatiques, en particulier les polyphtalamides ou les aramides, les polyuréthannes thermoplastiques (ou TPU), les poly(sulfure de phénylène) (ou PPS), les poly(téréphtalate d'éthylène) (ou PET), les poly(téréphtalate de butylène) (ou PBT), les polysulfones telles que les polysulfones proprement dites (ou PSU), les polyéthersulfones (ou PES) ou les polyphénylsulfones (ou PPSU), les polycarbonates, les poly(chlorure de vinyle), les poly(alcool vinylique) et les mélanges de ces polymères.  According to the invention, the thermoplastic polymer or polymers may be chosen from any thermoplastic polymer that may be used for coating a substrate with a thermoplastic film. Thus, this or these thermoplastic polymers may in particular be chosen from polyaryletherketones (or PAEK) such as polyetherketones (or PEK), polyetheretherketones (or PEEK) or polyetherketoneketones (or PEKK), polyethyleneimines (or PEthl), polyetherimides (or PEI), polyimides (or PI), polyolefins such as polyethylenes, especially of high density, polypropylenes or copolymers of ethylene and polypropylene, polyamides such as polyamides 6 (or PA-6), 1.1 (or PA-1.1), 12 (or PA-12), 6.6 (or PA-6.6), 4.6 (or PA-4.6), 6.10 (or PA-6.10), 6.12 (or PA-6.12) or polyamides aromatic compounds, in particular polyphthalamides or aramids, thermoplastic polyurethanes (or TPU), polyphenylene sulfide (or PPS), poly (ethylene terephthalate) (or PET), poly (butylene terephthalate) (or PBT), polysulfones such as polysulfones proper (or PSU), polyes thersulfones (or PES) or polyphenylsulfones (or PPSUs), polycarbonates, polyvinyl chloride, polyvinyl alcohol and mixtures of these polymers.
Pour l'ensimage de fibres de renfort en vue de la fabrication de pièces en matériaux composites et, notamment, de pièces de structure pour les industries aéronautique et spatiale, le ou les polymères thermoplastiques sont, de préférence, choisis parmi les polymères thermoplastiques thermostables, c'est-à-dire en pratique parmi les polyaryléthercétones, les polyétherimides et les polysulfones.  For the sizing of reinforcing fibers for the manufacture of parts made of composite materials and, in particular, of structural parts for the aerospace industry, the thermoplastic polymer or polymers are preferably chosen from thermostable thermoplastic polymers, that is to say in practice among polyaryletherketones, polyetherimides and polysulfones.
Auquel cas, les micelles géantes sont, de préférence, formées d'un mélange de molécules de CTAC et d'acide salicylique, les Inventeurs ayant, en effet, mis en évidence par des analyses thermogravimétriques, que le CTAC est dégradé à 75% massiques à 150°C tandis que l'acide salicylique est totalement dégradé à 180°C, soit des températures qui sont inférieures à la température de dégradation que présentent typiquement ces polymères thermoplastiques. Il est ainsi possible de réaliser le séchage des fibres de renfort au sortir du bain d'ensimage à une température permettant d'éliminer les ¾ massiques du CTAC et la totalité de l'acide salicylique sans affecter la structure du ou des polymères thermoplastiques. En outre, les 25% massiques de CTAC, qui ne sont pas dégradés, correspondent à un résidu d'amine tertiaire qui n'est pas susceptible de perturber la qualité de l'ensimage des fibres de renfort ou leur mise en œuvre ultérieure pour la fabrication de pièces en matériaux composites. In which case, the giant micelles are preferably formed from a mixture of CTAC and salicylic acid molecules, the inventors having, in fact, demonstrated by thermogravimetric analysis, that the CTAC is degraded to 75% by mass. at 150 ° C while salicylic acid is completely degraded at 180 ° C, ie temperatures which are below the degradation temperature typically exhibited by these thermoplastic polymers. It is thus possible to perform the drying of the reinforcing fibers out of the sizing bath at a temperature to eliminate the ¾ mass of the CTAC and the totality of the salicylic acid without affecting the structure of the thermoplastic polymer (s). In addition, the 25% by weight of CTAC, which are not degraded, correspond to a tertiary amine residue which is not likely to disturb the quality of the sizing of the reinforcing fibers or their subsequent implementation for the manufacture of composite material parts.
Ce mélange de CTAC et d'acide salicylique, qui est préférentiellement un mélange équimolaire, est avantageusement présent dans la dispersion aqueuse à une concentration allant de 5 mmol/L à 100 mmol/L et, de préférence, de 40 mmol/L à 50 mmol/L.  This mixture of CTAC and salicylic acid, which is preferably an equimolar mixture, is advantageously present in the aqueous dispersion at a concentration ranging from 5 mmol / L to 100 mmol / L and, preferably, from 40 mmol / L to 50 mmol / L. mmol / L.
Dans tous les cas, la teneur massique de la dispersion aqueuse en particules du ou des polymères thermoplastiques, rapportée à la masse totale de cette dispersion, va de 0,1% à 3%, de préférence entre 0,1% et 1% et, mieux encore, de 0,4% à 0,6%.  In all cases, the mass content of the aqueous dispersion of particles or thermoplastic polymers, based on the total mass of this dispersion, ranges from 0.1% to 3%, preferably from 0.1% to 1% and more preferably 0.4% to 0.6%.
Comme précédemment mentionné, la dispersion aqueuse peut être obtenue par un procédé d'émulsion/évaporation de solvant ou de dispersion/évaporation de solvant.  As previously mentioned, the aqueous dispersion can be obtained by an emulsion / solvent evaporation or solvent dispersion / evaporation process.
Aussi, l'invention a-t-elle aussi pour objet un procédé de préparation d'une dispersion aqueuse de particules d'au moins un polymère thermoplastique telle que précédemment définie, qui est caractérisé en ce qu'il comprend :  Also, the subject of the invention is also a process for preparing an aqueous dispersion of particles of at least one thermoplastic polymer as defined above, which is characterized in that it comprises:
a) la mise en contact, sous agitation, d'une phase organique comprenant le ou les polymères thermoplastiques dissous ou dispersés dans un solvant organique, non miscible à l'eau, avec une phase aqueuse comprenant des micelles géantes ; et  a) contacting, with stirring, an organic phase comprising the thermoplastic polymer or polymers dissolved or dispersed in an organic solvent, immiscible with water, with an aqueous phase comprising giant micelles; and
b) l'évaporation du solvant organique ;  b) evaporation of the organic solvent;
moyennant quoi on obtient le transfert sous la forme de particules du ou des polymères thermoplastiques de la phase organique vers la phase aqueuse. De manière préférée, les étapes a) et b) sont réalisées simultanément, le solvant organique étant avantageusement un solvant volatil à température ambiante (chloroforme, dichlorométhane, dichloroéthane, acétate d'éthyle, formate d'éthyle, cyclohexane, éther diéthylique ou mélange de ceux-ci par exemple) de sorte à pouvoir être évaporé uniquement sous l'effet de l'agitation à laquelle sont soumises les phases organique et aqueuse lors de leur mise en contact. whereby the transfer in the form of particles of the thermoplastic polymer (s) from the organic phase to the aqueous phase is obtained. Preferably, the steps a) and b) are carried out simultaneously, the organic solvent being advantageously a volatile solvent at ambient temperature (chloroform, dichloromethane, dichloroethane, ethyl acetate, ethyl formate, cyclohexane, diethyl ether or a mixture of these for example) so that it can be evaporated only under the effect of the agitation to which the organic and aqueous phases are subjected when they come into contact.
En pratique, ce procédé est avantageusement mis en œuvre en ajoutant goutte à goutte la phase organique comprenant le ou les polymères thermoplastiques dissous ou dispersés dans le solvant organique à une solution aqueuse comprenant les éléments nécessaires à la formation de micelles géantes (à savoir un tensioactif qui, est, de préférence, un tensioactif cationique ou zwittérionique ainsi qu'éventuellement un sel inorganique ou organique ou un acide organique), et ce, sous une forte agitation, (typiquement supérieure à 10 000 tr/min si on utilise un dispositif d'agitation du type Ultra-Turrax™), et en maintenant cette agitation jusqu'à évaporation complète du solvant organique.  In practice, this process is advantageously implemented by adding dropwise the organic phase comprising the thermoplastic polymer or polymers dissolved or dispersed in the organic solvent to an aqueous solution comprising the elements necessary for the formation of giant micelles (namely a surfactant which is preferably a cationic or zwitterionic surfactant as well as optionally an inorganic or organic salt or an organic acid), and this, under strong agitation, (typically greater than 10,000 rpm if using stirring of the Ultra-Turrax ™ type), and maintaining this agitation until complete evaporation of the organic solvent.
L'invention a encore pour objet l'utilisation d'une dispersion aqueuse de particules d'au moins un polymère thermoplastique telle que précédemment définie pour revêtir au moins un substrat d'un film thermoplastique et, en particulier, pour l'ensimage de fibres de renfort pour matériaux composites à matrice thermoplastique.  The subject of the invention is also the use of an aqueous dispersion of particles of at least one thermoplastic polymer as defined above for coating at least one substrate with a thermoplastic film and, in particular, for the sizing of fibers. reinforcement for thermoplastic matrix composite materials.
Conformément à l'invention, les fibres de renfort peuvent être choisies parmi toutes les fibres susceptibles d'être utilisées comme renfort dans la fabrication de pièces en matériaux composites. Ainsi, il peut notamment s'agir de fibres de verre, de fibres de quartz, de fibres de carbone, de fibres de graphite, de fibres de silice, de fibres métalliques comme des fibres d'acier, des fibres d'aluminium ou des fibres de bore, de fibres céramiques comme des fibres de carbure de silicium ou de carbure de bore, de fibres organiques de synthèse comme des fibres d'aramide, des fibres de polyéthylène, des fibres de polyester ou des fibres de poly(p-phénylène benzobisoxazole), plus connues sous le sigle PBO, de fibres organiques naturelles comme des fibres de chanvre, des fibres de lin ou des fibres de soie, ou encore de mélanges de telles fibres. Les fibres de renfort se présentent, de préférence, sous la forme de fils regroupant plusieurs milliers de filaments élémentaires (typiquement de 3000 à 48000) mesurant, par exemple, 6 à 10 μιη de diamètre dans le cas de fibres de carbone. Ce type de fibres sont connues sous les dénominations anglaises « rovings » ou « tapes ». According to the invention, the reinforcing fibers may be chosen from all the fibers that may be used as reinforcement in the manufacture of parts made of composite materials. Thus, it may especially be glass fibers, quartz fibers, carbon fibers, graphite fibers, silica fibers, metal fibers such as steel fibers, aluminum fibers or boron fibers, ceramic fibers such as silicon carbide or boron carbide fibers, synthetic organic fibers such as aramid fibers, polyethylene fibers, polyester fibers or poly (p-phenylene) fibers benzobisoxazole), better known by the acronym PBO, natural organic fibers such as hemp fibers, flax fibers or silk fibers, or mixtures of such fibers. The reinforcing fibers are preferably in the form of yarns comprising several thousand elementary filaments (typically from 3000 to 48000), for example measuring 6 to 10 μm in diameter in the case of carbon fibers. This type of fiber is known under the English names "rovings" or "tapes".
Par ailleurs, l'ensimage des fibres de renfort comprend, de préférence, l'immersion de ces fibres de renfort dans la dispersion aqueuse puis leur séchage. En variante, toutefois, il peut également être réalisé par pulvérisation de la dispersion aqueuse sur les fibres de renfort puis séchage de ces fibres.  Furthermore, the size of the reinforcing fibers preferably comprises the immersion of these reinforcing fibers in the aqueous dispersion and then drying them. Alternatively, however, it can also be achieved by spraying the aqueous dispersion onto the reinforcing fibers and then drying these fibers.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture du complément de description qui suit, qui se rapporte à des exemples de préparation de dispersions aqueuses conformes à l'invention et de démonstration de leurs propriétés, et qui est donné en référence aux figures annexées.  Other features and advantages of the invention will appear better on reading the additional description which follows, which relates to examples of preparation of aqueous dispersions in accordance with the invention and demonstration of their properties, and which is given in reference to the appended figures.
Bien entendu, ce complément de description n'est donné qu'à titre d'illustration de l'objet de l'invention et ne constitue en aucun cas une limitation de cet objet.  Of course, this additional description is only given as an illustration of the subject of the invention and does not constitute a limitation of this object.
BRÈVE DESCRIPTION DES FIGURES BRIEF DESCRIPTION OF THE FIGURES
La figure 1 illustre l'évolution de la stabilité d'une première dispersion aqueuse conforme à l'invention, telle que déterminée par diffusion multiple de la lumière sur une période de 50 heures, cette première dispersion aqueuse étant une dispersion de particules d'un polyétherimide. FIG. 1 illustrates the evolution of the stability of a first aqueous dispersion according to the invention, as determined by multiple light scattering over a period of 50 hours, this first aqueous dispersion being a dispersion of particles of a polyetherimide.
La figure 2 illustre les rhéogrammes de ladite première dispersion aqueuse tels qu'établis deux fois, d'une part, le jour de sa préparation (symboles▲ et Δ) et, d'autre part, après 7 jours de repos et redispersion par simple agitation manuelle (symboles · et O).  FIG. 2 illustrates the rheograms of said first aqueous dispersion as established twice, on the one hand, on the day of its preparation (symbols ▲ and Δ) and, on the other hand, after 7 days of rest and redispersion by simple manual agitation (symbols · and O).
La figure 3 est une image prise au microscope électronique en transmission (MET) de ladite première dispersion aqueuse.  FIG. 3 is a transmission electron microscope (TEM) image of said first aqueous dispersion.
La figure 4 est une image prise au microscope électronique à balayage (MEB) d'un film obtenu par dépôt de ladite première dispersion aqueuse sur une plaque de graphite et séchage de cette plaque. La figure 5 est un schéma illustrant le dispositif d'ensimage ayant été utilisé pour ensimer des fibres de carbone avec ladite première dispersion aqueuse. FIG. 4 is a scanning electron microscope (SEM) image of a film obtained by depositing said first aqueous dispersion on a graphite plate and drying this plate. Figure 5 is a diagram illustrating the sizing device having been used to size carbon fibers with said first aqueous dispersion.
Les figures 6A et 6B sont des images prises au M EB de filaments d'une fibre de carbone ayant été ensimée avec ladite première dispersion aqueuse au moyen du dispositif montré sur la figure 5 et en utilisant une vitesse de défilement de 10 m/minute.  Figs. 6A and 6B are M EB images of filaments of a carbon fiber which has been sized with said first aqueous dispersion by means of the device shown in Fig. 5 and using a running speed of 10 m / min.
Les figures 7A et 7B sont des images prises au M EB de filaments d'une fibre de carbone ayant été ensimée avec ladite première dispersion aqueuse au moyen du dispositif montré sur la figure 5 et en utilisant une vitesse de défilement de 15 m/minute.  Figs. 7A and 7B are M EB images of filaments of a carbon fiber that has been sized with said first aqueous dispersion by means of the device shown in Fig. 5 and using a running speed of 15 m / min.
Les figures 8A et 8B sont des images prises au M EB de filaments d'une fibre de carbone n'ayant pas été ensimée, ces images étant données à titre de comparaison.  FIGS. 8A and 8B are images taken at the EB of filaments of carbon fiber that have not been sized, these images being given for comparison purposes.
La figure 9 est une image prise au M EB d'un film formé par dépôt d'une deuxième dispersion aqueuse conforme à l'invention sur une plaque de graphite et séchage de cette plaque, cette deuxième dispersion aqueuse étant une dispersion de particules d'une polyéthersulfone.  FIG. 9 is an image taken at the M EB of a film formed by deposition of a second aqueous dispersion according to the invention on a graphite plate and drying of this plate, this second aqueous dispersion being a dispersion of particles of a polyethersulfone.
La figure 10 est une image prise au M EB d'un film formé par dépôt d'une troisième dispersion aqueuse conforme à l'invention sur une plaque de graphite et séchage de cette plaque, cette troisième dispersion aqueuse étant une dispersion de particules d'une polysulfone. EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERS  FIG. 10 is an image taken at the M EB of a film formed by deposition of a third aqueous dispersion according to the invention on a graphite plate and drying of this plate, this third aqueous dispersion being a dispersion of particles of a polysulfone. DETAILED PRESENTATION OF PARTICULAR EMBODIMENTS
EXEMPLE I : Dispersion aqueuse de particules d'un polyétherimide : EXAMPLE I: Aqueous dispersion of particles of a polyetherimide
1.1 - Préparation de la dispersion : 1.1 - Preparation of the dispersion:
On prépare une dispersion aqueuse de particules d'un polyétherimide (résine PEI Ultem™ 1000 - GE Plastics), dénommée ci-après dispersion 1, par émulsion/évaporation. Ce PEI a une température de transition vitreuse de 217°C.  An aqueous dispersion of particles of a polyetherimide (PEI Ultem ™ 1000 resin - GE Plastics), hereinafter referred to as dispersion 1, is prepared by emulsion / evaporation. This PEI has a glass transition temperature of 217 ° C.
Pour ce faire, on dissout 0,71 g de la résine PEI dans 13,6 mL de dichlorométhane sous agitation magnétique.  To do this, 0.71 g of the PEI resin is dissolved in 13.6 ml of dichloromethane with magnetic stirring.
Parallèlement, on dissout, également sous agitation magnétique, 1,868 g de chlorure de cétyltriméthylammonium (CTAC) dans 136,4 mL d'eau distillée (soit une concentration en CTAC de 4,11.10~2 mol/L) puis on ajoute, à la solution ainsi obtenue, 0,805 g d'acide salicylique (soit une concentration en acide salicylique également de 4,11.10 2 mol/L). At the same time, 1.868 g of cetyltrimethylammonium chloride (CTAC) in 136.4 ml of distilled water are dissolved, also with magnetic stirring. (A concentration of CTAC 4,11.10 ~ 2 mol / L) and then added to the solution thus obtained, 0.805 g of salicylic acid (a concentration of salicylic acid also 4,11.10 2 mol / L).
La solution orga nique de résine est ajoutée goutte à goutte à la solution aqueuse de CTAC/acide salicylique sous agitation à l'Ultra-Turrax™ - I KA. L'ajout dure environ 5 minutes. L'agitation est fixée à 12 000 tr/mn et est maintenue jusqu'à évaporation complète du dichlorométhane, soit pendant environ 30 minutes.  The organic resin solution is added dropwise to the aqueous solution of CTAC / salicylic acid with stirring with Ultra-Turrax ™ - I KA. The addition lasts about 5 minutes. The stirring is set at 12,000 rpm and is maintained until complete evaporation of the dichloromethane, ie for about 30 minutes.
On obtient ainsi une dispersion aqueuse à 0,51% massique de particules de PEI . 1.2 - Propriétés de la dispersion :  An aqueous dispersion at 0.51% by mass of PEI particles is thus obtained. 1.2 - Properties of the dispersion:
* Taille des particules : * Particle size:
Le diamètre moyen et l'indice de polydispersité des particules de la dispersion 1 sont déterminés au moyen d'un appareil de diffusion dynamique de la lumière Zetasizer Nano S - MALVERN I nstruments, en utilisant un laser de ha ute puissance (50 mW) émettant à la longueur d'onde de 532 nm et en réalisant la collecte du signal lumineux diffusé par l'échantillon à analyser en rétrodiffusion (angle de 173°). La mesure est réalisée à 25°C.  The average diameter and the polydispersity index of the particles of the dispersion 1 are determined by means of a dynamic light scattering apparatus Zetasizer Nano S - MALVERN I nstruments, using a high power laser (50 mW) emitting at the wavelength of 532 nm and by collecting the light signal scattered by the sample to be analyzed backscattering (173 ° angle). The measurement is carried out at 25 ° C.
Le diamètre moyen en intensité des particules est de 209 nm.  The average particle intensity diameter is 209 nm.
Leur indice de polydispersité est de 0,265. * Stabilité de la dispersion :  Their polydispersity index is 0.265. * Stability of the dispersion:
La stabilité de la dispersion 1 est appréciée au moyen d'un appareil Turbiscan™ LAB- FORM ULACTION qui permet de ca ractériser précisément et rapidement la stabilité d'une dispersion liquide par diffusion multiple de la lumière (MLS).  The stability of the dispersion 1 is assessed by means of a Turbiscan ™ LAB-FORM ULACTION apparatus which makes it possible to precisely and quickly characterize the stability of a liquid dispersion by multiple light scattering (MLS).
La diffusion multiple de la lumière est un procédé bien connu qui consiste à envoyer des photons Rémission = 880 nm) dans l'échantillon à analyser. Ces photons, après avoir été diffusés de multiples fois par les particules de la dispersion, sortent de l'échantillon et sont détectés par deux 2 détecteurs, l'un en tra nsmission, l'autre en rétrodiffusion (angle de 135°). L'analyse est réalisée à 25°C. L'intensité de la rétrodiffusion est directement reliée à la longueur de transport des photons. Aussi, cette intensité dépend-t-elle de la taille et de la concentration des particules. Multiple light scattering is a well-known method of sending Remission photons = 880 nm) into the sample to be analyzed. These photons, after having been scattered multiple times by the particles of the dispersion, leave the sample and are detected by two detectors, one in transmission, the other in backscatter (135 ° angle). The analysis is carried out at 25 ° C. The intensity of backscattering is directly related to the photon transport length. Also, does this intensity depend on particle size and concentration.
Un suivi de la différence entre l'intensité de la lumière rétrodiffusée à l'instant tO et à l'instant t (Rto - Rt) est réalisé pendant plusieurs jours avec un intervalle de 3 heures entre chaque mesure. Monitoring the difference between the intensity of the backscattered light at time t and at time t (R t o - Rt) is carried out for several days with an interval of 3 hours between each measurement.
La figure 1 illustre, sous la forme d'une courbe, l'évolution de la variation de l'intensité de la rétrodiffusion rapportée à l'intensité de la rétrodiffusion a u temps tO (soit (Rto - Rt)/Rto), notée AR et exprimée en pourcentages, telle qu'obtenue pour la dispersion 1 sur une période de 50 heures. 1 illustrates, in the form of a curve, the change in the variation of the intensity of the backscatter relative to the intensity of the backscatter at time t (ie (R t o - Rt) / Rto) denoted AR and expressed in percentages, as obtained for dispersion 1 over a period of 50 hours.
Comme le montre cette figure, la courbe présente une modification de pente, caractéristique d'un début de sédimentation des particules à partir de 22 heures. La dispersion 1 commence donc à se déstabiliser seulement au bout de 22 heures.  As shown in this figure, the curve shows a change in slope, characteristic of a beginning of sedimentation of the particles from 22 hours. The dispersion 1 begins to destabilize only after 22 hours.
* Analyse rhéoloqique de la dispersion : * Rheological analysis of the dispersion:
La rhéologie de la dispersion 1 est appréciée par des tests qui consistent à mesurer la viscosité de cette dispersion en lui appliquant un taux de cisaillement alla nt de 0,6 s 1 à 500 s"1, et ce, d'une part, le jour de sa préparation et, d'autre part, après 7 jours de repos et redispersion par simple agitation manuelle. Chaque test est réalisé deux fois. The dispersion 1 rheology is evaluated by tests that include measuring the viscosity of this dispersion by applying a shear rate of 0.6 s went nt 1 to 500 s "1, and that, on the one hand, the the day of its preparation and, on the other hand, after 7 days of rest and redispersion by simple manual agitation, each test is performed twice.
La figure 2 illustre les rhéogrammes ainsi obtenus, la viscosité étant exprimée en mPa.s et le taux de cisaillement en s"1. Sur cette figure, les sym boles▲ et Δ correspondent aux rhéogrammes obtenus le jour de la préparation de la dispersion 1 tandis que les symboles · et O correspondent aux rhéogrammes obtenus après les 7 jours de repos de cette dispersion. FIG. 2 illustrates the rheograms thus obtained, the viscosity being expressed in mPa.s and the shear rate in s.sup.- 1 . In this figure, the symbols ▲ and Δ correspond to the rheograms obtained on the day of the preparation of the dispersion 1 while the symbols · and O correspond to the rheograms obtained after the 7 days of rest of this dispersion.
Comme le montre la figure 2, la dispersion 1 présente, le jour de sa préparation, une viscosité de l'ordre de 800 mPa.s sans cisaillement et sa viscosité chute à 500 mPa.s dès l'application d'un taux de cisaillement de 1 s"1. As shown in FIG. 2, the dispersion 1 exhibits, on the day of its preparation, a viscosity of the order of 800 mPa.s without shear and its viscosity drops to 500 mPa.s from the application of a shear rate. of 1 s "1 .
Elle montre également qu'il suffit d'une simple agitation manuelle pour que la dispersion 1 retrouve, a près 7 jours de repos, une viscosité proche de celle qu'elle présente le jour de sa préparation. * Analyse microscopique : It also shows that it is enough for a simple manual stirring so that the dispersion 1 found, near 7 days of rest, a viscosity close to that it has the day of its preparation. * Microscopic analysis:
Comme le montre la figure 3, qui correspond à une image prise au MET de la dispersion 1, cette dispersion comprend des particules sphériques (présents sur l'image sous la forme de ronds blancs) qui présentent un diamètre maximum de 200 nm, enserrées au milieu de micelles cylindriques.  As shown in FIG. 3, which corresponds to a TEM image of the dispersion 1, this dispersion comprises spherical particles (present on the image in the form of white circles) which have a maximum diameter of 200 nm, contained in FIG. middle of cylindrical micelles.
La distribution en taille de ces particules est polydisperse (la taille des particules allant de 20 nm à 200 nm) en accord avec les résultats obtenus par diffusion dynamique de la lumière.  The size distribution of these particles is polydisperse (the size of the particles ranging from 20 nm to 200 nm) in agreement with the results obtained by dynamic light scattering.
* Propriétés filmoqènes : * Filmoqene properties:
L'aptitude de la dispersion 1 à former un film sur un substrat est tout d'abord testée en déposant une goutte de cette dispersion sur une plaque de graphite à l'aide d'une pipette Pasteur, en étalant cette goutte puis en plaçant la plaque dans une étuve à 100°C pour sécher ce dépôt.  The ability of the dispersion 1 to form a film on a substrate is first tested by depositing a drop of this dispersion on a graphite plate using a Pasteur pipette, spreading this drop and then placing the plate in an oven at 100 ° C to dry this deposit.
Comme visible sur la figure 4, qui correspond à une image prise au MEB de la plaque de graphite après séchage du dépôt, le film obtenu est homogène et montre une bonne coalescence des particules de PEI.  As can be seen in FIG. 4, which corresponds to an image taken at the SEM of the graphite plate after drying of the deposit, the film obtained is homogeneous and shows good coalescence of the PEI particles.
Par ailleurs, l'aptitude de la dispersion 1 à former un film sur un substrat est également testée en ensimant des fibres de carbone multifilamentaires (fibres IM7 à 12 000 filaments - HEXCEL) avec cette dispersion.  On the other hand, the ability of the dispersion 1 to form a film on a substrate is also tested by sizing multifilament carbon fibers (IM7 fibers with 12,000 filaments - HEXCEL) with this dispersion.
Cet ensimage est réalisé en utilisant le dispositif 10 qui est illustré schématiquement sur la figure 5 et qui comprend :  This size is produced using the device 10 which is illustrated schematically in FIG. 5 and which comprises:
un bac 11 que l'on remplit d'un bain d'ensimage 12 (ici, la dispersion 1) ;  a tank 11 which is filled with a sizing bath 12 (here, the dispersion 1);
une bobine 13 qui est située en amont (dans le sens de défilement des fibres de carbone dans le dispositif 10) du bac 11 et sur laquelle sont enroulées les fibres de carbone 14 avant leur introduction dans le bain d'ensimage ;  a coil 13 which is situated upstream (in the direction of travel of the carbon fibers in the device 10) of the tank 11 and on which are wound the carbon fibers 14 before their introduction into the sizing bath;
une étuve 15 qui est située en aval du bac 11 et qui permet de sécher les fibres de carbone à leur sortie du bain d'ensimage ;  an oven 15 which is situated downstream of the tank 11 and which makes it possible to dry the carbon fibers at their exit from the sizing bath;
une bobine 16 qui est situé en aval de l'étuve 15 et sur laquelle sont enroulées les fibres de carbone à leur sortie de cette étuve ; et un système d'entraînement comprenant notamment un jeu de poulies 17 et assurant le défilement des mèches de fibres de renfort depuis la bobine 13 jusqu'à la bobine 16. a coil 16 which is located downstream of the oven 15 and on which are wound the carbon fibers at their outlet from this oven; and a drive system comprising in particular a set of pulleys 17 and ensuring the running of the reinforcing fiber strands from the spool 13 to the spool 16.
La température de l'étuve est fixée à 200°C de sorte à ce qu'elle soit inférieure à la température de transition vitreuse du PEI .  The temperature of the oven is set at 200 ° C so that it is lower than the glass transition temperature of the PEI.
Deux vitesses de défilement des fibres de carbone dans le dispositif 10 sont utilisées : 10 m/min d'une part, et 15 m/min d'autre part.  Two speeds of travel of the carbon fibers in the device 10 are used: 10 m / min on the one hand, and 15 m / min on the other hand.
Les résultats sont illustrés sur les figures 6A, 6B, 7A, 7B, 8A et 8B qui correspondent à des images prises au M EB :  The results are illustrated in FIGS. 6A, 6B, 7A, 7B, 8A and 8B which correspond to images taken at the M EB:
de filaments d'une fibre de carbone ayant été ensimée à la vitesse de défilement de 10 m/min (figures 6A et 6B) ;  filaments of carbon fiber having been sized at the running speed of 10 m / min (Figs. 6A and 6B);
- de filaments d'une fibre de carbone ayant été ensimée à la vitesse de défilement de 15 m/min (figures 7A et 7B) ; et à titre de comparaison  filaments of a carbon fiber having been sized at the running speed of 15 m / min (FIGS. 7A and 7B); and for comparison
- de filaments d'une fibre de carbone n'ayant pas été ensimée (figures 8A et 8B).  filaments of a carbon fiber that has not been sized (FIGS. 8A and 8B).
Ces images montrent qu'un ensimage de fibres de carbone multi- filamentaires avec la dispersion 1 conduit à la formation sur les filaments de ces fibres d'un film homogène, avec une très bonne coalescence des particules de PEI présentes dans cette dispersion.  These images show that a size of multi-filamentary carbon fibers with the dispersion 1 leads to the formation on the filaments of these fibers of a homogeneous film, with a very good coalescence of the PEI particles present in this dispersion.
EXEMPLE II : Dispersion aqueuse de particules d'une polyéthersulfone : EXAMPLE II: Aqueous dispersion of particles of a polyethersulfone:
11-3- - Préparation de la dispersion : 11-3- - Preparation of the dispersion:
On prépare une dispersion aqueuse de particules d'une polyéthersulfone (PES 4100 P - SUM IMOTO Chemical), dénommée ci-après dispersion 2, en procédant comme décrit au point 1.1 ci-avant, à ceci près que l'on remplace le PEI par la PES, qui forme une dispersion stable dans le solvant organique. Cette PES a une température de transition vitreuse de 225°C. II.2 - Propriétés de la dispersion : An aqueous dispersion of particles of a polyethersulfone (PES 4100 P-SUM IMOTO Chemical), hereinafter referred to as dispersion 2, is prepared by proceeding as described in point 1.1 above, except that the PEI is replaced by PES, which forms a stable dispersion in the organic solvent. This PES has a glass transition temperature of 225 ° C. II.2 - Properties of the dispersion:
La dispersion 2 présente :  Dispersion 2 shows:
- des particules dont le diamètre moyen en intensité et l'indice de polydispersité, tels que déterminés par diffusion dynamique de la lumière, sont respectivement de 158 nm et de 0,210 ;  particles whose mean intensity diameter and polydispersity index, as determined by dynamic light scattering, are 158 nm and 0.210, respectively;
- une stabilité, telle qu'appréciée par observation visuelle, de 10 à - a stability, as appreciated by visual observation, from 10 to
12 heures. 12 hours.
Par ailleurs, comme le montre la figure 9, qui correspond à une image prise au MEB d'une plaque de graphite traitée avec une goutte de la dispersion 2 comme décrit au point 1.2 ci-avant, cette dispersion permet de former un film homogène de PES sur la surface d'un substrat.  Furthermore, as shown in FIG. 9, which corresponds to an image taken at the SEM of a graphite plate treated with a drop of the dispersion 2 as described in point 1.2 above, this dispersion makes it possible to form a homogeneous film of PES on the surface of a substrate.
EXEMPLE III : Dispersion aqueuse de particules d'une polysulfone : EXAMPLE III: Aqueous dispersion of particles of a polysulfone:
III.1 - Préparation de la dispersion : III.1 - Preparation of the dispersion:
On prépare une dispersion aqueuse de particules d'une polysulfone (PSU Ultrason™ S 2010 Naturel - BASF), dénommée ci-après dispersion 3, en procédant comme décrit au point 1.1 ci-avant, à ceci près que l'on remplace le PEI par la PSU. Cette PSU a une température de transition vitreuse de 187°C.  An aqueous dispersion of particles of a polysulfone (PSU Ultrason ™ S 2010 Natural - BASF), hereinafter referred to as dispersion 3, is prepared by proceeding as described in point 1.1 above, except that the PEI is replaced. by the PSU. This PSU has a glass transition temperature of 187 ° C.
III.2 - Propriétés de la dispersion : III.2 - Properties of the dispersion:
La dispersion 3 présente :  Dispersion 3 shows:
- des particules dont le diamètre moyen en intensité et l'indice de polydispersité, tels que déterminés par diffusion dynamique de la lumière, sont respectivement de 178 nm et de 0,297 ;  particles whose mean intensity diameter and polydispersity index, as determined by dynamic scattering of light, are respectively 178 nm and 0.297;
- une stabilité, telle qu'appréciée par observation visuelle, de 10 à - a stability, as appreciated by visual observation, from 10 to
12 heures. 12 hours.
Par ailleurs, comme le montre la figure 10, qui correspond à une image prise au MEB d'une plaque de graphite ayant été traitée avec une goutte de la dispersion 3 comme décrit au point 1.2 ci-avant, cette dispersion permet également de former un film homogène de PSU sur la surface d'un substrat. RÉFÉRENCES CITÉES Moreover, as shown in FIG. 10, which corresponds to an image taken at the SEM of a graphite plate having been treated with a drop of the dispersion 3 as described in point 1.2 above, this dispersion also makes it possible to form a homogeneous PSU film on the surface of a substrate. REFERENCES CITED
[1] Broyles et al., Polymer 1998, 39(15), 3417-3424 [1] Broyles et al., Polymer 1998, 39 (15), 3417-3424
[2] FR-A-2 960 878 ;  [2] FR-A-2,960,878;
[3] Giraud et al., Applied Surface Science 2013, 266, 94-99  [3] Giraud et al., Applied Surface Science 2013, 266, 94-99
[4] Cates et al., Journal of Physics: Condensed Matter 1990, 2, 6869-6892 [4] Cates et al., Journal of Physics: Condensed Matter 1990, 2, 6869-6892
[5] Hassan et al., Current Science 2001, 80(8), 980-989  [5] Hassan et al., Current Science 2001, 80 (8), 980-989
[6] Walker, Current Opinion in Colloid & Interface Science 2001, 6, 451-456  [6] Walker, Current Opinion in Colloid & Interface Science 2001, 6, 451-456

Claims

REVENDICATIONS
1. Utilisation de micelles géantes comme agent rhéofluidifiant dans une dispersion aqueuse de particules d'au moins un polymère thermoplastique. 1. Use of giant micelles as rheofluidifying agent in an aqueous dispersion of particles of at least one thermoplastic polymer.
2. Dispersion aqueuse de particules d'au moins un polymère thermoplastique, caractérisée en ce qu'elle comprend des micelles géantes qui sont situées autour des particules du ou des polymères thermoplastiques. 2. Aqueous dispersion of particles of at least one thermoplastic polymer, characterized in that it comprises giant micelles which are located around the particles of the thermoplastic polymer (s).
3. Utilisation selon la revendication 1 ou dispersion aqueuse selon la revendication 2, caractérisée en ce que les micelles géantes comprennent des molécules d'un tensioactif cationique ou zwittérionique. 3. Use according to claim 1 or aqueous dispersion according to claim 2, characterized in that the giant micelles comprise molecules of a cationic or zwitterionic surfactant.
4. Utilisation ou dispersion aqueuse selon la revendication 3, caractérisée en ce que le tensioactif est un tensioactif cationique à groupe ammonium quaternaire, de préférence un sel d'alkyltriméthylammonium de formule (CnH2n+i)N+(CH3)3,X", dans laquelle n est supérieur ou égal à 10 et X" est un contre-ion inorganique ou organique, et, mieux encore, un sel d'hexadécyltriméthylammonium. 4. Use or aqueous dispersion according to claim 3, characterized in that the surfactant is a cationic surfactant with quaternary ammonium group, preferably an alkyltrimethylammonium salt of formula (C n H2n + i) N + (CH3) 3, X ", wherein n is greater than or equal to 10 and X" is an inorganic or organic against ion, and more preferably, a salt of hexadecyltrimethylammonium.
5. Utilisation ou dispersion aqueuse selon la revendication 4, caractérisée en ce que le sel d'hexadécyltriméthylammonium est le chlorure d'hexadécyltriméthylammonium. 5. Use or aqueous dispersion according to claim 4, characterized in that the hexadecyltrimethylammonium salt is hexadecyltrimethylammonium chloride.
6. Utilisation ou dispersion aqueuse selon l'une quelconque des revendications 3 à 5, caractérisée en ce que les micelles géantes comprennent de plus un sel inorganique ou organique ou un acide organique. 6. Use or aqueous dispersion according to any one of claims 3 to 5, characterized in that the giant micelles further comprise an inorganic or organic salt or an organic acid.
7. Utilisation ou dispersion aqueuse selon la revendication 6, caractérisée en ce que l'acide organique est l'acide salicylique. 7. Use or aqueous dispersion according to claim 6, characterized in that the organic acid is salicylic acid.
8. Utilisation selon l'une quelconque des revendications 1 à 7 ou dispersion aqueuse selon l'une quelconque des revendications 2 à 7, caractérisée en ce que le ou les polymères thermoplastiques sont choisis parmi les polyaryléthercétones, les polyéthylèneimines, les polyoléfines, les polyamides, les polyimides, les polyuréthannes thermoplastiques, les polysulfures de phénylène, les polytéréphtalates d'éthylène ou de butylène, les polysulfones, les polycarbonates, les polychlorures de vinyle et leurs mélanges. 8. Use according to any one of claims 1 to 7 or aqueous dispersion according to any one of claims 2 to 7, characterized in that the thermoplastic polymer or polymers are chosen from polyaryletherketones, polyethyleneimines, polyolefins, polyamides polyimides, thermoplastic polyurethanes, phenylene polysulfides, ethylene or butylene polyterephthalates, polysulfones, polycarbonates, polyvinyl chlorides and mixtures thereof.
9. Utilisation ou dispersion aqueuse selon la revendication 8, caractérisée en ce que le ou les polymères thermoplastiques sont choisis parmi les polyaryléthercétones, les polyétherimides et les polysulfones. 9. Use or aqueous dispersion according to claim 8, characterized in that the thermoplastic polymer or polymers are chosen from polyaryletherketones, polyetherimides and polysulfones.
10. Utilisation ou dispersion aqueuse selon la revendication 9, caractérisée en ce que les micelles géantes sont formées d'un mélange de molécules de chlorure d'hexadécyltriméthylammonium et d'acide salicylique, de préférence équimolaire. 10. Use or aqueous dispersion according to claim 9, characterized in that the giant micelles are formed of a mixture of hexadecyltrimethylammonium chloride molecules and salicylic acid, preferably equimolar.
11. Utilisation ou dispersion aqueuse selon la revendication 10, caractérisée en ce que la concentration du mélange dans la dispersion aqueuse va de 5 mmol/L à 100 mmol/L et, de préférence, de 40 mmol/L à 50 mmol/L. 11. Use or aqueous dispersion according to claim 10, characterized in that the concentration of the mixture in the aqueous dispersion ranges from 5 mmol / L to 100 mmol / L and preferably from 40 mmol / L to 50 mmol / L.
12. Utilisation selon l'une quelconque des revendications 1 à 11 ou dispersion aqueuse selon l'une quelconque des revendications 2 à 11, caractérisée en ce que la teneur massique de la dispersion aqueuse en particules du ou des polymères thermoplastiques va de 0,1% à 1% et, de préférence, de 0,4% à 0,6% par rapport à la masse totale de la dispersion aqueuse. 12. Use according to any one of claims 1 to 11 or aqueous dispersion according to any one of claims 2 to 11, characterized in that the mass content of the aqueous dispersion of particles of the thermoplastic polymer or polymers is 0.1 from 1% to 1% and preferably from 0.4% to 0.6% relative to the total mass of the aqueous dispersion.
13. Procédé de préparation d'une dispersion aqueuse de particules d'au moins un polymère thermoplastique telle que définie dans l'une quelconque des revendications 2 à 12, caractérisé en ce qu'il comprend : a) la mise en contact, sous agitation, d'une phase organique comprenant le ou les polymères thermoplastiques dissous ou dispersés dans un solvant organique, non miscible à l'eau, avec une phase aqueuse comprenant des micelles géantes ; et 13. Process for the preparation of an aqueous dispersion of particles of at least one thermoplastic polymer as defined in any one of Claims 2 to 12, characterized in that it comprises: a) contacting, with stirring, an organic phase comprising the thermoplastic polymer or polymers dissolved or dispersed in an organic solvent, immiscible with water, with an aqueous phase comprising giant micelles; and
b) l'évaporation du solvant organique ;  b) evaporation of the organic solvent;
moyennant quoi on obtient le transfert sous la forme de particules du ou des polymères thermoplastiques de la phase organique vers la phase aqueuse. whereby the transfer in the form of particles of the thermoplastic polymer (s) from the organic phase to the aqueous phase is obtained.
14. Procédé selon la revendication 13, caractérisé en ce que les étapes a) et b) sont réalisées simultanément, le solvant organique étant avantageusement un solvant volatil à température ambiante. 14. The method of claim 13, characterized in that steps a) and b) are performed simultaneously, the organic solvent is preferably a volatile solvent at room temperature.
15. Utilisation d'une dispersion aqueuse de particules d'au moins un polymère thermoplastique telle que définie dans l'une quelconque des revendications 2 à 12, pour revêtir au moins un substrat d'un film thermoplastique. 15. Use of an aqueous dispersion of particles of at least one thermoplastic polymer as defined in any one of claims 2 to 12 for coating at least one substrate with a thermoplastic film.
16. Utilisation selon la revendication 15, pour l'ensimage de fibres de renfort pour matériaux composites à matrice thermoplastique. 16. Use according to claim 15, for the sizing of reinforcing fibers for thermoplastic matrix composite materials.
17. Utilisation selon la revendication 16, caractérisée en ce que les fibres de renfort sont choisies parmi les fibres de verre, les fibres de carbone, les fibres de graphite, les fibres de silice, les fibres métalliques, les fibres céramiques, les fibres organiques de synthèse, les fibres organiques naturelles et leurs mélanges et, de préférence, parmi les fibres de carbone. 17. Use according to claim 16, characterized in that the reinforcing fibers are selected from glass fibers, carbon fibers, graphite fibers, silica fibers, metal fibers, ceramic fibers, organic fibers synthetic, natural organic fibers and mixtures thereof and, preferably, among the carbon fibers.
18. Utilisation selon la revendication 16 ou la revendication 17, caractérisée en ce que l'ensimage des fibres de renfort comprend l'immersion des fibres de renfort dans la dispersion aqueuse puis le séchage des fibres de renfort. 18. Use according to claim 16 or claim 17, characterized in that the size of the reinforcing fibers comprises immersing the reinforcing fibers in the aqueous dispersion and then drying the reinforcing fibers.
PCT/EP2016/057260 2015-04-03 2016-04-01 Aqueous dispersion of particles of at least one thermoplastic polymer, process for preparing it and applications thereof, especially for sizing reinforcing fibres WO2016156589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/564,044 US20180094105A1 (en) 2015-04-03 2016-04-01 Aqueous dispersion of particles of at least one thermoplastic polymer, method for preparing and applications thereof, especially for sizing reinforcing fibres
EP16714853.5A EP3277420B1 (en) 2015-04-03 2016-04-01 Aqueous dispersion of particles of at least one thermoplastic polymer, process for preparing it and applications thereof, especially for sizing reinforcing fibres

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1552921A FR3034423B1 (en) 2015-04-03 2015-04-03 AQUEOUS DISPERSION OF PARTICLES OF AT LEAST ONE THERMOPLASTIC POLYMER, PROCESS FOR PREPARING THE SAME AND APPLICATIONS THEREOF, IN PARTICULAR FOR THE SINGING OF REINFORCING FIBERS
FR1552921 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016156589A1 true WO2016156589A1 (en) 2016-10-06

Family

ID=53366112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2016/057260 WO2016156589A1 (en) 2015-04-03 2016-04-01 Aqueous dispersion of particles of at least one thermoplastic polymer, process for preparing it and applications thereof, especially for sizing reinforcing fibres

Country Status (4)

Country Link
US (1) US20180094105A1 (en)
EP (1) EP3277420B1 (en)
FR (1) FR3034423B1 (en)
WO (1) WO2016156589A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3317327A1 (en) * 2015-06-30 2018-05-09 SABIC Global Technologies B.V. Method of preparing a polymer dispersion and polymer dispersions prepared thereby
WO2018166823A1 (en) * 2017-03-13 2018-09-20 Basf Se Coat fiber and method
FR3073850A1 (en) * 2017-11-22 2019-05-24 Irt Antoine De Saint-Exupery AQUEOUS DISPERSION OF THERMOPLASTIC POLYMER, APPLICATIONS FOR THE IMPREGNATION OF REINFORCING FIBERS

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960878A1 (en) 2010-06-07 2011-12-09 Centre Nat Rech Scient NOVEL AQUEOUS STABLE DISPERSIONS OF HIGH-PERFORMANCE THERMOPLASTIC POLYMER NANOPARTICLES AND THEIR USE AS FILMING AGENTS
JP2013040374A (en) * 2011-08-15 2013-02-28 Kawamura Institute Of Chemical Research Metal nanoparticle dispersion, metal nanoparticle aggregate, metal nanoparticle dispersed body, and method for producing them

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6258859B1 (en) * 1997-06-10 2001-07-10 Rhodia, Inc. Viscoelastic surfactant fluids and related methods of use
EP1355965B1 (en) * 2000-10-19 2012-09-19 Ecole Polytechnique Fédérale de Lausanne (EPFL) Method of synthesizing block copolymers for multifunctional self-assembled systems
GB2383355A (en) * 2001-12-22 2003-06-25 Schlumberger Holdings An aqueous viscoelastic fluid containing hydrophobically modified polymer and viscoelastic surfactant
BRPI0516702A (en) * 2004-11-10 2008-09-16 Dow Global Technologies Inc Curable epoxy resin varnish composition, process for preparing a curable epoxy resin varnish composition, process for preparing a laminate, laminate and prepreg
NZ562064A (en) * 2005-04-01 2011-03-31 Intezyne Technologies Inc Polymeric micelles for drug delivery
US8765162B2 (en) * 2008-06-30 2014-07-01 Abbott Cardiovascular Systems Inc. Poly(amide) and poly(ester-amide) polymers and drug delivery particles and coatings containing same
US8813845B2 (en) * 2009-08-31 2014-08-26 Halliburton Energy Services, Inc. Polymeric additives for enhancement of treatment fluids comprising viscoelastic surfactants and methods of use
US8453741B2 (en) * 2010-09-23 2013-06-04 Halliburton Energy Services, Inc. Tethered polymers used to enhance the stability of microemulsion fluids
RU2524227C2 (en) * 2011-12-30 2014-07-27 Шлюмберже Текнолоджи Б.В. Underground formation treatment liquid additive and underground formation treatment method
IN2014DN08462A (en) * 2012-04-12 2015-05-08 Baker Hughes Inc
US9816365B2 (en) * 2013-08-23 2017-11-14 Halliburton Energy Services, Inc. Fracturing treatments in subterranean formations using reducible materials

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2960878A1 (en) 2010-06-07 2011-12-09 Centre Nat Rech Scient NOVEL AQUEOUS STABLE DISPERSIONS OF HIGH-PERFORMANCE THERMOPLASTIC POLYMER NANOPARTICLES AND THEIR USE AS FILMING AGENTS
JP2013040374A (en) * 2011-08-15 2013-02-28 Kawamura Institute Of Chemical Research Metal nanoparticle dispersion, metal nanoparticle aggregate, metal nanoparticle dispersed body, and method for producing them

Non-Patent Citations (12)

* Cited by examiner, † Cited by third party
Title
APPLIED SURFACE SCIENCE, vol. 266, 2013, pages 94 - 99
BROYLES ET AL., POLYMER, vol. 39, no. 15, 1998, pages 3417 - 3424
CATES ET AL., JOURNAL OF PHYSICS: CONDENSED MATTER, vol. 2, 1990, pages 6869 - 6892
DATABASE WPI Week 201318, 28 February 2013 Derwent World Patents Index; AN 2013-C67452, XP002758012 *
GIRAUD ET AL., APPLIED SURFACE SCIENCE, vol. 266, 2013, pages 94 - 99
HASSAN ET AL., CURRENT SCIENCE, vol. 80, no. 8, 2001, pages 980 - 989
ISABELLE GIRAUD ET AL: "Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation", APPLIED SURFACE SCIENCE, vol. 266, 17 December 2012 (2012-12-17), AMSTERDAM, NL, pages 94 - 99, XP055244813, ISSN: 0169-4332, DOI: 10.1016/j.apsusc.2012.11.098 *
POLYMER, vol. 39, no. 15, 1998, pages 3417 - 3424
ROBERTA K RODRIGUES ET AL: "Thermal-stability of mixed giant micelles of alkyltrimethylammonium surfactants and salicylate", JOURNAL OF COLLOID AND INTERFACE SCIENCE, ACADEMIC PRESS, NEW YORK, NY, US, vol. 364, no. 2, 22 August 2011 (2011-08-22), pages 407 - 412, XP028318192, ISSN: 0021-9797, [retrieved on 20110828], DOI: 10.1016/J.JCIS.2011.08.048 *
WALKER, CURRENT OPINION IN COLLOID & INTERFACE SCIENCE, vol. 6, 2001, pages 451 - 456
ZANA: "Giant Micelles: Properties and Applications", 30 May 2007, CRC PRESS, article RAMANATHAN NAGARAJAN: "Molecular Thermodynamics of Giant Micelles", pages: 1 - 40, XP055245168 *
ZANA: "Giant Micelles: Properties and Applications", vol. 16, 30 May 2007, CRC PRESS, article JACQUES L ZAKIN, ET AL.: "Drag reduction by surfactant giant micelles", pages: 473 - 492, XP055245171 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3317327A1 (en) * 2015-06-30 2018-05-09 SABIC Global Technologies B.V. Method of preparing a polymer dispersion and polymer dispersions prepared thereby
WO2018166823A1 (en) * 2017-03-13 2018-09-20 Basf Se Coat fiber and method
US11692078B2 (en) 2017-03-13 2023-07-04 Basf Se Coated fiber and method
FR3073850A1 (en) * 2017-11-22 2019-05-24 Irt Antoine De Saint-Exupery AQUEOUS DISPERSION OF THERMOPLASTIC POLYMER, APPLICATIONS FOR THE IMPREGNATION OF REINFORCING FIBERS
WO2019102141A1 (en) 2017-11-22 2019-05-31 Irt Antoine De Saint Exupery Aqueous thermoplastic-polymer dispersion, and use of same for the impregnation of reinforcing fibres

Also Published As

Publication number Publication date
EP3277420A1 (en) 2018-02-07
FR3034423B1 (en) 2019-05-31
FR3034423A1 (en) 2016-10-07
US20180094105A1 (en) 2018-04-05
EP3277420B1 (en) 2019-12-18

Similar Documents

Publication Publication Date Title
EP2392550B1 (en) Novel stable aqueous dispersions of high-performance thermoplastic polymer nanoparticles and the uses of same as film-forming agents
EP3277420B1 (en) Aqueous dispersion of particles of at least one thermoplastic polymer, process for preparing it and applications thereof, especially for sizing reinforcing fibres
Tambe et al. Moisture resistance coating of packaging paper from biobased silylated soybean oil
FR2924133A1 (en) LONGITUDINAL REINFORCING ELEMENT BASED ON MINERAL OR ORGANIC FIBERS AND METHOD OF OBTAINING THE SAME
EP3024978B1 (en) Method for forming a hydrophobic layer
EP1954869B1 (en) Production of superhydrophobic fibrous substrates
EP1313817B1 (en) Method for preventing misting when coating flexible supports with a crosslinkable liquid silicone composition, in a device comprising cylinders
WO2018185440A1 (en) Method for impregnating reinforcing fibres with polyaryletherketones and semi-products obtained therefrom
EP3215331B1 (en) Process for densification of powders of polyarylenetherketone (paek), use of such a densified powder, and product made from such a powder
WO2016156325A1 (en) Aqueous impregnation bath for reinforcement fibres and uses thereof
Zheng et al. Fabrication of self‐cleaning poly (vinylidene fluoride) membrane with micro/nanoscaled two‐tier roughness
EP3105277B1 (en) Sizing composition for reinforcing fibres and applications thereof
Hiroshige et al. Temperature-dependent relationship between the structure and mechanical strength of volatile organic compound-free latex films prepared from poly (butyl acrylate-co-methyl methacrylate) microspheres
EP2890845A1 (en) Opacifying layer for a paper medium
Denman et al. Characterization of superhydrophobic coatings based on PDMS and MQ resin on textured surfaces
US9969815B2 (en) Process for manufacturing a fibrillated cellulose powder suitable for being dispersed in an aqueous medium
FR2918585A1 (en) Coating substrate of product, useful for e.g. authentication, comprises preparing nanoparticles, mixing nanoparticles in solvent, mixing intermediate product with alkoxysiloxane based varnish, dipping substrate, and drying substrate
CA2609765C (en) Polymer dispersion in a reactive organic medium, preparation method and uses
WO2019102141A1 (en) Aqueous thermoplastic-polymer dispersion, and use of same for the impregnation of reinforcing fibres
EP0732376A2 (en) Anionic emulsion of a bituminous binder, hard in its final state and a method for preparing it
CA2431814A1 (en) Method for preventing misting when coating flexible supports with a crosslinkable liquid silicone composition, in a device comprising rollers
FR3041353A1 (en) PROCESS FOR MARKING NANOCELLULOSE
WO2015140749A1 (en) Particles of melamine-urea-formaldehyde (muf) containing an optical marker with adjustable chromatic effect
Qian et al. Study on the stability of high solid content polyether‐ether‐ketone aqueous suspension
Raditoiu et al. Polyester fibers coated with silica hybrid film forming materials containing non-ionic dyes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16714853

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 15564044

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE