WO2016155472A1 - 一种路径选择方法及装置 - Google Patents

一种路径选择方法及装置 Download PDF

Info

Publication number
WO2016155472A1
WO2016155472A1 PCT/CN2016/075803 CN2016075803W WO2016155472A1 WO 2016155472 A1 WO2016155472 A1 WO 2016155472A1 CN 2016075803 W CN2016075803 W CN 2016075803W WO 2016155472 A1 WO2016155472 A1 WO 2016155472A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
path
backhaul
information
request message
Prior art date
Application number
PCT/CN2016/075803
Other languages
English (en)
French (fr)
Inventor
贺媛
刘佳敏
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to US15/563,907 priority Critical patent/US10595261B2/en
Priority to EP16771227.2A priority patent/EP3280183B1/en
Publication of WO2016155472A1 publication Critical patent/WO2016155472A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/12Communication route or path selection, e.g. power-based or shortest path routing based on transmission quality or channel quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/34Modification of an existing route
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/04Communication route or path selection, e.g. power-based or shortest path routing based on wireless node resources
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a path selection method and apparatus.
  • a Relay (Relay) technology is introduced, which is mainly used to improve cell edge throughput, expand network coverage, and provide group mobile services.
  • the RN (Relay Node) is connected to the donor node in a wireless manner and connected to the core network through the donor node.
  • the radio link between the RN and the donor node is called a backhaul link.
  • the radio link between the donor node and the UE it serves and the RN and the UE it serves are called access links.
  • the donor node of the RN is a DeNB (macro base station).
  • the network side determines the donor node for the RN by means of pre-configuration or OAM (Operation Administration and Maintenance) entity configuration.
  • OAM Operaation Administration and Maintenance
  • the RN pre-configures the cell information that the RN can access before the device is powered on, and the information is stored in the RN.
  • the cell selection is performed only in the pre-configured cell set, and the cell with the best signal quality is selected as its donor cell; in the OAM configuration mode, the RN is selected as the user terminal after booting.
  • the network side recognizes that it is an RN, it configures donor cell information through OAM. After obtaining the donor cell information, the RN accesses the selected donor cell, and the donor cell provides a backhaul service for the donor cell.
  • UDNs in the future.
  • UDNs ultra-dense network
  • the networking is flexible.
  • an AP Access Point
  • It is usually plug-and-play and cannot be pre-configured by the carrier.
  • the number of nodes is huge, and the list of donor cells that OAM needs to configure may be very large, which will make configuration maintenance work very difficult.
  • the single-hop backhaul path can no longer support the backhaul requirements of many nodes in the UDN.
  • the embodiment of the present invention provides a path selection method and apparatus for solving the problem that a backhaul path of a single hop is provided by pre-configuration or OAM configuration cannot meet the backhaul requirement of a flexible station deployed in the UDN.
  • the first node sends a path request message for acquiring a backhaul path from the first node to the destination node;
  • the first node determines at least one backhaul path based on the received path indication message.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the path request message includes the identifier information of the first node; or the path request message includes the identifier information of the first node, and one or more of the following information:
  • the backhaul requirement information of the first node where the backhaul requirement information includes demand information for delay and/or throughput;
  • the neighboring cell measurement result of the first node is the neighboring cell measurement result of the first node.
  • the first node sends a path request message for acquiring a backhaul path from the first node to the destination node, including:
  • the first node sends a path request message to at least one neighboring second node.
  • the first node sends a path request message to the at least one neighboring second node, including:
  • the RRC message is sent to the second node by using a radio resource control RRC message;
  • the first node transmits a path request message to at least one neighboring second node in a broadcast form.
  • the first node sends a path request message to the at least one neighboring second node, including:
  • the first node performs neighboring area measurement, and selects at least one second node according to the neighboring area measurement result;
  • the first node sends a path request message to the selected at least one second node.
  • the path indication message is a path response message
  • Determining, by the first node, the at least one backhaul path based on the received path indication message including:
  • the first node selects at least one backhaul path based on the destination node and/or the path response message sent by the node that has the backhaul path to the destination node, where the path response message includes the destination node from the first node. Path information for the backhaul path.
  • the first node after selecting at least one backhaul path, based on the path response message, further includes:
  • the first node sends a path confirmation message to the node in the selected backhaul path; the path confirmation message includes path information of the selected backhaul path.
  • the first node selects at least one backhaul path based on the path response message, including:
  • the first node determines that there is a backhaul path satisfying the backhaul requirement based on the path response message, selecting a backhaul path based on the number of hops of each backhaul path satisfying the backhaul requirement; and/or,
  • the first node determines, based on the path response message, that there is a backhaul path that satisfies a part of the backhaul requirement, selecting a plurality of backhaul paths based on the size of the backhaul demand that each of the backhaul paths satisfying the partial backhaul requirement; the backhaul requirement includes The need for throughput for the backhaul path.
  • the path indication message is a path confirmation message
  • Determining, by the first node, the at least one backhaul path based on the received path indication message including:
  • the first node receives a path confirmation message sent by the centralized control node; the path confirmation message includes path information of a backhaul path selected by the centralized control node.
  • the path information of the backhaul path includes identifier information of each node in the backhaul path, or includes identifier information of each node in the backhaul path and information of each hop backhaul link.
  • the method further includes:
  • the first node does not receive the path indication message within a preset time length after sending the path request message, or the path information of the backhaul path indicated in the received path indication message does not satisfy the backhaul requirement of the first node, Resending the path request message; and/or,
  • the path request message is resent.
  • Another embodiment of the present application provides a path selection method, including:
  • the second node receives a path request message sent by the neighboring first node for acquiring a backhaul path from the first node to the destination node;
  • the second node determines whether it can provide a backhaul service for the first node based on the path request message.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the second node determines whether it can provide a backhaul service for the first node, including:
  • the second node determines whether it can provide a backhaul service for the first node based on the path request message and one or more of the following information:
  • the second node determines that it can provide a backhaul service for the first node. After that, it also includes:
  • the second node sends a path response message to the first node or the centralized control node; the path response message includes path information of a backhaul path from the first node to the destination node.
  • the path information of the backhaul path includes the identifier information of each node in the backhaul path; or the path information of the backhaul path includes the identifier information of each node in the backhaul path and the information of each hop back link. .
  • the method further includes:
  • the second node adds its own identification information to the path information of the path request message, and sends the identifier information to at least one adjacent node; or the second node associates its own identification information with the second node.
  • the information of the backhaul link between the first nodes is added to the path information of the path request message and sent to at least one adjacent node.
  • the method further includes:
  • the second node After receiving the path confirmation message sent by the first node or the centralized control node, the second node determines that a backhaul service needs to be provided for the first node.
  • the method further includes:
  • the second node discards the received path request message.
  • Another embodiment of the present application provides a path selection method, including:
  • the centralized control node receives a path response message sent by at least one node; the path response message includes path information of a backhaul path from the first node to the destination node;
  • the centralized control node selects at least one backhaul path based on the path response message sent by the at least one node;
  • the centralized control node sends a path confirmation message indicating the selected backhaul path to the node in the selected backhaul path.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the centralized control node selects at least one backhaul path based on the path response message sent by the at least one node, including:
  • the hop count of each backhaul path that satisfies the backhaul requirement of the first node choose the return path; and / or,
  • the plurality of backhaul paths are selected based on the size of the backhaul demand that each backhaul path satisfying the partial backhaul requirement of the first node can satisfy.
  • An embodiment of the present application provides a path selection apparatus, including:
  • a sending module configured to send a path request message for acquiring a backhaul path from the first node to the destination node;
  • a determining module configured to determine at least one backhaul path based on the received path indication message.
  • Another embodiment of the present application provides a path selection apparatus, including:
  • a receiving module configured to receive a path request message sent by the first node adjacent to the second node for acquiring a backhaul path from the first node to the destination node;
  • the determining module is configured to determine, according to the path request message, whether the second node can provide a backhaul service for the first node.
  • Another embodiment of the present application provides a path selection apparatus, including:
  • a receiving module configured to receive a path response message sent by at least one node;
  • the path response message includes path information of a backhaul path from the first node to the destination node;
  • a selection module configured to select at least one backhaul path based on the path response message sent by the at least one node
  • a sending module configured to send, to the node in the selected backhaul path, a path confirmation message indicating the selected backhaul path.
  • the first node may obtain a path indication message fed back by other nodes by sending a path request message for acquiring a backhaul path from the first node to the destination node, and determine at least one backhaul based on the path indication message. path.
  • the backhaul path can be determined for the plug-and-play access point in a flexible and convenient manner.
  • the OAM is used to configure a single-hop backhaul path for the access point, thereby saving configuration and maintenance work on the network side.
  • the backhaul path of the multi-hop can be determined for the first node based on actual needs, thereby improving the probability of finding a backhaul path that satisfies the backhaul requirement of the first node.
  • FIG. 1 is a flowchart of a path selection method according to Embodiment 1 of the present application.
  • FIG. 2 is a flowchart of a path selection method according to Embodiment 2 of the present application.
  • FIG. 3 is a flowchart of a path selection method according to Embodiment 3 of the present application.
  • FIG. 4 is a schematic diagram of a backhaul path deployment of a small station in a distributed networking
  • FIG. 5 is a flowchart of a path selection method according to Embodiment 4 of the present application.
  • FIG. 6 is a flowchart of a path selection method provided in Embodiment 5 of the present application.
  • FIG. 7 is a schematic diagram of a backhaul path deployment of a small station in a hybrid networking
  • FIG. 8 is a schematic structural diagram of a path selection apparatus according to Embodiment 6 of the present application.
  • FIG. 9 is a schematic structural diagram of a path selection apparatus according to Embodiment 7 of the present application.
  • FIG. 10 is a schematic structural diagram of a path selection apparatus according to Embodiment 8 of the present application.
  • FIG. 11 is a schematic structural diagram of a path selection device according to Embodiment 9 of the present application.
  • FIG. 12 is a schematic structural diagram of a path selection device according to Embodiment 10 of the present application.
  • FIG. 13 is a schematic structural diagram of a path selection device according to Embodiment 11 of the present application.
  • the first node may obtain a path indication message fed back by other nodes by sending a path request message for acquiring a backhaul path from the first node to the destination node, and determine at least one backhaul based on the path indication message. path.
  • the backhaul path can be determined for the plug-and-play access point in a flexible and convenient manner.
  • the OAM is used to configure a single-hop backhaul path for the access point, thereby saving configuration and maintenance work on the network side.
  • the backhaul path of the multi-hop can be determined for the first node based on actual needs, thereby improving the probability of finding a backhaul path that satisfies the backhaul requirement of the first node.
  • the embodiment of the present application can be applied to the establishment of a backhaul path in various networking modes, and is particularly advantageous when applied to a distributed networking and a hybrid networking.
  • the distributed networking refers to the non-centralized control node, and each base station coordinates/coordinates through negotiation
  • the hybrid networking refers to the control of some base stations by centralized control nodes, and some base stations are not controlled by centralized control nodes.
  • the centralized control node is a high-level node, and can control multiple base stations, and is responsible for resource management and coordination/coordination between base stations; it can be a logical entity or an independent device.
  • the nodes may be any type of base station, for example, the base station may be a macro station, such as an eNB (evolved Node B), an NB (Node B, a base station).
  • LG Local Gateway
  • LC Local Controller
  • a core network node or an OAM node or may be a base station, which can be managed
  • a plurality of base stations can be regarded as super base stations; or a baseband pool in a C-RAN architecture, which can process a plurality of baseband signals of a plurality of RRHs (Remote Radio Heads).
  • RRHs Remote Radio Heads
  • Each of the nodes (the first node, the second node, and the like) in the embodiment of the present application may be any type of base station, for example, the base station may be a macro station, such as an eNB (evolved Node B), an NB (Node B, a base station).
  • eNB evolved Node B
  • NB Node B
  • LPNs low power nodes
  • pico pico
  • home base station fomto
  • relay node RN
  • AP Access Point, connected
  • RRH User Equipment
  • user terminal with enhanced capabilities such as a user terminal with relay capability.
  • a flowchart of a path selection method provided in Embodiment 1 of the present application includes the following steps:
  • the first node sends a path request message for acquiring a backhaul path from the first node to the destination node.
  • the destination node is not a node that is preset by the first node and indicated in the path request message, but is a node that can directly communicate with the core network or the like without providing other nodes for providing backhaul services.
  • the destination node in the embodiment of the present application may be any node that has a dedicated microwave backhaul link or a wired backhaul link (which may be considered as a node whose backhaul level is 0), and the first node establishes a backhaul between the node and the destination node. After the path, communication with the core network can be realized through the backhaul path.
  • the backhaul level information of the node may be used to indicate the hop count of the backhaul link experienced by the data sent by the node, and may be indicated in a manner that the hop count is smaller and the level is lower.
  • the number of hops of the backhaul link experienced by the data transmitted by the node is the number of backhaul links that the data travels from the node to the node that owns the wired backhaul link or the dedicated microwave backhaul link.
  • the macro base station since the macro base station has a wired backhaul link, the macro base station has a backhaul level of 0; for a small station having a wired backhaul link (other than a macro base station, a base station with low power and small coverage), The backhaul level is 0; for a small station with a dedicated microwave backhaul link, the backhaul level is also 0; for a small station with a wireless backhaul link, the backhaul level is the backhaul level of the previous hop node plus one. Level.
  • the path request message may be sent to the other node for requesting the other node to seek the backhaul path of the first node to reach the destination node.
  • the node that receives the path request message sent by the first node may include the destination node itself. If the destination node can establish a backhaul link with the first node to form a backhaul path of the first node, the first node is on the backhaul.
  • the backhaul level in the path is 1; the node receiving the path request message sent by the first node may also include an intermediate node, and if the intermediate node can establish a backhaul link with the first node, the intermediate node can continue to seek the destination.
  • the backhaul level in the path is the level after the backhaul level of the intermediate node is increased by one.
  • the intermediate node may be divided into a first type of intermediate node that already has a backhaul path to the destination node and a second type of intermediate node that does not reach the backhaul path of the destination node.
  • the second type of intermediate nodes it is necessary to continue to seek the backhaul path to the destination node in the above manner.
  • the first type of intermediate node since the backhaul path to the destination node is already owned, the first type of intermediate node can directly feed the existing backhaul path to the first node or the centralized control node (send the path to the first node or the centralized control node) Reply message).
  • the first type of intermediate node may only feed back the existing backhaul path; or may not feed back the existing backhaul path, but continue to seek the backhaul path to the destination node according to the processing method of the second type of intermediate node; At the same time as the backhaul path, it continues to seek other backhaul paths to the destination node other than the existing backhaul path.
  • the first type of intermediate node may determine the processing manner according to its own backhaul level in the existing backhaul path, for example, if the first type of intermediate node has a higher backhaul level in the existing backhaul path (eg, greater than Or equal to the preset level 2), continue to seek other arrivals than the existing return path The backhaul path of the destination node (you can feedback the existing backhaul path at this time, or you can not feedback); if the backhaul level in the existing backhaul path is lower (for example, less than the preset level 2 and its backhaul level is 1), you can Direct feedback has a backhaul path.
  • the backhaul level in the existing backhaul path is lower (for example, less than the preset level 2 and its backhaul level is 1), you can Direct feedback has a backhaul path.
  • the first node determines at least one backhaul path based on the received path indication message.
  • the first node after the first node can send at least one backhaul path to the destination node for the first node after sending the path request message, the first node may be based on the path indication message fed back by other nodes. , determine one or more backhaul paths.
  • the node of the feedback path indication message may be the destination node finally sought or the first type of intermediate node that already has the backhaul path to the destination node, or may be a centralized control node.
  • the first node may receive the path indication message fed back by multiple nodes (the path indication message is called the path response message in the second embodiment).
  • the first node may select a backhaul path among the backhaul paths respectively indicated by the plurality of path indication messages.
  • the centralized control node feeds back the path indication message
  • the destination node or the first type of intermediate node may indicate the backhaul path from the first node to the destination node to the centralized control node, and the centralized control node may be in the backhaul path indicated by the multiple nodes.
  • the first node can directly select the centralized control node.
  • the return path will further illustrate the two embodiments.
  • a path indication message (referred to as a path response message in this embodiment) by a destination node or a first type of intermediate node is described in detail.
  • a flowchart of a path selection method provided in Embodiment 2 of the present application includes the following steps:
  • the first node sends a path request message for acquiring a backhaul path from the first node to the destination node to the at least one adjacent second node.
  • the first node may send the path request message to the at least one adjacent second node in one of the following manners:
  • Manner 2 The first node sends a path request message to the at least one adjacent second node in a broadcast form.
  • the first node may randomly access the adjacent second node by using the identity of the user terminal, establish an RRC (Radio Resource Control) connection with the second node, and send the RRC message to the second node.
  • the second node sends a path request message.
  • the first node can broadcast the path request at a frequency point that it supports.
  • the first node may broadcast the path request message on multiple frequency points, or may broadcast the path request message on a dedicated channel; the first node may carry the path request message by using a dedicated preamble Specifically, it may be carried in a scrambling manner, and the dedicated pilot may be randomly selected within a preset range.
  • the first node first needs to perform neighbor cell measurement, and selects at least one second node according to the neighboring cell measurement result, and sends a path request message to the selected at least one second node.
  • the first node may perform neighbor cell signal search at the frequency point supported by itself after starting up, and measure the neighboring area of the searched signal to determine the signal measurement of the neighboring area occupying the frequency point supported by itself.
  • the frequency points supported by the first node include 2.0 GHz, 2.6 GHz, and 3.4 GHz to 3.6 GHz
  • adjacent macro base stations operate at 2.0 GHz
  • adjacent small base stations hereinafter referred to as small stations
  • a node measures these macro base stations and small stations to obtain their RSRP (Reference Signal Receiving Power), RSRQ (Reference Signal Receiving Quality), and SINR (Signal to Interference plus Noise Ratio).
  • RSRP Reference Signal Receiving Power
  • RSRQ Reference Signal Receiving Quality
  • SINR Signal to Interference plus Noise Ratio
  • the first node may select a second node that sends the best request to send a path request message, for example, select a second node with the largest RSRP measurement value; or, may select an RSRP measurement value that is greater than a preset RSRP threshold. At least one second node of the value; or, all of the measured second node transmission path request messages may also be selected.
  • the first node may not perform neighbor cell measurement, and broadcast a path request message on at least one frequency point supported by the first node, or the first node may perform neighbor cell measurement, and select a broadcast path according to the neighboring cell measurement result.
  • the frequency of the request message may not perform neighbor cell measurement, and broadcast a path request message on at least one frequency point supported by the first node, or the first node may perform neighbor cell measurement, and select a broadcast path according to the neighboring cell measurement result. The frequency of the request message.
  • the second node determines, according to the path request message, whether it can provide a backhaul service for the first node, and if yes, proceeds to S203 or S204; otherwise, proceeds to S208.
  • the path request message includes the identifier information of the first node; or the path request message includes the identifier information of the first node, and one or more of the following information:
  • the backhaul requirement information of the first node where the backhaul requirement information includes demand information for delay and/or throughput;
  • the neighboring cell measurement result of the first node is the neighboring cell measurement result of the first node.
  • the path request message includes identification information of the first node, and the identifier information may be PCI (Physical Cell Identifier), E-UTRAN (Evolved Unified Terrestrial Radio Access Network) ECGI (E-UTRAN Cell Global) Identifier, cell global identifier), SIM (Subscriber Identity Module) number, IPv6 (Internet Protocol Version 6, sixth version Internet Protocol) address, and the like.
  • PCI Physical Cell Identifier
  • E-UTRAN Evolved Unified Terrestrial Radio Access Network
  • ECGI E-UTRAN Cell Global
  • SIM Subscriber Identity Module
  • IPv6 Internet Protocol Version 6, sixth version Internet Protocol
  • the path request message may further include a frequency point and/or a bandwidth supported by the first node, and the first node.
  • a frequency point and/or a bandwidth supported by the first node may carry its own identification information, backhaul requirement information (such as the throughput of the requested backhaul link, delay), and the like in the path information of the path request message, and send the information to other nodes. If the path request message only includes the neighboring cell measurement result, the frequency point involved in the neighbor cell measurement result belongs to the frequency point supported by the first node.
  • the second node determines whether it can provide a backhaul service for the first node, including:
  • the second node determines whether it can provide a backhaul service for the first node based on the path request message and one or more of the following information:
  • the information indicating the access link characteristics of the second node such as the bandwidth and load of the access link under the second node, and the back link of the second node, that is, between the second node and the previous hop node
  • the backhaul link, the information indicating the backhaul link characteristics of the second node may include information such as delay, throughput, load, and the like of the backhaul link of the second node.
  • the second node may consider the frequency and bandwidth supported by the second node, the delay of the back link of the second node, the throughput and load, and the bandwidth and load of the responsible access link. One or more of them, combined with the information in the path request message to determine whether the backhaul service can be provided for the first node, and whether the backhaul requirement of the first node can be satisfied.
  • the second node may satisfy one or more of the following situations: the frequency point supported by the second node and the frequency point in the path request message have an intersection; The second node has a backhaul link that satisfies the backhaul requirement in the path request message; the frequency point supported by the second node is a frequency point of the first node's neighboring area measurement result (such as strong signal strength, good signal quality, interference) Small); the access link of the second node has a large bandwidth and a small load; the second node has a small load on the backhaul link.
  • the second node may reserve a partial margin for itself to prevent the impact of service fluctuations, for example, if the throughput requested by the first node is Xbps, if the second The throughput that the node can provide is not less than (X+delta1)bps, then the second node confirms that the first node can meet the throughput requirement, and delta1 is the throughput margin reserved by the second node. Similarly, if the delay required by the first node request is within Y ms, if the delay size satisfied by the second node is not greater than (Y-delta2) ms, the second node confirms that the first node can satisfy the delay. Demand, delta2 is the delay margin reserved for the second node.
  • the second node If the second node is not the destination node (an intermediate node, which may be a first type of intermediate node or a second type of intermediate node), the second node adds its own identification information to the path request message.
  • the path information is sent to at least one adjacent node, and the at least one adjacent node continues to seek a backhaul path to the destination node.
  • the second node is the second type of intermediate node (the backhaul path does not reach the destination node), and the second node directly performs the above step S203.
  • the second node is a first type of intermediate node (having a backhaul path to the destination node), and at this time, the second node may perform step S203 and/or step S204 described below; optionally, The two nodes may first confirm their own backhaul level in the existing backhaul path.
  • the second node may only perform the above step S203, or both In step S204, the above step S203 is also performed; if the backhaul level (such as the backhaul level is 1) is smaller than the preset level, the second node may perform the following step S204.
  • the preset level for example, the preset level is 2
  • the path information of the path request message sent by the second node further includes information about a backhaul link between the second node and the first node.
  • the path request message sent by the first node only includes the frequency points f1, f2, and f3 supported by the first node; the frequency points supported by the second node are f1 and f2, and the frequency of the responsible access link is f1.
  • the bandwidth is 20MHz and the load is 40%.
  • the frequency at which the second node can provide the backhaul service for the first node is f1 and f2. Since f1 is the frequency used by the access link of the second node, the load is high, so the second node can select the frequency f2 with a lower load (unused) as the frequency of the backhaul link with the first node. point.
  • the second node Since the second node is a second type of intermediate node, the second node needs to continue to seek a backhaul path to the destination node. Specifically, the second node adds its own identification information to the path information of the path request message, and may also The information of the backhaul link between the nodes (such as the frequency of the backhaul link between the second node and the first node is f2) is added to the path information, and the path is carried to the at least one adjacent node.
  • the information of the backhaul link between the nodes such as the frequency of the backhaul link between the second node and the first node is f2
  • the information and the path request message of the frequency point supported by the second node that is, the path request message sent by the second node includes the frequency points f1 and f2 supported by the second node, and the path information ⁇ identification information of the first node— Information of the backhaul link between the first node and the second node (frequency f2 used by the backhaul link) - identification information of the second node>.
  • the path request message sent by the first node includes the frequency points f1, f2, and f3 supported by the first node, the requested throughput is 60 Mbps, and the interference situation at each frequency point indicated by the neighboring area measurement result (any The interference value at the frequency point may specifically be the sum of the RSRP measurement values of the neighboring nodes received at the frequency point): the interference value at the f1 frequency point> the interference value at the f2 frequency point> the interference at the frequency point f3
  • the value supported by the second node is f1 and f2.
  • the throughput of the existing backhaul link is 100 Mbps.
  • the frequency of the responsible access link is f1, the bandwidth is 20 MHz, and the load is 40%.
  • the second node continues to seek the backhaul path to the destination node, specifically, adds its own identification information to the path information of the path request message, and may also information about the backhaul link with the first node (such as the second node).
  • the frequency of the backhaul link with the first node is f2, and the satisfied throughput is 60 Mbps.
  • the path information is added to the path information, and the second node is at least one.
  • the neighboring node sends a path request message carrying the path information and the frequency point supported by the second node, that is, the path request message sent by the second node includes the frequency points f1 and f2 supported by the second node, and the second
  • the throughput of the backhaul link requested by the node is 60 Mbps
  • the path information ⁇ identification information of the first node (which may also include the throughput of the backhaul link requested by the first node is 60 Mbps) - the backhaul between the first node and the second node Link information (f2, 60 Mbps) - identification information of the second node>.
  • the sent path request message may include information about the partial throughput that the second node can provide.
  • the path request message sent by the first node includes the frequency points f1, f2, and f3 supported by the first node, the requested throughput is 60 Mbps, and the interference situation at each frequency point indicated by the neighboring area measurement result (any frequency)
  • the interference value at the point may specifically be the sum of the RSRP measurement values of the neighboring nodes received at the frequency point): the interference value at the f1 frequency point > the interference value at the f2 frequency point > the interference value at the f3 frequency point
  • the frequency supported by the second node is f1 and f2, and the throughput of the existing backhaul link is 50 Mbps.
  • the frequency of the responsible access link is f1, the bandwidth is 20 MHz, and the load is 40%.
  • the path is added to the path information, and the second node sends the bearer to at least one adjacent node.
  • the path information and the path request message of the frequency point supported by the second node that is, the path request message sent by the second node includes the frequency points f1 and f2 supported by the second node, and the throughput requested by the second node is 40 Mbps.
  • path information ⁇ identification information of the first node (may also include the throughput of the first node requested by 60 Mbps) - information of the backhaul link between the first node and the second node (f2, 40 Mbps) - the identity of the second node Information>.
  • the second node If the second node is the destination node, or the second node has a backhaul path (a first type of intermediate node) that reaches the destination node, the second node sends the first node to the first node. a path response message; the path response message includes path information of a backhaul path from the first node to the destination node.
  • the path information of the backhaul path includes identifier information of each node in the backhaul path, or includes identifier information of each node in the backhaul path and information of each hop backhaul link.
  • the second node is a destination node, and the destination node satisfies the backhaul requirement of the first node, and the frequency of establishing the backhaul link with the first node is f1.
  • the destination node adds its own identification information to the path information of the path response message, and may also use the information of the backhaul link with the first node (such as the frequency of the backhaul link between the destination node and the first node).
  • the destination node sends a path response message to the first node, the path
  • the path response message includes path information ⁇ identification information of the first node—the information of the backhaul link between the first node and the destination node (such as the frequency point f1 used by the backhaul link between the destination node and the first node) — Identification information of the destination node>.
  • the path response message sent by the destination node further includes information of at least one intermediate node, for example, the path response message sent by the destination node includes path information.
  • the path response message sent by the destination node includes path information.
  • ⁇ Identification information of the first node the information of the backhaul link between the first node and the intermediate node (such as the frequency point f2 used by the backhaul link between the first node and the intermediate node) - the identification information of the intermediate node
  • the information of the backhaul link between the intermediate node and the destination node (such as the frequency point f1 used by the backhaul link between the intermediate node and the destination node) - the identification information of the destination node>.
  • the second node is a first type of intermediate node (having a backhaul path to the destination node, the backhaul path can include a one-hop or multi-hop backhaul link). It is assumed that there is a backhaul link between the first type of intermediate node and the destination node, and the backhaul link uses a frequency of f3, which can satisfy the throughput of the backhaul requirement of 100 Mbps; the first type of intermediate node can The frequency of establishing a backhaul link between a node is f1, which satisfies the requirement of the first node for a throughput of 60 Mbps.
  • the first type of intermediate node adds its own identification information and information of the backhaul link with the destination node to the path information of the path response message, and may also information about the backhaul link with the first node (such as the first A backhaul link between the intermediate node and the first node uses a frequency of f1 and a satisfied throughput requirement of 60 Mbps is added to the path information; the first type of intermediate node sends a path response message to the first node, where The path response message includes path information ⁇ identification information of the first node—backhaul link information between the first node and the first type of intermediate node (f1, 60 Mbps) - identification information of the first type of intermediate node - the first type The information of the backhaul link between the intermediate node and the destination node (f3, 100 Mbps) - the identification information of the destination node>.
  • the path response message sent by the first type of intermediate node further includes information of at least one second type of intermediate node, for example, the first
  • the path response message sent by the class intermediate node includes path information ⁇ identification information of the first node (60 Mbps) - (f2, 60 Mbps) - identification information of the second type of intermediate node - (f1, 60 Mbps) - the intermediate node of the first type Identification information—(f3, 100 Mbps)—identification information of the destination node>.
  • the first node selects at least one backhaul path based on the path response message sent by the destination node or the node (the first type of intermediate node) that has the backhaul path to the destination node, where the path response message includes the first node. Path information of the backhaul path to the destination node.
  • the first node selects at least one backhaul path based on the path response message, including:
  • the first node determines that there is a backhaul path satisfying the backhaul requirement based on the path response message, selecting a backhaul path based on the number of hops of each backhaul path satisfying the backhaul requirement; and/or,
  • the first node determines, based on the path response message, that there is a backhaul path that satisfies a part of the backhaul requirement, selecting a plurality of backhaul paths based on the size of the backhaul demand that each of the backhaul paths satisfying the partial backhaul requirement; the backhaul requirement includes The need for throughput for the backhaul path.
  • the principle that the first node selects the backhaul path may include: if there are multiple backhaul paths satisfying the backhaul requirement, selecting one or more backhaul paths according to the hop count of the backhaul path from small to large; For example, two backhaul paths are selected, one as the primary path and the other as the backup. When the primary path is unavailable, the alternate path is quickly enabled, thereby increasing the reliability and robustness of the backhaul path. If there are multiple backhaul paths that satisfy part of the backhaul requirements, select multiple backhaul paths that can satisfy the backhaul requirements, and the backhaul requirements (such as throughput) that can be satisfied by each backhaul path are large to small. In order, select multiple backhaul paths.
  • the method further includes:
  • the first node does not receive the path response message within a preset time length after sending the path request message, or the path information of the backhaul path indicated in the received path response message does not satisfy the backhaul requirement of the first node, Resending the path request message; and/or,
  • the path request message is resent.
  • the first node sends a path confirmation message to the node in the selected backhaul path, where the path confirmation message includes path information of the selected backhaul path.
  • the second node may first prepare for providing the backhaul service for the first node, such as using the backhaul link between the first node and the first node.
  • the frequency point (the frequency point is the previously unused frequency point); for example, the resource reservation is made for the backhaul service (the spectrum resource is reserved on the previously used frequency and bandwidth).
  • the second node may choose to discard the received path request message.
  • the path request message sent by the first node includes the frequency points f1 and f3 supported by the first node, the requested throughput is 60 Mbps, and the interference situation at each frequency point indicated by the neighboring area measurement result (on any frequency point)
  • the interference value may specifically be the sum of the RSRP measurement values of the neighboring nodes received at the frequency point: the interference value at the f1 frequency point > the interference value at the f3 frequency point; the frequency point supported by the second node is f1 , f2, the throughput of the existing backhaul link is 50Mbps, responsible access chain
  • the frequency of the road is f1, the bandwidth is 20MHz, and the load is 80%.
  • the frequency of the frequency is f1; however, the frequency of the f1 is the frequency used by the access link, the load is high, and the interference is large, and the backhaul service cannot be provided for the first node. Therefore, the second node chooses to discard the received path. Request message.
  • FIG. 3 a schematic diagram of a backhaul path deployment of a small station in a distributed network; where AP3 is a small station with a wired backhaul link, and reaches the core network through a fiber connection, and AP0 and AP1 are self-deployed or plugged.
  • the ready-to-use small stations, AP1, AP2 and macro base station (eNB) are neighbor nodes of AP0.
  • a flowchart of a path selection method provided in Embodiment 3 of the present application includes the following steps:
  • S401 Perform the neighboring cell measurement after the first node (such as AP0) is powered on.
  • the frequency points supported by AP0 include 2.0 GHz and 3.4 GHz to 3.6 GHz.
  • the evolved Node B (eNB) adjacent to AP0 operates at 2.0 GHz, and the AP adjacent to AP0 operates at 3.5 GHz.
  • AP0 performs neighbor cell measurement to obtain RSRP measurements of neighboring eNBs and APs.
  • the RSRP measurement value of the eNB is -100 dBm
  • the RSRP measurement value of AP1 is -80 dBm
  • the RSRP measurement value of AP2 is -110 dBm.
  • the first node (AP0) selects at least one adjacent second node based on the neighboring cell measurement result, and sends a path request message to the selected second node.
  • the AP0 selects a node whose RSRP measurement value is smaller than a preset RSRP threshold (-100 dBm), where the RSRP measurement values of the eNB and the AP1 satisfy the condition.
  • the AP0 accesses the eNB and the AP1 in the form of a user terminal, and sends a path request message through the RRC message, which includes the supported frequency points f1, f2, and f3, the throughput requirement of the backhaul path is 60 Mbps, and the neighboring area measurement result.
  • Interference situation at each frequency point indicated (the interference value at any frequency point may specifically be the sum of RSRP measurement values of neighboring nodes received at the frequency point): interference value at f1 frequency point>f2 The interference value at the frequency point > the interference value at the frequency of f3.
  • the backhaul level of the eNB is 0, the supported frequency point is f1, the throughput of the existing backhaul link is 1 Gbps, the frequency of the responsible access link is f1, the bandwidth is 20 MHz, and the load is 80%.
  • f1 is the frequency used by the access link of the eNB, and the load is too high and the interference is large, and cannot be used as the frequency of the AP0 backhaul link. Therefore, the eNB discards the path request message.
  • the backhaul level of AP1 is 2, the supported frequency points are f1 and f2, the throughput of the existing backhaul link is 100Mbps, the frequency of the responsible access link is f1, the bandwidth is 20MHz, and the load is 40%.
  • the frequency of the backhaul service that can provide backhaul for AP0 is f1 and f2. Since f1 is the frequency used by the access link of AP1, the load is high and the interference is large. Therefore, AP1 selects the frequency point f2 with low load (unused) and less interference as the backhaul link with AP0. Frequency point.
  • AP1 is the first type of intermediate node (has a backhaul path to the destination node), but since AP1 has a higher backhaul level in the existing backhaul path (level 2), AP1 chooses to continue to seek to remove the existing backhaul path.
  • S403 The second node (AP1, the first type of intermediate node) sends a path request message to at least one neighboring node.
  • the path request message sent by AP1 includes the frequency points f1 and f2 it supports, the required throughput of 60 Mbps, and the existing path information ⁇ AP0 (60 Mbps) - (f2, 60 Mbps) - AP1>.
  • the neighboring node AP3 of AP1 receives the path request message.
  • the backhaul level of AP3 is 0, which is the destination node.
  • the supported frequency points are f1 and f2.
  • the throughput of the existing backhaul link is 1Gbps.
  • the frequency of the responsible access link is f2, the bandwidth is 20MHz, and the load is 80. %.
  • the frequency of the backhaul service that can provide backhaul for AP1 is f1 and f2.
  • f2 is the frequency used by the access link of AP3
  • the load is too high, and the frequency point f1 with low load (unused) and less interference can be selected as the frequency of the AP1 backhaul link.
  • the AP3 adds its own identification information and the frequency of the backhaul link used by the AP1 and the throughput of the satisfied backhaul requirement of 60 Mbps to the path information. Since AP3 is already the destination node, AP3 can send and carry to AP0.
  • the path information ⁇ AP0 (60 Mbps) - (f2, 60 Mbps) - AP1 - (f1, 60 Mbps) - AP3> path response message. It can be seen that the backhaul level of AP1 in the backhaul path fed back by the AP3 is 1, which is smaller than the backhaul level in the previous backhaul path.
  • S404 The destination node (AP3) adjacent to the second node sends a path response message to the first node (AP0) through the second node (AP1).
  • the path response message sent by the AP3 includes the path information of the entire backhaul path ⁇ AP0 (60 Mbps) - (f2, 60 Mbps) - AP1 - (f1, 60 Mbps) - AP3>.
  • the first node (AP0) selects a backhaul path according to the path response message sent by the destination node (AP3), and sends a path confirmation message to the second node (AP1) and the destination node (AP3) in the selected backhaul path.
  • the AP0 receives the path response message sent by the AP3, and selects the backhaul path of ⁇ AP0-AP1-AP3> according to the path information. After receiving the path confirmation message of AP1, AP1 and AP3 are ready to provide the backhaul service for AP1. Specifically, AP1 turns on the frequency of the backhaul link between AP1 and AP0, and AP3 starts the backhaul link with AP1. of Frequency point f1.
  • a path indication message (referred to as a path confirmation message in this embodiment) is sent by a centralized control node is described, and details of the implementation of the second embodiment are not repeated herein.
  • a flowchart of a path selection method provided in Embodiment 4 of the present application includes the following steps:
  • the first node sends a path request message for acquiring a backhaul path from the first node to the destination node to the at least one adjacent second node.
  • S502 The second node determines, according to the path request message, whether it can provide a backhaul service for the first node, and if yes, proceeds to S503 or S504; otherwise, proceeds to S509.
  • the second node If the second node is not the destination node (an intermediate node, which may be a first type of intermediate node or a second type of intermediate node), the second node adds its own identification information to the path request message.
  • the path information is sent to at least one adjacent node, and the at least one adjacent node continues to seek a backhaul path to the destination node.
  • the second node is the second type of intermediate node (the backhaul path does not reach the destination node), and the second node directly performs the above step S503.
  • the second node is a first type of intermediate node (having a backhaul path to the destination node), and at this time, the second node may perform step S503 and/or step S504 described below; optionally, The two nodes may first confirm their own backhaul level in the existing backhaul path.
  • the second node may only perform the above step S503, or both Step S504, the above step S503 is also performed; if the backhaul level (such as the backhaul level is 1) is smaller than the preset level, the second node may perform the following step S504.
  • the second node If the second node is the destination node, or the second node has a backhaul path (a first type of intermediate node) that reaches the destination node, the second node sends a path response to the centralized control node.
  • a message the path response message includes path information of a backhaul path from the first node to the destination node.
  • the second node may send a path response message to the centralized control node.
  • the centralized control node selects at least one backhaul path based on the path response message sent by the destination node or the node (the first type of intermediate node) that has the backhaul path to the destination node, where the path response message includes the first node. Path information of the backhaul path to the destination node.
  • the centralized control node selects at least one backhaul path, including:
  • the hop based on each of the backhaul paths that satisfy the backhaul requirement of the first node Number, select the return path; and / or,
  • the path can meet the size of the backhaul demand, and select multiple backhaul paths.
  • the principle that the centralized control node selects the backhaul path may include: if there are multiple backhaul paths satisfying the backhaul requirement, one or more backhaul paths are selected according to the hop count of the backhaul path from small to large. If there are multiple backhaul paths that satisfy part of the backhaul requirements, select multiple backhaul paths that can satisfy the backhaul requirements, and the backhaul requirements (such as throughput) that can be satisfied by each backhaul path are large to small. In order, select multiple backhaul paths.
  • the centralized control node sends a path confirmation message to the node in the selected backhaul path, where the path confirmation message includes path information of the selected backhaul path.
  • the centralized control node may send a path confirmation message to the destination node, and the destination node forwards the path confirmation message to the next hop node in the backhaul path, and the next hop node forwards the packet until the first node is reached.
  • the first node determines a backhaul path according to the path confirmation message sent by the received centralized control node.
  • the method further includes:
  • the first node does not receive the path confirmation message within the preset time length after sending the path request message, or the path information of the backhaul path indicated in the received path confirmation message does not satisfy the backhaul requirement of the first node, Send a path request message; and/or,
  • the path request message is resent.
  • Embodiment 4 of the present application differs from Embodiments 2 and 3 in that the selection of the backhaul path is performed by the centralized control node.
  • the centralized control node stores node information more comprehensively, and can perform optimal backhaul path selection globally; and, since there is no need to send a path response message to the small station, there is no need to make multiple jumps to the path response message. Send, saving signaling overhead.
  • FIG. 6 is a schematic diagram of a backhaul path deployment of a small station in a hybrid network; in FIG. 6, AP4 and AP5 are controlled by a centralized control node, and there is a wired backhaul link between them and the centralized control node, which can perform data and signaling. Transmission.
  • a wired link (such as a link of an X2 interface) exists between the macro base station and the centralized control node, and data and signaling interaction can be performed.
  • AP6, AP7, and AP8 are plug-and-play APs.
  • a macro backhaul link is established between the macro base station and the AP6. The macro base station provides a backhaul service for the AP6 to form a backhaul path of the AP6.
  • a wireless backhaul link is established between the AP7 and the AP4, and the AP4 provides a backhaul service for the AP7.
  • a wireless backhaul link is established between the AP7 and the AP8, and the AP7 provides a backhaul service for the AP8.
  • the backhaul path of the AP8 is the AP8- AP7-AP4.
  • a flowchart of a path selection method provided in Embodiment 5 of the present application includes the following steps:
  • S701 Perform the neighboring cell measurement after the first node (AP8) is powered on.
  • the frequency points supported by the AP 8 include 2.0 GHz and 3.4 GHz to 3.6 GHz.
  • the evolved Node B (eNB) adjacent to the AP 8 operates at 2.0 GHz, and the AP adjacent to the AP 8 operates at 3.5 GHz.
  • the AP8 performs neighbor cell measurement to obtain RSRP measurements of neighboring eNBs and APs.
  • the RSRP measurement value of the eNB is -100 dBm
  • the RSRP measurement value of AP7 is -80 dBm
  • the RSRP measurement value of AP6 is -110 dBm.
  • the first node selects at least one adjacent second node based on the neighboring cell measurement result, and sends a path request message to the selected second node.
  • the AP 8 selects a node whose RSRP measurement value is smaller than a preset RSRP threshold (-100 dBm), where the RSRP measurement values of the eNB and the AP 7 satisfy the condition.
  • the AP8 accesses the eNB and the AP7 in the form of a user terminal, and sends a path request message through the RRC message, which includes the supported frequency points f1, f2, and f3, the throughput requirement of the backhaul path is 60 Mbps, and the neighboring area measurement result.
  • Interference situation at each frequency point indicated (the interference value at any frequency point may specifically be the sum of RSRP measurement values of neighboring nodes received at the frequency point): interference value at f1 frequency point>f2 The interference value at the frequency point > the interference value at the frequency of f3.
  • the backhaul level of the eNB is 0, the supported frequency point is f1, the throughput of the existing backhaul link is 1 Gbps, the frequency of the responsible access link is f1, the bandwidth is 20 MHz, and the load is 80%.
  • f1 is the frequency used by the access link of the eNB, and the load is too high and the interference is large, which cannot be used as the frequency of the AP8 backhaul link. Therefore, the eNB discards the path request message.
  • the backhaul level of AP7 is 1, the supported frequency points are f1, f2, and f4.
  • the throughput of the existing backhaul link is 100 Mbps.
  • the frequency of the responsible access link is f1, the bandwidth is 20 MHz, and the load is 40%.
  • the frequency of the backhaul service that can provide backhaul for AP8 is f1 and f2. Since f1 is the frequency used by the access link of AP7, the load is high and the interference is large. Therefore, AP7 selects the frequency point f2 with low load (unused) and less interference as the backhaul link with AP8. Frequency point.
  • AP7 determines that it has a backhaul link to node AP4 that has a backhaul level of 0 (the backhaul link occupies frequency) F4, the satisfied throughput requirement is 100 Mbps), and the AP4 is controlled by the centralized control node, and the AP 7 satisfies its own identification information, the identification information of the AP4, and the frequency point f2 used by the backhaul link between the AP7 and the AP8.
  • the throughput of the backhaul requirement of 60 Mbps is added to the path information carried in the path response message and sent to the centralized control node through AP4.
  • S703 The second node (AP7, the first type of intermediate node) sends a path response message to the centralized control node through the destination node (AP4).
  • the path response message sent by the AP 7 includes the path information of the backhaul path ⁇ AP8 (60 Mbps) - (f2, 60 Mbps) - AP7 - (f4, 100 Mbps) - AP4>.
  • S704 The centralized control node selects a backhaul path according to the path response message of the second node (AP7), and sends a path to the destination node (AP4), the second node (AP7), and the first node (AP8) in the selected backhaul path. Confirm the message.
  • the centralized control node receives the path response message of the AP7 forwarded by the destination node, and selects the backhaul path of ⁇ AP8-AP7-AP4> according to the path information.
  • the AP4 prepares to provide the wireless backhaul service for the AP7.
  • the AP4 reserves the spectrum resource at the used frequency f4.
  • the AP7 provides the wireless backhaul for the AP8.
  • the AP7 turns on the frequency f2 of the backhaul link with the AP8; after receiving the path confirmation message, the AP8 determines that the backhaul path is ⁇ AP8-AP7-AP4>, and the backhaul path satisfies the backhaul of the AP8 demand.
  • a path selection device corresponding to the path selection method is also provided in the embodiment of the present application. Since the principle of solving the problem is similar to the path selection method in the embodiment of the present application, the implementation of the device can be seen. The implementation of the method, the repetition will not be repeated.
  • FIG. 8 is a schematic structural diagram of a path selection apparatus according to Embodiment 6 of the present application, including:
  • the sending module 81 is configured to send a path request message for acquiring a backhaul path from the first node to the destination node;
  • the determining module 82 is configured to determine at least one backhaul path based on the received path indication message.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the path request message includes the identifier information of the first node; or the path request message includes the identifier information of the first node, and one or more of the following information:
  • the backhaul requirement information of the first node where the backhaul requirement information includes demand information for delay and/or throughput;
  • the neighboring cell measurement result of the first node is the neighboring cell measurement result of the first node.
  • the sending module 81 is specifically configured to:
  • a path request message is sent to at least one neighboring second node.
  • the sending module 81 is specifically configured to:
  • a path request message is sent in broadcast form to at least one adjacent second node.
  • the sending module 81 is specifically configured to:
  • the path indication message is a path response message
  • the determining module 82 is specifically configured to:
  • the sending module 81 is further configured to: after the determining module 82 selects at least one backhaul path, send a path confirmation message to a node in the selected backhaul path; the path confirmation message includes the selected backhaul path Path information.
  • the determining module 82 is specifically configured to:
  • the backhaul path is selected based on the number of hops of each backhaul path satisfying the backhaul requirement; and/or,
  • the backhaul demand includes throughput for the backhaul path.
  • the path indication message is a path confirmation message
  • the determining module 82 is specifically configured to: receive a path confirmation message sent by the centralized control node; and the path confirmation message includes path information of the backhaul path selected by the centralized control node.
  • the path information of the backhaul path includes identifier information of each node in the backhaul path, or includes identifier information of each node in the backhaul path and information of each hop backhaul link.
  • the sending module 81 is further configured to:
  • the path request message is resent; and/or, if the path detection rate determined by the determining module is greater than the preset The threshold value resends the path request message.
  • FIG. 9 is a schematic structural diagram of a path selection apparatus according to Embodiment 7 of the present application, including:
  • the receiving module 91 is configured to receive a path request message that is sent by the first node that is adjacent to the second node and that is used to obtain a backhaul path from the first node to the destination node.
  • the determining module 92 is configured to determine, according to the path request message, whether the second node can provide a backhaul service for the first node.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the determining module 92 is specifically configured to:
  • the device further includes:
  • the first sending module 93 is configured to: after the determining module 92 determines that the second node can provide the backhaul service for the first node, send a path response message to the first node or the centralized control node; A path information including a backhaul path from the first node to the destination node.
  • the path information of the backhaul path includes the identifier information of each node in the backhaul path; or the path information of the backhaul path includes the identifier information of each node in the backhaul path and the information of each hop back link. .
  • the device further includes:
  • the second sending module 94 is configured to: after the determining module 92 determines that the second node can provide the backhaul service for the first node, add the identifier information of the second node to the path information of the path request message, and send Giving at least one adjacent node, or adding information of the identification information of the second node and the backhaul link between the second node and the first node to the path information of the path request message, and sending Give at least one adjacent node.
  • the device further includes:
  • a determining module 95 after receiving the path confirmation message sent by the first node or the centralized control node, The second node needs to provide a backhaul service for the first node.
  • the device further includes:
  • the processing module 96 is configured to discard the path request message received by the receiving module after the determining module 92 determines that the second node cannot provide the backhaul service for the first node.
  • FIG. 10 is a schematic structural diagram of a path selection apparatus according to Embodiment 8 of the present application, including:
  • the receiving module 101 is configured to receive a path response message sent by at least one node, where the path response message includes path information of a backhaul path from the first node to the destination node;
  • the selecting module 102 is configured to select at least one backhaul path based on the path response message sent by the at least one node;
  • the sending module 103 is configured to send a path confirmation message indicating the selected backhaul path to the node in the backhaul path selected by the selecting module 102.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the selecting module 102 is specifically configured to:
  • a backhaul that can be satisfied according to each of the backhaul paths satisfying the partial backhaul requirement of the first node The size of the demand, select multiple return paths.
  • the schematic diagram of the path selection device provided in Embodiment 9 of the present application includes:
  • the processor 1104 is configured to read a program in the memory 1105 and perform the following process:
  • the transceiver 1101 is configured to receive and transmit data under the control of the processor 1104.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the path request message includes the identifier information of the first node; or the path request message includes the identifier information of the first node, and one or more of the following information:
  • the backhaul demand information includes a demand letter for delay and/or throughput interest
  • the neighboring cell measurement result of the first node is the neighboring cell measurement result of the first node.
  • the processor 1104 is specifically configured to:
  • a path request message is sent by the transceiver 1101 to at least one adjacent second node.
  • the processor 1104 is specifically configured to:
  • control transceiver 1101 After the first node accesses any adjacent second node, the control transceiver 1101 sends a path request message to the second node by using a radio resource control RRC message; or
  • the control transceiver 1101 transmits a path request message to at least one adjacent second node in a broadcast form.
  • the processor 1104 is specifically configured to: perform neighbor cell measurement, select at least one second node according to the neighboring cell measurement result, and send a path request message to the selected at least one second node by using the transceiver 1101.
  • the path indication message is a path response message
  • the processor 1104 is specifically configured to: select at least one backhaul path according to the path response message sent by the destination node and/or the node that has the backhaul path to the destination node.
  • the path response message includes path information of a backhaul path from the first node to the destination node.
  • the processor 1104 is further configured to: after selecting at least one backhaul path, send, by the transceiver 1101, a path confirmation message to a node in the selected backhaul path; where the path confirmation message includes path information of the selected backhaul path. .
  • processor 1104 is further configured to:
  • the backhaul path is selected based on the number of hops of each backhaul path satisfying the backhaul requirement; and/or,
  • the backhaul demand includes throughput for the backhaul path.
  • the path indication message is a path confirmation message
  • the processor 1104 is specifically configured to: receive, by the transceiver 1101, a path confirmation message sent by the centralized control node; where the path confirmation message includes path information of the backhaul path selected by the centralized control node.
  • the path information of the backhaul path includes identifier information of each node in the backhaul path, or includes identifier information of each node in the backhaul path and information of each hop backhaul link.
  • processor 1104 is further configured to:
  • the transceiver 1101 If the path indication message is not received within the preset time length after the path request message is sent, or the path information of the backhaul path indicated in the received path indication message does not satisfy the backhaul requirement of the first node, then the transceiver 1101 is adopted. Resending the path request message; and/or, if the determined packet loss rate on the backhaul path is greater than a preset threshold, then The path request message is resent by the transceiver 1101.
  • bus 1100 can include any number of interconnected buses and bridges, and bus 1100 will include one or more processors represented by processor 1104 and memory represented by memory 1105. The various circuits are linked together. The bus 1100 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art and, therefore, will not be further described herein.
  • Bus interface 1103 provides an interface between bus 1100 and transceiver 1101.
  • the transceiver 1101 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by processor 1104 is transmitted over wireless medium via antenna 1102. Further, antenna 1102 also receives data and transmits the data to processor 1104.
  • the processor 1104 is responsible for managing the bus 1100 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1105 can be used to store data used by the processor 1104 in performing operations.
  • the processor 1104 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • a schematic structural diagram of a path selection device provided in Embodiment 10 of the present application includes:
  • the processor 1204 is configured to read a program in the memory 1205 and perform the following process:
  • the transceiver 1201 is configured to receive and transmit data under the control of the processor 1204.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the processor 1204 is specifically configured to:
  • the processor 1204 is further configured to:
  • the transceiver 1201 After determining that the second node is capable of providing the backhaul service for the first node, sending, by the transceiver 1201, a path response message to the first node or the centralized control node; the path response message includes the destination from the first node Path information of the backhaul path of the node.
  • the path information of the backhaul path includes the identifier information of each node in the backhaul path; or the path information of the backhaul path includes the identifier information of each node in the backhaul path and the information of each hop back link. .
  • the processor 1204 is further configured to:
  • the second node After determining that the second node is capable of providing the backhaul service for the first node, adding the identifier information of the second node to the path information of the path request message, and transmitting the identifier to the at least one adjacent node by the transceiver 1201; or Adding the identification information of the second node and the information of the backhaul link between the second node and the first node to the path information of the path request message, and transmitting the information to the at least one neighbor through the transceiver 1201. Node.
  • processor 1204 is further configured to:
  • the transceiver 1201 After receiving the path confirmation message sent by the first node or the centralized control node by the transceiver 1201, it is determined that the second node needs to provide a backhaul service for the first node.
  • processor 1204 is further configured to:
  • bus 1200 can include any number of interconnected buses and bridges, and bus 1200 will include one or more processors represented by processor 1204 and memory represented by memory 1205. The various circuits are linked together. The bus 1200 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1203 provides an interface between bus 1200 and transceiver 1201. Transceiver 1201 may be an element or multiple elements, such as multiple receivers and transmitters, providing means for communicating with various other devices on a transmission medium. Data processed by processor 1204 is transmitted over wireless medium via antenna 1202. Further, antenna 1202 also receives data and transmits the data to processor 1204.
  • the processor 1204 is responsible for managing the bus 1200 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1205 can be used to store data used by the processor 1204 in performing operations.
  • the processor 1204 may be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device
  • FIG. 13 is a schematic structural diagram of a path selection device according to Embodiment 11 of the present application, including:
  • the processor 1304 is configured to read a program in the memory 1305 and perform the following process:
  • the path response message includes path information of a backhaul path from the first node to the destination node;
  • the transceiver 1301 is configured to receive and transmit data under the control of the processor 1304.
  • the destination node is any node that has a dedicated microwave backhaul link or a wired backhaul link.
  • the processor 1304 is specifically configured to:
  • a backhaul that can be satisfied according to each of the backhaul paths satisfying the partial backhaul requirement of the first node The size of the demand, select multiple return paths.
  • bus 1300 can include any number of interconnected buses and bridges, and bus 1300 will include one or more processors represented by processor 1304 and memory represented by memory 1005. The various circuits are linked together. The bus 1300 can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • Bus interface 1303 provides an interface between bus 1300 and transceiver 1301.
  • the transceiver 1301 can be an element or a plurality of elements, such as a plurality of receivers and transmitters, providing means for communicating with various other devices on a transmission medium.
  • Data processed by processor 1304 is transmitted over wireless medium via antenna 1302. Further, antenna 1302 also receives data and transmits the data to processor 1304.
  • the processor 1304 is responsible for managing the bus 1300 and the usual processing, and can also provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • the memory 1305 can be used to store data used by the processor 1304 in performing the operations.
  • the processor 1304 can be a CPU (Central Embedded Device), an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a CPLD (Complex Programmable Logic Device). , complex programmable logic devices).
  • CPU Central Embedded Device
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • CPLD Complex Programmable Logic Device

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及通信技术领域,尤其涉及一种路径选择方法及装置,用以解决通过预配置或者OAM配置来提供单跳的回程路径的方式已无法满足UDN中灵活部署的小站的回程需求的问题。本申请实施例提供的一种路径选择方法包括:第一节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息;所述第一节点基于接收的路径指示消息,确定至少一条回程路径。采用本法实施例,可以灵活方便地为即插即用的接入点确定回程路径,无需预配置或采用OAM为接入点配置单跳的回程路径,从而节省了网络侧的配置维护工作;除此之外,采用本申请实施例,可以基于实际需要为第一节点确定多跳的回程路径,从而提高了找到满足第一节点回程需求的回程路径的概率。

Description

一种路径选择方法及装置
本申请要求在2015年4月3日提交中国专利局、申请号为201510158979.X、申请名称为“一种路径选择方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种路径选择方法及装置。
背景技术
在现有LTE-A(Long Term Evolution-Advanced,增强的长期演进)系统中,引入了Relay(中继)技术,主要用于提高小区边缘的吞吐量、扩大网络覆盖、提供群移动服务等。RN(Relay Node,中继节点)以无线的方式与施主节点相连,并经过施主节点连到核心网。RN与施主节点之间的无线链路称为回程链路(Backhaul link),施主节点与其服务的UE之间以及RN与其服务的UE之间的无线链路称为接入链路(Access link)。在LTE-A系统中,RN的施主节点是DeNB(宏基站)。
在上述RN到宏基站之间的回程路径中,RN和宏基站之间是单跳,且同一时刻服务于一个RN的宏基站只能有一个。网络侧采用预配置或OAM(Operation Administration and Maintenance,操作管理维护)实体配置的方式为RN确定施主节点。在预配置的方式下,RN在开机前,由运营商为其预配置可以接入的小区信息,该信息存储在RN中。当RN开机进行小区搜索时,只在预配置的小区集合中进行小区选择,并选择信号质量最好的小区作为它的施主小区;在OAM配置方式下,RN开机后作为用户终端接入所选择的小区,当网络侧识别出其为RN后,通过OAM为其配置施主小区信息。RN获得施主小区信息后,接入选择的施主小区,由该施主小区为其提供回程服务。
在移动通信系统未来发展中,为了更好的满足用户需求,提升网络容量和吞吐量,必将会引入更多的低功率小覆盖的接入节点(以下称为小站),即未来为UDN(ultra-dense network,超密集组网)。UDN中,组网灵活多变,例如在分布式组网或者混合式组网中,AP(Access Point,接入点)部署灵活,通常是即插即用,无法实现运营商预配置;UDN中节点数量巨大,OAM需要配置的施主小区列表可能会非常大,这将会导致配置维护工作变得非常困难。并且,由于节点数量巨大,单跳的回程路径也已无法支持UDN中众多节点的回程需求。
综上,通过预配置或者OAM配置来提供单跳的回程路径的方式已无法满足UDN中 灵活部署的小站的回程需求。
发明内容
本申请实施例提供一种路径选择方法及装置,用以解决通过预配置或者OAM配置来提供单跳的回程路径的方式已无法满足UDN中灵活部署的小站的回程需求的问题。
本申请实施例提供的一种路径选择方法包括:
第一节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息;
所述第一节点基于接收的路径指示消息,确定至少一条回程路径。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,所述路径请求消息中包括所述第一节点的标识信息;或者,所述路径请求消息中包括所述第一节点的标识信息,以及以下信息中的一种或多种:
所述第一节点支持的频点和/或带宽;
所述第一节点的回程需求信息,所述回程需求信息包括对时延和/或吞吐量的需求信息;
所述第一节点的邻区测量结果。
可选地,第一节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息,包括:
第一节点向至少一个相邻的第二节点发送路径请求消息。
可选地,第一节点向至少一个相邻的第二节点发送路径请求消息,包括:
所述第一节点接入任一相邻的第二节点后,通过无线资源控制RRC消息向该第二节点发送路径请求消息;或者,
所述第一节点以广播形式向至少一个相邻的第二节点发送路径请求消息。
可选地,第一节点向至少一个相邻的第二节点发送路径请求消息,包括:
第一节点进行邻区测量,根据邻区测量结果选择至少一个第二节点;
所述第一节点向选择的至少一个第二节点发送路径请求消息。
可选地,所述路径指示消息为路径应答消息;
所述第一节点基于接收的路径指示消息,确定至少一条回程路径,包括:
所述第一节点基于目的节点和/或已拥有到达目的节点的回程路径的节点发送的路径应答消息,选择至少一条回程路径,所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,所述第一节点基于路径应答消息,选择至少一条回程路径之后,还包括:
所述第一节点向选择的回程路径中的节点发送路径确认消息;所述路径确认消息中包含选择的回程路径的路径信息。
可选地,所述第一节点基于路径应答消息,选择至少一条回程路径,包括:
当所述第一节点基于路径应答消息,确定存在满足回程需求的回程路径时,基于满足回程需求的每条回程路径的跳数,选择回程路径;和/或,
当所述第一节点基于路径应答消息,确定存在满足部分回程需求的回程路径时,基于满足部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径;所述回程需求包括对回程路径的吞吐量的需求。
可选地,所述路径指示消息为路径确认消息;
所述第一节点基于接收的路径指示消息,确定至少一条回程路径,包括:
所述第一节点接收集中控制节点发送的路径确认消息;所述路径确认消息中包含集中控制节点选择的回程路径的路径信息。
可选地,所述回程路径的路径信息中包括回程路径中各节点的标识信息,或者,包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
可选地,所述方法还包括:
若所述第一节点在发送路径请求消息后的预设时间长度内没有接收到路径指示消息,或者接收的路径指示消息中指示的回程路径的路径信息不满足所述第一节点的回程需求,则重新发送路径请求消息;和/或,
若所述第一节点在确定的回程路径上的丢包率大于预设门限值,则重新发送路径请求消息。
本申请另一实施例提供一种路径选择方法,包括:
第二节点接收相邻的第一节点发送的用于获取从第一节点到达目的节点的回程路径的路径请求消息;
所述第二节点基于所述路径请求消息,判断自身能否为所述第一节点提供回程服务。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,所述第二节点判断自身能否为所述第一节点提供回程服务,包括:
所述第二节点基于所述路径请求消息,以及以下信息中的一种或多种,判断自身是否能够为所述第一节点提供回程服务:
所述第二节点支持的频点和/或带宽;
指示所述第二节点的接入链路特性的信息;
指示所述第二节点的回程链路特性的信息。
可选地,若所述第二节点是所述目的节点,或者所述第二节点拥有到达所述目的节点的回程路径,则所述第二节点确定自身能够为所述第一节点提供回程服务之后,还包括:
所述第二节点向所述第一节点或者集中控制节点发送路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,所述回程路径的路径信息中包括回程路径中各节点的标识信息;或者,所述回程路径的路径信息中包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
可选地,若所述第二节点不是所述目的节点、且没有到达所述目的节点的回程路径,则所述第二节点确定自身能够为所述第一节点提供回程服务之后,还包括:
所述第二节点将自身的标识信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点;或者,所述第二节点将自身的标识信息和所述第二节点与所述第一节点之间的回程链路的信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点。
可选地,所述方法还包括:
所述第二节点在接收到所述第一节点或集中控制节点发送的路径确认消息后,确定需要为所述第一节点提供回程服务。
可选地,所述第二节点确定自身不能为所述第一节点提供回程服务之后,还包括:
所述第二节点丢弃接收的路径请求消息。
本申请另一实施例提供一种路径选择方法,包括:
集中控制节点接收至少一个节点发送的路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息;
所述集中控制节点基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径;
所述集中控制节点向选择的回程路径中的节点发送指示选择的回程路径的路径确认消息。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,所述集中控制节点基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径,包括:
当所述集中控制节点基于至少一个节点发送的路径应答消息,确定存在满足所述第一节点的回程需求的回程路径时,基于满足所述第一节点的回程需求的每条回程路径的跳数,选择回程路径;和/或,
当所述集中控制节点基于所述至少一个节点发送的路径应答消息,确定存在满足所述 第一节点的部分回程需求的回程路径时,基于满足所述第一节点的部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径。
本申请实施例提供一种路径选择装置,包括:
发送模块,用于发送用于获取从第一节点到达目的节点的回程路径的路径请求消息;
确定模块,用于基于接收的路径指示消息,确定至少一条回程路径。
本申请另一实施例提供一种路径选择装置,包括:
接收模块,用于接收与第二节点相邻的第一节点发送的用于获取从第一节点到达目的节点的回程路径的路径请求消息;
判断模块,用于基于所述路径请求消息,判断第二节点能否为所述第一节点提供回程服务。
本申请另一实施例提供一种路径选择装置,包括:
接收模块,用于接收至少一个节点发送的路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息;
选择模块,用于基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径;
发送模块,用于向选择的回程路径中的节点发送指示选择的回程路径的路径确认消息。
本申请实施例中,第一节点可以通过发送用于获取从第一节点到达目的节点的回程路径的路径请求消息来得到其它节点反馈的路径指示消息,并基于该路径指示消息,确定至少一条回程路径。采用这种方式,可以灵活方便地为即插即用的接入点确定回程路径,无需预配置或采用OAM为接入点配置单跳的回程路径,从而节省了网络侧的配置维护工作;除此之外,采用本申请实施例,可以基于实际需要为第一节点确定多跳的回程路径,从而提高了找到满足第一节点回程需求的回程路径的概率。
附图说明
图1为本申请实施例一提供的路径选择方法流程图;
图2为本申请实施例二提供的路径选择方法流程图;
图3为本申请实施例三提供的路径选择方法流程图;
图4为分布式组网下的小站的回程路径部署示意图;
图5为本申请实施例四提供的路径选择方法流程图;
图6本申请实施例五提供的路径选择方法流程图;
图7为混合式组网下的小站的回程路径部署示意图;
图8为本申请实施例六提供的路径选择装置结构示意图;
图9为本申请实施例七提供的路径选择装置结构示意图;
图10为本申请实施例八提供的路径选择装置结构示意图;
图11为本申请实施例九提供的路径选择设备结构示意图;
图12为本申请实施例十提供的路径选择设备结构示意图;
图13为本申请实施例十一提供的路径选择设备结构示意图。
具体实施方式
本申请实施例中,第一节点可以通过发送用于获取从第一节点到达目的节点的回程路径的路径请求消息来得到其它节点反馈的路径指示消息,并基于该路径指示消息,确定至少一条回程路径。采用这种方式,可以灵活方便地为即插即用的接入点确定回程路径,无需预配置或采用OAM为接入点配置单跳的回程路径,从而节省了网络侧的配置维护工作;除此之外,采用本申请实施例,可以基于实际需要为第一节点确定多跳的回程路径,从而提高了找到满足第一节点回程需求的回程路径的概率。
本申请实施例可以适用于各种组网方式下的回程路径的建立,尤其在应用于分布式组网和混合式组网时,具有显著优势。其中,分布式组网指的是无集中控制节点,各基站间通过协商进行协调/协作;混合式组网是指有的基站受集中控制节点的控制,有的基站不受集中控制节点的控制。所述集中控制节点,是一个高层节点,可以控制多个基站,负责资源管控和基站间的协调/协作;它可以是逻辑实体,也可以是独立的设备。比如可以是独立的接入网节点:LG(Local Gateway,本地网关)或LC(Local Controller,本地控制器),或者可以是核心网节点或者OAM节点;也可以是一个基站,该基站由于可以管理多个基站,可以看作是超级基站;也可以是C-RAN架构中的基带池,集中处理多个RRH(Remote Radio Head,射频拉远头)的基带信号。本申请实施例中的各个节点(第一节点、第二节点等)可以是任何形式的基站,比如该基站可以是宏站,如eNB(evolved Node B,演进基站)、NB(Node B,基站)等;也可以是小站,如各种LPN(low power node,低功率节点):微微基站(pico)、家庭基站(femto)、中继节点(RN)等,如AP(Access Point,接入点);也可以是RRH;也可以是能力增强的用户终端,如有中继能力的用户终端。
下面结合说明书附图对本申请实施例作进一步详细描述。
实施例一
如图1所示,为本申请实施例一提供的路径选择方法流程图,包括以下步骤:
S101:第一节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息。
本申请实施例中,目的节点并不是第一节点预先设置的、在路径请求消息中指示的节点,而是能够直接与核心网等通信,而无需其它节点为其提供回程服务的任意节点。比如,本申请实施例中的目的节点可以为任意拥有专用微波回程链路或有线回程链路的节点(可以认为是回程层级为0的节点),第一节点在与目的节点之间建立起回程路径后,就可以通过该回程路径实现与核心网的通信。在具体实施中,可以采用节点的回程层级信息来指示经该节点发送的数据所经历的回程链路的跳数,可以采用跳数越少,层级越低的方式指示。这里,经该节点发送的数据所经历的回程链路的跳数也即数据从该节点到达拥有有线回程链路或专用微波回程链路的节点所经历的回程链路数目。比如,对于宏基站,由于宏基站都拥有有线回程链路,因此,宏基站的回程层级为0;对于拥有有线回程链路的小站(不同于宏基站,为低功率小覆盖的基站),其回程层级为0;对于拥有专用微波回程链路的小站,其回程层级也为0;对于拥有无线回程链路的小站,其回程层级为其上一跳节点的回程层级加1后的层级。
在具体实施过程中,当第一节点没有到达目的节点的回程路径时,可以向其它节点发送路径请求消息,用于请求其它节点为该第一节点寻求到达目的节点的回程路径。这里,接收第一节点发送的路径请求消息的节点可能包括目的节点本身,若该目的节点能够与第一节点之间建立回程链路,形成第一节点的回程路径,则第一节点在该回程路径中的回程层级为1;接收第一节点发送的路径请求消息的节点也可能包括中间节点,若该中间节点能够与第一节点之间建立回程链路,则该中间节点可以继续寻求到达目的节点的回程路径,在寻求成功后,该中间节点与第一节点之间的回程链路、和该中间节点到达目的节点的回程路径一起,形成第一节点的回程路径,第一节点在该回程路径中的回程层级为该中间节点的回程层级加1后的层级。
在具体实施中,中间节点可以划分为已拥有到达目的节点的回程路径的第一类中间节点和没有到达目的节点的回程路径的第二类中间节点。针对第二类中间节点,需要采用上述方式继续寻求到达目的节点的回程路径。针对第一类中间节点,由于已拥有到达目的节点的回程路径,该第一类中间节点可以直接将已有回程路径反馈给第一节点或集中控制节点(向第一节点或集中控制节点发送路径应答消息)。这里,第一类中间节点可以只反馈已有回程路径;也可以不反馈已有回程路径,而是按照第二类中间节点的处理方式继续寻求到达目的节点的回程路径;也可以在反馈已有回程路径的同时,继续寻求除已有回程路径之外的其它到达目的节点的回程路径。可选地,第一类中间节点可以根据自身在已有回程路径中的回程层级,来确定处理方式,比如,若该第一类中间节点在已有回程路径中的回程层级较高(比如大于或等于预设层级2),则继续寻求除已有回程路径之外的其它到达 目的节点的回程路径(此时可以反馈已有回程路径,也可以不反馈);若在已有回程路径中的回程层级较低(比如小于预设层级2,其回程层级为1),则可以直接反馈已有回程路径。
S102:第一节点基于接收的路径指示消息,确定至少一条回程路径。
在具体实施过程中,第一节点在发送路径请求消息后,若有其它节点能够为该第一节点搭建至少一条到达目的节点的回程路径,则该第一节点可以基于其它节点反馈的路径指示消息,确定一条或多条回程路径。这里,反馈路径指示消息的节点可以是最终寻求到的目的节点或者是已拥有到达目的节点的回程路径的第一类中间节点,也可以是集中控制节点。
若是由目的节点或者第一类中间节点反馈指示回程路径的路径指示消息,第一节点可能会接收到多个节点反馈的路径指示消息(以下实施例二中称该种路径指示消息为路径应答消息),则第一节点可以在多条路径指示消息分别指示的回程路径中选择一条回程路径。若是由集中控制节点反馈路径指示消息,则目的节点或第一类中间节点可以将从第一节点到达目的节点的回程路径指示给集中控制节点,集中控制节点可以在多个节点指示的回程路径中选择一条回程路径,并向第一节点发送指示选择的回程路径的路径指示消息(以下实施例三中称该种路径指示消息为路径确认消息),则第一节点可以直接使用集中控制节点选择好的回程路径。本申请以下实施例将对这两种实施方式作进一步说明。
实施例二
该实施例二中,对由目的节点或第一类中间节点发送路径指示消息(在该实施例中称为路径应答消息)的实施方式作详细说明。
如图2所示,为本申请实施例二提供的路径选择方法流程图,包括以下步骤:
S201:第一节点向至少一个相邻的第二节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息。
可选地,第一节点可以采用以下方式之一向至少一个相邻的第二节点发送路径请求消息:
方式一、第一节点接入任一相邻的第二节点后,通过无线资源控制RRC消息向该第二节点发送路径请求消息。
方式二、第一节点以广播形式向至少一个相邻的第二节点发送路径请求消息。
在具体实施过程中,第一节点可以以用户终端的身份随机接入相邻的第二节点,与第二节点之间建立RRC(Radio Resource Control,无线资源控制)连接,并通过RRC消息向该第二节点发送路径请求消息。或者,第一节点可以在自己支持的频点上广播该路径请求 消息;具体地,第一节点可以在多个频点上广播该路径请求消息,也可以在专用信道上广播该路径请求消息;第一节点可以通过专用导频(preamble)来承载该路径请求消息,具体可以采用加扰的方式来承载,可以在预设的范围内随机选择该专用导频。
若采用上述方式一,第一节点首先需要进行邻区测量,并根据邻区测量结果选择至少一个第二节点,向选择的至少一个第二节点发送路径请求消息。
在具体实施过程中,第一节点可以在开机后在自己支持的频点上进行邻区信号搜索,并对搜索到信号的邻区进行测量,确定占用自己支持的频点的邻区的信号测量结果。比如,第一节点支持的频点包括2.0GHz、2.6GHz、3.4GHz-3.6GHz,相邻的宏基站工作在2.0GHz,相邻的小型基站(以下简称小站)工作在3.5GHz,则第一节点测量这些宏基站及小站,获得其RSRP(Reference Signal Receiving Power,参考信号接收功率)、RSRQ(Reference Signal Receiving Quality,参考信号质量)和SINR(Signal to Interference plus Noise Ratio,信干噪比)等测量结果中的一种或多种。
在具体实施过程中,第一节点可以选择测量结果最好的第二节点发送路径请求消息,例如,选择RSRP测量值最大的第二节点;或者,可以选择RSRP测量值大于预设的RSRP门限值的至少一个第二节点;或者,也可以选择所有测量到的第二节点发送路径请求消息。
若采用上述方式二,第一节点可以不进行邻区测量,在自身支持的至少一个频点上广播路径请求消息,或者,第一节点可以进行邻区测量,并根据邻区测量结果选择广播路径请求消息的频点。
S202:第二节点基于所述路径请求消息,判断自身能否为所述第一节点提供回程服务,若能,则进入S203或S204;否则,进入S208。
可选地,所述路径请求消息中包括所述第一节点的标识信息;或者,所述路径请求消息中包括所述第一节点的标识信息,以及以下信息中的一种或多种:
所述第一节点支持的频点和/或带宽;
所述第一节点的回程需求信息,所述回程需求信息包括对时延和/或吞吐量的需求信息;
所述第一节点的邻区测量结果。
这里,路径请求消息中包括第一节点的标识信息,该标识信息可以是PCI(Physical Cell Identifier,物理标识信息)、E-UTRAN(演进的统一陆地无线接入网络)ECGI(E-UTRAN Cell Global Identifier,小区全局标识符)、SIM(Subscriber Identity Module,用户身份识别卡)号、IPv6(Internet Protocol Version 6,第六版本互联网协议)地址等。
除标识信息外,路径请求消息中还可以包括第一节点支持的频点和/或带宽、第一节点 的回程需求信息、第一节点的邻区测量结果等中的一种或多种。在具体实施中,第一节点可以将自身的标识信息、回程需求信息(比如请求的回程链路的吞吐量、时延)等携带在路径请求消息的路径信息中,发送给其它节点。若路径请求消息中只包含邻区测量结果,则邻区测量结果所涉及的频点属于第一节点所支持的频点。
可选地,所述第二节点判断自身能否为所述第一节点提供回程服务,包括:
所述第二节点基于所述路径请求消息,以及以下信息中的一种或多种,判断自身是否能够为所述第一节点提供回程服务:
所述第二节点支持的频点和/或带宽;
指示所述第二节点的接入链路特性的信息;
指示所述第二节点的回程链路特性的信息。
这里,指示第二节点的接入链路特性的信息,比如第二节点下的接入链路的带宽、负荷等信息;第二节点的回程链路也即第二节点与其上一跳节点间的回程链路,指示第二节点的回程链路特性的信息可以包括第二节点的回程链路的时延、吞吐量、负荷等信息。
在具体实施过程中,第二节点可以考虑自身支持的频点和带宽、该第二节点已有回程链路的时延、吞吐量和负荷、负责的接入链路的带宽和负荷等信息中的一种或多种,并结合路径请求消息中的信息来判断是否能够为第一节点提供回程服务,是否能够满足第一节点的回程需求。比如,若第二节点能够为第一节点提供回程服务,则第二节点可能满足以下情况中的一种或多种:该第二节点支持的频点和路径请求消息中的频点有交集;第二节点已有回程链路满足路径请求消息中的回程需求;该第二节点支持的频点是第一节点的邻区测量结果较好的频点(比如信号强度强、信号质量好,干扰小);该第二节点的接入链路的带宽大,负荷小;该第二节点已有回程链路的负荷小。
可选地,第二节点在确定自身能够满足的回程需求时,可以为自身预留部分余量,以防止业务波动的影响,比如,如果第一节点请求的吞吐量为Xbps,若该第二节点能够提供的吞吐量大小不小于(X+delta1)bps,则第二节点确认能够满足第一节点对吞吐量的需求,delta1即为第二节点预留的吞吐量余量。同理,如果第一节点请求满足的时延是Y ms以内,若该第二节点满足的时延大小不大于(Y-delta2)ms,则第二节点确认能够满足第一节点对时延的需求,delta2即为第二节点预留的时延余量。
S203:若所述第二节点不是所述目的节点(中间节点,可以是第一类中间节点或第二类中间节点),则所述第二节点将自身的标识信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点,由所述至少一个相邻的节点继续寻求到达所述目的节点的回程路径。
这里,存在两种情况,一种情况是第二节点为第二类中间节点(没有到达目的节点的回程路径),则该第二节点直接执行上述步骤S203。另一种情况是第二节点为第一类中间节点(已拥有到达目的节点的回程路径),此时,该第二节点可以执行上述步骤S203和/或下述步骤S204;可选地,第二节点可以首先确认自身在已有回程路径中的回程层级,若该回程层级大于或等于预设层级(比如预设层级为2),则第二节点可以只执行上述步骤S203,或者既执行下述步骤S204,也执行上述步骤S203;若该回程层级(比如该回程层级为1)小于预设层级,则第二节点可以执行下述步骤S204。
可选地,所述第二节点发送的路径请求消息的路径信息中还包括所述第二节点与所述第一节点之间的回程链路的信息。
比如,第一节点发送的路径请求消息中只包含第一节点支持的频点f1、f2、f3;第二节点支持的频点为f1、f2,负责的接入链路的频点为f1,带宽为20MHz,负荷为40%。可见,第二节点可以为第一节点提供回程服务的频点为f1和f2。由于f1为第二节点的接入链路使用的频点,负荷较高,因此第二节点可以选择负荷较低(未使用)的频点f2作为与第一节点之间的回程链路的频点。由于第二节点是第二类中间节点,该第二节点需要继续寻求到达目的节点的回程路径,具体地,第二节点将自己的标识信息加入路径请求消息的路径信息中,也可以将与第一节点之间的回程链路的信息(比如该第二节点与第一节点之间的回程链路使用的频点为f2)加入该路径信息中,向至少一个相邻的节点发送携带该路径信息及该第二节点支持的频点的路径请求消息,即该第二节点发送的路径请求消息中包含该第二节点支持的频点f1和f2,及路径信息<第一节点的标识信息—第一节点与第二节点之间的回程链路的信息(回程链路使用的频点f2)—第二节点的标识信息>。
再比如,第一节点发送的路径请求消息中包含第一节点支持的频点f1、f2、f3,请求的吞吐量60Mbps,及邻区测量结果所指示的各频点上的干扰情况(任一频点上的干扰值具体可以是在该频点上接收到的相邻节点的RSRP测量值之和):f1频点上的干扰值>f2频点上的干扰值>f3频点上的干扰值;第二节点支持的频点为f1、f2,已有回程链路的吞吐量为100Mbps,负责的接入链路的频点为f1,带宽为20MHz,负荷为40%。第二节点确定已有回程链路的吞吐量100Mbps>60Mbps+delta1(delta1=10Mbps),满足第一节点对吞吐量的需求;由于f1频点为第二节点的接入链路使用的频点,负荷较高、且干扰较大,因此,第二节点选择负荷较低(未使用)的频点f2为第一节点提供回程服务。第二节点继续寻求到达目的节点的回程路径,具体地,将自己的标识信息加入路径请求消息的路径信息中,也可以将与第一节点之间的回程链路的信息(比如该第二节点与第一节点之间的回程链路使用的频点为f2,满足的吞吐量为60Mbps)加入该路径信息中,第二节点向至少一 个相邻的节点发送携带该路径信息及该第二节点支持的频点的路径请求消息,即该第二节点发送的路径请求消息中包含该第二节点支持的频点f1和f2、第二节点请求的回程链路的吞吐量60Mbps、及路径信息<第一节点的标识信息(还可以包括第一节点请求的回程链路的吞吐量60Mbps)—第一节点与第二节点之间的回程链路的信息(f2,60Mbps)—第二节点的标识信息>。
在具体实施中,若第二节点确定只能提供第一节点请求的吞吐量中的部分吞吐量,则发送的路径请求消息中可以包括该第二节点能够提供的部分吞吐量的信息。
比如,第一节点发送的路径请求消息中包含第一节点支持的频点f1、f2、f3,请求的吞吐量60Mbps,及邻区测量结果所指示的各频点上的干扰情况(任一频点上的干扰值具体可以是在该频点上接收到的相邻节点的RSRP测量值之和):f1频点上的干扰值>f2频点上的干扰值>f3频点上的干扰值;第二节点支持的频点为f1、f2,已有回程链路的吞吐量为50Mbps,负责的接入链路的频点为f1,带宽为20MHz,负荷为40%。第二节点确定已有回程链路的吞吐量50Mbps<60Mbps+delta1(delta1=10Mbps),只满足第一节点对吞吐量的部分需求;由于f1频点为接入链路使用的频点,负荷较高、且干扰较大,因此,选择负荷较低(未使用)的频点f2为第一节点提供回程服务。第二节点需要继续寻求到达目的节点的回程路径,具体地,第二节点将自己的标识信息加入路径请求消息的路径信息中,也可以将与第一节点之间的回程链路的信息(比如该第二节点与第一节点之间的回程链路使用的频点为f2,满足的吞吐量为50Mbps-delta1=40Mbps)加入该路径信息中,第二节点向至少一个相邻的节点发送携带该路径信息及该第二节点支持的频点的路径请求消息,即该第二节点发送的路径请求消息中包含该第二节点支持的频点f1和f2、第二节点请求的吞吐量40Mbps、及路径信息<第一节点的标识信息(还可以包括第一节点请求的吞吐量60Mbps)—第一节点与第二节点之间的回程链路的信息(f2,40Mbps)—第二节点的标识信息>。
S204:若所述第二节点是所述目的节点,或者所述第二节点拥有到达所述目的节点的回程路径(第一类中间节点),则所述第二节点向所述第一节点发送路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,所述回程路径的路径信息中包括回程路径中各节点的标识信息,或者,包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
比如,第二节点是目的节点,该目的节点满足第一节点的回程需求,能够与第一节点之间建立回程链路的频点为f1。目的节点将自己的标识信息加入路径应答消息的路径信息中,也可以将与第一节点之间的回程链路的信息(比如该目的节点与第一节点之间的回程链路使用的频点为f1)加入该路径信息中;目的节点向第一节点发送路径应答消息,该路 径应答消息中包含路径信息<第一节点的标识信息—第一节点与目的节点之间的回程链路的信息(比如该目的节点与第一节点之间的回程链路使用的频点f1)—目的节点的标识信息>。
在具体实施中,若路径请求消息经过多跳才能到达目的节点,则该目的节点发送的路径应答消息中还会包含至少一个中间节点的信息,比如,目的节点发送的路径应答消息中包含路径信息<第一节点的标识信息—第一节点与中间节点之间的回程链路的信息(比如该第一节点与中间节点之间的回程链路使用的频点f2)—中间节点的标识信息-中间节点与目的节点之间的回程链路的信息(比如该中间节点与目的节点之间的回程链路使用的频点f1)—目的节点的标识信息>。
再比如,第二节点是第一类中间节点(拥有到达目的节点的回程路径,该回程路径可以包含一跳或多跳的回程链路)。假设该第一类中间节点与目的节点之间存在直接通信的回程链路,该回程链路使用的频点为f3,能够满足回程需求中的吞吐量100Mbps;该第一类中间节点能够与第一节点之间建立回程链路的频点为f1,满足第一节点对吞吐量60Mbps的需求。第一类中间节点将自己的标识信息及与目的节点之间的回程链路的信息加入路径应答消息的路径信息中,也可以将与第一节点之间的回程链路的信息(比如该第一类中间节点与第一节点之间的回程链路使用的频点为f1、满足的吞吐量需求为60Mbps)加入该路径信息中;第一类中间节点向第一节点发送路径应答消息,该路径应答消息中包含路径信息<第一节点的标识信息—第一节点与第一类中间节点之间的回程链路的信息(f1,60Mbps)—第一类中间节点的标识信息—第一类中间节点与目的节点之间的回程链路的信息(f3,100Mbps)—目的节点的标识信息>。
在具体实施中,若路径请求消息经过多跳才能到达第一类中间节点,则该第一类中间节点发送的路径应答消息中还会包含至少一个第二类中间节点的信息,比如,第一类中间节点发送的路径应答消息中包含路径信息<第一节点的标识信息(60Mbps)—(f2,60Mbps)—第二类中间节点的标识信息—(f1,60Mbps)—第一类中间节点的标识信息—(f3,100Mbps)—目的节点的标识信息>。
S205:第一节点基于目的节点或拥有到达目的节点的回程路径的节点(第一类中间节点)发送的路径应答消息,选择至少一条回程路径,所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,所述第一节点基于路径应答消息,选择至少一条回程路径,包括:
当所述第一节点基于路径应答消息,确定存在满足回程需求的回程路径时,基于满足回程需求的每条回程路径的跳数,选择回程路径;和/或,
当所述第一节点基于路径应答消息,确定存在满足部分回程需求的回程路径时,基于满足部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径;所述回程需求包括对回程路径的吞吐量的需求。
在具体实施过程中,第一节点选择回程路径的原则可以包括:若存在多条满足回程需求的回程路径,则按照回程路径的跳数由小到大的顺序,选择一条或多条回程路径;比如,选择两条回程路径,一条作为主用路径,另一条作为备用路径(backup),当主用路径不可用时,快速启用备用路径,从而可以增加回程路径的可靠性和鲁棒性。若存在多条满足部分回程需求的回程路径,则选择能够满足回程需求的路径数最少的多条回程路径,可以按照每条回程路径能够满足的回程需求(比如吞吐量大小)由大到小的顺序,选择多条回程路径。
可选地,所述方法还包括:
若所述第一节点在发送路径请求消息后的预设时间长度内没有接收到路径应答消息,或者接收的路径应答消息中指示的回程路径的路径信息不满足所述第一节点的回程需求,则重新发送路径请求消息;和/或,
若所述第一节点在选择的回程路径上的丢包率大于预设门限值,则重新发送路径请求消息。
S206:第一节点向选择的回程路径中的节点发送路径确认消息;所述路径确认消息中包含选择的回程路径的路径信息。
S207:第二节点在接收到第一节点发送的路径确认消息后,确定需要为所述第一节点提供回程服务。
在具体实施过程中,第二节点在确定需要为第一节点提供回程服务后,可以首先做好为第一节点提供回程服务的准备,比如开启与第一节点之间的回程链路所使用的频点(该频点为之前未使用的频点);再比如,为该回程服务做好资源预留(在之前使用的频点和带宽上预留出频谱资源)。
S208:第二节点丢弃接收的路径请求消息。
在具体实施过程中,若第二节点基于自身回程能力及第一节点的路径请求消息,确定自身无法为第一节点提供回程服务,则可以选择丢弃接收的路径请求消息。
比如,第一节点发送的路径请求消息中包含第一节点支持的频点f1、f3,请求的吞吐量60Mbps,及邻区测量结果所指示的各频点上的干扰情况(任一频点上的干扰值具体可以是在该频点上接收到的相邻节点的RSRP测量值之和):f1频点上的干扰值>f3频点上的干扰值;第二节点支持的频点为f1、f2,已有回程链路的吞吐量为50Mbps,负责的接入链 路的频点为f1,带宽为20MHz,负荷为80%。第二节点确定已有回程链路的吞吐量50Mbps<60Mbps+delta1(delta1=10Mbps),只满足第一节点对吞吐量的部分需求,第二节点可以与第一节点之间建立的回程链路的频点为f1;但是,f1频点为接入链路使用的频点,负荷较高、且干扰较大,不能为第一节点提供回程服务,因此,第二节点选择丢弃接收的该路径请求消息。
下面,列举一个具体的实施例三对上述实施例二作进一步说明。
实施例三
如图3所示,为分布式组网下的小站的回程路径部署示意图;其中,AP3为拥有有线回程链路的小站,通过光纤连接到达核心网,AP0、AP1为自部署或即插即用的小站,AP1、AP2及宏基站(eNB)为AP0的邻区节点。如图4所示,为本申请实施例三提供的路径选择方法流程图,包括以下步骤:
S401:第一节点(比如AP0)开机后进行邻区测量。
具体地,AP0支持的频点包括2.0GHz、3.4GHz-3.6GHz。与AP0相邻的演进基站(evolved Node B,eNB)工作在2.0GHz,与AP0相邻的AP工作在3.5GHz。AP0进行邻区测量,获得相邻的eNB和AP的RSRP测量值,其中eNB的RSRP测量值为-100dBm,AP1的RSRP测量值为-80dBm,AP2的RSRP测量值为-110dBm。
S402:第一节点(AP0)基于邻区测量结果,选择至少一个相邻的第二节点,向选择的第二节点发送路径请求消息。
具体地,AP0选择RSRP测量值小于预设的RSRP门限值(-100dBm)的节点,其中eNB和AP1的RSRP测量值都满足该条件。AP0以用户终端的形式分别接入到eNB和AP1,通过RRC消息发送路径请求消息,其中包含支持的频点为f1、f2和f3,对回程路径中吞吐量的需求60Mbps,及邻区测量结果所指示的各频点上的干扰情况(任一频点上的干扰值具体可以是在该频点上接收到的相邻节点的RSRP测量值之和):f1频点上的干扰值>f2频点上的干扰值>f3频点上的干扰值。
eNB的回程层级为0,支持的频点为f1,已有回程链路的吞吐量为1Gbps,负责的接入链路使用的频点为f1,带宽为20MHz,负荷为80%。eNB已有回程链路的吞吐量1Gbps>60Mbps+delta1(delta1=10Mbps),可以满足AP0的回程需求,其可以为AP0建立回程链路的频点为f1。但是,f1为eNB的接入链路使用的频点,负荷过高且干扰较大,不能作为AP0回程链路的频点。因此,eNB丢弃该路径请求消息。
AP1的回程层级为2,支持的频点为f1和f2,已有回程链路的吞吐量为100Mbps,负责的接入链路的频点为f1,带宽为20MHz,负荷为40%。AP1已有回程链路的吞吐量100 Mbps>60Mbps+delta1(delta1=10Mbps),可以满足AP0的回程需求,其可以为AP0提供回程服务的频点为f1和f2。由于f1为AP1的接入链路使用的频点,负荷较高且干扰较大,因此AP1选择负荷较低(未使用)、且干扰较小的频点f2作为与AP0之间的回程链路的频点。
AP1为所述第一类中间节点(已拥有到达目的节点的回程路径),但由于AP1在已有回程路径中的回程层级较高(层级为2),因此AP1选择继续寻求除已有回程路径之外的其它回程路径;AP1将自己的标识信息、以及与AP0之间的回程链路使用的频点f2、满足的回程需求的吞吐量60Mbps加入路径请求消息的路径信息中。
S403:第二节点(AP1,第一类中间节点)向至少一个相邻的节点发送路径请求消息。
具体地,AP1发送的路径请求消息中包含它支持的频点f1和f2、需求的吞吐量60Mbps、及已有路径信息<AP0(60Mbps)—(f2,60Mbps)—AP1>。AP1的相邻节点AP3接收到该路径请求消息。
AP3的回程层级为0,即为目的节点,支持的频点为f1和f2,已有回程链路的吞吐量为1Gbps,负责的接入链路的频点为f2,带宽为20MHz,负荷80%。AP3已有回程链路的吞吐量1000Mbps>60Mbps+delta1(delta1=10Mbps),可以满足AP1的回程需求,其可以为AP1提供回程服务的频点为f1和f2。由于f2为AP3的接入链路使用的频点,负荷过高,可以选择负荷较低(未使用)、且干扰较小的频点f1作为AP1回程链路的频点。AP3将自己的标识信息、以及与AP1之间的回程链路使用的频点f1、满足的回程需求的吞吐量60Mbps加入路径信息中,由于AP3已是目的节点,因此,AP3可以向AP0发送携带该路径信息<AP0(60Mbps)—(f2,60Mbps)—AP1—(f1,60Mbps)—AP3>的路径应答消息。可见,AP1在该AP3反馈的回程路径中的回程层级为1,小于在之前已有回程路径中的回程层级。
S404:与第二节点相邻的目的节点(AP3)通过第二节点(AP1)向第一节点(AP0)发送路径应答消息。
具体地,AP3发送的路径应答消息中包含整条回程路径的路径信息<AP0(60Mbps)—(f2,60Mbps)—AP1—(f1,60Mbps)—AP3>。
S405:第一节点(AP0)根据目的节点(AP3)发送的路径应答消息,选择回程路径,并向选择的回程路径中的第二节点(AP1)和目的节点(AP3)发送路径确认消息。
具体地,AP0收到AP3发送的路径应答消息,根据路径信息选择<AP0-AP1-AP3>这条回程路径。AP1、AP3接收到AP1的路径确认消息后,做好为AP1提供回程服务的准备,具体地,AP1开启与AP0之间的回程链路的频点f2,AP3开启与AP1之间的回程链路的 频点f1。
实施例四
该实施例四中,对由集中控制节点发送路径指示消息(在该实施例中称为路径确认消息)的实施方式作说明,具体实施与上述实施例二重复之处,不再赘述。
如图5所示,为本申请实施例四提供的路径选择方法流程图,包括以下步骤:
S501:第一节点向至少一个相邻的第二节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息。
S502:第二节点基于所述路径请求消息,判断自身能否为所述第一节点提供回程服务,若能,则进入S503或S504;否则,进入S509。
S503:若所述第二节点不是所述目的节点(中间节点,可以是第一类中间节点或第二类中间节点),则所述第二节点将自身的标识信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点,由所述至少一个相邻的节点继续寻求到达所述目的节点的回程路径。
这里,存在两种情况,一种情况是第二节点为第二类中间节点(没有到达目的节点的回程路径),则该第二节点直接执行上述步骤S503。另一种情况是第二节点为第一类中间节点(已拥有到达目的节点的回程路径),此时,该第二节点可以执行上述步骤S503和/或下述步骤S504;可选地,第二节点可以首先确认自身在已有回程路径中的回程层级,若该回程层级大于或等于预设层级(比如预设层级为2),则第二节点可以只执行上述步骤S503,或者既执行下述步骤S504,也执行上述步骤S503;若该回程层级(比如该回程层级为1)小于预设层级,则第二节点可以执行下述步骤S504。
S504:若所述第二节点是所述目的节点,或者所述第二节点拥有到达所述目的节点的回程路径(第一类中间节点),则所述第二节点向集中控制节点发送路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
这里,当目的节点被集中控制节点所控制时,第二节点可以向集中控制节点发送路径应答消息。
S505:集中控制节点基于目的节点或拥有到达目的节点的回程路径的节点(第一类中间节点)发送的路径应答消息,选择至少一条回程路径,所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,集中控制节点选择至少一条回程路径,包括:
当所述集中控制节点基于至少一个节点发送的路径应答消息,确定存在满足所述第一节点的回程需求的回程路径时,基于满足所述第一节点的回程需求的每条回程路径的跳 数,选择回程路径;和/或,
当所述集中控制节点基于所述至少一个节点发送的路径应答消息,确定存在满足所述第一节点的部分回程需求的回程路径时,基于满足所述第一节点的部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径。
在具体实施过程中,集中控制节点选择回程路径的原则可以包括:若存在多条满足回程需求的回程路径,则按照回程路径的跳数由小到大的顺序,选择一条或多条回程路径。若存在多条满足部分回程需求的回程路径,则选择能够满足回程需求的路径数最少的多条回程路径,可以按照每条回程路径能够满足的回程需求(比如吞吐量大小)由大到小的顺序,选择多条回程路径。
S506:集中控制节点向选择的回程路径中的节点发送路径确认消息;所述路径确认消息中包含选择的回程路径的路径信息。
在具体实施中,集中控制节点可以向目的节点发送路径确认消息,由目的节点将该路径确认消息转发给回程路径中的下一跳节点,下一跳节点再进行转发,直到到达第一节点。
S507:第一节点根据接收的集中控制节点发送的路径确认消息,确定回程路径。
可选地,所述方法还包括:
若第一节点在发送路径请求消息后的预设时间长度内没有接收到路径确认消息,或者接收的路径确认消息中指示的回程路径的路径信息不满足所述第一节点的回程需求,则重新发送路径请求消息;和/或,
若所述第一节点在确定的回程路径上的丢包率大于预设门限值,则重新发送路径请求消息。
S508:第二节点在接收到集中控制节点发送的路径确认消息后,确定需要为所述第一节点提供回程服务。
S509:第二节点丢弃接收的路径请求消息。
本申请实施例四相比实施例二和三,不同之处在于由集中控制节点来进行回程路径的选择。相比其它节点,集中控制节点存储的节点信息更全面,可以针对全局进行最优的回程路径选择;并且,由于不需要将路径应答消息发送到小站,从而无需对路径应答消息进行多跳转发,节省了信令开销。
下面,列举一个具体的实施例五对上述实施例四作进一步说明。
实施例五
图6为为混合式组网下的小站的回程路径部署示意图;图6中,AP4和AP5由集中控制节点控制,它们和集中控制节点之间存在有线回程链路,可以进行数据和信令的传输。 宏基站与集中控制节点之间存在有线链路(如X2接口的链路),可以进行数据和信令的交互。AP6、AP7和AP8为即插即用的AP,宏基站与AP6之间建立了无线回程链路,宏基站为AP6提供回程服务,形成AP6的回程路径。AP7和AP4之间建立了无线回程链路,AP4为AP7提供回程服务,同时,AP7和AP8之间建立了无线回程链路,AP7为AP8提供回程服务,这样,AP8的回程路径即为AP8-AP7-AP4。
如图7所示,为本申请实施例五提供的路径选择方法流程图,包括以下步骤:
S701:第一节点(AP8)开机后进行邻区测量。
具体地,AP8支持的频点包括2.0GHz、3.4GHz-3.6GHz。与AP8相邻的演进基站(evolved Node B,eNB)工作在2.0GHz,与AP8相邻的AP工作在3.5GHz。AP8进行邻区测量,获得相邻的eNB和AP的RSRP测量值,其中eNB的RSRP测量值为-100dBm,AP7的RSRP测量值为-80dBm,AP6的RSRP测量值为-110dBm。
S702:第一节点(AP8)基于邻区测量结果,选择至少一个相邻的第二节点,向选择的第二节点发送路径请求消息。
具体地,AP8选择RSRP测量值小于预设的RSRP门限值(-100dBm)的节点,其中eNB和AP7的RSRP测量值都满足该条件。AP8以用户终端的形式分别接入到eNB和AP7,通过RRC消息发送路径请求消息,其中包含支持的频点为f1、f2和f3,对回程路径中吞吐量的需求60Mbps,及邻区测量结果所指示的各频点上的干扰情况(任一频点上的干扰值具体可以是在该频点上接收到的相邻节点的RSRP测量值之和):f1频点上的干扰值>f2频点上的干扰值>f3频点上的干扰值。
eNB的回程层级为0,支持的频点为f1,已有回程链路的吞吐量为1Gbps,负责的接入链路使用的频点为f1,带宽为20MHz,负荷为80%。eNB已有回程链路的吞吐量1Gbps>60Mbps+delta1(delta1=10Mbps),可以满足AP8的回程需求,其可以为AP8建立回程链路的频点为f1。但是,f1为eNB的接入链路使用的频点,负荷过高且干扰较大,不能作为AP8回程链路的频点。因此,eNB丢弃该路径请求消息。
AP7的回程层级为1,支持的频点为f1、f2和f4,已有回程链路的吞吐量为100Mbps,负责的接入链路的频点为f1,带宽为20MHz,负荷为40%。AP7已有回程链路的吞吐量100Mbps>60Mbps+delta1(delta1=10Mbps),可以满足AP8的回程需求,其可以为AP8提供回程服务的频点为f1和f2。由于f1为AP7的接入链路使用的频点,负荷较高且干扰较大,因此AP7选择负荷较低(未使用)、且干扰较小的频点f2作为与AP8之间的回程链路的频点。
AP7确定自身已拥有到达回程层级为0的节点AP4的回程链路(该回程链路占用频点 f4,满足的吞吐量需求为100Mbps),该AP4被集中控制节点所控制,则AP7将自己的标识信息、AP4的标识信息、以及AP7和AP8之间的回程链路使用的频点f2、满足的回程需求的吞吐量60Mbps加入携带在路径应答消息的路径信息中,通过AP4发送给集中控制节点。
S703:第二节点(AP7,第一类中间节点)通过目的节点(AP4)向集中控制节点发送路径应答消息。
具体地,AP7发送的路径应答消息中包含回程路径的路径信息<AP8(60Mbps)—(f2,60Mbps)—AP7—(f4,100Mbps)—AP4>。
S704:集中控制节点根据第二节点(AP7)的路径应答消息,选择回程路径,并向选择的回程路径中的目的节点(AP4)、第二节点(AP7)和第一节点(AP8)发送路径确认消息。
具体地,集中控制节点收到目的节点转发的AP7的路径应答消息,根据路径信息选择<AP8-AP7-AP4>这条回程路径。AP4接收到路径确认消息后,做好为AP7提供无线回程服务的准备,具体地,AP4在使用的频点f4上预留频谱资源;AP7接收到路径确认消息后,做好为AP8提供无线回程服务的准备,具体地,AP7开启与AP8之间的回程链路的频点f2;AP8接收到路径确认消息后,确定回程路径为<AP8-AP7-AP4>,并且该回程路径满足AP8的回程需求。
基于同一发明构思,本申请实施例中还提供了一种与路径选择方法对应的路径选择装置,由于该装置解决问题的原理与本申请实施例的路径选择方法相似,因此该装置的实施可以参见方法的实施,重复之处不再赘述。
实施例六
如图8所示,为本申请实施例六提供的路径选择装置结构示意图,包括:
发送模块81,用于发送用于获取从第一节点到达目的节点的回程路径的路径请求消息;
确定模块82,用于基于接收的路径指示消息,确定至少一条回程路径。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,所述路径请求消息中包括所述第一节点的标识信息;或者,所述路径请求消息中包括所述第一节点的标识信息,以及以下信息中的一种或多种:
所述第一节点支持的频点和/或带宽;
所述第一节点的回程需求信息,所述回程需求信息包括对时延和/或吞吐量的需求信息;
所述第一节点的邻区测量结果。
可选地,所述发送模块81具体用于:
向至少一个相邻的第二节点发送路径请求消息。
可选地,所述发送模块81具体用于:
在第一节点接入任一相邻的第二节点后,通过无线资源控制RRC消息向该第二节点发送路径请求消息;或者,
以广播形式向至少一个相邻的第二节点发送路径请求消息。
可选地,所述发送模块81具体用于:
进行邻区测量,根据邻区测量结果选择至少一个第二节点;向选择的至少一个第二节点发送路径请求消息。
可选地,所述路径指示消息为路径应答消息;
所述确定模块82具体用于:
基于目的节点和/或已拥有到达目的节点的回程路径的节点发送的路径应答消息,选择至少一条回程路径,所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,所述发送模块81还用于,在所述确定模块82选择至少一条回程路径之后,向选择的回程路径中的节点发送路径确认消息;所述路径确认消息中包含选择的回程路径的路径信息。
可选地,所述确定模块82具体用于:
基于路径应答消息,确定存在满足回程需求的回程路径时,基于满足回程需求的每条回程路径的跳数,选择回程路径;和/或,
基于路径应答消息,确定存在满足部分回程需求的回程路径时,基于满足部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径;所述回程需求包括对回程路径的吞吐量的需求。
可选地,所述路径指示消息为路径确认消息;
所述确定模块82具体用于:接收集中控制节点发送的路径确认消息;所述路径确认消息中包含集中控制节点选择的回程路径的路径信息。
可选地,所述回程路径的路径信息中包括回程路径中各节点的标识信息,或者,包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
可选地,所述发送模块81还用于:
若在发送路径请求消息后的预设时间长度内没有接收到路径指示消息,或者接收的路 径指示消息中指示的回程路径的路径信息不满足所述第一节点的回程需求,则重新发送路径请求消息;和/或,若所述确定模块确定的回程路径上的丢包率大于预设门限值,则重新发送路径请求消息。
实施例七
如图9所示,为本申请实施例七提供的路径选择装置结构示意图,包括:
接收模块91,用于接收与第二节点相邻的第一节点发送的用于获取从第一节点到达目的节点的回程路径的路径请求消息;
判断模块92,用于基于所述路径请求消息,判断第二节点能否为所述第一节点提供回程服务。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,所述判断模块92具体用于:
基于所述路径请求消息,以及以下信息中的一种或多种,判断自身是否能够为所述第一节点提供回程服务:
所述第二节点支持的频点和/或带宽;
指示所述第二节点的接入链路特性的信息;
指示所述第二节点的回程链路特性的信息。
可选地,若所述第二节点是所述目的节点,或者所述第二节点拥有到达所述目的节点的回程路径,则所述装置还包括:
第一发送模块93,用于所述判断模块92确定第二节点能够为所述第一节点提供回程服务之后,向所述第一节点或者集中控制节点发送路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,所述回程路径的路径信息中包括回程路径中各节点的标识信息;或者,所述回程路径的路径信息中包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
可选地,若所述第二节点不是所述目的节点、且没有到达所述目的节点的回程路径,则所述装置还包括:
第二发送模块94,用于在所述判断模块92确定第二节点能够为所述第一节点提供回程服务之后,将第二节点的标识信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点,或者,将第二节点的标识信息和所述第二节点与所述第一节点之间的回程链路的信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点。
可选地,所述装置还包括:
确定模块95,用于在接收到所述第一节点或集中控制节点发送的路径确认消息后,确 定第二节点需要为所述第一节点提供回程服务。
可选地,所述装置还包括:
处理模块96,用于在所述判断模块92确定第二节点不能为所述第一节点提供回程服务之后,丢弃所述接收模块接收的路径请求消息。
实施例八
如图10所示,为本申请实施例八提供的路径选择装置结构示意图,包括:
接收模块101,用于接收至少一个节点发送的路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息;
选择模块102,用于基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径;
发送模块103,用于向选择模块102选择的回程路径中的节点发送指示选择的回程路径的路径确认消息。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,所述选择模块102具体用于:
当基于至少一个节点发送的路径应答消息,确定存在满足所述第一节点的回程需求的回程路径时,基于满足所述第一节点的回程需求的每条回程路径的跳数,选择回程路径;和/或,
当基于所述至少一个节点发送的路径应答消息,确定存在满足所述第一节点的部分回程需求的回程路径时,基于满足所述第一节点的部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径。
实施例九
如图11所示,为本申请实施例九提供的路径选择设备结构示意图,包括:
处理器1104,用于读取存储器1105中的程序,执行下列过程:
通过收发机1101发送用于获取从第一节点到达目的节点的回程路径的路径请求消息;
基于通过收发机1101接收的路径指示消息,确定至少一条回程路径;
收发机1101,用于在处理器1104的控制下接收和发送数据。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,所述路径请求消息中包括所述第一节点的标识信息;或者,所述路径请求消息中包括所述第一节点的标识信息,以及以下信息中的一种或多种:
所述第一节点支持的频点和/或带宽;
所述第一节点的回程需求信息,所述回程需求信息包括对时延和/或吞吐量的需求信 息;
所述第一节点的邻区测量结果。
可选地,处理器1104具体用于:
通过收发机1101向至少一个相邻的第二节点发送路径请求消息。
可选地,处理器1104具体用于:
在第一节点接入任一相邻的第二节点后,控制收发机1101通过无线资源控制RRC消息向该第二节点发送路径请求消息;或者,
控制收发机1101以广播形式向至少一个相邻的第二节点发送路径请求消息。
可选地,处理器1104具体用于:进行邻区测量,根据邻区测量结果选择至少一个第二节点;通过收发机1101向选择的至少一个第二节点发送路径请求消息。
可选地,所述路径指示消息为路径应答消息;处理器1104具体用于:基于目的节点和/或已拥有到达目的节点的回程路径的节点发送的路径应答消息,选择至少一条回程路径,所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,处理器1104还用于:在选择至少一条回程路径之后,通过收发机1101向选择的回程路径中的节点发送路径确认消息;所述路径确认消息中包含选择的回程路径的路径信息。
可选地,处理器1104还用于:
基于路径应答消息,确定存在满足回程需求的回程路径时,基于满足回程需求的每条回程路径的跳数,选择回程路径;和/或,
基于路径应答消息,确定存在满足部分回程需求的回程路径时,基于满足部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径;所述回程需求包括对回程路径的吞吐量的需求。
可选地,所述路径指示消息为路径确认消息;
处理器1104具体用于:通过收发机1101接收集中控制节点发送的路径确认消息;所述路径确认消息中包含集中控制节点选择的回程路径的路径信息。
可选地,所述回程路径的路径信息中包括回程路径中各节点的标识信息,或者,包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
可选地,处理器1104还用于:
若在发送路径请求消息后的预设时间长度内没有接收到路径指示消息,或者接收的路径指示消息中指示的回程路径的路径信息不满足所述第一节点的回程需求,则通过收发机1101重新发送路径请求消息;和/或,若确定的回程路径上的丢包率大于预设门限值,则 通过收发机1101重新发送路径请求消息。
在图11中,总线架构(用总线1100来代表),总线1100可以包括任意数量的互联的总线和桥,总线1100将包括由处理器1104代表的一个或多个处理器和存储器1105代表的存储器的各种电路链接在一起。总线1100还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1103在总线1100和收发机1101之间提供接口。收发机1101可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1104处理的数据通过天线1102在无线介质上进行传输,进一步,天线1102还接收数据并将数据传送给处理器1104。
处理器1104负责管理总线1100和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1105可以被用于存储处理器1104在执行操作时所使用的数据。
可选的,处理器1104可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
实施例十
如图12所示,为本申请实施例十提供的路径选择设备结构示意图,包括:
处理器1204,用于读取存储器1205中的程序,执行下列过程:
通过收发机1201接收与第二节点相邻的第一节点发送的用于获取从第一节点到达目的节点的回程路径的路径请求消息;
基于所述路径请求消息,判断第二节点能否为所述第一节点提供回程服务;
收发机1201,用于在处理器1204的控制下接收和发送数据。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,处理器1204具体用于:
基于所述路径请求消息,以及以下信息中的一种或多种,判断自身是否能够为所述第一节点提供回程服务:
所述第二节点支持的频点和/或带宽;
指示所述第二节点的接入链路特性的信息;
指示所述第二节点的回程链路特性的信息。
可选地,若所述第二节点是所述目的节点,或者所述第二节点拥有到达所述目的节点的回程路径,则处理器1204还用于:
确定第二节点能够为所述第一节点提供回程服务之后,通过收发机1201向所述第一节点或者集中控制节点发送路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
可选地,所述回程路径的路径信息中包括回程路径中各节点的标识信息;或者,所述回程路径的路径信息中包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
可选地,若所述第二节点不是所述目的节点、且没有到达所述目的节点的回程路径,则处理器1204还用于:
在确定第二节点能够为所述第一节点提供回程服务之后,将第二节点的标识信息添加在所述路径请求消息的路径信息中,通过收发机1201发送给至少一个相邻的节点;或者,将第二节点的标识信息和所述第二节点与所述第一节点之间的回程链路的信息添加在所述路径请求消息的路径信息中,通过收发机1201发送给至少一个相邻的节点。
可选地,处理器1204还用于:
在通过收发机1201接收到所述第一节点或集中控制节点发送的路径确认消息后,确定第二节点需要为所述第一节点提供回程服务。
可选地,处理器1204还用于:
在确定第二节点不能为所述第一节点提供回程服务之后,丢弃所述接收模块接收的路径请求消息。
在图12中,总线架构(用总线1200来代表),总线1200可以包括任意数量的互联的总线和桥,总线1200将包括由处理器1204代表的一个或多个处理器和存储器1205代表的存储器的各种电路链接在一起。总线1200还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1203在总线1200和收发机1201之间提供接口。收发机1201可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1204处理的数据通过天线1202在无线介质上进行传输,进一步,天线1202还接收数据并将数据传送给处理器1204。
处理器1204负责管理总线1200和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1205可以被用于存储处理器1204在执行操作时所使用的数据。
可选的,处理器1204可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
实施例十一
如图13所示,为本申请实施例十一提供的路径选择设备结构示意图,包括:
处理器1304,用于读取存储器1305中的程序,执行下列过程:
通过收发机1301接收至少一个节点发送的路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息;
基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径;
通过收发机1301向选择的回程路径中的节点发送指示选择的回程路径的路径确认消息;
收发机1301,用于在处理器1304的控制下接收和发送数据。
可选地,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
可选地,处理器1304具体用于:
当基于至少一个节点发送的路径应答消息,确定存在满足所述第一节点的回程需求的回程路径时,基于满足所述第一节点的回程需求的每条回程路径的跳数,选择回程路径;和/或,
当基于所述至少一个节点发送的路径应答消息,确定存在满足所述第一节点的部分回程需求的回程路径时,基于满足所述第一节点的部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径。
在图13中,总线架构(用总线1300来代表),总线1300可以包括任意数量的互联的总线和桥,总线1300将包括由处理器1304代表的一个或多个处理器和存储器1005代表的存储器的各种电路链接在一起。总线1300还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口1303在总线1300和收发机1301之间提供接口。收发机1301可以是一个元件,也可以是多个元件,比如多个接收器和发送器,提供用于在传输介质上与各种其他装置通信的单元。经处理器1304处理的数据通过天线1302在无线介质上进行传输,进一步,天线1302还接收数据并将数据传送给处理器1304。
处理器1304负责管理总线1300和通常的处理,还可以提供各种功能,包括定时,外围接口,电压调节、电源管理以及其他控制功能。而存储器1305可以被用于存储处理器1304在执行操作时所使用的数据。
可选的,处理器1304可以是CPU(中央处埋器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、FPGA(Field-Programmable Gate Array,现场可编程门阵列)或CPLD(Complex Programmable Logic Device,复杂可编程逻辑器件)。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (46)

  1. 一种路径选择方法,其特征在于,该方法包括:
    第一节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息;
    所述第一节点基于接收的路径指示消息,确定至少一条回程路径。
  2. 如权利要求1所述的方法,其特征在于,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
  3. 如权利要求1所述的方法,其特征在于,所述路径请求消息中包括所述第一节点的标识信息;或者,所述路径请求消息中包括所述第一节点的标识信息,以及以下信息中的一种或多种:
    所述第一节点支持的频点和/或带宽;
    所述第一节点的回程需求信息,所述回程需求信息包括对时延和/或吞吐量的需求信息;
    所述第一节点的邻区测量结果。
  4. 如权利要求1所述的方法,其特征在于,所述第一节点发送用于获取从第一节点到达目的节点的回程路径的路径请求消息,包括:
    第一节点向至少一个相邻的第二节点发送路径请求消息。
  5. 如权利要求4所述的方法,其特征在于,所述第一节点向至少一个相邻的第二节点发送路径请求消息,包括:
    所述第一节点接入任一相邻的第二节点后,通过无线资源控制RRC消息向该第二节点发送路径请求消息;或者,
    所述第一节点以广播形式向至少一个相邻的第二节点发送路径请求消息。
  6. 如权利要求4或5所述的方法,其特征在于,所述第一节点向至少一个相邻的第二节点发送路径请求消息,包括:
    第一节点进行邻区测量,根据邻区测量结果选择至少一个第二节点;
    所述第一节点向选择的至少一个第二节点发送路径请求消息。
  7. 如权利要求1所述的方法,其特征在于,所述路径指示消息为路径应答消息;
    所述第一节点基于接收的路径指示消息,确定至少一条回程路径,包括:
    所述第一节点基于目的节点和/或已拥有到达目的节点的回程路径的节点发送的路径应答消息,选择至少一条回程路径,所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
  8. 如权利要求7所述的方法,其特征在于,所述第一节点基于路径应答消息,选择 至少一条回程路径之后,还包括:
    所述第一节点向选择的回程路径中的节点发送路径确认消息;
    其中,所述路径确认消息中包含选择的回程路径的路径信息。
  9. 如权利要求7所述的方法,其特征在于,所述第一节点基于路径应答消息,选择至少一条回程路径,包括:
    当所述第一节点基于路径应答消息,所述第一节点确定存在满足回程需求的回程路径时,基于满足回程需求的每条回程路径的跳数,选择回程路径;和/或,
    当所述第一节点基于路径应答消息,所述第一节点确定存在满足部分回程需求的回程路径时,基于满足部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径;所述回程需求包括对回程路径的吞吐量的需求。
  10. 如权利要求1所述的方法,其特征在于,所述路径指示消息为路径确认消息;
    所述第一节点基于接收的路径指示消息,确定至少一条回程路径,包括:
    所述第一节点接收集中控制节点发送的路径确认消息;所述路径确认消息中包含集中控制节点选择的回程路径的路径信息。
  11. 如权利要求7~10任一所述的方法,其特征在于,所述回程路径的路径信息中包括回程路径中各节点的标识信息,或者,包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
  12. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    若所述第一节点在发送路径请求消息后的预设时间长度内没有接收到路径指示消息,或者接收的路径指示消息中指示的回程路径的路径信息不满足所述第一节点的回程需求,则重新发送路径请求消息;和/或,
    若所述第一节点在确定的回程路径上的丢包率大于预设门限值,则重新发送路径请求消息。
  13. 一种路径选择方法,其特征在于,该方法包括:
    第二节点接收相邻的第一节点发送的用于获取从第一节点到达目的节点的回程路径的路径请求消息;
    所述第二节点基于所述路径请求消息,判断自身能否为所述第一节点提供回程服务。
  14. 如权利要求13所述的方法,其特征在于,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
  15. 如权利要求13所述的方法,其特征在于,所述第二节点判断自身能否为所述第一节点提供回程服务,包括:
    所述第二节点基于所述路径请求消息,以及以下信息中的一种或多种,判断自身是否能够为所述第一节点提供回程服务:
    所述第二节点支持的频点和/或带宽;
    指示所述第二节点的接入链路特性的信息;
    指示所述第二节点的回程链路特性的信息。
  16. 如权利要求13所述的方法,其特征在于,若所述第二节点是所述目的节点,或者所述第二节点拥有到达所述目的节点的回程路径,则所述第二节点确定自身能够为所述第一节点提供回程服务之后,还包括:
    所述第二节点向所述第一节点或者集中控制节点发送路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
  17. 如权利要求16所述的方法,其特征在于,所述回程路径的路径信息中包括回程路径中各节点的标识信息;或者,所述回程路径的路径信息中包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
  18. 如权利要求13所述的方法,其特征在于,若所述第二节点不是所述目的节点,则所述第二节点确定自身能够为所述第一节点提供回程服务之后,还包括:
    所述第二节点将自身的标识信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点;或者,
    所述第二节点将自身的标识信息和所述第二节点与所述第一节点之间的回程链路的信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点。
  19. 如权利要求16~18任一所述的方法,其特征在于,所述方法还包括:
    所述第二节点在接收到所述第一节点或集中控制节点发送的路径确认消息后,确定需要为所述第一节点提供回程服务。
  20. 如权利要求13所述的方法,其特征在于,所述第二节点确定自身不能为所述第一节点提供回程服务之后,还包括:
    所述第二节点丢弃接收的路径请求消息。
  21. 一种路径选择方法,其特征在于,该方法包括:
    集中控制节点接收至少一个节点发送的路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息;
    所述集中控制节点基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径;
    所述集中控制节点向选择的回程路径中的节点发送指示选择的回程路径的路径确认 消息。
  22. 如权利要求21所述的方法,其特征在于,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
  23. 如权利要求21或22所述的方法,其特征在于,所述集中控制节点基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径,包括:
    当所述集中控制节点基于至少一个节点发送的路径应答消息,所述集中控制节点确定存在满足所述第一节点的回程需求的回程路径时,基于满足所述第一节点的回程需求的每条回程路径的跳数,选择回程路径;和/或,
    当所述集中控制节点基于所述至少一个节点发送的路径应答消息,所述集中控制节点确定存在满足所述第一节点的部分回程需求的回程路径时,基于满足所述第一节点的部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径。
  24. 一种路径选择装置,其特征在于,该装置包括:
    发送模块,用于发送用于获取从第一节点到达目的节点的回程路径的路径请求消息;
    确定模块,用于基于接收的路径指示消息,确定至少一条回程路径。
  25. 如权利要求24所述的装置,其特征在于,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
  26. 如权利要求24所述的装置,其特征在于,所述路径请求消息中包括所述第一节点的标识信息;或者,所述路径请求消息中包括所述第一节点的标识信息,以及以下信息中的一种或多种:
    所述第一节点支持的频点和/或带宽;
    所述第一节点的回程需求信息,所述回程需求信息包括对时延和/或吞吐量的需求信息;
    所述第一节点的邻区测量结果。
  27. 如权利要求24所述的装置,其特征在于,所述发送模块具体用于:
    向至少一个相邻的第二节点发送路径请求消息。
  28. 如权利要求27所述的装置,其特征在于,所述发送模块具体用于:
    在第一节点接入任一相邻的第二节点后,通过无线资源控制RRC消息向该第二节点发送路径请求消息;或者,
    以广播形式向至少一个相邻的第二节点发送路径请求消息。
  29. 如权利要求27或28所述的装置,其特征在于,所述发送模块具体用于:
    进行邻区测量,根据邻区测量结果选择至少一个第二节点;向选择的至少一个第二节 点发送路径请求消息。
  30. 如权利要求29所述的装置,其特征在于,所述路径指示消息为路径应答消息;
    所述确定模块具体用于:
    基于目的节点和/或已拥有到达目的节点的回程路径的节点发送的路径应答消息,选择至少一条回程路径,所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
  31. 如权利要求30所述的装置,其特征在于,所述发送模块还用于,在所述确定模块选择至少一条回程路径之后,向选择的回程路径中的节点发送路径确认消息;所述路径确认消息中包含选择的回程路径的路径信息。
  32. 如权利要求30所述的装置,其特征在于,所述确定模块具体用于:
    基于路径应答消息,确定存在满足回程需求的回程路径时,基于满足回程需求的每条回程路径的跳数,选择回程路径;和/或,
    基于路径应答消息,确定存在满足部分回程需求的回程路径时,基于满足部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径;所述回程需求包括对回程路径的吞吐量的需求。
  33. 如权利要求24所述的装置,其特征在于,所述路径指示消息为路径确认消息;
    所述确定模块具体用于:接收集中控制节点发送的路径确认消息;所述路径确认消息中包含集中控制节点选择的回程路径的路径信息。
  34. 如权利要求30~33任一所述的装置,其特征在于,所述回程路径的路径信息中包括回程路径中各节点的标识信息,或者,包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
  35. 如权利要求24所述的装置,其特征在于,所述发送模块还用于:
    若在发送路径请求消息后的预设时间长度内没有接收到路径指示消息,或者接收的路径指示消息中指示的回程路径的路径信息不满足所述第一节点的回程需求,则重新发送路径请求消息;和/或,若所述确定模块确定的回程路径上的丢包率大于预设门限值,则重新发送路径请求消息。
  36. 一种路径选择装置,其特征在于,该装置包括:
    接收模块,用于接收与第二节点相邻的第一节点发送的用于获取从第一节点到达目的节点的回程路径的路径请求消息;
    判断模块,用于基于所述路径请求消息,判断第二节点能否为所述第一节点提供回程服务。
  37. 如权利要求36所述的装置,其特征在于,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
  38. 如权利要求36所述的装置,其特征在于,所述判断模块具体用于:
    基于所述路径请求消息,以及以下信息中的一种或多种,判断自身是否能够为所述第一节点提供回程服务:
    所述第二节点支持的频点和/或带宽;
    指示所述第二节点的接入链路特性的信息;
    指示所述第二节点的回程链路特性的信息。
  39. 如权利要求36所述的装置,其特征在于,若所述第二节点是所述目的节点,或者所述第二节点拥有到达所述目的节点的回程路径,则所述装置还包括:
    第一发送模块,用于所述判断模块确定第二节点能够为所述第一节点提供回程服务之后,向所述第一节点或者集中控制节点发送路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息。
  40. 如权利要求39所述的装置,其特征在于,所述回程路径的路径信息中包括回程路径中各节点的标识信息;或者,所述回程路径的路径信息中包括回程路径中各节点的标识信息以及每一跳回程链路的信息。
  41. 如权利要求36所述的装置,其特征在于,若所述第二节点不是所述目的节点、且没有到达所述目的节点的回程路径,则所述装置还包括:
    第二发送模块,用于在所述判断模块确定第二节点能够为所述第一节点提供回程服务之后,将第二节点的标识信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点,或者,将第二节点的标识信息和所述第二节点与所述第一节点之间的回程链路的信息添加在所述路径请求消息的路径信息中,发送给至少一个相邻的节点。
  42. 如权利要求39~41任一所述的装置,其特征在于,所述装置还包括:
    确定模块,用于在接收到所述第一节点或集中控制节点发送的路径确认消息后,确定第二节点需要为所述第一节点提供回程服务。
  43. 如权利要求36所述的装置,其特征在于,所述装置还包括:
    处理模块,用于在所述判断模块确定第二节点不能为所述第一节点提供回程服务之后,丢弃所述接收模块接收的路径请求消息。
  44. 一种路径选择装置,其特征在于,该装置包括:
    接收模块,用于接收至少一个节点发送的路径应答消息;所述路径应答消息中包含从所述第一节点到达目的节点的回程路径的路径信息;
    选择模块,用于基于所述至少一个节点发送的路径应答消息,选择至少一条回程路径;
    发送模块,用于向所述选择模块选择的回程路径中的节点发送指示选择的回程路径的路径确认消息。
  45. 如权利要求44所述的装置,其特征在于,所述目的节点为任意拥有专用微波回程链路或有线回程链路的节点。
  46. 如权利要求44或45所述的装置,其特征在于,所述选择模块具体用于:
    当基于至少一个节点发送的路径应答消息,确定存在满足所述第一节点的回程需求的回程路径时,基于满足所述第一节点的回程需求的每条回程路径的跳数,选择回程路径;和/或,
    当基于所述至少一个节点发送的路径应答消息,确定存在满足所述第一节点的部分回程需求的回程路径时,基于满足所述第一节点的部分回程需求的每条回程路径能够满足的回程需求大小,选择多条回程路径。
PCT/CN2016/075803 2015-04-03 2016-03-07 一种路径选择方法及装置 WO2016155472A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/563,907 US10595261B2 (en) 2015-04-03 2016-03-07 Path selection method and device
EP16771227.2A EP3280183B1 (en) 2015-04-03 2016-03-07 Path selection method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510158979.XA CN106162764A (zh) 2015-04-03 2015-04-03 一种路径选择方法及装置
CN201510158979.X 2015-04-03

Publications (1)

Publication Number Publication Date
WO2016155472A1 true WO2016155472A1 (zh) 2016-10-06

Family

ID=57004721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/075803 WO2016155472A1 (zh) 2015-04-03 2016-03-07 一种路径选择方法及装置

Country Status (4)

Country Link
US (1) US10595261B2 (zh)
EP (1) EP3280183B1 (zh)
CN (1) CN106162764A (zh)
WO (1) WO2016155472A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108449776A (zh) * 2018-02-27 2018-08-24 深圳市海司恩科技有限公司 网络路径规划方法、节点设备及计算机存储介质

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10356709B1 (en) * 2017-07-07 2019-07-16 Sprint Spectrum L.P. Systems and methods for selecting a donor for a relay wireless device based on feedback
CN109429294B (zh) * 2017-08-24 2020-10-02 捷开通讯(深圳)有限公司 通信方法、基站、中继节点和具有存储性能的装置
CA3078837C (en) * 2017-10-28 2023-09-05 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting data in dual-connectivity scenario, network device and terminal device
CN111543083A (zh) * 2018-02-07 2020-08-14 Oppo广东移动通信有限公司 网络自组织的方法和设备
CN110166268B (zh) * 2018-02-13 2021-04-06 电信科学技术研究院有限公司 一种无线回程网络的通信方法及装置
US11343749B2 (en) * 2018-03-28 2022-05-24 Sony Corporation Methods, wireless communications networks and infrastructure equipment
CN110351807B (zh) 2018-04-04 2023-07-14 中兴通讯股份有限公司 接入选择方法及装置
CN110351810B (zh) * 2018-04-04 2022-01-14 大唐移动通信设备有限公司 一种接入方法和设备
WO2019200550A1 (zh) * 2018-04-18 2019-10-24 北京小米移动软件有限公司 无线接入方法及装置
CN110461019A (zh) * 2018-05-08 2019-11-15 电信科学技术研究院有限公司 一种回程路径的构建方法及装置
CN110475383A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 确定父节点的方法及装置
CN110831095B (zh) * 2018-08-11 2021-11-19 华为技术有限公司 通信方法和通信装置
US10880808B1 (en) * 2019-06-27 2020-12-29 REALTEK SINGAPORE Pte. Ltd. Wireless backhaul network for dynamically configuring wireless backhaul path
US20220361082A1 (en) * 2019-07-01 2022-11-10 Lenovo (Beijing) Limited Method and apparatus for reducing latency in communication system
US10887782B1 (en) * 2020-01-31 2021-01-05 Trakpoint Solutions, Inc. Optimization and failure detection of a wireless base station network
US11159962B2 (en) * 2020-01-31 2021-10-26 Trakpoint Solutions, Inc. Optimization and failure detection of a wireless base station network
US11418977B2 (en) 2020-01-31 2022-08-16 Trakpoint Solutions, Inc. Optimization and failure detection of a wireless base station network
US11115860B1 (en) * 2020-03-19 2021-09-07 Sprint Communications Company L.P. Secondary access node control in a wireless communication network
CN113965507A (zh) * 2020-06-29 2022-01-21 中兴通讯股份有限公司 一种通信方法、装置、控制端、系统和存储介质
CN111555982B (zh) * 2020-07-10 2020-09-29 武汉绿色网络信息服务有限责任公司 一种基于IPv6扩展头的报文智能选路的方法和系统
CN112134763B (zh) * 2020-09-25 2022-08-02 北京浪潮数据技术有限公司 一种集群节点间分层消息传输方法、系统、设备及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932120A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 中继节点与网络节点连接建立方法及装置
CN103477698A (zh) * 2011-04-13 2013-12-25 日本电气株式会社 移动通信系统、中继站、基站及其控制方法
CN103782633A (zh) * 2011-09-09 2014-05-07 高通股份有限公司 基于回程测量的接入点选择
CN103888981A (zh) * 2014-03-25 2014-06-25 电信科学技术研究院 一种通信路径的确定方法和装置
WO2014133426A1 (en) * 2013-02-26 2014-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for establishing a backhaul link

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6996065B2 (en) * 2000-07-06 2006-02-07 Lucent Technologies Inc. Dynamic backup routing of network tunnel paths for local restoration in a packet network
US7961603B2 (en) * 2006-12-14 2011-06-14 Telefonaktiebolaget L M Ericsson (Publ) Path management for enhanced protection
US8014329B2 (en) * 2007-07-03 2011-09-06 Cisco Technology, Inc. Path selection and power management in mesh networks
JP5104660B2 (ja) * 2008-08-27 2012-12-19 富士通株式会社 ネットワーク装置および回線設定制御方法
CN102187730A (zh) * 2008-10-20 2011-09-14 爱立信电话股份有限公司 用于LTE中的自回传的QoS管理
TWI426807B (zh) * 2009-06-23 2014-02-11 Inst Information Industry 基地台、中繼台及其後端控制通訊方法
US8850014B2 (en) * 2010-05-06 2014-09-30 Telefonaktiebolaget L M Ericsson (Publ) Handling failure of request message during set up of label switched path
US8634308B2 (en) * 2010-06-02 2014-01-21 Brocade Communications Systems, Inc. Path detection in trill networks
CN102136994B (zh) * 2010-08-02 2014-04-30 华为技术有限公司 一种建立标签交换路径的方法、系统和节点设备
WO2012105881A1 (en) * 2011-02-04 2012-08-09 Telefonaktiebolaget L M Ericsson (Publ) Methods and devices for supporting backhaul selection
US8908501B2 (en) * 2011-07-15 2014-12-09 Futurewei Technologies, Inc. Procedures for finding a backup ingress of a point-to-multipoint label switched path
US9319305B2 (en) * 2013-06-18 2016-04-19 Futurewei Technologies, Inc. Next hop ingress protection of label switched paths
US9344359B1 (en) * 2013-09-10 2016-05-17 Juniper Networks, Inc. Ingress protection for multipoint label switched paths
US10721789B2 (en) * 2014-10-30 2020-07-21 Telefonaktiebolaget Lm Ericsson (Publ) Handling of backup path in a wireless communication system
CN107105475A (zh) * 2016-02-19 2017-08-29 中兴通讯股份有限公司 一种无线回程网接入控制方法和装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101932120A (zh) * 2009-06-22 2010-12-29 华为技术有限公司 中继节点与网络节点连接建立方法及装置
CN103477698A (zh) * 2011-04-13 2013-12-25 日本电气株式会社 移动通信系统、中继站、基站及其控制方法
CN103782633A (zh) * 2011-09-09 2014-05-07 高通股份有限公司 基于回程测量的接入点选择
WO2014133426A1 (en) * 2013-02-26 2014-09-04 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for establishing a backhaul link
CN103888981A (zh) * 2014-03-25 2014-06-25 电信科学技术研究院 一种通信路径的确定方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3280183A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108449776A (zh) * 2018-02-27 2018-08-24 深圳市海司恩科技有限公司 网络路径规划方法、节点设备及计算机存储介质
CN108449776B (zh) * 2018-02-27 2023-09-05 深圳市亚特联科技有限公司 网络路径规划方法、节点设备及计算机存储介质

Also Published As

Publication number Publication date
US20180124677A1 (en) 2018-05-03
CN106162764A (zh) 2016-11-23
US10595261B2 (en) 2020-03-17
EP3280183A4 (en) 2018-04-11
EP3280183A1 (en) 2018-02-07
EP3280183B1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
WO2016155472A1 (zh) 一种路径选择方法及装置
US11252635B2 (en) Method for processing uplink user data in relay node, and device for same
CN109565852B (zh) 具有无线回程的无线网络中的动态资源分配
CN111727661B (zh) 中继节点中rrc消息的处理方法及设备
US20210160956A1 (en) Packet Routing for Layer-2-Based Sidelink Relay
JP6400752B2 (ja) ネットワークデバイス、ユーザ装置及び基地局
EP2612519B1 (en) Relay nodes in multi-operator scenario
TWI578818B (zh) 用於多重跳躍為底之網路的網路發起探索和路徑選擇程序
EP3210435B1 (en) Methods and apparatuses to form self-organized multi-hop millimeter wave backhaul links
CN106034343B (zh) 一种接入方法及装置
US9544827B2 (en) Enhanced local access in mobile communications with FDD resource allocation
WO2015143973A1 (zh) 一种通信路径的确定方法和装置
WO2018217427A1 (en) Mesh topology radio
US20160150459A1 (en) Techniques to support heterogeneous network data path discovery
US11304080B2 (en) Methods, base station, mobile node and relay node
GB2555061A (en) System and methods for selecting an optimum communication route in a wireless network
Lu et al. Clustering schemes for D2D communications under partial/no network coverage
KR101750038B1 (ko) 무선 통신의 범위 확장을 위한 시스템들, 장치 및 방법들
US11641613B2 (en) Method and apparatus for relay discovery
US20170127308A1 (en) Data transmission method and base station
US20220346044A1 (en) Methods for determining a muting pattern of ssb transmission for iab node measurement
US9042346B2 (en) Mobile relay station and handover method thereof
CN105992368B (zh) 一种资源分配方法及相关设备
CN115314970A (zh) 发现和选择中继用户设备的方法及用户设备
CN116997013A (zh) 多跳传输方法及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771227

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15563907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE