WO2016155046A1 - 一种触摸屏终端及其近场通信方法、装置和系统 - Google Patents

一种触摸屏终端及其近场通信方法、装置和系统 Download PDF

Info

Publication number
WO2016155046A1
WO2016155046A1 PCT/CN2015/077053 CN2015077053W WO2016155046A1 WO 2016155046 A1 WO2016155046 A1 WO 2016155046A1 CN 2015077053 W CN2015077053 W CN 2015077053W WO 2016155046 A1 WO2016155046 A1 WO 2016155046A1
Authority
WO
WIPO (PCT)
Prior art keywords
touch screen
screen terminal
area contact
threshold
data
Prior art date
Application number
PCT/CN2015/077053
Other languages
English (en)
French (fr)
Inventor
万跃鹏
方军
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to KR1020167036188A priority Critical patent/KR101847517B1/ko
Priority to EP15887014.7A priority patent/EP3280059B1/en
Publication of WO2016155046A1 publication Critical patent/WO2016155046A1/zh
Priority to US15/386,611 priority patent/US10101864B2/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • G06F3/04162Control or interface arrangements specially adapted for digitisers for exchanging data with external devices, e.g. smart pens, via the digitiser sensing hardware
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • G06F3/1423Digital output to display device ; Cooperation and interconnection of the display device with other functional units controlling a plurality of local displays, e.g. CRT and flat panel display
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/70Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes
    • H04B5/72Near-field transmission systems, e.g. inductive or capacitive transmission systems specially adapted for specific purposes for local intradevice communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/041012.5D-digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface and also measures the distance of the input means within a short range in the Z direction, possibly with a separate measurement setup
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication

Definitions

  • the present invention belongs to the field of communications technologies, and in particular, to a touch screen terminal and a near field communication method, apparatus and system thereof.
  • near-field communication includes two processes of proximity detection and data transmission, and one touch screen terminal transmits a proximity detection sequence (for example, a proximity detection sequence is composed of 6 frequency points), and sequentially scans multiple supported frequency points, and receives another After the response sequence of one touch screen terminal, if the signal strength of each frequency point is greater than the preset signal strength threshold, the signal source is considered to be present at the frequency point. When the signal source is present at all frequency points after the scanning is completed, it is determined that the signal source exists. The sequence is valid. After completing the sequence identification successfully according to the interaction rule, it is determined that the touch screen terminal is close to start transmitting or receiving data.
  • a proximity detection sequence for example, a proximity detection sequence is composed of 6 frequency points
  • the touch screen terminal may interfere with the proximity detection due to interferences such as an LCD (such as a driving signal) and a special picture (such as a gamma diagram), causing the touch screen terminal to approach the detection error, for example, the interference is large or
  • the small interference is consistent with the effective proximity detection sequence of the proximity detection, which may lead to the misjudgment of the proximity detection, which may cause the touch screen terminal to mistakenly detect the communication success and start transmitting or receiving data when the device that does not need communication is close. Communication will obviously fail. Therefore, the proximity detection anti-interference ability is weak, the stability is poor, LCD interference and different application scenarios may lead to proximity detection errors, which in turn leads to a large difference in the communication stability of the touch screen terminal between different LCD interference strengths and different application scenarios. .
  • the technical problem to be solved by the present invention is to provide a touch screen terminal and its near field.
  • the communication method, device and system are used to reduce the probability of proximity detection misjudgment, and solve the technical problem that the communication stability of the touch screen terminal is different in different application scenarios.
  • a near field communication method for use in a first touch screen terminal, the method comprising the steps of:
  • the first touch screen terminal detects whether there is a second touch screen terminal with a large area contact
  • the first signal intensity threshold is used to perform proximity detection with the second touch screen terminal, otherwise the second signal intensity threshold is used to perform proximity detection with the second touch screen terminal, wherein the second signal The intensity threshold is greater than the first signal strength threshold;
  • the second touch screen terminal of the first touch screen terminal detecting whether there is a large area contact further comprises:
  • the first touch screen terminal periodically acquires self-contained data, and calculates a self-contained data consistency value
  • the first touch screen terminal periodically acquires the self-contained data
  • the self-capacity data consistency value further includes: the first touch screen terminal periodically acquires the full-screen driving data and the sensing data; and calculates the driving data of the full-screen adjacent driving electrodes. The difference between the difference and the sensed data of the adjacent sense electrodes; summing the absolute values of the drive data difference and the sensed data difference, obtained from Data consistency value;
  • determining whether the self-capacity data satisfies the large-area contact condition further comprises: respectively counting that the self-contained data is greater than a preset first large-area contact threshold and a number greater than a second large-area contact threshold, wherein the second large-area contact threshold It is twice the contact threshold of the first large area; it is determined according to the two statistical results whether the large-area contact condition is satisfied.
  • performing the proximity detection with the second touch screen terminal by using the first signal strength threshold further comprises: issuing a proximity detection sequence; receiving a response sequence of the second touch screen terminal response; and receiving the signal strength amplitude according to each frequency point in the response sequence A greater than the first signal strength threshold determines whether the second touch screen terminal is close to;
  • Using the second signal strength threshold to perform proximity detection with the second touch screen terminal further includes: issuing a proximity detection sequence; receiving a response sequence of the second touch screen terminal response; and determining whether the signal strength amplitude is greater than the second according to each frequency point in the response sequence The signal strength threshold determines whether the second touch screen terminal is in proximity.
  • a near field communication device for use in a first touch screen terminal, the device comprising:
  • a large area contact detecting module for detecting whether there is a second touch screen terminal with a large area contact
  • a proximity detecting module configured to perform proximity detection by using a first signal strength threshold and a second touch screen terminal when detecting a second touch screen terminal having a large area contact, or performing proximity detection using the second signal intensity threshold and the second touch screen terminal Wherein the second signal strength threshold is greater than the first signal strength threshold;
  • the data transmission module is configured to perform data transmission with the second touch screen terminal after the proximity detection is successful.
  • the large area contact detecting module further comprises:
  • a calculation unit configured to periodically acquire self-contained data, and calculate a self-contained data consistency value
  • a first determining unit configured to determine whether the self-contained data consistency value is less than a preset consistency threshold
  • the second determining unit is configured to determine whether the self-capacity data satisfies the large-area contact condition. When the large-area contact condition is satisfied and the number of times of recognition does not reach the upper limit, the number of times of recognition is increased by one, and when the large-area contact condition is not satisfied and the number of times of recognition is not When it is 0, the number of recognitions is reduced by 1;
  • the third determining unit is configured to determine whether the number of times of identification in the preset time period reaches a preset threshold number of recognition times, and if yes, determine that there is a second touch screen terminal that contacts a large area, otherwise it determines that there is no second area contact Touch screen terminal.
  • the calculating unit is specifically configured to: the first touch screen terminal periodically acquires the full-screen driving data and the sensing data, and calculates a difference between the driving data of the full-screen adjacent driving electrodes and the sensing data of the adjacent sensing electrodes. The difference between the drive data difference and the sensed data difference is obtained to obtain a self-contained data consistency value;
  • the second determining unit is configured to: separately calculate that the self-contained data is greater than a preset first large area contact threshold and a number greater than the second large area contact threshold; and determine whether the large area contact condition is satisfied according to the two statistical results. .
  • the proximity detecting module further comprises:
  • a sending unit configured to issue a proximity detection sequence
  • a receiving unit configured to receive a response sequence of the second touch screen terminal response
  • a determining unit configured to determine whether the second touch screen terminal is close according to whether the signal strength amplitude received by each frequency point in the response sequence is greater than the first signal strength threshold or the second signal strength threshold.
  • a touch screen terminal provided includes the above-described near field communication device.
  • a near field communication system includes a first touch screen terminal and a second touch screen terminal, wherein the first touch screen terminal and/or the second touch screen terminal
  • the terminal is a touch screen terminal of the near field communication device described above.
  • the touch screen terminal and the near field communication method, device and system thereof provided by the invention use a double judgment standard for the signal received by the touch screen terminal, and add a large area contact detection before the proximity detection process, and determine the detection result according to the large area contact in real time.
  • the proximity of the detected signal strength threshold effectively controls the communication misjudgment, so that the touch screen terminal can adapt to different LCD interferences and different application scenarios, thereby improving communication stability.
  • FIG. 1 is a flowchart of a near field communication method according to an embodiment of the present invention.
  • FIG. 2 is a flow chart of a proximity detection method according to a preferred embodiment of the present invention.
  • FIG. 3 is a block diagram of a near field communication device according to an embodiment of the present invention.
  • FIG. 4 is a structural diagram of a near field communication system according to a preferred embodiment of the present invention.
  • FIG. 1 is a flowchart of a near field communication method according to an embodiment of the present invention. The method is applied to a first touch screen terminal, and specifically includes the following steps:
  • the first touch screen terminal detects whether there is a second touch screen terminal with a large area contact.
  • the present invention takes into account the near-field communication characteristics of the touch screen.
  • the two sides of the communication need to have direct contact, and the characteristics of large-area contact or coverage when using the touch screen communication can determine whether there are other touch screens that need to communicate close to each other.
  • Area contact detection can utilize the mutual and self-contained data of the touch screen. Large area contact detection is added before the proximity detection, and which proximity detection threshold is used according to the large area contact detection result, and the touch screen that requires communication is not detected. Before approaching, a strong effective signal is needed to successfully communicate, thereby effectively improving the proximity detection misjudgment caused by interference, effectively suppressing interference, and reducing the probability of erroneously entering the communication flow.
  • step S20 it is determined whether the second touch screen terminal of large area contact is detected, if yes, step S30 is performed, otherwise step S40 is performed;
  • the first signal strength threshold is a signal strength threshold of the prior art
  • the second signal strength threshold is greater than the first signal strength threshold
  • step S30 using the first signal strength threshold and the second touch screen terminal for proximity detection, and then proceeds to step S50;
  • the step S30 further includes: sending a proximity detection sequence; receiving a response sequence of the second touch screen terminal response; determining, according to whether the signal strength amplitude is greater than the first signal strength threshold for each frequency point in the response sequence, determining the second touch screen terminal Whether it is close.
  • S40 Perform a proximity detection by using a second signal strength threshold and the second touch screen terminal;
  • the step S40 further includes: sending a proximity detection sequence; receiving a response sequence of the second touch screen terminal response; determining, according to whether the signal strength amplitude is greater than the second signal strength threshold for each frequency point in the response sequence, determining the second touch screen terminal Whether it is close.
  • step S50 determining whether the proximity detection is successful, if yes, proceeding to step S60, otherwise returning to step S10;
  • the embodiment of the present invention further provides a near field communication method applied to the second touch screen terminal, which is the same as the prior art, and is not detailed here. Said.
  • the roles of the first touch screen terminal and the second touch screen terminal can be In the interchange, when a touch screen terminal is acting as the originating end of the communication, its role is the first touch screen terminal, and when a touch screen terminal is acting as the passive end of the communication, its role is the second touch screen terminal.
  • a double-judgment criterion is used for the signal received by the touch screen terminal, and a large-area contact detection is added before the proximity detection process, and the signal strength threshold value of the proximity detection is determined according to the large-area contact detection result in real time, thereby effectively controlling the communication error.
  • the judgment makes the touch screen terminal adapt to different LCD interferences and different application scenarios, thereby improving the stability of communication.
  • FIG. 2 is a flow chart of a method for detecting a large area contact according to a preferred embodiment of the present invention, including the following steps:
  • the first touch screen terminal periodically acquires self-contained data, and calculates a self-contained data consistency value.
  • two touch screen terminals transmit data through touch screen bonding (which must be attached together to detect large-area contact), wherein one touch screen terminal serves as a transmitting end, generates a signal through a driving electrode, and another touch screen terminal serves as a receiving end through a sensing electrode.
  • Large-area contact detection can utilize the mutual capacitance and self-contained data of the touch screen, and the self-contained data refers to the capacitance between the independent conductor (or the sensing pad, the sensing electrode, etc.) to the reference ground.
  • the mutual capacitance data refers to a coupling capacitance generated by coupling two or more conductors (or induction pads, sensing electrodes, etc.) to each other.
  • the full screen data may be differentiated and added to reflect the full screen.
  • the data feature further includes: the first touch screen terminal periodically calculates a difference between driving data of the full-screen adjacent driving electrodes, and a difference between the sensing data of the adjacent sensing electrodes; and a difference between the driving data difference and the sensing data The absolute values of the values are summed to obtain the self-contained data consistency value.
  • the self-contained data is divided into driving data and sensing data, first calculating a difference between adjacent electrodes of the driving data, such as driving data of the N+1th driving electrode minus driving data of the Nth driving electrode, The absolute value of the difference of the driving data is summed; secondly, the difference between the sensing data is calculated, and the sensing data of the M+1th sensing electrode is also subtracted from the sensing data of the Mth sensing electrode for all the sensing data differences. The absolute value of the sum is summed; finally, the sum of the absolute values of the difference between the two is added to obtain the consistent data value.
  • step S102 Determine whether the self-contained data consistency value is less than a preset consistency threshold. If yes, go to step S103, otherwise go to step S109.
  • the self-contained data is greater than a preset first large area contact threshold and a second large area contact threshold, wherein the second large area contact threshold is twice the first large area contact threshold.
  • the first large area contact threshold and the second large area contact threshold are set after the experimental data is obtained. All the self-contained data can be compared with the large-area contact threshold, and the number of self-contained data larger than the first large-area contact threshold is counted; and then all the self-contained data and the second large-area contact threshold (for example, the second large-area contact threshold is Comparing the first large area contact threshold by 2 times), the number of self-contained data larger than the second large area contact threshold is counted, and whether the large-area contact condition is satisfied is judged according to the statistical results of the two kinds of data.
  • the second large-area contact threshold is Comparing the first large area contact threshold by 2 times
  • step S104 determining whether the statistical result meets the large-area contact condition, if yes, executing step S105, otherwise performing step S106;
  • step S105 when the number of times of recognition does not reach the upper limit, the number of recognition is increased by 1, and the process proceeds to step S107;
  • step S107 determining whether the number of times of recognition in the preset time period reaches a preset number of recognition times threshold, if yes, executing step S108, otherwise performing step S109;
  • large-area contact detection is performed every cycle, and large-area contact detection is performed multiple times in a configurable time, and the count is incremented when a large-area contact is detected.
  • a low-match signal strength threshold first signal strength threshold
  • a high signal strength threshold second signal intensity threshold
  • the number of times is 0; the count of the large-area contact is not 0, and the number of recognitions will be reduced by 1 when the large-area contact is not recognized.
  • the number strength threshold (second signal strength threshold) effectively controls the miscommunication judgment.
  • the self-capacity data is obtained in real time and the self-capacity data consistency value is calculated, and the large-area contact detection is performed according to the self-contained data, which can better distinguish the large-area contact caused by the multi-finger pressing and the touch screen contact.
  • Large-area contact so as to accurately determine whether there is a proximity of the touch screen terminal that needs communication, can improve the accuracy of large-area detection.
  • FIG. 3 is a block diagram of a near field communication device according to an embodiment of the present invention.
  • the device is applied to a first touch screen terminal, and includes the following modules: a large area contact detection module 10, a proximity detection module 20, and a data transmission module. 30, where:
  • the large area contact detecting module 10 is configured to detect whether there is a second touch screen terminal with a large area contact.
  • the device of the present invention takes into account the near field communication characteristics of the touch screen. In most cases, the two sides of the communication need to have direct contact.
  • the large area detection function of the touch screen can be used to determine whether there are other touch screens that need to be communicated, and the large area contact detection can be performed. Use the mutual compatibility and self-contained data of the touch screen. Increase the large-area contact detection before the detection, and decide which kind of proximity detection threshold to use according to the large-area contact detection result. Before the proximity of the touch screen that requires communication is required, a strong effective signal is needed to successfully communicate, thereby effectively improving the interference. The resulting proximity detection misjudgment can effectively suppress interference and reduce the probability of erroneous entry into the communication flow.
  • the proximity detecting module 20 is configured to perform proximity detection with the second touch screen terminal by using the first signal intensity threshold when detecting the second touch screen terminal of the large area contact, or perform proximity detection by using the second signal intensity threshold and the second touch screen terminal. Wherein the second signal strength threshold is greater than the first signal strength threshold.
  • the proximity detecting module 20 further includes a sending unit 201, a receiving unit 202, and a determining unit 203, where:
  • the sending unit 201 is configured to issue a proximity detection sequence.
  • the receiving unit 202 is configured to receive a response sequence that is responded by the second touch screen terminal.
  • the determining unit 203 is configured to determine whether the second touch screen terminal is close according to whether the signal strength amplitude received by each frequency point in the response sequence is greater than the first signal strength threshold or the second signal strength threshold.
  • the data transmission module 30 is configured to perform data transmission with the second touch screen terminal after the proximity detection is successful.
  • the proximity detection misjudgment caused by interference can be effectively improved, the interference can be effectively suppressed, and the probability of erroneously entering the communication flow can be reduced.
  • the self-contained data consistency value of the multi-finger touch can be used to be closer to the touch screen.
  • the large area contact detecting module 10 further includes a calculating unit 101, a first determining unit 102, a second determining unit 103, and a third determining unit 104, wherein:
  • the calculating unit 101 is configured to periodically acquire self-contained data, and calculate a self-contained data consistency value
  • the calculating unit 101 is specifically configured to: periodically acquire the full-screen driving data and the sensing data by the first touch screen terminal, and calculate a difference between the driving data of the full-screen adjacent driving electrodes and the sensing data of the adjacent sensing electrodes. The difference between the drive data difference and the sensed data difference sum is obtained to obtain the self-contained data consistency value.
  • the first determining unit 102 is configured to determine whether the self-contained data consistency value is less than a preset consistency threshold, and if it is greater, determine that there is no second touch screen terminal with large area contact.
  • the second determining unit 103 is configured to determine whether the self-capacity data satisfies the large-area contact condition. When the large-area contact condition is satisfied and the number of times of recognition does not reach the upper limit, the number of times of recognition is increased by one, and when the large-area contact condition is not satisfied and the number of times of recognition is satisfied If not 0, the number of recognitions is reduced by 1;
  • the third determining unit 104 is configured to determine whether the number of times of recognition in the preset time period reaches a preset threshold number of recognition times, and if yes, determine that there is a second touch screen terminal that contacts a large area, otherwise it is determined that there is no large area contact Two touch screen terminals.
  • a near field communication system includes a first touch screen terminal and a second touch screen terminal, wherein the first touch screen terminal or the second touch screen terminal includes The near field communication device in the third embodiment is described. It should be noted that the technical features in the first embodiment, the second embodiment, and the third embodiment of the device are equally applicable in the embodiment, and are not repeated here.
  • the first touch screen terminal and the second touch screen terminal include but are not limited to a terminal of a capacitive touch screen (eg, an iPhone, an iPad), and a terminal with a touch panel, a touch button, and a touch slider ( For example, Notebook, iPod, etc.).
  • the touch screen terminal in the embodiment of the present invention can also be connected to other touch screen terminals through interfaces such as USB, HDMI, audio input and output (such as a headset hole) to implement a near field communication function.
  • the touch screen terminal and the near field communication method, device and system thereof provided by the invention use a double judgment standard for the signal received by the touch screen terminal, and add a large area contact detection before the proximity detection process, and determine the detection result according to the large area contact in real time.
  • the proximity of the detected signal strength threshold effectively controls the communication misjudgment, so that the touch screen terminal can adapt to different LCD interferences and different application scenarios, thereby improving communication stability.
  • the large-area contact caused by the contact between the large-area contact and the touch screen caused by the multi-finger pressing can be better distinguished, thereby accurately determining whether there is a proximity of the touch screen terminal requiring communication, and the accuracy of the large-area detection can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Function (AREA)
  • Position Input By Displaying (AREA)

Abstract

本发明公开了一种触摸屏终端及其近场通信方法、装置和系统,属于通信领域。该方法包括:第一触摸屏终端检测是否存在大面积接触的第二触摸屏终端;如果存在,则采用第一信号强度阈值与第二触摸屏终端进行接近检测,否则采用第二信号强度阈值与第二触摸屏终端进行接近检测;当接近检测成功后,与第二触摸屏终端进行数据传输。采用本发明,通过对触摸屏终端接收到的信号使用双重判断标准,在接近检测过程前加入大面积接触检测,并实时根据大面积接触检测结果决定接近检测的信号强度阈值,有效控制通信误判,使得触摸屏终端能适应不同的LCD干扰及不同的应用场景,从而提高通信的稳定性。

Description

一种触摸屏终端及其近场通信方法、装置和系统 技术领域
本发明属于通信技术领域,尤其涉及一种触摸屏终端及其近场通信方法、装置和系统。
背景技术
目前,近场通信包括接近检测和数据传输两个过程,一方触摸屏终端发送接近检测序列(比如:接近检测序列由6个频点组成),对支持的多个频点依次进行扫描,收到另一方触摸屏终端的响应序列后,若每个频点的信号强度大于预设的信号强度阈值时则认为该频点存在信号源,扫描完成后,全部频点都存在信号源时,则判定为该序列有效。按交互规则完成多次序列识别成功后则判定有触摸屏终端接近,开始发送或者接收数据。
然而,触摸屏终端在与外界设备通信过程中,由于LCD(如驱动信号)及特殊图片(如伽马图)等干扰会对接近检测产生干扰,导致触摸屏终端接近检测出错,比如:干扰较大或者干扰不大却与接近检测的有效接近检测序列吻合,都可能导致接近检测的误判,会使得在没有需要通信的设备靠近时,触摸屏终端误认为接近检测通信成功而开始传输或者接收数据,此时通信显然会失败。因此,接近检测抗干扰能力较弱,稳定性较差,LCD干扰及不同的应用场景会导致接近检测出错,进而导致触摸屏终端在不同的LCD干扰强度及不同的应用场景通信稳定性存在较大差异。
发明内容
有鉴于此,本发明要解决的技术问题是提供一种触摸屏终端及其近场 通信方法、装置和系统,以降低接近检测误判的概率,解决触摸屏终端在不同的应用场景通信稳定性存在较大差异的技术问题。
本发明解决上述技术问题所采用的技术方案如下:
根据本发明的一个方面,提供的一种近场通信方法,应用于第一触摸屏终端,该方法包括以下步骤:
第一触摸屏终端检测是否存在大面积接触的第二触摸屏终端;
如果检测到存在大面积接触的第二触摸屏终端,则采用第一信号强度阈值与第二触摸屏终端进行接近检测,否则采用第二信号强度阈值与第二触摸屏终端进行接近检测,其中,第二信号强度阈值大于第一信号强度阈值;
当接近检测成功后,与第二触摸屏终端进行数据传输。
优选地,第一触摸屏终端检测是否存在大面积接触的第二触摸屏终端进一步包括:
第一触摸屏终端周期性获取自容数据,并计算自容数据一致性值;
判断自容数据一致性值是否小于预设的一致性阈值,如果是,进一步判断自容数据是否满足大面积接触条件,当满足大面积接触条件且识别次数未达到上限时,则将识别次数加1,当不满足大面积接触条件且识别次数不为0时,将识别次数减1;
判断预设的时间段内识别次数是否达到预设的识别次数阈值,如果是,则判定存在大面积接触的第二触摸屏终端,否则判定不存在大面积接触的第二触摸屏终端。
优选地,第一触摸屏终端周期性获取自容数据,并计算自容数据一致性值进一步包括:第一触摸屏终端周期性地获取全屏驱动数据和感应数据;计算全屏相邻驱动电极的驱动数据之间的差值、以及相邻感应电极的感应数据之间的差值;对驱动数据差值和感应数据差值的绝对值求和,得到自 容数据一致性值;
优选地,判断自容数据是否满足大面积接触条件进一步包括:分别统计自容数据大于预设的第一大面积接触阈值和大于第二大面积接触阈值的个数,其中第二大面积接触阈值为第一大面积接触阈值的两倍;根据两种统计结果判定是否满足大面积接触条件。
优选地,采用第一信号强度阈值与第二触摸屏终端进行接近检测进一步包括:发出接近检测序列;接收第二触摸屏终端回应的响应序列;根据响应序列中每个频点接收到信号强度幅值是否大于第一信号强度阈值判定第二触摸屏终端是否接近;
采用第二信号强度阈值与第二触摸屏终端进行接近检测进一步包括:发出接近检测序列;接收第二触摸屏终端回应的响应序列;根据响应序列中每个频点接收到信号强度幅值是否大于第二信号强度阈值判定第二触摸屏终端是否接近。
根据本发明的另一个方面,提供的一种近场通信装置,应用于第一触摸屏终端,该装置包括:
大面积接触检测模块,用于检测是否存在大面积接触的第二触摸屏终端;
接近检测模块,用于当检测到存在大面积接触的第二触摸屏终端时,采用第一信号强度阈值与第二触摸屏终端进行接近检测,否则采用第二信号强度阈值与第二触摸屏终端进行接近检测,其中,第二信号强度阈值大于第一信号强度阈值;
数据传输模块,用于当接近检测成功后,与第二触摸屏终端进行数据传输。
优选地,大面积接触检测模块进一步包括:
计算单元,用于周期性地获取自容数据,并计算自容数据一致性值;
第一判断单元,用于判断自容数据一致性值是否小于预设的一致性阈值;
第二判断单元,用于判断自容数据是否满足大面积接触条件,当满足大面积接触条件且识别次数未达到上限时,则将识别次数加1,当不满足大面积接触条件且识别次数不为0时,将识别次数减1;
第三判断单元,用于判断预设的时间段内识别次数是否达到预设的识别次数阈值,如果是,则判定存在大面积接触的第二触摸屏终端,否则判定不存在大面积接触的第二触摸屏终端。
优选地,计算单元具体用于:第一触摸屏终端周期性地获取全屏驱动数据和感应数据,并计算全屏相邻驱动电极的驱动数据之间的差值、以及相邻感应电极的感应数据之间的差值;对驱动数据差值和感应数据差值的绝对值进行求和,得到自容数据一致性值;
优选地,第二判断单元具体用于:分别统计自容数据大于预设的第一大面积接触阈值和大于第二大面积接触阈值的个数;根据两种统计结果判定是否满足大面积接触条件。
优选地,接近检测模块进一步包括:
发送单元,用于发出接近检测序列;
接收单元,用于接收第二触摸屏终端回应的响应序列;
判定单元,用于根据响应序列中每个频点接收到信号强度幅值是否大于第一信号强度阈值或第二信号强度阈值判定第二触摸屏终端是否接近。
根据本发明的又一个方面,提供的一种触摸屏终端包括上述近场通信装置。
根据本发明的再一个方面,提供的一种近场通信系统,包括第一触摸屏终端和第二触摸屏终端,其中,上述第一触摸屏终端和/或第二触摸屏终 端为上述近场通信装置的触摸屏终端。
本发明提供的触摸屏终端及其近场通信方法、装置和系统,通过对触摸屏终端接收到的信号使用双重判断标准,在接近检测过程前加入大面积接触检测,并实时根据大面积接触检测结果决定接近检测的信号强度阈值,有效控制通信误判,使得触摸屏终端能适应不同的LCD干扰及不同的应用场景,从而提高通信的稳定性。
附图说明
图1为本发明实施例提供的一种近场通信方法的流程图。
图2为本发明优选实施例提供的一种接近检测方法的流程图。
图3为本发明实施例提供的一种近场通信装置的模块结构图。
图4为本发明优选实施例提供的一种近场通信系统的结构图。
具体实施方式
为了使本发明所要解决的技术问题、技术方案及有益效果更加清楚、明白,以下结合附图和实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
如图1所示是本发明实施例提供的一种近场通信方法的流程图,该方法应用于第一触摸屏终端,具体包括以下步骤:
S10、第一触摸屏终端检测是否存在大面积接触的第二触摸屏终端。
具体地,本发明考虑到触摸屏的近场通信特点,大部分情况下需要通信双方有直接接触,利用触摸屏通信时的大面积接触或者覆盖的特点,可以判断是否有其它需要通信的触摸屏靠近,大面积接触检测可利用触摸屏的互容和自容数据。接近检测之前增加大面积接触检测,根据大面积接触检测结果决定使用哪一种接近检测阈值,在没有检测到需要通信的触摸屏 靠近前,需要有较强有效信号才能成功通信,从而有效改善由干扰导致的接近检测误判,能够有效抑制干扰,降低误进入通信流程的概率。
S20、判断是否检测到大面积接触的第二触摸屏终端,如果是,则执行步骤S30,否则执行步骤S40;
具体来说,第一信号强度阈值为现有技术的信号强度阈值,第二信号强度阈值大于第一信号强度阈值,若触摸屏检测到有大面积覆盖,整个通信流程与现有技术相同;若触摸屏没有检测到大面积覆盖,则通过提高接近检测的信号强度阈值来进行接近检测和后续的通信流程。从而增强抗干扰能力。
S30、采用第一信号强度阈值与第二触摸屏终端进行接近检测,转至步骤S50;
具体地,本步骤S30进一步包括:发出接近检测序列;接收第二触摸屏终端回应的响应序列;根据响应序列中每个频点接收到信号强度幅值是否大于第一信号强度阈值判定第二触摸屏终端是否接近。
S40、采用第二信号强度阈值与第二触摸屏终端进行接近检测;
具体地,本步骤S40进一步包括:发出接近检测序列;接收第二触摸屏终端回应的响应序列;根据响应序列中每个频点接收到信号强度幅值是否大于第二信号强度阈值判定第二触摸屏终端是否接近。
S50、判断接近检测是否成功,如果是,则执行步骤S60,否则返回步骤S10;
S60、与第二触摸屏终端进行数据传输。
具体地,按交互规则完成多次序列识别成功后则判定有第二触摸屏终端接近,开始发送或者接收数据。
此外,与该应用于第一触摸屏终端的近场通讯方法相对应,本发明实施例还提供了一种应用于第二触摸屏终端的近场通讯方法,该方法与现有技术相同,这里不详述。当然第一触摸屏终端和第二触摸屏终端的角色可 以互换,当一个触摸屏终端在作为通信的发起端时,其角色为第一触摸屏终端,在当一个触摸屏终端在作为通信的被动端时,其角色为第二触摸屏终端。
本发明实施例中,通过对触摸屏终端接收到的信号使用双重判断标准,在接近检测过程前加入大面积接触检测,并实时根据大面积接触检测结果决定接近检测的信号强度阈值,有效控制通信误判,使得触摸屏终端能适应不同的LCD干扰及不同的应用场景,从而提高通信的稳定性。
实施例二
如图2所示是本发明优选实施例提供的一种大面积接触检测方法的流程图,包括以下步骤:
S101、第一触摸屏终端周期性获取自容数据,并计算自容数据一致性值。
其中,两台触摸屏终端通过触摸屏贴合(必须贴在一起才能检测大面积接触)来发送数据,其中一个触摸屏终端作为发送端,通过驱动电极产生信号,另一触摸屏终端作为接收端,通过感应电极来接收对方驱动电极发送的信号,以实现两台设备的通信。大面积接触检测可利用有触摸屏的互容和自容数据,自容数据是指独立的导体(或感应焊盘、感应电极等)对参考地之间的电容。互容数据是指两个或多个导体(或感应焊盘、感应电极等)相互耦合而产生的耦合电容。经过多次试验发现,多指触摸的自容数据一致性值显然比触摸屏之间大面积接触时的自容数据一致性值大很多,这是一个明显特征,自容数据能较好地区分多手指按压导致的大面积接触与触摸屏接触产生的大面积接触,故本实施例中优选为采用自容数据,通过自容数据的一致性来限制多指触摸被误认为大面积接触。
优选地,本步骤S101可以采用对全屏数据取差分并相加来体现全屏的 数据特征,进一步包括:第一触摸屏终端周期性计算全屏相邻驱动电极的驱动数据之间的差值、以及相邻感应电极的感应数据之间的差值;对驱动数据差值和感应数据差值的绝对值求和,得到自容数据一致性值。具体来说,自容数据分为驱动数据和感应数据,首先计算驱动数据相邻电极之间的差值,如第N+1个驱动电极的驱动数据减第N个驱动电极的驱动数据,对所有驱动数据差值的绝对值求和;其次计算感应数据之间的差值,同样将算第M+1个感应电极的感应数据减第M个感应电极的感应数据,对所有感应数据差值的绝对值求和;最后对两者的差值绝对值的和再相加即得一致性数据值。
S102、判断自容数据一致性值是否小于预设的一致性阈值,如果是,执行步骤S103,否则执行步骤S109。
S103、分别统计自容数据大于预设的第一大面积接触阈值和大于第二大面积接触阈值的个数,其中第二大面积接触阈值为第一大面积接触阈值的两倍。
具体来说,第一大面积接触阈值和第二大面积接触阈值根据实验数据获得后进行设置的。可以将所有自容数据与大面积接触阈值比较,统计大于第一大面积接触阈值的自容数据个数;再将所有自容数据与第二大面积接触阈值(比如第二大面积接触阈值是第一大面积接触阈值的2倍)进行比较,统计大于第二大面积接触阈值的自容数据个数,根据这两种数据统计结果判断是否满足大面积接触条件。
S104、判断统计结果是否满足大面积接触条件,如果是,执行步骤S105,否则执行步骤S106;
S105、当识别次数未达到上限时,将识别次数加1,转至步骤S107;
其中,当满足大面积接触条件时,如果识别次数达到预设的识别次数上限,则识别次数不再加1,可以避免在长时间在场通信过程中,识别次数连续累加导致的数据溢出,从而进一步提高稳定性。
S106、当识别次数不为0时,将识别次数减1;
其中,当满足大面积接触条件时,如果识别次数达到0(即识别次数下限),则识别次数不再减1,可以避免在第二触摸屏终端接触离开后,识别次数连续递减导致的数据溢出,从而进一步提高稳定性。
S107、判断预设的时间段内识别次数是否达到预设的识别次数阈值,如果是,则执行步骤S108,否则执行步骤S109;
S108、则判定存在大面积接触的第二触摸屏终端,结束流程;
S109、判定不存在大面积接触的第二触摸屏终端。
综上所述,在开启近场通信的情况下,每个周期都进行大面积接触检测,在可配置的时间内,多次进行大面积接触检测,并且在检测到大面积接触时计数加1,当识别到大面积接触的次数大于或等于识别次数阈值(比如5次)时,则认为有近场通信触摸屏终端靠近,这种情况下使用低配信号强度阈值(第一信号强度阈值),对于检测不到大面积接触或者偶尔检测到大面积接触的情况,均采用高配信号强度阈值(第二信号强度阈值),如下两种情况:识别不到大面积接触,即识别到大面积接触的次数为0;前面识别到大面积接触的计数不为0,后面识别不到大面积接触时,识别次数会减1,减到0时则认为触摸屏离开或者没有触摸屏靠近,此时使用高配信号强度阈值(第二信号强度阈值),有效控制误通信判断。
在本发明实施例中,通过实时获取自容数据并计算自容数据一致性值,根据自容数据进行大面积接触检测,能较好地区分多手指按压导致的大面积接触与触摸屏接触产生的大面积接触,从而准确判断是否有需要通信的触摸屏终端靠近,能提高大面积检测的准确率。
实施例三
如图3所示是本发明实施例提供的一种近场通信装置的模块结构图,该装置应用于第一触摸屏终端,包括以下模块大面积接触检测模块10、接近检测模块20和数据传输模块30,其中:
大面积接触检测模块10,用于检测是否存在大面积接触的第二触摸屏终端。
具体地,本发明装置考虑到触摸屏的近场通信特点,大部分情况下需要通信双方有直接接触,利用触摸屏的大面积检测功能,可以判断是否有其它需要通信的触摸屏靠近,大面积接触检测可利用触摸屏的互容和自容数据。接近检测之前增加大面积接触检测,根据大面积接触检测结果决定使用哪一种接近检测阈值,在没有检测到需要通信的触摸屏靠近前,需要有较强有效信号才能成功通信,从而有效改善由干扰导致的接近检测误判,能够有效抑制干扰,降低误进入通信流程的概率。
接近检测模块20,用于当检测到大面积接触的第二触摸屏终端时,采用第一信号强度阈值与第二触摸屏终端进行接近检测,否则采用第二信号强度阈值与第二触摸屏终端进行接近检测,其中,第二信号强度阈值大于第一信号强度阈值。
其中,接近检测模块20进一步包括发送单元201、接收单元202和判断单元203,其中:
发送单元201,用于发出接近检测序列。
接收单元202,用于接收第二触摸屏终端回应的响应序列。
判断单元203,用于根据响应序列中每个频点接收到信号强度幅值是否大于第一信号强度阈值或第二信号强度阈值判定第二触摸屏终端是否接近。
数据传输模块30,用于当接近检测成功后,与第二触摸屏终端进行数据传输。
本实施例中,通过增加将大面积接触检测模块10来检测,并根据大面积接触检测结果决定使用哪一种接近检测阈值,在没有检测到需要通信的触摸屏靠近前,需要有较强有效信号才能成功通信,从而有效改善由干扰导致的接近检测误判,能够有效抑制干扰,降低误进入通信流程的概率。
作为一种优选实施例,为了能较好地区分多手指按压导致的大面积接触与触摸屏接触产生的大面积接触,还可以利用多指触摸的自容数据一致性值显然较触摸屏靠近时的自容数据一致性值大很多的特征,通过自容数据的一致性来限制多指触摸被误认为大面积接触。大面积接触检测模块10进一步包括计算单元101、第一判断单元102、第二判断单元103和第三判断单元104,其中:
计算单元101,用于周期性地获取自容数据,并计算自容数据一致性值;
具体地,计算单元101具体用于:第一触摸屏终端周期性获取全屏驱动数据和感应数据,并计算全屏相邻驱动电极的驱动数据之间的差值、以及相邻感应电极的感应数据之间的差值;对驱动数据差值和感应数据差值的绝对值进行求和,得到自容数据一致性值。
第一判断单元102,用于判断自容数据一致性值是否小于预设的一致性阈值,如果大于,则判定为不存在大面积接触的第二触摸屏终端。
第二判断单元103,用于判断自容数据是否满足大面积接触条件,当满足大面积接触条件且识别次数未达到上限时,则将识别次数加1,当不满足大面积接触条件且识别次数不为0时,将识别次数减1;
第三判断单元104,用于判断预设的时间段内识别次数是否达到预设的识别次数阈值,如果是,则判定存在大面积接触的第二触摸屏终端,否则判定不存在大面积接触的第二触摸屏终端。
上述方法实施例一和实施例二中的技术特征在本装置实施例三都同样对应适用,这里不再重述。
实施例四
如图4所示,本发明实施例提供的一种近场通信系统包括第一触摸屏终端和第二触摸屏终端,其中,第一触摸屏终端或第二触摸屏终端包括上 述实施例三中的近场通信装置。需要说明地是,上述方法实施例一、实施例二和装置实施例三中的技术特征在本实施例中都同样对应适用,这里不再重述。
作为一种优选方案,上述第一触摸屏终端和第二触摸屏终端包括但不限于电容式触摸屏的终端(例如iPhone、iPad),以及带有触摸式平板、触摸式按键、触摸式滑条的终端(例如Notebook、iPod等)。本发明实施例中的触摸屏终端还可以通过USB、HDMI、音频输入输出(比如耳麦孔)等接口连接在其他触摸屏终端上以实现近场通信功能。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来控制相关的硬件完成,所述的程序可以在存储于一计算机可读取存储介质中,所述的存储介质,如ROM/RAM、磁盘、光盘等。
以上参照附图说明了本发明的优选实施例,并非因此局限本发明的权利范围。本领域技术人员不脱离本发明的范围和实质,可以有多种变型方案实现本发明,比如作为一个实施例的特征可用于另一实施例而得到又一实施例。凡在运用本发明的技术构思之内所作的任何修改、等同替换和改进,均应在本发明的权利范围之内。
具体实施方式
本发明提供的触摸屏终端及其近场通信方法、装置和系统,通过对触摸屏终端接收到的信号使用双重判断标准,在接近检测过程前加入大面积接触检测,并实时根据大面积接触检测结果决定接近检测的信号强度阈值,有效控制通信误判,使得触摸屏终端能适应不同的LCD干扰及不同的应用场景,从而提高通信的稳定性。
此外,通过实时获取自容数据并计算自容数据一致性值,根据自容数 据进行大面积接触检测,能较好地区分多手指按压导致的大面积接触与触摸屏接触产生的大面积接触,从而准确判断是否有需要通信的触摸屏终端靠近,能提高大面积检测的准确率。

Claims (10)

  1. 一种近场通信方法,应用于第一触摸屏终端,该方法包括:
    第一触摸屏终端检测是否存在大面积接触的第二触摸屏终端;
    如果检测到大面积接触的第二触摸屏终端,则采用第一信号强度阈值与所述第二触摸屏终端进行接近检测,否则采用第二信号强度阈值与所述第二触摸屏终端进行接近检测,其中,所述第二信号强度阈值大于所述第一信号强度阈值;
    当接近检测成功后,与所述第二触摸屏终端进行数据传输。
  2. 根据权利要求1所述的近场通信方法,其中,所述第一触摸屏终端检测是否存在大面积接触的第二触摸屏终端进一步包括:
    第一触摸屏终端周期性获取自容数据,并计算自容数据一致性值;
    判断自容数据一致性值是否小于预设的一致性阈值,如果是,进一步判断自容数据是否满足大面积接触条件,当满足大面积接触条件且识别次数未达到上限时,则将识别次数加1,当不满足大面积接触条件且识别次数不为0时,将识别次数减1;
    判断预设的时间段内识别次数是否达到预设的识别次数阈值,如果是,则判定存在大面积接触的第二触摸屏终端,否则判定不存在大面积接触的第二触摸屏终端。
  3. 根据权利要求2所述的近场通信方法,其中,所述第一触摸屏终端周期性获取自容数据,并计算自容数据一致性值进一步包括:
    第一触摸屏终端周期性地获取全屏驱动数据和感应数据;
    计算全屏相邻驱动电极的驱动数据之间的差值、以及相邻感应电极的感应数据之间的差值;
    对所述驱动数据差值和所述感应数据差值的绝对值求和,得到自容数据一致性值;
    所述判断自容数据是否满足大面积接触条件进一步包括:
    分别统计自容数据大于预设的第一大面积接触阈值和大于第二大面积接触阈值的个数,其中第二大面积接触阈值为第一大面积接触阈值的两倍;
    根据两种统计结果判定是否满足大面积接触条件。
  4. 根据权利要求1所述的近场通信方法,其中,所述采用第一信号强度阈值与所述第二触摸屏终端进行接近检测进一步包括:
    发出接近检测序列;接收第二触摸屏终端回应的响应序列;根据所述响应序列中每个频点接收到信号强度幅值是否大于所述第一信号强度阈值判定所述第二触摸屏终端是否接近;
    所述采用第二信号强度阈值与所述第二触摸屏终端进行接近检测进一步包括:
    发出接近检测序列;接收第二触摸屏终端回应的响应序列;根据所述响应序列中每个频点接收到信号强度幅值是否大于所述第二信号强度阈值判定所述第二触摸屏终端是否接近。
  5. 一种近场通信装置,应用于第一触摸屏终端,该装置包括:
    大面积接触检测模块,用于检测是否存在大面积接触的第二触摸屏终端;
    接近检测模块,用于当检测到大面积接触的第二触摸屏终端时,采用第一信号强度阈值与所述第二触摸屏终端进行接近检测,否则采用第二信号强度阈值与所述第二触摸屏终端进行接近检测,其中,所述第二信号强度阈值大于所述第一信号强度阈值;
    数据传输模块,用于当接近检测成功后,与所述第二触摸屏终端进行 数据传输。
  6. 根据权利要求5所述的近场通信装置,其中,所述大面积接触检测模块进一步包括:
    计算单元,用于周期性地获取自容数据,并计算自容数据一致性值;
    第一判断单元,用于判断自容数据一致性值是否小于预设的一致性阈值,如果大于,则判定为不存在大面积接触的第二触摸屏终端;
    第二判断单元,用于判断自容数据是否满足大面积接触条件,当满足大面积接触条件且识别次数未达到上限时,则将识别次数加1,当不满足大面积接触条件且识别次数不为0时,将识别次数减1;
    第三判断单元,用于判断预设的时间段内识别次数是否达到预设的识别次数阈值,如果是,则判定存在大面积接触的第二触摸屏终端,否则判定不存在大面积接触的第二触摸屏终端。
  7. 根据权利要求6所述的近场通信装置,其中,
    所述计算单元具体用于:第一触摸屏终端周期性地获取全屏驱动数据和感应数据,并计算全屏相邻驱动电极的驱动数据之间的差值、以及相邻感应电极的感应数据之间的差值;对所述驱动数据差值和所述感应数据差值的绝对值进行求和,得到自容数据一致性值;
    所述第二判断单元具体用于:分别统计自容数据大于预设的第一大面积接触阈值和大于第二大面积接触阈值的个数,其中第二大面积接触阈值为第一大面积接触阈值的两倍;根据两种统计结果判定是否满足大面积接触条件。
  8. 根据权利要求5所述的近场通信装置,其中,所述接近检测模块进一步包括:
    发送单元,用于发出接近检测序列;
    接收单元,用于接收第二触摸屏终端回应的响应序列;
    判定单元,用于根据所述响应序列中每个频点接收到信号强度幅值是否大于所述第一信号强度阈值或第二信号强度阈值判定所述第二触摸屏终端是否接近。
  9. 一种触摸屏终端,所述触摸屏终端包括权利要求5~8任意一项权利要求所述的近场通信装置。
  10. 一种近场通信系统,至少包括一个如权利要求9所述的触摸屏终端。
PCT/CN2015/077053 2015-03-30 2015-04-21 一种触摸屏终端及其近场通信方法、装置和系统 WO2016155046A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020167036188A KR101847517B1 (ko) 2015-03-30 2015-04-21 터치스크린 단말기 및 이의 근거리 통신 방법, 장치와 시스템
EP15887014.7A EP3280059B1 (en) 2015-03-30 2015-04-21 Touch screen terminal and near field communication method, apparatus and system thereof
US15/386,611 US10101864B2 (en) 2015-03-30 2016-12-21 Touch screen terminal and near field communication method, apparatus and system thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510145892.9A CN106155378B (zh) 2015-03-30 2015-03-30 一种触摸屏终端及其近场通信方法、装置和系统
CN201510145892.9 2015-03-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/386,611 Continuation US10101864B2 (en) 2015-03-30 2016-12-21 Touch screen terminal and near field communication method, apparatus and system thereof

Publications (1)

Publication Number Publication Date
WO2016155046A1 true WO2016155046A1 (zh) 2016-10-06

Family

ID=57003942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/077053 WO2016155046A1 (zh) 2015-03-30 2015-04-21 一种触摸屏终端及其近场通信方法、装置和系统

Country Status (5)

Country Link
US (1) US10101864B2 (zh)
EP (1) EP3280059B1 (zh)
KR (1) KR101847517B1 (zh)
CN (1) CN106155378B (zh)
WO (1) WO2016155046A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111164553B (zh) * 2018-09-05 2024-02-13 深圳市汇顶科技股份有限公司 触控感应方法、触控芯片、电子设备以及触控系统
CN109388362A (zh) * 2018-10-09 2019-02-26 中天智领(北京)科技有限公司 大屏幕控制方法及系统
CN110138956B (zh) * 2019-03-27 2022-01-14 努比亚技术有限公司 一种终端设备检测方法、终端设备及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102254136A (zh) * 2011-06-21 2011-11-23 国民技术股份有限公司 低频感应装置指标离散的修正方法及模块、低频感应装置
CN102810144A (zh) * 2011-05-30 2012-12-05 罗魏熙 距离可控的移动支付方法及装置
US20140080412A1 (en) * 2012-09-19 2014-03-20 Qualcomm Incorporated Adaptive slicer for a discrete level amplitude modulation receiver
CN103701545A (zh) * 2013-12-31 2014-04-02 深圳市汇顶科技股份有限公司 一种近场通信的接近检测方法和装置
CN104217181A (zh) * 2013-06-05 2014-12-17 维沃移动通信有限公司 一种移动手持设备的智能防水方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7403784B2 (en) * 2005-03-10 2008-07-22 Avaya Technology Corp. Method and apparatus for positioning a set of terminals in an indoor wireless environment
KR100848139B1 (ko) 2006-12-08 2008-07-23 한국전자통신연구원 근접한 무선 단말 간의 네트워크 자동 설정 장치 및 그 방법
US9448669B2 (en) * 2008-03-19 2016-09-20 Egalax_Empia Technology Inc. System and method for communication through touch screens
CN102725717B (zh) * 2010-06-10 2015-12-02 英派尔科技开发有限公司 触摸面板设备之间的通信
KR101816930B1 (ko) * 2011-02-15 2018-01-09 엘지전자 주식회사 데이터 송수신 방법, 그를 이용한 디스플레이 장치 및 휴대용 단말기
CN102780513A (zh) * 2011-05-13 2012-11-14 希姆通信息技术(上海)有限公司 移动终端以及移动终端之间实现蓝牙通信的方法
US9793962B2 (en) * 2011-06-10 2017-10-17 Amx Llc Processing near field communications between active/passive devices and a control system
US9503838B2 (en) * 2011-08-29 2016-11-22 Electronics And Telecommunications Research Institute Method and system for communicating between devices
CN102662538A (zh) * 2012-03-14 2012-09-12 中兴通讯股份有限公司 一种终端间的数据传输方法及终端
KR101426942B1 (ko) * 2012-05-03 2014-08-05 연세대학교 산학협력단 터치스크린 기기 간 사용성 제공 시스템 및 방법
CN102916729B (zh) * 2012-09-04 2014-12-10 深圳市汇顶科技股份有限公司 一种触摸屏终端的近场通信方法、系统及触摸屏终端
US9921626B2 (en) * 2012-09-28 2018-03-20 Atmel Corporation Stylus communication with near-field coupling
CN103037493B (zh) * 2012-12-14 2016-08-03 中兴通讯股份有限公司 动态调整发射功率的方法及装置、智能终端
CN103440075B (zh) * 2013-08-13 2017-03-29 深圳市汇顶科技股份有限公司 一种电容式触摸屏终端及其近场通信方法、系统
CN103684550B (zh) * 2013-12-20 2018-01-02 上海斐讯数据通信技术有限公司 一种蓝牙信号发射功率调整系统及移动终端

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102810144A (zh) * 2011-05-30 2012-12-05 罗魏熙 距离可控的移动支付方法及装置
CN102254136A (zh) * 2011-06-21 2011-11-23 国民技术股份有限公司 低频感应装置指标离散的修正方法及模块、低频感应装置
US20140080412A1 (en) * 2012-09-19 2014-03-20 Qualcomm Incorporated Adaptive slicer for a discrete level amplitude modulation receiver
CN104217181A (zh) * 2013-06-05 2014-12-17 维沃移动通信有限公司 一种移动手持设备的智能防水方法及系统
CN103701545A (zh) * 2013-12-31 2014-04-02 深圳市汇顶科技股份有限公司 一种近场通信的接近检测方法和装置

Also Published As

Publication number Publication date
US10101864B2 (en) 2018-10-16
EP3280059A1 (en) 2018-02-07
EP3280059B1 (en) 2020-02-26
EP3280059A4 (en) 2018-12-05
US20170102803A1 (en) 2017-04-13
CN106155378B (zh) 2017-12-05
KR20170010409A (ko) 2017-01-31
KR101847517B1 (ko) 2018-04-10
CN106155378A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
US10754468B2 (en) Coordinate indicating apparatus and coordinate measurement apparatus for measuring input position of coordinate indicating apparatus
US9898109B2 (en) Active stylus pen and signal transmission methods for stylus pen and touch panel
US10088290B2 (en) Apparatus and method for performing proximity detection according to capacitive sensing output and status output
US10379666B2 (en) Position measuring apparatus, pen and position measuring method
US20150355708A1 (en) Touch communications device for detecting relative movement status of object close to, or in contact with, touch panel and related movement detection method
TWI653569B (zh) 應用於電容式觸控面板的主動筆訊號辨識方法
CN107045408B (zh) 触控方法、智能笔、触控识别方法、装置及系统
WO2021135885A1 (zh) 用于触发显示笔迹的信号发射方法以及笔迹显示方法
WO2014169567A1 (zh) 误触摸识别方法和装置
US9983698B2 (en) Capacitive stylus signal transmitting and application method and capacitive stylus applying this method
WO2016155046A1 (zh) 一种触摸屏终端及其近场通信方法、装置和系统
TWI621038B (zh) 有線觸控筆、觸控電子裝置、觸控電子系統與觸控處理方法
WO2016183796A1 (zh) 一种用于识别用户操作模式的方法及移动终端
CN113632054A (zh) 触摸装置及其触摸检测方法
WO2020181423A1 (zh) 书写笔记信息的传输方法及其传输系统、电子设备
CN110192170B (zh) 触摸控制器、装置、终端及触控方法
KR20230165742A (ko) 터치 장치 및 이의 터치 검출 방법
KR102299421B1 (ko) 터치패널 표시 장치, 능동형 스타일러스 펜 및 그 제어방법
CN104750292A (zh) 触控装置及其触控模式切换方法
TWI252433B (en) Method and control device for identifying a double-tap gesture
CN107979364B (zh) 电容式触摸按键装置及智能终端
US11995262B2 (en) Touch apparatus and touch detection method thereof
US20230161435A1 (en) Touch apparatus and touch detection method thereof
CN105573633A (zh) 基于触摸屏的输入方法和装置
KR20200008169A (ko) 좌표 표시 장치 및 좌표 표시 장치의 입력 위치를 측정하는 좌표 측정 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887014

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015887014

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167036188

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2015887014

Country of ref document: EP