WO2016154791A1 - Polypropylene composition and fiber reinforced composite - Google Patents

Polypropylene composition and fiber reinforced composite Download PDF

Info

Publication number
WO2016154791A1
WO2016154791A1 PCT/CN2015/075210 CN2015075210W WO2016154791A1 WO 2016154791 A1 WO2016154791 A1 WO 2016154791A1 CN 2015075210 W CN2015075210 W CN 2015075210W WO 2016154791 A1 WO2016154791 A1 WO 2016154791A1
Authority
WO
WIPO (PCT)
Prior art keywords
polypropylene
10min
polypropylene composition
fiber reinforced
hpp
Prior art date
Application number
PCT/CN2015/075210
Other languages
French (fr)
Inventor
Jianglei ZHU
Jiandong ZHANG
Shih Ping CHEN
Original Assignee
Borouge Compounding Shanghai Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Borouge Compounding Shanghai Co., Ltd. filed Critical Borouge Compounding Shanghai Co., Ltd.
Priority to PCT/CN2015/075210 priority Critical patent/WO2016154791A1/en
Priority to CN201580078042.XA priority patent/CN107406642A/en
Publication of WO2016154791A1 publication Critical patent/WO2016154791A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/22Compounding polymers with additives, e.g. colouring using masterbatch techniques
    • C08J3/226Compounding polymers with additives, e.g. colouring using masterbatch techniques using a polymer as a carrier
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92038Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92085Velocity
    • B29C2948/92095Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92009Measured parameter
    • B29C2948/92209Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/9238Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/9239Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92323Location or phase of measurement
    • B29C2948/92361Extrusion unit
    • B29C2948/92409Die; Nozzle zone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92533Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/78Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling
    • B29C48/875Thermal treatment of the extrusion moulding material or of preformed parts or layers, e.g. by heating or cooling for achieving a non-uniform temperature distribution, e.g. using barrels having both cooling and heating zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2423/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2423/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2423/10Homopolymers or copolymers of propene
    • C08J2423/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2451/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers
    • C08J2451/06Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond

Definitions

  • the present invention is directed to a polypropylene composition, a fiber reinforced composite, a process for the preparation of a fiber reinforced composite, an automotive article and the use of a polypropylene composition as a masterbatch for a fiber reinforced composite.
  • Fiber reinforced composites are applied in many industrial branches, including the automotive industry.
  • fiber reinforced composites are applied in many different parts of automobiles with customised characteristics depending on the intended application.
  • the fiber reinforced composite materials applied need to exhibit customised properties.
  • At present fixed recipes are used for the preparation of the individual fiber reinforced composite materials depending on their intended application. This results in a high expenditure and high costs for the preparation of the individual fiber reinforced composite materials.
  • compositions that can be utilised in the preparation of different fiber reinforced composite materials customized for different applications are used.
  • the finding of the present invention is a polypropylene composition for the preparation of fiber reinforced composite materials that can be customised by applying different matrix materials. In this manner the properties of the final product can be controlled without the need to develop an individual recipe for each application.
  • the present invention is directed to a polypropylene composition (PC) comprising
  • HPP-2 propylene homopolymer having a MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min
  • composition does not comprise fibers (FB) .
  • polypropylene composition comprises
  • PC polypropylene composition
  • PC polypropylene composition
  • the second propylene homopolymer (HPP-2) is nucleated, in particular ⁇ -nucleated.
  • the polypropylene composition (PC) has a MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of at least 75 g/10min.
  • the polypropylene composition (PC) has a flexural modulus of at least 1200 MPa.
  • the present invention is directed at a fiber reinforced composite (FRC) comprising
  • the fiber reinforced composite comprises
  • the fibers (FB) are selected from the group consisting of glass fibers, ceramic fibers, graphite fibers and mixtures thereof.
  • the present invention is directed at the preparation of the fiber reinforced composite (FRC) comprising the steps of adding
  • the present invention is directed at an automotive article comprising the fiber reinforced composite (FRC) .
  • FRC fiber reinforced composite
  • the automotive article has a flexural modulus of at least 2000 MPa.
  • the present invention is directed at the use of the polypropylene composition (PC) as a masterbatch (MB) for a fiber reinforced composite (FRC) .
  • PC polypropylene composition
  • MB masterbatch
  • FRC fiber reinforced composite
  • polypropylene composition is used as a masterbatch (MB) preferably for the preparation of the fiber reinforced composite (FRC) .
  • PC Polypropylene Composition
  • the present invention is directed at a polypropylene composition (PC) comprising
  • HPP-2 propylene homopolymer having a MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min, and
  • composition does not comprise fibers (FB) .
  • polypropylene composition comprises
  • polypropylene composition comprises
  • HPP-2 propylene homopolymer having a MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min, and
  • composition does not comprise fibers (FB) and
  • composition comprises
  • PC polypropylene composition
  • HPP-2 second propylene homopolymer having a MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min,
  • PC polypropylene composition
  • polypropylene composition (PC) consists of
  • HPP-2 second propylene homopolymer having a MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min,
  • the first propylene homopolymer (HPP-1) is present in an amount of 55 to 90 wt. -%, preferably 55 to 85 wt. -%, more preferably 55 to 80 wt. -%, even more preferably 55 to 75 wt. -%, based on the weight of the polypropylene composition (PC)
  • the second propylene homopolymer (HPP-2) is present in an amount of 1 to 20 wt. -%, preferably 5 to 20 wt. -%, more preferably 5 to 15 wt.
  • the polar modified polypropylene (PMP) is present in an amount of 5 to 25 wt. -%, preferably 10 to 25 wt. -%, based on the weight of the polypropylene composition (PC)
  • the additives (AD) are present in an amount of 1 to 25 wt. -%, preferably 2 to 25
  • HPP-2 propylene homopolymer
  • the polypropylene composition (PC) has a MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of at least 75 g/10min, preferably at least 80 g/10min, more preferably at least 90 g/10min, like in the range of 75 to 200 g/10min, preferably in the range of 80 to 150 g/10min, more preferably in the range of 80 to 120 g/10min.
  • the polypropylene composition (PC) has a flexural modulus of at least 1200 MPa, preferably of at least 1300 MPa, more preferably of at least 1400 MPa, like in the range of 1200 to 2000 MPa, preferably 1300 to 1800 MPa, more preferably 1400 to 1700 MPa.
  • PC polypropylene composition
  • the polypropylene composition (PC) comprises several polymer components, one of which is the first propylene homopolymer (HPP-1) .
  • propylene homopolymer relates to a polypropylene that consists substantially, i.e. of at least 98.0 wt. -%, preferably of at least 99.0 wt. -%, more preferably of at least 99.5 wt. -%, even more preferably of at least 99.8 wt. -%, yet even more preferably of at least 99.9 wt. -%, of propylene units. It is appreciated that only propylene units are detectable, i.e. only propylene has been polymerized.
  • the first propylene homopolymer (HPP-1) is applied as a base resin for the polypropylene composition (PC) and provides a high flowability and a suitable mechanical resilience with respect to stiffness and impact strength.
  • the melt flow rate of the polypropylene composition (PC) should be higher than the melt flow rate of the polypropylene (PP) used in the fiber reinforced composite (FRC) to facilitate uniform dispersion of the polypropylene composition (PC) in the polypropylene (PP) of the fiber reinforced composite (FRC) .
  • the first propylene homopolymer (HPP-1) has a melt flow rate MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min, preferably of at least 50 g/10min, more preferably of at least 55 g/10min, like in the range of 45 to 100 g/10min, preferably in the range of 50 to 90 g/10min, more preferably in the range of 55 to 85 g/10min.
  • the first propylene homopolymer (HPP-1) has a xylene cold soluble content (XCS) of below 5.0 wt. -%, preferably below 4.0 wt. -%, even more preferably below 3.5 wt. -%, like in the range of 0.5 to 5.0, preferably in the range of 1.0 to 4.0 wt. -%, even more preferably in the range of 1.5 to 3.5 wt. -%.
  • XCS xylene cold soluble content
  • the first propylene homopolymer (HPP-1) is state of the art and a commercially available product.
  • PC polypropylene composition
  • HPP-1 first propylene homopolymer
  • the second propylene homopolymer (HPP-2) can be applied in addition to the first propylene homopolymer (HPP-1) to ensure a suitable processability by avoiding a melt flow rate of the polypropylene composition (PC) exceeding desired levels.
  • the second propylene homopolymer has a relatively low melt flow rate MFR 2 (230 °C, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min.
  • the second propylene homopolymer (HPP-2) is a crystalline polymer.
  • crystalline indicates that the propylene homopolymer has a rather high melting temperature.
  • the second propylene homopolymer (HPP-2) is regarded as crystalline unless otherwise indicated.
  • the second propylene homopolymer has a melting temperature measured by differential scanning calorimetry (DSC) of at least 155 °C, more preferably at least 160 °C, even more preferably at least 164 °C, like in the range of 155 to 180 °C, preferably in the range of 160 to 175 °C, more preferably in the range of 164 to 170 °C.
  • DSC differential scanning calorimetry
  • the second propylene homopolymer (HPP-2) is nucleated, in particular ⁇ -nucleated.
  • the second propylene homopolymer (HPP-2) comprises an ⁇ -nucleating agent
  • the ⁇ -nucleating agent is preferably selected from the group consisting of
  • salts of monocarboxylic acids and polycarboxylic acids e.g. sodium benzoate or aluminum tert-butylbenzoate, and
  • dibenzylidenesorbitol e.g. 1, 3 : 2, 4 dibenzylidenesorbitol
  • C 1 -C 8 -alkyl-substituted dibenzylidenesorbitol derivatives such as methyldibenzylidenesorbitol, ethyldibenzylidenesorbitol or dimethyldibenzylidenesorbitol (e.g.
  • salts of diesters of phosphoric acid e.g. sodium 2, 2'-methylenebis (4, 6, -di-tert-butylphenyl) phosphate or aluminium-hydroxy-bis [2, 2'-methylene-bis (4, 6-di-t-butylphenyl) phosphate]
  • diesters of phosphoric acid e.g. sodium 2, 2'-methylenebis (4, 6, -di-tert-butylphenyl) phosphate or aluminium-hydroxy-bis [2, 2'-methylene-bis (4, 6-di-t-butylphenyl) phosphate]
  • the ⁇ -nucleating agent comprised in the second propylene homopolymer (HPP-2) is vinylcycloalkane polymer and/or vinylalkane polymer, more preferably vinylcycloalkane polymer, like vinylcyclohexane (VCH) polymer.
  • Vinyl cyclohexane (VCH) polymer is particularly preferred as ⁇ -nucleating agent.
  • the amount of vinylcycloalkane, like vinylcyclohexane (VCH) , polymer and/or vinylalkane polymer, more preferably of vinylcyclohexane (VCH) polymer, in the second propylene homopolymer (HPP-2) is not more than 500 ppm, preferably not more than 200 ppm, more preferably not more than 100 ppm, like in the range of 0.1 to 500 ppm, preferably in the range of 0.5 to 200 ppm, more preferably in the range of 1 to 100 ppm.
  • the vinylcycloalkane polymer and/or vinylalkane polymer is introduced into the second propylene homopolymer (HPP-2) by the BNT technology.
  • a catalyst system preferably a Ziegler-Natta procatalyst
  • a catalyst system can be modified by polymerizing a vinyl compound in the presence of the catalyst system, comprising in particular the special Ziegler-Natta procatalyst, an external donor and a cocatalyst, which vinyl compound has the formula:
  • R 3 and R 4 together form a 5-or 6-membered saturated, unsaturated or aromatic ring or independently represent an alkyl group comprising 1 to 4 carbon atoms
  • the modified catalyst is used for the preparation of the second propylene homopolymer (HPP-2) according to this invention.
  • the polymerized vinyl compound acts as an ⁇ -nucleating agent.
  • the weight ratio of vinyl compound to solid catalyst component in the modification step of the catalyst is preferably of up to 5 (5: 1) , more preferably up to 3 (3: 1) , like in the range of 0.5 (1:2) to 2 (2: 1) .
  • nucleating agents are commercially available and are described, for example, in "Plastic Additives Handbook", 5th edition, 2001 of Hans Zweifel (pages 967 to 990) .
  • the second propylene homopolymer (HPP-2) is state of the art and a commercially available product.
  • the polar modified polypropylene (PMP) is present in the polypropylene composition (PC) to achieve an easier and more uniform dispersion of the fibers (FB) in the polymer components which act as a matrix in the fiber reinforced composition.
  • the polar modified polypropylene is preferably a polypropylene containing polar groups.
  • the polypropylene is preferably a propylene homopolymer or copolymer, like a copolymer of propylene with other ⁇ -olefins, like ethylene.
  • the polar modified polypropylene (PMP) is a propylene homopolymer.
  • the polar modified polypropylene is preferably selected from graft or block copolymers.
  • the said polar groups are unsaturated cyclic anhydrides and their aliphatic diesters, and the diacid derivatives.
  • PMP polar modified polypropylene
  • AP adhesion promotor
  • the polar modified polypropylene (PMP) can be produced in a simple manner by reactive extrusion of the polymer, for example with maleic anhydride in the presence of free radical generators (like organic peroxides) , as disclosed for instance in EP 0 572 028.
  • Preferred amounts of groups deriving from polar groups in the polar modified polypropylene (PMP) are from 0.5 to 3.0 wt. -%, preferably from 0.5 to 2.0 wt. -%, more preferably from 0.8 to 1.6 wt. -%.
  • melt flow rate MFR 2 (190 °C) for the polar modified polypropylene (PMP) is at least 10 g/10min, preferably at least 20 g/10min. more preferably at least 50 g/10min, even more preferably at least 70 g/10min, like in the range of 10 to 500 g/10 min, preferably from 20 to 150 g/10min, more preferably from 50 to 150 g/10min, even more preferably from 70 to 150 g/10min.
  • the polar modified polypropylene (PMP) is known in the art and commercially available.
  • a suitable example is SCONA TPPP 8112 GA of BYK-Cera (Germany) or Bondyam 1010 of Polyram (Israel) .
  • the polypropylene composition (PC) may comprise additives. Typical additives are acid scavengers, antioxidants, colorants, light stabilisers, plasticizers, slip agents, anti-scratch agents, dispersing agents, processing aids, lubricants, and pigments.
  • the propylene composition (PC) preferably includes antioxidants, in particular if applied as a masterbatch (MB) for the preparation of a fiber reinforced composite (FRC) . It is appreciated that the fiber reinforced composite (FRC) has a good stability under high temperature conditions.
  • additives also includes carrier materials, in particular polymeric carrier materials (PCM) .
  • PCM polymeric carrier materials
  • the polypropylene composition (PC) comprises 1 to 25 wt. -%, preferably 2 to 25 wt.-%, more preferably 4 to 20 wt. -%, even more preferably 4 to 15 wt. -%of the additives (AD) , based on the weight of the polypropylene composition (PC) .
  • the polypropylene composition comprises antioxidant (AO) , light stabilizing agent (LSA) , pigments (PIG) and polymeric carrier material (PCM) as the additives.
  • AO antioxidant
  • LSA light stabilizing agent
  • PEG pigments
  • PCM polymeric carrier material
  • PCM Polymeric Carrier Material
  • the polypropylene composition (PC) does not comprise (a) further polymer (s) different to the polymer (s) comprised in the polymers polypropylene composition (PC) , i.e. the first polypropylene homopolymer (HPP-1) , optionally the second polypropylene homopolymer (HPP-2) and the polar modified polypropylene (PMP) in an amount exceeding 10 wt. -%, preferably exceeding 5 wt. -%, based on the weight of the polypropylene composition (PC) . If an additional polymer is present, such a polymer is typically a polymeric carrier material (PCM) for additives.
  • PCM polymeric carrier material
  • the polypropylene composition (PC) comprises polymeric carrier material (PCM) in an amount of not more than 10.0 wt. -%, preferably in an amount of not more than 5.0 wt. -%, more preferably in an amount of not more than 2.5 wt. -%, like in the range of 1.0 to 10.0 wt. -%, preferably in the range of 1.0 to 5.0 wt. -%, even more preferably in the range of 1.0 to 2.5 wt. -%, based on the weight of the polypropylene composition (PC) .
  • PCM polymeric carrier material
  • the polymeric carrier material (PCM) is a carrier polymer for the other additives to ensure a uniform distribution in the polypropylene composition (PC) .
  • the polymeric carrier material (PCM) is not limited to a particular polymer.
  • the polymeric carrier material (PCM) may be ethylene homopolymer, ethylene copolymer obtained from ethylene and ⁇ -olefin comonomer such as C 3 to C 8 ⁇ -olefin comonomer, propylene homopolymer and/or propylene copolymer obtained from propylene and ⁇ -olefin comonomer such as ethylene and/or C 4 to C 8 ⁇ -olefin comonomer.
  • the polymeric carrier material is a polypropylene homopolymer
  • this propylene homopolymer may be the same propylene homopolymer as the first propylene homopolymer (HPP-1) and/or the second propylene homopolymer (HPP-2) , however, it is preferred that propylene homopolymer present as the polymeric carrier material is different to the first propylene homopolymer (HPP-1) and/or the second propylene homopolymer (HPP-2) .
  • the present invention is directed at a fiber reinforced composite (FRC) comprising
  • the fiber reinforced composite comprises
  • the Fibers (FB) are The Fibers (FB)
  • the fiber reinforced composite comprises fibers (FB) selected from the group consisting of glass fiber, mineral fiber, ceramic fiber and graphite fiber.
  • the glass fiber is preferred.
  • the glass fiber is a continuous glass fiber or a cut glass fiber, also known as short fiber or chopped strand.
  • the fibers (FB) used in the fiber reinforced composite (FRC) are cut or short glass fibers, it is preferred that the fibers have an average length in the range from 1 to 10 mm, more preferably from 1 to 7 mm, like 3 to 5 mm, or 4 mm.
  • the fibers (FB) more preferably the cut glass fibers or continuous glass fibers, used in the fiber reinforced composition (FRC) have an average diameter of from 8 to 20 ⁇ m, more preferably from 9 to 16 ⁇ m, for example 10 to 15 ⁇ m.
  • PC Propylene Composition
  • the propylene composition (PC) comprised in the fiber reinforced composite (FRC) corresponds to the polypropylene composition (PC) described above in the section “Polypropylene Composition (PC) ” .
  • the polypropylene composition (PC) and the polypropylene (PP) together form a matrix phase in which the fibers (FB) are dispersed. It is preferred that the polymer components of the polypropylene composition (PC) and the polymer components of the polypropylene (PP) form a continuous phase in which the fibers (FB) are dispersed.
  • the propylene (PP) comprised in the fiber reinforced composite (FRC) is not limited to a particular polypropylene and is selected according to needs.
  • the propylene (PP) may be a propylene homopolymer, a propylene copolymer obtained from propylene and ⁇ -olefin comonomer such as ethylene and/or C 4 to C 8 ⁇ -olefin and/or a heterophasic propylene copolymer (HECO) obtained from propylene and ⁇ -olefin comonomer such as ethylene and/or a C 4 to C 12 ⁇ -olefin.
  • the propylene (PP) comprised in the fiber reinforced composite (FRC) is a propylene homopolymer.
  • the polypropylene (PP) may be the same polymer as the propylene homopolymer (HPP-1) and/or the propylene homopolymer (HPP-2) .
  • polypropylene is the same polymer as the propylene homopolymer (HPP-1) .
  • the present invention is directed at a process for the preparation of a fiber reinforced composite (FRC) .
  • Process for the preparation of a fiber reinforced composite (FRC) comprises the steps of adding
  • PC polypropylene composition
  • FB fibers
  • PP polypropylene
  • the present invention is directed at an automotive article, in particular an automotive article comprising the fiber reinforced composite (FRC) .
  • FRC fiber reinforced composite
  • the fiber reinforced composite is described in more detail above in the section “Fiber Reinforced Composite (FRC) ” .
  • the automotive article comprises at least 80 wt. -%, like 80 to 99.9 wt. -%, more preferably at least 90 wt. -%, like 90 to 99.9 wt. -%, yet more preferably at least 95 wt. -%, like 95 to 99.9 wt. -%, of the fiber reinforced composite (FRC) .
  • the automotive article consists of the fiber reinforced composite (FRC) .
  • the automotive article has a flexural modulus of at least 2000 MPa, preferably of at least 2500 MPa, more preferably of at least 3000 MPa, like in the range of 2000 to 5000 MPa, preferably 2500 to 4000 MPa, more preferably 3000 to 3500 MPa.
  • the automotive article is an automotive interior or exterior article, the latter being preferred.
  • the automotive article is selected from the group consisting of body shields, bumper, bumper crossbeam, battery bracket, chair framework, pedal, parts under the hood (including front end mould) , and step assists .
  • the automotive article is typically a molded article, preferably an injection molded article or a compression molded article. It is appreciated that the automotive article is an injection molded article or a compression molded article, the latter being especially preferred.
  • the present invention is directed at the use of a polypropylene composition (PC) as a masterbatch (MB) .
  • PC polypropylene composition
  • MB masterbatch
  • the polypropylene composition (PC) is used as a masterbatch (MB) for the preparation of a fiber reinforced composite (FRC) .
  • the polypropylene composition (PC) is equal to the masterbatch (MB) .
  • the term “masterbatch” relates to a concentrate of polymer compounds used to prepare customized composites.
  • the masterbatch resembles a single base compound that can be used to prepare different composites, i.e. composites with different properties and/or different compositions, by compounding with further compounds.
  • the masterbatch resembles a single base compound that can be used to prepare different fiber reinforced composites by compounding with fibers and optionally further polymer compounds.
  • PC polypropylene composition
  • FRC fiber reinforced composite
  • the fiber reinforced composite (FRC) comprises the masterbatch (MB) in an amount in the range of not more than 50 wt. -%, preferably not more than 40 wt. -%, more preferably not more than 30 wt. -%, like in the range of 5 to 30 wt. -%, preferably 5 to 25 wt. -%, more preferably 10 to 20 wt. -%, based on the weight of the fiber reinforced composite (FRC)
  • NMR nuclear-magnetic resonance
  • Quantitative 13 C ⁇ 1 H ⁇ NMR spectra were processed, integrated and relevant quantitative properties determined from the integrals using proprietary computer programs.
  • the tacticity distribution was quantified through integration of the methyl region between 23.6-19.7 ppm correcting for any sites not related to the stereo sequences of interest (Busico, V., Cipullo, R., Prog. Polym. Sci. 26 (2001) 443; Busico, V., Cipullo, R., Monaco, G., Vacatello, M., Segre, A.L., Macromolecules 30 (1997) 6251) .
  • the isotacticity was determined at the pentad level and reported as the percentage of isotactic pentad (mmmm) sequences with respect to all pentad sequences:
  • the amount of 2, 1 erythro regio-defects was quantified using the average integral of the two characteristic methyl sites at 17.7 and 17.2 ppm:
  • the amount of 1, 2 primary inserted propene was quantified based on the methyl region with correction undertaken for sites included in this region not related to primary insertion and for primary insertion sites excluded from this region:
  • the total amount of propene was quantified as the sum of primary inserted propene and all other present regio-defects:
  • the comonomer fraction was quantified using the method of W-J. Wang and S. Zhu, Macromolecules 2000, 33 1157, through integration of multiple signals across the whole spectral region in the 13 C ⁇ 1 H ⁇ spectra. This method was chosen for its robust nature and ability to account for the presence of regio-defects when needed. Integral regions were slightly adjusted to increase applicability across the whole range of encountered comonomer contents.
  • the mole percent comonomer incorporation was calculated from the mole fraction.
  • the weight percent comonomer incorporation was calculated from the mole fraction.
  • MFR 2 (230°C) is measured according to ISO 1133 (230°C, 2.16 kg load) .
  • MFR 2 (190°C) is measured according to ISO 1133 (190°C, 2.16 kg load) .
  • T m Melting temperature
  • DSC differential scanning calorimetry
  • the xylene cold solubles (XCS, wt. -%) : Content of xylene cold solubles (XCS) is determined at 25 °C according to ISO 16152; first edition; 2005-07-01
  • Flexural Modulus was determined in 3-point-bending according to ISO 178 on injection molded specimens of 80 x 10 x 4 mm prepared in accordance with ISO 294-1: 1996.
  • Charpy impact test The Charpy (notched /unnotched) impact strength (Charpy NIS/IS) is measured according to ISO 179 2C /DIN 53453 at 23 °C, using injection molded bar test specimens of 80x10x4 mm 3 prepared in accordance with ISO 294-1: 1996.
  • Heat aging is performed in an oven at 120°C for 2000h according to ISO 188.
  • inventive propylene compositions IE1 and IE2 are based on recipes as summarized in Table 1.
  • additives and polymeric carrier material including the commercial antioxidant pentaerythrityl-tetrakis (3- (3’ , 5’ -di-tert. butyl-4-hydroxyphenyl) -propionate (“Irganox 1010 FF” of BASF, Germany) , the commercial phosphorous antioxidant tris (2, 4-di-t-butylphenyl) phosphite ( “Irgafos 168 FF ” of BASF, Germany) , the commercial sulphur based antioxidant di-stearyl-thio-di-propionate ( “Irganox PS-802 FL” of BASF, Germany) and the commercial light stabiliser “Cyabsorb UV-3808PP5” of Cytec (U.S.A.
  • HPP-1 is the commercial propylene homopolymer “BorPure HJ311MO” of Borealis AG, having a melt flow rate MFR 2 (230 °C) of 60 g/10min;
  • HPP-2 is the commercial propylene homopolymer “Bormod HD915CF” of Borealis AG, having a melt flow rate MFR 2 (230 °C) of 8 g/10min;
  • PMP is the commercial polypropylene (functionalized with maleic anhydride) “TPPP8112” of BYK Co. Ltd, Germany, having a MFR 2 (190 °C) of 100 g/10min and a maleic anhydride content of 1.5 %;
  • the inventive propylene compositions IE1 and IE2 are produced by melt blending.
  • the inventive polypropylene compositions are based on the recipe summarized in Tables 1 and are prepared by using a Coperion STS-35 twin-screw extruder (available from Coperion (Nanjing) Corporation, China) with a diameter of 35 mm.
  • the twin-screw extruder runs at an average screw speed of 400 rpm with a temperature profile of zones from 180-200 °C. It has a L/D of 44.
  • the temperature of each zone, throughput and the screw speed of the extruder for preparing the compositions of inventive examples IE 1 and IE2 are listed in Table 2.
  • the temperature of each zone, throughput and screw speed of the extruder are initiative parameters, and are set on control panel of the extruder.
  • Melt temperature (temperature of the melt in the die) and torque of the extruder are passive parameters shown on control panel of the extruder.
  • a vacuum bump is located in zone 9 and generates a vacuum of -0.01 MPa inside the extruder.
  • inventive fiber reinforced composites IE3 and IE4 are produced by melt blending using a twin-screw extruder with a screw configuration typical for glass fiber mixing with a temperature profile of zones from 220°C to 240 °C.
  • inventive fiber reinforced composites IE3 and IE4 are obtained in the form sheets which are used to prepare inventive body shields IE5 and IE6 by compression moulding.
  • inventive fiber reinforced composites IE3 and IE4 are prepared based on recipes as summarized in Table 3.
  • PP is the commercial propylene homopolymer “BorPure HJ311MO” of Borealis AG, having a melt flow rate MFR 2 (230 °C) of 60 g/10min;
  • FB is the continuous glass fiber “E DR 240 - T911” of from Taishan GF Co. Ltd, Shandong, China.
  • the commercial fiber reinforced composite “Daplen HJ060UBC” of Borouge Pte Ltd. comprising glass fibers in a polypropylene matrix, obtained from compounding polypropylene and glass fibers without any masterbatch, is used to prepare comparative body shield CE1 by compression molding.
  • NIS is the notched impact strength and “IS” is the unnotched impact strength
  • inventive body shields IE5 and IE6 prepared from the inventive propylene compositions IE1 and IE1 applied in form of a masterbatch have comparable properties to the comparative body shield CE1.
  • inventive propylene compositions IE1 and IE2 applied in the form of a masterbatch enable a high flexibility in the preparation of various fiber reinforced composites for different final product by changing the ratio of the masterbatch to polypropylene matrix and fibers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

Polypropylene composition (PC) comprising (a) first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min, (b) optionally second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, and (c) polar modified polypropylene (PMP), wherein the composition does not comprise fibers (FB).

Description

POLYPROPYLENE COMPOSITION AND FIBER REINFORCED COMPOSITE
The present invention is directed to a polypropylene composition, a fiber reinforced composite, a process for the preparation of a fiber reinforced composite, an automotive article and the use of a polypropylene composition as a masterbatch for a fiber reinforced composite.
Fiber reinforced composites are applied in many industrial branches, including the automotive industry. Nowadays fiber reinforced composites are applied in many different parts of automobiles with customised characteristics depending on the intended application. Thus, also the fiber reinforced composite materials applied need to exhibit customised properties. At present fixed recipes are used for the preparation of the individual fiber reinforced composite materials depending on their intended application. This results in a high expenditure and high costs for the preparation of the individual fiber reinforced composite materials. Thus, there is a strong need for compositions that can be utilised in the preparation of different fiber reinforced composite materials customized for different applications.
The finding of the present invention is a polypropylene composition for the preparation of fiber reinforced composite materials that can be customised by applying different matrix materials. In this manner the properties of the final product can be controlled without the need to develop an individual recipe for each application.
In a first aspect the present invention is directed to a polypropylene composition (PC) comprising
(a) a first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min,
(b) optionally a second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, and
(c) a polar modified polypropylene (PMP) ,
wherein the composition does not comprise fibers (FB) .
In a preferred embodiment the polypropylene composition (PC) comprises
(a) 55 to 90 wt. -%of the first propylene homopolymer (HPP-1) , based on the weight of the polypropylene composition (PC) ,
(b) optionally 1 to 20 wt. -%of the second propylene homopolymer (HPP-2) , based on the weight of the polypropylene composition (PC) , and
(c) 5 to 25 wt. -%of the polar modified polypropylene (PMP) , based on the weight of the polypropylene composition (PC) .
Preferred is a polypropylene composition (PC) consisting of
(a) the first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min,
(b) optionally the second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min,
(c) the polar modified polypropylene (PMP) , and
(d) additives.
It is appreciated that the polypropylene composition (PC) consists of
(a) 55 to 90 wt. -%of the first propylene homopolymer (HPP-1) , based on the weight of the polypropylene composition (PC) ,
(b) optionally 1 to 20 wt. -%of the second propylene homopolymer (HPP-2) , based on the weight of the polypropylene composition (PC) ,
(c) 5 to 25 wt. -%of the polar modified polypropylene (PMP) , based on the weight of the polypropylene composition (PC) , and
(d) 1 to 25 wt. -%of the additives (AD) , based on the weight of the polypropylene composition (PC) .
Preferably the second propylene homopolymer (HPP-2) is nucleated, in particular α-nucleated.
Furthermore, it is appreciated that the polypropylene composition (PC) has a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 75 g/10min.
Furthermore, it is appreciated that the polypropylene composition (PC) has a flexural modulus of at least 1200 MPa.
In a second aspect the present invention is directed at a fiber reinforced composite (FRC) comprising
(a) fibers (FB) ,
(b) the polypropylene composition (PC) , and
(c) polypropylene (PP) .
In a preferred embodiment the fiber reinforced composite (FRC) comprises
(a) 10 to 50 wt. -%of fibers (FB) , based on the weight of the fiber reinforced composite (FRC) ,
(b) 5 to 30 wt. -%of polypropylene composition (PC) , based on the weight of the fiber reinforced composite (FRC) , and
(c) 30 to 60 wt. -%of polypropylene (PP) , based on the weight of the fiber reinforced composite (FRC) .
It is appreciated that the fibers (FB) are selected from the group consisting of glass fibers, ceramic fibers, graphite fibers and mixtures thereof.
In a third aspect the present invention is directed at the preparation of the fiber reinforced composite (FRC) comprising the steps of adding
(a) polypropylene composition (PC) ,
(b) fibers (FB) ,
(c) polypropylene (PP) 
to an extruder and extruding the same obtaining the fiber reinforced composite (FRC) .
In a fourth aspect the present invention is directed at an automotive article comprising the fiber reinforced composite (FRC) .
In a preferred embodiment the automotive article has a flexural modulus of at least 2000 MPa.
In a fifth aspect the present invention is directed at the use of the polypropylene composition (PC) as a masterbatch (MB) for a fiber reinforced composite (FRC) .
In a preferred embodiment the polypropylene composition (PC) is used as a masterbatch (MB) preferably for the preparation of the fiber reinforced composite (FRC) .
In the following the invention is described in more detail:
Polypropylene Composition (PC)
In a first aspect the present invention is directed at a polypropylene composition (PC) comprising
(a) a first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min, preferably of at least 50 g/10min, more preferably of at least 55 g/10min, like in the range of 45 to 100 g/10min, preferably in the range of 50 to 90 g/10min, more preferably in the range of 55 to 85 g/10min,
(b) optionally a second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min, and
(c) a polar modified polypropylene (PMP) ,
wherein the composition does not comprise fibers (FB) .
In a preferred embodiment the polypropylene composition (PC) comprises
(a) 55 to 90 wt. -%, preferably 55 to 85 wt. -%, more preferably 55 to 80 wt. -%, even more preferably 55 to 75 wt. -%of the first propylene homopolymer (HPP-1) , based on the weight of the polypropylene composition (PC) ,
(b) optionally 1 to 20 wt. -%, preferably 5 to 20 wt. -%, more preferably 5 to 15 wt. -%, of the second propylene homopolymer (HPP-2) , based on the weight of the polypropylene composition (PC) ,
(c) 5 to 25 wt. -%, preferably 10 to 25 wt. -%, of the polar modified polypropylene (PMP) , based on the weight of the polypropylene composition (PC) .
It is appreciated that the polypropylene composition (PC) comprises
(a) a first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min, preferably of at least 50 g/10min, more preferably of at least 55 g/10min, like in the range of 45 to 100 g/10min, preferably in the range of 50 to 90 g/10min, more preferably in the range of 55 to 85 g/10min,
(b) optionally a second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min, and
(c) a polar modified polypropylene (PMP) ,
wherein the composition does not comprise fibers (FB) and
wherein the composition comprises
(i) 55 to 90 wt. -%, preferably 55 to 85 wt. -%, more preferably 55 to 80 wt. -%, even more preferably 55 to 75 wt. -%of the first propylene homopolymer (HPP-1) , based on the weight of the polypropylene composition (PC) ,
(ii) optionally 1 to 20 wt. -%, preferably 5 to 20 wt. -%, more preferably 5 to 15 wt. -%, of the second propylene homopolymer (HPP-2) , based on the weight of the polypropylene composition (PC) , and
(iii) 5 to 25 wt. -%, preferably 10 to 25 wt. -%, of the polar modified polypropylene (PMP) , based on the weight of the polypropylene composition (PC) .
Preferred is a polypropylene composition (PC) consisting of
(a) the first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min, preferably of at least 50 g/10min, more preferably of at least 55 g/10min, like in the range of 45 to 100 g/10min, preferably in the range of 50 to 90 g/10min, more preferably in the range of 55 to 85 g/10min,
(b) optionally the second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min,
(c) the polar modified polypropylene (PMP) , and
(d) additives (AD) .
It is appreciated that the polypropylene composition (PC) consists of
(a) 55 to 90 wt. -%, preferably 55 to 85 wt. -%, more preferably 55 to 80 wt. -%, even more preferably 55 to 75 wt. -%of the first propylene homopolymer (HPP-1) , based on the weight of the polypropylene composition (PC) ,
(b) optionally 1 to 20 wt. -%, preferably 5 to 20 wt. -%, more preferably 5 to 15 wt. -%, of the second propylene homopolymer (HPP-2) , based on the weight of the polypropylene composition (PC) ,
(c) 5 to 25 wt. -%, preferably 10 to 25 wt. -%, of the polar modified polypropylene (PMP) , based on the weight of the polypropylene composition (PC) , and
(d) 1 to 25 wt. -%, preferably 2 to 25 wt. -%, more preferably 4 to 20 wt. -%, even more preferably 4 to 15 wt. -%of the additives (AD) , based on the weight of the polypropylene composition (PC) .
In a preferred embodiment the polypropylene composition (PC) consists of
(a) the first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min, preferably of at least 50 g/10min, more preferably of at least 55 g/10min, like in the range of 45 to 100 g/10min, preferably in the range of 50 to 90 g/10min, more preferably in the range of 55 to 85 g/10min,
(b) optionally the second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min,
(c) the polar modified polypropylene (PMP) , and
(d) additives (AD) ,
wherein the first propylene homopolymer (HPP-1) is present in an amount of 55 to 90 wt. -%, preferably 55 to 85 wt. -%, more preferably 55 to 80 wt. -%, even more preferably 55 to 75 wt. -%, based on the weight of the polypropylene composition (PC) , optionally the second propylene homopolymer (HPP-2) is present in an amount of 1 to 20 wt. -%, preferably 5 to 20 wt. -%, more preferably 5 to 15 wt. -%, based on the weight of the polypropylene composition (PC) , the polar modified polypropylene (PMP) is present in an amount of 5 to 25 wt. -%, preferably 10 to 25 wt. -%, based on the weight of the polypropylene composition (PC) , and the additives (AD) are present in an amount of 1 to 25 wt. -%, preferably 2 to 25 
wt. -%, more preferably 4 to 20 wt. -%, even more preferably 4 to 15 wt. -%of, based on the weight of the polypropylene composition (PC) .
It is appreciated that the second propylene homopolymer (HPP-2) is nucleated, in particular α-nucleated.
Furthermore, it is appreciated that the polypropylene composition (PC) has a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 75 g/10min, preferably at least 80 g/10min, more preferably at least 90 g/10min, like in the range of 75 to 200 g/10min, preferably in the range of 80 to 150 g/10min, more preferably in the range of 80 to 120 g/10min.
Furthermore, it is appreciated that the polypropylene composition (PC) has a flexural modulus of at least 1200 MPa, preferably of at least 1300 MPa, more preferably of at least 1400 MPa, like in the range of 1200 to 2000 MPa, preferably 1300 to 1800 MPa, more preferably 1400 to 1700 MPa.
In the following the components of the polypropylene composition (PC) are described in more detail:
The First Propylene Homopolymer (HPP-1)
The polypropylene composition (PC) comprises several polymer components, one of which is the first propylene homopolymer (HPP-1) .
According to the present invention the expression “propylene homopolymer” relates to a polypropylene that consists substantially, i.e. of at least 98.0 wt. -%, preferably of at least 99.0 wt. -%, more preferably of at least 99.5 wt. -%, even more preferably of at least 99.8 wt. -%, yet even more preferably of at least 99.9 wt. -%, of propylene units. It is appreciated that only propylene units are detectable, i.e. only propylene has been polymerized.
The first propylene homopolymer (HPP-1) is applied as a base resin for the polypropylene composition (PC) and provides a high flowability and a suitable mechanical resilience with respect to stiffness and impact strength. The melt flow rate of the polypropylene composition (PC) should be higher than the melt flow rate of the polypropylene (PP) used in the fiber  reinforced composite (FRC) to facilitate uniform dispersion of the polypropylene composition (PC) in the polypropylene (PP) of the fiber reinforced composite (FRC) .
It is appreciated that the first propylene homopolymer (HPP-1) has a melt flow rate MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min, preferably of at least 50 g/10min, more preferably of at least 55 g/10min, like in the range of 45 to 100 g/10min, preferably in the range of 50 to 90 g/10min, more preferably in the range of 55 to 85 g/10min.
Furthermore, it is appreciated that the first propylene homopolymer (HPP-1) has a xylene cold soluble content (XCS) of below 5.0 wt. -%, preferably below 4.0 wt. -%, even more preferably below 3.5 wt. -%, like in the range of 0.5 to 5.0, preferably in the range of 1.0 to 4.0 wt. -%, even more preferably in the range of 1.5 to 3.5 wt. -%.
The first propylene homopolymer (HPP-1) is state of the art and a commercially available product.
The Second Propylene Homopolymer (HPP-2)
The flowability and mechanical properties of the polypropylene composition (PC) can be improved by providing a further propylene homopolymer in addition to the first propylene homopolymer (HPP-1) .
The second propylene homopolymer (HPP-2) can be applied in addition to the first propylene homopolymer (HPP-1) to ensure a suitable processability by avoiding a melt flow rate of the polypropylene composition (PC) exceeding desired levels.
It is appreciated that the second propylene homopolymer (HPP-2) has a relatively low melt flow rate MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, preferably of not more than 15 g/10min, more preferably of not more than 10 g/10min, even more preferably of not more than 9 g/10min, like in the range of 2 to 20 g/10min, preferably in the range of 3 to 15 g/10min, more preferably in the range of 5 to 15 g/10min, even more preferably in the range of 5 to 9 g/10min.
Furthermore, it is appreciated that the second propylene homopolymer (HPP-2) is a crystalline polymer. The term “crystalline” indicates that the propylene homopolymer has a rather high melting temperature. Throughout the description the second propylene homopolymer (HPP-2) is regarded as crystalline unless otherwise indicated.
Preferably the second propylene homopolymer (HPP-2) has a melting temperature measured by differential scanning calorimetry (DSC) of at least 155 ℃, more preferably at least 160 ℃, even more preferably at least 164 ℃, like in the range of 155 to 180 ℃, preferably in the range of 160 to 175 ℃, more preferably in the range of 164 to 170 ℃.
Accordingly, it is appreciated that the second propylene homopolymer (HPP-2) is nucleated, in particular α-nucleated.
In case the second propylene homopolymer (HPP-2) comprises an α-nucleating agent, it is preferred that it is free of β-nucleating agents. The α-nucleating agent is preferably selected from the group consisting of
(i) salts of monocarboxylic acids and polycarboxylic acids, e.g. sodium benzoate or aluminum tert-butylbenzoate, and
(ii) dibenzylidenesorbitol (e.g. 1, 3 : 2, 4 dibenzylidenesorbitol) and C1-C8-alkyl-substituted dibenzylidenesorbitol derivatives, such as methyldibenzylidenesorbitol, ethyldibenzylidenesorbitol or dimethyldibenzylidenesorbitol (e.g. 1, 3 : 2, 4 di(methylbenzylidene) sorbitol) , or substituted nonitol-derivatives, such as 1, 2, 3, -trideoxy-4, 6: 5, 7-bis-O- [ (4-propylphenyl) methylene] -nonitol, and
(iii) salts of diesters of phosphoric acid, e.g. sodium 2, 2'-methylenebis (4, 6, -di-tert-butylphenyl) phosphate or aluminium-hydroxy-bis [2, 2'-methylene-bis (4, 6-di-t-butylphenyl) phosphate] , and
(iv) vinylcycloalkane polymer or vinylalkane polymer, and
(v) mixtures thereof.
Preferably the α-nucleating agent comprised in the second propylene homopolymer (HPP-2) is vinylcycloalkane polymer and/or vinylalkane polymer, more preferably vinylcycloalkane polymer, like vinylcyclohexane (VCH) polymer. Vinyl cyclohexane (VCH) polymer is particularly preferred as α-nucleating agent. It is appreciated that the amount of vinylcycloalkane, like vinylcyclohexane (VCH) , polymer and/or vinylalkane polymer, more preferably of vinylcyclohexane (VCH) polymer, in the second propylene homopolymer (HPP-2) is not more than 500 ppm, preferably not more than 200 ppm, more preferably not more than 100 ppm, like in the range of 0.1 to 500 ppm, preferably in the range of 0.5 to 200 ppm, more preferably in the range of 1 to 100 ppm. Furthermore, it is appreciated that the vinylcycloalkane polymer and/or vinylalkane polymer is introduced into the second propylene homopolymer (HPP-2) by the BNT technology. With regard to the BNT-technology reference is made to the international applications WO 99/24478, WO 99/24479 and particularly WO 00/68315. According to this technology a catalyst system, preferably a Ziegler-Natta procatalyst, can be modified by polymerizing a vinyl compound in the presence of the catalyst system, comprising in particular the special Ziegler-Natta procatalyst, an external donor and a cocatalyst, which vinyl compound has the formula:
CH2=CH-CHR3R4
wherein R3 and R4 together form a 5-or 6-membered saturated, unsaturated or aromatic ring or independently represent an alkyl group comprising 1 to 4 carbon atoms, and the modified catalyst is used for the preparation of the second propylene homopolymer (HPP-2) according to this invention. The polymerized vinyl compound acts as an α-nucleating agent. The weight ratio of vinyl compound to solid catalyst component in the modification step of the catalyst is preferably of up to 5 (5: 1) , more preferably up to 3 (3: 1) , like in the range of 0.5 (1:2) to 2 (2: 1) .
Such nucleating agents are commercially available and are described, for example, in "Plastic Additives Handbook", 5th edition, 2001 of Hans Zweifel (pages 967 to 990) .
The second propylene homopolymer (HPP-2) is state of the art and a commercially available product.
The Polar Modified Polypropylene (PMP) 
The polar modified polypropylene (PMP) is present in the polypropylene composition (PC) to achieve an easier and more uniform dispersion of the fibers (FB) in the polymer components which act as a matrix in the fiber reinforced composition.
The polar modified polypropylene (PMP) is preferably a polypropylene containing polar groups. The polypropylene is preferably a propylene homopolymer or copolymer, like a copolymer of propylene with other α-olefins, like ethylene. In a preferred embodiment the polar modified polypropylene (PMP) is a propylene homopolymer.
In terms of structure, the polar modified polypropylene (PMP) is preferably selected from graft or block copolymers. In this context, preference is given to a polar modified polypropylene (PMP) containing polar groups selected from the group consisting of acid anhydrides, carboxylic acids, carboxylic acid derivatives, primary and secondary amines, hydroxyl compounds, oxazoline and epoxides.
Specific examples of the said polar groups are unsaturated cyclic anhydrides and their aliphatic diesters, and the diacid derivatives. In particular, one can use maleic anhydride and compounds selected from C1 to C10 linear and branched dialkyl maleates, C1 to C10 linear and branched dialkyl fumarates, itaconic anhydride, C1 to C10 linear and branched itaconic acid dialkyl esters, maleic acid, fumaric acid, itaconic acid and mixtures thereof.
Particular preference is given to using a propylene polymer grafted with maleic anhydride as the polar modified polypropylene (PMP) , i.e. the adhesion promotor (AP) .
The polar modified polypropylene (PMP) can be produced in a simple manner by reactive extrusion of the polymer, for example with maleic anhydride in the presence of free radical generators (like organic peroxides) , as disclosed for instance in EP 0 572 028.
Preferred amounts of groups deriving from polar groups in the polar modified polypropylene (PMP) are from 0.5 to 3.0 wt. -%, preferably from 0.5 to 2.0 wt. -%, more preferably from 0.8 to 1.6 wt. -%.
It is appreciated that the melt flow rate MFR2 (190 ℃) for the polar modified polypropylene (PMP) is at least 10 g/10min, preferably at least 20 g/10min. more preferably at least 50 g/10min, even more preferably at least 70 g/10min, like in the range of 10 to 500 g/10 min, preferably from 20 to 150 g/10min, more preferably from 50 to 150 g/10min, even more preferably from 70 to 150 g/10min.
The polar modified polypropylene (PMP) is known in the art and commercially available. A suitable example is SCONA TPPP 8112 GA of BYK-Cera (Germany) or Bondyam 1010 of Polyram (Israel) .
The Additives (AD)
The polypropylene composition (PC) may comprise additives. Typical additives are acid scavengers, antioxidants, colorants, light stabilisers, plasticizers, slip agents, anti-scratch agents, dispersing agents, processing aids, lubricants, and pigments. The propylene composition (PC) preferably includes antioxidants, in particular if applied as a masterbatch (MB) for the preparation of a fiber reinforced composite (FRC) . It is appreciated that the fiber reinforced composite (FRC) has a good stability under high temperature conditions.
Such additives are commercially available and for example described in “Plastic Additives Handbook” , 6th edition 2009 of Hans Zweifel (pages 1141 to 1190) .
Furthermore, the term “additives” according to the present invention also includes carrier materials, in particular polymeric carrier materials (PCM) .
Preferably the polypropylene composition (PC) comprises 1 to 25 wt. -%, preferably 2 to 25 wt.-%, more preferably 4 to 20 wt. -%, even more preferably 4 to 15 wt. -%of the additives (AD) , based on the weight of the polypropylene composition (PC) .
In a preferred embodiment the polypropylene composition (PC) comprises antioxidant (AO) , light stabilizing agent (LSA) , pigments (PIG) and polymeric carrier material (PCM) as the additives.
The Polymeric Carrier Material (PCM)
Preferably the polypropylene composition (PC) does not comprise (a) further polymer (s) different to the polymer (s) comprised in the polymers polypropylene composition (PC) , i.e. the first polypropylene homopolymer (HPP-1) , optionally the second polypropylene homopolymer (HPP-2) and the polar modified polypropylene (PMP) in an amount exceeding 10 wt. -%, preferably exceeding 5 wt. -%, based on the weight of the polypropylene composition (PC) . If an additional polymer is present, such a polymer is typically a polymeric carrier material (PCM) for additives.
It is appreciated that the polypropylene composition (PC) comprises polymeric carrier material (PCM) in an amount of not more than 10.0 wt. -%, preferably in an amount of not  more than 5.0 wt. -%, more preferably in an amount of not more than 2.5 wt. -%, like in the range of 1.0 to 10.0 wt. -%, preferably in the range of 1.0 to 5.0 wt. -%, even more preferably in the range of 1.0 to 2.5 wt. -%, based on the weight of the polypropylene composition (PC) .
The polymeric carrier material (PCM) is a carrier polymer for the other additives to ensure a uniform distribution in the polypropylene composition (PC) . The polymeric carrier material (PCM) is not limited to a particular polymer. The polymeric carrier material (PCM) may be ethylene homopolymer, ethylene copolymer obtained from ethylene and α-olefin comonomer such as C3 to C8 α-olefin comonomer, propylene homopolymer and/or propylene copolymer obtained from propylene and α-olefin comonomer such as ethylene and/or C4 to C8 α-olefin comonomer.
According to a preferred embodiment the polymeric carrier material (PCM) is a polypropylene homopolymer, this propylene homopolymer may be the same propylene homopolymer as the first propylene homopolymer (HPP-1) and/or the second propylene homopolymer (HPP-2) , however, it is preferred that propylene homopolymer present as the polymeric carrier material is different to the first propylene homopolymer (HPP-1) and/or the second propylene homopolymer (HPP-2) .
Fiber Reinforced Composite (FRC)
In a second aspect the present invention is directed at a fiber reinforced composite (FRC) comprising
(a) fiber (FB) ,
(b) the polypropylene composition (PC) , and
(c) polypropylene (PP) .
In a preferred embodiment the fiber reinforced composite (FRC) comprises
(a) 10 to 50 wt. -%, preferably 20 to 40 wt. -%, more preferably 25 to 35 wt. -%of fibers (FB) , based on the weight of the fiber reinforced composite (FRC) ,
(b) 5 to 30 wt. -%, preferably 5 to 25 wt. -%, more preferably 10 to 20 wt. -%of polypropylene composition (PC) , based on the weight of the fiber reinforced composite (FRC) , and
(c) 30 to 60 wt. -%, preferably 40 to 70 wt. -%, more preferably 50 to 60 wt. -%of polypropylene (PP) , based on the weight of the fiber reinforced composite (FRC) .
In the following the components of the fiber reinforced composite (FRC) are described in more detail:
The Fibers (FB)
Preferably the fiber reinforced composite (FRC) comprises fibers (FB) selected from the group consisting of glass fiber, mineral fiber, ceramic fiber and graphite fiber. The glass fiber is preferred. Preferably the glass fiber is a continuous glass fiber or a cut glass fiber, also known as short fiber or chopped strand.
If the fibers (FB) used in the fiber reinforced composite (FRC) are cut or short glass fibers, it is preferred that the fibers have an average length in the range from 1 to 10 mm, more preferably from 1 to 7 mm, like 3 to 5 mm, or 4 mm.
Preferably, the fibers (FB) , more preferably the cut glass fibers or continuous glass fibers, used in the fiber reinforced composition (FRC) have an average diameter of from 8 to 20 μm, more preferably from 9 to 16 μm, for example 10 to 15 μm.
The Propylene Composition (PC)
The propylene composition (PC) comprised in the fiber reinforced composite (FRC) corresponds to the polypropylene composition (PC) described above in the section “Polypropylene Composition (PC) ” .
The Polypropylene (PP)
The polypropylene composition (PC) and the polypropylene (PP) together form a matrix phase in which the fibers (FB) are dispersed. It is preferred that the polymer components of the polypropylene composition (PC) and the polymer components of the polypropylene (PP) form a continuous phase in which the fibers (FB) are dispersed.
The propylene (PP) comprised in the fiber reinforced composite (FRC) is not limited to a particular polypropylene and is selected according to needs. The propylene (PP) may be a propylene homopolymer, a propylene copolymer obtained from propylene and α-olefin  comonomer such as ethylene and/or C4 to C8 α-olefin and/or a heterophasic propylene copolymer (HECO) obtained from propylene and α-olefin comonomer such as ethylene and/or a C4 to C12 α-olefin. In a preferred embodiment the propylene (PP) comprised in the fiber reinforced composite (FRC) is a propylene homopolymer.
The considerations provided above with respect to propylene homopolymers, propylene copolymers and heterophasic propylene copolymers equally apply. In other words, the polypropylene (PP) may be the same polymer as the propylene homopolymer (HPP-1) and/or the propylene homopolymer (HPP-2) .
In one embodiment the polypropylene (PP) is the same polymer as the propylene homopolymer (HPP-1) .
Process for the Preparation of a Fiber Reinforced Composite (FRC)
In a third aspect the present invention is directed at a process for the preparation of a fiber reinforced composite (FRC) . Process for the preparation of a fiber reinforced composite (FRC) comprises the steps of adding
(a) polypropylene composition (PC) ,
(b) fibers (FB) ,
(c) polypropylene (PP)
to an extruder and extruding the same obtaining the fiber reinforced composite (FRC) .
The polypropylene composition (PC) is described in more detail above in the section “The Polypropylene Composition (PC) ” , the fibers (FB) are described in more detail above in the section “The Fibers (FB) ” and the polypropylene (PP) is described in more detail above in the section “The Polypropylene (PP) ” .
Automotive Article
In a fourth aspect the present invention is directed at an automotive article, in particular an automotive article comprising the fiber reinforced composite (FRC) .
The fiber reinforced composite is described in more detail above in the section “Fiber Reinforced Composite (FRC) ” . 
Preferably the automotive article comprises at least 80 wt. -%, like 80 to 99.9 wt. -%, more preferably at least 90 wt. -%, like 90 to 99.9 wt. -%, yet more preferably at least 95 wt. -%, like 95 to 99.9 wt. -%, of the fiber reinforced composite (FRC) . In one embodiment the automotive article consists of the fiber reinforced composite (FRC) .
It is appreciated that the automotive article has a flexural modulus of at least 2000 MPa, preferably of at least 2500 MPa, more preferably of at least 3000 MPa, like in the range of 2000 to 5000 MPa, preferably 2500 to 4000 MPa, more preferably 3000 to 3500 MPa.
Preferably the automotive article is an automotive interior or exterior article, the latter being preferred. In particular it is preferred that the automotive article is selected from the group consisting of body shields, bumper, bumper crossbeam, battery bracket, chair framework, pedal, parts under the hood (including front end mould) , and step assists .
The automotive article is typically a molded article, preferably an injection molded article or a compression molded article. It is appreciated that the automotive article is an injection molded article or a compression molded article, the latter being especially preferred.
Use of the Polypropylene Composition (PC)
In a fifth aspect the present invention is directed at the use of a polypropylene composition (PC) as a masterbatch (MB) .
In a preferred embodiment the polypropylene composition (PC) is used as a masterbatch (MB) for the preparation of a fiber reinforced composite (FRC) . In other words in a preferred embodiment the polypropylene composition (PC) is equal to the masterbatch (MB) .
According to the present invention the term “masterbatch” relates to a concentrate of polymer compounds used to prepare customized composites. The masterbatch resembles a single base compound that can be used to prepare different composites, i.e. composites with different properties and/or different compositions, by compounding with further compounds. Preferably the masterbatch resembles a single base compound that can be used to prepare different fiber reinforced composites by compounding with fibers and optionally further polymer compounds.
The polypropylene composition (PC) is described in more detail above in the section “The Polypropylene Composition (PC) ” . The fiber reinforced composite (FRC) is described in more detail above in the section “Fiber Reinforced Composite” .
In a preferred embodiment the fiber reinforced composite (FRC) comprises the masterbatch (MB) in an amount in the range of not more than 50 wt. -%, preferably not more than 40 wt. -%, more preferably not more than 30 wt. -%, like in the range of 5 to 30 wt. -%, preferably 5 to 25 wt. -%, more preferably 10 to 20 wt. -%, based on the weight of the fiber reinforced composite (FRC)
EXAMPLES
1.Definitions/Measuring Methods
The following definitions of terms and determination methods apply for the above general description of the invention as well as to the below examples unless otherwise defined.
Quantification of microstructure by NMR spectroscopy
Quantitative nuclear-magnetic resonance (NMR) spectroscopy is used to quantify the isotacticity and regio-regularity of the polypropylene homopolymers.
Quantitative 13C {1H} NMR spectra were recorded in the solution-state using a Bruker Advance III 400 NMR spectrometer operating at 400.15 and 100.62 MHz for 1H and 13C respectively. All spectra were recorded using a 13C optimised 10 mm extended temperature probehead at 125℃ using nitrogen gas for all pneumatics.
For polypropylene homopolymers approximately 200 mg of material was dissolved in 1, 2-tetrachloroethane-d2 (TCE-d2) . To ensure a homogenous solution, after initial sample preparation in a heat block, the NMR tube was further heated in a rotatary oven for at least 1 hour. Upon insertion into the magnet the tube was spun at 10 Hz. This setup was chosen primarily for the high resolution needed for tacticity distribution quantification (Busico, V., Cipullo, R., Prog. Polym. Sci. 26 (2001) 443; Busico, V.; Cipullo, R., Monaco, G., Vacatello, M., Segre, A.L., Macromolecules 30 (1997) 6251) . Standard single-pulse excitation was employed utilising the NOE and bi-level WALTZ16 decoupling scheme (Zhou, Z., Kuemmerle, R., Qiu, X., Redwine, D., Cong, R., Taha, A., Baugh, D. Winniford, B., J. Mag. Reson. 187 (2007) 225; Busico, V., Carbonniere, P., Cipullo, R., Pellecchia, R., Severn, J., Talarico, G., Macromol. Rapid Commun. 2007, 28, 11289) . A total of 8192 (8k) transients were acquired per spectra.
Quantitative 13C {1H} NMR spectra were processed, integrated and relevant quantitative properties determined from the integrals using proprietary computer programs.
For polypropylene homopolymers all chemical shifts are internally referenced to the methyl isotactic pentad (mmmm) at 21.85 ppm.
Characteristic signals corresponding to regio defects (Resconi, L., Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 2000, 100, 1253; ; Wang, W-J., Zhu, S., Macromolecules 33 (2000) , 1157; Cheng, H. N., Macromolecules 17 (1984) , 1950) or comonomer were observed.
The tacticity distribution was quantified through integration of the methyl region between 23.6-19.7 ppm correcting for any sites not related to the stereo sequences of interest (Busico, V., Cipullo, R., Prog. Polym. Sci. 26 (2001) 443; Busico, V., Cipullo, R., Monaco, G., Vacatello, M., Segre, A.L., Macromolecules 30 (1997) 6251) .
Specifically the influence of regio-defects and comonomer on the quantification of the tacticity distribution was corrected for by subtraction of representative regio-defect and comonomer integrals from the specific integral regions of the stereo sequences.
The isotacticity was determined at the pentad level and reported as the percentage of isotactic pentad (mmmm) sequences with respect to all pentad sequences:
[mmmm] %= 100 * (mmmm /sum of all pentads)
The presence of 2, 1 erythro regio-defects was indicated by the presence of the two methyl sites at 17.7 and 17.2 ppm and confirmed by other characteristic sites. Characteristic signals corresponding to other types of regio-defects were not observed (Resconi, L., Cavallo, L., Fait, A., Piemontesi, F., Chem. Rev. 2000, 100, 1253) .
The amount of 2, 1 erythro regio-defects was quantified using the average integral of the two characteristic methyl sites at 17.7 and 17.2 ppm:
P21e = (Ie6 + Ie8) /2
The amount of 1, 2 primary inserted propene was quantified based on the methyl region with correction undertaken for sites included in this region not related to primary insertion and for primary insertion sites excluded from this region:
P12 = ICH3 + P12e
The total amount of propene was quantified as the sum of primary inserted propene and all other present regio-defects:
Ptotal = P12 + P21e
The mole percent of 2, 1-erythro regio-defects was quantified with respect to all propene:
[21e] mol. -%= 100 * (P21e /Ptotal)
Characteristic signals corresponding to the incorporation of ethylene were observed (as described in Cheng, H. N., Macromolecules 1984, 17, 1950) and the comonomer fraction calculated as the fraction of ethylene in the polymer with respect to all monomer in the polymer.
The comonomer fraction was quantified using the method of W-J. Wang and S. Zhu, Macromolecules 2000, 33 1157, through integration of multiple signals across the whole spectral region in the 13C {1H} spectra. This method was chosen for its robust nature and ability to account for the presence of regio-defects when needed. Integral regions were slightly adjusted to increase applicability across the whole range of encountered comonomer contents.
The mole percent comonomer incorporation was calculated from the mole fraction.
The weight percent comonomer incorporation was calculated from the mole fraction.
MFR2 (230℃) is measured according to ISO 1133 (230℃, 2.16 kg load) .
MFR2 (190℃) is measured according to ISO 1133 (190℃, 2.16 kg load) .
Melting temperature (Tm) : measured with a TA Instrument Q2000 differential scanning calorimetry (DSC) on 5 to 7 mg samples. DSC is run according to ISO 11357 /part 3 /method C2 in a heat /cool /heat cycle with a scan rate of 10 ℃/min in the temperature range of -30 to +225℃. Melting temperature is determined from the second heating step.
The xylene cold solubles (XCS, wt. -%) : Content of xylene cold solubles (XCS) is determined at 25 ℃ according to ISO 16152; first edition; 2005-07-01
Flexural Modulus was determined in 3-point-bending according to ISO 178 on injection molded specimens of 80 x 10 x 4 mm prepared in accordance with ISO 294-1: 1996.
Tensile Strength and Modulus are measured according to ISO 527-2 (cross head speed = 50 mm/min; 23 ℃) using injection molded specimens as described in EN ISO 1873-2 (dog bone shape, 4 mm thickness) .
Charpy impact test: The Charpy (notched /unnotched) impact strength (Charpy NIS/IS) is measured according to ISO 179 2C /DIN 53453 at 23 ℃, using injection molded bar test specimens of 80x10x4 mm3 prepared in accordance with ISO 294-1: 1996.
Heat aging is performed in an oven at 120℃ for 2000h according to ISO 188.
2.Examples
The present invention is illustrated by the following examples:
The inventive propylene compositions IE1 and IE2 are based on recipes as summarized in Table 1.
Table 1: Recipe and properties of the inventive propylene compositions IE1 and IE2
Example   IE1 IE2
H-PP1 [wt%] * 58.0 73.0
H-PP2 [wt%] * 10.0 5.0
PMP [wt%] * 20.0 12.0
       
MFR (230 ℃, 2.16 kg)  [g/10min] 100 90
Flexural Modulus [MPa] 1550 1600
NIS [kJ/m2] 2.1 2.3
Tensile Strength [MPa] 32 33
*rest to 100 wt. -%are additives and polymeric carrier material, including the commercial antioxidant pentaerythrityl-tetrakis (3- (3’ , 5’ -di-tert. butyl-4-hydroxyphenyl) -propionate (“Irganox 1010 FF” of BASF, Germany) , the commercial phosphorous antioxidant tris (2, 4-di-t-butylphenyl) phosphite ( “Irgafos 168 FF ” of BASF, Germany) , the commercial sulphur based antioxidant di-stearyl-thio-di-propionate ( “Irganox PS-802 FL” of BASF, Germany) and the commercial light stabiliser “Cyabsorb UV-3808PP5” of Cytec (U.S.A. ) comprising the sterically hindered phenol n-hexadecyl-3, 5-di-t-butyl-4-hydroxybenzoate and the hindered amine light stabilizer bis (1, 2, 2, 6, 6-pentamethyl-4-piperidyl) sebacate, and the commercial black pigment “PE2772” of Cabot (China) .
“HPP-1” is the commercial propylene homopolymer “BorPure HJ311MO” of Borealis AG, having a melt flow rate MFR2 (230 ℃) of 60 g/10min;
“HPP-2” is the commercial propylene homopolymer “Bormod HD915CF” of Borealis AG, having a melt flow rate MFR2 (230 ℃) of 8 g/10min;
“PMP” is the commercial polypropylene (functionalized with maleic anhydride) “TPPP8112” of BYK Co. Ltd, Germany, having a MFR2 (190 ℃) of 100 g/10min and a maleic anhydride content of 1.5 %;
The inventive propylene compositions IE1 and IE2 are produced by melt blending. The inventive polypropylene compositions are based on the recipe summarized in Tables 1 and are prepared by using a Coperion STS-35 twin-screw extruder (available from Coperion (Nanjing) Corporation, China) with a diameter of 35 mm. The twin-screw extruder runs at an average screw speed of 400 rpm with a temperature profile of zones from 180-200 ℃. It has a L/D of 44. The temperature of each zone, throughput and the screw speed of the extruder for preparing the compositions of inventive examples IE 1 and IE2 are listed in Table 2.
The temperature of each zone, throughput and screw speed of the extruder are initiative parameters, and are set on control panel of the extruder. Melt temperature (temperature of the melt in the die) and torque of the extruder are passive parameters shown on control panel of the extruder. A vacuum bump is located in zone 9 and generates a vacuum of -0.01 MPa inside the extruder.
Table 2: Extruder conditions of the compositions IE1 to IE2
Process condition   IE 1 IE 2
zone 1 (feeding opening) [℃] RT RT
zone2 [℃] 180 180
zone 3 [℃] 190 190
zone 4 [℃] 190 190
zone 5 [℃] 190 190
zone 6 [℃] 195 195
zone 7 [℃] 200 200
zone 8 [℃] 200 200
zone 9 [℃] 200 200
zone 10 [℃] 200 200
zone 11 [℃] 195 195
die [℃] 190 190
melt temp. [℃] 190 190
throughput [kg/hour] 60 60
screw speed [rpm] 580 580
vacuum [MPa] -0.01 -0.01
The inventive fiber reinforced composites IE3 and IE4 are produced by melt blending using a twin-screw extruder with a screw configuration typical for glass fiber mixing with a temperature profile of zones from 220℃ to 240 ℃. The inventive fiber reinforced composites IE3 and IE4 are obtained in the form sheets which are used to prepare inventive body shields IE5 and IE6 by compression moulding.
The inventive fiber reinforced composites IE3 and IE4 are prepared based on recipes as summarized in Table 3.
Table 3: Recipe and properties of the inventive fiber reinforced composites IE3 and IE4
Example   IE3 IE4
IE1 [wt%] 14.0 -
IE2 [wt%] - 17.5
PP [wt%] 56.0 52.5
FB [wt%] 30.0 30.0
“PP” is the commercial propylene homopolymer “BorPure HJ311MO” of Borealis AG, having a melt flow rate MFR2 (230 ℃) of 60 g/10min;
“FB” is the continuous glass fiber “E DR 240 - T911” of from Taishan GF Co. Ltd, Shandong, China.
As comparison, the commercial fiber reinforced composite “Daplen HJ060UBC” of Borouge Pte Ltd., comprising glass fibers in a polypropylene matrix, obtained from compounding polypropylene and glass fibers without any masterbatch, is used to prepare comparative body shield CE1 by compression molding.
Table 4: Properties of the inventive body shields IE5 and IE6 and the comparative body shield CE1
Example   IE 5 IE 6 CE1
Flexural Modulus [MPa] 3200 3400 3300
NIS [kJ/m2] 12 10 10
IS [kJ/m2] 50 45 48
Tensile strength [MPa] 50 52 50
IS (after heat aging) [kJ/m2] 48 44 47
Tensile strength (after heat aging)  [MPa] 49 50 49
“NIS” is the notched impact strength and “IS” is the unnotched impact strength
It can be seen that the inventive body shields IE5 and IE6 prepared from the inventive propylene compositions IE1 and IE1 applied in form of a masterbatch have comparable properties to the comparative body shield CE1. However, the inventive propylene compositions IE1 and IE2 applied in the form of a masterbatch enable a high flexibility in the preparation of various fiber reinforced composites for different final product by changing the ratio of the masterbatch to polypropylene matrix and fibers.

Claims (15)

  1. Polypropylene composition (PC) comprising
    (a) a first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min,
    (b) optionally a second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min, and
    (c) a polar modified polypropylene (PMP) ,
    wherein the composition does not comprise fibers (FB) .
  2. Polypropylene composition (PC) according to claim 1, wherein the composition comprises
    (a) 55 to 90 wt. -%of the first propylene homopolymer (HPP-1) , based on the weight of the polypropylene composition (PC) ,
    (b) optionally 1 to 20 wt. -%of the second propylene homopolymer (HPP-2) , based on the weight of the polypropylene composition (PC) , and
    (c) 5 to 25 wt. -%of the polar modified polypropylene (PMP) , based on the weight of the polypropylene composition (PC) .
  3. Polypropylene composition (PC) according to claim 1, consisting of
    (a) the first propylene homopolymer (HPP-1) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 45 g/10min,
    (b) optionally the second propylene homopolymer (HPP-2) having a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of not more than 20 g/10min,
    (c) the polar modified polypropylene (PMP) , and
    (d) additives (AD) .
  4. Polypropylene composition (PC) according to claim 3, wherein the composition consists of
    (a) 55 to 90 wt. -%of the first propylene homopolymer (HPP-1) , based on the weight of the polypropylene composition (PC) ,
    (b) optionally 1 to 20 wt. -%of the second propylene homopolymer (HPP-2) , based on the weight of the polypropylene composition (PC) ,
    (c) 5 to 25 wt. -%of the polar modified polypropylene (PMP) , based on the weight of the polypropylene composition (PC) , and
    (d) 1 to 25 wt. -%of the additives (AD) , based on the weight of the polypropylene composition (PC) .
  5. Polypropylene composition according to any one of claims 1 to 4, wherein the second propylene homopolymer (HPP-2) is nucleated, preferably α-nucleated.
  6. Polypropylene composition (PC) according to any one of claims 1 to 5, wherein the composition has a MFR2 (230 ℃, 2.16 kg) measured according to ISO 1133 of at least 75 g/10min.
  7. Polypropylene composition (PC) according to any one of claims 1 to 6, wherein the composition has a flexural modulus of at least 1200 MPa.
  8. Fiber reinforced composite (FRC) comprising
    (a) fibers (FB) ,
    (b) polypropylene composition (PC) according to any one of claims 1 to 7, and
    (c) polypropylene (PP) .
  9. Fiber reinforced composite (FRC) according to claim 8, wherein the composite comprises
    (a) 10 to 50 wt. -%of fibers (FB) , based on the weight of the fiber reinforced composite (FRC) ,
    (b) 5 to 30 wt. -%of polypropylene composition (PC) according to any one of claims 1 to 7, based on the weight of the fiber reinforced composite (FRC) , and
    (c) 30 to 60 wt. -%of polypropylene (PP) , based on the weight of the fiber reinforced composite (FRC) .
  10. Fiber reinforced composite (FRC) according to any one of claims 8 to 9, wherein the fibers (FB) are selected from the group consisting of glass fibers, ceramic fibers, graphite fibers and mixtures thereof.
  11. Process for the preparation of a fiber reinforced composite (FRC) according any one of claims 8 to 10 comprising the steps of adding
    (a) polypropylene composition (PC) ,
    (b) fibers (FB) ,
    (c) polypropylene (PP)
    to an extruder and extruding the same obtaining the fiber reinforced composite (FRC) .
  12. Automotive article comprising the fiber reinforced composite (FRC) according any one of claims 8 to 10.
  13. Automotive article according to claim 12, wherein the article has a flexural modulus of at least 2000 MPa.
  14. Use of a polypropylene composition (PC) according to any one of claims 1 to 7 as a masterbatch (MB) .
  15. Use according to claim 14, for the preparation of a fiber reinforced composite (FRC) according to any one of previous claims 8 to 10.
PCT/CN2015/075210 2015-03-27 2015-03-27 Polypropylene composition and fiber reinforced composite WO2016154791A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/075210 WO2016154791A1 (en) 2015-03-27 2015-03-27 Polypropylene composition and fiber reinforced composite
CN201580078042.XA CN107406642A (en) 2015-03-27 2015-03-27 Polypropene composition and fibre reinforced composites

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/075210 WO2016154791A1 (en) 2015-03-27 2015-03-27 Polypropylene composition and fiber reinforced composite

Publications (1)

Publication Number Publication Date
WO2016154791A1 true WO2016154791A1 (en) 2016-10-06

Family

ID=57003841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075210 WO2016154791A1 (en) 2015-03-27 2015-03-27 Polypropylene composition and fiber reinforced composite

Country Status (2)

Country Link
CN (1) CN107406642A (en)
WO (1) WO2016154791A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010672A1 (en) * 2017-07-13 2019-01-17 Borouge Compounding Shanghai Co., Ltd. Glass fiber reinforced composition with low odor
WO2020221764A1 (en) 2019-04-29 2020-11-05 Ineos Styrolution Group Gmbh Polymer compositions that contain a semi-crystalline polymer, and process of preparation
WO2022129016A1 (en) 2020-12-16 2022-06-23 Ineos Styrolution Group Gmbh Filler-containing thermoplastic polymer composite material reinforced with continuous fibers and having good surface smoothness
WO2022129045A1 (en) 2020-12-16 2022-06-23 Ineos Styrolution Group Gmbh Process for producing a thermoplastic polymer-containing fiber-reinforced composite material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074713A1 (en) * 2006-12-20 2008-06-26 Basell Poliolefine Italia S.R.L. Filled polyolefin compositions
CN102850648A (en) * 2012-04-16 2013-01-02 江苏安格特新材料科技有限公司 Halogen-free flame-retardant polypropylene composite material and preparation method thereof
CN103030884A (en) * 2012-12-10 2013-04-10 上海普利特复合材料股份有限公司 Polypropylene composition for automobile enamel-plastic instrument panel frameworks and preparation method thereof
CN103554656A (en) * 2013-10-14 2014-02-05 上海俊尓新材料有限公司 Polypropylene composite material used for preparation of automobile bottom guard board by LFT-D technology

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200837127A (en) * 2006-12-20 2008-09-16 Basell Poliolefine Srl Filled polyolefin compositions

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008074713A1 (en) * 2006-12-20 2008-06-26 Basell Poliolefine Italia S.R.L. Filled polyolefin compositions
CN102850648A (en) * 2012-04-16 2013-01-02 江苏安格特新材料科技有限公司 Halogen-free flame-retardant polypropylene composite material and preparation method thereof
CN103030884A (en) * 2012-12-10 2013-04-10 上海普利特复合材料股份有限公司 Polypropylene composition for automobile enamel-plastic instrument panel frameworks and preparation method thereof
CN103554656A (en) * 2013-10-14 2014-02-05 上海俊尓新材料有限公司 Polypropylene composite material used for preparation of automobile bottom guard board by LFT-D technology

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019010672A1 (en) * 2017-07-13 2019-01-17 Borouge Compounding Shanghai Co., Ltd. Glass fiber reinforced composition with low odor
WO2020221764A1 (en) 2019-04-29 2020-11-05 Ineos Styrolution Group Gmbh Polymer compositions that contain a semi-crystalline polymer, and process of preparation
WO2022129016A1 (en) 2020-12-16 2022-06-23 Ineos Styrolution Group Gmbh Filler-containing thermoplastic polymer composite material reinforced with continuous fibers and having good surface smoothness
WO2022129045A1 (en) 2020-12-16 2022-06-23 Ineos Styrolution Group Gmbh Process for producing a thermoplastic polymer-containing fiber-reinforced composite material

Also Published As

Publication number Publication date
CN107406642A (en) 2017-11-28

Similar Documents

Publication Publication Date Title
US11827758B2 (en) Article comprising a fiber reinforced polypropylene composition
US10550253B2 (en) Polypropylene—carbon fiber composite
WO2016101139A1 (en) Fiber reinforced polypropylene composite
RU2684110C1 (en) Carbon fiber reinforced materials with low density
US20180265693A1 (en) Fiber reinforced polymer composition
US10266671B2 (en) Tube made of a heterophasic polypropylene composition
WO2016154791A1 (en) Polypropylene composition and fiber reinforced composite
WO2019010672A1 (en) Glass fiber reinforced composition with low odor
WO2016070416A1 (en) Polypropylene composition with improved scratch resistance, balanced impact strength and stiffness
US11492473B2 (en) Reinforced polymer composition
CA3072688A1 (en) Reinforced polypropylene composition
KR102363693B1 (en) Fiber Reinforced Polypropylene Composition
WO2022120648A1 (en) Glass fiber-filled polyolefin compositions with low shrinkage and warpage
WO2016201621A1 (en) Polypropylene composition for pipe applications

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886778

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886778

Country of ref document: EP

Kind code of ref document: A1