WO2016154768A1 - Multi-layer laminated structures and preparation method thereof - Google Patents

Multi-layer laminated structures and preparation method thereof Download PDF

Info

Publication number
WO2016154768A1
WO2016154768A1 PCT/CN2015/000208 CN2015000208W WO2016154768A1 WO 2016154768 A1 WO2016154768 A1 WO 2016154768A1 CN 2015000208 W CN2015000208 W CN 2015000208W WO 2016154768 A1 WO2016154768 A1 WO 2016154768A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer component
polymer
layer laminated
layer
laminated structure
Prior art date
Application number
PCT/CN2015/000208
Other languages
French (fr)
Inventor
Li Yuan
Xin Chen
Yumin Chen
Peite BAO
Original Assignee
Exxonmobil Chemical Patents Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Exxonmobil Chemical Patents Inc filed Critical Exxonmobil Chemical Patents Inc
Priority to PCT/CN2015/000208 priority Critical patent/WO2016154768A1/en
Publication of WO2016154768A1 publication Critical patent/WO2016154768A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0046Details relating to the filling pattern or flow paths or flow characteristics of moulding material in the mould cavity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/76Measuring, controlling or regulating
    • B29C45/77Measuring, controlling or regulating of velocity or pressure of moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0094Condition, form or state of moulded material or of the material to be shaped having particular viscosity

Definitions

  • the present invention relates to multi-layer laminated structures and preparation method thereof.
  • the multi-layer laminated structures comprise at least two polymer components.
  • Multi-layer structures of polymer blends which can combine advantages of each polymer component, are becoming increasingly important for many applications, and therefore result in substantial improvements in electrical and thermal conductivities as well as gas or water barrier properties.
  • a regular array of periodic micro-layers can be obtained through self-assembly technique.
  • self-assembly technique is significantly limited in practical applications.
  • co-extrusion is widely used to form multi-layer compositions, especially used in the fabrication of multi-layer films.
  • the multi-layers in coextruded products are formed by forced assembly.
  • the multi-layer structure is achieved by combining different layers in a die before their extrusion as a preform.
  • the obtained preform is then blown and molded in the form of desired product.
  • the co-extrusion method can fabricate uniform multi-layer structures with a wide range of melt-processable polymers. For example, polymer films or shaped materials with high barrier properties are of a multi-layer structure and produced by co-extrusion.
  • Injection molding is another kind of melt processing method which has various advantages over co-extrusion, such as easier fabrication of complex shaped products and higher production rates.
  • thin-wall injection molding has become increasingly more important because of the explosive growth of portable devices that require thinner and lighter plastic housings.
  • CN103481393A describes a process to prepare a polymer blend having continuous alternating multi-layer structure through thin-wall injection molding.
  • the present disclosure relates to a multi-layer laminated structure comprising: (a) at least one layer A comprising a first polymer component, wherein the first polymer component comprises at least one ethylene polymer, and optionally one or more co-monomers selected from C 3 to C 20 ⁇ -olefins; (b) at least one layer B adjacent to the layer A comprising a second polymer component, wherein the second polymer component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
  • the present disclosure provides a method for preparing multi-layer laminated structures comprising: (a) co-extruding a first polymer component and a second polymer component by a co-rotating twin-screw extruder to produce compounded pellets, (b) molding the compounded pellets through high speed thin-wall injection molding to produce a polymer composition having the multi-layer laminated structures; wherein, the first polymer component comprises at least one ethylene polymer and optionally one or more co-monomers selected from C 3 to C 20 ⁇ -olefins, and the second polymer component comprises at least one propylene-based copolymer.
  • Figure 1 illustrates an exemplary high speed thin-wall injection molding machine used herein.
  • Figure 2 shows morphology of three layers in the cross section of the two polymer components FMA016/PP7684KN (weight ratio is 1 ⁇ 1) from both parallel and vertical cross-section views along the flow direction.
  • Figure 3 shows morphology of core layer in the cross section of the two polymer components HMA025/PP7684KN, HMA025/PP7555KNE2, HMA016/PP7684KN, HMA016/PP7555KNE2 (weight ratio is 1 ⁇ 1) having a viscosity ratio at 2.0 ⁇ 1, 2.5 ⁇ 1, 1.7 ⁇ 1, or 2.1 ⁇ 1 separately from both parallel and vertical cross-section views along the flow direction.
  • Figure 4 shows morphology of core layer in the cross section of the two polymer components HMA025/PP7555KNE2 (viscosity ratio is 2.5 ⁇ 1) having a weight ratio at 1 ⁇ 4, 2 ⁇ 3, 3 ⁇ 2, or 4 ⁇ 1 separately from both parallel and vertical cross-section views along the flow direction.
  • polyolefin means a polymer containing recurring units derived from olefin, e.g. poly- ⁇ olefin such as polypropylene and/or polyethylene.
  • polypropylene-based copolymer is a polyolefin copolymer comprising at least 90 wt% propylene-derived units, or more preferably, at least 95 wt% propylene-derived units, and even more preferably at least 98 wt% propylene-derived units by weight of the propylene-based copolymer.
  • the present disclosure relates to a multi-layer laminated structure comprising: (a) at least one layer A comprising a first polymer component, wherein the first polymer component comprises at least one ethylene polymer and optionally one or more co-monomers selected from C 3 to C 20 ⁇ -olefins, (b) at least one layer B comprising a second polymer component, wherein the second polymer component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
  • the first polymer component and second polymer component have a viscosity ratio less than about 3 ⁇ 1. More preferably, the viscosity ratio is in the range of from about 1 ⁇ 1 to about 3 ⁇ 1. For example, the viscosity ratio is about 1 ⁇ 1.
  • the first polymer component is selected from low density polyethylene, linear low density polyethylene, high density polyethylene, or combinations thereof.
  • the second polymer component is preferably polypropylene impact copolymer, more preferably is in-situ polypropylene impact copolymer.
  • the weight ratio of the first polymer component and the second polymer component is in the range of from about 2 ⁇ 3 to 3 ⁇ 2, for example about 1 ⁇ 1.
  • the high speed thin-wall injection molding runs by a machine comprising a mold having a wall thickness in the range of from about 0.1mm to about 0.5 mm.
  • the high speed thin-wall injection molding runs at a barrel temperature in the range of from about 100 °C to about 300 °C.
  • the high speed thin-wall injection molding runs an injection speed in the range of from about 100 mm/s to about 1200 mm/s.
  • the articles having the multi-layer laminated structures can be used in those situations requiring high penetration resistance, for example, polymeric films, food packaging, and shaped articles.
  • the present disclosure provides a method for preparing multi-layer laminated structures comprising: (a) co-extruding a first polymer component and a second polymer component by a co-rotating twin-screw extruder to produce compounded pellets; (b) molding the compounded pellets through high speed thin-wall injection molding to produce a polymer composition having the multi-layer laminated structures; wherein, the first polymer component comprises at least one ethylene polymer and optionally one or more co-monomers selected from C 3 to C 20 ⁇ -olefins, and the second polymer component comprises at least one propylene-based copolymer.
  • first polymer component (′′FPC′′) suitable for use in certain embodiments of the polymer compositions described herein.
  • the FPC comprises at least one “ethylene polymer” , which, as used herein, is a polyolefin having at least 50 wt%, or 60 wt%, or 70 wt%, or 80 wt% ethylene-derived units by weight of the polyolefin.
  • ethylene polymers includes as ethylene homopolymers, ethylene copolymers, and blends thereof.
  • Useful ethylene copolymers may comprise one or more comonomers in addition to ethylene and can be a random copolymer, a statistical copolymer, a block copolymer, or blends thereof.
  • the ethylene polymer blends described herein may be physical blends or in situ blends of more than one type of ethylene polymer or blends of ethylene polymers with polymers other than ethylene polymers where the ethylene polymer component is the majority component (e.g., greater than 50 wt%) .
  • FPC may be an ethylene homopolymer.
  • FPC comprises a Ziegler-Natta polyethylene.
  • FPC is produced using chrome based catalysts, such as, for example, in US 7,491,776.
  • Commercial examples of polymers produced by chromium include the Paxon TM grades of polyethylene produced by ExxonMobil Chemical Company, Houston, Texas.
  • the ethylene homopolymer has a molecular weight distribution (M w /M n ) of up to 40, preferably ranging from 1.5 to 20, from 1.8 to 10 in another embodiment, from 1.9 to 5 in yet another embodiment, and from 2.0 to 4 in yet another embodiment.
  • the melt index (MI) of preferred ethylene homopolymers range from 0.05 to 800 g/10min in one embodiment and from 0.1 to 100 g/10min in another embodiment, preferably from 1 to 50 g/10min, as measured according to ASTM D1238 (190 °C, 2.16 kg) .
  • the crystallinity of the ethylene polymer may also be expressed in terms of crystallinity percent.
  • the thermal energy for the highest order of polyethylene is estimated at 290 J/g. That is, 100% crystallinity is equal to 290 J/g.
  • the ethylene polymer has a crystallinity (as determined by DSC as described in the Test methods section below) within the range having an upper limit of 80%, 60%, 40%, 30%, or 20%, and a lower limit of 1%, 3%, 5%, 8%, or 10%.
  • the polymer has a crystallinity of 5% to 80%, preferably 10% to 70%, more preferably 20% to 60%.
  • the ethylene polymer has a single melting point.
  • a sample of ethylene copolymer will show secondary melting peaks adjacent to the principal peak, which is considered together as a single melting point. The highest of these peaks is considered the melting point.
  • the polymer preferably has a melting point (as determined by DSC as described in the Test Methods section below) ranging from an upper limit of 150 °C, 130 °C, or 100 °C to a lower limit of 0 °C, 30 °C, 35°C, 40 °C, or 45°C.
  • low density polyethylene refers to an ethylene polymer having a density of 0.910 to 0.940 g/cm 3 .
  • Linear low density polyethylene refers to an ethylene polymer having a density of 0.890 to 0.930 g/cm 3 , typically from 0.915 to 0.930 g/cm 3 , which is linear ( “linear” means that the polyethylene has no or only a few long-chain branches, typically referred to as a g′vis of 0.97 or above, preferably 0.98 or above) and does not contain a substantial amount of long-chain branching.
  • High density polyethylene (HDPE) refers to an ethylene polymer having a density of more than 0.940 g/cm 3 .
  • FPC is selected from an ethylene copolymer, such as random or block copolymer, of ethylene and one or more comonomers selected from C 3 to C 20 ⁇ -olefins, typically from C 3 to C 10 ⁇ -olefins in another embodiment.
  • Preferred linear ⁇ -olefins useful as comonomers for the ethylene copolymer include C 3 to C 10 alpha-olefins, more preferably 1-butene, 1-hexene, and 1-octene, more preferably 1-hexene.
  • Preferred branched ⁇ -olefins include 4-methyl-l-pentene, 3-methyl-l-pentene, 3, 5, 5-trimethyl-1-hexene, and 5-ethyl-l-nonene.
  • Preferred aromatic-group-containing monomers contain up to 30 carbon atoms.
  • Suitable aromatic-group-containing monomers comprise at least one aromatic structure, preferably from one to three, more preferably a phenyl, indenyl, fluorenyl, or naphthyl moiety.
  • the aromatic-group-containing monomer further comprises at least one polymerizable double bond such that after polymerization, the aromatic structure will be pendant from the polymer backbone.
  • the aromatic-group containing monomer may further be substituted with one or more hydrocarbyl groups including, but not limited to, C 1 to C 10 alkyl groups. Additionally, two adjacent substitutions may be joined to form a ring structure.
  • Preferred aromatic-group-containing monomers contain at least one aromatic structure appended to a polymerizable olefinic moiety.
  • Particularly preferred aromatic monomers include styrene, alpha-methylstyrene, para-alkylstyrenes, vinyltoluenes, vinylnaphthalene, allyl benzene, and indene; especially styrene, paramethyl styrene, 4-phenyl-l-butene, and allyl benzene.
  • the ⁇ -olefin comonomers are present from 0.1 wt% to 50 wt% of the copolymer in one embodiment, from 0.5 wt% to 30 wt% in another embodiment, from 1 wt% to 15 wt% in yet another embodiment, and from 0.1 wt% to 5 wt% in yet another embodiment, wherein a desirable copolymer comprises ethylene and C 3 to C 20 ⁇ -olefin derived units in any combination of any upper wt% limit with any lower wt% limit described herein.
  • the ethylene copolymer will have a weight average molecular weight (M w ) of from greater than 8,000 g/mol in one embodiment, greater than 10,000 g/mol in another embodiment, greater than 12,000 g/mol in yet another embodiment, greater than 20,000 g/mol in yet another embodiment, and less than 1,000,000 g/mol in yet another embodiment, less than 800,000 g/mol in yet another embodiment, wherein a desirable copolymer may comprise any upper molecular weight limit with any lower molecular weight limit described herein.
  • M w weight average molecular weight
  • the method for preparing the ethylene polymer is not critical, as it can be made by slurry, solution, gas phase, high pressure, or other suitable processes, and by using catalyst systems appropriate for the polymerization of polyethylenes, such as Ziegler-Natta-type catalysts, chromium catalysts, metallocene-type catalysts, other appropriate catalyst systems, or combinations thereof, or by free-radical polymerization.
  • the ethylene polymers are made by the catalysts, activators, and processes described in US 6,342,566; US 6,384,142; 5,741,563; WO 03/040201; and WO 97/19991.
  • Such catalysts are well known in the art, and are described in, for example, ZIEGLER CATALYSTS (Gerhard Fink, Rolf Mülhaupt and Hans H. Brintzinger, eds., Springer-Verlag 1995) ; Resconi et al. ; and I, II METALLOCENE-BASED POLYOLEFINS (Wiley &Sons 2000) .
  • the ethylene homopolymer can be obtained by homopolymerization of ethylene in a single stage or multiple-stage reactor.
  • Copolymers may be obtained by copolymerizing ethylene and an ⁇ -olefin having from 3 to about 20 carbon atoms, in a single stage or multiple stage reactors.
  • Polymerization methods include high pressure, slurry, gas, bulk, or solution phase, or a combination thereof, using a traditional Ziegler-Natta catalyst or a single-site, metallocene catalyst system. Polymerization may be carried out by a continuous or batch process and may include use of chain transfer agents, scavengers, or other such additives as deemed applicable.
  • the SPC comprises at least one propylene-based copolymer as described above.
  • Useful propylene-based copolymers can be a random copolymer, a statistical copolymer, a block copolymer, or blends thereof.
  • SPC is polypropylene impact copolymer (herein simply referred to as “ICP” ) , which may also be known in the art as heterophasic copolymer.
  • ICP is a specific type of thermoplastic polyolefin comprising at least two distinct phases: a matrix phase and domains within the matrix phase, or dispersed phase, preferably distributed evenly throughout the matrix phase.
  • the matrix phase (A) comprises primarily a high-crystallinity polypropylene homopolymer or copolymer (the copolymer comprising no more than 1, or 2, or 3, or 4, or 5 wt% ⁇ -olefin derived units by weight of the polypropylene copolymer) having a melting point (T m ) of 100 °C or more
  • the dispersed phase (B) comprises primarily polyolefin copolymer domains within the matrix having a glass transition temperature (T g ) of-20 °C or less.
  • the component (A) comprises primarily polypropylene homopolymer (hPP) and/or random copolymer polypropylene (RCP) with relatively low comonomer content (less than 5 wt%) , and has a melting point of 110 °C or more (preferably 120 °C or more, preferably 130 °C or more, preferably 140 °C or more, preferably 150 °C or more, preferably 160 °C or more) .
  • hPP polypropylene homopolymer
  • RCP random copolymer polypropylene
  • component (B) comprises primarily one or more ethylene copolymer (s) with relatively high comonomer content (at least 5 wt %, preferably at least 10 wt %) ; and has a T g of-30 °C or less (preferably -40 °C or less, preferably -50 °C or less) .
  • Comonomers used in conjunction with propylene to make the polyolefin copolymer of the ICP are chosen from ethylene and C 4 to C 8 1-olefins, preferably from ethylene and 1-butene.
  • the comonomer is ethylene and is present in the ICP at 1 to 50 wt % (preferably 2 to 40 wt%, preferably 3 to 30 wt%, preferably 5 to 20 wt%) based on the weight of the ICP.
  • More than one comonomer may also be employed, preferable selected from ethylene and C 4 to C 8 1-olefins, such as ethylene and 1-butene or ethylene and 1-hexene, such that the component (B) comprises a propylene terpolymer.
  • polyolefin copolymers making up the dispersed phase of the ICP preferably comprise two monomers: propylene and a single comonomer chosen from among ethylene and C 4 to C 8 1-olefins.
  • the component (A) has a T m of 120 °C or more (preferably 130 °C or more, preferably 140 °C. or more, preferably 150 °C. or more, preferably 160 °C or more) .
  • the component (B) is ethylene-propylene rubber.
  • the component B has a T g of-40 °C or less (preferably -50 °C) .
  • ICP in-situ polypropylene impact copolymer
  • ICP in-situ polypropylene impact copolymer
  • the components are produced in a sequential polymerization process, wherein (A) is produced in a first reactor is transferred to a second reactor where (B) is produced and incorporated as domains into the (A) matrix.
  • component (C) may also be a minor amount of a third component (C) , produced as a byproduct during this process, comprising primarily the non-propylene comonomer (e.g., component (C) will be an ethylene polymer if ethylene is used as the comonomer) .
  • component (C) will be an ethylene polymer if ethylene is used as the comonomer
  • an in-situ ICP is sometimes identified as “reactor-blend ICP” or a “block copolymer” , although the latter term is misleading since there is at best only a very small fraction of molecules that are (A) - (B) copolymers.
  • ex-situ polypropylene impact copolymer is a specific type of ICP which is a physical blend of (A) and (B) , meaning (A) and (B) were synthesized independently and then subsequently blended typically using a melt-mixing process, such as an extruder.
  • An ex-situ ICP is distinguished by the fact that (A) and (B) are collected in solid form after exiting their respective synthesis processes, and then combined; whereas for an in-sim ICP, (A) and (B) are combined within a common synthesis process and only the blend is collected in solid form.
  • the ex-situ ICP may be reactor blends, meaning that Components A and B are not physically or mechanically blended together after polymerization but are inter-polymerized in at least one reactor, often in two or more reactors in series.
  • the final ICP as obtained from the reactor or reactors can be blended with various other components including other polymers or additives.
  • the ICPs described herein may be formed by producing Components A and B in separate reactors and physically blending the components once they have exited their respective reactors.
  • Component (A) has a narrow molecular weight distribution, M w /M n ( ′′MWD′′ ) , i.e., lower than 4.5, or lower than 4.0 or lower than 3.5, or lower than 3.0. In certain embodiments, these molecular weight distributions are obtained in the absence of visbreaking using peroxide or other post reactor treatment designed to reduce molecular weight.
  • Component (A) may have a weight average molecular weight (M w , as determined by GPC) of at least 100,000, or at least 200,000.
  • the component (B) comprises a propylene copolymer with a weight-average molecular weight (M w ) of at least 50 kg/mol (preferably 100 kg/mol, preferably 150 kg/mol, preferably 200 kg/mol) ; a molecular weight distribution (Mw/Mn) of less than 3.5 (preferably less than 3.0, preferably 1.8 to 2.5) .
  • M w weight-average molecular weight
  • Mw/Mn molecular weight distribution
  • In-situ ICP is particularly preferred.
  • the components (A) and (B) may be made using any appropriate polymerization process, including gas-phase, solution, slurry, and high-pressure polymerization processes.
  • (A) is made in a solution or slurry process
  • (B) is made in a gas-phase process.
  • the in-situ ICP is made using a slurry reactor to produce a component (A) , and a gas-phase reactor to produce component (B) .
  • the in-sim ICP polymerization processes may employ any appropriate polymerization catalyst or combination of catalysts, including Ziegler-Natta and/or single-site (e.g., metallocene) polymerization catalysts, which may be supported (for use in heterogeneous catalysis processes) or not (for use in homogeneous catalysis processes) .
  • (A) and (B) are made using a common supported Ziegler-Natta or single-site catalyst.
  • Metallocene-based catalyst systems may also be used to produce the ICP compositions described herein.
  • Current particularly suitable metallocenes are those in the generic class of bridged, substituted bis (cyclopentadienyl) metallocenes, specifically bridged, substituted bis (indenyl) metallocenes known to produce high molecular weight, high melting, highly isotactic propylene polymers.
  • those of the generic class disclosed in US 5,770,753 (incorporated herein by reference in its entirety) are suitable.
  • the two polymer components describe herein may include one or more additive components.
  • additives may be present to enhance a specific property or may be present as a result of processing of the individual components.
  • Additives which may be incorporated include, but are not limited to, fire retardants, antioxidants, plasticizers, pigments, vulcanizing or curative agents, vulcanizing or curative accelerators, cure retarders, processing aids, flame retardants, tackifying resins, flow improvers, and the like.
  • Antiblocking agents, coloring agents, lubricants, mold release agents, nucleating agents, reinforcements, and fillers may also be employed. Nucleating agents and fillers may improve the rigidity of the article.
  • the list described herein is not intended to be inclusive of all types of additives which may be employed with the present invention.
  • the two polymer components described herein include about 1 wt% to about 60 wt% of an additive selected from the group consisting of a filler, a pigment, a coloring agent, a processing oil, a plasticizer, and mixtures thereof. In another embodiment, the two polymer components described herein include about 5 wt% to about 50 wt% of an additive selected from the group consisting of a filler, a pigment, a coloring agent, a processing oil, a plasticizer, and mixtures thereof.
  • the two polymer components described herein include about 10 wt% to about 40 wt% of an additive selected from the group consisting of a filler, a pigment, a coloring agent, a processing oil, a plasticizer, and mixtures thereof.
  • the additives may be provided in the FPC or the SPC by any suitable process.
  • the additives may be provided in the blends during the blending process, such as the co-extrusion process, by inclusion of the additives in the internally agitated mixing means used to produce the blends as described above.
  • the methods used to provide the additives will vary in accordance with the additives selected, the equipment used.
  • liquid plastic polymer is introduced into an injection mold, the material adjacent to the walls of the cavity immediately begins to “freeze, ” or solidify and cure. As the material flows through the mold, a boundary layer of material is formed against the sides of the mold. As the mold continues to fill, the boundary layer continues to thicken, eventually closing off the path of material flow and preventing additional material from flowing into the mold.
  • thin-wall injection molding is different. Without being bound by any particular theory, polymer melt is forced to flow into a narrow slit at a high speed, melt breakage and unsteady flow may take place, and therefore some unique structures, like multi-layer laminated structures, may be formed by such a forced assembly.
  • thin-wall in the present disclosure means the wall thickness of an injection mold less than 1.0 mm, preferably less than 0.75 mm, more preferably less than 0.5mm, for example in the range of between 0.1mm and 0.5mm.
  • “High speed” in the present disclosure means the process runs at an injection speed more than 100mm/s, for example in the range of between 100 and 1200 mm/s.
  • the two polymer components Prior to being molded by the process of high speed thin-wall injection molding, the two polymer components were co-extruded by a co-rotating twin-screw extruder to produce compounded pellets for further use.
  • the exemplary injection molding machine in Figure 1 can be used to illustrate the process of high speed thin-wall injection in this disclosure, without being limited thereto.
  • the injection molding machine 10 generally includes an injection system 12 and a clamping system 14.
  • the compounded pellets 16 may be introduced to the injection system 12.
  • the compounded pellets 16 comprising the two polymer components may be placed into a hopper 18,which feeds the compounded pellets 16 into a heated barrel 20 of the injection system 12.
  • the compounded pellets 16, after being fed into the heated barrel 20, may be driven to the end of the heated barrel 20 by a reciprocating screw 22.
  • the heating of the heated barrel 20 and the compression of the compounded pellets 16 by the reciprocating screw 22 causes the compounded pellets 16 to melt.
  • the reciprocating screw 22 is able to travel forward as indicated by arrow A in FIG. 1, and the reciprocating screw 22 can force the molten polymer 24 through a nozzle 26 and into the clamping system 14.
  • the molten polymer 24 may be injected into a mold 28 through a gate 30, which directs the flow of the molten polymer 24 to a mold cavity 32 that is formed in mating bodies of the mold 28 where the mold 28 is held together under pressure by a press 34 having a plunger 38 which can reciprocate back and forth, mating with the shape of the mold cavity 32 when in the molding position and pushed away to release the laminate that is formed within the cavity.
  • the reciprocating screw 22 stops traveling forward.
  • the molten polymer 24 takes the form of the mold cavity 32 upon the pressure generated by forward movement of plunger 38 and thus multi-layer laminated structures are formed inside the mold cavity 32, and then the molten polymer 24 is allowed to cool inside the mold 28 until it solidifies.
  • the press 34 releases its force on the mating bodies of the mold 28, the mating bodies of the mold 28 may be separated from one another, and the finished products may be ejected, whereupon the process can repeat itself.
  • the machine further comprises a ram 36 that can inject molten polymer 24 at a high speed over a short duration.
  • the injection speed of the process is in the range of from about 100 mm/s to about 1200 mm/s, preferably in the range of from about 1000 mm/s to 1200 mm/s.
  • the high speed thin-wall injection molding runs at a barrel temperature in the range of from about 100 °C to about 300 °C.
  • the mold used in the process has a wall thickness of less than about 0.5 mm, for example in the range of from about 0.1 mm to about 0.5 mm.
  • a multi-layer laminated structure comprising (or consisting essentially of, or consisting of) :
  • a method for preparing multi-layer laminated structures comprising:
  • the first polymer component comprises at least one ethylene polymer
  • the second polymer component comprises at least one propylene-based copolymer
  • the first component further comprises one or more co-monomers selected from C 3 to C 20 ⁇ -olefins.
  • the first polymer component is selected from the group consisting of low density polyethylene, linear low density polyethylene, high density polyethylene, and combinations thereof.
  • GPC is a liquid chromatography technique widely used to measure the molecular weight and molecular weight distributions (MWD) or polydispersity of polymers. This is a common and well-known technique. Such characteristics, as described here, have been measured using the broadly practiced techniques as described below.
  • MWD is a well-known characteristic of polymers. MWD is generally described as the ratio of the weight average molecular weight (M w ) to the number average molecular weight (M n ) . The ratio M w /M n can be measured directly by GPC techniques.
  • DSC measurements were performed on a TA-Q100 instrument to determine the melting point of the polymers. Samples were pre-annealed at 220 °C for 15 minutes and then allowed to cool to room temperature overnight. The samples were then heated to 220 °C at a rate of 100 °C/minutes and then cooled at a rate of 50 °C/min. Melting points were collected during the heating period.
  • MFR Melt Flow Rate
  • MI Melt Index
  • MFR and MI of the polymer components are according to AS TM D1238 using modification 1 with a load of 2.16 kg.
  • a portion of the sample extruded during the test was collected and weighed.
  • the sample analysis is conducted at 230 °C with a one minute preheat on the sample to provide a steady temperature for the duration of the experiment.
  • This data expressed as dg of sample extruded per minute is indicated as MFR.
  • MFR@230 °C refers to the MFR of the composition comprising the propylene-based elastomer, optional crystalline polymer component, and optional additives other than curative additives.
  • the test is conducted in anidentical fashion except at a temperature of 190 °C. This data is referred to as MI@190 °C.
  • MI of the FPC was in the range of from about 4 g/10min to about 30 g/10min, preferably about 8 g/10min to about 20 g/10min
  • MFR of the SPC was in the range of from about 15 g/10min to about 60 g/10min, preferably about 30 g/10min to about 50 g/10min.
  • the polymer composition of FMA016 and PP7684KN in a weight ratio of 1 ⁇ 1 was firstly pelletized by a corotating twin screw extruder (TSSJ-25 corotating twin-screw extruder, the L/D ratio of the screws was 32, and D 1 / 4 25 mm) with a barrel temperature of 160-200 °C and a screw speed of 120 rpm. Then the dried FMA016/PP7684KN compounded pellets were subjected to high speed thin-wall injection molding (with a screw diameter of 25 mm) at a barrel temperature of 200 °C and injection speed of 1000mm/s.
  • the injection mold in rectangular shape has a size of 80 mm ⁇ 60 mm and a wall thickness of 0.4 mm was used.
  • the obtained molded specimens were cryogenically fractured in the direction parallel and perpendicular to the flow direction in liquid nitrogen. Then the specimens were etched chemically with 3% solution of potassium permanganate in a 2 ⁇ 1 (by volume) mixture of concentrated sulfuric acid and 85% orthophosphoric acid. i-PP phase of PP7684KN was etched in all the specimens due to the weaker resistance to the mixed acid. After the surface was coated with gold, morphology of the specimens was tested with an FEI Inspect F scanning electron microscope (SEM) at 20 kV.
  • SEM Inspect F scanning electron microscope
  • the morphology of the specimen FMA016/PP7684KN (weight ratio is 1 ⁇ 1) varies along the cross section, with three different layers, i.e. skin layer, intermediate layer and core layer respectively.
  • the thickness of each layer is around 70-500 nm.
  • the multi-layer laminated structures in the core layer of the polymer compositions can be observed in Figure 3. It showed morphology of the core layer in the cross section of the two polymer components (weight ratio is 50 ⁇ 50) having a viscosity ratio ( ⁇ ) at 1.7 ⁇ 1, 2.0 ⁇ 1, 2.1 ⁇ 1 or 2.5 ⁇ 1 separately from both parallel and vertical cross-section views.
  • the multi-layer laminated structures were arranged along the flow direction and almost all the structures were continuous.
  • the multi-layer laminated structures in the core layer of thin-wall injection molded specimens had regular arrangement, uniform thickness of each single laminated layer. Therefore, the multi-layer laminated structure in the whole cross section makes it have the possibility to be widely used in industrial applications to produce those products requiring good gas barrier or penetration resistance fabricate directly through injection molding.
  • the multi-layer laminated structures may be discontinuous,and these discontinuous layers can further merge into each other forming widely continuous multi-layer laminated structures.
  • the polymer compositions with a smaller viscosity ratio for example in the range of from about 1 ⁇ 1 to about 3 ⁇ 1, have more regular multi-layer laminated structutes.
  • Figure 4 showed morphology of core layer in the cross section of the polymer compositions (viscosity ratio is 2.5) having different weight ratio of first polymer component and second polymer component at 1 ⁇ 4, 2 ⁇ 3, 3 ⁇ 2, or 4 ⁇ 1 separately from both parallel and vertical cross-section views along the flow direction.
  • the multi-layer laminated structures were observable when the weight ratio is within the range of about 2 ⁇ 3 to about 3 ⁇ 2.
  • compositions, an element or a group of elements are preceded with the transitional phrase ′′comprising′′ , it is understood that we also contemplate the same composition or group of elements with transitional phrases ′′consisting essentially of, ′′ ′′consisting of′′ , ′′selected from the group consisting of, ′′ or ′′is′′ preceding the recitation of the composition, element, or elements and vice versa.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Laminated Bodies (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

The present disclosure relates to multi-layer laminated structures and preparation method thereof. Particularly, the multi-layer laminated structures comprise at least two polymer components.

Description

MULTI-LAYER LAMINATED STRUCTURES AND PREPARATION METHOD THEREOF
INVENTORS: Li Yuan, Xin Chen, Yumin Chen, Peite Bao
FIELD OF THE INVENTION
The present invention relates to multi-layer laminated structures and preparation method thereof. Particularly, the multi-layer laminated structures comprise at least two polymer components.
BACKGROUND OF THE INVENTION
Morphology control of polymer blends is of great practical importance during industrial processing. Multi-layer structures of polymer blends, which can combine advantages of each polymer component, are becoming increasingly important for many applications, and therefore result in substantial improvements in electrical and thermal conductivities as well as gas or water barrier properties.
For example, a regular array of periodic micro-layers can be obtained through self-assembly technique. However, because of its special requirement for molecular structure and complicated processing method, self-assembly technique is significantly limited in practical applications.
Traditionally, co-extrusion is widely used to form multi-layer compositions, especially used in the fabrication of multi-layer films. In contrast to the spontaneously created self-assembled multi-layers, the multi-layers in coextruded products are formed by forced assembly. The multi-layer structure is achieved by combining different layers in a die before their extrusion as a preform. The obtained preform is then blown and molded in the form of desired product. The co-extrusion method can fabricate uniform multi-layer structures with a wide range of melt-processable polymers. For example, polymer films or shaped materials with high barrier properties are of a multi-layer structure and produced by co-extrusion.
However, co-extrusion is a quite sophisticated and expensive manufacturing process, and needs more requirements to equipment. In addition, the final product obtained through co-extrusion is not always recyclable. Therefore, polymer blending appears to be a more beneficial alternative in designing materials having enhanced physical properties with the possibility of recycling the final product. The addition of a small quantity of a barrier material into a low-cost matrix material can lead to a low-cost product with greatly improved  barrier properties. Polypropylene is a suitable polymer with good mechanical and good barrier properties to water.
Injection molding is another kind of melt processing method which has various advantages over co-extrusion, such as easier fabrication of complex shaped products and higher production rates. Recently, thin-wall injection molding has become increasingly more important because of the explosive growth of portable devices that require thinner and lighter plastic housings. For example, CN103481393A describes a process to prepare a polymer blend having continuous alternating multi-layer structure through thin-wall injection molding.
It would be desirable to develop multi-layer laminated structures utilizing a simple and effective process to control the morphology of polyolefin compositions.
SUMMARY OF THE INVENTION
In one aspect, the present disclosure relates to a multi-layer laminated structure comprising: (a) at least one layer A comprising a first polymer component, wherein the first polymer component comprises at least one ethylene polymer, and optionally one or more co-monomers selected from C3 to C20 α-olefins; (b) at least one layer B adjacent to the layer A comprising a second polymer component, wherein the second polymer component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
In another aspect, the present disclosure provides a method for preparing multi-layer laminated structures comprising: (a) co-extruding a first polymer component and a second polymer component by a co-rotating twin-screw extruder to produce compounded pellets, (b) molding the compounded pellets through high speed thin-wall injection molding to produce a polymer composition having the multi-layer laminated structures; wherein, the first polymer component comprises at least one ethylene polymer and optionally one or more co-monomers selected from C3 to C20 α-olefins, and the second polymer component comprises at least one propylene-based copolymer.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 illustrates an exemplary high speed thin-wall injection molding machine used herein.
Figure 2 shows morphology of three layers in the cross section of the two polymer components FMA016/PP7684KN (weight ratio is 1∶1) from both parallel and vertical cross-section views along the flow direction.
Figure 3 shows morphology of core layer in the cross section of the two polymer components HMA025/PP7684KN, HMA025/PP7555KNE2, HMA016/PP7684KN, HMA016/PP7555KNE2 (weight ratio is 1∶1) having a viscosity ratio at 2.0∶1, 2.5∶1, 1.7∶1, or 2.1∶1 separately from both parallel and vertical cross-section views along the flow direction.
Figure 4 shows morphology of core layer in the cross section of the two polymer components HMA025/PP7555KNE2 (viscosity ratio is 2.5∶1) having a weight ratio at 1∶4, 2∶3, 3∶2, or 4∶1 separately from both parallel and vertical cross-section views along the flow direction.
DETAILED DESCRIPTION OF THE PRESENT INVENTION
Selected embodiments will now be described in more detail, but this description is not meant to foreclose other embodiments within the broader scope of this disclosure.
Each of the following terms written in singular grammatical form: “a” , “an” , and “the” as used herein, may also refer to, and encompass, a plurality of the stated entity or object, unless otherwise specifically defined or stated herein, or, unless the context clearly dictates otherwise.
Throughout the illustrative description, the examples, and the appended claims, a numerical value of a parameter, feature, object, or dimension, may be stated or described in terms of a numerical range format. It is to be fully understood that the stated numerical range format is provided for illustrating implementation of the embodiments disclosed herein, and is not to be understood or construed as inflexibly limiting the scope of the embodiments disclosed herein.
It is to be understood that the various embodiments disclosed herein are not limited in their application to the details of the order or sequence, and number, of steps or procedures, and sub-steps or sub-procedures, of operation or implementation of embodiments of the methods or to the details of type, composition, construction, arrangement, and order of the component layers thereof, set forth in the following illustrative description and examples, unless otherwise specifically stated herein. The polymer compositions and preparation methods thereof disclosed herein can be practiced or implemented according to various other alternative forms and in various other alternative ways.
The term “polyolefin” means a polymer containing recurring units derived from olefin, e.g. poly-α olefin such as polypropylene and/or polyethylene. The term “propylene-based copolymer” is a polyolefin copolymer comprising at least 90 wt% propylene-derived  units, or more preferably, at least 95 wt% propylene-derived units, and even more preferably at least 98 wt% propylene-derived units by weight of the propylene-based copolymer.
In one aspect, the present disclosure relates to a multi-layer laminated structure comprising: (a) at least one layer A comprising a first polymer component, wherein the first polymer component comprises at least one ethylene polymer and optionally one or more co-monomers selected from C3 to C20 α-olefins, (b) at least one layer B comprising a second polymer component, wherein the second polymer component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
In certain embodiments, the first polymer component and second polymer component have a viscosity ratio less than about 3∶1. More preferably, the viscosity ratio is in the range of from about 1∶1 to about 3∶1. For example, the viscosity ratio is about 1∶1.
In certain embodiments, the first polymer component is selected from low density polyethylene, linear low density polyethylene, high density polyethylene, or combinations thereof. The second polymer component is preferably polypropylene impact copolymer, more preferably is in-situ polypropylene impact copolymer. The weight ratio of the first polymer component and the second polymer component is in the range of from about 2∶3 to 3∶2, for example about 1∶1.
In certain embodiments, the high speed thin-wall injection molding runs by a machine comprising a mold having a wall thickness in the range of from about 0.1mm to about 0.5 mm. The high speed thin-wall injection molding runs at a barrel temperature in the range of from about 100 ℃ to about 300 ℃. The high speed thin-wall injection molding runs an injection speed in the range of from about 100 mm/s to about 1200 mm/s.
In certain embodiments, the articles having the multi-layer laminated structures can be used in those situations requiring high penetration resistance, for example, polymeric films, food packaging, and shaped articles.
 In another aspect, the present disclosure provides a method for preparing multi-layer laminated structures comprising: (a) co-extruding a first polymer component and a second polymer component by a co-rotating twin-screw extruder to produce compounded pellets; (b) molding the compounded pellets through high speed thin-wall injection molding to produce a polymer composition having the multi-layer laminated structures; wherein, the first polymer component comprises at least one ethylene polymer and optionally one or more  co-monomers selected from C3 to C20 α-olefins, and the second polymer component comprises at least one propylene-based copolymer.
The detailed description below is given solely for the purpose of illustrating certain embodiments of the invention and should not be taken as limiting the present inventive concepts to these specific embodiments. To the extent that this description is specific to a particular form, this is for purposes of illustration only and should not be taken as limiting the present inventive concepts to these specific forms.
First Polymer Component (FPC)
The following is a description of the first polymer component (″FPC″) suitable for use in certain embodiments of the polymer compositions described herein.
The FPC comprises at least one “ethylene polymer” , which, as used herein, is a polyolefin having at least 50 wt%, or 60 wt%, or 70 wt%, or 80 wt% ethylene-derived units by weight of the polyolefin. Examples of such ethylene polymers includes as ethylene homopolymers, ethylene copolymers, and blends thereof. Useful ethylene copolymers may comprise one or more comonomers in addition to ethylene and can be a random copolymer, a statistical copolymer, a block copolymer, or blends thereof. In particular, the ethylene polymer blends described herein may be physical blends or in situ blends of more than one type of ethylene polymer or blends of ethylene polymers with polymers other than ethylene polymers where the ethylene polymer component is the majority component (e.g., greater than 50 wt%) .
In one embodiment of the invention, FPC may be an ethylene homopolymer. In a preferred embodiment, FPC comprises a Ziegler-Natta polyethylene. In another preferred embodiment, FPC is produced using chrome based catalysts, such as, for example, in US 7,491,776. Commercial examples of polymers produced by chromium include the PaxonTM grades of polyethylene produced by ExxonMobil Chemical Company, Houston, Texas.
In another embodiment, the ethylene homopolymer has a molecular weight distribution (Mw/Mn) of up to 40, preferably ranging from 1.5 to 20, from 1.8 to 10 in another embodiment, from 1.9 to 5 in yet another embodiment, and from 2.0 to 4 in yet another embodiment. In another embodiment, the melt index (MI) of preferred ethylene homopolymers range from 0.05 to 800 g/10min in one embodiment and from 0.1 to 100 g/10min in another embodiment, preferably from 1 to 50 g/10min, as measured according to ASTM D1238 (190 ℃, 2.16 kg) .
The crystallinity of the ethylene polymer may also be expressed in terms of  crystallinity percent. The thermal energy for the highest order of polyethylene is estimated at 290 J/g. That is, 100% crystallinity is equal to 290 J/g. Preferably, the ethylene polymer has a crystallinity (as determined by DSC as described in the Test methods section below) within the range having an upper limit of 80%, 60%, 40%, 30%, or 20%, and a lower limit of 1%, 3%, 5%, 8%, or 10%. Alternately, the polymer has a crystallinity of 5% to 80%, preferably 10% to 70%, more preferably 20% to 60%.
The level of crystallinity may be reflected in the melting point. In one embodiment of the present invention, the ethylene polymer has a single melting point. Typically, a sample of ethylene copolymer will show secondary melting peaks adjacent to the principal peak, which is considered together as a single melting point. The highest of these peaks is considered the melting point. The polymer preferably has a melting point (as determined by DSC as described in the Test Methods section below) ranging from an upper limit of 150 ℃, 130 ℃, or 100 ℃ to a lower limit of 0 ℃, 30 ℃, 35℃, 40 ℃, or 45℃.
For purposes of this invention and the claims thereto, “low density polyethylene” (LDPE) refers to an ethylene polymer having a density of 0.910 to 0.940 g/cm3. “Linear low density polyethylene” (LLDPE) refers to an ethylene polymer having a density of 0.890 to 0.930 g/cm3, typically from 0.915 to 0.930 g/cm3, which is linear ( “linear” means that the polyethylene has no or only a few long-chain branches, typically referred to as a g′vis of 0.97 or above, preferably 0.98 or above) and does not contain a substantial amount of long-chain branching. “High density polyethylene” (HDPE) refers to an ethylene polymer having a density of more than 0.940 g/cm3.
In another embodiment of the invention, FPC is selected from an ethylene copolymer, such as random or block copolymer, of ethylene and one or more comonomers selected from C3 to C20 α-olefins, typically from C3 to C10 α-olefins in another embodiment.
Preferred linear α-olefins useful as comonomers for the ethylene copolymer include C3 to C10 alpha-olefins, more preferably 1-butene, 1-hexene, and 1-octene, more preferably 1-hexene.
Preferred branched α-olefins include 4-methyl-l-pentene, 3-methyl-l-pentene, 3, 5, 5-trimethyl-1-hexene, and 5-ethyl-l-nonene.
Preferred aromatic-group-containing monomers contain up to 30 carbon atoms. Suitable aromatic-group-containing monomers comprise at least one aromatic structure, preferably from one to three, more preferably a phenyl, indenyl, fluorenyl, or naphthyl  moiety. The aromatic-group-containing monomer further comprises at least one polymerizable double bond such that after polymerization, the aromatic structure will be pendant from the polymer backbone. The aromatic-group containing monomer may further be substituted with one or more hydrocarbyl groups including, but not limited to, C1 to C10 alkyl groups. Additionally, two adjacent substitutions may be joined to form a ring structure. Preferred aromatic-group-containing monomers contain at least one aromatic structure appended to a polymerizable olefinic moiety. Particularly preferred aromatic monomers include styrene, alpha-methylstyrene, para-alkylstyrenes, vinyltoluenes, vinylnaphthalene, allyl benzene, and indene; especially styrene, paramethyl styrene, 4-phenyl-l-butene, and allyl benzene.
Preferably, the α-olefin comonomers are present from 0.1 wt% to 50 wt% of the copolymer in one embodiment, from 0.5 wt% to 30 wt% in another embodiment, from 1 wt% to 15 wt% in yet another embodiment, and from 0.1 wt% to 5 wt% in yet another embodiment, wherein a desirable copolymer comprises ethylene and C3 to C20 α-olefin derived units in any combination of any upper wt% limit with any lower wt% limit described herein. Preferably, the ethylene copolymer will have a weight average molecular weight (Mw) of from greater than 8,000 g/mol in one embodiment, greater than 10,000 g/mol in another embodiment, greater than 12,000 g/mol in yet another embodiment, greater than 20,000 g/mol in yet another embodiment, and less than 1,000,000 g/mol in yet another embodiment, less than 800,000 g/mol in yet another embodiment, wherein a desirable copolymer may comprise any upper molecular weight limit with any lower molecular weight limit described herein.
 There is no particular limitation on the method for preparing the ethylene polymer. The method of making the polyethylene is not critical, as it can be made by slurry, solution, gas phase, high pressure, or other suitable processes, and by using catalyst systems appropriate for the polymerization of polyethylenes, such as Ziegler-Natta-type catalysts, chromium catalysts, metallocene-type catalysts, other appropriate catalyst systems, or combinations thereof, or by free-radical polymerization. In a preferred embodiment, the ethylene polymers are made by the catalysts, activators, and processes described in US 6,342,566; US 6,384,142; 5,741,563; WO 03/040201; and WO 97/19991. Such catalysts are well known in the art, and are described in, for example, ZIEGLER CATALYSTS (Gerhard Fink,  Rolf Mülhaupt and Hans H. Brintzinger, eds., Springer-Verlag 1995) ; Resconi et al. ; and I, II METALLOCENE-BASED POLYOLEFINS (Wiley &Sons 2000) .
In general, the ethylene homopolymer can be obtained by homopolymerization of ethylene in a single stage or multiple-stage reactor. Copolymers may be obtained by copolymerizing ethylene and an α-olefin having from 3 to about 20 carbon atoms, in a single stage or multiple stage reactors. Polymerization methods include high pressure, slurry, gas, bulk, or solution phase, or a combination thereof, using a traditional Ziegler-Natta catalyst or a single-site, metallocene catalyst system. Polymerization may be carried out by a continuous or batch process and may include use of chain transfer agents, scavengers, or other such additives as deemed applicable.
Second Polymer Component (SPC)
The following is a description of the second polymer component (″SPC″) suitable for use in certain embodiments of the polymer compositions described herein.
The SPC comprises at least one propylene-based copolymer as described above. Useful propylene-based copolymers can be a random copolymer, a statistical copolymer, a block copolymer, or blends thereof. Preferably, SPC is polypropylene impact copolymer (herein simply referred to as “ICP” ) , which may also be known in the art as heterophasic copolymer.
ICP is a specific type of thermoplastic polyolefin comprising at least two distinct phases: a matrix phase and domains within the matrix phase, or dispersed phase, preferably distributed evenly throughout the matrix phase. Desirably, the matrix phase (A) comprises primarily a high-crystallinity polypropylene homopolymer or copolymer (the copolymer comprising no more than 1, or 2, or 3, or 4, or 5 wt% α-olefin derived units by weight of the polypropylene copolymer) having a melting point (Tm) of 100 ℃ or more, and the dispersed phase (B) comprises primarily polyolefin copolymer domains within the matrix having a glass transition temperature (Tg) of-20 ℃ or less. Preferably, the component (A) comprises primarily polypropylene homopolymer (hPP) and/or random copolymer polypropylene (RCP) with relatively low comonomer content (less than 5 wt%) , and has a melting point of 110 ℃ or more (preferably 120 ℃ or more, preferably 130 ℃ or more, preferably 140 ℃ or more, preferably 150 ℃ or more, preferably 160 ℃ or more) . Preferably, component (B) comprises primarily one or more ethylene copolymer (s) with relatively high comonomer content (at least 5 wt %, preferably at least 10 wt %) ; and has a Tg of-30 ℃ or less (preferably -40 ℃ or less, preferably -50 ℃ or less) .
Comonomers used in conjunction with propylene to make the polyolefin copolymer of the ICP are chosen from ethylene and C4 to C8 1-olefins, preferably from ethylene and 1-butene. In a preferred embodiment, the comonomer is ethylene and is present in the ICP at 1 to 50 wt % (preferably 2 to 40 wt%, preferably 3 to 30 wt%, preferably 5 to 20 wt%) based on the weight of the ICP. More than one comonomer may also be employed, preferable selected from ethylene and C4 to C8 1-olefins, such as ethylene and 1-butene or ethylene and 1-hexene, such that the component (B) comprises a propylene terpolymer.
Preferably, polyolefin copolymers making up the dispersed phase of the ICP preferably comprise two monomers: propylene and a single comonomer chosen from among ethylene and C4 to C8 1-olefins. Preferably, the component (A) has a Tm of 120 ℃ or more (preferably 130 ℃ or more, preferably 140 ℃. or more, preferably 150 ℃. or more, preferably 160 ℃ or more) . Preferably, the component (B) is ethylene-propylene rubber. Preferably, the component B has a Tg of-40 ℃ or less (preferably -50 ℃) .
An in-situ polypropylene impact copolymer (in-situ ICP) is a specific type of ICP which is a reactor blend of the components (A) and (B) of an ICP, meaning (A) and (B) were made in separate reactors (or reactions zones) physically connected in series, with the effect that an intimately mixed final product is obtained in the product exiting the final reactor (or reaction zone) . Typically, the components are produced in a sequential polymerization process, wherein (A) is produced in a first reactor is transferred to a second reactor where (B) is produced and incorporated as domains into the (A) matrix. There may also be a minor amount of a third component (C) , produced as a byproduct during this process, comprising primarily the non-propylene comonomer (e.g., component (C) will be an ethylene polymer if ethylene is used as the comonomer) . In the literature, especially in the patent literature, an in-situ ICP is sometimes identified as “reactor-blend ICP” or a “block copolymer” , although the latter term is misleading since there is at best only a very small fraction of molecules that are (A) - (B) copolymers.
An ex-situ polypropylene impact copolymer (ex-situ ICP) is a specific type of ICP which is a physical blend of (A) and (B) , meaning (A) and (B) were synthesized independently and then subsequently blended typically using a melt-mixing process, such as an extruder. An ex-situ ICP is distinguished by the fact that (A) and (B) are collected in solid form after exiting their respective synthesis processes, and then combined; whereas for an in-sim ICP, (A) and (B) are combined within a common synthesis process and only the blend is collected in solid form.
In an embodiment, the ex-situ ICP may be reactor blends, meaning that Components A and B are not physically or mechanically blended together after polymerization but are inter-polymerized in at least one reactor, often in two or more reactors in series. The final ICP as obtained from the reactor or reactors, however, can be blended with various other components including other polymers or additives. In other embodiments, however, the ICPs described herein may be formed by producing Components A and B in separate reactors and physically blending the components once they have exited their respective reactors.
In one or more embodiments, Component (A) has a narrow molecular weight distribution, Mw/Mn ( ″MWD″ ) , i.e., lower than 4.5, or lower than 4.0 or lower than 3.5, or lower than 3.0. In certain embodiments, these molecular weight distributions are obtained in the absence of visbreaking using peroxide or other post reactor treatment designed to reduce molecular weight. Component (A) may have a weight average molecular weight (Mw, as determined by GPC) of at least 100,000, or at least 200,000.
In another embodiment, the component (B) comprises a propylene copolymer with a weight-average molecular weight (Mw) of at least 50 kg/mol (preferably 100 kg/mol, preferably 150 kg/mol, preferably 200 kg/mol) ; a molecular weight distribution (Mw/Mn) of less than 3.5 (preferably less than 3.0, preferably 1.8 to 2.5) .
In-situ ICP is particularly preferred. For in-situ ICP, the components (A) and (B) may be made using any appropriate polymerization process, including gas-phase, solution, slurry, and high-pressure polymerization processes. Preferably, (A) is made in a solution or slurry process, and (B) is made in a gas-phase process. More preferably, the in-situ ICP is made using a slurry reactor to produce a component (A) , and a gas-phase reactor to produce component (B) . The in-sim ICP polymerization processes may employ any appropriate polymerization catalyst or combination of catalysts, including Ziegler-Natta and/or single-site (e.g., metallocene) polymerization catalysts, which may be supported (for use in heterogeneous catalysis processes) or not (for use in homogeneous catalysis processes) . Preferably, (A) and (B) are made using a common supported Ziegler-Natta or single-site catalyst.
Metallocene-based catalyst systems may also be used to produce the ICP compositions described herein. Current particularly suitable metallocenes are those in the generic class of bridged, substituted bis (cyclopentadienyl) metallocenes, specifically bridged, substituted bis (indenyl) metallocenes known to produce high molecular weight, high melting,  highly isotactic propylene polymers. Generally speaking, those of the generic class disclosed in US 5,770,753 (incorporated herein by reference in its entirety) are suitable.
Additives
The two polymer components describe herein may include one or more additive components. Various additives may be present to enhance a specific property or may be present as a result of processing of the individual components. Additives which may be incorporated include, but are not limited to, fire retardants, antioxidants, plasticizers, pigments, vulcanizing or curative agents, vulcanizing or curative accelerators, cure retarders, processing aids, flame retardants, tackifying resins, flow improvers, and the like. Antiblocking agents, coloring agents, lubricants, mold release agents, nucleating agents, reinforcements, and fillers (including granular, fibrous, or powder-like) may also be employed. Nucleating agents and fillers may improve the rigidity of the article. The list described herein is not intended to be inclusive of all types of additives which may be employed with the present invention.
It will be appreciated that other additives may be employed to enhance properties of the resulting polymer compositions. As is understood by those skilled in the art, the polymer compositions may be modified to adjust the characteristics of the blend as desired.
In one embodiment, the two polymer components described herein include about 1 wt% to about 60 wt% of an additive selected from the group consisting of a filler, a pigment, a coloring agent, a processing oil, a plasticizer, and mixtures thereof. In another embodiment, the two polymer components described herein include about 5 wt% to about 50 wt% of an additive selected from the group consisting of a filler, a pigment, a coloring agent, a processing oil, a plasticizer, and mixtures thereof. In still another embodiment, the two polymer components described herein include about 10 wt% to about 40 wt% of an additive selected from the group consisting of a filler, a pigment, a coloring agent, a processing oil, a plasticizer, and mixtures thereof.
The additives may be provided in the FPC or the SPC by any suitable process. Alternatively, the additives may be provided in the blends during the blending process, such as the co-extrusion process, by inclusion of the additives in the internally agitated mixing means used to produce the blends as described above. The methods used to provide the additives will vary in accordance with the additives selected, the equipment used.
High Speed Thin-Wall Injection Molding
The following is a description of the process of high speed thin-wall injection molding suitable for producing multi-layer laminated structures in certain embodiments described herein.
For conventional injection molding process, liquid plastic polymer is introduced into an injection mold, the material adjacent to the walls of the cavity immediately begins to “freeze, ” or solidify and cure. As the material flows through the mold, a boundary layer of material is formed against the sides of the mold. As the mold continues to fill, the boundary layer continues to thicken, eventually closing off the path of material flow and preventing additional material from flowing into the mold.
However, high speed thin-wall injection molding is different. Without being bound by any particular theory, polymer melt is forced to flow into a narrow slit at a high speed, melt breakage and unsteady flow may take place, and therefore some unique structures, like multi-layer laminated structures, may be formed by such a forced assembly. Generally, “thin-wall” in the present disclosure means the wall thickness of an injection mold less than 1.0 mm, preferably less than 0.75 mm, more preferably less than 0.5mm, for example in the range of between 0.1mm and 0.5mm. “High speed” in the present disclosure means the process runs at an injection speed more than 100mm/s, for example in the range of between 100 and 1200 mm/s.
Prior to being molded by the process of high speed thin-wall injection molding, the two polymer components were co-extruded by a co-rotating twin-screw extruder to produce compounded pellets for further use.
The exemplary injection molding machine in Figure 1 can be used to illustrate the process of high speed thin-wall injection in this disclosure, without being limited thereto. The injection molding machine 10 generally includes an injection system 12 and a clamping system 14. The compounded pellets 16 may be introduced to the injection system 12. The compounded pellets 16 comprising the two polymer components may be placed into a hopper 18,which feeds the compounded pellets 16 into a heated barrel 20 of the injection system 12. The compounded pellets 16, after being fed into the heated barrel 20, may be driven to the end of the heated barrel 20 by a reciprocating screw 22. The heating of the heated barrel 20 and the compression of the compounded pellets 16 by the reciprocating screw 22 causes the compounded pellets 16 to melt. With the plastic now a molten polymer 24, the reciprocating screw 22 is able to travel forward as indicated by arrow A in FIG. 1, and the reciprocating  screw 22 can force the molten polymer 24 through a nozzle 26 and into the clamping system 14. The molten polymer 24 may be injected into a mold 28 through a gate 30, which directs the flow of the molten polymer 24 to a mold cavity 32 that is formed in mating bodies of the mold 28 where the mold 28 is held together under pressure by a press 34 having a plunger 38 which can reciprocate back and forth, mating with the shape of the mold cavity 32 when in the molding position and pushed away to release the laminate that is formed within the cavity. Once the pre-determined amount of molten polymer 24 is injected into the mold, the reciprocating screw 22 stops traveling forward. The molten polymer 24 takes the form of the mold cavity 32 upon the pressure generated by forward movement of plunger 38 and thus multi-layer laminated structures are formed inside the mold cavity 32, and then the molten polymer 24 is allowed to cool inside the mold 28 until it solidifies. Once the molten polymer 24 has solidified, the press 34 releases its force on the mating bodies of the mold 28, the mating bodies of the mold 28 may be separated from one another, and the finished products may be ejected, whereupon the process can repeat itself. Particularly, the machine further comprises a ram 36 that can inject molten polymer 24 at a high speed over a short duration.
In certain embodiments, the injection speed of the process is in the range of from about 100 mm/s to about 1200 mm/s, preferably in the range of from about 1000 mm/s to 1200 mm/s. The high speed thin-wall injection molding runs at a barrel temperature in the range of from about 100 ℃ to about 300 ℃.
In certain embodiments, the mold used in the process has a wall thickness of less than about 0.5 mm, for example in the range of from about 0.1 mm to about 0.5 mm.
Now, having described the various features of the polymer compositions and preparation process, described here in numbered embodiments is:
1. A multi-layer laminated structure comprising (or consisting essentially of, or consisting of) :
(a) at least one layer A comprising a first polymer component, wherein the first component comprises at least one ethylene polymer; and
(b) at least one layer B adjacent to the layer A comprising a second polymer component, wherein the second component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
2. A multi-layer laminated structure according to paragraph 1, wherein the first component further comprises one or more co-monomers selected from C3 to C20 α-olefins. 
3. A multi-layer laminated structure according to paragraphs 1 to 2, wherein the first polymer component and second polymer component have a viscosity ratio less than about 3∶1.
4. A multi-layer laminated structure according to paragraphs 1 to 3, wherein the first polymer component and second polymer component have a viscosity ratio in the range of from about 1∶1 to about 3∶1.
5. A multi-layer laminated structure according to paragraphs 1 to 4, wherein the first polymer component and second polymer component have a viscosity ratio of about 1∶1.
6. A multi-layer laminated structure according to paragraphs 1 to 5, wherein the first polymer component is selected from the group consisting of low density polyethylene, linear low density polyethylene, high density polyethylene, and combinations thereof.
7. A multi-layer laminated structure according to paragraphs 1 to 6, wherein the second polymer component comprises polypropylene impact copolymer.
8. A multi-layer laminated structure according to paragraphs 1 to 7, wherein the polypropylene impact copolymer comprises in-situ polypropylene impact copolymer.
9. A multi-layer laminated structure according to paragraphs 1 to 8, wherein the first polymer component and the second polymer component have a weight ratio in the range of from about 2∶3 to about 3∶2.
10. A multi-layer laminated structure according to paragraphs 1 to 9, wherein the high speed thin-wall injection molding runs by a machine comprising a mold having a wall thickness in the range of from about 0.1mm to about 0.5 mm.
11. A multi-layer laminated structure according to paragraphs 1 to 10, wherein the high speed thin-wall injection molding runs at an injection speed in the range of from about 100mm/s to about 1200 mm/s.
12. An article having the multi-layer structures of paragraphs 1 to 11.
13. A method for preparing multi-layer laminated structures, comprising:
(a) co-extruding a first polymer component and a second polymer component by a co-rotating twin-screw extruder to produce compounded pellets;
(b) molding the compounded pellets through high speed thin-wall injection molding to produce a polymer composition having the multi-layer laminated structures; and
wherein, the first polymer component comprises at least one ethylene polymer, and the second polymer component comprises at least one propylene-based copolymer.
14. A method of paragraph 13, wherein the first component further comprises one or more co-monomers selected from C3 to C20 α-olefins.
15. A method of paragraphs 13 to 14, wherein the first polymer component and second polymer component have a viscosity ratio less than about 3∶1.
16. A method of paragraphs 13 to 15, wherein the first polymer component and second polymer component have a viscosity ratio in the range of from about 1∶1 to about 3∶1.
17. A method of paragraphs 13 to 16, wherein the first polymer component and second polymer component have a viscosity ratio of about 1∶1.
18. A method of paragraphs 13 to 17, wherein the first polymer component is selected from the group consisting of low density polyethylene, linear low density polyethylene, high density polyethylene, and combinations thereof.
19. A method of paragraphs 13 to 18, wherein the second polymer component comprises polypropylene impact copolymer.
20. A method of paragraphs 13 to 19, wherein the polypropylene impact copolymer comprises in-situ polypropylene impact copolymer.
21. A method of paragraphs 13 to 20, wherein the first polymer component and the second polymer component have a weight ratio in the range of from about 2∶3 to about 3∶2.
22. A method of paragraphs 13 to 21, wherein the high speed thin-wall injection molding runs by a machine comprising a mold having a wall thickness in the range of from about 0.1 mm to about 0.5 mm.
23. A method of paragraphs 13 to 22, wherein the high speed thin-wall injection molding runs at an injection speed in the range of from about 100 to about 1200 mm/s.
24. A method of paragraphs 13 to 23, wherein the high speed thin-wall injection molding machine runs at a barrel temperature in the range of from about 100 to about 300 ℃.
25. The use of a multi-layered laminated structure for food packaging or shaped article packaging, the multi-layer laminated structure comprising:
(a) at least one layer A comprising a first polymer component, wherein the first component comprises at least one ethylene polymer; and
(b) at least one layer B adjacent to the layer A comprising a second polymer component, wherein the second component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
Test Methods
Gel Permeation Chromatography (GPC)
GPC is a liquid chromatography technique widely used to measure the molecular weight and molecular weight distributions (MWD) or polydispersity of polymers. This is a common and well-known technique. Such characteristics, as described here, have been measured using the broadly practiced techniques as described below.
MWD is a well-known characteristic of polymers. MWD is generally described as the ratio of the weight average molecular weight (Mw) to the number average molecular weight (Mn) . The ratio Mw/Mn can be measured directly by GPC techniques.
Differential Scanning Calorimetry (DSC)
DSC measurements were performed on a TA-Q100 instrument to determine the melting point of the polymers. Samples were pre-annealed at 220 ℃ for 15 minutes and then allowed to cool to room temperature overnight. The samples were then heated to 220 ℃ at a rate of 100 ℃/minutes and then cooled at a rate of 50 ℃/min. Melting points were collected during the heating period.
Melt Flow Rate (MFR) and Melt Index (MI)
Determination of MFR and MI of the polymer components is according to AS TM D1238 using modification 1 with a load of 2.16 kg. In this version of the method a portion of the sample extruded during the test was collected and weighed. The sample analysis is conducted at 230 ℃ with a one minute preheat on the sample to provide a steady temperature for the duration of the experiment. This data expressed as dg of sample extruded per minute is indicated as MFR. As used herein, MFR@230 ℃ refers to the MFR of the composition comprising the propylene-based elastomer, optional crystalline polymer component, and optional additives other than curative additives. In an alternative procedure, the test is conducted in anidentical fashion except at a temperature of 190 ℃. This data is referred to as MI@190 ℃.
EXAMPLES
A series of commercial polymers available from ExxonMobil Chemical Co. were used in the polymer compositions. Table 1 provided MI (or MFR) and density of the polymer component as used herein.
Table 1: Melting Index and Density of Polymer Components
FPC MI (190 ℃/2.16 kg) g/10min Density (g/cm3)
HMA016 20.0 0.956
HMA025 8.0 0.964
SPC MFR (230 ℃/2.16kg) g/10min Density (g/cm3
PP7684KN 20.0 0.9
PP7555KNE2 50.0 0.9
In certain embodiments, MI of the FPC was in the range of from about 4 g/10min to about 30 g/10min, preferably about 8 g/10min to about 20 g/10min, MFR of the SPC was in the range of from about 15 g/10min to about 60 g/10min, preferably about 30 g/10min to about 50 g/10min.
Shear viscosity of the above polymer components in Table 1 were measured by Pistonmode Rosand RH70 Capillary Rheometer (Malvern, Bohlin Instruments) at a measurement temperature of 200 ℃ during the process of high speed thin-wall injection molding. Preferred shear rate for the measurements was in the range of 100 ~ 5000 mm/s. Viscosity ratios of the FPC and SPC (λ=ηFPCSPC ) at 3000 mm/s and 5000mm/s separately are shown in Table 2.
Table 2: Viscosity Ratio of Polymer Components at Different Shear Rate
Viscosity Ratio 3000 mm/s 5000mm/s
HMA016/PP7684KN 1.69 1.81
HMA016/PP3155E3 1.7 2.13
HMA016/PP7555KNE2 2.12 2.25
HMA025/PP7684KN 2 2.21
HMA025/PP3155E3 2.01 2.6
HMA025/PP7555KNE2 2.51 2.75
Example 1
The polymer composition of FMA016 and PP7684KN in a weight ratio of 1∶1 was firstly pelletized by a corotating twin screw extruder (TSSJ-25 corotating twin-screw extruder, the L/D ratio of the screws was 32, and D 1/4 25 mm) with a barrel temperature of 160-200 ℃ and a screw speed of 120 rpm. Then the dried FMA016/PP7684KN compounded pellets were subjected to high speed thin-wall injection molding (with a screw diameter of 25 mm) at a barrel temperature of 200 ℃ and injection speed of 1000mm/s. The injection mold in rectangular shape has a size of 80 mm×60 mm and a wall thickness of 0.4 mm was used.
The obtained molded specimens were cryogenically fractured in the direction parallel and perpendicular to the flow direction in liquid nitrogen. Then the specimens were etched chemically with 3% solution of potassium permanganate in a 2∶1 (by volume) mixture of concentrated sulfuric acid and 85% orthophosphoric acid. i-PP phase of PP7684KN was etched in all the specimens due to the weaker resistance to the mixed acid. After the surface was coated with gold, morphology of the specimens was tested with an FEI Inspect F scanning electron microscope (SEM) at 20 kV.
As shown in Figure 2, the morphology of the specimen FMA016/PP7684KN (weight ratio is 1∶1) varies along the cross section, with three different layers, i.e. skin layer, intermediate layer and core layer respectively. The thickness of each layer is around 70-500 nm.
Example 2
Polymer compositions of HMA025/PP7684KN (λ=2∶1) , HMA025/PP7555KNE2 (λ=2.5∶1) , HMA016/PP7684KN (λ=1.7∶1) , HMA016/PP7555KNE2 (λ=2.1∶1) were prepared into molded specimens as described in Example 1.
The multi-layer laminated structures in the core layer of the polymer compositions can be observed in Figure 3. It showed morphology of the core layer in the cross section of the two polymer components (weight ratio is 50∶50) having a viscosity ratio (λ) at 1.7∶1, 2.0∶1, 2.1∶1 or 2.5∶1 separately from both parallel and vertical cross-section views. The multi-layer laminated structures were arranged along the flow direction and almost all the structures were continuous. In contrast with the sheet-like morphology in the skin layer of conventional injection-molded samples, the multi-layer laminated structures in the core layer of thin-wall injection molded specimens had regular arrangement, uniform thickness of each single laminated layer. Therefore, the multi-layer laminated structure in the whole cross section makes it have the possibility to be widely used in industrial applications to produce those  products requiring good gas barrier or penetration resistance fabricate directly through injection molding.
In the core layer,the multi-layer laminated structures may be discontinuous,and these discontinuous layers can further merge into each other forming widely continuous multi-layer laminated structures.
In addition,it can be seen that the polymer compositions with a smaller viscosity ratio, for example in the range of from about 1∶1 to about 3∶1, have more regular multi-layer laminated structutes.
Example 3
Polymer composition of HMA025/PP7555KNE2 (λ=2.5∶1) was prepared into molded specimens as described in Example 1.
Figure 4 showed morphology of core layer in the cross section of the polymer compositions (viscosity ratio is 2.5) having different weight ratio of first polymer component and second polymer component at 1∶4, 2∶3, 3∶2, or 4∶1 separately from both parallel and vertical cross-section views along the flow direction. As can be seen from Figure 4, the multi-layer laminated structures were observable when the weight ratio is within the range of about 2∶3 to about 3∶2.
All documents described herein are incorporated by reference herein, including any priority documents and/or testing procedures to the extent they are not inconsistent with this text. As is apparent from the foregoing general description and the specific embodiments, while forms of the invention have been illustrated and described, various modifications can be made without departing from the spirit and scope of the invention. Accordingly, it is not intended that the invention be limited thereby. Likewise, the term ″comprising″ is considered synonymous with the term ″including″ for purposes of Australian law. Likewise whenever a composition, an element or a group of elements is preceded with the transitional phrase ″comprising″ , it is understood that we also contemplate the same composition or group of elements with transitional phrases ″consisting essentially of, ″ ″consisting of″ , ″selected from the group consisting of, ″ or ″is″ preceding the recitation of the composition, element, or elements and vice versa.

Claims (25)

  1. A multi-layer laminated structure comprising:
    (a) at least one layer A comprising a first polymer component, wherein the first component comprises at least one ethylene polymer; and
    (b) at least one layer B adjacent to the layer A comprising a second polymer component, wherein the second component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
  2. The multi-layer laminated structure of claim 1, wherein the first component further comprises one or more co-monomers selected from C3 to C20 α-olefins.
  3. The multi-layer laminated structure of claim 1, wherein the first polymer component and second polymer component have a viscosity ratio less than about 3∶1.
  4. The multi-layer laminated structure of claim 1, wherein the first polymer component and second polymer component have a viscosity ratio in the range of from about 1∶1 to about 3∶1.
  5. The multi-layer laminated structure of claim 1, wherein the first polymer component and second polymer component have a viscosity ratio of about 1∶1.
  6. The multi-layer laminated structure of claim 1, wherein the first polymer component is selected from the group consisting of low density polyethylene, linear low density polyethylene, high density polyethylene, and combinations thereof.
  7. The multi-layer laminated structure of claim 1, wherein the second polymer component comprises polypropylene impact copolymer.
  8. The multi-layer laminated structure of claim 7, wherein the polypropylene impact copolymer comprises in-situ polypropylene impact copolymer.
  9. The multi-layer laminated structure of claim 1, wherein the first polymer component and the second polymer component have a weight ratio in the range of from about 2∶3 to about 3∶2.
  10. The multi-layer laminated structure of claim 1, wherein the high speed thin-wall injection molding runs by a machine comprising a mold having a wall thickness in the range of from about 0.1mm to about 0.5 mm.
  11. The multi-layer laminated structure of claim 1, wherein the high speed thin-wall injection molding runs at an injection speed in the range of from about 100mm/s to about 1200 mm/s.
  12. An article having the multi-layer structures of claim 1.
  13. A method for preparing multi-layer laminated structures comprising:
    (a) co-extruding a first polymer component and a second polymer component by a co-rotating twin-screw extruder to produce compounded pellets;
    (b) molding the compounded pellets through high speed thin-wall injection molding to produce a polymer composition having the multi-layer laminated structures; and
    wherein, the first polymer component comprises at least one ethylene polymer, and the second polymer component comprises at least one propylene-based copolymer.
  14. The method of claim 13, wherein the first component further comprises one or more co-monomers selected from C3 to C20 α-olefins;
  15. The method of claim 13, wherein the first polymer component and second polymer component have a viscosity ratio less than about 3∶1.
  16. The method of claim 13, wherein the first polymer component and second polymer component have a viscosity ratio in the range of from about 1∶1 to about 3∶1.
  17. The method of claim 13, wherein the first polymer component and second polymer component have a viscosity ratio of about 1∶1.
  18. The method of claim 13, wherein the first polymer component is selected from the group consisting of low density polyethylene, linear low density polyethylene, high density polyethylene, and combinations thereof.
  19. The method of claim 13, wherein the second polymer component comprises polypropylene impact copolymer.
  20. The method of claim 13, wherein the polypropylene impact copolymer comprises in-situ polypropylene impact copolymer.
  21. The method of claim 13, wherein the first polymer component and the second polymer component have a weight ratio in the range of from about 2∶3 to about 3∶2.
  22. The method of claim 13, wherein the high speed thin-wall injection molding runs by a machine comprising a mold having a wall thickness in the range of from about 0.1mm to about 0.5 mm.
  23. The method of claim 13, wherein the high speed thin-wall injection molding runs at an injection speed in the range of from about 100 to about 1200 mm/s.
  24. The method of claim 13, wherein the high speed thin-wall injection molding machine runs at a barrel temperature in the range of from about 100 to about 300 ℃.
  25. The use of a multi-layered laminated structure for food packaging or shaped article packaging, the multi-layer laminated structure comprising:
    (a) at least one layer A comprising a first polymer component, wherein the first component comprises at least one ethylene polymer;
    (b) at least one layer B adjacent to the layer A comprising a second polymer component, wherein the second component comprises at least one propylene-based copolymer; wherein the first polymer component and second polymer component are molded through high speed thin-wall injection molding.
PCT/CN2015/000208 2015-03-27 2015-03-27 Multi-layer laminated structures and preparation method thereof WO2016154768A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000208 WO2016154768A1 (en) 2015-03-27 2015-03-27 Multi-layer laminated structures and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/000208 WO2016154768A1 (en) 2015-03-27 2015-03-27 Multi-layer laminated structures and preparation method thereof

Publications (1)

Publication Number Publication Date
WO2016154768A1 true WO2016154768A1 (en) 2016-10-06

Family

ID=57003800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000208 WO2016154768A1 (en) 2015-03-27 2015-03-27 Multi-layer laminated structures and preparation method thereof

Country Status (1)

Country Link
WO (1) WO2016154768A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026485A1 (en) * 2000-09-29 2002-04-04 Trexel, Inc. Thin wall injection molding
CN100569842C (en) * 2006-05-31 2009-12-16 中国石油化工股份有限公司 A kind of polypropylene resin composite and preparation method thereof
CN103481393A (en) * 2013-09-06 2014-01-01 四川大学 Polymer material with continuously-alternating layer structure and preparation method for same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002026485A1 (en) * 2000-09-29 2002-04-04 Trexel, Inc. Thin wall injection molding
CN100569842C (en) * 2006-05-31 2009-12-16 中国石油化工股份有限公司 A kind of polypropylene resin composite and preparation method thereof
CN103481393A (en) * 2013-09-06 2014-01-01 四川大学 Polymer material with continuously-alternating layer structure and preparation method for same

Similar Documents

Publication Publication Date Title
CN110546198B (en) PP-rich material composition with high rigidity and processability
CN100408623C (en) Polypropylene compositions
KR100908391B1 (en) Multimodal Polyethylene Composition with Improved Homogeneity
CN107001740B (en) The product of polymer composition and Extrusion Coating
EP1256593B1 (en) Method for cross-linking a polymer article
CN102300921B (en) Based on the binder composition of grafted polyethylene
EP1889873B1 (en) Improved transparent polypropylene composition
US20210171749A1 (en) Improving rheological properties of thermoplastic polyolefin compositions
EP2989160B1 (en) Propylene random copolymer composition for pipe applications
CA2989492C (en) Fiber reinforced polypropylene composition with high strain at break
CN102958995A (en) Bimodal polyethylene composition for injection moulded articles
AU2002257692A1 (en) Method for cross-linking a polymer article
PL211431B1 (en) Methods, compositions and blends for forming articles having improved environmental stress crack resistance
CN108350241B (en) High flow TPO compositions having excellent low temperature impact
JPH01150A (en) Resin composition for automobile bumpers
CA3000906C (en) High flow tpo composition with excellent balance in mechanical properties for automotive interior
WO2007142193A1 (en) Polypropylene resin composition and injection molded item for automobile therefrom
EP2989159B1 (en) Polypropylene composition with improved impact resistance for pipe applications
JP2023549108A (en) Compatibilization of post-consumer resins
CN110832027B (en) Composition comprising heterophasic propylene copolymer
WO2012036847A1 (en) Polymer blends for slit film applications and methods of making the same
CA3003227C (en) High flow tpo composition with excellent tensile strain at break and low powder stickiness
JP7061003B2 (en) Propylene resin composition and injection molded product
JP7410049B2 (en) Propylene resin composition and molded article
JP6948977B2 (en) Propylene resin composition and injection molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886755

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15886755

Country of ref document: EP

Kind code of ref document: A1