WO2016153300A1 - 2-fucosyllactose producing mutant microorganisms and method for producing 2-fucosyllactose using same - Google Patents

2-fucosyllactose producing mutant microorganisms and method for producing 2-fucosyllactose using same Download PDF

Info

Publication number
WO2016153300A1
WO2016153300A1 PCT/KR2016/003013 KR2016003013W WO2016153300A1 WO 2016153300 A1 WO2016153300 A1 WO 2016153300A1 KR 2016003013 W KR2016003013 W KR 2016003013W WO 2016153300 A1 WO2016153300 A1 WO 2016153300A1
Authority
WO
WIPO (PCT)
Prior art keywords
fucosyllactose
lac
mutant microorganism
operon
gene encoding
Prior art date
Application number
PCT/KR2016/003013
Other languages
French (fr)
Korean (ko)
Inventor
서진호
진영욱
김지영
Original Assignee
서울대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150040879A external-priority patent/KR101544184B1/en
Application filed by 서울대학교 산학협력단 filed Critical 서울대학교 산학협력단
Publication of WO2016153300A1 publication Critical patent/WO2016153300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli

Definitions

  • the present invention relates to a 2-fucosyllactose producing mutant microorganisms and a method for producing 2-fucosyllactose using the same, in particular lacZ modified or removed lac To the microorganism into which the operon was introduced, ⁇ -1,2 fucosyltransferase, a foreign gene encoding a variant thereof, G6PDH (glucose-6-phosphate dehydrogenase) and GSK (guanosine-inosine kinase)
  • the present invention relates to a mutant microorganism in which one or more selected from the group consisting of coding genes are introduced or amplified and a method for producing 2-fucosyllactose using the same.
  • Human milk contains more than 200 unique oligosaccharides
  • HMO milk oligosaccharides
  • HMO consists of D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine (GlcNAc), L-fucose (Fuc) and sialic acid (Sia; N-acetyl neuraminic acid [Neu5Ac]).
  • the structure of HMO is so diverse and complex that about 200 isomers with different residues and glycosyl bonds can have different degrees of polymerization (DP 3-20).
  • HMOs have some common structures. Most HMOs have lactose (Gal ⁇ 1-4Glc) residues at the ends of the reduction.
  • Gal of lactose is sialated in the form of 3-sialyllactose or 6-sialyllactose with ⁇ - (2,3)-and ⁇ - (2,6) -bonds, respectively Or by the ⁇ - (1,2)-and ⁇ - (1,3) -bonds of 2-fucosyllactose (2-FL) or 3-fucosyllactose, respectively. It can be fucosylation in form. About 200 different complex oligosaccharides were found in breast milk, including 137 fucosylated, including the three most abundant oligosaccharides, with a ratio of almost 77%, and the remaining oligosaccharides mostly sialized (39). Corresponds to%.
  • 2-fucosyllactose is reported to be the major HMO involved in the various biological activities mentioned above, and is known to be the most abundant among oligosaccharides contained in breast milk. Attention has been paid to the availability of.
  • 2-fucosyllactose is currently difficult to mass-produce industrially, galactooligosaccharides or fructooligosaccharides are added to baby food in place of 2-fucosyllactose to expect similar effects. to be.
  • Production methods of 2-fucosyllactose include direct extraction from breast milk and synthesis by chemical or enzymatic methods.
  • the direct extraction method was problematic due to the limitation of breastfeeding and low productivity, and the chemical synthesis method had problems such as expensive substrate, low iso-selectivity and production yield, and use of toxic reagents.
  • the enzymatic synthesis method has a problem that GDP-L-fucose, which is used as a donor of fucose, is very expensive and the purification cost of fucose transferase is high. Therefore, due to these problems, direct extraction, chemical or enzymatic production methods are not applicable to industrial mass production.
  • biotechnological production methods using microorganisms are suitable for industrial mass production compared to other systems such as chemical synthesis or enzymatic synthesis in that 2-fucosyllactose can be produced in large quantities from a cheap substrate through a simple process. Because of this spotlight.
  • lac is modified or eliminated lacZ Operon introduction; Mutant microorganisms in which a gene encoding ⁇ -1,2-fucosyltransferase or a variant thereof and a gene encoding G6PDH (glucose-6-phosphate dehydrogenase) and a gene encoding a GSK (guanosine-inosine kinase) are introduced or amplified By confirming that 2-fucosyllactose can be produced by a high yield by this, the present invention was completed.
  • G6PDH glycose-6-phosphate dehydrogenase
  • GSK guanosine-inosine kinase
  • JM107 or JM109 is used. These strains overproduce biofilm and acetic acid, making it difficult to culture high concentrations of cells.
  • the Helicobacter used in previous studies.
  • the pylori- derived 1,2-fucosyltransferase has a limited titer because it forms an inclusion body upon overexpression.
  • An object of the present invention is to recognize the problems of the existing technology, to provide a mutant microorganism that can improve the final concentration, yield and productivity while efficiently producing HMO and a method for producing HMO using the same.
  • through high concentration cell culture and improved expression level of fucose transferase to finally develop and provide a technology that can produce 2-fucosyllactose at a higher concentration than the existing technology.
  • the present invention is a microorganism having a metabolic circuit that produces 2-fucosyllactose (2-FL), (a) endogenous lac operon is removed, lacZ modified or removed lac Operon introduced; And (b) ⁇ -1,2-fucosyltransferase or variant thereof, (c) G6PDH (glucose-6-phosphate
  • It relates to a mutant microorganism characterized in that the gene encoding at least one selected from the group consisting of dehydrogenase) and (d) GSK (guanosine-inosine kinase) is introduced or amplified.
  • the variant may be a tag of a gene encoding the 1-7th amino acid of the aspartate repeat sequence or infB (translation initiation factor) at the N-terminus of ⁇ -1,2 fucosyltransferase.
  • the present invention relates to a method for producing 2-fucosyllactose, characterized in that 2-fucosyllactose is recovered from the culture by culturing the mutant microorganisms.
  • mutant microorganism according to the present invention and a manufacturing method using the same, it is possible to produce 2-fucosyllactose from lactose in a very good yield to overcome the limitations of the prior art that the production yield is not applicable in the industrial aspect. This facilitates mass production for industrialization, it can be suitably applied to the food or pharmaceutical industry.
  • Figure 1 shows the structural composition of 2-fucosyllactose (2'-fucosyllactose, 2-FL).
  • lacZ ⁇ M15 shredded la c operon
  • 2b is endogenous lac In recombinant E. coli was disrupted the lacZ operon and completely crushing the c la introducing an operon (lacYA), it illustrates the de novo pathway for the biosynthesis of GDP-L-fucose, and 2-Foucault room lactose.
  • FIG. 3 is lac Schematic diagram showing the process for constructing recombinant E. coli strains engineered with operon [(a) Wild type E. coli-BL21star (DE3), (b) lac Removal of the E. coli operon - ⁇ L, (c) the introduction of E. coli M15 lac ⁇ - ⁇ L M15, (d) the introduction of E. coli lacYA - ⁇ L YA].
  • Figure 4 shows the batch culture results of the recombinant E. coli strains, optical mill
  • Figures 5a-5f shows the results of fed-batch culture of recombinant E. coli strains, after all of the initial 20 g / L glycerol was consumed, and began to supply glycerol to pH-stat, IPTG and lactose added simultaneously (Large arrow). An additional 200 g / L lactose solution was added after lactose depletion (small arrow) and the glycerol feed mode was changed to manual mode after the dry cell weight reached about 60 (vertical line).
  • the symbols in Fig. 5 are as follows: ⁇ : dry cell weight, ⁇ : lactose, ⁇ : 2-fucosyllactose, ⁇ : glycerol.
  • Figure 5a shows the fed-batch culture of ⁇ L M15 BCGW-F recombinant E. coli
  • Figure 5b shows the fed-batch culture of ⁇ L M15 BCGW-Fz recombinant E. coli
  • Figure 5c shows the results of fed-batch culture of ⁇ L M15 BCGW-Fg recombinant E. coli
  • Figure 5d shows the fed-batch culture of ⁇ L M15 BCGW-D3F recombinant E. coli
  • Figure 5e shows the results of fed-batch culture of ⁇ L M15 BCGW-infBF recombinant E. coli
  • Figure 5f shows the results of fed-batch culture of ⁇ L M15 BCGW-W recombinant E. coli
  • Figure 5g shows the fed-batch culture results of ⁇ L YA BCGW-W recombinant E. coli.
  • Figure 6 is the result of confirming the production of 2-fucosyllactose in the culture medium of ⁇ L M15 / pmBCGW + pHwcfB through LC-MS / MS analysis.
  • the present invention in a microorganism having a metabolic circuit producing 2-fucosyllactose (2-FL), (a) endogenous lac Lac with operon removed and lacZ modified or removed Operon introduced; And (b) ⁇ -1,2-fucosyltransferase or a variant thereof, (c) G6PDH (glucose-6-phosphate dehydrogenase) and (d) GSK (guanosine-inosine kinase). It relates to a mutant microorganism characterized in that the introduced or amplified.
  • the BL21star (DE3) strain having reduced or eliminated the titer of lactosease ( ⁇ -galactosidase, LacZ) was used.
  • the crushed endogenous lac operon of (a) wild-type BL21star (DE3), and, lacZ is removed or modified mutant lac Incorporation of operons significantly reduced or eliminated the titer of ⁇ -galactosidase, shifting metabolic flow so that most of the lactose entering the cell was used for the production of 2-fucosyllactose rather than cell growth. .
  • (c) overexpresses genes encoding GDP-L-fucose biosynthetic enzymes ( gmd , wcaG , manB , manC ) and genes encoding G6PDH (glucose-6-phosphate dehydrogenase) and / or Gsk (guanosine-inosine kinase)
  • G6PDH glucose-6-phosphate dehydrogenase
  • Gsk guanosine-inosine kinase
  • Bacteroides which are more active than the conventional H-1 pylori- derived ⁇ -1,2-fucose transferase, are expressed.
  • fragilis Recombinant Escherichia coli can be constructed by discovering and introducing a gene ( wcfB ) encoding a derived ⁇ -1,2-fucose transferase.
  • the microorganism having a metabolic circuit producing 2-fucosyllactose may be a bacteria, preferably E. coli It may be BL21star (DE3).
  • Conventional JM107 and JM109 E. coli JM strains, such as K-12 variants, have an F 'plasmid to produce excess biofilm, and when grown at high cell densities, cell growth may be inhibited to increase the rate of product formation. Cell growth inhibition is believed to be caused by high levels of acetate accumulation.
  • E. coli The BL21 strain does not have an F 'plasmid, and has fast cell growth, low acetate accumulation, and better glucose utilization due to vigorous sugar metabolism.
  • the BL21 strain is less sensitive to metabolic stress caused in producing large amounts of recombinant protein. While attempting to produce 2-fucosyllactose in BL21star (DE3), GDP-L-fucose was accumulated in cells, but instead of producing 2-fucosyllactose, assimilate lactose to produce only trace amounts of 2-fucosyllactose. It was. This is because the activity of ⁇ -galactosidase of wild type BL21star (DE3) was considered to be too high.
  • lactose degrading enzyme ⁇ -galactosidase
  • Mutant microorganism according to the present invention is (a) endogenous lac Lac with operon removed and lacZ modified or removed Operon is introduced. Mutant microorganism produced results of lactose assimilation speed shifted to the invention, endogenous lac Of the lacZ operon is modified or removed lac Replacement with operon was found to be effective for 2-fucosyllactose production.
  • the lacZ is modified lac
  • the operon may be one in which the gene encoding the 11 th to 42 th amino acids of the amino acid encoding ⁇ -galactosidase is deleted, and may be represented as lacZ ⁇ M15 .
  • the gene encoding the 11 th to 42 th amino acids in lacZ ⁇ M15 may be a nucleotide sequence of 93 bp in length, and a nucleotide sequence of the corresponding portion may be deleted.
  • the lacZ is removed lac The operon was constructed.
  • the lacZ is removed lac Operon lacY And lacA , and may be represented by lacYA .
  • lacYA is to remove the lacZ completely lac Means operon.
  • a gene encoding ⁇ -1,2 fucosyltransferase is introduced or amplified.
  • genes include, for example, Helicobacter pylori, Bacteroides fragilis , Dyadobacter fermentans , Enterococcus faecium DO, Escherichia coli O128: B12 , Helicobacter hepaticus, Lactococcus lactis subsp . Cremoris , Silicibacter pomeroyi , Pedobacter heparinus Or Pedobacter saltans It may be derived from, but is not limited thereto.
  • 2- fucosyllactose preferably fucT2 from Helicobacter pylori Or Bacteroides fragilis
  • the derived wcfB gene can be introduced or amplified.
  • the variant is a tag combining the gene encoding the aspartate repeat sequence or the 1-7 amino acids of infB (translation initiation factor) at the N-terminus of ⁇ -1,2 fucosyltransferase Can be.
  • a gene encoding G6PDH (glucose-6-phosphate dehydrogenase) and / or GSK (guanosine-inosine kinase) is introduced or amplified.
  • G6PDH glucose-6-phosphate dehydrogenase
  • GSK guanosine-inosine kinase
  • the inventors of the present application zwf which is a gene encoding the G6PDH And / or the mutant microorganism into which the gene gsk encoding GSK is introduced or amplified is effective in producing 2-fucosyllactose.
  • Zwf Genes for example Escherichia coli (strain K-12), Escherichia coli O157: H7, Escherichia coli O6: H1, Leuconostoc mesenteroides, Saccharomyces cerevisiae , Dictyostelium discoideum , Pseudomonas aeruginosa , Nostoc sp ., Mycobacterium smegmatis , Rhizobium meliloti, Streptococcus pneumoniae serotype 4, Zymomonas mobilis subsp .
  • Baizongia pistaciae Chlamydia muridarum , Chlamydia trachomatis , Haemophilus influenza, Nostoc punctiforme , Synechocystis sp ., Thermotoga maritime, Treponema pallidum , Helicobacter pylori, Encephalitozoon cuniculi , Kluyveromyces lactis , Schizosaccharomyces pombe , Bacillus thuringiensis , Solanum tuberosum , Takifugu rubripes , or Macropus robustus It may be derived from, but is not limited thereto, preferably may be derived from Escherichia coli K-12.
  • Gsk Genes for example Escherichia coli (strain K12), Escherichia coli O157: H7, Escherichia coli O6: H1, may be derived from Exiguobacterium acetylicum , but is not limited thereto, and may preferably be derived from Escherichia coli K-12.
  • L-fucose is a sugar present in glycoproteinated residues of glycoproteins and glycolipids of HMO and eukaryotes and plays an important role in various types of biochemical recognition processes.
  • L-fucose undergoes a sugar-transferring reaction to the receptor lactose through the donor GDP-fucose.
  • Salvage synthesis is a method in which L-fucose consumes ATP intracellularly.
  • GDP-D-mannose 4,6-dehydratase removes water molecules from GDP-D-mannose and GDP-L-fucose synthase (WcaG) is located at the C4 position of GDP-4-keto-6-deoxymannose. Promoting the reduction of the keto group in which the reduced NADPH provides reducing power to produce fucosylactose from lactose via fucosyltransferase after GDP-L-fucose is produced (FIG. 2).
  • the mutant microorganism according to the present invention can synthesize fucosilactose via the de novo biosynthetic pathway. Accordingly, as shown in FIG. 2, ManA
  • Mannose-6-phosphate isomerase ManB (phosphomannomutase), ManC (mannose-1-phosphate guanyltransferase), Gmd (GDP-D-mannose dehydratase) and WcaG (GDPfucose synthase) Genes may be further introduced or amplified.
  • Recombinant vector (plasmid) to be introduced into the mutant microorganism according to the present invention refers to DNA fragment (s), nucleic acid molecules to be delivered into the cell, can be mixed with the plasmid.
  • the plasmid is, for example, the genes of (a) to (c) and manA , manB , manC, gmd , wcaG Includes a gene, for example lacZ pGRG36 + ⁇ M15, pGRG36 + lacYA, pETDuet-1 + manC - manB + gmd - wcaG , pCOLADuet-1 + fucT2 , pCOLADuet-1 + fucT2 + zwf , pCOLADuet-1 + fucT2 + gsk , pCOLADuet-1 + D3 fucT2 , pCOLADuet-1 + infBfucT2 or pCOLADuet-1 +
  • the recombinant vector may comprise a promoter and a polynucleotide operably linked to the promoter.
  • promoter refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a particular recombinant microorganism.
  • a constitutive promoter or a promoter that induces the expression of a target gene at a specific position or time can be used without limitation.
  • the promoter may be natural, homologous, foreign or heterologous to the recombinant microorganism.
  • operably linked refers to the parallel of two or more components, where the components are in a relationship such that they act in the intended manner.
  • a promoter acts to control or regulate the transcription of a linked sequence
  • operably linked DNA sequence can be contiguous, wherein the two or more coding for secretory leader / signal sequences and polynucleotides that are contiguous and within the reading frame can be conjugated.
  • introduction may be carried out by a process related to the protoplast transformation followed by the protoplast preparation and cell wall reproduction.
  • DNA inserted into the protoplasts is inserted into the chromosome of the host cell.
  • the inserted DNA sequence remains stable in the cell.
  • DNA can typically be inserted into homologous, nonhomologous sites in the chromosome.
  • amplification refers to a process for increasing the copy number of a DNA sequence, for example, amplification may be performed through Polymerase Chain Reaction (PCR).
  • the present invention relates to a method for producing 2-fucosyllactose, wherein the mutant microorganism is cultured to produce 2-fucosyllactose, and then 2-fucosyllactose is recovered from the culture medium.
  • the culturing and recovery of the mutant microorganism can be carried out using a conventionally known culture method, in addition to the specific medium and the specific culture method used in the embodiment of the present invention, the medium of other components can be used, Various methods can be used, such as fed-batch fermentation, batch fermentation, or continuous culture using glycerol and lactose together. Glycerol and lactose can be used simultaneously because the two sugars are transported into the cell through a system that catalyzes non-saccharide phosphorylation. In addition to the biosynthesis of GDP-L-fucose, lactose may be added for cell growth and glycerol fed-batch culture may be performed. This prevents the accumulation of acetate, but also improves the productivity of 2-fucosyllactose while maintaining cell growth through simultaneous assimilation of glycerol and lactose.
  • BL21star (DE3) (Invitrogen, Carlsbad, CA, USA) was used respectively.
  • pHfucT2zwf and pHfucT2gsk were prepared, and at the N-terminus of ⁇ -1,2-fucose transferase derived from H. pylori Aspartate repeat sequence or infB pHD3fucT2 and pHinfBfucT2 were prepared to bind the 1-7th amino acid of the translation initiation factor in the form of a tag.
  • Bacteroides fragilis a novel ⁇ -1,2-fucose transferase Plasmid pHwcfB was prepared for overexpression of derived WcfB. Gene sequences used in the examples are shown in Table 1 below.
  • Gene zwf And gsk were amplified from genomic DNA of E. coli K-12 (ATCC10798) using oligonucleotides of Table 3 via PCR.
  • the amplified genes were cloned into the pHfucT2 plasmid by treatment with the restriction enzymes and the ligase of Table 2, and pHfucT2zwf and pHfucT2gsk were prepared, respectively.
  • To prepare pGlacZ ⁇ M15 two DNA fragments were amplified from E. coli K-12 genomic DNA using two pairs of primers P1_M15 lac / P2_M15 lac and P3_M15 lac / P4_M15 lac.
  • Primer used primer name order( 5'3 ') SEQ ID NO: F_del_lac CGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGA GTGTAGGCTGGAGCTGCTTCG SEQ ID NO: 11 R_del_lac TCCTGCGCTTTGTTCATGCCGGATGCGGCTAATGTAGATCGCTGAACTTG ATTCCGGGGATCCGTCGACC SEQ ID NO: 12 P1_M15 lac AATTAATCAGATCCCGGGACCATCGAATGGCGCAAAACCTTTC SEQ ID NO: 13 P2_M15 lac GGTGCGGGCCACGACGGCCAGTGAATCCGTAATCA SEQ ID NO: 14 P3_M15 lac TGGCCGTCGTGGCCCGCACCGATCGCC SEQ ID NO: 15 P4_M15 lac GGCCGCTATTGACCCGGGGCTGTGGGTCAAAGAGGCATGATG SEQ ID NO: 16 P2_lacYA TGGATTTCCTGTGTGAAATTGTTATCC
  • LB Lia-Bertani
  • yeast extract 1% sodium chloride
  • antibiotic ampicillin 50 ⁇ g / mL and kanamycin 50 ⁇ g / mL
  • the test tube was used for the spawn culture, and the preculture and the batch culture were incubated in a 500 mL baffled flask containing 100 mL of LB medium at 25 ° C. and maintained at 250 rpm.
  • a feeding solution containing 800 g / L glycerol and 20 g / L MgSO 4 ⁇ 7H 2 O was supplied by the pH-stat method.
  • 2-fucosyllactose was produced by adding IPTG and lactose to final concentrations of 0.1 mM and 20 g / L to induce T7 promoter-mediated gene expression.
  • the pH-stat method when the pH was higher than the set-point due to glycerol depletion, an appropriate amount of influent solution was automatically supplied in the reactor.
  • Dry cell weight was measured through optical density and 0.36 conversion constant. Optical density was measured at 600 nm absorbance using a spectrophotometer (Ultrospec 2000, Amersham Pharmacia Biotech, USA) after diluting the sample to maintain the optical density between 0.1-0.5. Concentrations of 2-fucosyllactose, lactose, glycerol, galactose and acetic acid were measured using a Carbohydrate Analysis column (Rezex ROA-organic acid, Phenomenex, USA) and high performance liquid chromatography (RI) equipped with a refractive index (RI) detector (Agilent 1100LC). , USA). A column heated at 60 ° C. was applied to analyze 20 ⁇ l of culture medium diluted 10-fold. 5 mM H 2 SO 4 solution at 0.6 mL / min flow rate was used as mobile phase.
  • RI refractive index
  • the lactose supplied into the cells is 2-fucosyllactose (2'-) in recombinant E. coli.
  • fucosyllactose (2-FL) is one of the essential elements for efficient biosynthesis.
  • ⁇ -galactosidase encoded by the lacZ gene is an enzyme that degrades glucose and galactose so that lactose can be used for cell growth.
  • BL21star BL21star
  • fucosyllactose No production of fucosyllactose was observed. This is considered to not be lacY expression by a frame shift (frame-shift) since the lacY carrying the lactose into the cells form the lacZ and one operon.
  • the JM109 strain only absorbs lactose into the cell but cannot use it for cell growth, so the endogenous lac of BL21star (DE3)
  • the lac operon comprising only the lac operon or lacYA containing lacZ ⁇ M15 of JM109 derived Replacement with operon was attempted (biosynthetic pathway in FIG. 2B).
  • Figure 3 shows endogenous lac in BL21star (DE3) strain Fruiting operon, new
  • lac It is a schematic diagram showing the process of introducing each operon.
  • lacA from 20 bp upstream of lacI Endogenous lac up to 40 bp downstream
  • the operon site was deleted by ⁇ -red recombination to prepare a ⁇ L strain ( lac operon deficient strain).
  • lacZ ⁇ M15 or the new operon fragment containing the lacYA was inserted into the glmS gene region by Tn7 substrate transposon, through which ⁇ L M15 strain (lacZ ⁇ M15 knock-in strains) and ⁇ L YA strain (lacYA knock-in strain) was produced.
  • 2-FL biosynthetic enzymes ManB, ManC, Gmd, WcaG and FucT2
  • G6PDH glucose 6-phosphate dehydrogenase
  • GSK guanosine-inosine kinase
  • a fusion ⁇ -1,2-fucose transferase library was constructed in which amino acid sequences such as aspartate and arginine were attached at various lengths.
  • a strain in which the mutant ⁇ -1,2-fucose transferase was attached to the end of the 1st to 21st sequences of infB was also constructed.
  • the recombinant E. coli was constructed by batch-level batch culture. As a result, a combination of three aspartates (GATGATGAT) at the N-terminus and a variant ⁇ -1,2-fu bound to the 1st to 21st sequences (ATGACAGATGTAACGATTAAA) of infB were identified.
  • Dry cell mass increased to 71.1 g / L and 73.0 g / L, respectively, and 2-fucosyllactose increased to 6.4 g / L and 6.1 g / L, respectively (about 2.5 and 2.4 times than without tag). increase). This may be due to the enhanced activity of ⁇ -1,2-fucose transferase due to the attachment of aspartate and infB tag.
  • Table 5 The results of the fed-batch culture are shown in Table 5.
  • H. pylori- derived ⁇ -1,2-fucose transferase (FucT2), which was used in previous studies, has a problem of showing very low levels of activity since most of them form an inclusion body.
  • fucT2 from H. pylori
  • 11 genes estimated to be ⁇ -1,2-fucose transferases from different genes were introduced into the ⁇ L M15 strain along with pmBCGW plasmid to build a gene library. Afterwards, the productivity of 2-fucosyllactose was tested through fed-batch culture.

Abstract

The present invention relates to mutant microorganisms for producing 2-fucosyllactose and a method for producing 2-fucosyllactose using the same and, more specifically, to mutant microorganisms into which a lacZ-modified or removed operon is introduced and at least one gene selected from the group consisting of genes coding FucT2 or variants thereof and genes coding glucose-6-phosphate dehydrogenase (G6PDH) and guanosine-inosine kinase (GSK) is introduced or amplified, and to a method for producing 2-fucosyllactose using the same.

Description

2-푸코실락토오스 생산 변이 미생물 및 이를 이용한 2-푸코실락토오스의 제조방법2-fucosyllactose producing mutant microorganisms and a method for producing 2-fucosyllactose using the same
본 발명은 2-푸코실락토오스 생산 변이 미생물 및 이를 이용한 2-푸코실락토오스의 제조방법에 관한 것으로, 상세하게는 lacZ가 변형 또는 제거된 lac 오페론을 도입시킨 미생물에 α-1,2 푸코오스 전이효소 (α-1,2 fucosyltransferase), 이의 변이체를 코딩하는 외래 유전자, G6PDH (glucose-6-phosphate dehydrogenase) 및 GSK (guanosine-inosine kinase)를 코딩하는 유전자로 이루어진 군에서 선택된 하나 이상이 도입 또는 증폭되어 있는 변이 미생물 및 이를 이용하여 2-푸코실락토오스를 제조하는 방법에 관한 것이다.The present invention relates to a 2-fucosyllactose producing mutant microorganisms and a method for producing 2-fucosyllactose using the same, in particular lacZ modified or removed lac To the microorganism into which the operon was introduced, α-1,2 fucosyltransferase, a foreign gene encoding a variant thereof, G6PDH (glucose-6-phosphate dehydrogenase) and GSK (guanosine-inosine kinase) The present invention relates to a mutant microorganism in which one or more selected from the group consisting of coding genes are introduced or amplified and a method for producing 2-fucosyllactose using the same.
사람의 모유에는 200여종 이상의 독특한 구조를 가지는 올리고당 (humanHuman milk contains more than 200 unique oligosaccharides
milk oligosaccharides, HMO)이 다른 포유류의 젖에 비해 상당히 높은 농도 (5~15g/L)로 존재한다. HMO는 장내 유산균의 생육을 돕는 프리바이오틱 (prebiotic) 효과, 병원균 감염 예방 및 면역시스템 조절과 같이 사람의 건강에 영향을 미치는 다양한 생물학적 활성을 제공하는 기능성을 가지고 있다.milk oligosaccharides (HMO) are present at significantly higher concentrations (5-15 g / L) than milk from other mammals. HMOs have the ability to provide a variety of biological activities that affect human health, such as prebiotic effects that help the growth of intestinal lactic acid bacteria, prevention of pathogen infections, and immune system regulation.
HMO는 D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine (GlcNAc), L-fucose (Fuc)와 sialic acid (Sia; N-acetyl neuraminic acid [Neu5Ac])로 구성되어 있다. HMO의 구조는 매우 다양하고 복잡하여 다른 잔기와 글리코실 결합을 가지는 200개 정도의 이성질체가 서로 다른 중합도(DP 3-20)를 가질 수 있다. 구조적 복잡성에도 불구하고, HMO는 몇 가지 공통적인 구조를 가진다. 대부분의 HMO는 환원말단에 락토오스 (Galβ1-4Glc) 잔기를 가진다. 락토오스의 Gal은 α-(2,3)-과 α-(2,6)-결합으로 각각 3-시알릴락토오스 (3-sialyllactose) 또는 6-시알릴락토오스 (6-sialyllactose)의 형태로 시알화되거나, α-(1,2)-과 α-(1,3)-결합으로 각각 2-푸코실락토오스(2'-fucosyllactose, 2-FL) 또는 3-푸코실락토오스(3'-fucosyllactose)의 형태로 푸코실화 (fucosylation) 될 수 있다. 약 200개의 다른 복합 올리고당이 모유에서 발견되었는데, 가장 함량이 많은 올리고당 3가지를 포함하여 137개가 푸코실화되어 그 비율은 거의 77%이고, 남은 올리고당은 대부분 시알화된 것(39개)으로 약 28%에 해당한다. 이 중, 특히 2-푸코실락토오스는 앞서 언급한 다양한 생물학적 활성에 관여하는 주요 HMO인 것으로 보고되었으며, 모유에 함유된 올리고당 중에 가장 풍부한 것으로 알려져 유아용 분유 및 노인용 건강기능식품의 소재 및 의약품의 소재로의 이용가능성으로 주목을 받게 되었다. 그러나 현재 2-푸코실락토오스는 산업적으로 대량생산이 어렵기 때문에, 2-푸코실락토오스를 대신하여 갈락토올리고당 (galactooligosaccharide) 또는 프럭토올리고당 (fructooligosaccharide)을 이유식에 첨가하여 유사한 효과를 기대하고 있는 실정이다.HMO consists of D-glucose (Glc), D-galactose (Gal), N-acetylglucosamine (GlcNAc), L-fucose (Fuc) and sialic acid (Sia; N-acetyl neuraminic acid [Neu5Ac]). The structure of HMO is so diverse and complex that about 200 isomers with different residues and glycosyl bonds can have different degrees of polymerization (DP 3-20). Despite the structural complexity, HMOs have some common structures. Most HMOs have lactose (Galβ1-4Glc) residues at the ends of the reduction. Gal of lactose is sialated in the form of 3-sialyllactose or 6-sialyllactose with α- (2,3)-and α- (2,6) -bonds, respectively Or by the α- (1,2)-and α- (1,3) -bonds of 2-fucosyllactose (2-FL) or 3-fucosyllactose, respectively. It can be fucosylation in form. About 200 different complex oligosaccharides were found in breast milk, including 137 fucosylated, including the three most abundant oligosaccharides, with a ratio of almost 77%, and the remaining oligosaccharides mostly sialized (39). Corresponds to%. Among them, 2-fucosyllactose is reported to be the major HMO involved in the various biological activities mentioned above, and is known to be the most abundant among oligosaccharides contained in breast milk. Attention has been paid to the availability of. However, since 2-fucosyllactose is currently difficult to mass-produce industrially, galactooligosaccharides or fructooligosaccharides are added to baby food in place of 2-fucosyllactose to expect similar effects. to be.
2-푸코실락토오스의 생산방법으로는 직접 모유로부터 추출하는 방법과 화학적 또는 효소적 방법으로 합성하는 방법이 있다. 하지만 직접 추출하는 방법은 모유수급의 한계와 낮은 생산성이 문제였고, 화학적 합성법은 고가의 기질, 낮은 이성체 선택성(stereo-selectivity)과 생산수율, 독성시약의 사용 등의 문제가 있었다. 또한 효소적 합성법은 푸코스의 공여체(donor)로 이용되는 GDP-L-fucose가 매우 고가라는 점과 푸코스전이효소의 정제비용이 많이 든다는 문제점이 있었다. 따라서 이러한 문제들로 인해 직접추출, 화학적 또는 효소적 생산법은 산업적 대량생산에 적용이 불가능하였다. 반면, 미생물을 이용한 생물공학적 생산방법은 단순한 공정을 통해 값싼 기질로부터 2-푸코실락토오스를 대량으로 생산이 가능하다는 측면에서, 화학적 합성이나 효소적 합성과 같은 다른 시스템에 비해 산업적 대량생산에 적합하기 때문에 각광받고 있다.Production methods of 2-fucosyllactose include direct extraction from breast milk and synthesis by chemical or enzymatic methods. However, the direct extraction method was problematic due to the limitation of breastfeeding and low productivity, and the chemical synthesis method had problems such as expensive substrate, low iso-selectivity and production yield, and use of toxic reagents. In addition, the enzymatic synthesis method has a problem that GDP-L-fucose, which is used as a donor of fucose, is very expensive and the purification cost of fucose transferase is high. Therefore, due to these problems, direct extraction, chemical or enzymatic production methods are not applicable to industrial mass production. On the other hand, biotechnological production methods using microorganisms are suitable for industrial mass production compared to other systems such as chemical synthesis or enzymatic synthesis in that 2-fucosyllactose can be produced in large quantities from a cheap substrate through a simple process. Because of this spotlight.
미생물을 이용한 HMO 생산과 관련된 이전 연구에서, 콜라닌산 (colanicIn previous studies involving microbial HMO production, colanic acid (colanic
acid) 생합성에 대한 양성 조절자 RcsA를 과발현시키고, 콜라닌산 생합성을 위해 GDP-L-fucose를 이용하는 효소인 WcaJ를 불성활성시킴으로써, 설계된 E. coli의 세포외에서 2-푸코실락토오스를 생산하려는 시도가 있었다. 그러나, 2-푸코실락토오스의 생산 농도 및 생산성이 낮다는 문제가 있었다.Attempts to produce 2-fucosyllactose extracellularly of E. coli designed by overexpressing the positive regulator RcsA for biosynthesis and inactivating the enzyme WcaJ, which uses GDP-L-fucose for collagen acid biosynthesis there was. However, there has been a problem that the production concentration and productivity of 2-fucosyllactose are low.
이러한 기술적 배경하에서, 본 출원의 발명자들은 종래와 달리, lacZ가 변형또는 제거된 lac 오페론 도입; α-1,2-fucosyltransferase 또는 이의 변이체를 코딩하는 유전자 및 G6PDH (glucose-6-phosphate dehydrogenase)를 코딩하는 유전자 및 GSK (guanosine-inosine kinase)를 코딩하는 유전자가 도입 또는 증폭되어 있는 변이 미생물을 이용함으로써 높은 수율로 2-푸코실락토오스를 제조할 수 있음을 확인하고, 본 발명을 완성하였다.Under this technical background, the inventors of the present application, unlike the prior art, lac is modified or eliminated lacZ Operon introduction; Mutant microorganisms in which a gene encoding α-1,2-fucosyltransferase or a variant thereof and a gene encoding G6PDH (glucose-6-phosphate dehydrogenase) and a gene encoding a GSK (guanosine-inosine kinase) are introduced or amplified By confirming that 2-fucosyllactose can be produced by a high yield by this, the present invention was completed.
본 배경기술 부분에 기재된 상기 정보는 오직 본 발명의 배경에 대한 이해를 향상시키기 위한 것이며, 이에 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 있어 이미 알려진 선행기술을 형성하는 정보를 포함하지 않을 수 있다.The above information described in this Background section is only for improving the understanding of the background of the present invention, and therefore does not include information that forms a prior art known to those of ordinary skill in the art. You may not.
기존에 개발된 재조합 대장균으로 2-푸코실락토오스(2-Fucosyllactose, 2-FL)를 생산하는 데에는 두 가지 문제점이 있었다. 첫번째는 모균주로 E. coli There have been two problems in producing 2-fucosyllactose (2-FL) using the recombinant E. coli previously developed. The first is E. coli
JM107 또는 JM109을 이용하는데, 이 균주들은 바이오 필름과 아세트산을 과량생성하므로, 고농도 세포배양을 하기가 어렵다는 점이고, 두번째는 기존 연구에서 이용되었던 Helicobacter pylori유래의 1,2-fucosyltransferase는 과발현시 inclusion body를 형성하기 때문에 역가가 제한적이라는 점이다. 본 발명의 목적은 이러한 기존기술의 문제점을 인식하고, HMO를 효율적으로 생산하면서도 최종농도, 수율 및 생산성을 개선시킬 수 있는 변이 미생물 및 이를 이용하여 HMO를 제조하는 방법을 제공하는데 있다. 또한, 고농도 세포배양 및 푸코스 전이효소의 발현수준향상을 통하여 최종적으로 2-푸코실락토스를 기존기술보다 고농도로 생산할 수 있는 기술을 개발하여 제공하고자 한다.JM107 or JM109 is used. These strains overproduce biofilm and acetic acid, making it difficult to culture high concentrations of cells. Second, the Helicobacter used in previous studies. The pylori- derived 1,2-fucosyltransferase has a limited titer because it forms an inclusion body upon overexpression. An object of the present invention is to recognize the problems of the existing technology, to provide a mutant microorganism that can improve the final concentration, yield and productivity while efficiently producing HMO and a method for producing HMO using the same. In addition, through high concentration cell culture and improved expression level of fucose transferase to finally develop and provide a technology that can produce 2-fucosyllactose at a higher concentration than the existing technology.
상기 목적을 달성하기 위하여 본 발명은 2-푸코실락토오스 (2-Fucosyllactose, 2-FL)를 생산하는 대사회로를 가지는 미생물에서, (a) 내인성 lac 오페론이 제거되고, lacZ가 변형 또는 제거된 lac 오페론이 도입; 및 (b) α-1,2-fucosyltransferase 또는 이의 변이체, (c) G6PDH (glucose-6-phosphateIn order to achieve the above object, the present invention is a microorganism having a metabolic circuit that produces 2-fucosyllactose (2-FL), (a) endogenous lac operon is removed, lacZ modified or removed lac Operon introduced; And (b) α-1,2-fucosyltransferase or variant thereof, (c) G6PDH (glucose-6-phosphate
dehydrogenase) 및 (d) GSK (guanosine-inosine kinase)로 이루어진 군에서 선택된 하나 이상을 코딩하는 유전자가 도입 또는 증폭되어 있는 것을 특징으로 하는 변이 미생물에 관한 것이다.It relates to a mutant microorganism characterized in that the gene encoding at least one selected from the group consisting of dehydrogenase) and (d) GSK (guanosine-inosine kinase) is introduced or amplified.
상기 변이체는 α-1,2 fucosyltransferase의 N-말단에 아스파테이트(aspartate) 반복서열 또는 infB (translation initiation factor)의 1~7번째 아미노산을 코딩하는 유전자를 태그로 결합시킨 것일 수 있다.The variant may be a tag of a gene encoding the 1-7th amino acid of the aspartate repeat sequence or infB (translation initiation factor) at the N-terminus of α-1,2 fucosyltransferase.
본 발명은 상기 변이 미생물을 배양하여 2-푸코실락토오스를 생성시킨 다음, 배양액으로부터 2-푸코실락토오스를 회수하는 것을 특징으로 하는 2-푸코실락토오스의 제조방법에 관한 것이다.The present invention relates to a method for producing 2-fucosyllactose, characterized in that 2-fucosyllactose is recovered from the culture by culturing the mutant microorganisms.
본 발명에 따른 변이 미생물 및 이를 이용한 제조방법에 따르면, 생산 수율이 낮아 산업적 측면에서 적용이 불가능하던 종래기술의 제약을 극복하고, 매우 우수한 수율로 락토오스로부터 2-푸코실락토오스를 생산할 수 있다. 이를 통해 산업화를 위한 대량 생산을 용이하게 함으로써, 식품 또는 제약 산업에 적합하게 적용 할 수 있다.According to the mutant microorganism according to the present invention and a manufacturing method using the same, it is possible to produce 2-fucosyllactose from lactose in a very good yield to overcome the limitations of the prior art that the production yield is not applicable in the industrial aspect. This facilitates mass production for industrialization, it can be suitably applied to the food or pharmaceutical industry.
도 1은 2-푸코실락토오스(2'-fucosyllactose, 2-FL)의 구조적 조성을 나타낸 것이다.Figure 1 shows the structural composition of 2-fucosyllactose (2'-fucosyllactose, 2-FL).
도 2a는 내인성 lac 오페론을 파쇄하고 lacZ가 부분파쇄된 lac 오페론(lacZΔM15)을 도입시킨 재조합 대장균에서, GDP-L-fucose 및 2-푸코실락토오스를 생합성 하기 위한 de novo 대사 경로를 나타낸 것이다.2a is endogenous lac In recombinant E. coli it was disrupted by the lacZ operon and introduction of shredded la c operon (lacZΔM15) section, illustrating a de novo pathway for the biosynthesis of GDP-L-fucose, and 2-Foucault room lactose.
도 2b는 내인성 lac 오페론을 파쇄하고 lacZ가 완전파쇄된 lac 오페론(lacYA)을 도입시킨 재조합 대장균에서, GDP-L-fucose 및 2-푸코실락토오스를 생합성 하기 위한 de novo 대사 경로를 나타낸 것이다.2b is endogenous lac In recombinant E. coli was disrupted the lacZ operon and completely crushing the c la introducing an operon (lacYA), it illustrates the de novo pathway for the biosynthesis of GDP-L-fucose, and 2-Foucault room lactose.
도 3은 lac 오페론을 조작한 재조합 대장균 균주를 구축하기 위한 과정을 나타낸 모식도이다[(a) 야생형 대장균 - BL21star(DE3), (b) lac 오페론을 제거한 대장균 - △L, (c) lac △M15를 도입한 대장균 - △L M15, (d) lacYA를 도입한 대장균- △L YA].3 is lac Schematic diagram showing the process for constructing recombinant E. coli strains engineered with operon [(a) Wild type E. coli-BL21star (DE3), (b) lac Removal of the E. coli operon - △ L, (c) the introduction of E. coli M15 lac - △ L M15, (d) the introduction of E. coli lacYA - △ L YA].
도 4는 재조합 대장균 균주들의 회분배양 결과를 나타낸 것으로, 광학밀Figure 4 shows the batch culture results of the recombinant E. coli strains, optical mill
도(OD600)가 약 0.8에 도달하면, IPTG와 락토오스를 최종 농도가 각각 0.1mM 및 20g/L(수직선)이 되도록 첨가하였다: (a) BL21star(DE3) BCGW-F, (b) △LBCGW-F, (c) △L M15 BCGW-F. 그래프 중 기호는 다음과 같으며, 도 4 중 기호는 3개의 독립적 회분배양의 대표값을 나타낸다: ●: 건조세포중량, ■: 락토오스, ▲: 2-푸코실락토오스.When the degree (OD600) reached about 0.8, IPTG and lactose were added so that the final concentrations were 0.1 mM and 20 g / L (vertical), respectively: (a) BL21star (DE3) BCGW-F, (b) ΔLBCGW- F, (c) ΔL M15 BCGW-F. The symbols in the graph are as follows, and the symbols in FIG. 4 represent representative values of three independent batch cultures: ●: dry cell weight, ■: lactose, ▲: 2-fucosyllactose.
도 5a-도 5f는 재조합 대장균 균주들의 유가식 배양결과를 나타낸 것으로, 초기에 투입한 20 g/L 글리세롤이 모두 소모된 후, 글리세롤을 pH-stat으로 공급하기 시작하였고, IPTG와 락토오스를 동시에 추가하였다(큰 화살표). 락토오스 고갈 후 200 g/L 락토오스 용액을 추가로 투입하였고(작은 화살표), 건조 세포 중량이 약 60에 도달한 후 글리세롤 공급 모드를 수동 모드로 변경하였다 (수직선). 도 5중 기호는 다음과 같다: ●: 건조세포중량, ■: 락토오스, ▲: 2-푸코실락토오스, ◆: 글리세롤.Figures 5a-5f shows the results of fed-batch culture of recombinant E. coli strains, after all of the initial 20 g / L glycerol was consumed, and began to supply glycerol to pH-stat, IPTG and lactose added simultaneously (Large arrow). An additional 200 g / L lactose solution was added after lactose depletion (small arrow) and the glycerol feed mode was changed to manual mode after the dry cell weight reached about 60 (vertical line). The symbols in Fig. 5 are as follows: ●: dry cell weight, ■: lactose, ▲: 2-fucosyllactose, ◆: glycerol.
도 5a는 △L M15 BCGW-F 재조합 대장균의 유가식 배양결과를 나타낸 것이고,Figure 5a shows the fed-batch culture of ΔL M15 BCGW-F recombinant E. coli,
도 5b는 △L M15 BCGW-Fz 재조합 대장균의 유가식 배양결과를 나타낸 것이고,Figure 5b shows the fed-batch culture of ΔL M15 BCGW-Fz recombinant E. coli,
도 5c는 △L M15 BCGW-Fg 재조합 대장균의 유가식 배양결과를 나타낸 것이고,Figure 5c shows the results of fed-batch culture of ΔL M15 BCGW-Fg recombinant E. coli,
도 5d는 △L M15 BCGW-D3F 재조합 대장균의 유가식 배양결과를 나타낸 것이고,Figure 5d shows the fed-batch culture of ΔL M15 BCGW-D3F recombinant E. coli,
도 5e는 △L M15 BCGW-infBF 재조합 대장균의 유가식 배양결과를 나타낸 것이고,Figure 5e shows the results of fed-batch culture of ΔL M15 BCGW-infBF recombinant E. coli,
도 5f는 △L M15 BCGW-W 재조합 대장균의 유가식 배양결과를 나타낸 것이고,Figure 5f shows the results of fed-batch culture of ΔL M15 BCGW-W recombinant E. coli,
도 5g는 △L YA BCGW-W 재조합 대장균의 유가식 배양결과를 나타낸 것이다.Figure 5g shows the fed-batch culture results of ΔL YA BCGW-W recombinant E. coli.
도 6은 △L M15/pmBCGW+pHwcfB의 배양액을 LC-MS/MS분석을 통해 2-푸코실락토오스의 생산을 확인한 결과이다.Figure 6 is the result of confirming the production of 2-fucosyllactose in the culture medium of ΔL M15 / pmBCGW + pHwcfB through LC-MS / MS analysis.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본 발명은 일 관점에서, 2-푸코실락토오스 (2-Fucosyllactose, 2-FL)를 생산하는 대사회로를 가지는 미생물에서, (a) 내인성 lac 오페론이 제거되고, lacZ가 변형 또는 제거된 lac 오페론이 도입; 및 (b) α-1,2-fucosyltransferase 또는 이의 변이체, (c) G6PDH (glucose-6-phosphate dehydrogenase) 및 (d) GSK (guanosine-inosine kinase)로 이루어진 군에서 선택된 하나 이상을 코딩하는 유전자가 도입 또는 증폭되어 있는 것을 특징으로 하는 변이 미생물에 관한 것이다.In one aspect, the present invention, in a microorganism having a metabolic circuit producing 2-fucosyllactose (2-FL), (a) endogenous lac Lac with operon removed and lacZ modified or removed Operon introduced; And (b) α-1,2-fucosyltransferase or a variant thereof, (c) G6PDH (glucose-6-phosphate dehydrogenase) and (d) GSK (guanosine-inosine kinase). It relates to a mutant microorganism characterized in that the introduced or amplified.
고농도 배양 및 외래단백질 발현에 적합한 대장균인 BL21star(DE3)를 2-푸코실락토오스 생산용 균주로 이용하기 위하여 락토오스분해효소 (β-galactosidase, LacZ)의 역가를 감소 또는 제거시킨 BL21star(DE3) 균주를 구축하였다. 이를 위해 (a) 야생형 BL21star(DE3)의 내인성 lac오페론을 파쇄하고, lacZ가 변형 또는 제거된 변이 lac 오페론을 도입하여 락토오스분해효소 (β-galactosidase)의 역가를 크게 감소 또는 제거시킴으로써 세포 내로 들어온 대부분의 락토오스(lactose)가 세포생장이 아닌 2-푸코실락토오스의 생산에 이용되도록 대사의 흐름을 전환시켰다.In order to utilize the Escherichia coli BL21star (DE3), which is suitable for high concentration culture and foreign protein expression, as a strain for producing 2-fucosyllactose, the BL21star (DE3) strain having reduced or eliminated the titer of lactosease (β-galactosidase, LacZ) was used. Built. To this end, the crushed endogenous lac operon of (a) wild-type BL21star (DE3), and, lacZ is removed or modified mutant lac Incorporation of operons significantly reduced or eliminated the titer of β-galactosidase, shifting metabolic flow so that most of the lactose entering the cell was used for the production of 2-fucosyllactose rather than cell growth. .
(b) GDP-L-fucose 생합성 효소를 코딩하는 유전자(gmd , wcaG , manB , manC) 및 α-1,2 fucosyltransferase를 코딩하는 유전자(fucT2 또는 wcfB)를 도입하거나, 이의 변이체 예를 들어 α-1,2-푸코스전이효소의 푸코실화 활성도를 향상시키기 위해 N-말단에 아스파테이트 (aspartate) 반복서열 또는 infB (translation initiation factor)의 1~7번째 아미노산을 태그형태로 결합시켜 도입할 수 있다.(b) genes encoding GDP-L-fucose biosynthesis enzymes ( gmd , wcaG , manB , manC ) and genes encoding α-1,2 fucosyltransferase ( fucT2 Or wcfB ) or aspartate repeats or infB at the N-terminus to enhance the fucosylation activity of a variant thereof, eg, α-1,2-fucose transferase. The amino acids 1-7 of the translation initiation factor can be introduced in the form of a tag.
(c) GDP-L-fucose 생합성 효소를 코딩하는 유전자(gmd , wcaG , manB , manC)를 과발현시키고, G6PDH (glucose-6-phosphate dehydrogenase) 및/또는 Gsk (guanosine-inosine kinase)를 코딩하는 유전자(zwf , gsk)를 도입시킴으로써 푸코스의 공여체인 GDP-L-fucose의 공급을 향상시킬 수 있다.(c) overexpresses genes encoding GDP-L-fucose biosynthetic enzymes ( gmd , wcaG , manB , manC ) and genes encoding G6PDH (glucose-6-phosphate dehydrogenase) and / or Gsk (guanosine-inosine kinase) By introducing ( zwf , gsk ), the supply of GDP-L-fucose, a fucose donor, can be improved.
또한, (d) 기존의 H. pylori 유래의 α-1,2-푸코스전이효소보다 활성형으로 발현이 잘되는 Bacteroides fragilis 유래의 α-1,2-푸코스전이효소를 코딩하는 유전자(wcfB)를 발굴 및 도입시킨 재조합 대장균을 구축할 수 있다.In addition, (d) Bacteroides, which are more active than the conventional H-1 pylori- derived α-1,2-fucose transferase, are expressed. fragilis Recombinant Escherichia coli can be constructed by discovering and introducing a gene ( wcfB ) encoding a derived α-1,2-fucose transferase.
상기 2-푸코실락토오스를 생산하는 대사회로를 가지는 미생물은 박테리아일 수 있으며, 바람직하게 E. coli BL21star(DE3)일 수 있다. 종래 JM107 및 JM109 (E. coli K-12 변이체)과 같은 JM 균주는 F'플라스미드를 가지고 있기 때문에 과량의 바이오필름(biofilm)을 생성하고, 높은 세포 밀도에서 자라면 생산물 형성 비율을 증가시키기 위해 세포 성장이 억제될 수 있다. 세포 성장 억제는 높은 수준의 아세테이트 축적에 의해 유발되는 것으로 판단된다. JM 균주에 반해, E. coli BL21 균주는 F' 플라스미드를 가지고 있지 않고, 활발한 당 대사로 인해 세포 성장도 빠르고, 아세테이트 축적량도 적으며, 글루코스 이용률이 더 우수하다는 장점이 있다. 또한, BL21 균주는 다량의 재조합 단백질을 생산함에 있어 야기되는 대사 스트레스에 덜 민감하다. 종래 BL21star(DE3)에서 2-푸코실락토오스의 생산을 시도하여 세포 내에 GDP-L-fucose가 축적되었으나, 2-푸코실락토오스를 생산하는 대신 락토오스를 동화시킴으로써, 미량의 2-푸코실락토오스 만을 생산하였다. 이는 야생형 BL21star(DE3)의 락토오스 분해효소(β-galactosidase)의 활성도가 너무 높았기 때문인 것으로 사료되었기에 본 발명에서는 락토오스의 대사흐름이 세포생장 쪽으로 가기 보다는 2-푸코실락토오스의 생산에 이용되게 하기 위해서 lac 오페론의 교체를 통하여 락토오스 분해효소(β-galactosidase)의 활성을 기존 효소에 비해 3% 수준까지 저하 또는 제거시켰다.The microorganism having a metabolic circuit producing 2-fucosyllactose may be a bacteria, preferably E. coli It may be BL21star (DE3). Conventional JM107 and JM109 ( E. coli JM strains, such as K-12 variants, have an F 'plasmid to produce excess biofilm, and when grown at high cell densities, cell growth may be inhibited to increase the rate of product formation. Cell growth inhibition is believed to be caused by high levels of acetate accumulation. In contrast to the JM strain, E. coli The BL21 strain does not have an F 'plasmid, and has fast cell growth, low acetate accumulation, and better glucose utilization due to vigorous sugar metabolism. In addition, the BL21 strain is less sensitive to metabolic stress caused in producing large amounts of recombinant protein. While attempting to produce 2-fucosyllactose in BL21star (DE3), GDP-L-fucose was accumulated in cells, but instead of producing 2-fucosyllactose, assimilate lactose to produce only trace amounts of 2-fucosyllactose. It was. This is because the activity of β-galactosidase of wild type BL21star (DE3) was considered to be too high. In the present invention, in order to allow the metabolic flow of lactose to be used for the production of 2-fucosyllactose rather than going to the cell growth lac By replacing operon, the activity of lactose degrading enzyme (β-galactosidase) was reduced or eliminated by 3% compared to the existing enzyme.
본 발명에 따른 변이 미생물은 (a) 내인성 lac 오페론이 제거되고, lacZ가 변형 또는 제거된 lac 오페론이 도입되어 있다. 락토오스 동화 속도를 늦춘 본 발명에 따른 변이미생물 제작 결과, 내인성 lac 오페론을 lacZ가 변형 또는 제거된 lac 오페론으로 교체하는 것이 2-푸코실락토오스 생산에 효과적임을 확인하였다.Mutant microorganism according to the present invention is (a) endogenous lac Lac with operon removed and lacZ modified or removed Operon is introduced. Mutant microorganism produced results of lactose assimilation speed shifted to the invention, endogenous lac Of the lacZ operon is modified or removed lac Replacement with operon was found to be effective for 2-fucosyllactose production.
하나의 실시예에서, 상기 lacZ가 변형된 lac 오페론은 β-galactosidase를 코딩하는 아미노산 중 11~42번째 아미노산을 코딩하는 유전자가 결실된 것일 수 있으며, lacZΔM15로 표기될 수 있다. lacZΔM15에서 상기 11~42번째 아미노산을 코딩하는 유전자는 93 bp 길이의 염기서열로, 해당 부분의 염기서열이 결실된 것일 수 있다.In one embodiment, the lacZ is modified lac The operon may be one in which the gene encoding the 11 th to 42 th amino acids of the amino acid encoding β-galactosidase is deleted, and may be represented as lacZΔM15 . The gene encoding the 11 th to 42 th amino acids in lacZΔM15 may be a nucleotide sequence of 93 bp in length, and a nucleotide sequence of the corresponding portion may be deleted.
상기 lacZΔM15를 포함하는 lac 오페론은 E. coli K-12 균주 유래, 예를 들어 E. coli JM109 유래일 수 있는데, 본 출원의 발명자들은 E. coli JM109 균주가 락토오스만을 흡수할 뿐 동화시키지 않음을 확인하고, 미생물 내의 내인성 lac 오페론을 E. coli JM109 유래 lacZΔM15을 포함하는 lac 오페론으로 교체한 결과, 야생형 균주에 비해, 2-푸코실락토오스 생산 수율이 약 3배 이상 향상될 수 있음을 확인하였다. 락토오스 동화 속도를 늦춘 본 발명에 따른 변이미생물 제작 결과, 내인성 lac 오페론을 lacZΔM15을 포함하는 lac 오페론으로 교체하는 것이 2-푸코실락토오스 생산에 효과적임을 확인하였다. Lac including lacZΔM15 Operon E. coli From K-12 strains, for example E. coli JM109 derived, the inventors of the present application is E. coli JM109 strain does not check the moving image as to absorb only the lactose, and the endogenous lac operon in the microorganism E. coli Lac including lacZΔM15 from JM109 As a result of replacing with operon, it was confirmed that the yield of 2-fucosyllactose can be improved by about 3 times or more, compared to the wild type strain. Mutant microorganism produced results of lactose assimilation speed shifted to the invention, endogenous lac Operon lac containing lacZΔM15 Replacement with operon was found to be effective for 2-fucosyllactose production.
추가로, BL21star(DE3)처럼 DE3와 같은 용원균(lysogen)이 있는 경우, lacZΔM15과 함께 작용하여, LacZ의 활성도가 부분적으로 되살아나는 α-complementation현상이 일어나므로 lacZΔM15을 완전히 제거시킨 ΔL YA균주도 구축하였고, 남아있던 3%의 LacZ활성도가 완전히 제거된 것을 확인하였다.Further, if there is BL21star (DE3) Won Kyun (lysogen) for such DE3 as, by acting with lacZΔM15, because the activity of the LacZ up partially revive the α-complementation phenomenon ΔL YA strain was completely removed lacZΔM15 Fig. It was confirmed that the remaining 3% LacZ activity was completely removed.
이를 기반으로, 또 다른 실시예에서, 상기 lacZ가 제거된 lac 오페론을 구축하였다. 상기 lacZ가 제거된 lac 오페론은 lacY lacA로 구성된 것일 수 있으며, lacYA로 표기될 수 있다. lacYAlacZ를 완전히 제거한 lac 오페론을 의미한다.Based on this, in another embodiment, the lacZ is removed lac The operon was constructed. The lacZ is removed lac Operon lacY And lacA , and may be represented by lacYA . lacYA is to remove the lacZ completely lac Means operon.
락토오스 동화 속도를 늦춘 본 발명에 따른 변이미생물 제작 결과, 내인성 lac 오페론을 lacZΔM15 또는 lacYA를 포함하는 lac 오페론으로 교체하는 것이 2-푸코실락토오스 생산에 효과적임을 확인하였다.As a result of the production of the mutant microorganism according to the present invention which slowed down the lactose assimilation rate, endogenous lac LacZΔM15 operon Or lac containing lacYA Replacement with operon was found to be effective for 2-fucosyllactose production.
본 발명에 따른 변이 미생물에는 또한, (b) α-1,2 fucosyltransferase를 코딩하는 유전자가 도입 또는 증폭되어 있다. 상기 유전자는 예를 들어, Helicobacter pylori, Bacteroides fragilis , Dyadobacter fermentans , Enterococcus faecium DO, Escherichia coli O128:B12 , Helicobacter hepaticus, Lactococcus lactis subsp . Cremoris , Silicibacter pomeroyi , Pedobacter heparinus 또는 Pedobacter saltans 유래일 수 있으나, 이에 제한되는 것은 아니다. 최종 산물인 2-푸코실락토오스 생산에 적합한 활성도를 고려하여, 바람직하게 Helicobacter pylori 유래의 fucT2 또는 Bacteroides fragilis 유래의 wcfB 유전자가 도입 또는 증폭될 수 있다.In the mutant microorganism according to the present invention, (b) a gene encoding α-1,2 fucosyltransferase is introduced or amplified. Such genes include, for example, Helicobacter pylori, Bacteroides fragilis , Dyadobacter fermentans , Enterococcus faecium DO, Escherichia coli O128: B12 , Helicobacter hepaticus, Lactococcus lactis subsp . Cremoris , Silicibacter pomeroyi , Pedobacter heparinus Or Pedobacter saltans It may be derived from, but is not limited thereto. In view of the appropriate activity for the production of the final product 2- fucosyllactose , preferably fucT2 from Helicobacter pylori Or Bacteroides fragilis The derived wcfB gene can be introduced or amplified.
선행연구에서는 Candida antarctica 유래의 리파아제(lipase)를 대장균에서 발현시킬 시에 insoluble하게 발현되어 활성도가 낮은 문제가 있었는데, 말단부위에 1~10개의 비교적 짧은 아미노산을 태그형태로 부착시키면 단백질의 활성도를 향상시키는데 효과가 있다고 보고한 바 있다 [Jung et al. (2011) Bioprocess and Biosystems Engineering]. 또한, 다른 그룹의 선행연구에 따르면, translation initiation factorⅡ를 코딩하는 infB 유전자의1~21번째 서열을 Green fluorescent protein (GFP) N-말단에 부착하였을 경우, 활성도가 향상된다고 보고한 바 있다 [Hansted et al. (2011) Journal of Biotechnology 155(3):275-283]. 본 발명에서는 2-푸코실락토오스의 생산에 관한 선행연구들에서 발현에 문제가 있었던 H. pylori유래의 α-1,2-푸코스전이효소에 아미노산 태그를 부착시키는 방법을 적용하였다. 하나의 실시예에서, 상기 변이체는 α-1,2 fucosyltransferase의 N-말단에 아스파테이트(aspartate) 반복서열 또는 infB (translation initiation factor)의 1~7번째 아미노산을 코딩하는 유전자를 태그로 결합시킨 것일 수 있다.In the previous study, there was a problem of low activity due to insoluble expression of Candida antarctica- derived lipase in Escherichia coli. It has been reported to be effective [Jung et al . (2011) Bioprocess and Biosystems Engineering. In addition, according to another group of previous studies, infB encoding translation initiation factor II. Activity has been reported to be improved when the 1st to 21st sequences of the gene are attached to the N-terminus of Green fluorescent protein (GFP) [Hansted et al . (2011) Journal of Biotechnology 155 (3): 275-283]. In the present invention, a method of attaching an amino acid tag to α-1,2-fucose transferase derived from H. pylori, which has a problem in expression in previous studies on the production of 2-fucosyllactose, was applied. In one embodiment, the variant is a tag combining the gene encoding the aspartate repeat sequence or the 1-7 amino acids of infB (translation initiation factor) at the N-terminus of α-1,2 fucosyltransferase Can be.
본 발명에 따른 변이 미생물은 (c) G6PDH (glucose-6-phosphate dehydrogenase) 및/또는 GSK (guanosine-inosine kinase)를 코딩하는 유전자가 도입 또는 증폭되어 있다. 본 출원의 발명자들은 상기 G6PDH를 코딩하는 유전자인 zwf 및/또는 GSK를 코딩하는 유전자 gsk가 도입 또는 증폭된 변이 미생물은 2-푸코실락토오스 생산에 효과적임을 확인하였다.In the mutant microorganism according to the present invention, (c) a gene encoding G6PDH (glucose-6-phosphate dehydrogenase) and / or GSK (guanosine-inosine kinase) is introduced or amplified. The inventors of the present application zwf which is a gene encoding the G6PDH And / or the mutant microorganism into which the gene gsk encoding GSK is introduced or amplified is effective in producing 2-fucosyllactose.
상기 zwf 유전자는 예를 들어, Escherichia coli (strain K-12), Escherichia coli O157:H7, Escherichia coli O6:H1, Leuconostoc mesenteroides, Saccharomyces cerevisiae , Dictyostelium discoideum , Pseudomonas aeruginosa , Nostoc sp ., Mycobacterium smegmatis , Rhizobium meliloti, Streptococcus pneumoniae serotype 4, Zymomonas mobilis subsp . Mobilis, Bacillus subtilis , Chlamydia pneumonia, Mycobacterium bovis , Mycobacterium tuberculosis, Mycobacterium bovis , Arabidopsis thaliana , Synechococcus elongates, Dickeya dadantii , Aggregatibacter actinomycetemcomitans, Borrelia burgdorferi , Buchnera aphidicola subsp . Acyrthosiphon pisum , Buchnera aphidicola subsp . Schizaphis graminum , Buchnera aphidicola subsp . Baizongia pistaciae , Chlamydia muridarum , Chlamydia trachomatis , Haemophilus influenza, Nostoc punctiforme , Synechocystis sp ., Thermotoga maritime, Treponema pallidum , Helicobacter pylori, Encephalitozoon cuniculi , Kluyveromyces lactis , Schizosaccharomyces pombe , Bacillus thuringiensis , Solanum tuberosum , Takifugu rubripes , 또는 Macropus robustus 유래일 수 있으나, 이에 제한되는 것은 아니며, 바람직하게 Escherichia coli K-12 유래일 수 있다. Zwf Genes, for example Escherichia coli (strain K-12), Escherichia coli O157: H7, Escherichia coli O6: H1, Leuconostoc mesenteroides, Saccharomyces cerevisiae , Dictyostelium discoideum , Pseudomonas aeruginosa , Nostoc sp ., Mycobacterium smegmatis , Rhizobium meliloti, Streptococcus pneumoniae serotype 4, Zymomonas mobilis subsp . Mobilis, Bacillus subtilis , Chlamydia pneumonia, Mycobacterium bovis , Mycobacterium tuberculosis, Mycobacterium bovis , Arabidopsis thaliana , Synechococcus elongates, Dickeya dadantii , Aggregatibacter actinomycetemcomitans, Borrelia burgdorferi , Buchnera aphidicola subsp . Acyrthosiphon pisum , Buchnera aphidicola subsp . Schizaphis graminum , Buchnera aphidicola subsp . Baizongia pistaciae , Chlamydia muridarum , Chlamydia trachomatis , Haemophilus influenza, Nostoc punctiforme , Synechocystis sp ., Thermotoga maritime, Treponema pallidum , Helicobacter pylori, Encephalitozoon cuniculi , Kluyveromyces lactis , Schizosaccharomyces pombe , Bacillus thuringiensis , Solanum tuberosum , Takifugu rubripes , or Macropus robustus It may be derived from, but is not limited thereto, preferably may be derived from Escherichia coli K-12.
상기 gsk 유전자는 예를 들어, Escherichia coli (strain K12), Escherichia coli O157:H7, Escherichia coli O6:H1, Exiguobacterium acetylicum 유래일 수 있으나, 이에 제한되는 것은 아니며, 바람직하게 Escherichia coli K-12 유래일 수 있다. Gsk Genes, for example Escherichia coli (strain K12), Escherichia coli O157: H7, Escherichia coli O6: H1, may be derived from Exiguobacterium acetylicum , but is not limited thereto, and may preferably be derived from Escherichia coli K-12.
L-푸코오스는 HMO와 진핵생물의 당단백질 및 당지질의 글리코실화 잔기에 존재하는 당으로, 다양한 유형의 생화학적 인식 과정에서 중요한 역할을 한다. 푸코실락토오스를 생합성하기 위해서는 L-푸코오스가 공여체인 GDP-푸코오스를 통하여 수용체인 락토오스에 당전이시키는 반응을 거친다. 이러한 푸코실락토오스를 생합성하는 경로는 2가지로, salvage 생합성 경로 및 de novo 생합성 경로가 있다.L-fucose is a sugar present in glycoproteinated residues of glycoproteins and glycolipids of HMO and eukaryotes and plays an important role in various types of biochemical recognition processes. To biosynthesize fucosylactose, L-fucose undergoes a sugar-transferring reaction to the receptor lactose through the donor GDP-fucose. There are two pathways for biosynthesis of such fucosyllactose, salvage biosynthesis pathway and de novo biosynthetic pathway.
Salvage 합성법은 L-푸코오스가 세포내부에서 ATP를 소비하면서 L-fucoseSalvage synthesis is a method in which L-fucose consumes ATP intracellularly.
kinase (fkp)에 의해 인산화되어 L-fucose-1-phosphate가 되고, L-fucose-1- phosphate guanylyl-transferase에 의해 guanosine triphosphate (GTP)와 함께 결합하여 GDP-fucose가 된 후 푸코스전이효소를 통해 락토오스로부터 푸코실락토오스를 생산한다.It is phosphorylated by kinase (fkp) to form L-fucose-1-phosphate, and it is combined with guanosine triphosphate (GTP) by L-fucose-1-phosphate guanylyl-transferase to form GDP-fucose. Via to produce fucosyllactose from lactose.
De novo 합성법은 해당작용의 중간체인 fructose-6-phosphate가 mannose-6-phosphate isomerase (ManA)와 phosphomannomutase (ManB)에 의해 mannose-1-De novo synthesis showed that the intermediate of glycolysis, fructose-6-phosphate, was synthesized by mannose-6-phosphate isomerase (ManA) and phosphomannomutase (ManB).
phosphate로 대사되고, mannose-1-phosphate guanyltransferase (ManC)에 의해 GTP와 함께 결합하여 GDP-D-mannose를 형성한다. 이후, GDP-D-mannose 4,6-dehydratase (Gmd)는 GDP-D-mannose로부터 물 분자를 제거하고 GDP-L-fucose synthase (WcaG)은 GDP-4-keto-6-deoxymannose의 C4 위치에 있는 keto 그룹의 환원을 촉진하고 여기에 환원된 NADPH는 환원력을 제공하여 GDP-L-fucose가 제조된 후 fucosyltransferase를 통해 락토오스로부터 푸코실락토오스를 생산한다 (도 2).It is metabolized to phosphate and combined with GTP by mannose-1-phosphate guanyltransferase (ManC) to form GDP-D-mannose. Subsequently, GDP-D-mannose 4,6-dehydratase (Gmd) removes water molecules from GDP-D-mannose and GDP-L-fucose synthase (WcaG) is located at the C4 position of GDP-4-keto-6-deoxymannose. Promoting the reduction of the keto group in which the reduced NADPH provides reducing power to produce fucosylactose from lactose via fucosyltransferase after GDP-L-fucose is produced (FIG. 2).
이와 관련하여, 본 발명에 따른 변이 미생물은 de novo 생합성 경로를 거쳐푸코실락토오스를 합성할 수 있다. 이에 따라, 도 2에 나타낸 바와 같이 ManAIn this regard, the mutant microorganism according to the present invention can synthesize fucosilactose via the de novo biosynthetic pathway. Accordingly, as shown in FIG. 2, ManA
(mannose-6-phosphate isomerase), ManB (phosphomannomutase), ManC (mannose-1-phosphate guanyltransferase), Gmd (GDP-D-mannose dehydratase) 및 WcaG (GDPfucose synthase)로 구성된 군에서 선택된 1종 이상의 효소를 코딩하는 유전자가 추가로 도입 또는 증폭될 수 있다.(mannose-6-phosphate isomerase), ManB (phosphomannomutase), ManC (mannose-1-phosphate guanyltransferase), Gmd (GDP-D-mannose dehydratase) and WcaG (GDPfucose synthase) Genes may be further introduced or amplified.
본 발명에 따른 변이 미생물에 도입되는 재조합 벡터 (플라스미드)는 세포내로 전달하는 DNA 단편(들), 핵산 분자를 의미하며, 플라스미드와 혼용될 수 있다. 상기 플라스미드는 예를 들어, (a) 내지 (c)의 유전자 및 manA , manB , manC, gmd , wcaG 유전자를 포함하며, 예를 들어 pGRG36+lacZ △M15, pGRG36+lacYA, pETDuet-1 + manC - manB + gmd - wcaG, pCOLADuet-1 + fucT2, pCOLADuet-1 + fucT2 + zwf , pCOLADuet-1 + fucT2 + gsk , pCOLADuet-1 + D3fucT2, pCOLADuet-1 + infBfucT2 또는 pCOLADuet-1 + wcfB 벡터일 수 있다.Recombinant vector (plasmid) to be introduced into the mutant microorganism according to the present invention refers to DNA fragment (s), nucleic acid molecules to be delivered into the cell, can be mixed with the plasmid. The plasmid is, for example, the genes of (a) to (c) and manA , manB , manC, gmd , wcaG Includes a gene, for example lacZ pGRG36 + △ M15, pGRG36 + lacYA, pETDuet-1 + manC - manB + gmd - wcaG , pCOLADuet-1 + fucT2 , pCOLADuet-1 + fucT2 + zwf , pCOLADuet-1 + fucT2 + gsk , pCOLADuet-1 + D3 fucT2 , pCOLADuet-1 + infBfucT2 or pCOLADuet-1 + wcfB vector.
상기 재조합 벡터 (플라스미드)는 프로모터 및 상기 프로모터에 작동가능하게 연결된 폴리뉴클레오티드를 포함할 수 있다. 본 명세서에서 사용되는 "프로모터"는 특정한 재조합 미생물에서 작동 가능하게 연결된 폴리뉴클레오티드 서열의 발현을 조절하는 DNA 서열을 의미한다. 프로모터로는 모든 시간대에 상시적으로 목적 유전자의 발현을 유도하는 프로모터(constitutive promoter) 또는 특정한 위치, 시기에 목적 유전자의 발현을 유도하는 프로모터(inducible promoter)를 제한 없이 사용할 수 있다. 상기 프로모터는 재조합 미생물에 천연, 동종, 외래 또는 이종일 수 있다.The recombinant vector (plasmid) may comprise a promoter and a polynucleotide operably linked to the promoter. As used herein, "promoter" refers to a DNA sequence that controls the expression of a polynucleotide sequence operably linked in a particular recombinant microorganism. As a promoter, a constitutive promoter or a promoter that induces the expression of a target gene at a specific position or time can be used without limitation. The promoter may be natural, homologous, foreign or heterologous to the recombinant microorganism.
"작동 가능하게 연결된"은 2개 이상의 성분의 병렬을 지칭하고, 이때 상기 성분은 의도된 방식으로 작용하도록 하는 관계에 있다. 예를 들어, 프로모터가 연결된 서열의 전사를 제어하거나 조절하도록 작용하는 경우, 코딩 서열에 작동 가능하게 연결된다. 상기 작동 가능하게 연결된 DNA 서열은 인접하고, 이때 분비 리더/신호 서열 및 인접하고 리딩 프레임 내에 있는 폴리뉴클레오티드를 코딩하는 2개 이상을 접합시킬 수 있다."Operably linked" refers to the parallel of two or more components, where the components are in a relationship such that they act in the intended manner. For example, when a promoter acts to control or regulate the transcription of a linked sequence, it is operably linked to a coding sequence. The operably linked DNA sequence can be contiguous, wherein the two or more coding for secretory leader / signal sequences and polynucleotides that are contiguous and within the reading frame can be conjugated.
본 명세서에서 사용되는 "도입"은 원형질체 제작과 세포벽 재생산이 후속되는 원형질체의 형질전환과 관련된 과정에 의하여 수행된 것일 수 있다. 원형질체 내에 삽입된 DNA는 숙주세포의 염색체 안으로 삽입된다. 삽입된 DNA 서열은 세포내에서 안정하게 유지된다. DNA는 통상적으로 염색체 내 상동성, 비상동성 부위로 삽입될 수 있다. 또한, 본 명세서에서 사용되는 "증폭"은 DNA 서열의 카피수를 증가시키기 위한 과정을 의미하며, 예를 들어 증폭은 Polymerase Chain Reaction (PCR)을 통해 수행될 수 있다.As used herein, "introduction" may be carried out by a process related to the protoplast transformation followed by the protoplast preparation and cell wall reproduction. DNA inserted into the protoplasts is inserted into the chromosome of the host cell. The inserted DNA sequence remains stable in the cell. DNA can typically be inserted into homologous, nonhomologous sites in the chromosome. In addition, as used herein, "amplification" refers to a process for increasing the copy number of a DNA sequence, for example, amplification may be performed through Polymerase Chain Reaction (PCR).
본 발명은 다른 관점에서, 상기 변이 미생물을 배양하여 2-푸코실락토오스를 생성시킨 다음, 배양액으로부터 2-푸코실락토오스를 회수하는 것을 특징으로 하는 2-푸코실락토오스의 제조방법에 관한 것이다.In another aspect, the present invention relates to a method for producing 2-fucosyllactose, wherein the mutant microorganism is cultured to produce 2-fucosyllactose, and then 2-fucosyllactose is recovered from the culture medium.
본 발명에 있어서, 변이 미생물의 배양 및 회수과정은 통상적으로 알려진 배양방법을 사용하여 수행될 수 있으며, 본 발명의 실시예에서 사용된 특정 배지 및 특정 배양방법 이외에도 타 성분의 배지를 사용할 수 있고, 글리세롤과 락토오스를 함께 이용한 유가식 배양 (fed-batch fermentation), 회분식 배양 (batch fermentation), 또는 연속식 배양 등 다양한 방법을 사용할 수 있다. 글리세롤과 락토오스는 동시에 이용될 수 있는데, 이는 두 가지 당이 비당류 인산화를 촉매하는 시스템 (non-phosphotransferase system)을 통해 세포 내로 운반되기 때문이다. GDP-L-fucose의 생합성뿐 아니라, 세포 성장을 위해 락토오스를 추가하여 글리세롤 유가배양을 실시할 수 있다. 이를 통해 아세테이트 축적을 방지하면서도, 글리세롤과 락토오스의 동시 동화를 통해 세포 성장이 유지되면서 2-푸코실락토오스의 생산성 역시 개선될 수 있다.In the present invention, the culturing and recovery of the mutant microorganism can be carried out using a conventionally known culture method, in addition to the specific medium and the specific culture method used in the embodiment of the present invention, the medium of other components can be used, Various methods can be used, such as fed-batch fermentation, batch fermentation, or continuous culture using glycerol and lactose together. Glycerol and lactose can be used simultaneously because the two sugars are transported into the cell through a system that catalyzes non-saccharide phosphorylation. In addition to the biosynthesis of GDP-L-fucose, lactose may be added for cell growth and glycerol fed-batch culture may be performed. This prevents the accumulation of acetate, but also improves the productivity of 2-fucosyllactose while maintaining cell growth through simultaneous assimilation of glycerol and lactose.
실시예Example
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to Examples. These examples are only for illustrating the present invention, it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples.
[실시예 1] 재조합 균주 및 플라스미드 제작Example 1 Preparation of Recombinant Strains and Plasmids
유전자 조작 및 2-푸코실락토오스 생산을 위해 E. coli TOP10 및 E. coli E. coli for genetic engineering and 2-fucosyllactose production TOP10 and E. coli
BL21star(DE3) (Invitrogen, Carlsbad, CA, USA)을 각각 사용하였다. GDP-L-fucose 생합성 효소 (ManB, ManC, Gmd 및 WcaG) 및 Helicobacter pylori 유래 α-1,2 푸코오스 전이효소(α-1,2 fucosyltransferase: FucT2)의 과발현을 위해 플라스미드 pmBCGW 및 pHfucT2를 각각 이용하였다. G6PDH (glucose-6-phosphate dehydrogenase) 또는 GSK (guanosine-inosine kinase)를 추가로 발현시키기 위해 pHfucT2zwf와 pHfucT2gsk를 제작하였고, H. pylori유래의 α-1,2-푸코스전이효소의 N-말단에 아스파테이트(aspartate) 반복서열 또는 infB (translation initiation factor)의 1~7번째 아미노산을 태그형태로 결합시키기 위해 pHD3fucT2와 pHinfBfucT2를 제작하였으며, 신규 α-1,2-푸코스전이효소인 Bacteroides fragilis 유래의 WcfB의 과발현을 위해 플라스미드 pHwcfB를 제작하였다. 실시예 중 사용된 유전자 서열은 다음 표 1과 같다.BL21star (DE3) (Invitrogen, Carlsbad, CA, USA) was used respectively. Use of plasmids pmBCGW and pHfucT2 for overexpression of GDP-L-fucose biosynthetic enzymes (ManB, ManC, Gmd and WcaG) and Helicobacter pylori- derived α-1,2 fucosyltransferase (FucT2), respectively It was. In order to further express G6PDH (glucose-6-phosphate dehydrogenase) or GSK (guanosine-inosine kinase), pHfucT2zwf and pHfucT2gsk were prepared, and at the N-terminus of α-1,2-fucose transferase derived from H. pylori Aspartate repeat sequence or infB pHD3fucT2 and pHinfBfucT2 were prepared to bind the 1-7th amino acid of the translation initiation factor in the form of a tag. Bacteroides fragilis , a novel α-1,2-fucose transferase Plasmid pHwcfB was prepared for overexpression of derived WcfB. Gene sequences used in the examples are shown in Table 1 below.
유전자명Gene name 서열번호SEQ ID NO:
gmdgmd 서열번호 1SEQ ID NO: 1
wcaGwcaG 서열번호 2SEQ ID NO: 2
manCmanC 서열번호 3SEQ ID NO: 3
manBmanB 서열번호 4SEQ ID NO: 4
fucT2fucT2 서열번호 5SEQ ID NO: 5
D3fucT2D3fucT2 서열번호 6SEQ ID NO: 6
infBfucT2infBfucT2 서열번호 7SEQ ID NO: 7
zwfzwf 서열번호 8SEQ ID NO: 8
gskgsk 서열번호 9SEQ ID NO: 9
wcfBwcfB 서열번호 10SEQ ID NO: 10
lacZΔM15 lac 오페론lacZΔM15 lac operon 서열번호 28SEQ ID NO: 28
lacYA lac 오페론lacYA lac operon 서열번호 29SEQ ID NO: 29
유전자 zwf gsk를 PCR을 통해 표 3의 올리고뉴클레오티드를 사용하여 E.coli K-12 (ATCC10798)의 게놈 DNA로부터 증폭하였다. 증폭된 유전자를 표 2의 제한효소 및 연결효소를 처리하여 pHfucT2 플라스미드에 클로닝하였으며, 각각 pHfucT2zwf 및 pHfucT2gsk를 제작하였다. pGlacZ△M15를 제작하기 위해, 2쌍의 프라이머 P1_M15 lac/ P2_M15 lac 와 P3_M15 lac/P4_M15 lac을 사용하여 E. coli K-12 게놈 DNA로부터 2개의 DNA 단편을 증폭하였다.Gene zwf And gsk were amplified from genomic DNA of E. coli K-12 (ATCC10798) using oligonucleotides of Table 3 via PCR. The amplified genes were cloned into the pHfucT2 plasmid by treatment with the restriction enzymes and the ligase of Table 2, and pHfucT2zwf and pHfucT2gsk were prepared, respectively. To prepare pGlacZΔM15, two DNA fragments were amplified from E. coli K-12 genomic DNA using two pairs of primers P1_M15 lac / P2_M15 lac and P3_M15 lac / P4_M15 lac.
또한, pGlacYA를 제작하기 위해, 2쌍의 프라이머 P1_M15 lac/P2_lacYA와In addition, to prepare pGlacYA, two pairs of primers P1_M15 lac / P2_lacYA
P3_lacYA/P4_M15 lac를 사용하여 2개의 DNA 단편을 증폭하였다. 증폭된 DNA 단편들을 In-Fusion HD Cloning Kit (TAKARA, Japan)을 사용하여 각각 pGRG36에 클로닝하였고, 그 결과, pGlacZ△M15과 pGlacYA가 구축되었다. 모든 구조체는 제한효소 처리 및 DNA 시퀀싱을 통해 확인하였다.Two DNA fragments were amplified using P3_lacYA / P4_M15 lac. The amplified DNA fragments were cloned into pGRG36 using In-Fusion HD Cloning Kit (TAKARA, Japan), respectively, resulting in pGlacZΔM15 and pGlacYA. All constructs were confirmed through restriction enzyme treatment and DNA sequencing.
플라스미드 pKD46, pKD13 및 pCP20을 사용하는 λ-red mediated deletion 방법[Datsenko et al. (2000) Proceedings of the National Academy of Sciences 97(12):6640]을 통해 대장균 염색체상의 내인성 lac 오페론을 결실시켰다. 또한, 트랜스포존을 이용하여 게놈염색체 상으로 lacZ △M15를 삽입하는 과정은 McKenzie et al. (2006) BMC microbiology 6(1):39을 참조하였다. 사용된 모든 균주, 플라스미드 및 올리고뉴클레오티드를 표 2 및 3에 기재하였다.Λ-red mediated deletion method using plasmids pKD46, pKD13 and pCP20 [Datsenko et al . (2000) Proceedings of the National Academy of Sciences 97 (12): 6640] endogenous lac on the E. coli chromosome through The operon was deleted. In addition, the process of inserting lacZ ΔM15 onto genomic chromosomes using transposons is described in McKenzie et al . (2006) BMC microbiology 6 (1): 39. All strains, plasmids and oligonucleotides used are listed in Tables 2 and 3.
균주 및 플라스미드Strains and Plasmids
균주Strain 관련된 특징Related Features
E. coli TOP10 E. coli TOP10 F-, mcrA Δ(mrr - hsdRMS- mcrBC) φ80lacZM15 ΔlacX74 recA1 araD139 Δ(ara-leu)7697 galU galK rpsL (StrR) endA1 nupG F -, mcr A Δ (mrr - hsd RMS - mcr BC) φ80lacZM15 Δ lacX74 recA1 araD139 Δ ( ara-leu ) 7697 galU galK rpsL (Str R ) endA1 nupG
E.coli BL21star(DE3) E. coli BL21star (DE3) F-, ompT, hsdSB(rB -mB -), gal, dcm rne131 (DE3) F -, ompT, hsdSB (r B - m B -), gal, dcm rne131 (DE3)
ΔLΔL BL21star(DE3) ΔlacZYA BL21star (DE3) Δ lacZYA
ΔL M15ΔL M15 BL21star(DE3) ΔlacZYA Tn7 :: lacZM15 BL21star (DE3) Δ lacZYA Tn7 :: lacZM15
ΔL YAΔL YA BL21star(DE3) ΔlacZYA Tn7 :: lacYA BL21star (DE3) Δ lacZYA Tn7 :: lacYA
pETDuet-1pETDuet-1 Two T7 promoters, pBR322 replicon, AmpR Two T7 promoters, pBR322 replicon, Amp R
pCOLADuet-1pCOLADuet-1 Two T7 promoters, ColA replicon, KanR Two T7 promoters, ColA replicon, Kan R
pGRG36pGRG36 Tn7 insertion vector, pSC101 replicon, AmpR Tn7 insertion vector, pSC101 replicon, Amp R
pmBCGWpmBCGW pETDuet-1 + manC - manB (NcoI / SacI) + gmd - wcaG (NdeI / KpnI)pETDuet-1 + manC - manB ( Nco I / Sac I) + gmd - wcaG ( Nde I / Kpn I)
pHfucT2pHfucT2 pCOLADuet-1 + fucT2 (NcoI / SacI)pCOLADuet-1 + fucT2 ( Nco I / Sac I)
pGlacZM15pGlacZM15 pGRG36+lacZΔM15 (SmaI)pGRG36 + lacZ Δ M15 ( Sma I)
pGlacYApGlacYA pGRG36+lacYA (SmaI)pGRG36 + lacYA ( Sma I)
pHfucT2zwfpHfucT2zwf pCOLADuet-1 + fucT2 + zwf (NdeI / PacI)pCOLADuet-1 + fucT2 + zwf ( Nde I / Pac I)
pHfucT2gskpHfucT2gsk pCOLADuet-1 + fucT2 + gsk (NdeI / PacI)pCOLADuet-1 + fucT2 + gsk ( Nde I / Pac I)
pHD3fucT2pHD3fucT2 pCOLADuet-1 + D3fucT2 (NdeI / KpnI)pCOLADuet-1 + D3 fucT2 ( Nde I / Kpn I)
pHinfBfucT2pHinfBfucT2 pCOLADuet-1 + infBfucT2 (NdeI / KpnI) pCOLADuet-1 + infB fucT2 (Nde I / Kpn I)
pHwcfBpHwcfB pCOLADuet-1 + wcfB (NdeI / KpnI)pCOLADuet-1 + wcfB ( Nde I / Kpn I)
사용된 프라이머Primer used
프라이머primer 이름 name 서열(order( 5'35'3 ')') 서열번호SEQ ID NO:
F_del_lacF_del_lac CGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGAGTGTAGGCTGGAGCTGCTTCG CGAATGGCGCAAAACCTTTCGCGGTATGGCATGATAGCGCCCGGAAGAGA GTGTAGGCTGGAGCTGCTTCG 서열번호 11SEQ ID NO: 11
R_del_lacR_del_lac TCCTGCGCTTTGTTCATGCCGGATGCGGCTAATGTAGATCGCTGAACTTGATTCCGGGGATCCGTCGACC TCCTGCGCTTTGTTCATGCCGGATGCGGCTAATGTAGATCGCTGAACTTG ATTCCGGGGATCCGTCGACC 서열번호 12SEQ ID NO: 12
P1_M15 lacP1_M15 lac AATTAATCAGATCCCGGGACCATCGAATGGCGCAAAACCTTTCAATTAATCAGATCCCGGGACCATCGAATGGCGCAAAACCTTTC 서열번호 13SEQ ID NO: 13
P2_M15 lacP2_M15 lac GGTGCGGGCCACGACGGCCAGTGAATCCGTAATCAGGTGCGGGCCACGACGGCCAGTGAATCCGTAATCA 서열번호 14SEQ ID NO: 14
P3_M15 lacP3_M15 lac TGGCCGTCGTGGCCCGCACCGATCGCCTGGCCGTCGTGGCCCGCACCGATCGCC 서열번호 15SEQ ID NO: 15
P4_M15 lacP4_M15 lac GGCCGCTATTGACCCGGGGCTGTGGGTCAAAGAGGCATGATGGGCCGCTATTGACCCGGGGCTGTGGGTCAAAGAGGCATGATG 서열번호 16SEQ ID NO: 16
P2_lacYAP2_lacYA TGGATTTCCTGTGTGAAATTGTTATCCGCTCACAATTCCTGGATTTCCTGTGTGAAATTGTTATCCGCTCACAATTCC 서열번호 26SEQ ID NO: 26
P3_lacYAP3_lacYA AATTTCACACAGGAAATCCATTATGTACTATTTAAAAAACACAAACTTTTGGAATTTCACACAGGAAATCCATTATGTACTATTTAAAAAACACAAACTTTTGG 서열번호 27SEQ ID NO: 27
F_NdeI_gskF_NdeI_gsk GGAATTCCATATGAAATTTCCCGGTAAACGTAAGGAATTC CATATG AAATTTCCCGGTAAACGTAA 서열번호 17SEQ ID NO: 17
R_PacI_gskR_PacI_gsk CTTAATTAATTAACGATCCCAGTAAGACTCC TTAATTAA TTAACGATCCCAGTAAGACTC 서열번호 18SEQ ID NO: 18
F_NdeI_zwfF_NdeI_zwf GGAATTCCATATGGCGGTAACGCAAACAGCGGAATTC CATATG GCGGTAACGCAAACAGC 서열번호 19SEQ ID NO: 19
R_PacI_zwfR_PacI_zwf CTTAATTAATTACTCAAACTCATTCCAGGAACGC TTAATTAA TTACTCAAACTCATTCCAGGAACG 서열번호 20SEQ ID NO: 20
F_ NdeI_D3fucT2F_ NdeI_D3fucT2 GGAATTCCATATG GATGATGATGCTTTTAAGGAATTC CATATG GATGATGAT GCTTTTAA 서열번호 21SEQ ID NO: 21
F_ NdeI_infBfucT2F_ NdeI_infBfucT2 GGAATTCATATG ACAGATGTAACGATTAAAGCTTTTAAGGTGGTGCAAATTTGC GGAATT CATATG ACAGATGTAACGATTAAA GCTTTTAAGGTGGTGCAAATTTGC 서열번호 22SEQ ID NO: 22
R_KpnI_fucT2R_KpnI_fucT2 GGGTACCATTAAGCGTTATACTTTTGGGATTTTACCTG GGTACC ATTAAGCGTTATACTTTTGGGATTTTACCT 서열번호 23SEQ ID NO: 23
F_ NdeI_wcfBF_ NdeI_wcfB GGAATTCATATGTTATATGTAATTTTACGTGGACGATTAGGGGAATT CATATG TTATATGTAATTTTACGTGGACGATTAGG 서열번호 24SEQ ID NO: 24
R_KpnI_wcfBR_KpnI_wcfB GGGTACCTCACATATTCTTCTTTCTTTTCCATATTAATCGCG GGTACC TCACATATTCTTCTTTCTTTTCCATATTAATCGC 서열번호 25SEQ ID NO: 25
* 이탤릭체로 표시된 서열은 E. coli 염색체에서 lac 오페론의 상동 재조합 부위를 의미함* Sequences shown in italics are E. coli Lac on chromosome Means homologous recombination site of operon
* 밑줄 표시 서열은 특정 제한효소의 인지 부위를 나타냄* Underlined sequences indicate recognition sites for specific restriction enzymes
* 진하게 표시된 서열은 아미노산 태그를 의미함* Sequences in bold indicate amino acid tags
[실시예 2] 배양조건 및 방법Example 2 Culture Conditions and Methods
종균배양, 전배양 및 회분식 배양에는 적절한 항생제 (ampicillin 50 μg/mL 및 kanamycin 50 μg/mL)가 포함된 LB (Luria-Bertani) 배지 (1% tryptone, 0.5% yeast extract, 1% sodium chloride)를 이용하였으며, 종균배양에는 시험관을 이용하였고, 전배양 및 회분식 배양에는 100 mL의 LB배지가 담긴 500 mL들이의 플라스크 (baffled flask)에서 25℃, 교반 속도를 250 rpm으로 유지하며 배양하였다. 회분식 배양시에는 광학밀도(OD600)가 0.8에 도달하면, IPTG (isopropyl-β-Dthiogalactopyranoside) 및 락토오스 최종 농도가 각각 0.1 mM 및 20 g/L이 되도록 첨가하였다. 고농도 세포배양을 위한 유가식 배양은 20 g/L 의 글리세롤 및 적절한 항생제를 포함하는 1.0 L의 최소배지 [13.5 g/L KH2PO4, 4.0 g/L (NH4)2HPO4, 1.7 g/L citric acid, 1.4 g/L MgSO4·7H2O, 10 ml/L 미량 원소 용액 (10 g/L Fe(III) citrate, 2.25 g/L ZnSO4·7H2O, 1.0 g/L CuSO4·5H2O, 0.35 g/L MnSO4·H2O, 0.23 g/L Na2B4O7·10H2O, 0.11 g/L (NH4)6Mo7O24, 2.0 g/L CaCl2·2H2O), pH6.8]를 포함하는 2.5 L bioreactor (Kobiotech, Incheon, Korea)에서 실시하였다. 초기에 첨가한 글리세롤이 완전히 고갈된 후, 800 g/L의 글리세롤 및 20 g/L MgSO4·7H2O를 포함하는 유입용액(feeding solution)을 pH-stat방법으로 공급하였다. 동시에, T7 프로모터-매개 유전자 발현을 유도하기 위해 IPTG 및 락토오스를 최종 농도가 0.1 mM 및 20 g/L가 되도록 추가하여 2-푸코실락토오스를 생산하였다. pH-stat 방법을 위해, pH가 글리세롤 고갈로 set-point보다 더 높아지면, 반응기 중에서 적정량의 유입용액이 자동으로 공급되도록 하였다. 또한 배지의 pH가 set-point보다 더 낮아지면 28% NH4OH가 자동으로 첨가되어 pH가 일정범위 내(pH6.78~6.82)에서 유지되도록 하였다. 배지의 pH는 pH 전극 (Mettler Toledo, USA)을 사용하여 실시간으로 측정되었다. 건조균체량(dry cell weight, DCW)가 약 60에 도달한 후, 글리세롤 공급 속도를 수동으로 조절하였다. 교반 속도는 용해된 산소 결핍을 방지하기 위하여 초기 1000 rpm에서 최대 1,200 rpm까지 증가시키고, 통기 속도는 전 배양시간 동안 2 vvm으로 유지하였다.For spawn, preculture and batch cultures, LB (Luria-Bertani) medium (1% tryptone, 0.5% yeast extract, 1% sodium chloride) containing the appropriate antibiotic (ampicillin 50 μg / mL and kanamycin 50 μg / mL) was used. The test tube was used for the spawn culture, and the preculture and the batch culture were incubated in a 500 mL baffled flask containing 100 mL of LB medium at 25 ° C. and maintained at 250 rpm. In batch culture, when the optical density (OD600) reached 0.8, IPTG (isopropyl-β-Dthiogalactopyranoside) and lactose final concentrations were added to 0.1 mM and 20 g / L, respectively. Fed-batch cultivation for high concentration cell culture was performed with a 1.0 L minimum medium containing 20 g / L of glycerol and appropriate antibiotics [13.5 g / L KH2PO4, 4.0 g / L (NH4) 2HPO4, 1.7 g / L citric acid, 1.4 g / L MgSO4 · 7H2O, 10 ml / L trace element solution (10 g / L Fe (III) citrate, 2.25 g / L ZnSO4 · 7H2O, 1.0 g / L CuSO4 · 5H2O, 0.35 g / L MnSO4 · H2O, 0.23 g / L Na2B4O7.10H2O, 0.11 g / L (NH4) 6Mo7O24, 2.0 g / L CaCl2.2H2O), pH6.8], in a 2.5 L bioreactor (Kbiobiotech, Incheon, Korea). After the initially added glycerol was completely depleted, a feeding solution containing 800 g / L glycerol and 20 g / L MgSO 4 · 7H 2 O was supplied by the pH-stat method. At the same time, 2-fucosyllactose was produced by adding IPTG and lactose to final concentrations of 0.1 mM and 20 g / L to induce T7 promoter-mediated gene expression. For the pH-stat method, when the pH was higher than the set-point due to glycerol depletion, an appropriate amount of influent solution was automatically supplied in the reactor. Also, when the pH of the medium was lower than the set-point, 28% NH 4 OH was automatically added to maintain the pH within a certain range (pH6.78 ~ 6.82). The pH of the medium was measured in real time using a pH electrode (Mettler Toledo, USA). After the dry cell weight (DW) reached about 60, the glycerol feed rate was manually adjusted. Stirring speed was increased from initial 1000 rpm up to 1,200 rpm to prevent dissolved oxygen deficiency and aeration rate was maintained at 2 vvm for the entire incubation time.
[실시예 3] 세포 및 세포외 대사산물 농도 결정Example 3 Determination of Cell and Extracellular Metabolite Concentration
광학밀도 및 미리 측정한 변환 상수 0.36을 통해 건조균체량을 측정하였다. 광학밀도는 샘플을 희석하여 광학밀도를 0.1-0.5 사이로 유지한 후에 spectrophotometer (Ultrospec 2000, Amersham Pharmacia Biotech, USA)를 사용하여 600 nm 흡광도에서 측정하였다. 2-푸코실락토오스, 락토오스, 글리세롤, 갈락토오스 및 아세트산의 농도는 Carbohydrate Analysis column (Rezex ROA-organic acid, Phenomenex, USA) 및 RI (refractive index) 검출기가 장착된 HPLC (high performance liquid chromatography) (Agilent 1100LC, USA)를 통해 측정하였다. 60℃에서 가열된 컬럼을 적용하여 10배 희석된 20 ㎕의 배양 배지를 분석하였다. 0.6 mL/min 유속으로 5 mM의 H2SO4 용액을 이동상으로 사용하였다.Dry cell weight was measured through optical density and 0.36 conversion constant. Optical density was measured at 600 nm absorbance using a spectrophotometer (Ultrospec 2000, Amersham Pharmacia Biotech, USA) after diluting the sample to maintain the optical density between 0.1-0.5. Concentrations of 2-fucosyllactose, lactose, glycerol, galactose and acetic acid were measured using a Carbohydrate Analysis column (Rezex ROA-organic acid, Phenomenex, USA) and high performance liquid chromatography (RI) equipped with a refractive index (RI) detector (Agilent 1100LC). , USA). A column heated at 60 ° C. was applied to analyze 20 μl of culture medium diluted 10-fold. 5 mM H 2 SO 4 solution at 0.6 mL / min flow rate was used as mobile phase.
[시험예 1] 재조합 대장균에서 lac오페론의 변형이 2-푸코실락토오스 생산에 미치는 영향 평가[Test Example 1] Evaluation of the effect of lac operon modification on 2-fucosyllactose production in recombinant E. coli
세포 내로 공급되는 락토오스는 재조합 대장균에서 2-푸코실락토오스(2'-The lactose supplied into the cells is 2-fucosyllactose (2'-) in recombinant E. coli.
fucosyllactose, 2-FL)의 효율적 생합성을 위한 필수 요소 중 하나이다. 도 2a에 도시한 바와 같이, lacZ유전자에 의해 코딩되는 β-galactosidase는 락토오스가 세포생장에 이용될 수 있도록 포도당 및 갈락토오스로 분해시키는 효소이다. 야생형 대장균에서는 대부분 세포생장에 이용되던 락토오스의 대사흐름(metabolic flux)을 2-푸코실락토오스의 생합성 경로 쪽으로 전환시키기 위해 BL21star(DE3)에서 lacZ의 일부를 결실시키는 것을 시도하였으나, 이 균주에서는 2-푸코실락토오스의 생산이 관찰되지 않았다. 이는 락토오스를 세포 내로 운반하는 lacYlacZ와 하나의 오페론을 이루고 있기 때문에 프레임시프트(frame-shift)에 의해 lacY가 발현되지 못한 것으로 사료된다.fucosyllactose (2-FL) is one of the essential elements for efficient biosynthesis. As shown in FIG. 2A, β-galactosidase encoded by the lacZ gene is an enzyme that degrades glucose and galactose so that lactose can be used for cell growth. In wild-type Escherichia coli, most attempts were made to delete part of lacZ in BL21star (DE3) in order to convert the metabolic flux of lactose used for cell growth into the biosynthetic pathway of 2-fucosyllactose. No production of fucosyllactose was observed. This is considered to not be lacY expression by a frame shift (frame-shift) since the lacY carrying the lactose into the cells form the lacZ and one operon.
한편, JM109균주는 락토오스를 세포 내로 흡수만 할 뿐 세포생장에 이용하지 못하므로, BL21star(DE3)의 내인성 lac 오페론을 JM109 유래의 lacZ △M15 포함하는 lac오페론 또는 lacYA만 포함하는 lac 오페론으로 교체 (도 2b의 생합성 경로)를 시도하였다.On the other hand, the JM109 strain only absorbs lactose into the cell but cannot use it for cell growth, so the endogenous lac of BL21star (DE3) The lac operon comprising only the lac operon or lacYA containing lacZ △ M15 of JM109 derived Replacement with operon was attempted (biosynthetic pathway in FIG. 2B).
도 3은 BL21star(DE3) 균주에서 내인성 lac 오페론을 결실시키고, 새로운Figure 3 shows endogenous lac in BL21star (DE3) strain Fruiting operon, new
lac 오페론을 각각 도입하는 과정을 나타내는 모식도이다. 먼저, lacI의 20 bp 상류(upstream)로부터 lacA 40 bp 하류(downstream)까지의 내인성 lac 오페론 부위를 λ-red recombination에 의해 결실시켜, △L 균주(lac오페론 결핍 균주)을 제조하였다. 두 번째로, lacZ △M15 또는 lacYA를 포함하는 신규 오페론 단편을 Tn7 기판 트랜스포존에 의해 glmS유전자 부위에 삽입하였으며, 이를 통해 △L M15 균주(lacZ △M15 knock-in 균주)와 △L YA균주(lacYA knock-in균주)를 제작하였다. lac It is a schematic diagram showing the process of introducing each operon. First, lacA from 20 bp upstream of lacI Endogenous lac up to 40 bp downstream The operon site was deleted by λ-red recombination to prepare a ΔL strain ( lac operon deficient strain). Secondly, lacZ △ M15 or the new operon fragment containing the lacYA was inserted into the glmS gene region by Tn7 substrate transposon, through which △ L M15 strain (lacZ △ M15 knock-in strains) and △ L YA strain (lacYA knock-in strain) was produced.
lac 오페론의 변이가 2-푸코실락토오스의 생산에 미치는 영향을 pmBCGW와 lac The effect of operon variation on the production of 2-fucosyllactose was determined by pmBCGW and
pHfucT2 플라스미드를 포함하는 야생형 BL21star(DE3), △L 및 △L M15의 3가지 균주를 회분식으로 배양함으로써 평가하였다. 대조군 균주인 야생형 BL21star(DE3)는 75시간 이내에 초기 락토오스의 대부분을 소비하였고, 0.03 g 2-FL/g lactose의 수율로 0.58 g/L의 2-FL을 생산하였다 (도 4a). 다른 균주들과 비교하여 최종 건조균체량이 가장 많았기 때문에 소비된 락토오스는 대부분 세포 생장을 위해 사용되었을 것으로 사료된다. 반면, △L균주는 극소량의 락토오스(0.06 g/L) 만을 소비하고 0.04 g/L의 2-푸코실락토오스 (도 4b)를 생산하였는데, 이는 소량의 락토오스가 단순 확산을 통해 세포로 이동하였기 때문일 것으로 사료된다. △L M15균주는 1.65 g/L 락토오스를 소비하였고, 0.15 g/L의 2-FL을 축적하였다. 그러나, △L M15 균주에서 0.09 g 2-FL/g lactose의 수율은 대조군 균주와 비교하여 3.3배 증가하였다 (도 4c). 결과적으로, BL21star(DE3)균주의 락토오스 동화 속도를 크게 낮추었으며, 이는 내인성 lac 오페론을 변형된 오페론으로 교체하는 것이 2-푸코실락토오스 생산에 효과적임을 나타낸다. 회분식 배양 결과는 표 4에 요약하였다.Three strains of wild type BL21star (DE3), ΔL and ΔL M15 containing pHfucT2 plasmids were evaluated by batch culture. The control strain wild type BL21star (DE3) consumed most of the initial lactose within 75 hours and produced 0.58 g / L 2-FL with a yield of 0.03 g 2-FL / g lactose (FIG. 4A). Since the final dry cell mass was the highest compared to other strains, it was thought that most of the lactose consumed was used for cell growth. In contrast, the ΔL strain consumed only a small amount of lactose (0.06 g / L) and produced 0.04 g / L of 2-fucosyllactose (FIG. 4B), because a small amount of lactose migrated into the cells through simple diffusion. It is considered to be. ΔL M15 strain consumed 1.65 g / L lactose and accumulated 0.15 g / L 2-FL. However, the yield of 0.09 g 2-FL / g lactose in the ΔL M15 strain increased 3.3 fold compared to the control strain (FIG. 4C). As a result, the rate of lactose assimilation of the strain BL21star (DE3) was significantly lowered, which was due to endogenous lac. Replacing operons with modified operons indicates that they are effective for 2-fucosyllactose production. Batch culture results are summarized in Table 4.
균주명Strain name 최대 건조균체량(g/L)Dry cell mass (g / L) 최대 2-푸코실락토오스 농도(g/L)Maximum 2-fucosyllactose concentration (g / L) 락토오스 소모량(g/L)Lactose Consumption (g / L) 수율(g 2-푸코실락토오스/g 락토오스Yield (g 2-fucosyllactose / g lactose
BL21star (DE3)pmBCGWpHfucT2 BL21star (DE3) pmBCGWpHfucT2 4.04.0 0.580.58 20.520.5 0.0280.028
ΔLpmBCGWpHfucT2 ΔL pmBCGWpHfucT2 1.41.4 0.040.04 0.060.06 0.6670.667
ΔLM15pmBCGWpHfucT2 ΔLM15 pmBCGWpHfucT2 1.11.1 0.150.15 1.651.65 0.0910.091
[시험예 2] G6PDH (glucose-6-phosphate dehydrogenase) 또는 GSK (guanosine-inosine kinase)의 공동발현이 2-푸코실락토오스의 생산에 미치는 영향 평가[Test Example 2] Evaluation of the effect of co-expression of G6PDH (glucose-6-phosphate dehydrogenase) or GSK (guanosine-inosine kinase) on the production of 2-fucosyllactose
NADPH와 같은 보조인자(cofactor) 생성 관련 효소의 추가 과발현이 2-푸코실락토오스의 생산에도 영향을 주는지를 평가하기 위해, △L M15에 2-FL 생합성 효소 (ManB, ManC, Gmd, WcaG 및 FucT2)를 과발현시킨 균주와 이 균주에 각각 G6PDH (glucose 6-phosphate dehydrogenase) 또는 GSK (guanosine-inosine kinase)를 추가발현 시킨 균주들을 2.5 L 생물반응기에서 유가식으로 배양하였다. 도 5a에서 나타낸 바와 같이, 대조군 균주인 △L M15에 2-FL 생합성 효소만 과발현시킨 균주에서는 최종 건조균체량이 73.1 g/L를 나타내었고, 최종농도 2.56 g/L의 2-푸코실락토오스를 0.064 g 2-푸코실락토오스/g 락토오스의 수율로 수득하였다. 또한, 도 5b와 5c에서 볼 수 있듯이, 2-FL 생합성 효소와 함께 G6PDH 또는 GSK를 과발현하는 재조합 대장균 △L M15 균주는 전 배양 공정 동안 대조군과 비교하여 유사한 성장 패턴을 보여주었다. 또한, 아세테이트 축적은 유가배양 둘 다에서 관찰되지 않았다. G6PDH를 과발현하는 재조합 대장균의 유가 배양에서 0.095 g 2-FL/g lactose의 수율로 3.45 g/L의 2-푸코실락토오스를 수득하였으며, 이는 대조군 균주와 비교하여 2-푸코실락토오스의 농도 및 수율에서 각각 35% 및 48% 향상된 것이다. GSK가 과발현된 재조합 대장균 배양에서 0.085 g 2-FL/g lactose 의 수율로 3.52 g/L 의 2-푸코실락토오스를 수득하였으며, 이는 대조군 균주와 비교하여 2-푸코실락토오스의 농도 및 수율 각각에서 38% 및 33% 향상된 것이다. 이러한 결과에 비추어 볼 때, G6PDH 또는 GSK의 추가 발현은 세포내 GDP-L-fucose 생산 뿐 아니라, 2-푸코실락토오스의 생산에도 중요한 요소로 작용할 수 있음을 의미한다. 유가 배양의 결과는 표 5에 나타내었다.To assess whether further overexpression of cofactor production-related enzymes, such as NADPH, also affects the production of 2-fucosyllactose, 2-FL biosynthetic enzymes (ManB, ManC, Gmd, WcaG and FucT2) in ΔL M15 ) Overexpressed strains and strains supplemented with G6PDH (glucose 6-phosphate dehydrogenase) or GSK (guanosine-inosine kinase), respectively, were incubated in a 2.5 L bioreactor. As shown in FIG. 5A, in the strain overexpressing only 2-FL biosynthetic enzyme in the control strain ΔL M15, the final dry cell mass was 73.1 g / L, and the final concentration of 2.56 g / L 2-fucosyllactose was 0.064. Obtained in g 2-fucosyllactose / g lactose. In addition, as can be seen in Figures 5b and 5c, the recombinant E. coli ΔL M15 strain overexpressing G6PDH or GSK with 2-FL biosynthetic enzymes showed a similar growth pattern compared to the control during the entire culture process. In addition, acetate accumulation was not observed in both fed batches. Yield of 0.095 g 2-FL / g lactose in yielded culture of recombinant E. coli overexpressing G6PDH yielded 3.45 g / L of 2-fucosyllactose, which was compared with the control strain and yield of 2-fucosyllactose. 35% and 48% respectively. In the recombinant Escherichia coli culture overexpressed GSK, yield of 0.02 2 g / L lactose was obtained at 3.52 g / L 2-fucosyllactose, which was compared with the control strain at the concentration and yield of 2-fucosyllactose, respectively. 38% and 33% improvement. In light of these findings, the additional expression of G6PDH or GSK may play an important role in the production of 2-fucosyllactose as well as intracellular GDP-L-fucose production. The results of the fed-batch culture are shown in Table 5.
[시험예 3] α-1,2-푸코스전이효소의 N-말단에 삽입한 아미노산 단편이 2-푸코실락토오스의 생산에 미치는 영향[Test Example 3] Effect of Amino Acid Fragments Inserted at the N-Terminal of α-1,2-fucose Transfer Enzyme on Production of 2-fucosyllactose
2-푸코실락토오스의 생산에 관한 선행연구들에서 발현에 문제가 있었던 H.pylori유래의 α-1,2-푸코스전이효소에 아미노산 태그를 부착시키는 방법을 적용해서, 이것이 2-푸코실락토오스의 생산에 어떤 영향을 미치는지를 알아보고자 하였다. 먼저, FucT2의 개시코돈(ATG)과 뒤따르는 서열 사이에 아스파테이In the previous studies on the production of 2-fucosyllactose, by applying an amino acid tag to the α-1,2-fucose transferase derived from H. pylori, which was problematic in expression, The purpose of this study was to determine the effect on the production of. First, aspartame between the initiation codon (ATG) of FucT2 and the following sequence
트(aspartate) 및 아르기닌(arginine) 등의 아미노산 서열을 다양한 길이로 부착시킨 융합 α-1,2-푸코스전이효소 라이브러리를 구축하였다. 또한, infB의 1~21번째 서열을 말단에 부착시킨 변이 α-1,2-푸코스전이효소를 도입한 균주도 구축을 하였다. 구축한 재조합 대장균들을 플라스크 수준의 회분식 배양으로 확인한 결과, N-말단에 아스파테이트 3개(GATGATGAT)를 결합시킨 것과 infB의 1~21번째 서열(ATGACAGATGTAACGATTAAA)을 결합시킨 변이 α-1,2-푸코스전이효소를 도입한 균주에서 2-푸코실락토오스가 생성됨을 확인할 수 있었다. 도 5d와 5e는 각각 △LM15/pmBCGW+pHD3fucT2와 △L M15/pmBCGW+pHinfBfucT2를 유가식 공정으로 배양한 결과를 나타내고 있다. 발효 약 22시간에 IPTG, 락토오스를 첨가하면서 글리세롤 공급을 시작한 이후로 단백질 발현이 유도되면서 세포생장 및 2-푸코실락토오스의 생산은 지속적으로 증가하였다. 건조 균체량은 각각 71.1 g/L와 73.0 g/L까지 증가하였고, 2-푸코실락토오스는 각각 6.4 g/L와 6.1 g/L까지 증가하였다(태그를 부착하지 않은 경우보다 약 2.5배와 2.4배 증가). 이는 아스파테이트와 infB 태그의 부착으로 인하여 α-1,2-푸코스전이효소의 발현이 수월해지면서 활성도가 증대되었기 때문인 것으로 사료된다. 유가 배양의 결과는 표 5에 나타내었다.A fusion α-1,2-fucose transferase library was constructed in which amino acid sequences such as aspartate and arginine were attached at various lengths. In addition, a strain in which the mutant α-1,2-fucose transferase was attached to the end of the 1st to 21st sequences of infB was also constructed. The recombinant E. coli was constructed by batch-level batch culture. As a result, a combination of three aspartates (GATGATGAT) at the N-terminus and a variant α-1,2-fu bound to the 1st to 21st sequences (ATGACAGATGTAACGATTAAA) of infB were identified. It was confirmed that 2-fucosyllactose was produced in the strain in which the course transfer enzyme was introduced. 5D and 5E show the results of culturing ΔLM15 / pmBCGW + pHD3fucT2 and ΔL M15 / pmBCGW + pHinfBfucT2 by a fed-batch process, respectively. Cell growth and production of 2-fucosyllactose continued to increase as protein expression was induced after glycerol feeding was started with addition of IPTG and lactose at about 22 hours of fermentation. Dry cell mass increased to 71.1 g / L and 73.0 g / L, respectively, and 2-fucosyllactose increased to 6.4 g / L and 6.1 g / L, respectively (about 2.5 and 2.4 times than without tag). increase). This may be due to the enhanced activity of α-1,2-fucose transferase due to the attachment of aspartate and infB tag. The results of the fed-batch culture are shown in Table 5.
[시험예 4] 신규 α-1,2-푸코스전이효소의 도입이 2-푸코실락토오스의 생산에 미치는 영향[Test Example 4] Effect of the introduction of a novel α-1,2-fucose transferase on the production of 2-fucosyllactose
선행연구들에서 이용되었던 H. pylori 유래의 α-1,2-푸코스전이효소 (FucT2)는 대부분이 inclusion body를 형성하기 때문에 매우 낮은 수준의 활성도를 나타내는 문제점이 있었다. 따라서, H. pylori 유래의 fucT2 보다 활성형으로 발현이 잘 되는 유전자를 찾기 위해 서로 다른 유래의 α-1,2-푸코스전이효소로 추정되는 11종의 유전자들을 각각 △L M15균주에 pmBCGW플라스미드와 함께 도입하여 유전자 라이브러리를 구축한 후, 유가식 배양을 통해 2-푸코실락토오스의 생산성능을 테스트하였다. 그 중에서 유일하게 Bacteroides fragilis유래의 wcfB를 도입한 재조합 대장균에서만 2-푸코실락토오스가 생성됨을 확인할 수 있었다. 도 5f에서 보여주듯이, 유가식 배양에서는 최종 건조균체량이 62.0 g/L까지 생장하였고, 2-푸코실락토오스를 최종농도 13.8 g/L로 수득할 수 있었다. 이는 H. pylori유래의 fucT2를 이용했을 때보다 5.4배 향상된 수치인데, 이는 wcfBfucT2 보다 푸코실화 활성도(fucosylation activity)가 더 높기 때문에 세포 내로 유입된 락토오스의 푸코실화가 더 빠르게 진행되었기 때문으로 사료된다. 유가 배양의 결과는 표 5에 나타내었다. H. pylori- derived α-1,2-fucose transferase (FucT2), which was used in previous studies, has a problem of showing very low levels of activity since most of them form an inclusion body. Thus, fucT2 from H. pylori To find genes that are more well-expressed, 11 genes estimated to be α-1,2-fucose transferases from different genes were introduced into the △ L M15 strain along with pmBCGW plasmid to build a gene library. Afterwards, the productivity of 2-fucosyllactose was tested through fed-batch culture. Only one of them is Bacteroides It was confirmed that 2- fucosyllactose was produced only in recombinant Escherichia coli introduced with wcfB derived from fragilis . As shown in FIG. 5F, in fed-batch culture, the final dry cell mass was grown to 62.0 g / L, and 2-fucosyllactose was obtained at a final concentration of 13.8 g / L. This is a 5.4-fold improvement over the use of fucT2 from H. pylori , which wcfB provides It is thought that the fucosylation of lactose introduced into the cells was faster because of higher fucosylation activity. The results of the fed-batch culture are shown in Table 5.
[시험예 5] LacZ의 잔여 활성도 제거가 2-푸코실락토오스의 생산에 미치는 영향[Test Example 5] Effect of removal of residual activity of LacZ on the production of 2-fucosyllactose
BL21star(DE3)처럼 DE3와 같은 용원균(lysogen)이 있는 균주의 경우, lacZΔM15을 도입하였을때, β-galactosidase의 활성도가 부분적으로 되살아나는 α-complementation현상이 관찰되었다. 이것은 DE3에 포함된 lacZ의 일부분에서 β-galactosidase의 α-peptide가 생성되고, lacZΔM15에서 ω-peptide 가 생성되므로 일어나는 현상으로 사료되었다. 따라서, ΔL M15균주에서 lacZΔM15을 제거시킴으로써, 남아있는 LacZ활성도를 완전히 없앤 ΔL YA균주를 구축하였고, 이것이 2-푸코실락토오스의 생산에 미치는 영향을 유가식 배양으로 확인하여 보았다(도 5g). ΔL YA/pmBCGW+pHwcfB균주의 유가식 배양 결과, 배양 46시간째에 건조균체량은 57.6 g/L에 도달하였고, 2-푸코실락토오스의 농도는 15.4 g/L, 수율은 0.858 g 2-FL/g lactose이며, 시간당 0.530 g/L의 생산성을 나타내었다. 이러한 수치는 β-galactosidase의 활성도가 일부 남아있던 △LM15/pmBCGW+pHwcfB균주와 비교하였을때, 2-푸코실락토오스의 수율과 생산성 측면에서 각각 약 2.2배와 2.0배가 향상된 수치이다. 유가 배양의 결과는 표 5에 나타내었다.In the case of strains with lysogen such as DE3, such as BL21star (DE3), α-complementation phenomenon was observed in which the activity of β-galactosidase partially revived when lacZΔM15 was introduced. This is thought to occur because α-peptide of β-galactosidase is produced in a part of lacZ included in DE3 and ω-peptide is produced in lacZΔM15 . Therefore, by removing lacZΔM15 from the ΔL M15 strain, ΔL YA strain was constructed which completely eliminated the remaining LacZ activity, and the effect of this on the production of 2-fucosyllactose was confirmed by fed-batch culture (FIG. 5g). As a result of fed-batch culture of ΔL YA / pmBCGW + pHwcfB strain, dry cell mass reached 57.6 g / L at 46 hours of culture, 2-fucosilactose concentration was 15.4 g / L, yield was 0.858 g 2-FL / g lactose, yielding a productivity of 0.530 g / L per hour. This is about 2.2-fold and 2.0-fold improvement in yield and productivity of 2-fucosyllactose, respectively, compared to the ΔLM15 / pmBCGW + pHwcfB strain, which retained some β-galactosidase activity. The results of the fed-batch culture are shown in Table 5.
균주명Strain name 최대건조균체량 (g/L)Dry cell mass (g / L) 최대 2-푸코실락토오스 농도 (g/L)Maximum 2-fucosyllactose concentration (g / L) 수율(g 2-푸코실락토오스/g 락토오스) Yield (g 2-fucosyllactose / g lactose) 생산성(g/L/h)Productivity (g / L / h)
ΔL M15pmBCGWpHfucT2ΔL M15pmBCGWpHfucT2 73.173.1 2.562.56 0.0640.064 0.0430.043
ΔL M15pmBCGWpHfucT2zwfΔL M15pmBCGWpHfucT2zwf 76.776.7 3.453.45 0.0950.095 0.0500.050
ΔL M15pmBCGWpHfucT2gskΔL M15pmBCGWpHfucT2gsk 72.072.0 3.523.52 0.0850.085 0.0520.052
ΔL M15pmBCGWpHD3fucT2ΔL M15pmBCGWpHD3fucT2 71.171.1 6.406.40 0.2250.225 0.1180.118
ΔL M15pmBCGWpHinfBfucT2ΔL M15pmBCGWpHinfBfucT2 73.073.0 6.106.10 0.1900.190 0.1050.105
ΔL M15pmBCGWpHwcfBΔL M15pmBCGWpHwcfB 62.062.0 13.813.8 0.3930.393 0.2600.260
ΔL YApmBCGWpHwcfBΔL YApmBCGWpHwcfB 57.657.6 15.415.4 0.8580.858 0.5300.530
이상으로 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.As described above in detail a specific part of the content of the present invention, for those skilled in the art, such a specific description is only a preferred embodiment, which is not limited by the scope of the present invention Will be obvious. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (18)

  1. 2-푸코실락토오스 (2-Fucosyllactose, 2-FL)를 생산하는 대사회로를 가지는 미생물에서, (a) 내인성 lac 오페론이 제거되고, lacZ가 변형 또는 제거된 lac 오페론이 도입 및 In microorganisms with metabolic circuits that produce 2-fucosyllactose (2-FL), (a) endogenous lac Lac with operon removed and lacZ modified or removed Operon introduced and
    (b) α-1,2-fucosyltransferase 또는 이의 변이체, (c) G6PDH (glucose-6-phosphate dehydrogenase) 및 (d) GSK (guanosine-inosine kinase)로 이루어진 군에서 선택된 하나 이상을 코딩하는 유전자가 도입 또는 증폭되어 있는 것을 특징으로 하는 변이 미생물.a gene encoding one or more selected from the group consisting of (b) α-1,2-fucosyltransferase or a variant thereof, (c) G6PDH (glucose-6-phosphate dehydrogenase) and (d) GSK (guanosine-inosine kinase) Or mutant microorganisms, characterized in that amplified.
  2. 제1항에 있어서,The method of claim 1,
    상기 lacZ가 제거된 lac 오페론은 lacY lacA로 구성된 것을 특징으로 하는 변이 미생물.The lacZ is removed lac Operon lacY And lacA .
  3. 제1항에 있어서,The method of claim 1,
    상기 lacZ가 변형된 lac 오페론은 β-galactosidase를 코딩하는 아미노산 중 11~42번째 아미노산을 코딩하는 유전자가 결실된 lacZΔM15를 포함하는 것을 특징으로 하는 변이 미생물. Lac lac is modified The operon is a mutant microorganism characterized in that it comprises lacZΔM15 from which a gene encoding the 11th to 42nd amino acids among the amino acids encoding β-galactosidase is deleted.
  4. 제1항에 있어서,The method of claim 1,
    상기 2-푸코실락토오스를 생산하는 대사회로를 가지는 미생물은 E. coli BL21star (DE3)인 것을 특징으로 하는 변이 미생물.The microorganism having a metabolic circuit producing 2-fucosyllactose is E. coli Mutant microorganism, characterized in that BL21star (DE3).
  5. 제1항에 있어서,The method of claim 1,
    상기 lac 오페론은 E. coli K-12 균주 유래인 것을 특징으로 하는 변이 미생물.The lac Operon E. coli Mutant microorganism, characterized in that derived from K-12 strain.
  6. 제1항에 있어서,The method of claim 1,
    상기 G6PDH를 코딩하는 유전자는 Escherichia coli (strain K12), Escherichia coli O157:H7, Escherichia coli O6:H1, Leuconostoc mesenteroides, Saccharomyces cerevisiae , Dictyostelium discoideum , Pseudomonas aeruginosa , Nostoc sp ., Mycobacterium smegmatis , Rhizobium meliloti, Streptococcus pneumoniae serotype 4, Zymomonas mobilis subsp . Mobilis, Bacillus subtilis , Chlamydia pneumonia, Mycobacterium bovis , Mycobacterium tuberculosis, Mycobacterium bovis , Arabidopsis thaliana , Synechococcus elongates, Dickeyadadantii , Aggregatibacter actinomycetemcomitans, Borrelia burgdorferi , Buchnera aphidicola subsp . Acyrthosiphon pisum , Buchnera aphidicola subsp . Schizaphis graminum , Buchnera aphidicola subsp . Baizongia pistaciae , Chlamydia muridarum , Chlamydia trachomatis , Haemophilus influenza, Nostoc punctiforme , Synechocystis sp ., Thermotoga maritime, Treponema pallidum , Helicobacter pylori, Encephalitozoon cuniculi , Kluyveromyces lactis , Schizosaccharomyces pombe , Bacillus thuringiensis , Solanum tuberosum , Takifugu rubripes , 또는 Macropus robustus 유래인 것을 특징으로 하는 변이 미생물.The gene encoding the G6PDH is Escherichia coli (strain K12), Escherichia coli O157: H7, Escherichia coli O6: H1, Leuconostoc mesenteroides, Saccharomyces cerevisiae , Dictyostelium discoideum , Pseudomonas aeruginosa , Nostoc sp ., Mycobacterium smegmatis , Rhizobium meliloti, Streptococcus pneumoniae serotype 4, Zymomonas mobilis subsp . Mobilis, Bacillus subtilis , Chlamydia pneumonia, Mycobacterium bovis , Mycobacterium tuberculosis, Mycobacterium bovis , Arabidopsis thaliana , Synechococcus elongates, Dickeyadadantii , Aggregatibacter actinomycetemcomitans, Borrelia burgdorferi , Buchnera aphidicola subsp . Acyrthosiphon pisum , Buchnera aphidicola subsp . Schizaphis graminum , Buchnera aphidicola subsp . Baizongia pistaciae , Chlamydia muridarum , Chlamydia trachomatis , Haemophilus influenza, Nostoc punctiforme , Synechocystis sp ., Thermotoga maritime, Treponema pallidum , Helicobacter pylori, Encephalitozoon cuniculi , Kluyveromyces lactis , Schizosaccharomyces pombe , Bacillus thuringiensis , Solanum tuberosum , Takifugu rubripes , or Macropus robustus The mutant microorganism characterized in that it is derived.
  7. 제1항에 있어서,The method of claim 1,
    상기 G6PDH를 코딩하는 유전자는 zwf인 것을 특징으로 하는 변이 미생물.The gene encoding the G6PDH is a mutant microorganism, characterized in that zwf .
  8. 제1항에 있어서,The method of claim 1,
    상기 GSK를 코딩하는 유전자는 Escherichia coli (strain K-12), Escherichia coli O157:H7, Escherichia coli O6:H1, Exiguobacterium acetylicum 유래인 것을 특징으로 하는 변이 미생물.The gene encoding the GSK is Escherichia coli (strain K-12), Escherichia coli O157: H7, Escherichia coli O6: H1, a mutant microorganism characterized by being derived from Exiguobacterium acetylicum .
  9. 제1항에 있어서,The method of claim 1,
    상기 GSK를 코딩하는 유전자는 gsk인 것을 특징으로 하는 변이 미생물.The gene encoding the GSK is a mutant microorganism, characterized in that gsk .
  10. 제1항에 있어서,The method of claim 1,
    상기 α-1,2 fucosyltransferase를 코딩하는 유전자는 Helicobacter pylori, Bacteroides fragilis , Dyadobacter fermentans , Enterococcus faecium DO, Escherichia coli O128:B12 , Helicobacter hepaticus , Lactococcus lactis subsp. Cremoris , Silicibacter pomeroyi , Pedobacter heparinus 또는 Pedobacter saltans 유래인 것을 특징으로 하는 변이 미생물.The gene encoding α-1,2 fucosyltransferase is Helicobacter pylori, Bacteroides fragilis , Dyadobacter fermentans , Enterococcus faecium DO, Escherichia coli O128: B12 , Helicobacter hepaticus , Lactococcus lactis subsp. Cremoris , Silicibacter pomeroyi , Pedobacter heparinus Or Pedobacter saltans The mutant microorganism characterized in that it is derived.
  11. 제1항에 있어서,The method of claim 1,
    상기 α-1,2 fucosyltransferase를 코딩하는 유전자는 fucT2 또는 wcfB인 것을 특징으로 하는 변이 미생물.The gene encoding α-1,2 fucosyltransferase is fucT2 Or wcfB .
  12. 제11항에 있어서,The method of claim 11,
    상기 fucT2Helicobacter pylori 유래인 것을 특징으로 하는 변이 미생물.The fucT2 is a mutant microorganism, characterized in that from Helicobacter pylori .
  13. 제11항에 있어서,The method of claim 11,
    상기 wcfBBacteroides fragilis 유래인 것을 특징으로 하는 변이 미생물.The wcfB is Bacteroides fragilis The mutant microorganism characterized in that it is derived.
  14. 제1항에 있어서,The method of claim 1,
    상기 변이체는 α-1,2 fucosyltransferase의 N-말단에 아스파테이트(aspartate) 반복서열 또는 InfB (translation initiation factor)의 1~7번째 아미노산을 코딩하는 유전자를 태그로 결합시킨 것을 특징으로 하는 변이 미생물.The variant microorganism characterized in that the tag is coupled to the gene encoding the 1 ~ 7th amino acid of the aspartate (aspartate) repeat sequence or InfB (translation initiation factor) at the N- terminal of α-1,2 fucosyltransferase.
  15. 제1항에 있어서,The method of claim 1,
    상기 2-푸코실락토오스는 de novo 합성 경로를 거쳐 합성되는 것을 특징으로하는 변이 미생물.The 2-fucosyllactose is a mutant microorganism, characterized in that synthesized via a de novo synthesis route.
  16. 제13항에 있어서,The method of claim 13,
    ManA (mannose-6-phosphate isomerase), ManB (phosphomannomutase), ManC (mannose-1-phosphate guanyltransferase), Gmd (GDP-D-mannose dehydratase) 및 WcaG (Nucleoside-diphosphate-sugar epimerases)로 구성된 군에서 선택된 1종 이상의 효소를 코딩하는 유전자가 추가로 도입 또는 증폭되어 있는 것을 특징으로 하는 변이 미생물.1 selected from the group consisting of manA (mannose-6-phosphate isomerase), ManB (phosphomannomutase), ManC (mannose-1-phosphate guanyltransferase), Gmd (GDP-D-mannose dehydratase), and WcaG (Nucleoside-diphosphate-sugar epimerases) A mutant microorganism characterized in that a gene encoding at least one enzyme is further introduced or amplified.
  17. 제1항 내지 제16항 중 어느 한 항의 변이 미생물을 배양하여 2-푸코실락토오스를 생성시킨 다음, 배양액으로부터 2-푸코실락토오스를 회수하는 것을 특징으로하는 2-푸코실락토오스의 제조방법.The method for producing 2-fucosyllactose, characterized in that 2-fucosyllactose is recovered from the culture by culturing the mutant microorganism of any one of claims 1 to 16.
  18. 제17항에 있어서,The method of claim 17,
    상기 배양은 글리세롤을 추가하는 유가배양인 것을 특징으로 하는 2-푸코실락토오스의 제조방법.The culturing is a method for producing 2-fucosyllactose, characterized in that the value-added culture glycerol addition.
PCT/KR2016/003013 2015-03-24 2016-03-24 2-fucosyllactose producing mutant microorganisms and method for producing 2-fucosyllactose using same WO2016153300A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150040879A KR101544184B1 (en) 2014-12-19 2015-03-24 Variant Microorganism for Producing 2-Fucosyllactose and Method of Producing 2-Fucosyllactose by Using the Same
KR10-2015-0040879 2015-03-24

Publications (1)

Publication Number Publication Date
WO2016153300A1 true WO2016153300A1 (en) 2016-09-29

Family

ID=56979278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/003013 WO2016153300A1 (en) 2015-03-24 2016-03-24 2-fucosyllactose producing mutant microorganisms and method for producing 2-fucosyllactose using same

Country Status (1)

Country Link
WO (1) WO2016153300A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315610A1 (en) * 2016-10-29 2018-05-02 Jennewein Biotechnologie GmbH Improved process for the production of fucosylated oligosaccharides
CN109735479A (en) * 2019-01-30 2019-05-10 光明乳业股份有限公司 A kind of recombined bacillus subtilis synthesizing 2'-Fucosyl lactose and its construction method and application
CN110637091A (en) * 2018-04-04 2019-12-31 高级蛋白质技术公司 Method for producing 2' -fucosyllactose using fucosyltransferase derived from Agrobacterium choreoides
CN111471637A (en) * 2020-05-08 2020-07-31 江苏华燕集团有限公司 2' -fucosyllactose high-yield strain and preparation method and application thereof
CN112625990A (en) * 2020-12-29 2021-04-09 量子高科(广东)生物有限公司 Recombinant escherichia coli for synthesizing 2' -fucosyllactose and construction method thereof
CN112625987A (en) * 2020-12-21 2021-04-09 南通励成生物工程有限公司 Method for simultaneously producing 2' -fucosyllactose and D-psicose
CN114317384A (en) * 2020-09-30 2022-04-12 中国科学院上海高等研究院 Recombinant bacillus subtilis for producing 2' -fucosyllactose and construction method and application thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20110061520A (en) * 2011-04-15 2011-06-09 서울대학교산학협력단 Method for production of gdp-l-fucose by overexpression of guanosine-inosine kinase in recombinant escherichia coli
US20130122553A1 (en) * 2010-07-12 2013-05-16 Universiteit Gent Metabolically engineered organisms for the production of added value bio-products
US20140031541A1 (en) * 2012-07-25 2014-01-30 Glycosyn LLC Alpha (1,2) Fucosyltransferases Suitable for Use in the Production of Fucosylated Oligosaccharides

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130122553A1 (en) * 2010-07-12 2013-05-16 Universiteit Gent Metabolically engineered organisms for the production of added value bio-products
KR20110061520A (en) * 2011-04-15 2011-06-09 서울대학교산학협력단 Method for production of gdp-l-fucose by overexpression of guanosine-inosine kinase in recombinant escherichia coli
US20140031541A1 (en) * 2012-07-25 2014-01-30 Glycosyn LLC Alpha (1,2) Fucosyltransferases Suitable for Use in the Production of Fucosylated Oligosaccharides

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LEE, WON - HEONG ET AL.: "Whole Cell Biosynthesis of a Functional Oligosaccharide, 2' -Fucosyltactose, using Engineered Escherichia Coli", MICROBIAL CELL FACTORIES, vol. 11, no. e48, 2012, pages 1 - 9, XP021115889 *
ROWLEY, DANIEL L. ET AL.: "Molecular Characterization of the Escherichia Coli K-1 2 Zwf Gene Encoding Glucose 6-Phosphate Dehydrogenase", JOURNAL OF BACTERIOLOGY, vol. 173, no. 3, 1991, pages 968 - 977, XP055316226 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3315610A1 (en) * 2016-10-29 2018-05-02 Jennewein Biotechnologie GmbH Improved process for the production of fucosylated oligosaccharides
WO2018077892A1 (en) * 2016-10-29 2018-05-03 Jennewein Biotechnologie Gmbh Improved process for the production of fucosylated oligosaccharides
US11898185B2 (en) 2016-10-29 2024-02-13 Chr Hansen Hmo Gmbh Process for the production of fucosylated oligosaccharides
CN110637091A (en) * 2018-04-04 2019-12-31 高级蛋白质技术公司 Method for producing 2' -fucosyllactose using fucosyltransferase derived from Agrobacterium choreoides
JP7075494B2 (en) 2018-04-04 2022-05-25 アドヴァンスド プロテイン テクノロジーズ コーポレーション Production method of 2'-fucosyllactose using fucosyltransferase derived from Pseudopedophila sartans
JP2021514633A (en) * 2018-04-04 2021-06-17 アドヴァンスド プロテイン テクノロジーズ コーポレーションAdvanced Protein Technologies Corp. Method for producing 2'-fucosyl lactouse using fucose transferase derived from Pseudopedophila sartans
EP3736336A4 (en) * 2018-04-04 2021-11-24 Advanced Protein Technologies Corp. Method for producing 2'-fucosyllactose by using fucosyltransferase derived from pseudopedobater saltans
CN109735479A (en) * 2019-01-30 2019-05-10 光明乳业股份有限公司 A kind of recombined bacillus subtilis synthesizing 2'-Fucosyl lactose and its construction method and application
CN111471637A (en) * 2020-05-08 2020-07-31 江苏华燕集团有限公司 2' -fucosyllactose high-yield strain and preparation method and application thereof
CN114317384A (en) * 2020-09-30 2022-04-12 中国科学院上海高等研究院 Recombinant bacillus subtilis for producing 2' -fucosyllactose and construction method and application thereof
CN114317384B (en) * 2020-09-30 2022-09-13 中国科学院上海高等研究院 Recombinant bacillus subtilis for producing 2' -fucosyllactose and construction method and application thereof
CN112625987A (en) * 2020-12-21 2021-04-09 南通励成生物工程有限公司 Method for simultaneously producing 2' -fucosyllactose and D-psicose
CN112625987B (en) * 2020-12-21 2023-01-06 南通励成生物工程有限公司 Method for simultaneously producing 2' -fucosyllactose and D-psicose
CN112625990B (en) * 2020-12-29 2023-06-16 量子高科(广东)生物有限公司 Recombinant escherichia coli for synthesizing 2' -fucosyllactose and construction method thereof
CN112625990A (en) * 2020-12-29 2021-04-09 量子高科(广东)生物有限公司 Recombinant escherichia coli for synthesizing 2' -fucosyllactose and construction method thereof

Similar Documents

Publication Publication Date Title
WO2016153300A1 (en) 2-fucosyllactose producing mutant microorganisms and method for producing 2-fucosyllactose using same
KR101544184B1 (en) Variant Microorganism for Producing 2-Fucosyllactose and Method of Producing 2-Fucosyllactose by Using the Same
EP3425052A1 (en) Fucosyltransferases and their use in producing fucosylated oligosaccharides
US11920173B2 (en) Fermentative production of N-acetylneuraminic acid
KR101731263B1 (en) Recombinant corynebacterium glutamicum for the production of fucosyllactose and method for the production of 2'-fucosyllactose therefrom
CN108026556B (en) Production of human milk oligosaccharides in a microbial host with engineered input/output
Chin et al. Enhanced production of 2′-fucosyllactose in engineered Escherichia coli BL21star (DE3) by modulation of lactose metabolism and fucosyltransferase
TW201819636A (en) Improved process for the production of fucosylated oligosaccharides
KR101648352B1 (en) Recombinant E. coli for the production of fucosyllactose and method for the production of fucosyllactose therefrom
KR102050522B1 (en) Recombinant corynebacterium glutamicum for the production of 3'-fucosyllactose and method for the production of 3'-fucosyllactose therefrom
WO2023099680A1 (en) Cells with tri-, tetra- or pentasaccharide importers useful in oligosaccharide production
KR101794971B1 (en) Method for the mass production of 3-fucosyllactose
JP2024516207A (en) Microbial strains expressing invertase/sucrose hydrolase
DK181319B1 (en) Genetically engineered cells and methods comprising use of a sialyltransferase for in vivo synthesis of 3’sl
DK181497B1 (en) ENHANCING FORMATION OF THE HMOS LNT AND/OR LNnT BY MODIFYING LACTOSE IMPORT IN THE CELL
WO2023166034A1 (en) New sialyltransferases for in vivo synthesis of lst-a
WO2023247537A1 (en) New sialyltransferases for in vivo synthesis of lst-c
EP4043571A1 (en) Genetically modified corynebacterium for the production of fucosyllactose
Liao et al. Construction of a plasmid-free Escherichia coli strain for lacto-N-neotetraose biosynthesis
WO2023166035A2 (en) New sialyltransferases for in vivo synthesis of 3'sl and 6'sl
CN116802299A (en) Glycosyltransferase deficient coryneform bacteria for the production of fucosyllactose
DK202201203A1 (en) New fucosyltransferases for in vivo synthesis of complex fucosylated human milk oligosaccharides
WO2024046994A1 (en) Fermentative production of oligosaccharides by microbial cells utilizing glycerol
DK202200689A1 (en) New fucosyltransferases for in vivo synthesis of lnfp-iii
WO2022243313A1 (en) Methods of producing hmo blend profiles with lnfp-i and lnt as the predominant compounds

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769118

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16769118

Country of ref document: EP

Kind code of ref document: A1