WO2016153275A1 - Olefin-based polymer - Google Patents

Olefin-based polymer Download PDF

Info

Publication number
WO2016153275A1
WO2016153275A1 PCT/KR2016/002938 KR2016002938W WO2016153275A1 WO 2016153275 A1 WO2016153275 A1 WO 2016153275A1 KR 2016002938 W KR2016002938 W KR 2016002938W WO 2016153275 A1 WO2016153275 A1 WO 2016153275A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
polymer
olefin polymer
olefin
Prior art date
Application number
PCT/KR2016/002938
Other languages
French (fr)
Korean (ko)
Inventor
김효주
우지윤
박상은
이영우
이충훈
박해웅
최익제
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020160021825A external-priority patent/KR101847702B1/en
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP16769093.2A priority Critical patent/EP3162817B1/en
Priority to US15/500,859 priority patent/US10023669B2/en
Priority to CN201680002144.8A priority patent/CN106795242B/en
Publication of WO2016153275A1 publication Critical patent/WO2016153275A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/6592Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond

Definitions

  • the present invention relates to olefinic polymers which exhibit good mechanical strength, in particular significantly improved impact strength.
  • CGC Constrained-Geometry Catalyst
  • the copolymer produced by such a CGC catalyst has a lower content of the portion having a lower molecular weight than the copolymer prepared by the conventional Ziegler-Natta-based catalyst is improved physical properties such as strength (strength).
  • the copolymer produced by the CGC or the like has a disadvantage in that the processability is lower than that of the polymer produced by the existing Ziegler-Natta catalysts.
  • U.S. Patent 5,539,076 discloses a metallocene / nonmetallocene mixed catalyst system for preparing certain peak high density copolymers.
  • the catalyst system is supported on an inorganic support.
  • the problem with the supported Ziegler-Natta and metallocene catalyst systems is that the supported hybrid catalysts are less active than homogeneous homocatalysts, making it difficult to produce olefinic polymers having properties suitable for the application.
  • the olefin-based polymer is produced in a single reactor, there is a fear that a gel generated in the blending method is produced, it is difficult to insert a comonomer in a high molecular weight portion, and the shape of the resulting polymer may be poor.
  • the two polymer components are not uniformly mixed, there is a fear that quality control becomes difficult.
  • the technical problem to be solved by the present invention is to provide an olefin-based polymer and a method for producing the same that can exhibit excellent mechanical strength, in particular significantly improved impact strength through the control of the crystal structure in the polymer.
  • a single peak is shown in gel permeation chromatography (GPC) analysis, and the temperature rising elution fraction (TREF) is measured at a temperature range of -20 ° C to 120 ° C.
  • GPC gel permeation chromatography
  • Te1 Elution temperature 1
  • Te2 Elution temperature 2
  • Te3 Elution temperature 3
  • the olefinic polymer according to the present invention exhibits a single peak in the GPC analysis through control of the crystal structure in the polymer, and has three elution temperatures, namely, Te1, Te2 and Te3 in the temperature rise elution fractionation measurement, thereby providing excellent mechanical strength, In particular, it can exhibit significantly improved impact strength. As a result, it can be used in various fields and uses, such as various packaging, construction, household goods, such as materials for automobiles, electric wires, toys, textiles, and medical.
  • FIG. 1 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 1.
  • FIG. 1 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 1.
  • FIG. 1 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 1.
  • FIG. 2 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 2.
  • FIG. 1 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 2.
  • FIG. 1 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 2.
  • thermostyrene resin is prepared in Comparative Example 1.
  • Figure 4 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Comparative Example 4.
  • TREF temperature rise elution fractionation
  • FIG. 5 is a graph showing the results of gel permeation chromatography (GPC) analysis of the olefin polymer prepared in Example 1.
  • GPC gel permeation chromatography
  • an alkyl group refers to a straight and branched aliphatic saturated hydrocarbon group having 1 to 20 carbon atoms.
  • the alkyl group includes a straight or branched alkyl group having 1 to 20 carbon atoms, more specifically 1 to 6 carbon atoms.
  • Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, pentyl group, iso-amyl group, hexyl group and the like. Can be mentioned.
  • an alkoxy group means the C1-C20 linear or branched alkyl group (-OR) couple
  • the alkoxy group includes an alkoxy group having 1 to 20 carbon atoms, and more specifically 1 to 6 carbon atoms. Specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, butoxy group or t-butoxy group.
  • an alkenyl group means a C2-C20 linear and branched aliphatic unsaturated hydrocarbon group containing a carbon-carbon double bond.
  • the alkenyl group includes an alkenyl group having 2 to 6 carbon atoms.
  • Specific examples of the alkenyl group include an ethenyl group, propenyl group or butenyl group.
  • a cycloalkyl group means a C3-C20 cyclic saturated hydrocarbon group.
  • the cycloalkyl group includes a cycloalkyl group having 3 to 6 carbon atoms.
  • a cyclopropyl group, a cyclobutyl group, a cyclohexyl group, etc. are mentioned.
  • an aryl group means a carbocyclic aromatic radical having 6 to 20 carbon atoms including one or more rings, and the rings may be attached or fused together in a pendant manner.
  • the aryl group includes an aryl group having 6 to 20 carbon atoms, more specifically, 6 to 12 carbon atoms.
  • Specific examples of the aryl group include a phenyl group, a naphthyl group or a biphenyl group.
  • an arylalkyl group means the functional group (Ar-R-) in which the aryl group (Ar) which is an aromatic hydrocarbon group was substituted by the carbon of a linear or branched alkyl group (R).
  • the arylalkyl group includes an arylalkyl group having 7 to 20 carbon atoms, more specifically, 7 to 12 carbon atoms.
  • Specific examples of the arylalkyl group include benzyl group, phenethyl group and the like.
  • an alkylaryl group means the functional group (R-Ar-) in which the linear or branched alkyl group (R) was substituted by the carbon of an aromatic hydrocarbon group (Ar).
  • the alkylaryl group includes an alkylaryl group having 7 to 20 carbon atoms, more specifically, 7 to 12 carbon atoms.
  • an aryloxy group means an aryl group (-OAr) bonded with oxygen, wherein the aryl group is as defined above.
  • the aryloxy group includes an aryloxy group having 6 to 20 carbon atoms, more specifically, 6 to 12 carbon atoms. Specific examples of the aryloxy group include phenoxy and the like.
  • a silyl group means a -SiH 3 radical derived from silane, and at least one of hydrogen atoms in the silyl group may be substituted with various organic groups such as an alkyl group or a halogen group. It may be.
  • the alkylamino group means a functional group in which at least one hydrogen in the amino group (-NH 2 ) is substituted with an alkyl group, wherein the alkyl group is as defined above.
  • the alkylamino group is —NR 2 (wherein R may each be a hydrogen atom or a straight or branched alkyl group having 1 to 20 carbon atoms, but not both R are hydrogen atoms).
  • an arylamino group means a functional group in which at least one hydrogen in the amino group (-NH 2 ) is substituted with an aryl group, wherein the aryl group is as defined above.
  • an alkylidene group means the bivalent aliphatic hydrocarbon group from which two hydrogen atoms were removed from the same carbon atom of an alkyl group.
  • the alkylidene group includes an alkylidene group having 1 to 20 carbon atoms, more specifically, 1 to 12 carbon atoms.
  • Specific examples of the alkylidene group include a propane-2-ylidene group.
  • a hydrocarbyl group has a carbon number of 1 to 60 containing only carbon and hydrogen regardless of its structure, such as an alkyl group, an aryl group, an alkenyl group, an alkylaryl group, an arylalkyl group, etc. It means a monovalent hydrocarbon group, and a hydrocarbylene group means a divalent hydrocarbon group having 1 to 60 carbon atoms.
  • a metalloid radical is a metalloid radical of group 14 (Group 4A) metal substituted by the C1-C20 hydrocarbyl group.
  • Metalloid radicals are electronically unsaturated and can act as Lewis acids.
  • the Group 14 metal may be silicon (Si), germanium (germanium), tin (tin) or arsenic (arsenic) and the like.
  • the metalloid radical may include silyl groups such as trimethylsilyl group, triethylsilyl group, triethylsilyl group, ethyldimethylsilyl group and methyldiethylsilyl group; Triphenylgermyl, trimethylgermyl, and the like.
  • polymer means a polymer compound prepared by polymerization of the same or different types of monomers.
  • the generic term “polymer” includes the terms “homopolymer”, “copolymer”, “terpolymer” as well as “interpolymer”.
  • the "interpolymer” means a polymer produced by the polymerization of two or more different types of monomers.
  • the term “interpolymer” is used generically to refer to polymers made from three different types of monomers, as well as to the term “copolymer” commonly used to refer to polymers made from two different monomers. Terpolymers ". This includes polymers made by the polymerization of four or more types of monomers.
  • the term "quasicrystalline” refers to primary transition temperature, crystal melting point (Tm), elution point, or the like measured by temperature rising elution fractionation (TREF), differential scanning calorimetry (DSC) or equivalent technique. It refers to a polymer having. As for the semi-crystalline, the density, Tm, elution point, etc. vary depending on the crystallinity.
  • the term “amorphous” refers to a polymer without a crystalline melting point, as measured by elevated temperature elution fractionation (TREF), differential scanning calorimetry (DSC), or equivalent technique.
  • the olefin-based polymer according to an embodiment of the present invention exhibits a single peak in the gel permeation chromatography analysis, and three elution temperatures in the temperature range of -20 ° C. to 120 ° C. when measuring the temperature rise elution fractionation (TREF), Te1, Te2. And Te3.
  • TEZ temperature rise elution fractionation
  • the present invention shows a single peak in GPC analysis and three elution temperatures in TREF measurement by controlling the crystal structure in the polymer using a catalyst composition containing a heterogeneous transition metal compound having excellent miscibility in preparing an olefin polymer.
  • Te1, Te2 and Te3 can be provided to provide olefinic polymers with good mechanical strength, in particular significantly improved impact strength.
  • the olefin polymer according to one embodiment of the present invention includes a first semicrystalline olefin polymer, a second semicrystalline olefin polymer, and a third semicrystalline olefin polymer, and temperature rising elution fractionation (TREF) measurement Having a first semicrystalline olefinic polymer peak (P1), a second semicrystalline olefinic polymer peak (P2) and a third semicrystalline olefinic polymer peak (P3) in the -20 ° C to 120 ° C temperature range.
  • the elution temperature (Te, Elution temperature) of each peak is represented by Te1, Te2 and Te3, respectively.
  • an olefinic polymer has one semicrystalline peak
  • an olefinic polymer according to an embodiment of the present invention may have three semicrystalline peaks, thereby increasing mechanical strength, particularly impact strength.
  • the measurement of the TREF can be measured using, for example, a TREF machine manufactured by PolymerChar, and can be measured while increasing the temperature from -20 ° C to 120 ° C using o-dichlorobenzene as a solvent.
  • Te1 when the olefin polymer is measured at a TREF, Te1 is present at a temperature lower than Te2, and Te2 is relatively lower than Te3.
  • Te2 is in the range of -20 °C to 100 °C
  • Te2 is in the range of 0 °C to 120 °C
  • Te3 may be present in the range of 20 °C to 120 °C.
  • Te Elution temperature
  • Te means the temperature of the highest point of each peak in the TREF elution curve expressed as elution with respect to temperature (dW / dT), fraction ratio can be calculated as the integral value of the temperature-dissolution graph have.
  • the olefin polymer has a density of 0.86 g / cc to 0.88 g / cc when the TREF is measured, the Te1 ranges from -20 ° C to 30 ° C, the Te2 ranges from 10 ° C to 80 ° C, and the Te3 May range from 40 ° C to 120 ° C.
  • the olefin polymer has a fraction ratio (area%) of the first semicrystalline olefin polymer peak (P1) of 5% to 90% when measured by TREF, and the second semicrystalline olefin polymer peak (P2)
  • the fractional ratio is 5% to 90%
  • the fractional ratio of the third semicrystalline olefin polymer peak (P3) may be 5% to 90%. More specifically, the fractional ratio of the first semicrystalline olefinic polymer peak (P1) is 30% to 80%, the fractional ratio of the second semicrystalline olefinic polymer peak (P2) is 5% to 40%, and the third quaternary
  • the fractional ratio of the crystalline olefinic polymer peak (P3) may be 5% to 50%.
  • the starting point of each peak in the elution rate (dW / dT) graph with respect to temperature is defined as the point at which the polymer starts to elute based on the base line, and the end point of each peak is based on the base line.
  • the polymer was defined as the point at which elution ends.
  • the point where the value of the elution amount (dW / DT) is lowest in the overlap region is determined by the end point of the peak of P1. It can be defined as the starting point of the P2 peak.
  • the peak expressed at -20 ° C to -10 ° C appears as a mixture of an amorphous polymer and a low crystalline polymer, the peak appearing at this position can be treated in addition to the fraction ratio of the P1 peak.
  • the olefin polymer may include Tc1, Tc2, and Tc3, which are crystallization temperatures (Tc) obtained from a differential scanning calorimetry (DSC) curve.
  • Tc crystallization temperatures
  • the olefin polymer may have a density of 0.850 g / cc to 0.910 g / cc, Tc1 of 5 ° C. or less, Tc2 of 0 ° C. to 60 ° C., and Tc3 of 80 ° C. to 130 ° C.
  • Tc means the peak of the cooling curve of the heat flow in the temperature-heat flow graph of the differential scanning calorimetry (DSC), that is, the exothermic peak temperature at the time of cooling.
  • DSC differential scanning calorimetry
  • the Tc is filled with about 0.5 mg to 10 mg of a sample in a measuring container with a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 6000) manufactured by PerKinElmer, and a nitrogen gas flow rate of 20 ml / min.
  • the temperature was raised from 0 ° C to 150 ° C at a heating rate of 20 ° C / min, then maintained for 2 minutes in that state, and again at a temperature of 10 ° C / min from 150 ° C to -100 ° C. It is the peak value of the cooling curve of the heat flow measured by DSC, cooling by.
  • the olefin polymer according to one embodiment of the present invention exhibits a low density of 0.850 g / cc to 0.910 g / cc as measured according to ASTM D-792.
  • the density of the olefin-based polymer is affected by the type and content of the monomers used in the polymerization, the degree of polymerization, and the like.
  • the density of the olefin polymer is largely affected by the content of the comonomer.
  • a large amount of comonomers can be introduced by using a mixed catalyst having a heterogeneous structure.
  • the olefin polymer according to one embodiment of the present invention has a low density in the range as described above, and as a result can exhibit excellent impact strength.
  • the olefin-based polymer may have a density of 0.86 g / cc to 0.88 g / cc, in this case, the effect of maintaining the mechanical properties and the impact strength improvement by the density control is more remarkable.
  • the olefin polymer according to one embodiment of the present invention has a melt index (MI) of 0.1 g / 10 min to 100 g / 10 min, more specifically 0.1 g measured at 190 ° C. and 2.16 kg load conditions according to ASTM D1238. / 10min to 50 g / 10min, even more specifically 0.1 g / 10min to 30 g / 10min.
  • MI melt index
  • the melt index (MI) affecting the mechanical properties, impact strength, and moldability of the olefin polymer can be controlled by controlling the amount of catalyst used in the polymerization process.
  • the olefin-based polymer according to an embodiment of the present invention may exhibit excellent impact strength by showing a melt index (MI) measured in the low density condition as described above in the above-described range.
  • the olefin-based polymer according to an embodiment of the present invention has at least three or more crystallization temperatures on a DSC curve by using heterogeneous catalysts having a characteristic structure, but is monomodal in a molecular weight distribution curve when measuring GPC. It has a peak and shows a narrow molecular weight distribution. As a result, excellent impact strength can be exhibited.
  • the olefin polymer may have a molecular weight distribution (MWD) of 1.5 to 4.0, specifically 1.5 to 3.0, which is the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn).
  • Mw molecular weight distribution
  • the olefin polymer may have a weight average molecular weight (Mw) of 10,000 g / mol to 500,000 g / mol, more specifically 20,000 g / mol to 200,000 g / mol within the above molecular weight distribution range.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) are polystyrene equivalent molecular weights analyzed by gel permeation chromatography (GPC).
  • the olefinic polymer according to one embodiment of the present invention may be one that satisfies the following requirements (1) to (4) simultaneously:
  • Temperature Elution Elution temperature Te1, Te2 and Te3 of three olefinic polymers are included in the temperature range of -20 ° C to 120 ° C for fractional measurement.
  • P1 is in the range of -20 ° C to 30 ° C
  • Te2 is in the range of 10 ° C to 80 ° C
  • Te3 is in the range of 40 ° C to 120
  • Olefin-based polymers satisfying the above-described physical properties exhibit excellent mechanical strength, particularly impact strength, and thus can be used for various packaging, construction, and household goods such as materials for automobiles, electric wires, toys, textiles, medical, and the like. It is useful for blow molding, extrusion molding or injection molding in various fields and applications.
  • the olefin polymer as described above may be obtained by polymerizing an olefin monomer using a catalyst composition comprising a transition metal compound of Formula 1 and a transition metal compound of Formula 2. Accordingly, according to another embodiment of the present invention, a method for preparing the olefin polymer is provided.
  • M 1 and M 2 are each independently a Group 4 transition metal
  • Q 1, Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom, a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms.
  • Group selected from the group consisting of an alkylaryl group having 7 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, an alkylamido group having 1 to 20 carbon atoms, an arylamido group having 6 to 20 carbon atoms, and an alkylidene group having 1 to 20 carbon atoms Become,
  • R 1 to R 6 are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and 7 to 7 carbon atoms.
  • at least two adjacent functional groups of R 1 to R 6 are connected to each other and selected from a group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms;
  • R 21 to R 27 are each independently a group 14 metal substituted with a hydrogen atom, a halogen group, a C1-C20 hydrocarbyl group, a C1-C20 heterohydrocarbyl group, and a C1-C20 hydrocarbyl group It is selected from the group consisting of metalloid radical of, specifically R 21 to R 27 are each independently a hydrogen atom, a halogen group, a silyl group, an alkyl group of 1 to 20 carbon atoms, an alkenyl group of 2 to 20 carbon atoms, 3 carbon atoms Metalloid radicals of Group 14 metals substituted with a cycloalkyl group of 20 to 20, an aryl group of 6 to 20 carbon atoms, an alkylaryl group of 7 to 20 carbon atoms, an arylalkyl group of 7 to 20 carbon atoms, and a hydrocarbyl group of 1 to 20 carbon atoms. It is selected from the group consisting of;
  • X 1 to X 3 are each independently selected from the group consisting of a hydrogen atom, a halogen group, a hydrocarbyl group of 1 to 20 carbon atoms and a heterohydrocarbyl group of 1 to 20 carbon atoms, more specifically a hydrogen atom, a halogen group, Silyl group, amino group, (alkyl of 1 to 20 carbon atoms) amino group, alkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, cycloalkyl group of 3 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, 7 to 20 carbon atoms An alkylaryl group and an arylalkyl group having 7 to 20 carbon atoms; Or two or more adjacent functional groups of X 1 to X 3 are connected to each other, such as a halogen group, a silyl group, an amino group, an (alkyl having 1 to 20 carbon atoms) amino group, an alkyl group having
  • Z is phosphorus (P), arsenic (As) or antimony (Sb).
  • the metal site is linked by a cyclopentadienyl (Cp) ligand to which an amino group is linked to a phenylene bridge, so that the Cp-M 1 -N angle is structurally narrow, and a monomer is approached.
  • Q 1 -M 1 -Q 2 angle is characterized by keeping wide.
  • the seats are connected in order to form a more stable and rigid five-point ring structure.
  • the nitrogen atom of the amino group is connected to the phenylene bridge by two bonds in the form of a ring to have a more complex complex structure. Therefore, when these compounds are reacted with methylaluminoxane or a cocatalyst such as B (C 6 F 5 ) 3 to be activated and then applied to olefin polymerization, they exhibit characteristics such as high activity, high molecular weight and high copolymerization even at high polymerization temperatures. It is possible to produce polyolefins having.
  • low density polyethylene as well as a large amount of alpha-olefins can be introduced, so that a low density polyolefin air having a density of 0.910 g / cc or less, more specifically, a density of 0.855 g / cc to 0.910 g / cc
  • the preparation of the coalescence is possible.
  • the catalyst composition containing the transition metal compound it is possible to prepare a polymer having a narrow MWD compared to CGC, excellent copolymerizability, and high molecular weight even in a low density region.
  • the compound of Formula 1 is preferably used to prepare a catalyst for the polymerization of the olefin monomer, but is not limited thereto and may be applicable to all fields in which the transition metal compound may be used.
  • the transition metal compound of Formula 2 which is used in combination with the transition metal compound of Formula 1, is an imide-based ligand such as phosphinimide ligands connected to a derivative of cyclopentadiene having a heterocycle including sulfur.
  • the transition metal compound of Formula 2 when used as a catalyst when copolymerizing ethylene and olefinic polymers such as octene, hexene or butene, it exhibits high catalytic activity and enables the production of olefinic polymers having excellent physical properties such as high molecular weight and low density.
  • it is excellent in the miscibility with the transition metal compound of Formula 1 and uniformly mixed in the catalyst composition, it is possible to further improve the catalytic activity of the catalyst composition.
  • M 1 may be Ti, Hf or Zr.
  • Q 1 and Q 2 may be each independently selected from the group consisting of a hydrogen atom, a halogen group and an alkyl group having 1 to 6 carbon atoms.
  • R 1 and R 2 may be an alkyl group having 1 to 20 carbon atoms, more specifically, an alkyl group having 1 to 6 carbon atoms, and even more specifically, a methyl group.
  • R 3 to R 6 are each independently a hydrogen atom; An alkyl group having 1 to 20 carbon atoms; Or an alkenyl group having 2 to 20 carbon atoms, more specifically a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and even more specifically, a hydrogen atom.
  • R 7 to R 10 may be each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
  • R 11 may be an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkylaryl group having 7 to 20 carbon atoms, wherein the substituent is a halogen group, carbon number It may be any one or two or more selected from the group consisting of an alkyl group of 1 to 20, an alkenyl group of 2 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, and an aryloxy group of 6 to 20 carbon atoms.
  • R 11 may be connected to R 10 adjacent to R 11 to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms.
  • the aliphatic ring or aromatic ring may be substituted with any one or two or more substituents selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. have.
  • the transition metal compound is R 11 is an aryl group, or an alkyl aryl group having 7 to 20 in the alkyl group of the unsubstituted or substituted, having 1 to 20 carbon atoms, having 6 to 20 carbon atoms represented by the formula 1, e.
  • the compound may be represented by the following Chemical Formula, and any one or a mixture of two or more thereof may be used:
  • transition metal compound represented by the formula (1) are connected to each other and R 10 to R 11 are adjacent to the R 11 form a ring of 5 to 20 carbon atoms aliphatic ring or a carbon number of 6 to 20, to the general formula (3) It may be a compound represented:
  • M 1 , Q 1 , Q 2 , R 1 to R 9 are the same as defined in Chemical Formula 1,
  • Cy is an aliphatic ring group having 4 or 5 carbon atoms including nitrogen (N),
  • R, R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms.
  • m may be an integer of 0 to 2 when Cy is an aliphatic ring group having 4 carbon atoms, and may be an integer of 0 to 4 when Cy is an aliphatic ring having 5 carbon atoms.
  • R a to R d are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, And an arylalkyl group having 7 to 20 carbon atoms, and the remaining substituents are as defined in Chemical Formula 1,
  • R e and R f each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. It is selected from the group consisting of an alkylaryl group having 7 to 20 carbon atoms, and an arylalkyl group having 7 to 20 carbon atoms, the remaining substituents are the same as defined in the formula (1).
  • transition metal compound of Formula 3 may be a compound represented by the following formula:
  • the transition metal compound of Formula 1 may be prepared by the following steps a) to d):
  • R ' is a hydrogen atom
  • R 0 is a protecting group
  • the compound including a protecting group in step a) may be trimethylsilyl chloride, benzyl chloride, t-butoxycarbonyl chloride, benzyloxycarbonyl chloride or carbon dioxide.
  • the compound of Formula 5 may be a lithium carbamate compound represented by Formula 5a:
  • Each substituent in Formula 5a is as defined in Formula 1 above.
  • the compound of Formula 1 may be prepared by the following Scheme 1.
  • the transition metal compound of Formula 2 may be a compound of Formula 2a.
  • M 2 may be the same as defined above, specifically, Ti, Hf or Zr,
  • Q 3 and Q 4 may be the same as defined above, specifically, each independently may be a halogen group or an alkyl group having 1 to 8 carbon atoms,
  • R 21 to R 27 may be the same as defined above, more specifically, R 21 to R 27 are each independently a hydrogen atom, a halogen group, a silyl group, an alkyl group having 1 to 8 carbon atoms, an alke having 2 to 6 carbon atoms Of a Group 14 metal substituted with a silyl group, a C3-12 cycloalkyl group, a C6-C18 aryl group, a C7-C18 alkylaryl group, a C7-C18 arylalkyl group, and a C1-C8 hydrocarbyl group Selected from the group consisting of metalloid radicals, and more specifically, R 21 to R 27 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms or 1 to 4 carbon atoms;
  • X 1 to X 3 may be the same as defined above, more specifically, X 1 to X 3 are each independently a hydrogen atom, a halogen group, a silyl group, an amino group, (alkyl having 1 to 8 carbon atoms), C 1 Selected from the group consisting of an alkyl group of 8 to 8, an alkenyl group of 2 to 6 carbon atoms, a cycloalkyl group of 3 to 12 carbon atoms, an aryl group of 6 to 18 carbon atoms, an alkylaryl group of 7 to 18 carbon atoms, and an arylalkyl group of 7 to 18 carbon atoms Or; Or two adjacent functional groups of X 1 to X 3 are connected to each other to form a halogen group, a silyl group, an amino group, an (alkyl having 1 to 8 carbon atoms) amino group, an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms and a carbon number A
  • the second transition metal compound of Chemical Formula 2 which is more preferred for controlling the electronic steric environment around the metal, may be the following compounds, and any one or a mixture of two or more thereof may be used.
  • Cy is a cyclohexyl group
  • tBu is a t-butyl group
  • Me is a methyl group
  • Ph is a phenyl group.
  • the transition metal compound of Formula 2 may have various structures within the range defined in Formula 2, and these compounds may exhibit equivalent functions and effects.
  • the transition metal compound of Chemical Formula 2 may be prepared using a known synthetic reaction.
  • the catalyst composition used to prepare the olefin-based polymer may specifically include the transition metal compounds of Formulas 1 and 2 in a weight ratio of 99: 1 to 1:99.
  • the catalyst composition may mix the transition metal compounds of Formulas 1 and 2 in a weight ratio of 50:50 to 80:20.
  • the catalyst composition may further include a promoter.
  • the promoter may be used without particular limitation as long as it is known in the art such as alkylaluminoxane, alkylaluminum or Lewis acid.
  • the promoter may include any one or a mixture of two or more selected from the group consisting of compounds represented by Formulas 9 to 12:
  • R 41 is a halogen group, a C 1-20 hydrocarbyl group or a C 1-20 hydrocarbyl group substituted with halogen, a is an integer of 2 or more,
  • D is aluminum or boron
  • each R 42 is independently a halogen group, a hydrocarbyl group having 1 to 20 carbon atoms or a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen.
  • L is a neutral or cationic Lewis acid
  • H is a hydrogen atom
  • Z is a Group 13 element
  • each A independently has one to six carbon atoms of 1 to 20 hydrogen atoms may be substituted with a substituent. It is an aryl group or a C1-C20 alkyl group
  • the said substituent is a halogen group, a C1-C20 hydrocarbyl group, a C1-C20 alkoxy group, or a C6-C20 aryloxy group.
  • a method of preparing the catalyst composition comprising: first contacting the catalyst composition with a compound represented by Formula 9 or Formula 10 to obtain a mixture; And adding the compound represented by Formula 11 or 12 to the mixture.
  • the molar ratio of the compound represented by Formula 9 or Formula 10 with respect to the catalyst composition may be 1: 2 to 1: 5,000, respectively. Specifically 1:10 to 1: 1,000, and even more specifically 1:20 to 1: 500.
  • the molar ratio of the compound represented by Formula 11 or 12 with respect to the catalyst composition may be 1: 1 to 1:25, more specifically 1: 1 to 1:10, even more specifically 1: 1 To 1: 5.
  • the ratio of the compound represented by Formula 11 or 12 with respect to the total amount of the transition metal compounds of Formulas 1 and 2 is less than 1: 1, the amount of the activator is relatively small, resulting in incomplete activation of the metal compound. If there is a problem that the activity of the catalyst composition is deteriorated and if it is greater than 1:25, the metal compound is fully activated, but the excess amount of the activator does not economically cost or the purity of the polymer produced is poor. have.
  • the molar ratio of the compound represented by the formula (10) relative to the catalyst composition may be 1: 1 to 1: 500, more specifically 1: 1 to 1:50 And even more specifically, 1: 2 to 1:25.
  • the molar ratio is less than 1: 1, the amount of the activator is relatively small, so that the activation of the metal compound may not be completed, and thus the activity of the resulting catalyst composition may be inferior.
  • the cost of the catalyst composition is economically undesirable or the purity of the resulting polymer is poor with the remaining excess activator.
  • Aliphatic hydrocarbon solvents having 5 to 12 carbon atoms such as pentane, hexane or heptane, as a reaction solvent in the preparation of the catalyst composition described above; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; Or aromatic hydrocarbon solvents such as benzene, toluene, etc. may be used, but are not necessarily limited thereto, and all solvents available in the art may be used.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
  • the catalyst composition may further include an additive.
  • a compound containing a hetero atom may be included.
  • examples of the compound containing a hetero atom include a hetero ring compound; Or alkanes containing heteroatoms.
  • heterocyclic compound examples include aromatic rings containing heteroatoms; Heterocycloalkanes; Or heterocycloalkene.
  • alkanes containing the heteroatom examples include alkanes containing amine groups or ether groups.
  • the heteroaromatic ring; Heterocycloalkanes; Or heterocycloalkenes include 5- or 6-membered rings.
  • the compound containing the heteroatom may include O, S, Se, N, P or Si as a heteroatom.
  • the compound containing a heteroatom may include one heteroatom.
  • the compound containing the hetero atom may be substituted, and when the compound containing the hetero atom is substituted, it may be substituted with one or two or more from the group consisting of hydrogen, methyl, phenyl and benzyl.
  • Examples of the compound containing a hetero atom include pyridine, 3,5-dimethylpyridine, 2,4,6-trimethylpyridine, 2,6-dimethylpyridine, 2,4-dimethylpyridine, thiophene, 2-methylthiophene , 2,3-dimethylthiophene, piperidine, phosphinene, pyrrole, 2-methylpyrrole, aniline, para-toluidine, tetrahydrofuran, 2,3-dimethyltetrahydrofuran, 2,5-tetrahydrofuran, Selected from the group consisting of 3,4-dihydro-2H-pyrene, furan, 2-methylfuran, 2,3-dimethylfuran, 2,5-dimethylfuran, diethylether, methyl tertbutyl ether and triethylamine It may include any one or two or more, but is not limited thereto.
  • first and second transition metal compounds and the promoter may be used in a form supported on a carrier.
  • the carrier may be silica-alumina, silica-magnesia, or the like, and other carriers known in the art may be used.
  • such a carrier may be used in a dry state at a high temperature, and the drying temperature may be, for example, 180 ° C to 800 ° C. If the drying temperature is too low below 180 ° C., an excess portion on the carrier may react with the promoter to degrade the performance. If the drying temperature is too high above 800 ° C., the hydroxy group content on the surface of the carrier may be lowered to promote the promoter. The reaction site with and may decrease.
  • the compound represented by Formula 9 may be alkyl aluminoxane, specific examples thereof include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and more specifically, methyl aluminoxane. .
  • the compounds represented by the above formula (10) are specifically trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, tri Cyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxy Seed, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like, more specifically, may be selected from trimethylaluminum, triethylaluminum, and triisobutylaluminum.
  • the compound of Formula 11 or 12 specifically triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra (p-tolyl) boron, trimethyl Ammonium tetra (o, p-dimethylphenyl) boron, tributylammonium tetra (p-trifluoromethylphenyl) boron, trimethylammonium tetra (p-trifluoromethylphenyl) boron, tributylammoniumtetrapentafluorophenylboron, N , N-diethylanilidedium tetrapetyl boron, N, N-diethylanilidedium tetraphenylboron, N, N-diethylanilinium
  • the monomers usable in the production of the olefin polymers include, for example, alpha-olefin monomers, cyclic olefin equivalents, diene olefin monomers, triene olefin monomers or styrene monomers.
  • One type of monomer may be homopolymerized, or two or more types may be mixed and copolymerized.
  • the alpha-olefin monomers include aliphatic olefins having 2 to 12 carbon atoms, specifically 2 to 8 carbon atoms, and more specifically ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 4,4-dimethyl-1-pentene, 4,4 -Diethyl-1-hexene, 3,4-dimethyl-1-hexene, etc. can be illustrated.
  • the alpha-olefins may be homopolymerized or alternating, random, or block copolymerized.
  • the copolymerization of the above-mentioned alpha-olefins is copolymerization of ethylene and an alpha-olefin having 2 to 12 carbon atoms, specifically 2 to 8 carbon atoms (ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 4 -Methyl-1-pentene, ethylene and 1-octene) and copolymerization of propylene with alpha-olefins having 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms (propylene and 1-butene, propylene and 4-methyl-1-pentene , Propylene and 4-methyl-1-butene, propylene and 1-hexene, propylene and 1-octene).
  • the amount of other alpha-olefins may be up to 90% by weight of the total monomers. More specifically, the ethylene copolymer is 70% by weight or less, specifically 60% by weight or less, more specifically 50% by weight or less, and 1% to 90% by weight, specifically 5% by weight, for the propylene copolymer. To 90% by weight, more specifically 10% to 70% by weight.
  • the cyclic olefins may be used having 3 to 24 carbon atoms, specifically 3 to 18, more specifically cyclopentene (cyclopentene), cyclobutene, cyclohexene, 3-methylcyclohexene, cyclooctene, tetracyclo Decene, octacyclodecene, dicyclopentadiene, norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-isobutyl-2-norbornene, 5,6- Dimethyl-2-norbornene, 5,5,6-trimethyl-2-norbornene or ethylene norbornene and the like.
  • cyclopentene cyclopentene
  • cyclobutene cyclohexene
  • 3-methylcyclohexene cyclooctene
  • cyclooctene tetracyclo Decene
  • the cyclic olefins may be copolymerized with the alpha-olefins, wherein the amount of the cyclic olefin may be 1 to 50 mol%, specifically 2 to 50 mol% with respect to the copolymer.
  • the dienes and triene may be a polyene having 4 to 26 carbon atoms having two or three double bonds, specifically 1,3-butadiene, 1,4-pentadiene, 1,4- Hexadiene, 1,5-hexadiene, 1,9-decadiene, 2-methyl-1,3-butadiene, and the like.
  • the styrenes may be styrene or styrene substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogen group, an amine group, a silyl group, or a halogenated alkyl group.
  • the polymerization step may be carried out in solution phase, slurry phase, bulk phase or gas phase polymerization in a hydrocarbon solvent.
  • the catalyst composition is present in the form of a carrier or insoluble particles of the carrier, as well as the catalyst composition in a homogeneous solution, it may be carried out in a solution phase, a slurry phase, a bulk phase, or a gas phase polymerization.
  • each polymerization condition may vary depending on the state of the catalyst used (homogeneous or heterogeneous phase (supported)), the polymerization method (solution polymerization, slurry polymerization, gas phase polymerization), the desired polymerization result or the shape of the polymer. Can be. The degree of deformation thereof can be easily modified by anyone skilled in the art.
  • the hydrocarbon solvents include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms, for example, pentane, hexane, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene; Alternatively, any one or two or more dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane or chlorobenzene may be mixed and injected.
  • the solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
  • alkylaluminum examples include trialkylaluminum, dialkyl aluminum halides, alkyl aluminum dihalides, aluminum dialkyl hydrides or alkyl aluminum sesqui halides, and more specifically, Al (C 2 H 5 ) 3 , Al (C 2 H 5 ) 2 H, Al (C 3 H 7 ) 3 , Al (C 3 H 7 ) 2 H, Al (iC 4 H 9 ) 2 H, Al (C 8 H 17 ) 3 , Al (C 12 H 25 ) 3 , Al (C 2 H 5 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) 2 H, Al ( iC 4 H 9 ) 3 , (C 2 H 5 ) 2 AlCl, (iC 3 H 9 ) 2 AlCl, or (C 2 H 5 ) 3 Al 2 Cl 3 .
  • Such organoaluminum compounds may be introduced continuously into each reactor and may be introduced
  • the polymerization step may be carried out in a batch reactor or a continuous reactor, more specifically, may be performed in a continuous reactor.
  • the polymerization step may be carried out in the presence of an inert gas, such as arcon or nitrogen gas.
  • an inert gas such as arcon or nitrogen gas.
  • the inert gas for example, may be used alone or in combination with nitrogen gas or hydrogen gas.
  • the use of the inert gas serves to prevent the activity of the catalyst due to the inflow of moisture or impurities in the air, and may be added so that the mass ratio of the inert gas to the olefin monomer is about 1:10 to 1: 100. It is not limited to this.
  • the amount of inert gas is used too little, the catalyst composition reacts rapidly, making it difficult to manufacture an olefin polymer having a molecular weight and molecular weight distribution, and when the amount of the inert gas is added, the activity of the catalyst composition is sufficiently realized. It may not be.
  • the polymerization temperature when copolymerizing alpha olefin as a comonomer with the catalyst may range from about 130 ° C. to about 250 ° C., specifically from about 140 ° C. to about 200 ° C.
  • the polymerization pressure may be about 1 bar to about 150 bar, specifically about 1 bar to about 120 bar, more specifically about 10 bar to about 120 bar.
  • the olefin polymer prepared by the above production method may be surface treated with an inorganic material such as talc, Ca or Si based on a conventional method. Accordingly, the olefin polymer according to the present invention may further include a coating layer including an inorganic material such as talc, Ca or Si based on the surface thereof.
  • a catalyst composition including the transition metal compound of Formula 1 and the transition metal compound of Formula 2 is useful for preparing the olefin polymer.
  • the catalyst composition is the same as described in the method for preparing the olefin polymer.
  • the ketone (1.9g, 8.8mmol) was diethyl ether (Diethyl ether). After stirring for 12 hours, the mixture was stirred at room temperature for 12 hours, 10mL of water was added, hydrochloric acid (2N, 60mL) was added, stirred for 2 minutes, organic solvent was extracted, neutralized with NaHCO 3 aqueous solution, and the organic solvent was extracted. Water was removed with MgSO 4. A yellow oil (1.83 g, 60% yield) was obtained through a silica gel column.
  • ethylene (0.87 kg / h) was introduced into the autoclave reactor and maintained at 160 ° C. for 30 minutes or more in a continuous process at a pressure of 89 bar, followed by a copolymerization reaction to produce an ethylene-1 octene copolymer as an olefin polymer.
  • ethylene 0.87 kg / h
  • the remaining ethylene gas was removed and the polymer solution was dried in a vacuum oven for at least 12 hours, and then physical properties were measured.
  • LG Chem's ethylene-1 octene copolymer (product name: LC170) prepared using only one metallocene catalyst was prepared.
  • ethylene (0.87 kg / h) was introduced into the autoclave reactor and maintained at 160 ° C. for 30 minutes or more in a continuous process at a pressure of 89 bar, followed by a copolymerization reaction to produce an ethylene-1 octene copolymer as an olefin polymer.
  • ethylene 0.87 kg / h
  • the remaining ethylene gas was removed and the polymer solution was dried in a vacuum oven for at least 12 hours, and then physical properties were measured.
  • TREF was measured using PolymerChar's TREF machine and measured in the range of -20 ° C to 120 ° C using o-dichlorobenzene as a solvent.
  • GPC peak number Observed through gel permeation chromatography (GPC) analysis.
  • FIG. 1 to 4 are temperature rise elution fractionation (TREF) graphs of the olefin polymers prepared in Examples 1 and 2 and Comparative Examples 1 and 4, respectively, and FIG. 5 is a gel of the olefin polymers prepared in Example 1.
  • FIG. It is a graph showing the results of permeation chromatography (GPC) analysis.
  • Example 1 0.869 10 98525 2.34 0.5 (70%) 41.4 (18%) 89.0 (12%) 3
  • Example 2 0.867 24.5 64738 2.68 -6.7 (58%) 38.8 (22%) 87.6 (20%) 3
  • Example 3 0.871 6.3 85088 2.60 0.3 (45%) 41.0 (22%) 88.0 (33%) 3
  • Example 4 0.873 1.7 103827 2.51 -20.0 (44%) 30.1 (14%) 89.6 (42%) 3
  • Example 5 0.872 5.6 89932 2.51 -20.0 (46%) 24.9 (13%) 88.9 (41%) 3
  • One Comparative Example 1 0.871 27.9 62115 2.28 33.2 (100%) - - One Comparative Example 2 0.873 4.9 97635 2.31 3
  • the olefinic polymers of Examples 1 to 5 according to the present invention showed three peaks of Te1, Te2 and Te3 on the TREF within a density of 0.850 g / cc to 0.910 g / cc.
  • the polymers of Comparative Examples 1 to 5 only found one or two peaks within the same density range.
  • the olefin polymers of Examples 1 to 5 according to the present invention showed a single peak on GPC and had a molecular weight distribution (MWD) of 2.3 to 2.7, which showed a narrow molecular weight distribution on the same level as the polymers of Comparative Examples 1 to 5. It was.

Abstract

The present invention provides an olefin-based polymer exhibiting excellent mechanical strength and, particularly, remarkably improved impact strength by displaying a single peak in gel permeation chromatography analysis and having Te1, Te2 and Te3, which are the elution temperatures of the olefin-based polymer, in a temperature range of -20°C to 120°C during temperature rising elution fractionation.

Description

올레핀계 중합체Olefin Polymer
관련출원과의 상호인용Citation with Related Applications
본 출원은 2015년 3월 26일자 한국특허출원 제2015-0042743호 및 2016년 2월 24일자 한국특허출원 제2016-0021825호에 기초한 우선권의 이익을 주장하며, 해당 한국특허출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.This application claims the benefit of priority based on Korean Patent Application No. 2015-0042743 dated March 26, 2015 and Korean Patent Application No. 2016-0021825 dated February 24, 2016. The contents are included as part of this specification.
기술분야Technical Field
본 발명은 우수한 기계적 강도, 특히 현저히 개선된 충격 강도를 나타내는 올레핀계 중합체에 관한 것이다.The present invention relates to olefinic polymers which exhibit good mechanical strength, in particular significantly improved impact strength.
다우(Dow) 사가 1990년대 초반 [Me2Si(Me4C5)NtBu]TiCl2 (Constrained-Geometry Catalyst, 이하에서 CGC로 약칭한다)를 발표하였는데(미국 특허 등록 제5,064,802호), 에틸렌과 알파-올레핀의 공중합 반응에서 상기 CGC가 기존까지 알려진 메탈로센 촉매들에 비해 우수한 측면은 크게 다음과 같이 두 가지로 요약할 수 있다: Dow announced [Me 2 Si (Me 4 C 5 ) NtBu] TiCl 2 (Constrained-Geometry Catalyst, hereinafter abbreviated as CGC) in the early 1990s (US Pat. No. 5,064,802). The superiority of CGC in the copolymerization reaction of -olefin compared to the metallocene catalysts known to the prior art can be broadly summarized as follows:
(1) 높은 중합 온도에서도 높은 활성도를 나타내면서 고분자량의 중합체를 생성하며, (1) to produce high molecular weight polymers with high activity even at high polymerization temperatures;
(2) 1-헥센 및 1-옥텐과 같은 입체적 장애가 큰 알파-올레핀의 공중합성도 매우 뛰어나다는 점이다.(2) The copolymerization of alpha-olefins with high steric hindrances such as 1-hexene and 1-octene is also excellent.
한편, 이러한 CGC 촉매에 의하여 제조된 공중합체는 종래의 지글러-나타계 촉매에 의하여 제조된 공중합체에 비해 저분자량을 가지는 부분의 함량이 낮아 강도(strength) 등의 물성이 향상된다.On the other hand, the copolymer produced by such a CGC catalyst has a lower content of the portion having a lower molecular weight than the copolymer prepared by the conventional Ziegler-Natta-based catalyst is improved physical properties such as strength (strength).
그러나, 이러한 장점에도 불구하고 상기 CGC 등에 의해 제조된 공중합체의 경우 기존의 지글러-나타 촉매들에 의해 제조된 중합체에 비해 가공성이 저하되는 단점이 있었다.However, in spite of these advantages, the copolymer produced by the CGC or the like has a disadvantage in that the processability is lower than that of the polymer produced by the existing Ziegler-Natta catalysts.
미국특허 제5,539,076호는, 특정 이정점 고밀도 공중합체를 제조하기 위한 메탈로센/비메탈로센 혼합 촉매 시스템을 개시한다. 상기 촉매 시스템은 무기 담지체상에 담지된다. 상기 담지된 지글러-나타 및 메탈로센 촉매 시스템의 문제점은, 담지된 혼성 촉매가 균일 단독 촉매 보다 활성이 낮아, 용도에 맞는 특성을 가지는 올레핀계 중합체를 제조하기 어렵다는 것이다. 또한, 단일 반응기에서 올레핀계 중합체를 제조하기 때문에, 상기 블렌딩 방법에서 발생하는 겔이 생성될 우려가 있고, 고분자량 부분에 공단량체의 삽입이 어려우며, 생성되는 중합체의 형태가 불량해질 우려가 있고, 또한 2가지 중합체 성분이 균일하게 혼합되지 않아, 품질 조절이 어려워질 우려가 있다.U.S. Patent 5,539,076 discloses a metallocene / nonmetallocene mixed catalyst system for preparing certain peak high density copolymers. The catalyst system is supported on an inorganic support. The problem with the supported Ziegler-Natta and metallocene catalyst systems is that the supported hybrid catalysts are less active than homogeneous homocatalysts, making it difficult to produce olefinic polymers having properties suitable for the application. In addition, since the olefin-based polymer is produced in a single reactor, there is a fear that a gel generated in the blending method is produced, it is difficult to insert a comonomer in a high molecular weight portion, and the shape of the resulting polymer may be poor. In addition, since the two polymer components are not uniformly mixed, there is a fear that quality control becomes difficult.
따라서, 종래의 올레핀계 중합체가 가지는 단점을 극복하고 보다 향상된 물성을 제공할 수 있는 올레핀계 중합체의 개발이 여전히 요구된다.Accordingly, there is still a need for the development of olefinic polymers that can overcome the disadvantages of conventional olefinic polymers and provide improved physical properties.
본 발명이 해결하고자 하는 기술적 과제는 중합체내 결정 구조의 제어를 통해 우수한 기계적 강도, 특히 현저히 개선된 충격 강도를 나타낼 수 있는 올레핀계 중합체 및 그 제조방법을 제공하는 것이다. The technical problem to be solved by the present invention is to provide an olefin-based polymer and a method for producing the same that can exhibit excellent mechanical strength, in particular significantly improved impact strength through the control of the crystal structure in the polymer.
본 발명의 일 실시예에 따르면, 겔 투과 크로마토그래피(GPC, gel permeation chromatography) 분석시 단일 피크를 나타내고, 온도상승 용리 분별(TREF; temperature rising elution fractionation) 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 3개의 용리온도(Elution temperature), Te1(Elution temperature 1), Te2(Elution temperature 2) 및 Te3(Elution temperature 3)를 갖는 올레핀계 중합체를 제공한다.According to an embodiment of the present invention, a single peak is shown in gel permeation chromatography (GPC) analysis, and the temperature rising elution fraction (TREF) is measured at a temperature range of -20 ° C to 120 ° C. An olefin polymer having three elution temperatures, Elution temperature 1 (Te1), Elution temperature 2 (Te2), and Elution temperature 3 (Te3) is provided.
본 발명에 따른 올레핀계 중합체는 중합체 내 결정 구조의 제어를 통해 GPC 분석시 단일 피크를 나타내고, 또 온도상승 용리 분별 측정 시 3개의 용리온도, 즉 Te1, Te2 및 Te3을 가짐으로써, 우수한 기계적 강도, 특히 현저히 개선된 충격강도를 나타낼 수 있다. 그 결과, 자동차용, 전선용, 완구용, 섬유용, 의료용 등의 재료과 같은 각종 포장용, 건축용, 생활용품 등의 다양한 분야 및 용도로 사용될 수 있다.The olefinic polymer according to the present invention exhibits a single peak in the GPC analysis through control of the crystal structure in the polymer, and has three elution temperatures, namely, Te1, Te2 and Te3 in the temperature rise elution fractionation measurement, thereby providing excellent mechanical strength, In particular, it can exhibit significantly improved impact strength. As a result, it can be used in various fields and uses, such as various packaging, construction, household goods, such as materials for automobiles, electric wires, toys, textiles, and medical.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술한 발명의 내용과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되어서는 아니 된다.The following drawings, which are attached to this specification, illustrate preferred embodiments of the present invention, and together with the contents of the present invention serve to further understand the technical spirit of the present invention, the present invention is limited to the matters described in such drawings. It should not be construed as limited.
도 1은 실시예 1에서 제조한 올레핀계 중합체의 온도상승 용리 분별(TREF) 측정 결과를 나타낸 그래프이다.1 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 1. FIG.
도 2는 실시예 2에서 제조한 올레핀계 중합체의 온도상승 용리 분별(TREF) 측정 결과를 나타낸 그래프이다.2 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Example 2. FIG.
도 3는 비교예 1에서 제조한 올레핀계 중합체의 온도상승 용리 분별(TREF) 측정 결과를 나타낸 그래프이다.3 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Comparative Example 1.
도 4는 비교예 4에서 제조한 올레핀계 중합체의 온도상승 용리 분별(TREF) 측정 결과를 나타낸 그래프이다.Figure 4 is a graph showing the results of temperature rise elution fractionation (TREF) measurement of the olefin polymer prepared in Comparative Example 4.
도 5는 실시예 1에서 제조한 올레핀계 중합체의 겔 투과 크로마토그래피(GPC) 분석 결과를 나타낸 그래프이다.5 is a graph showing the results of gel permeation chromatography (GPC) analysis of the olefin polymer prepared in Example 1. FIG.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail to aid in understanding the present invention.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.The terms or words used in this specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors may appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle that the present invention.
본 명세서에 있어서 특별히 정의되지 않는 한, 알킬기는 탄소수 1 내지 20의 직쇄형 및 분지형 지방족 포화 탄화수소기를 의미한다. 구체적으로는 상기 알킬기는 탄소수 1 내지 20, 보다 구체적으로는 탄소수 1 내지 6의 직쇄형 또는 분지형 알킬기를 포함한다. 상기 알킬기의 구체적인 예로는 메틸기, 에틸기, n-프로필기, 이소프로필기, n-부틸기, 이소부틸기, sec-부틸기, t-부틸기, 펜틸기, iso-아밀기, 또는 헥실기 등을 들 수 있다. Unless specifically defined herein, an alkyl group refers to a straight and branched aliphatic saturated hydrocarbon group having 1 to 20 carbon atoms. Specifically, the alkyl group includes a straight or branched alkyl group having 1 to 20 carbon atoms, more specifically 1 to 6 carbon atoms. Specific examples of the alkyl group include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, t-butyl group, pentyl group, iso-amyl group, hexyl group and the like. Can be mentioned.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 알콕시기는 산소와 결합된 탄소수 1 내지 20의 직쇄형 또는 분지형 알킬기(-OR)를 의미한다. 구체적으로는 상기 알콕시기는 탄소수 1 내지 20, 보다 구체적으로는 탄소수 1 내지 6의 알콕시기를 포함한다. 상기 알콕시기의 구체적인 예로는 메톡시기, 에톡시기, 프로폭시기, 부톡시기 또는 t-부톡시기 등을 들 수 있다. In addition, unless specifically defined in this specification, an alkoxy group means the C1-C20 linear or branched alkyl group (-OR) couple | bonded with oxygen. Specifically, the alkoxy group includes an alkoxy group having 1 to 20 carbon atoms, and more specifically 1 to 6 carbon atoms. Specific examples of the alkoxy group include methoxy group, ethoxy group, propoxy group, butoxy group or t-butoxy group.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 알케닐기는 탄소-탄소 이중결합을 포함하는 탄소수 2 내지 20의 직쇄형 및 분지형 지방족 불포화 탄화수소기를 의미한다. 구체적으로 상기 알케닐기는 탄소수 2 내지 6의 알케닐기를 포함한다. 상기 알케닐기의 구체적인 예로는 에테닐기, 프로페닐기 또는 부테닐기 등을 들 수 있다. In addition, unless specifically defined in this specification, an alkenyl group means a C2-C20 linear and branched aliphatic unsaturated hydrocarbon group containing a carbon-carbon double bond. Specifically, the alkenyl group includes an alkenyl group having 2 to 6 carbon atoms. Specific examples of the alkenyl group include an ethenyl group, propenyl group or butenyl group.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 사이클로알킬기는 탄소수 3 내지 20의 환형 포화 탄화수소기를 의미한다. 구체적으로 상기 사이클로알킬기는 탄소수 3 내지 6의 사이클로알킬기를 포함한다. 상기 사이클로알킬기의 구체적인 예로는, 사이클로프로필기, 사이클로부틸기 또는 사이클로헥실기 등을 들 수 있다.In addition, unless specifically defined in this specification, a cycloalkyl group means a C3-C20 cyclic saturated hydrocarbon group. Specifically, the cycloalkyl group includes a cycloalkyl group having 3 to 6 carbon atoms. As a specific example of the said cycloalkyl group, a cyclopropyl group, a cyclobutyl group, a cyclohexyl group, etc. are mentioned.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 아릴기는 하나 이상의 고리를 포함하는 탄소수 6 내지 20의 카보사이클 방향족 리디칼을 의미하며, 상기 고리들은 펜던트 방법으로 함께 부착되거나 또는 융합될 수 있다. 구체적으로 상기 아릴기는 탄소수 6 내지 20, 보다 구체적으로는 탄소수 6 내지 12의 아릴기를 포함한다. 상기 아릴기의 구체적인 예로는 페닐기, 나프틸기 또는 비페닐기 등을 들 수 있다.In addition, unless specifically defined herein, an aryl group means a carbocyclic aromatic radical having 6 to 20 carbon atoms including one or more rings, and the rings may be attached or fused together in a pendant manner. Specifically, the aryl group includes an aryl group having 6 to 20 carbon atoms, more specifically, 6 to 12 carbon atoms. Specific examples of the aryl group include a phenyl group, a naphthyl group or a biphenyl group.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 아릴알킬기는 방향족 탄화수소기인 아릴기(Ar)가 직쇄 또는 분지형 알킬기(R)의 탄소에 치환된 작용기(Ar-R-)를 의미한다. 구체적으로 상기 아릴알킬기는 탄소수 7 내지 20, 보다 구체적으로는 탄소수 7 내지 12의 아릴알킬기를 포함한다. 상기 아릴알킬기의 구체적인 예로는 벤질기, 펜에틸기 등을 들 수 있다.In addition, unless specifically defined in this specification, an arylalkyl group means the functional group (Ar-R-) in which the aryl group (Ar) which is an aromatic hydrocarbon group was substituted by the carbon of a linear or branched alkyl group (R). Specifically, the arylalkyl group includes an arylalkyl group having 7 to 20 carbon atoms, more specifically, 7 to 12 carbon atoms. Specific examples of the arylalkyl group include benzyl group, phenethyl group and the like.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 알킬아릴기는 직쇄 또는 분지형 알킬기(R)가 방향족 탄화수소기(Ar)의 탄소에 치환된 작용기(R-Ar-)를 의미한다. 구체적으로 상기 알킬아릴기는 탄소수 7 내지 20, 보다 구체적으로는 탄소수 7 내지 12의 알킬아릴기를 포함한다. In addition, unless specifically defined in this specification, an alkylaryl group means the functional group (R-Ar-) in which the linear or branched alkyl group (R) was substituted by the carbon of an aromatic hydrocarbon group (Ar). Specifically, the alkylaryl group includes an alkylaryl group having 7 to 20 carbon atoms, more specifically, 7 to 12 carbon atoms.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 아릴옥시기는 산소와 결합된 아릴기(-OAr)를 의미하며, 이때 상기 아릴기는 앞서 정의한 바와 같다. 구체적으로 상기 아릴옥시기는 탄소수 6 내지 20, 보다 구체적으로는 탄소수 6 내지 12의 아릴옥시기를 포함한다. 상기 아릴옥시기의 구체적인 예로는 페녹시 등을 들 수 있다.In addition, unless specifically defined in the present specification, an aryloxy group means an aryl group (-OAr) bonded with oxygen, wherein the aryl group is as defined above. Specifically, the aryloxy group includes an aryloxy group having 6 to 20 carbon atoms, more specifically, 6 to 12 carbon atoms. Specific examples of the aryloxy group include phenoxy and the like.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 실릴기는 실란(silane)으로부터 유도된 -SiH3 라디칼을 의미하며, 상기 실릴기 내 수소원자 중 적어도 하나가 알킬기 또는 할로겐기 등의 다양한 유기기로 치환될 수도 있다. In addition, unless specifically defined herein, a silyl group means a -SiH 3 radical derived from silane, and at least one of hydrogen atoms in the silyl group may be substituted with various organic groups such as an alkyl group or a halogen group. It may be.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 알킬아미노기는 아미노기(-NH2)에서의 적어도 하나의 수소가 알킬기로 치환된 작용기를 의미하며, 이때 알킬기는 앞서 정의한 바와 같다. 구체적으로 상기 알킬아미노기는 -NR2(이때 R은 각각 수소원자이거나 탄소수 1 내지 20의 직쇄 또는 분지상의 알킬기일 수 있으며, 단 두개의 R 모두가 수소원자는 아니다). In addition, unless specifically defined herein, the alkylamino group means a functional group in which at least one hydrogen in the amino group (-NH 2 ) is substituted with an alkyl group, wherein the alkyl group is as defined above. Specifically, the alkylamino group is —NR 2 (wherein R may each be a hydrogen atom or a straight or branched alkyl group having 1 to 20 carbon atoms, but not both R are hydrogen atoms).
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 아릴아미노기는 아미노기(-NH2)에서의 적어도 하나의 수소가 아릴기로 치환된 작용기를 의미하며, 이때 아릴기는 앞서 정의한 바와 같다.In addition, unless specifically defined in the present specification, an arylamino group means a functional group in which at least one hydrogen in the amino group (-NH 2 ) is substituted with an aryl group, wherein the aryl group is as defined above.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 알킬리덴기(alkylidene group)란 알킬기의 동일한 탄소원자로부터 2개의 수소원자가 제거된 2가의 지방족 탄화수소기를 의미한다. 구체적으로 상기 알킬리덴기는 탄소수 1 내지 20, 보다 구체적으로는 탄소수 1 내지 12의 알킬리덴기를 포함한다. 상기 알킬리덴기의 구체적인 예로는 프로판-2일리덴기(propane-2-ylidene group) 등을 들 수 있다. In addition, unless specifically defined in this specification, an alkylidene group means the bivalent aliphatic hydrocarbon group from which two hydrogen atoms were removed from the same carbon atom of an alkyl group. Specifically, the alkylidene group includes an alkylidene group having 1 to 20 carbon atoms, more specifically, 1 to 12 carbon atoms. Specific examples of the alkylidene group include a propane-2-ylidene group.
또, 본 명세서에 있어서 특별히 정의되지 않는 한, 하이드로카르빌기(hydrocarbyl group)는 알킬기, 아릴기, 알케닐기, 알킬아릴기, 아릴알킬기 등 그 구조에 상관없이 탄소 및 수소로만 이루어진 탄소수 1 내지 60의 1가의 탄화수소기를 의미하고, 하이드로카르빌렌기(hydrocarbylene group)는 탄소수 1 내지 60의 2가의 탄화수소기를 의미한다. In addition, unless specifically defined in the present specification, a hydrocarbyl group has a carbon number of 1 to 60 containing only carbon and hydrogen regardless of its structure, such as an alkyl group, an aryl group, an alkenyl group, an alkylaryl group, an arylalkyl group, etc. It means a monovalent hydrocarbon group, and a hydrocarbylene group means a divalent hydrocarbon group having 1 to 60 carbon atoms.
또, 본 명세서에 있어서 특별히 정의되지 않는 한 메탈로이드 라디칼은, 탄소수 1 내지 20의 하이드로카르빌기로 치환된 14족(4A족) 금속의 메탈로이드 라디칼이다. 메탈로이드 라디칼은 전자적으로 불포화된(electronically unsaturated) 것으로, 루이스 산의 역할을 할 수 있다. 상기 14족 금속은 실리콘(Si), 게르마늄(germanium), 주석(tin) 또는 비소(arsenic) 등일 수 있다. 구체적으로 상기 메탈로이드 라디칼은 트리메틸실릴기(trimethylsilyl), 트리에틸실릴기(triethylsilyl), 에틸디메틸실릴기(ethyldimethylsilyl), 메틸디에틸실릴기(methyldiethylsilyl) 등의 실릴기; 트리페닐게르밀기(triphenylgermyl) 또는 트리메틸게르밀기(trimethylgermyl) 등일 수 있다.In addition, unless specifically defined in this specification, a metalloid radical is a metalloid radical of group 14 (Group 4A) metal substituted by the C1-C20 hydrocarbyl group. Metalloid radicals are electronically unsaturated and can act as Lewis acids. The Group 14 metal may be silicon (Si), germanium (germanium), tin (tin) or arsenic (arsenic) and the like. Specifically, the metalloid radical may include silyl groups such as trimethylsilyl group, triethylsilyl group, triethylsilyl group, ethyldimethylsilyl group and methyldiethylsilyl group; Triphenylgermyl, trimethylgermyl, and the like.
또, 본 명세서에서, 용어 "중합체"란 동일하거나 상이한 유형의 단량체의 중합에 의해 제조되는 중합체 화합물을 의미한다. "중합체"라는 총칭은 "단독중합체", "공중합체", "삼원공중합체" 뿐만 아니라 "혼성중합체"라는 용어를 포함한다. 또 상기 "혼성중합체"란 둘 이상의 상이한 유형의 단량체의 중합에 의해 제조된 중합체를 의미한다. "혼성중합체"라는 총칭은 두 가지의 상이한 단량체로부터 제조된 중합체를 지칭하는데 통상적으로 사용되는 "공중합체"라는 용어뿐만 아니라 세 가지의 상이한 유형의 단량체로부터 제조된 중합체를 지칭하는데 통상적으로 사용되는 "삼원공중합체"라는 용어를 포함한다. 이것은 네 가지 이상의 유형의 단량체의 중합에 의해 제조된 중합체를 포함한다.In addition, in the present specification, the term "polymer" means a polymer compound prepared by polymerization of the same or different types of monomers. The generic term "polymer" includes the terms "homopolymer", "copolymer", "terpolymer" as well as "interpolymer". In addition, the "interpolymer" means a polymer produced by the polymerization of two or more different types of monomers. The term "interpolymer" is used generically to refer to polymers made from three different types of monomers, as well as to the term "copolymer" commonly used to refer to polymers made from two different monomers. Terpolymers ". This includes polymers made by the polymerization of four or more types of monomers.
또, 본 명세서에서, 용어 "준결정질"은, 온도 상승 용리 분별(TREF), 시차 주사 열량 측정법 (DSC) 또는 동등한 기술에 의해 측정되는 1차 전이 온도, 결정 융점 (Tm) 또는 용리점 등을 갖는 중합체를 지칭한다. 준결정질은 결정성에 따라 밀도, Tm, 용리점 등이 달라진다. 용어 "비정질"은 온도상승 용리 분별(TREF), 시차 주사 열량 측정법 (DSC) 또는 동등한 기술에 의해 측정되는 결정 융점이 없는 중합체를 지칭한다.In the present specification, the term "quasicrystalline" refers to primary transition temperature, crystal melting point (Tm), elution point, or the like measured by temperature rising elution fractionation (TREF), differential scanning calorimetry (DSC) or equivalent technique. It refers to a polymer having. As for the semi-crystalline, the density, Tm, elution point, etc. vary depending on the crystallinity. The term “amorphous” refers to a polymer without a crystalline melting point, as measured by elevated temperature elution fractionation (TREF), differential scanning calorimetry (DSC), or equivalent technique.
본 발명의 일 실시예에 따른 올레핀계 중합체는, 겔 투과 크로마토그래피 분석시 단일 피크를 나타내고, 온도상승 용리 분별(TREF) 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 3개의 용리온도, Te1, Te2 및 Te3을 포함한다. The olefin-based polymer according to an embodiment of the present invention exhibits a single peak in the gel permeation chromatography analysis, and three elution temperatures in the temperature range of -20 ° C. to 120 ° C. when measuring the temperature rise elution fractionation (TREF), Te1, Te2. And Te3.
일반적으로 2종 이상의 혼성 촉매를 사용하는 경우, TREF 피크인 Te가 2개 존재할 수 있다. 하지만 이 경우, 혼성 촉매 각각의 활성 및 공중합성을 예측, 조절하기 어렵기 때문에 용도에 맞는 특성을 가지는 올레핀계 중합체를 제조하기 어려울 수 있다. 또한, 상기 2종 이상의 촉매성분이 균일하게 혼합되지 않아, 품질 조절이 어려워질 우려가 있다. In general, when two or more hybrid catalysts are used, two TREF peaks may exist. However, in this case, since it is difficult to predict and control the activity and copolymerizability of each of the hybrid catalysts, it may be difficult to prepare an olefin polymer having properties suitable for the application. In addition, the two or more kinds of the catalyst components are not uniformly mixed, there is a fear that quality control becomes difficult.
이에 대해 본 발명에서는 올레핀계 중합체의 제조시 혼화성이 우수한 이종의 전이금속 화합물을 포함하는 촉매 조성물을 사용하여 중합체내 결정 구조를 제어함으로써 GPC 분석시 단일 피크를 나타내고, TREF 측정시 3개의 용리 온도, Te1, Te2 및 Te3을 가져 우수한 기계적 강도, 특히 현저히 개선된 충격 강도를 갖는 올레핀계 중합체를 제공할 수 있다. In contrast, the present invention shows a single peak in GPC analysis and three elution temperatures in TREF measurement by controlling the crystal structure in the polymer using a catalyst composition containing a heterogeneous transition metal compound having excellent miscibility in preparing an olefin polymer. , Te1, Te2 and Te3 can be provided to provide olefinic polymers with good mechanical strength, in particular significantly improved impact strength.
구체적으로, 본 발명의 일 실시예에 따른 올레핀계 중합체는 제1 준결정질 올레핀계 중합체, 제2 준결정질 올레핀계 중합체 및 제3 준결정질 올레핀계 중합체를 포함하며, 온도 상승 용리 분별(TREF) 측정시, -20 ℃ 내지 120 ℃ 온도 범위에서 제1 준결정질 올레핀계 중합체 피크 (P1), 제2 준결정질 올레핀계 중합체 피크 (P2) 및 제3 준결정질 올레핀계 중합체 피크 (P3)를 갖는다. 이때 각 피크의 용출온도(Te, Elution temperature)는 각각 Te1, Te2 및 Te3으로 표현하였다. Specifically, the olefin polymer according to one embodiment of the present invention includes a first semicrystalline olefin polymer, a second semicrystalline olefin polymer, and a third semicrystalline olefin polymer, and temperature rising elution fractionation (TREF) measurement Having a first semicrystalline olefinic polymer peak (P1), a second semicrystalline olefinic polymer peak (P2) and a third semicrystalline olefinic polymer peak (P3) in the -20 ° C to 120 ° C temperature range. At this time, the elution temperature (Te, Elution temperature) of each peak is represented by Te1, Te2 and Te3, respectively.
일반적인 올레핀계 중합체는 1개의 준결정질 피크를 가지는데 반해 본 발명의 일 실시예에 따른 올레핀계 중합체는 3개의 준결정질의 피크를 가짐으로써 기계적 강도, 특히 충격강도가 증가할 수 있다. In general, an olefinic polymer has one semicrystalline peak, whereas an olefinic polymer according to an embodiment of the present invention may have three semicrystalline peaks, thereby increasing mechanical strength, particularly impact strength.
본 발명에 있어서, 상기 TREF의 측정은 예를 들어, PolymerChar 사의 TREF 기계를 사용하여 측정될 수 있으며, o-디클로로벤젠을 용매로 하여 -20 ℃부터 120 ℃까지 승온시키면서 측정할 수 있다.In the present invention, the measurement of the TREF can be measured using, for example, a TREF machine manufactured by PolymerChar, and can be measured while increasing the temperature from -20 ° C to 120 ° C using o-dichlorobenzene as a solvent.
구체적으로 상기 올레핀계 중합체는 TREF 측정시, 상기 Te1은 Te2 보다, 그리고 Te2는 Te3 보다 상대적으로 낮은 온도에서 존재하며, 올레핀계 중합체의 밀도가 0.850 g/cc 내지 0.910 g/cc 범위에서 상기 Te1은 -20 ℃ 내지 100 ℃ 범위이며, 상기 Te2는 0 ℃ 내지 120 ℃ 범위이며, 상기 Te3는 20 ℃ 내지 120 ℃ 범위에 존재할 수 있다. 본 명세서에서 사용되는 Te(Elution temperature)는 온도에 대한 용출량(dW/dT)으로 표현되는 TREF 용출 곡선에서 각 피크의 최고점의 온도를 의미하며, 분획비는 온도-용출량 그래프의 적분값으로 계산할 수 있다. Specifically, when the olefin polymer is measured at a TREF, Te1 is present at a temperature lower than Te2, and Te2 is relatively lower than Te3. Te2 is in the range of -20 ℃ to 100 ℃, Te2 is in the range of 0 ℃ to 120 ℃, Te3 may be present in the range of 20 ℃ to 120 ℃. As used herein, Te (Elution temperature) means the temperature of the highest point of each peak in the TREF elution curve expressed as elution with respect to temperature (dW / dT), fraction ratio can be calculated as the integral value of the temperature-dissolution graph have.
보다 구체적으로, 상기 올레핀계 중합체는 밀도가 0.86 g/cc 내지 0.88 g/cc 에서 TREF 측정시, 상기 Te1은 -20 ℃ 내지 30 ℃ 범위이고, 상기 Te2는 10 ℃ 내지 80 ℃ 범위이며, 상기 Te3은 40 ℃ 내지 120 ℃ 범위일 수 있다.More specifically, the olefin polymer has a density of 0.86 g / cc to 0.88 g / cc when the TREF is measured, the Te1 ranges from -20 ° C to 30 ° C, the Te2 ranges from 10 ° C to 80 ° C, and the Te3 May range from 40 ° C to 120 ° C.
또, 상기 올레핀계 중합체는 TREF 측정시, 제1 준결정질 올레핀계 중합체 피크 (P1)의 분획비(면적%)가 5% 내지 90%이고, 상기 제2 준결정질 올레핀계 중합체 피크 (P2)의 분획비가 5% 내지 90%이며, 또, 상기 제3 준결정질 올레핀계 중합체 피크 (P3)의 분획비가 5% 내지 90%인 것일 수 있다. 보다 구체적으로는 제1 준결정질 올레핀계 중합체 피크 (P1)의 분획비가 30% 내지 80%, 상기 제2 준결정질 올레핀계 중합체 피크 (P2)의 분획비가 5% 내지 40%, 그리고 상기 제3 준결정질 올레핀계 중합체 피크 (P3)의 분획비가 5% 내지 50%일 수 있다.In addition, the olefin polymer has a fraction ratio (area%) of the first semicrystalline olefin polymer peak (P1) of 5% to 90% when measured by TREF, and the second semicrystalline olefin polymer peak (P2) The fractional ratio is 5% to 90%, and the fractional ratio of the third semicrystalline olefin polymer peak (P3) may be 5% to 90%. More specifically, the fractional ratio of the first semicrystalline olefinic polymer peak (P1) is 30% to 80%, the fractional ratio of the second semicrystalline olefinic polymer peak (P2) is 5% to 40%, and the third quaternary The fractional ratio of the crystalline olefinic polymer peak (P3) may be 5% to 50%.
상기, 분획비를 계산함에 있어서 온도에 대한 용출량(dW/dT) 그래프에서 각 피크의 시작점은 base line을 기준으로 중합체가 용출되기 시작하는 지점으로 정의하며, 각 피크의 끝점은 base line을 기준으로 중합체가 용출이 종료되는 지점으로 정의하였다. 이때 제1 준결정질 올레핀계 중합체 피크 (P1)와 제2 준결정질 올레핀계 중합체 피크 (P2)가 일부 중첩되는 경우 중첩 영역에서 용출량 (dW/DT)의 값이 최저가 되는 지점을 P1 피크의 끝점과 P2 피크의 시작점으로 정의할 수 있다. 또 -20 ℃ 내지 -10 ℃에서 표현되는 피크는 비정질 중합체와 저결정성 중합체의 혼합으로 나타나므로 이 위치에 나타나는 피크는 P1 피크의 분획비에 더하여 처리할 수 있다.In calculating the fraction ratio, the starting point of each peak in the elution rate (dW / dT) graph with respect to temperature is defined as the point at which the polymer starts to elute based on the base line, and the end point of each peak is based on the base line. The polymer was defined as the point at which elution ends. In this case, when the first semi-crystalline olefin polymer peak (P1) and the second semi-crystalline olefin polymer peak (P2) partially overlap each other, the point where the value of the elution amount (dW / DT) is lowest in the overlap region is determined by the end point of the peak of P1. It can be defined as the starting point of the P2 peak. In addition, since the peak expressed at -20 ° C to -10 ° C appears as a mixture of an amorphous polymer and a low crystalline polymer, the peak appearing at this position can be treated in addition to the fraction ratio of the P1 peak.
또한, 상기 올레핀계 중합체는, 시차 주사 열량 측정(DSC) 곡선에서 얻어지는 결정화 온도(Tc)인 Tc1, Tc2 및 Tc3을 포함할 수 있다. 구체적으로, 상기 올레핀계 중합체는 밀도가 0.850 g/cc 내지 0.910 g/cc 에서 Tc1은 5℃ 이하, Tc2는 0 ℃ 내지 60 ℃, 그리고 Tc3은 80 ℃ 내지 130 ℃일 수 있다.In addition, the olefin polymer may include Tc1, Tc2, and Tc3, which are crystallization temperatures (Tc) obtained from a differential scanning calorimetry (DSC) curve. Specifically, the olefin polymer may have a density of 0.850 g / cc to 0.910 g / cc, Tc1 of 5 ° C. or less, Tc2 of 0 ° C. to 60 ° C., and Tc3 of 80 ° C. to 130 ° C.
일반적인 메탈로센 촉매로 중합체를 제조하는 경우 1개의 Tc이 존재한다. 그러나, Tc이 3개 존재하게 되면 각각 다른 온도에서 결정이 용융, 결정화되기 때문에 열안정성 및 기계적 강도가 증가할 수 있다. 본 명세서에서 사용되는 Tc은 시차주사 열량분석계 (DSC)의 온도-열류량 그래프에서 열류량(heat flow)의 냉각 곡선의 피크, 즉 냉각시의 발열 피크 온도를 의미한다. 구체적으로 상기 Tc는 PerKinElmer사에서 제조한 시차 주사 열량계(DSC: Differential Scanning Calorimeter 6000)를 이용하여, 측정 용기에 시료를 약 0.5mg 내지 10mg 충진하고, 질소 가스 유량을 20ml/min으로 하며, 측정 시료의 열 이력을 동일하게 하기 위하여 20℃/min의 승온 속도로 0 ℃에서 150 ℃까지 승온한 후, 그 상태에서 2분간 유지하고, 다시 150 ℃에서 -100 ℃의 온도까지 10℃/min의 속도로 냉각시키면서 DSC로 측정한 열류량(heat flow)의 냉각 곡선의 피크값이다.One Tc is present when preparing a polymer with a common metallocene catalyst. However, when three Tc are present, thermal stability and mechanical strength may increase because the crystals melt and crystallize at different temperatures. As used herein, Tc means the peak of the cooling curve of the heat flow in the temperature-heat flow graph of the differential scanning calorimetry (DSC), that is, the exothermic peak temperature at the time of cooling. Specifically, the Tc is filled with about 0.5 mg to 10 mg of a sample in a measuring container with a differential scanning calorimeter (DSC: Differential Scanning Calorimeter 6000) manufactured by PerKinElmer, and a nitrogen gas flow rate of 20 ml / min. In order to make the heat history equal to, the temperature was raised from 0 ° C to 150 ° C at a heating rate of 20 ° C / min, then maintained for 2 minutes in that state, and again at a temperature of 10 ° C / min from 150 ° C to -100 ° C. It is the peak value of the cooling curve of the heat flow measured by DSC, cooling by.
본 발명의 일 실시예에 따른 올레핀계 중합체는 ASTM D-792에 따른 측정시 0.850 g/cc 내지 0.910 g/cc의 저밀도를 나타낸다. The olefin polymer according to one embodiment of the present invention exhibits a low density of 0.850 g / cc to 0.910 g / cc as measured according to ASTM D-792.
통상 올레핀계 중합체의 밀도는 중합시 사용되는 단량체의 종류와 함량, 중합도 등의 영향을 받으며, 공중합체의 경우 공단량체의 함량에 의한 영향이 크다. 본 발명에서는 특징적 구조를 갖는 이종 촉매의 혼합 사용으로 많은 양의 공단량체 도입이 가능하다. 그 결과, 본 발명의 일 실시예에 따른 올레핀계 중합체는 상기한 바와 같은 범위의 저밀도를 가지며, 그 결과로서 우수한 충격강도를 나타낼 수 있다. 보다 구체적으로, 상기 올레핀계 중합체는 0.86 g/cc 내지 0.88 g/cc의 밀도를 가질 수 있으며, 이 경우 밀도 제어에 따른 기계적 물성 유지 및 충격강도 개선 효과가 보다 현저하다.In general, the density of the olefin-based polymer is affected by the type and content of the monomers used in the polymerization, the degree of polymerization, and the like. In the case of the copolymer, the density of the olefin polymer is largely affected by the content of the comonomer. In the present invention, a large amount of comonomers can be introduced by using a mixed catalyst having a heterogeneous structure. As a result, the olefin polymer according to one embodiment of the present invention has a low density in the range as described above, and as a result can exhibit excellent impact strength. More specifically, the olefin-based polymer may have a density of 0.86 g / cc to 0.88 g / cc, in this case, the effect of maintaining the mechanical properties and the impact strength improvement by the density control is more remarkable.
또, 본 발명의 일 실시예에 따른 올레핀계 중합체는 ASTM D1238에 따라 190℃, 2.16kg 하중 조건에서 측정한 용융 지수(MI)가 0.1 g/10min 내지 100 g/10min, 보다 구체적으로는 0.1 g/10min 내지 50 g/10min, 보다 더 구체적으로는 0.1 g/10min 내지 30 g/10min 일 수 있다.In addition, the olefin polymer according to one embodiment of the present invention has a melt index (MI) of 0.1 g / 10 min to 100 g / 10 min, more specifically 0.1 g measured at 190 ° C. and 2.16 kg load conditions according to ASTM D1238. / 10min to 50 g / 10min, even more specifically 0.1 g / 10min to 30 g / 10min.
또, 올레핀계 중합체의 기계적 물성 및 충격강도, 그리고 성형성에 영향을 미치는 용융지수(MI)는 그 중합과정에서 사용되는 촉매 사용량을 조절함으로써 제어될 수 있다. 본 발명의 일 실시예에 따른 올레핀계 중합체는 상기한 바와 같은 저밀도 조건에서 측정한 용융 지수(MI)가 상기한 범위의 값을 나타냄으로써 우수한 충격강도를 나타낼 수 있다.In addition, the melt index (MI) affecting the mechanical properties, impact strength, and moldability of the olefin polymer can be controlled by controlling the amount of catalyst used in the polymerization process. The olefin-based polymer according to an embodiment of the present invention may exhibit excellent impact strength by showing a melt index (MI) measured in the low density condition as described above in the above-described range.
또, 2종 이상의 중합체가 혼합될 경우 통상 분자량 분포(MWD; Molecular Weight Distribution)가 증가하고, 그 결과로서 충격 강도와 기계적 물성 등이 감소하게 되며 블로킹 현상 등이 일어나게 된다. 이에 대해 본 발명의 일 실시예에 따른 올레핀계 중합체는 특징적 구조를 갖는 이종의 촉매를 혼합 사용함으로써, DSC 곡선상에서 적어도 3개 이상의 결정화 온도를 가지나, GPC 측정시 분자량 분포 곡선에서 모노모달형의 단일 피크를 갖는 가지며, 좁은 분자량 분포를 나타낸다. 그 결과 우수한 충격 강도를 나타낼 수 있다. 구체적으로, 상기 올레핀계 중합체는 중량평균 분자량(Mw)과 수평균 분자량(Mn)의 비(Mw/Mn)인 분자량 분포(MWD)가 1.5 내지 4.0, 구체적으로는 1.5 내지 3.0일 수 있다. 또, 상기 올레핀계 중합체는 상기한 분자량 분포 범위 내에서 중량 평균 분자량(Mw)이 10,000 g/mol 내지 500,000 g/mol, 보다 구체적으로는 20,000 g/mol 내지 200,000 g/mol일 수 있다. In addition, when two or more kinds of polymers are mixed, molecular weight distribution (MWD) is usually increased, and as a result, impact strength and mechanical properties are reduced, and blocking phenomenon occurs. In contrast, the olefin-based polymer according to an embodiment of the present invention has at least three or more crystallization temperatures on a DSC curve by using heterogeneous catalysts having a characteristic structure, but is monomodal in a molecular weight distribution curve when measuring GPC. It has a peak and shows a narrow molecular weight distribution. As a result, excellent impact strength can be exhibited. Specifically, the olefin polymer may have a molecular weight distribution (MWD) of 1.5 to 4.0, specifically 1.5 to 3.0, which is the ratio (Mw / Mn) of the weight average molecular weight (Mw) and the number average molecular weight (Mn). In addition, the olefin polymer may have a weight average molecular weight (Mw) of 10,000 g / mol to 500,000 g / mol, more specifically 20,000 g / mol to 200,000 g / mol within the above molecular weight distribution range.
본 발명에 있어서, 중량평균 분자량(Mw)과 수평균 분자량(Mn)은 겔 투과형 크로마토그래피(GPC: gel permeation chromatography)로 분석되는 폴리스티렌 환산 분자량이다.In the present invention, the weight average molecular weight (Mw) and the number average molecular weight (Mn) are polystyrene equivalent molecular weights analyzed by gel permeation chromatography (GPC).
보다 구체적으로, 본 발명의 일 실시예에 따른 올레핀계 중합체는 하기 (1) 내지 (4)의 요건을 동시에 충족하는 것일 수 있다:More specifically, the olefinic polymer according to one embodiment of the present invention may be one that satisfies the following requirements (1) to (4) simultaneously:
(1) 밀도: 0.850 g/cc 내지 0.910 g/cc (1) Density: 0.850 g / cc to 0.910 g / cc
(2) 190 ℃, 2.16 kg 하중 조건에서 측정한 용융지수: 0.1 g/10min 내지 100 g/10min,(2) Melt index measured at 190 ° C. and 2.16 kg loading conditions: 0.1 g / 10 min to 100 g / 10 min,
(3) 분자량 분포(MWD): 1.5 내지 4.0,(3) molecular weight distribution (MWD): 1.5 to 4.0,
(4) 온도상승 용리 분별 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 3개의 올레핀계 중합체의 용리온도 Te1, Te2 및 Te3을 포함함(4) Temperature Elution Elution temperature Te1, Te2 and Te3 of three olefinic polymers are included in the temperature range of -20 ° C to 120 ° C for fractional measurement.
이와 같이 밀도, 용융지수, MWD 및 용리온도 조건을 동시에 충족함으로써 보다 더 우수한 충격 강도 특성을 나타낼 수 있다. Thus, by simultaneously meeting the density, melt index, MWD and elution temperature conditions it can exhibit more excellent impact strength characteristics.
보다 더 구체적으로는, 밀도 0.86 g/cc 내지 0.88 g/cc, 190 ℃, 2.16 kg 하중 조건에서 측정한 용융지수 0.1 g/10min 내지 30 g/10min, 분자량 분포 1.5 내지 3.0이며, TREF 측정시 상기 Te1은 -20 ℃ 내지 30 ℃ 범위이고, 상기 Te2는 10 ℃ 내지 80 ℃ 범위이며, 상기 Te3은 40 ℃ 내지 120 ℃ 범위이며, 제1 준결정질 올레핀계 중합체 피크 (P1)의 분획비가 30% 내지 80%, 상기 제2 준결정질 올레핀계 중합체 피크 (P2)의 분획비가 5% 내지 40%, 그리고 상기 제3 준결정질 올레핀계 중합체 피크 (P3)의 분획비가 5% 내지 50%인 것일 수 있다.More specifically, the melt index measured at a density of 0.86 g / cc to 0.88 g / cc, 190 ° C., 2.16 kg load conditions, 0.1 g / 10 min to 30 g / 10 min, molecular weight distribution 1.5 to 3.0, Te1 is in the range of -20 ° C to 30 ° C, Te2 is in the range of 10 ° C to 80 ° C, Te3 is in the range of 40 ° C to 120 ° C, and the fractional ratio of the first semicrystalline olefin polymer peak (P1) is 30% to 80%, the fractional ratio of the second semicrystalline olefinic polymer peak (P2) may be 5% to 40%, and the fractional ratio of the third semicrystalline olefinic polymer peak (P3) may be 5% to 50%.
상기한 바와 같은 물성을 충족하는 올레핀계 중합체는 우수한 기계적 강도, 특히 충격강도를 나타냄에 따라, 자동차용, 전선용, 완구용, 섬유용, 의료용 등의 재료과 같은 각종 포장용, 건축용, 생활용품 등의 다양한 분야 및 용도에서의 중공성형용, 압출성형용 또는 사출성형용으로 유용하다.Olefin-based polymers satisfying the above-described physical properties exhibit excellent mechanical strength, particularly impact strength, and thus can be used for various packaging, construction, and household goods such as materials for automobiles, electric wires, toys, textiles, medical, and the like. It is useful for blow molding, extrusion molding or injection molding in various fields and applications.
상기와 같은 올레핀계 중합체는 하기 화학식 1의 전이금속 화합물 및 하기 화학식 2의 전이금속 화합물을 포함하는 촉매 조성물을 이용하여 올레핀계 단량체를 중합하여 얻어질 수 있다. 이에 따라 본 발명의 다른 일 실시예에 따르면 상기 올레핀계 중합체의 제조방법이 제공된다.The olefin polymer as described above may be obtained by polymerizing an olefin monomer using a catalyst composition comprising a transition metal compound of Formula 1 and a transition metal compound of Formula 2. Accordingly, according to another embodiment of the present invention, a method for preparing the olefin polymer is provided.
<화학식 1> <Formula 1>
Figure PCTKR2016002938-appb-I000001
Figure PCTKR2016002938-appb-I000001
<화학식 2><Formula 2>
Figure PCTKR2016002938-appb-I000002
Figure PCTKR2016002938-appb-I000002
상기 화학식 1 및 2에 있어서, In Chemical Formulas 1 and 2,
M1 및 M2는 각각 독립적으로 4족 전이금속이고,M 1 and M 2 are each independently a Group 4 transition metal,
Q1, Q2, Q3 및 Q4는 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 탄소수 1 내지 20의 알킬아미도기, 탄소수 6 내지 20의 아릴아미도기, 및 탄소수 1 내지 20의 알킬리덴기로 이루어진 군에서 선택되고, Q 1, Q 2 , Q 3 and Q 4 each independently represent a hydrogen atom, a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, and an aryl having 6 to 20 carbon atoms. Group selected from the group consisting of an alkylaryl group having 7 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms, an alkylamido group having 1 to 20 carbon atoms, an arylamido group having 6 to 20 carbon atoms, and an alkylidene group having 1 to 20 carbon atoms Become,
R1 내지 R6은 각각 독립적으로, 수소원자, 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 및 탄소수 1 내지 20의 하이드로카르빌로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되거나; 또는 상기 R1 내지 R6 중 인접하는 2 이상의 작용기가 서로 연결되어, 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환되거나 또는 비치환된, 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성하며; R 1 to R 6 are each independently a hydrogen atom, a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, and 7 to 7 carbon atoms. Or a metalloid radical of a Group 14 metal substituted with 20 alkylaryl groups, arylalkyl groups having 7 to 20 carbon atoms, and hydrocarbyl having 1 to 20 carbon atoms; Or at least two adjacent functional groups of R 1 to R 6 are connected to each other and selected from a group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms; An aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms, unsubstituted or substituted with one substituent;
R7 내지 R11은 각각 독립적으로 수소원자, 할로겐기, 아미노기, (탄소수 1 내지 20의 알킬)아미노기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기 및 탄소수 1 내지 20의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되거나; 또는 R7 내지 R11 중 서로 인접하는 2 이상의 작용기가 서로 연결되어 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환되거나 또는 비치환된, 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있고;R 7 to R 11 are each independently a hydrogen atom, a halogen group, an amino group, an alkyl group having 1 to 20 carbon atoms, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, a cycloalkyl group having 3 to 20 carbon atoms, Or a metalloid radical of a Group 14 metal substituted with an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, an arylalkyl group having 7 to 20 carbon atoms and a hydrocarbyl group having 1 to 20 carbon atoms; Or two or more functional groups adjacent to each other in R 7 to R 11 are connected to each other and selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms An aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms, which is unsubstituted or substituted with a substituent of;
R21 내지 R27은 각각 독립적으로, 수소원자, 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기, 탄소수 1 내지 20의 헤테로 하이드로카르빌기, 및 탄소수 1 내지 20의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되고, 구체적으로는 R21 내지 R27은 각각 독립적으로, 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 탄소수 7 내지 20의 아릴알킬기, 및 탄소수 1 내지 20의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되며;R 21 to R 27 are each independently a group 14 metal substituted with a hydrogen atom, a halogen group, a C1-C20 hydrocarbyl group, a C1-C20 heterohydrocarbyl group, and a C1-C20 hydrocarbyl group It is selected from the group consisting of metalloid radical of, specifically R 21 to R 27 are each independently a hydrogen atom, a halogen group, a silyl group, an alkyl group of 1 to 20 carbon atoms, an alkenyl group of 2 to 20 carbon atoms, 3 carbon atoms Metalloid radicals of Group 14 metals substituted with a cycloalkyl group of 20 to 20, an aryl group of 6 to 20 carbon atoms, an alkylaryl group of 7 to 20 carbon atoms, an arylalkyl group of 7 to 20 carbon atoms, and a hydrocarbyl group of 1 to 20 carbon atoms. It is selected from the group consisting of;
X1 내지 X3은 각각 독립적으로 수소원자, 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기 및 탄소수 1 내지 20의 헤테로하이드로카르빌기로 이루어진 군에서 선택되며, 보다 구체적으로는 수소원자, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 20의 알킬)아미노기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 3 내지 20의 사이클로알킬기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되거나; 또는 X1 내지 X3 중 인접하는 둘 이상의 작용기는 서로 연결되어, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 20의 알킬)아미노기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환된 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성하며, 그리고 X 1 to X 3 are each independently selected from the group consisting of a hydrogen atom, a halogen group, a hydrocarbyl group of 1 to 20 carbon atoms and a heterohydrocarbyl group of 1 to 20 carbon atoms, more specifically a hydrogen atom, a halogen group, Silyl group, amino group, (alkyl of 1 to 20 carbon atoms) amino group, alkyl group of 1 to 20 carbon atoms, alkenyl group of 2 to 20 carbon atoms, cycloalkyl group of 3 to 20 carbon atoms, aryl group of 6 to 20 carbon atoms, 7 to 20 carbon atoms An alkylaryl group and an arylalkyl group having 7 to 20 carbon atoms; Or two or more adjacent functional groups of X 1 to X 3 are connected to each other, such as a halogen group, a silyl group, an amino group, an (alkyl having 1 to 20 carbon atoms) amino group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and An aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms substituted with at least one substituent selected from the group consisting of 6 to 20 carbon atoms, and
Z는 인(P), 비소(As) 또는 안티몬(Sb)이다.Z is phosphorus (P), arsenic (As) or antimony (Sb).
상기 화학식 1의 전이금속 화합물은 페닐렌 브릿지에 연결되어 있는 아미노기가 도입된 시클로펜타디에닐(Cp) 리간드에 의해 금속 자리가 연결되어 있어 구조적으로 Cp-M1-N 각도는 좁고, 모노머가 접근하는 Q1-M1-Q2 각도는 넓게 유지하는 특징을 가진다. 또한, 실리콘 브릿지에 의해 연결된 CGC 구조와는 달리 상기 화학식 1로 표시되는 화합물 구조에서는 고리 형태의 결합에 의해 벤조티오펜이 융합된 시클로펜타디엔(Cp), 페닐렌 브릿지, 질소 및 금속(M1) 자리가 순서대로 연결되어 더욱 안정하고 단단한 5각형의 링 구조를 이룬다. 즉, 아미노기의 질소 원자가 페닐렌 브릿지와 고리 형태로 2개의 결합에 의해 연결되어 보다 견고한 착화합물 구조를 가지게 된다. 따라서 이러한 화합물들을 메틸알루미녹산 또는 B(C6F5)3와 같은 조촉매와 반응시켜 활성화한 다음에 올레핀 중합에 적용시, 높은 중합 온도에서도 고활성, 고분자량 및 고공중합성 등의 특징을 갖는 폴리올레핀을 생성하는 것이 가능하다. 특히, 촉매의 구조적인 특징상 저밀도의 폴리에틸렌 뿐만 아니라 많은 양의 알파-올레핀이 도입 가능하기 때문에 밀도 0.910 g/cc 이하, 보다 구체적으로는 밀도 0.855 g/cc 내지 0.910 g/cc 수준의 저밀도 폴리올레핀 공중합체의 제조가 가능하다. 특히, 상기 전이금속 화합물을 포함하는 촉매 조성물을 사용하여 CGC 대비 MWD가 좁고 공중합성이 우수하며 저밀도 영역에서도 고분자량을 갖는 중합체의 제조가 가능하다. In the transition metal compound of Formula 1, the metal site is linked by a cyclopentadienyl (Cp) ligand to which an amino group is linked to a phenylene bridge, so that the Cp-M 1 -N angle is structurally narrow, and a monomer is approached. Q 1 -M 1 -Q 2 angle is characterized by keeping wide. In addition, unlike the CGC structure linked by the silicon bridge, in the compound structure represented by Formula 1, cyclopentadiene (Cp), phenylene bridge, nitrogen, and metal (M 1 ) in which benzothiophene is fused by a ring-shaped bond. ) The seats are connected in order to form a more stable and rigid five-point ring structure. That is, the nitrogen atom of the amino group is connected to the phenylene bridge by two bonds in the form of a ring to have a more complex complex structure. Therefore, when these compounds are reacted with methylaluminoxane or a cocatalyst such as B (C 6 F 5 ) 3 to be activated and then applied to olefin polymerization, they exhibit characteristics such as high activity, high molecular weight and high copolymerization even at high polymerization temperatures. It is possible to produce polyolefins having. In particular, due to the structural characteristics of the catalyst, low density polyethylene as well as a large amount of alpha-olefins can be introduced, so that a low density polyolefin air having a density of 0.910 g / cc or less, more specifically, a density of 0.855 g / cc to 0.910 g / cc The preparation of the coalescence is possible. In particular, by using the catalyst composition containing the transition metal compound, it is possible to prepare a polymer having a narrow MWD compared to CGC, excellent copolymerizability, and high molecular weight even in a low density region.
또한, 벤조티오펜이 융합된 시클로펜타디에닐 및 퀴놀린계에 다양한 치환체를 도입할 수 있는데, 이는 궁극적으로 금속 주위의 전자적, 입체적 환경을 쉽게 제어함으로써 생성되는 폴리올레핀의 구조 및 물성 등이 조절 가능하다. 상기 화학식 1의 화합물은 올레핀 단량체의 중합용 촉매를 제조하는 데 사용되는 것이 바람직하나, 이에 한정되지는 않으며 기타 상기 전이금속 화합물이 사용될 수 있는 모든 분야에 적용이 가능하다.In addition, various substituents may be introduced into the benzothiophene-fused cyclopentadienyl and quinoline-based compounds, which ultimately control the structure and physical properties of polyolefins produced by easily controlling the electronic and three-dimensional environment around the metal. . The compound of Formula 1 is preferably used to prepare a catalyst for the polymerization of the olefin monomer, but is not limited thereto and may be applicable to all fields in which the transition metal compound may be used.
한편, 상기 화학식 1의 전이금속 화합물과 혼합 사용되는 상기 화학식 2의 전이금속 화합물은 황이 포함된 헤테로고리를 가지는 사이클로펜타디엔의 유도체에 포스핀이미드 리간드(phosphinimide ligands)와 같은 이미드계 리간드가 연결된 구조를 갖는다. 이로 인해 에틸렌과, 옥텐, 헥센 또는 부텐 등의 올레핀계 중합체의 공중합시 촉매로서 이용될 경우 높은 촉매 활성을 나타내어 높은 분자량, 낮은 밀도 등 그 자체로서도 우수한 물성적 특성을 갖는 올레핀계 중합체의 제조가 가능하며, 상기 화학식 1의 전이금속 화합물과의 혼화성이 우수하여 촉매 조성물 내에 균일 혼합됨으로써, 촉매 조성물의 촉매 활성을 더욱 향상시킬 수 있다.Meanwhile, the transition metal compound of Formula 2, which is used in combination with the transition metal compound of Formula 1, is an imide-based ligand such as phosphinimide ligands connected to a derivative of cyclopentadiene having a heterocycle including sulfur. Has a structure. As a result, when used as a catalyst when copolymerizing ethylene and olefinic polymers such as octene, hexene or butene, it exhibits high catalytic activity and enables the production of olefinic polymers having excellent physical properties such as high molecular weight and low density. In addition, it is excellent in the miscibility with the transition metal compound of Formula 1 and uniformly mixed in the catalyst composition, it is possible to further improve the catalytic activity of the catalyst composition.
구체적으로, 상기 화학식 1에 있어서, M1은 Ti, Hf 또는 Zr일 수 있다. Specifically, in Formula 1, M 1 may be Ti, Hf or Zr.
또, 상기 화학식 1에서 Q1 및 Q2는 각각 독립적으로 수소원자, 할로겐기 및 탄소수 1 내지 6의 알킬기로 이루어진 군에서 선택되는 것일 수 있다.In addition, in Formula 1, Q 1 and Q 2 may be each independently selected from the group consisting of a hydrogen atom, a halogen group and an alkyl group having 1 to 6 carbon atoms.
또, 상기 화학식 1에서 R1 및 R2는 탄소수 1 내지 20의 알킬기이고, 보다 구체적으로는 탄소수 1 내지 6의 알킬기이며, 보다 더 구체적으로는 메틸기일 수 있다.In addition, in Formula 1, R 1 and R 2 may be an alkyl group having 1 to 20 carbon atoms, more specifically, an alkyl group having 1 to 6 carbon atoms, and even more specifically, a methyl group.
또, 상기 화학식 1에 있어서, R3 내지 R6은 각각 독립적으로, 수소원자; 탄소수 1 내지 20의 알킬기; 또는 탄소수 2 내지 20의 알케닐기이고, 보다 구체적으로는 수소원자 또는 탄소수 1 내지 20의 알킬기이며, 보다 더 구체적으로는 각각 수소원자일 수 있다.In Formula 1, R 3 to R 6 are each independently a hydrogen atom; An alkyl group having 1 to 20 carbon atoms; Or an alkenyl group having 2 to 20 carbon atoms, more specifically a hydrogen atom or an alkyl group having 1 to 20 carbon atoms, and even more specifically, a hydrogen atom.
또, 상기 화학식 1에서, R7 내지 R10은 각각 독립적으로 수소원자 또는 탄소수 1 내지 6의 알킬기일 수 있다.In addition, in Chemical Formula 1, R 7 to R 10 may be each independently a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.
또, 상기 화학식 1에서 R11은 비치환 또는 치환된 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 7 내지 20의 알킬아릴기일 수 있으며, 이때, 상기 치환기는 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 1 내지 20의 알콕시기, 및 탄소수 6 내지 20의 아릴옥시기로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 것일 수 있다. 또, 상기 화학식 1에서 R11은 R11과 인접하는 R10과 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성할 수 있다. 이때, 상기 지방족 고리 또는 방향족 고리는 할로겐기, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 및 탄소수 6 내지 20의 아릴기로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 치환기로 치환될 수 있다.In addition, in Formula 1, R 11 may be an unsubstituted or substituted alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, or an alkylaryl group having 7 to 20 carbon atoms, wherein the substituent is a halogen group, carbon number It may be any one or two or more selected from the group consisting of an alkyl group of 1 to 20, an alkenyl group of 2 to 20 carbon atoms, an alkoxy group of 1 to 20 carbon atoms, and an aryloxy group of 6 to 20 carbon atoms. In addition, in Formula 1, R 11 may be connected to R 10 adjacent to R 11 to form an aliphatic ring having 5 to 20 carbon atoms or an aromatic ring having 6 to 20 carbon atoms. In this case, the aliphatic ring or aromatic ring may be substituted with any one or two or more substituents selected from the group consisting of a halogen group, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. have.
보다 구체적으로, 상기 화학식 1로 표시되는 전이금속 화합물은 R11이 비치환 또는 치환된 탄소수 1 내지 20의 알킬기, 탄소수 6 내지 20의 아릴기, 또는 탄소수 7 내지 20의 알킬아릴기인 경우, 예를 들어 하기 화학식으로 표시되는 화합물일 수 있으며, 이들 중 어느 하나 또는 2 이상의 혼합물이 사용될 수 있다:If More specifically, the transition metal compound is R 11 is an aryl group, or an alkyl aryl group having 7 to 20 in the alkyl group of the unsubstituted or substituted, having 1 to 20 carbon atoms, having 6 to 20 carbon atoms represented by the formula 1, e. For example, the compound may be represented by the following Chemical Formula, and any one or a mixture of two or more thereof may be used:
Figure PCTKR2016002938-appb-I000003
Figure PCTKR2016002938-appb-I000003
또, 상기 화학식 1로 표시되는 전이금속 화합물은 R11이 R11과 인접하는 R10과 서로 연결되어 탄소수 5 내지 20의 지방족 고리 또는 탄소수 6 내지 20의 방향족 고리를 형성하는 경우, 하기 화학식 3으로 표시되는 화합물일 수 있다:In the case where the transition metal compound represented by the formula (1) are connected to each other and R 10 to R 11 are adjacent to the R 11 form a ring of 5 to 20 carbon atoms aliphatic ring or a carbon number of 6 to 20, to the general formula (3) It may be a compound represented:
<화학식 3> <Formula 3>
Figure PCTKR2016002938-appb-I000004
Figure PCTKR2016002938-appb-I000004
상기 화학식 3에 있어서, In Chemical Formula 3,
M1, Q1, Q2, R1 내지 R9는 상기 화학식 1에서 정의한 바와 같고, M 1 , Q 1 , Q 2 , R 1 to R 9 are the same as defined in Chemical Formula 1,
Cy는 질소(N) 포함 탄소수 4 또는 5의 지방족 고리기이고, Cy is an aliphatic ring group having 4 or 5 carbon atoms including nitrogen (N),
R, R12 및 R13은 각각 독립적으로 수소원자, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기. 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되고;R, R 12 and R 13 each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, and an alkenyl group having 2 to 20 carbon atoms. An aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, and an arylalkyl group having 7 to 20 carbon atoms;
m은 Cy가 탄소수 4의 지방족 고리기인 경우 0 내지 2의 정수이고, Cy가 탄소수 5의 지방족 고리인 경우 0 내지 4의 정수일 수 있다.m may be an integer of 0 to 2 when Cy is an aliphatic ring group having 4 carbon atoms, and may be an integer of 0 to 4 when Cy is an aliphatic ring having 5 carbon atoms.
보다 구체적으로 상기 화학식 3의 화합물은 하기 화학식 3a 또는 3b의 화합물일 수 있다: More specifically, the compound of Formula 3 may be a compound of Formula 3a or 3b:
<화학식 3a><Formula 3a>
Figure PCTKR2016002938-appb-I000005
Figure PCTKR2016002938-appb-I000005
상기 화학식 3a에 있어서, Ra 내지 Rd는 각각 독립적으로 수소원자, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기, 탄소수 7 내지 20의 알킬아릴기, 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되고, 나머지 치환기는 상기 화학식 1에서 정의한 바와 같으며, In Formula 3a, R a to R d are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an alkylaryl group having 7 to 20 carbon atoms, And an arylalkyl group having 7 to 20 carbon atoms, and the remaining substituents are as defined in Chemical Formula 1,
<화학식 3b><Formula 3b>
Figure PCTKR2016002938-appb-I000006
Figure PCTKR2016002938-appb-I000006
상기 화학식 3b에 있어서, In Chemical Formula 3b,
Re 및 Rf는 각각 독립적으로 수소원자, 탄소수 1 내지 20의 알킬기, 탄소수 2 내지 20의 알케닐기, 탄소수 6 내지 20의 아릴기. 탄소수 7 내지 20의 알킬아릴기, 및 탄소수 7 내지 20의 아릴알킬기로 이루어진 군에서 선택되며, 나머지 치환기는 화학식 1에서 정의한 바와 동일하다. R e and R f each independently represent a hydrogen atom, an alkyl group having 1 to 20 carbon atoms, an alkenyl group having 2 to 20 carbon atoms, and an aryl group having 6 to 20 carbon atoms. It is selected from the group consisting of an alkylaryl group having 7 to 20 carbon atoms, and an arylalkyl group having 7 to 20 carbon atoms, the remaining substituents are the same as defined in the formula (1).
상기 화학식 3의 전이금속 화합물의 구체예는 하기 화학식으로 표시되는 화합물일 수 있다:Specific examples of the transition metal compound of Formula 3 may be a compound represented by the following formula:
Figure PCTKR2016002938-appb-I000007
Figure PCTKR2016002938-appb-I000007
상기 화학식 1의 전이금속 화합물은 하기 a) 내지 d) 단계에 의하여 제조될 수 있다:The transition metal compound of Formula 1 may be prepared by the following steps a) to d):
a) 하기 화학식 4로 표시되는 아민계 화합물과 알킬리튬을 반응시킨 후, 보호기(-R0, protecting group)를 포함하는 화합물을 첨가하여 하기 화학식 5로 표시되는 화합물을 제조하는 단계;a) preparing a compound represented by the following Chemical Formula 5 by reacting an amine compound represented by the following Chemical Formula 4 with alkyllithium, and then adding a compound including a protecting group (-R 0 );
b) 상기 화학식 5로 표시되는 화합물과 알킬리튬을 반응시킨 후, 하기 화학식 6으로 표시되는 케톤계 화합물을 첨가하여 하기 화학식 7로 표시되는 아민계 화합물을 제조하는 단계;b) preparing a amine compound represented by the following Chemical Formula 7 by reacting the compound represented by Chemical Formula 5 with alkyllithium, and then adding a ketone compound represented by Chemical Formula 6;
c) 상기 화학식 7로 표시되는 화합물과 n-부틸리튬을 반응시켜 하기 화학식 8로 표시되는 디리튬 화합물을 제조하는 단계; 및c) preparing a dilithium compound represented by Chemical Formula 8 by reacting the compound represented by Chemical Formula 7 with n-butyllithium; And
d) 상기 화학식 8로 표시되는 화합물과 MCl4(M=4족 전이금속) 및 유기 리튬 화합물을 반응시켜 상기 화학식 1로 표시되는 전이금속 화합물을 제조하는 단계 d) preparing a transition metal compound represented by Chemical Formula 1 by reacting the compound represented by Chemical Formula 8 with MCl 4 (M = group 4 transition metal) and an organolithium compound.
<화학식 4><Formula 4>
Figure PCTKR2016002938-appb-I000008
Figure PCTKR2016002938-appb-I000008
<화학식 5><Formula 5>
Figure PCTKR2016002938-appb-I000009
Figure PCTKR2016002938-appb-I000009
<화학식 6> <Formula 6>
Figure PCTKR2016002938-appb-I000010
Figure PCTKR2016002938-appb-I000010
<화학식 7> <Formula 7>
Figure PCTKR2016002938-appb-I000011
Figure PCTKR2016002938-appb-I000011
<화학식 8><Formula 8>
Figure PCTKR2016002938-appb-I000012
Figure PCTKR2016002938-appb-I000012
상기 화학식 4 내지 8에 있어서, In Chemical Formulas 4 to 8,
R'는 수소원자이고, R 'is a hydrogen atom,
R0는 보호기(protecting group)이며, R 0 is a protecting group,
그외 치환기는 화학식 1에서 정의한 바와 같다. Other substituents are as defined in formula (1).
상기 a) 단계에서 보호기(protecting group)를 포함하는 화합물은 트리메틸실릴클로라이드, 벤질클로라이드, t-부톡시카르보닐클로라이드, 벤질옥시카르보닐클로라이드 또는 이산화탄소 등일 수 있다. The compound including a protecting group in step a) may be trimethylsilyl chloride, benzyl chloride, t-butoxycarbonyl chloride, benzyloxycarbonyl chloride or carbon dioxide.
또, 상기 보호기(protecting group)를 포함하는 화합물이 이산화탄소인 경우 상기 화학식 5의 화합물은 하기 화학식 5a로 표시되는 리튬 카바메이트 화합물일 수 있다:When the compound including the protecting group is carbon dioxide, the compound of Formula 5 may be a lithium carbamate compound represented by Formula 5a:
<화학식 5a><Formula 5a>
Figure PCTKR2016002938-appb-I000013
Figure PCTKR2016002938-appb-I000013
상기 화학식 5a에 있어서 각 치환기는 앞서 화학식 1에서 정의한 바와 같다. Each substituent in Formula 5a is as defined in Formula 1 above.
구체적으로, 상기 화학식 1의 화합물은 하기 반응식 1에 의하여 제조될 수 있다. Specifically, the compound of Formula 1 may be prepared by the following Scheme 1.
<반응식 1><Scheme 1>
Figure PCTKR2016002938-appb-I000014
Figure PCTKR2016002938-appb-I000014
상기 반응식 1에 있어서, 치환기 설명은 화학식 1과 같다. In Scheme 1, the description of the substituent is the same as in formula (1).
한편, 상기 화학식 2의 전이금속 화합물은 하기 화학식 2a의 화합물일 수 있다.Meanwhile, the transition metal compound of Formula 2 may be a compound of Formula 2a.
[화학식 2a] [Formula 2a]
Figure PCTKR2016002938-appb-I000015
Figure PCTKR2016002938-appb-I000015
상기 화학식 2a에 있어서, In Chemical Formula 2a,
M2는 앞서 정의한 바와 동일한 것일 수 있으며, 구체적으로는 Ti, Hf 또는 Zr일 수 있고,M 2 may be the same as defined above, specifically, Ti, Hf or Zr,
Q3 및 Q4는 앞서 정의한 바와 동일한 것일 수 있으며, 구체적으로는 각각 독립적으로 할로겐기 또는 탄소수 1 내지 8의 알킬기일 수 있고,Q 3 and Q 4 may be the same as defined above, specifically, each independently may be a halogen group or an alkyl group having 1 to 8 carbon atoms,
R21 내지 R27은 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로는 R21 내지 R27은 각각 독립적으로, 수소원자, 할로겐기, 실릴기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 6의 알케닐기, 탄소수 3 내지 12 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 7 내지 18의 알킬아릴기, 탄소수 7 내지 18의 아릴알킬기, 및 탄소수 1 내지 8의 하이드로카르빌기로 치환된 14족 금속의 메탈로이드 라디칼로 이루어진 군에서 선택되고, 보다 더 구체적으로는 R21 내지 R27은 각각 독립적으로 수소원자, 또는 탄소수 1 내지 8, 혹은 탄소수 1 내지 4의 알킬기이며;R 21 to R 27 may be the same as defined above, more specifically, R 21 to R 27 are each independently a hydrogen atom, a halogen group, a silyl group, an alkyl group having 1 to 8 carbon atoms, an alke having 2 to 6 carbon atoms Of a Group 14 metal substituted with a silyl group, a C3-12 cycloalkyl group, a C6-C18 aryl group, a C7-C18 alkylaryl group, a C7-C18 arylalkyl group, and a C1-C8 hydrocarbyl group Selected from the group consisting of metalloid radicals, and more specifically, R 21 to R 27 are each independently a hydrogen atom or an alkyl group having 1 to 8 carbon atoms or 1 to 4 carbon atoms;
X1 내지 X3은 앞서 정의한 바와 동일한 것일 수 있으며, 보다 구체적으로는 X1 내지 X3은 각각 독립적으로 수소원자, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 8의 알킬)아미노기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 6의 알케닐기, 탄소수 3 내지 12의 사이클로알킬기, 탄소수 6 내지 18의 아릴기, 탄소수 7 내지 18의 알킬아릴기 및 탄소수 7 내지 18의 아릴알킬기로 이루어진 군에서 선택되거나; 또는 X1 내지 X3 중 인접하는 두 작용기가 서로 연결되어, 할로겐기, 실릴기, 아미노기, (탄소수 1 내지 8의 알킬)아미노기, 탄소수 1 내지 8의 알킬기, 탄소수 2 내지 6의 알케닐기 및 탄소수 6 내지 12의 아릴기로 이루어진 군에서 선택되는 적어도 하나의 치환기로 치환된 탄소수 5 내지 12의 사이클로알킬기 또는 탄소수 6 내지 20의 아릴기를 형성하며, 보다 더 구체적으로는 X1 내지 X3은 각각 독립적으로 할로겐기, 탄소수 1 내지 8의 알킬기, 탄소수 3 내지 12의 사이클로알킬기 및 탄소수 6 내지 12의 아릴기로 이루어진 군에서 선택되는 것일 수 있다. X 1 to X 3 may be the same as defined above, more specifically, X 1 to X 3 are each independently a hydrogen atom, a halogen group, a silyl group, an amino group, (alkyl having 1 to 8 carbon atoms), C 1 Selected from the group consisting of an alkyl group of 8 to 8, an alkenyl group of 2 to 6 carbon atoms, a cycloalkyl group of 3 to 12 carbon atoms, an aryl group of 6 to 18 carbon atoms, an alkylaryl group of 7 to 18 carbon atoms, and an arylalkyl group of 7 to 18 carbon atoms Or; Or two adjacent functional groups of X 1 to X 3 are connected to each other to form a halogen group, a silyl group, an amino group, an (alkyl having 1 to 8 carbon atoms) amino group, an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 6 carbon atoms and a carbon number A cycloalkyl group having 5 to 12 carbon atoms or an aryl group having 6 to 20 carbon atoms substituted with at least one substituent selected from the group consisting of 6 to 12 aryl groups, and more specifically X 1 to X 3 are each independently It may be selected from the group consisting of a halogen group, an alkyl group having 1 to 8 carbon atoms, a cycloalkyl group having 3 to 12 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
보다 구체적으로 금속 주위의 전자적 입체적 환경의 제어를 위해 더욱 선호되는 상기 화학식 2의 제2전이금속 화합물은, 하기 화합물들일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.More specifically, the second transition metal compound of Chemical Formula 2, which is more preferred for controlling the electronic steric environment around the metal, may be the following compounds, and any one or a mixture of two or more thereof may be used.
Figure PCTKR2016002938-appb-I000016
Figure PCTKR2016002938-appb-I000016
상기 화학구조식들에서, Cy는 사이클로헥실기, tBu는 t-부틸기, Me는 메틸기 그리고 Ph는 페닐기를 의미한다. In the above chemical structures, Cy is a cyclohexyl group, tBu is a t-butyl group, Me is a methyl group and Ph is a phenyl group.
상기 예시된 화합물들 외에도, 상기 화학식 2의 전이금속 화합물은 상기 화학식 2에서 정의된 범위 내에서 다양한 구조를 가질 수 있으며, 이들 화합물은 동등한 작용과 효과를 나타낼 수 있다.In addition to the compounds exemplified above, the transition metal compound of Formula 2 may have various structures within the range defined in Formula 2, and these compounds may exhibit equivalent functions and effects.
상기한 화학식 2의 전이금속 화합물은 공지의 합성 반응을 이용하여 제조될 수도 있다.The transition metal compound of Chemical Formula 2 may be prepared using a known synthetic reaction.
상기 올레핀계 중합체의 제조에 사용되는 촉매 조성물은 구체적으로 상기 화학식 1 및 2의 전이금속 화합물을 99:1 내지 1:99의 중량비로 포함할 수 있다. 상기 화학식 1 및 2의 전이금속 화합물의 혼합비가 상기 범위를 벗어날 경우, 앞서 정의한 물성 요건을 충족하는 올레핀계 중합체의 제조가 어렵다. 보다 구체적으로는, 상기 촉매 조성물은 상기 화학식 1 및 2의 전이금속 화합물을 50:50 내지 80:20의 중량비로 혼합할 수 있다.The catalyst composition used to prepare the olefin-based polymer may specifically include the transition metal compounds of Formulas 1 and 2 in a weight ratio of 99: 1 to 1:99. When the mixing ratio of the transition metal compounds of Formulas 1 and 2 is outside the above range, it is difficult to prepare an olefin polymer that satisfies the physical property requirements defined above. More specifically, the catalyst composition may mix the transition metal compounds of Formulas 1 and 2 in a weight ratio of 50:50 to 80:20.
또, 상기 촉매 조성물은 조촉매를 더 포함할 수 있다. In addition, the catalyst composition may further include a promoter.
상기 조촉매는 알킬알루미녹산, 알킬알루미늄 또는 루이스산 등 당 기술분야에 알려져 있는 것이라면 특별한 제한없이 사용가능하다. 구체적으로, 상기 조촉매는 하기 화학식 9 내지 12의 화합물로 이루어진 군에서 선택되는 어느 하나 또는 둘 이상의 혼합물을 포함할 수 있다:The promoter may be used without particular limitation as long as it is known in the art such as alkylaluminoxane, alkylaluminum or Lewis acid. Specifically, the promoter may include any one or a mixture of two or more selected from the group consisting of compounds represented by Formulas 9 to 12:
<화학식 9><Formula 9>
-[Al(R41)-O]a--[Al (R 41 ) -O] a-
상기 화학식 9에서, R41은 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌기이며, a는 2 이상의 정수이고,In Formula 9, R 41 is a halogen group, a C 1-20 hydrocarbyl group or a C 1-20 hydrocarbyl group substituted with halogen, a is an integer of 2 or more,
<화학식 10><Formula 10>
D(R42)3 D (R 42 ) 3
상기 화학식 10에서, D는 알루미늄 또는 보론이며, R42는 각각 독립적으로 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기 또는 할로겐으로 치환된 탄소수 1 내지 20의 하이드로카르빌기이며In Formula 10, D is aluminum or boron, each R 42 is independently a halogen group, a hydrocarbyl group having 1 to 20 carbon atoms or a hydrocarbyl group having 1 to 20 carbon atoms substituted with halogen.
<화학식 11><Formula 11>
[L-H]+[Z(A)4]- [LH] + [Z (A) 4 ]-
<화학식 12><Formula 12>
[L]+[Z(A)4]-[L] + [Z (A) 4 ]-
상기 화학식 11 및 12에서, L이 중성 또는 양이온성 루이스산이며, H가 수소원자 이고, Z가 13족 원소이며, A가 각각 독립적으로 1 이상의 수소 원자가 치환기로 치환될 수 있는 탄소수 6 내지 20의 아릴기 또는 탄소수 1 내지 20의 알킬기이고, 상기 치환기는 할로겐기, 탄소수 1 내지 20의 하이드로카르빌기, 탄소수 1 내지 20의 알콕시기, 또는 탄소수 6 내지 20의 아릴옥시기이다.In Chemical Formulas 11 and 12, L is a neutral or cationic Lewis acid, H is a hydrogen atom, Z is a Group 13 element, and each A independently has one to six carbon atoms of 1 to 20 hydrogen atoms may be substituted with a substituent. It is an aryl group or a C1-C20 alkyl group, The said substituent is a halogen group, a C1-C20 hydrocarbyl group, a C1-C20 alkoxy group, or a C6-C20 aryloxy group.
상기 촉매 조성물을 제조하는 방법으로서, 첫번째로 상기 촉매 조성물과 상기 화학식 9 또는 화학식 10으로 표시되는 화합물을 접촉시켜 혼합물을 얻는 단계; 및 상기 혼합물에 상기 화학식 11 또는 12로 표시되는 화합물을 첨가하는 단계를 포함하는 제조방법을 제공한다.A method of preparing the catalyst composition, comprising: first contacting the catalyst composition with a compound represented by Formula 9 or Formula 10 to obtain a mixture; And adding the compound represented by Formula 11 or 12 to the mixture.
그리고, 두번째로 상기 촉매 조성물과 상기 화학식 11 또는 12로 표시되는 화합물을 접촉시켜 촉매 조성물을 제조하는 방법을 제공한다.And, second, to provide a method for preparing a catalyst composition by contacting the catalyst composition and the compound represented by the formula (11) or (12).
전술한 일 실시예에 따른 촉매 조성물의 제조 방법들 중에서 첫번째 방법의 경우에, 상기 촉매 조성물 대비 상기 화학식 9 또는 화학식 10으로 표시되는 화합물의 몰비는 각각 1:2 내지 1:5,000일 수 있으며, 보다 구체적으로는 1:10 내지 1:1,000이고, 보다 더 구체적으로는 1:20 내지 1:500일 수 있다.In the case of the first method of preparing the catalyst composition according to the above-described embodiment, the molar ratio of the compound represented by Formula 9 or Formula 10 with respect to the catalyst composition may be 1: 2 to 1: 5,000, respectively. Specifically 1:10 to 1: 1,000, and even more specifically 1:20 to 1: 500.
또, 상기 촉매 조성물 대비 상기 화학식 11 또는 12로 표시되는 화합물의 몰비는 1:1 내지 1:25일 수 있으며, 보다 구체적으로는 1:1 내지 1:10 이고, 보다 더 구체적으로는 1:1 내지 1:5 일 수 있다.In addition, the molar ratio of the compound represented by Formula 11 or 12 with respect to the catalyst composition may be 1: 1 to 1:25, more specifically 1: 1 to 1:10, even more specifically 1: 1 To 1: 5.
상기 촉매 조성물 대비 상기 화학식 9 또는 화학식 10으로 표시되는 화합물의 몰비가 1:2 미만일 경우에는 알킬화제의 양이 매우 작아 금속화합물의 알킬화가 완전히 진행되지 못하는 문제가 있고, 1:5,000 초과인 경우에는 금속화합물의 알킬화는 이루어지지만, 남아있는 과량의 알킬화제와 상기 화학식 14의 활성화제간의 부반응으로 인하여 알킬화된 금속화합물의 활성화가 완전히 이루어지지 못하는 문제가 있다. When the molar ratio of the compound represented by Formula 9 or Formula 10 to the catalyst composition is less than 1: 2, there is a problem that the alkylation of the metal compound does not proceed completely because the amount of the alkylating agent is very small. Although alkylation of the compound is made, there is a problem that the activation of the alkylated metal compound is not completely performed due to a side reaction between the remaining excess alkylating agent and the activator of Formula 14.
또한 상기 화학식 1 및 2의 전이금속 화합물의 총 양에 대비 상기 화학식 11 또는 12로 표시되는 화합물의 비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고 1:25 초과인 경우에는 금속화합물의 활성화가 완전히 이루어지지만, 남아있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다. In addition, when the ratio of the compound represented by Formula 11 or 12 with respect to the total amount of the transition metal compounds of Formulas 1 and 2 is less than 1: 1, the amount of the activator is relatively small, resulting in incomplete activation of the metal compound. If there is a problem that the activity of the catalyst composition is deteriorated and if it is greater than 1:25, the metal compound is fully activated, but the excess amount of the activator does not economically cost or the purity of the polymer produced is poor. have.
또, 상기 촉매 조성물 제조방법들 중에서 두번째 방법의 경우에, 상기 촉매 조성물 대비 화학식 10으로 표시되는 화합물의 몰비는 1:1 내지 1:500일 수 있으며, 보다 구체적으로는 1:1 내지 1:50이고, 보다 더 구체적으로는 1:2 내지 1:25일 수 있다. 상기 몰비가 1:1 미만일 경우에는 활성화제의 양이 상대적으로 적어 금속 화합물의 활성화가 완전히 이루어지지 못해 생성되는 촉매 조성물의 활성도가 떨어지는 문제가 있고, 1:500 초과인 경우에는 금속화합물의 활성화가 완전히 이루어지지만, 남아있는 과량의 활성화제로 촉매 조성물의 단가가 경제적으로 바람직하지 못하거나 생성되는 고분자의 순도가 떨어지는 문제가 있다.In addition, in the case of the second method of the catalyst composition preparation method, the molar ratio of the compound represented by the formula (10) relative to the catalyst composition may be 1: 1 to 1: 500, more specifically 1: 1 to 1:50 And even more specifically, 1: 2 to 1:25. When the molar ratio is less than 1: 1, the amount of the activator is relatively small, so that the activation of the metal compound may not be completed, and thus the activity of the resulting catalyst composition may be inferior. Although completely made, there is a problem that the cost of the catalyst composition is economically undesirable or the purity of the resulting polymer is poor with the remaining excess activator.
전술한 촉매 조성물의 제조시에 반응용매로서 펜탄, 헥산 또는 헵탄 등과 같은 탄소수 5 내지 12의 지방족 탄화수소계 용매; 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매; 또는 벤젠, 톨루엔 등과 같은 방향족 탄화수소 용매가 사용될 수 있으나, 반드시 이에 한정되지는 않으며 당해 기술분야에서 사용 가능한 모든 용매가 사용될 수 있다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.Aliphatic hydrocarbon solvents having 5 to 12 carbon atoms, such as pentane, hexane or heptane, as a reaction solvent in the preparation of the catalyst composition described above; Hydrocarbon solvents substituted with chlorine atoms such as dichloromethane and chlorobenzene; Or aromatic hydrocarbon solvents such as benzene, toluene, etc. may be used, but are not necessarily limited thereto, and all solvents available in the art may be used. The solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
또한, 상기 촉매 조성물은 첨가제를 더 포함할 수 있다. 예컨대, 헤테로원자를 함유한 화합물을 포함할 수 있으며, 구체적으로, 상기 헤테로원자를 함유한 화합물의 예로는 헤테로 고리 화합물; 또는 헤테로원자를 함유한 알칸이 있다.In addition, the catalyst composition may further include an additive. For example, a compound containing a hetero atom may be included. Specifically, examples of the compound containing a hetero atom include a hetero ring compound; Or alkanes containing heteroatoms.
상기 헤테로 고리 화합물의 예로는 헤테로원자를 함유한 방향족 고리; 헤테로시클로알칸; 또는 헤테로시클로알켄이 있다. 상기 헤테로원자를 함유한 알칸의 예로는 아민기 또는 에테르기를 포함하는 알칸이 있다. 상기 헤테로 방향족 고리; 헤테로시클로알칸; 또는 헤테로시클로알켄은 5원 또는 6원의 고리를 포함한다. 상기 헤테로원자를 함유한 화합물은 헤테로원자로서 O, S, Se, N, P 또는 Si를 포함할 수 있다. 상기 헤테로원자를 함유한 화합물은 하나의 헤테로원자를 포함할 수 있다. 상기 헤테로원자를 함유한 화합물은 치환될 수 있으며, 상기 헤테로원자를 함유한 화합물이 치환된 경우, 수소, 메틸, 페닐 및 벤질로 이루어진 군으로부터 1 또는 2 이상으로 치환될 수 있다.Examples of the heterocyclic compound include aromatic rings containing heteroatoms; Heterocycloalkanes; Or heterocycloalkene. Examples of the alkanes containing the heteroatom include alkanes containing amine groups or ether groups. The heteroaromatic ring; Heterocycloalkanes; Or heterocycloalkenes include 5- or 6-membered rings. The compound containing the heteroatom may include O, S, Se, N, P or Si as a heteroatom. The compound containing a heteroatom may include one heteroatom. The compound containing the hetero atom may be substituted, and when the compound containing the hetero atom is substituted, it may be substituted with one or two or more from the group consisting of hydrogen, methyl, phenyl and benzyl.
상기 헤테로원자를 함유한 화합물의 예로는 피리딘, 3,5-디메틸피리딘, 2,4,6-트리메틸피리딘, 2,6-디메틸피리딘, 2,4-디메틸피리딘, 티오펜, 2-메틸티오펜, 2,3-디메틸티오펜, 피페리딘, 포스피넨, 피롤, 2-메틸피롤, 아닐린, 파라-톨루이딘, 테트라히드로푸란, 2,3-디메틸테트라히드로푸란, 2,5-테트라히드로푸란, 3,4-디히드로-2H-파이렌, 푸란, 2-메틸푸란, 2,3-디메틸푸란, 2,5-디메틸푸란, 디에틸에테르, 메틸 터트부틸 에테르 및 트리에틸아민으로 이루어진 군으로부터 선택되는 어느 하나 또는 둘 이상을 포함할 수 있으나, 이에 한정되는 것은 아니다. Examples of the compound containing a hetero atom include pyridine, 3,5-dimethylpyridine, 2,4,6-trimethylpyridine, 2,6-dimethylpyridine, 2,4-dimethylpyridine, thiophene, 2-methylthiophene , 2,3-dimethylthiophene, piperidine, phosphinene, pyrrole, 2-methylpyrrole, aniline, para-toluidine, tetrahydrofuran, 2,3-dimethyltetrahydrofuran, 2,5-tetrahydrofuran, Selected from the group consisting of 3,4-dihydro-2H-pyrene, furan, 2-methylfuran, 2,3-dimethylfuran, 2,5-dimethylfuran, diethylether, methyl tertbutyl ether and triethylamine It may include any one or two or more, but is not limited thereto.
또한, 상기 제1 및 제2 전이금속 화합물과 조촉매는 담체에 담지된 형태로도 이용할 수 있다. 담체로는 실리카-알루미나 또는 실리카-마그네시아 등으로 될 수 있고, 기타 당 기술분야에 알려진 임의의 담체를 사용할 수 있다. 또한, 이러한 담체는 고온에서 건조된 상태로 사용될 수 있는데, 건조 온도는, 예를 들어, 180 ℃ 내지 800 ℃일 수 있다. 만일, 건조 온도가 180 ℃ 미만으로 지나치게 낮으면, 담체 상의 과량의 부분이 조촉매와 반응하여 성능을 떨어뜨릴 수 있고, 건조 온도가 800 ℃를 초과하여 지나치게 높으면 담체 표면에 히드록시기 함량이 낮아져 조촉매와의 반응 자리가 감소할 수 있다.In addition, the first and second transition metal compounds and the promoter may be used in a form supported on a carrier. The carrier may be silica-alumina, silica-magnesia, or the like, and other carriers known in the art may be used. In addition, such a carrier may be used in a dry state at a high temperature, and the drying temperature may be, for example, 180 ° C to 800 ° C. If the drying temperature is too low below 180 ° C., an excess portion on the carrier may react with the promoter to degrade the performance. If the drying temperature is too high above 800 ° C., the hydroxy group content on the surface of the carrier may be lowered to promote the promoter. The reaction site with and may decrease.
또, 전술한 화학식 9로 표시되는 화합물은 알킬알루미녹산일 수 있으며, 구체적인 예로는 메틸알루미녹산, 에틸알루미녹산, 이소부틸알루미녹산, 부틸알루미녹산 등이 있으며, 보다 더 구체적으로는 메틸알루미녹산이다.In addition, the compound represented by Formula 9 may be alkyl aluminoxane, specific examples thereof include methyl aluminoxane, ethyl aluminoxane, isobutyl aluminoxane, butyl aluminoxane, and more specifically, methyl aluminoxane. .
또, 전술한 화학식 10으로 표시되는 화합물은 구체적으로 트리메틸알루미늄, 트리에틸알루미늄, 트리이소부틸알루미늄, 트리프로필알루미늄, 트리부틸알루미늄, 디메틸클로로알루미늄, 트리이소프로필알루미늄, 트리-s-부틸알루미늄, 트리사이클로펜틸알루미늄, 트리펜틸알루미늄, 트리이소펜틸알루미늄, 트리헥실알루미늄, 트리옥틸알루미늄, 에틸디메틸알루미늄, 메틸디에틸알루미늄, 트리페닐알루미늄, 트리-p-톨릴알루미늄, 디메틸알루미늄메톡시드, 디메틸알루미늄에톡시드, 트리메틸보론, 트리에틸보론, 트리이소부틸보론, 트리프로필보론, 또는 트리부틸보론 등일 수 있으며, 보다 구체적으로는 트리메틸알루미늄, 트리에틸알루미늄, 및 트리이소부틸알루미늄 중에서 선택되는 것일 수 있다.In addition, the compounds represented by the above formula (10) are specifically trimethylaluminum, triethylaluminum, triisobutylaluminum, tripropylaluminum, tributylaluminum, dimethylchloroaluminum, triisopropylaluminum, tri-s-butylaluminum, tri Cyclopentyl aluminum, tripentyl aluminum, triisopentyl aluminum, trihexyl aluminum, trioctyl aluminum, ethyl dimethyl aluminum, methyl diethyl aluminum, triphenyl aluminum, tri-p-tolyl aluminum, dimethyl aluminum methoxide, dimethyl aluminum ethoxy Seed, trimethyl boron, triethyl boron, triisobutyl boron, tripropyl boron, tributyl boron, and the like, more specifically, may be selected from trimethylaluminum, triethylaluminum, and triisobutylaluminum.
또, 상기 화학식 11 또는 12의 화합물은 구체적으로 트리에틸암모늄테트라페닐보론, 트리부틸암모늄테트라페닐보론, 트리메틸암모늄테트라페닐보론, 트리프로필암모늄테트라페닐보론, 트리메틸암모늄테트라(p-톨릴)보론, 트리메틸암모늄테트라(o,p-디메틸페닐)보론, 트리부틸암모늄테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모늄테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모늄테트라펜타플루오로페닐보론, N,N-디에틸아닐리디움테트라페틸보론, N,N-디에틸아닐리디움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모늄테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리메틸포스포늄테트라페닐보론, 트리에틸암모늄테트라페닐알루미늄, 트리부틸암모늄테트라페닐알루미늄, 트리메틸암모늄테트라페닐알루미늄, 트리프로필암모늄테트라페닐알루미늄, 트리메틸암모늄테트라(p-톨릴)알루미늄, 트리프로필암모늄테트라(p-톨릴)알루미늄, 트리에틸암모늄테트라(o,p-디메틸페닐)알루미늄, 트리부틸암모늄테트라(p-트리플루오로메틸페닐)알루미늄, 트리메틸암모늄테트라(p-트리플루오로메틸페닐)알루미늄, 트리부틸암모늄테트라펜타플루오로페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라페닐알루미늄, N,N-디에틸아닐리니움테트라펜타플루오로페닐알루미늄, 디에틸암모늄테트라펜타텐트라페닐알루미늄, 트리페닐포스포늄테트라페닐알루미늄, 트리메틸포스포늄테트라페닐알루미늄, 트리에틸암모늄테트라페닐알루미늄, 트리부틸암모늄테트라페닐알루미늄, 트리메틸암모늄테트라페닐보론, 트리프로필암모늄테트라페닐보론, 트리메틸암모늄테트라(p-톨릴)보론,트리프로필암모늄테트라(p-톨릴)보론, 트리에틸암모늄테트라(o,p-디메틸페닐)보론, 트리메틸암모늄테트라(o,p-디메틸페닐)보론, 트리부틸암모늄테트라(p-트리플루오로메틸페닐)보론, 트리메틸암모늄테트라(p-트리플루오로메틸페닐)보론, 트리부틸암모늄테트라펜타플루오로페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라페닐보론, N,N-디에틸아닐리니움테트라펜타플루오로페닐보론, 디에틸암모늄테트라펜타플루오로페닐보론, 트리페닐포스포늄테트라페닐보론, 트리페닐카보니움테트라(p-트리플루오로메틸페닐)보론 또는 트리페닐카보니움테트라펜타플루오로페닐보론 등일 수 있다.In addition, the compound of Formula 11 or 12 specifically triethylammonium tetraphenylboron, tributylammonium tetraphenylboron, trimethylammonium tetraphenylboron, tripropylammonium tetraphenylboron, trimethylammonium tetra (p-tolyl) boron, trimethyl Ammonium tetra (o, p-dimethylphenyl) boron, tributylammonium tetra (p-trifluoromethylphenyl) boron, trimethylammonium tetra (p-trifluoromethylphenyl) boron, tributylammoniumtetrapentafluorophenylboron, N , N-diethylanilidedium tetrapetyl boron, N, N-diethylanilidedium tetraphenylboron, N, N-diethylanilinium tetrapentafluorophenylboron, diethylammonium tetrapentafluorophenylboron , Triphenyl phosphonium tetraphenyl boron, trimethyl phosphonium tetraphenyl boron, triethylammonium tetraphenylaluminum, tributylammonium tetraphenylaluminum, trimethylarm Aluminum tetramethylaluminum, tripropylammonium tetraphenylaluminum, trimethylammonium tetra (p-tolyl) aluminum, tripropylammonium tetra (p-tolyl) aluminum, triethylammonium tetra (o, p-dimethylphenyl) aluminum, tributylammonium Tetra (p-trifluoromethylphenyl) aluminum, trimethylammonium tetra (p-trifluoromethylphenyl) aluminum, tributylammonium tetrapentafluorophenylaluminum, N, N-diethylanilinium tetraphenylaluminum, N, N -Diethylanilinium tetraphenylaluminum, N, N-diethylanilinium tetrapentafluorophenylaluminum, diethylammonium tetrapentatentraphenylaluminum, triphenylphosphonium tetraphenylaluminum, trimethylphosphonium tetraphenylaluminum , Triethylammonium tetraphenylaluminum, tributylammonium tetraphenylaluminum, trimethylammonium tetraphenylboron, tripro Ammonium tetraphenylboron, trimethylammonium tetra (p-tolyl) boron, tripropylammonium tetra (p-tolyl) boron, triethylammonium tetra (o, p-dimethylphenyl) boron, trimethylammonium tetra (o, p-dimethylphenyl Boron, tributylammonium tetra (p-trifluoromethylphenyl) boron, trimethylammonium tetra (p-trifluoromethylphenyl) boron, tributylammonium tetrapentafluorophenylboron, N, N-diethylanilinium tetra Phenylboron, N, N-diethylanilinium tetraphenylboron, N, N-diethylanilinium tetrapentafluorophenylboron, diethylammonium tetrapentafluorophenylboron, triphenylphosphonium tetraphenylboron, Triphenylcarbonium tetra (p-trifluoromethylphenyl) boron or triphenylcarbonium tetrapentafluorophenylboron and the like.
한편, 상기 올레핀계 중합체의 제조에 사용가능한 단량체로는 구체적으로 알파-올레핀계 단량체, 사이클릭 올레핀계 당량체, 디엔 올레핀계 단량체, 트리엔 올레핀계 단량체 또는 스티렌계 단량체 등을 들 수 있으며, 이들 단량체 중에서 1 종을 호모중합 하거나, 2 종 이상을 혼합하여 공중합 할 수 있다. On the other hand, the monomers usable in the production of the olefin polymers include, for example, alpha-olefin monomers, cyclic olefin equivalents, diene olefin monomers, triene olefin monomers or styrene monomers. One type of monomer may be homopolymerized, or two or more types may be mixed and copolymerized.
상기 알파-올레핀계 단량체는 탄소수 2 내지 12, 구체적으로는 탄소수 2 내지 8 의 지방족 올레핀을 포함하며, 보다 구체적으로는 에틸렌, 프로필렌, 1-부텐, 1-펜텐, 3-메틸-1-부텐, 1-헥센, 4-메틸-1-펜텐, 3-메틸-1-펜텐, 1-헵텐, 1-옥텐, 1-데센(1-decene), 4,4-디메틸-1-펜텐, 4,4-디에틸-1-헥센 또는 3,4-디메틸-1-헥센 등을 예시할 수 있다. 또한 상기 알파-올레핀류는 단독 중합되거나 교대(alternating), 랜덤(random), 또는 블록(block) 공중합 될 수 있다. The alpha-olefin monomers include aliphatic olefins having 2 to 12 carbon atoms, specifically 2 to 8 carbon atoms, and more specifically ethylene, propylene, 1-butene, 1-pentene, 3-methyl-1-butene, 1-hexene, 4-methyl-1-pentene, 3-methyl-1-pentene, 1-heptene, 1-octene, 1-decene, 4,4-dimethyl-1-pentene, 4,4 -Diethyl-1-hexene, 3,4-dimethyl-1-hexene, etc. can be illustrated. In addition, the alpha-olefins may be homopolymerized or alternating, random, or block copolymerized.
또, 상기 알파-올레핀류의 공중합은 에틸렌과 탄소수 2 내지 12, 구체적으로는 탄소수 2 내지 8 의 알파-올레핀의 공중합(에틸렌과 프로필렌, 에틸렌과 1-부텐, 에틸렌과 1-헥센, 에틸렌과 4-메틸-1-펜텐, 에틸렌과 1-옥텐) 및 프로필렌과 탄소수 2 내지 12, 바람직하게는 탄소수 2 내지 8 의 알파-올레핀의 공중합(프로필렌과 1-부텐, 프로필렌과 4-메틸-1-펜텐, 프로필렌과 4-메틸-1-부텐, 프로필렌과 1-헥센, 프로필렌과 1-옥텐)을 포함할 수 있다.In addition, the copolymerization of the above-mentioned alpha-olefins is copolymerization of ethylene and an alpha-olefin having 2 to 12 carbon atoms, specifically 2 to 8 carbon atoms (ethylene and propylene, ethylene and 1-butene, ethylene and 1-hexene, ethylene and 4 -Methyl-1-pentene, ethylene and 1-octene) and copolymerization of propylene with alpha-olefins having 2 to 12 carbon atoms, preferably 2 to 8 carbon atoms (propylene and 1-butene, propylene and 4-methyl-1-pentene , Propylene and 4-methyl-1-butene, propylene and 1-hexene, propylene and 1-octene).
상기 에틸렌 또는 프로필렌과 다른 알파-올레핀의 공중합에서, 다른 알파-올레핀의 양은 전체 단량체의 90 중량% 이하일 수 있다. 보다 구체적으로 에틸렌 공중합체의 경우 70 중량% 이하, 구체적으로는 60 중량% 이하, 보다 구체적으로는 50 중량% 이하이고, 프로필렌 공중합체의 경우 1 중량% 내지 90 중량%, 구체적으로는 5 중량% 내지 90 중량%, 보다 구체적으로는 10 중량% 내지 70 중량%일 수 있다.In the copolymerization of ethylene or propylene with other alpha-olefins, the amount of other alpha-olefins may be up to 90% by weight of the total monomers. More specifically, the ethylene copolymer is 70% by weight or less, specifically 60% by weight or less, more specifically 50% by weight or less, and 1% to 90% by weight, specifically 5% by weight, for the propylene copolymer. To 90% by weight, more specifically 10% to 70% by weight.
상기 사이클릭 올레핀류는 탄소수 3 내지 24, 구체적으로는 3 내지 18 인 것을 사용할 수 있으며, 보다 구체적으로는 사이클로펜텐(cyclopentene), 사이클로부텐, 사이클로헥센, 3-메틸사이클로헥센, 사이클로옥텐, 테트라사이클로데센, 옥타사이클로데센, 디사이클로펜타디엔, 노르보르넨, 5-메틸-2-노르보르넨, 5-에틸-2-노르보르넨, 5-이소부틸-2-노르보르넨, 5,6-디메틸-2-노르보르넨, 5,5,6-트리메틸-2-노르보르넨 또는 에틸렌노르보르넨 등을 들 수 있다. 상기 환상 올레핀류는 상기의 알파-올레핀류와 공중합이 가능하며, 이때 환상 올레핀의 양은 공중합체에 대하여 1 내지 50 몰%, 구체적으로는 2 내지 50 몰%일 수 있다. The cyclic olefins may be used having 3 to 24 carbon atoms, specifically 3 to 18, more specifically cyclopentene (cyclopentene), cyclobutene, cyclohexene, 3-methylcyclohexene, cyclooctene, tetracyclo Decene, octacyclodecene, dicyclopentadiene, norbornene, 5-methyl-2-norbornene, 5-ethyl-2-norbornene, 5-isobutyl-2-norbornene, 5,6- Dimethyl-2-norbornene, 5,5,6-trimethyl-2-norbornene or ethylene norbornene and the like. The cyclic olefins may be copolymerized with the alpha-olefins, wherein the amount of the cyclic olefin may be 1 to 50 mol%, specifically 2 to 50 mol% with respect to the copolymer.
또한 상기 디엔류 및 트리엔(triene)은 2개 또는 3개의 이중결합을 갖는 탄소수 4 내지 26의 폴리엔일 수 있으며, 구체적으로는 1,3-부타디엔, 1,4-펜타디엔, 1,4-헥사디엔, 1,5-헥사디엔, 1,9-데카디엔, 2-메틸-1,3-부타디엔 등을 들 수 있다. 또, 상기 스티렌류는 스티렌 또는 탄소수 1 내지 10의 알킬기, 탄소수 1 내지 10의 알콕시기, 할로겐기, 아민기, 실릴기, 할로겐화알킬기 등으로 치환된 스티렌 등일 수 있다.In addition, the dienes and triene may be a polyene having 4 to 26 carbon atoms having two or three double bonds, specifically 1,3-butadiene, 1,4-pentadiene, 1,4- Hexadiene, 1,5-hexadiene, 1,9-decadiene, 2-methyl-1,3-butadiene, and the like. In addition, the styrenes may be styrene or styrene substituted with an alkyl group having 1 to 10 carbon atoms, an alkoxy group having 1 to 10 carbon atoms, a halogen group, an amine group, a silyl group, or a halogenated alkyl group.
상기 중합 단계는 탄화수소계 용매 내에서 용액상, 슬러리상, 괴상(Bulk Phase) 또는 기상 중합으로 진행될 수 있다.The polymerization step may be carried out in solution phase, slurry phase, bulk phase or gas phase polymerization in a hydrocarbon solvent.
균일 용액 상태의 촉매 조성물 뿐만 아니라, 담체에 담지된 형태 또는 담체의 불용성 입자 형태로 존재하기 때문에, 용액상, 슬러리상, 괴상(Bulk Phase) 또는 기상의 중합으로 수행될 수 있다. 또한 각각의 중합 조건은 사용되는 촉매의 상태(균일상 또는 불균일상(담지형)), 중합 방법(용액중합, 슬러리 중합, 기상중합), 목적하는 중합결과 또는 중합체의 형태에 따라 다양하게 변형될 수 있다. 이의 변형 정도는 당해 기술분야의 전문가라면 누구나 용이하게 변형가능하다.Since the catalyst composition is present in the form of a carrier or insoluble particles of the carrier, as well as the catalyst composition in a homogeneous solution, it may be carried out in a solution phase, a slurry phase, a bulk phase, or a gas phase polymerization. In addition, each polymerization condition may vary depending on the state of the catalyst used (homogeneous or heterogeneous phase (supported)), the polymerization method (solution polymerization, slurry polymerization, gas phase polymerization), the desired polymerization result or the shape of the polymer. Can be. The degree of deformation thereof can be easily modified by anyone skilled in the art.
상기 탄화수소계 용매는 탄소수 5 내지 12의 지방족 탄화수소 용매, 예를 들면 펜탄, 헥산, 헵탄, 노난, 데칸, 및 이들의 이성질체와 톨루엔, 벤젠과 같은 방향족 탄화수소 용매; 또는 디클로로메탄, 클로로벤젠과 같은 염소원자로 치환된 탄화수소 용매 등에 용해하거나 희석한 어느 하나 또는 둘 이상을 혼합하여 주입 가능하다. 여기에 사용되는 용매는 소량의 알킬알루미늄 처리함으로써 촉매 독으로 작용하는 소량의 물 또는 공기 등을 제거하여 사용하는 것이 바람직하며, 조촉매를 더 사용하여 실시하는 것도 가능하다.The hydrocarbon solvents include aliphatic hydrocarbon solvents having 5 to 12 carbon atoms, for example, pentane, hexane, heptane, nonane, decane, and isomers thereof and aromatic hydrocarbon solvents such as toluene and benzene; Alternatively, any one or two or more dissolved or diluted in a hydrocarbon solvent substituted with a chlorine atom such as dichloromethane or chlorobenzene may be mixed and injected. The solvent used herein is preferably used by removing a small amount of water or air that acts as a catalyst poison by treating a small amount of alkylaluminum, and may be carried out by further using a promoter.
상기 알킬알루미늄의 예로는 트리알킬알루미늄, 디알킬 알루미늄 할라이드, 알킬 알루미늄 디할라이드, 알루미늄 디알킬 하이드라이드 또는 알킬 알루미늄 세스퀴 할라이드 등을 들 수 있으며, 보다 구체적인 예로는, Al(C2H5)3, Al(C2H5)2H, Al(C3H7)3, Al(C3H7)2H, Al(i-C4H9)2H, Al(C8H17)3, Al(C12H25)3, Al(C2H5)(C12H25)2, Al(i-C4H9)(C12H25)2, Al(i-C4H9)2H, Al(i-C4H9)3, (C2H5)2AlCl, (i-C3H9)2AlCl 또는 (C2H5)3Al2Cl3 등을 들 수 있다. 이러한 유기 알루미늄 화합물은 각 반응기에 연속적으로 투입될 수 있고, 적절한 수분 제거를 위해 반응기에 투입되는 반응 매질의 1kg 당 약 0.1몰 내지 10몰의 비율로 투입될 수 있다.Examples of the alkylaluminum include trialkylaluminum, dialkyl aluminum halides, alkyl aluminum dihalides, aluminum dialkyl hydrides or alkyl aluminum sesqui halides, and more specifically, Al (C 2 H 5 ) 3 , Al (C 2 H 5 ) 2 H, Al (C 3 H 7 ) 3 , Al (C 3 H 7 ) 2 H, Al (iC 4 H 9 ) 2 H, Al (C 8 H 17 ) 3 , Al (C 12 H 25 ) 3 , Al (C 2 H 5 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) (C 12 H 25 ) 2 , Al (iC 4 H 9 ) 2 H, Al ( iC 4 H 9 ) 3 , (C 2 H 5 ) 2 AlCl, (iC 3 H 9 ) 2 AlCl, or (C 2 H 5 ) 3 Al 2 Cl 3 . Such organoaluminum compounds may be introduced continuously into each reactor and may be introduced at a rate of about 0.1 mole to 10 moles per kilogram of reaction medium introduced into the reactor for proper water removal.
또, 상기 중합 단계는 회분식 반응기 또는 연속식 반응기에서 진행될 수 있으며, 보다 구체적으로는 연속식 반응기에서 진행될 수 있다.In addition, the polymerization step may be carried out in a batch reactor or a continuous reactor, more specifically, may be performed in a continuous reactor.
또, 상기 중합 단계는 불활성 기체, 예를 들면 아르콘 또는 질소 기체의 존재 하에 진행될 수 있다.In addition, the polymerization step may be carried out in the presence of an inert gas, such as arcon or nitrogen gas.
상기 불활성 기체는 예를 들어, 질소 기체 또는 수소 기체를 단독으로 사용하거나, 상기 기체들을 혼합하여 사용할 수 있다. The inert gas, for example, may be used alone or in combination with nitrogen gas or hydrogen gas.
상기 불활성 기체의 사용은 공기 중 수분이나 불순물이 유입되어 촉매 활성이 억제되는 것을 방지하는 역할을 하며, 상기 불활성기체: 올레핀계 단량체의 질량비가 약 1:10 내지 1:100으로 되도록 투입될 수 있으나 이에 한정되는 것은 아니다. 불활성 기체의 사용량이 지나치게 적으면, 촉매 조성물이 급격하게 반응하여 분자량 및 분자량 분포를 갖는 올레핀계 중합체의 제조가 어려워질 수 있고, 지나치게 많은 양의 불활성 기체를 투입할 경우 촉매 조성물의 활성이 충분히 구현되지 않을 수 있다.The use of the inert gas serves to prevent the activity of the catalyst due to the inflow of moisture or impurities in the air, and may be added so that the mass ratio of the inert gas to the olefin monomer is about 1:10 to 1: 100. It is not limited to this. When the amount of inert gas is used too little, the catalyst composition reacts rapidly, making it difficult to manufacture an olefin polymer having a molecular weight and molecular weight distribution, and when the amount of the inert gas is added, the activity of the catalyst composition is sufficiently realized. It may not be.
상기 촉매를 이용하여 에틸렌과 공단량체로서 알파 올레핀을 공중합할 때의 중합 온도는 약 130 ℃ 내지 약 250 ℃, 구체적으로는 약 140 ℃ 내지 약 200 ℃의 범위일 수 있다. The polymerization temperature when copolymerizing alpha olefin as a comonomer with the catalyst may range from about 130 ° C. to about 250 ° C., specifically from about 140 ° C. to about 200 ° C.
또한, 중합 압력은 약 1 bar 내지 약 150 bar일 수 있으며, 구체적으로는 약 1 bar 내지 약 120 bar, 보다 구체적으로는 약 10 bar 내지 약 120 bar일 수 있다.In addition, the polymerization pressure may be about 1 bar to about 150 bar, specifically about 1 bar to about 120 bar, more specifically about 10 bar to about 120 bar.
상기와 같은 제조방법에 의해 제조된 올레핀계 중합체는 통상의 방법에 따라 탈크, Ca계 또는 Si계 등의 무기물로 표면처리될 수 있다. 이에 따라 본 발명에 따른 올레핀계 중합체는 그 표면에 탈크, Ca계 또는 Si계 등의 무기물을 포함하는 코팅층을 더 포함할 수 있다.The olefin polymer prepared by the above production method may be surface treated with an inorganic material such as talc, Ca or Si based on a conventional method. Accordingly, the olefin polymer according to the present invention may further include a coating layer including an inorganic material such as talc, Ca or Si based on the surface thereof.
본 발명의 또 다른 일 실시예에 따르면 상기 화학식 1의 전이금속 화합물 및 상기 화학식 2의 전이금속 화합물을 포함하여, 상기한 올레핀계 중합체의 제조에 유용한 촉매조성물을 제공한다.According to another embodiment of the present invention, a catalyst composition including the transition metal compound of Formula 1 and the transition metal compound of Formula 2 is useful for preparing the olefin polymer.
상기 촉매 조성물은 올레핀계 중합체의 제조방법에서 설명한 바와 동일하다.The catalyst composition is the same as described in the method for preparing the olefin polymer.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.Hereinafter, embodiments of the present invention will be described in detail so that those skilled in the art can easily practice the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention.
리간드 및 전이금속 화합물의 합성Synthesis of Ligands and Transition Metal Compounds
유기 시약 및 용매는 특별한 언급이 없으면 알드리치(Aldrich)사에서 구입하여 표준 방법으로 정제하여 사용하였다. 합성의 모든 단계에서 공기와 수분의 접촉을 차단하여 실험의 재현성을 높였다. Organic reagents and solvents were purchased from Aldrich and purified by standard methods unless otherwise noted. At all stages of the synthesis, the contact between air and moisture was blocked to increase the reproducibility of the experiment.
제조예 1 Preparation Example 1
8-(1,2-디메틸-1H-8- (1,2-dimethyl-1H- 벤조[b]시클로펜타[d]티오펜Benzo [b] cyclopenta [d] thiophene -3-일)-2--3- days) -2- 메틸methyl -1,2,3,4--1,2,3,4- 테트라히드로퀴놀린Tetrahydroquinoline (8-(1,2- (8- (1,2- dimethyldimethyl -1H--1H- benzo[b]cyclopenta[d]thiophenbenzo [b] cyclopenta [d] thiophen -3--3- ylyl )-2-methyl-1,2,3,4-tetrahydroquinoline) 화합물의 제조) -2-methyl-1,2,3,4-tetrahydroquinoline) Compound
2-메틸-1,2,3,4-테트라히드로퀴놀린(2g, 13.6mmol)을 에테르(Ether) 10mL에 녹인 용액에 -40 ℃에서 nBuLi(14.9mmol, 1.1eq)를 서서히 적가하였다. 상온으로 서서히 승온시킨뒤, 4시간 동안 상온 교반하였다. 온도를 다시 -40 ℃로 낮춘 CO2(g)를 주입한 뒤 저온에서 0.5시간 동안 반응을 유지시켰다. 서서히 승온시킨 뒤, 잔여하고 있는 CO2(g)를 버블러를 통해 제거하였다. -20 ℃에서 THF (17.6mmol, 1.4ml과 tBuLi (10.4mmol, 1.3eq)을 주입한 뒤 -20 ℃에서 2시간 저온 숙성시켰다. 상기 케톤(1.9g, 8.8mmol)을 디에틸 에테르(Diethyl ether) 용액에 녹여 서서히 적가 하였다. 12시간 동안 상온 교반 시킨 뒤 물 10mL을 주입한 뒤, 염산(2N, 60mL)을 넣어 2분간 교반 시킨 뒤 유기용매를 추출한 뒤 NaHCO3 수용액에 중화시켜 유기용매를 추출하여 MgSO4로 수분을 제거하였다. 실리카 겔 컬럼을 통해 노란색 오일(1.83g, 60% 수율)을 수득하였다. To a solution of 2-methyl-1,2,3,4-tetrahydroquinoline (2 g, 13.6 mmol) in 10 mL of Ether was slowly added dropwise nBuLi (14.9 mmol, 1.1 eq) at -40 ° C. After gradually warming up to room temperature, the mixture was stirred at room temperature for 4 hours. The reaction was maintained at low temperature for 0.5 hours after injecting CO 2 (g) having the temperature lowered to -40 ° C. After slowly warming up, the remaining CO 2 (g) was removed through a bubbler. THF (17.6mmol, 1.4ml and tBuLi (10.4mmol, 1.3eq) was injected at -20 ° C, and then aged at low temperature for 2 hours at -20 ° C. The ketone (1.9g, 8.8mmol) was diethyl ether (Diethyl ether). After stirring for 12 hours, the mixture was stirred at room temperature for 12 hours, 10mL of water was added, hydrochloric acid (2N, 60mL) was added, stirred for 2 minutes, organic solvent was extracted, neutralized with NaHCO 3 aqueous solution, and the organic solvent was extracted. Water was removed with MgSO 4. A yellow oil (1.83 g, 60% yield) was obtained through a silica gel column.
1H NMR (C6D6): δ 1.30 (s, 3H, CH3), 1.35 (s, 3H, CH3), 1.89~1.63 (m, 3H, Cp-H quinoline-CH2), 2.62~2.60 (m, 2H, quinoline-CH2), 2.61~2.59 (m, 2H, quinoline-NCH2), 2.70~2.57 (d, 2H, quinoline-NCH2), 3.15~3.07 (d, 2H, quinoline-NCH2), 3.92 (broad, 1H, N-H), 6.79~6.76 (t, 1H, aromatic), 7.00~6.99 (m, 2H, aromatic), 7.30~7.23 (m, 2H, aromatic), 7.54~7.53 (m, 1H, aromatic), 7.62~7.60 (m, 1H, aromatic) ppm 1 H NMR (C 6 D 6 ): δ 1.30 (s, 3H, CH 3 ), 1.35 (s, 3H, CH 3 ), 1.89 to 1.63 (m, 3H, Cp-H quinoline-CH 2 ), 2.62 to 2.60 (m, 2H, quinoline-CH 2 ), 2.61-2.59 (m, 2H, quinoline-NCH 2 ), 2.70-2.57 (d, 2H, quinoline-NCH 2 ), 3.15-3.07 (d, 2H, quinoline-NCH 2 ), 3.92 (broad, 1H, NH), 6.79 ~ 6.76 (t, 1H, aromatic), 7.00 ~ 6.99 (m, 2H, aromatic), 7.30 ~ 7.23 (m, 2H, aromatic), 7.54 ~ 7.53 (m , 1H, aromatic), 7.62 ~ 7.60 (m, 1H, aromatic) ppm
8-(1,2-디메틸-1H-8- (1,2-dimethyl-1H- 벤조[b]시클로펜타[d]티오펜Benzo [b] cyclopenta [d] thiophene -3-일)-2--3- days) -2- 메틸methyl -1,2,3,4--1,2,3,4- 테트라히드로퀴놀린Tetrahydroquinoline -티타늄 디클로라이드(8-(1,2-dimethyl-1H-benzo[b]cyclopenta[d]thiophen-3-yl)-2-methyl-1,2,3,4-tetrahydroquinoline-titanium dichloride) 화합물의 제조Of titanium dichloride (8- (1,2-dimethyl-1H-benzo [b] cyclopenta [d] thiophen-3-yl) -2-methyl-1,2,3,4-tetrahydroquinoline-titanium dichloride) Produce
상기에서 제조한 8-(1,2-디메틸-1H-벤조[b]시클로펜타[d]티오펜-3-일)-2-메틸-1,2,3,4-테트라히드로퀴놀린의 리간드(1.0g, 2.89mmol)에 n-BuLi(3.0mmol, 2.1eq)를 -20 ℃에서 서서히 적가하였다. 노란색 슬러리(slurry)가 형성되는 것이 관찰되었으며, 상온으로 서서히 승온시킨 뒤, 12시간 동안 상온 교반 하였다. TiCl4의 DME용액(806mg, 2.89mmol, 1.0eq)를 적가한 뒤 12시간 동안 상온 교반 하였다. 용매를 제거한 뒤, 톨루엔으로 추출하여 붉은색 고체를 수득하였다(700mg, 52% 수율). Ligand of 8- (1,2-dimethyl-1H-benzo [b] cyclopenta [d] thiophen-3-yl) -2-methyl-1,2,3,4-tetrahydroquinoline prepared above 1.0 g, 2.89 mmol) was slowly added dropwise n-BuLi (3.0 mmol, 2.1 eq) at -20 ° C. It was observed that a yellow slurry (slurry) was formed, gradually warmed up to room temperature, and stirred at room temperature for 12 hours. DME solution of TiCl 4 (806mg, 2.89mmol, 1.0eq) was added dropwise and stirred at room temperature for 12 hours. The solvent was removed and then extracted with toluene to give a red solid (700 mg, 52% yield).
1H NMR (C6D6): δ 1.46~1.467 (t, 2H, quinoline-NCH2), 1.85 (s, 3H, Cp-CH3), 1.79 (s, 3H, Cp-CH3), 2.39 (s, 3H, Cp-CH3), 2.37 (s, 3H, Cp-CH3), 2.10~2.07 (t, 2H, quinoline-NCH2), 5.22~5.20 (m, 1H, N-CH), 5.26~5.24 (m, 1H, N-CH), 6.89~6.87 (m, 2H, aromatic) 6.99~6.95 (m, 1H, aromatic), 7.19~7.08 (m, 2H, aromatic), 7.73~7.68 (m, 1H, aromatic) ppm1 H NMR (C 6 D 6 ): δ 1.46-1.467 (t, 2H, quinoline-NCH 2 ), 1.85 (s, 3H, Cp-CH 3 ), 1.79 (s, 3H, Cp-CH 3 ), 2.39 ( s, 3H, Cp-CH 3 ), 2.37 (s, 3H, Cp-CH 3 ), 2.10-2.07 (t, 2H, quinoline-NCH 2 ), 5.22-5.20 (m, 1H, N-CH), 5.26 ~ 5.24 (m, 1H, N-CH), 6.89 ~ 6.87 (m, 2H, aromatic) 6.99 ~ 6.95 (m, 1H, aromatic), 7.19 ~ 7.08 (m, 2H, aromatic), 7.73 ~ 7.68 (m, 1H, aromatic) ppm
제조예 2Preparation Example 2
하기 화학식 (i)로 표시되는 화합물(1.30g, 2.37mmol)을 톨루엔 (20ml)에 녹인 후 상온(23℃)에서 MeMgBr(1.62ml, 4.86mmol, 2.05eq)을 천천히 적하였다, 이후 상온에서 12시간 동안 교반하였다. NMR로 출발물질이 없어진 것을 확인하고, 톨루엔 용매를 감압여과 후 반응 혼합물을 헥산(30ml)에 용해시켰다. 이후 여과(filtration)을 통해 고체를 제거하고, 결과로 수득한 용액 중 헥산 용매를 감압 여과하여 하기 화학식 (ii)의 전이금속 화합물을 수득하였다.After dissolving the compound represented by the formula (i) (1.30g, 2.37mmol) in toluene (20ml), MeMgBr (1.62ml, 4.86mmol, 2.05eq) was slowly added dropwise at room temperature (23 ℃), then 12 at room temperature Stir for hours. The starting material was confirmed by NMR, and the toluene solvent was filtered under reduced pressure, and then the reaction mixture was dissolved in hexane (30 ml). Thereafter, the solid was removed through filtration, and the hexane solvent in the resulting solution was filtered under reduced pressure to obtain a transition metal compound represented by the following Chemical Formula (ii).
Figure PCTKR2016002938-appb-I000017
Figure PCTKR2016002938-appb-I000017
1H NMR (500MHz, C6D6): δ 7.62 (d, 1H), 7.48 (d, 1H), 7.13 (t, 1H), 7.03 (t, 1H), 2.30 (s, 3H), 2.09 (s, 3H), 2.02 (s, 3H), 1.28 (d, 27H), -0.24 (s, 3H), -0.27 (s, 3H)1 H NMR (500 MHz, C 6 D 6 ): δ 7.62 (d, 1H), 7.48 (d, 1H), 7.13 (t, 1H), 7.03 (t, 1H), 2.30 (s, 3H), 2.09 (s , 3H), 2.02 (s, 3H), 1.28 (d, 27H), -0.24 (s, 3H), -0.27 (s, 3H)
<올레핀 중합체의 제조><Production of Olefin Polymer>
실시예 1 Example 1
1.5L 오토클레이브 연속 공정 반응기에 헥산 용매(4.67 kg/h)와 1-옥텐(1.42 kg/h)을 채운 후, 반응기 상단의 온도를 160 ℃로 예열하였다. 트리이소부틸알루미늄 화합물(0.03 mmol/min), 상기 제조예 1에서 제조한 전이금속 화합물과 상기 제조예 2에서 제조한 화합물의 혼합물(혼합 중량비=75:25, 0.675 μmol/min), 그리고 디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트 조촉매(2.03 μmol/min)를 동시에 반응기로 투입하였다. 이어서, 상기 오토클레이브 반응기 속으로 에틸렌(0.87 kg/h)을 투입하여 89 bar의 압력으로 연속 공정에서 160 ℃로 30분 이상 유지시킨 후 공중합 반응을 진행하여 올레핀계 중합체로서 에틸렌-1옥텐 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.After the 1.5 L autoclave continuous process reactor was charged with hexane solvent (4.67 kg / h) and 1-octene (1.42 kg / h), the temperature at the top of the reactor was preheated to 160 ° C. Triisobutylaluminum compound (0.03 mmol / min), a mixture of the transition metal compound prepared in Preparation Example 1 and the compound prepared in Preparation Example 2 (mixed weight ratio = 75: 25, 0.675 μmol / min), and dimethylaniyl Linium tetrakis (pentafluorophenyl) borate cocatalyst (2.03 μmol / min) was simultaneously introduced into the reactor. Subsequently, ethylene (0.87 kg / h) was introduced into the autoclave reactor and maintained at 160 ° C. for 30 minutes or more in a continuous process at a pressure of 89 bar, followed by a copolymerization reaction to produce an ethylene-1 octene copolymer as an olefin polymer. Got. Next, the remaining ethylene gas was removed and the polymer solution was dried in a vacuum oven for at least 12 hours, and then physical properties were measured.
실시예 2Example 2
1-옥텐(1.55 kg/h), 트리이소부틸알루미늄 화합물(0.03 mmol/min), 상기 제조예 1에서 제조한 전이금속 화합물과 상기 제조예 2에서 제조한 화합물의 혼합물 (혼합 중량비=75:25, 0.75 μmol/min), 그리고 디메틸아닐리늄 테트라키스(펜타플루오로페닐)보레이트 조촉매(2.25 μmol/min)를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 올레핀계 중합체를 제조하였다.1-octene (1.55 kg / h), triisobutylaluminum compound (0.03 mmol / min), a mixture of the transition metal compound prepared in Preparation Example 1 and the compound prepared in Preparation Example 2 (mixed weight ratio = 75: 25 , 0.75 μmol / min), and a olefin polymer was prepared in the same manner as in Example 1, except that dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (2.25 μmol / min) was used.
실시예 3Example 3
1-옥텐(1.51 kg/h), 트리이소부틸알루미늄 화합물(0.05 mmol/min), 상기 제조예 1에서 제조한 전이금속 화합물과 상기 제조예 2에서 제조한 화합물의 혼합물(혼합 중량비=75:25, 0.75 μmol/min), 그리고 디메틸아닐리늄 테트라키스(펜타플로로페닐)보레이트 조촉매(2.25 μmol/min)를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 올레핀계 중합체를 제조하였다.1-octene (1.51 kg / h), triisobutylaluminum compound (0.05 mmol / min), a mixture of the transition metal compound prepared in Preparation Example 1 and the compound prepared in Preparation Example 2 (mixed weight ratio = 75: 25 , 0.75 μmol / min), and a olefin polymer was prepared in the same manner as in Example 1, except that dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (2.25 μmol / min) was used.
실시예 4Example 4
1-옥텐(1.30 kg/h), 트리이소부틸알루미늄 화합물(0.04 mmol/min), 상기 제조예 1에서 제조한 전이금속 화합물과 상기 제조예 2에서 제조한 화합물의 혼합물 (혼합 중량비=75:25, 0.58 μmol/min), 그리고 디메틸아닐리늄 테트라키스(펜타플로로페닐)보레이트 조촉매(1.40 μmol/min)를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 올레핀계 중합체를 제조하였다.1-octene (1.30 kg / h), triisobutylaluminum compound (0.04 mmol / min), a mixture of the transition metal compound prepared in Preparation Example 1 and the compound prepared in Preparation Example 2 (mixed weight ratio = 75: 25 , 0.58 μmol / min), and a olefin polymer was prepared in the same manner as in Example 1, except that dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (1.40 μmol / min) was used.
실시예 5Example 5
1-옥텐(1.30 kg/h), 트리이소부틸알루미늄 화합물(0.04 mmol/min), 상기 제조예 1에서 제조한 전이금속 화합물과 상기 제조예 2에서 제조한 화합물의 혼합물 (혼합 중량비=75:25, 0.70 μmol/min), 그리고 디메틸아닐리늄 테트라키스(펜타플로로페닐)보레이트 조촉매(2.0 μmol/min)를 사용하는 것을 제외하고는 상기 실시예 1과 동일한 방법으로 올레핀계 중합체를 제조하였다.1-octene (1.30 kg / h), triisobutylaluminum compound (0.04 mmol / min), a mixture of the transition metal compound prepared in Preparation Example 1 and the compound prepared in Preparation Example 2 (mixed weight ratio = 75: 25 , 0.70 μmol / min), and a olefin polymer was prepared in the same manner as in Example 1, except that dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (2.0 μmol / min) was used.
비교예 1Comparative Example 1
1종의 메탈로센 촉매만을 이용하여 제조되며, 탈크 코팅층을 갖는 Dow사의 에틸렌-1옥텐 공중합체(제품명: Eg8407)를 준비하였다.Prepared using only one metallocene catalyst, an ethylene-1 octene copolymer (product name: Eg8407) manufactured by Dow having a talc coating layer was prepared.
비교예 2Comparative Example 2
1종의 메탈로센 촉매만을 이용하여 제조된 Dow사의 에틸렌-1옥텐 공중합체(제품명: Eg8200)를 준비하였다.Dow's ethylene-1 octene copolymer (product name: Eg8200) prepared using only one metallocene catalyst was prepared.
비교예 3Comparative Example 3
1종의 메탈로센 촉매만을 이용하여 제조된 LG화학사의 에틸렌-1옥텐 공중합체(제품명: LC170)를 준비하였다.LG Chem's ethylene-1 octene copolymer (product name: LC170) prepared using only one metallocene catalyst was prepared.
비교예 4 Comparative Example 4
1.5L 오토클레이브 연속 공정 반응기에 헥산 용매(4.67 kg/h)와 1-옥텐(1.42 kg/h)을 채운 후, 반응기 상단의 온도를 160 ℃로 예열하였다. 트리이소부틸알루미늄 화합물(0.03 mmol/min), [(1,2,3,4-테트라하이드로퀴놀린-8-일)테트라메틸시클로펜타디에닐-η5,κ-N]티타늄디메틸([(1,2,3,4-tetrahydroquinolin-8-yl)tetramethylcyclopentadienyl-η5,κ-N]titanium dimethyl) 화합물과 tert-부틸(((1,2-디메틸-3H-벤조[b]사이클로펜타[d]티오펜-3-일)디메틸실릴)아미노)디메틸 티타늄(tert-butyl(((1,2-dimethyl-3H-benzo[b]cyclopenta[d]thiophen-3-yl)dimethylsilyl)amino)dimethyl titanium)의 혼합물(혼합 중량비=75:25, 0.675 μmol/min), 그리고 디메틸아닐리늄 테트라키스(펜타플로로페닐)보레이트 조촉매(2.03 μmol/min)를 동시에 반응기로 투입하였다. 이어서, 상기 오토클레이브 반응기 속으로 에틸렌(0.87 kg/h)을 투입하여 89 bar의 압력으로 연속 공정에서 160 ℃로 30분 이상 유지시킨 후 공중합 반응을 진행하여 올레핀계 중합체로서 에틸렌-1옥텐 공중합체를 얻었다. 다음으로, 남은 에틸렌 가스를 빼내고 고분자 용액을 진공 오븐에서 12시간 이상 건조한 후 물성을 측정하였다.After the 1.5 L autoclave continuous process reactor was charged with hexane solvent (4.67 kg / h) and 1-octene (1.42 kg / h), the temperature at the top of the reactor was preheated to 160 ° C. Triisobutylaluminum compound (0.03 mmol / min), [(1,2,3,4-tetrahydroquinolin-8-yl) tetramethylcyclopentadienyl-η5, κ-N] titaniumdimethyl ([(1, 2,3,4-tetrahydroquinolin-8-yl) tetramethylcyclopentadienyl-η5, κ-N] titanium dimethyl) compound with tert-butyl (((1,2-dimethyl-3H-benzo [b] cyclopenta [d] thiophene -3-yl) dimethylsilyl) amino) dimethyl titanium (tert-butyl (((1,2-dimethyl-3H-benzo [b] cyclopenta [d] thiophen-3-yl) dimethylsilyl) amino) dimethyl titanium) (Mixed weight ratio = 75: 25, 0.675 µmol / min) and dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (2.03 µmol / min) were simultaneously introduced into the reactor. Subsequently, ethylene (0.87 kg / h) was introduced into the autoclave reactor and maintained at 160 ° C. for 30 minutes or more in a continuous process at a pressure of 89 bar, followed by a copolymerization reaction to produce an ethylene-1 octene copolymer as an olefin polymer. Got. Next, the remaining ethylene gas was removed and the polymer solution was dried in a vacuum oven for at least 12 hours, and then physical properties were measured.
비교예 5Comparative Example 5
1-옥텐(1.39 kg/h), 트리이소부틸알루미늄 화합물(0.04 mmol/min), [(1,2,3,4-테트라하이드로퀴놀린-8-일)테트라메틸시클로펜타디에닐-η5,κ-N] 티타늄 디메틸 화합물과, 디메틸(1,2,3,4,5-펜타메틸시클로펜타-2,4-디엔-1-일)((트리-tert-부틸-15-포스파닐리덴)아미노)티타늄(dimethyl(1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl)(tri-tert-butyl-15-phosphanylidene)amino)titanium)의 혼합물(혼합 중량비=75:25, 0.70 μmol/min), 그리고 디메틸아닐리늄 테트라키스(펜타플로로페닐)보레이트 조촉매(2.0 μmol/min)를 사용하는 것을 제외하고는 상기 비교예 4와 동일한 방법으로 공중합체를 제조하였다.1-octene (1.39 kg / h), triisobutylaluminum compound (0.04 mmol / min), [(1,2,3,4-tetrahydroquinolin-8-yl) tetramethylcyclopentadienyl-η5, κ -N] titanium dimethyl compound and dimethyl (1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl) ((tri-tert-butyl-15-phosphanilidene) A mixture of amino) titanium (dimethyl (1,2,3,4,5-pentamethylcyclopenta-2,4-dien-1-yl) (tri-tert-butyl-15-phosphanylidene) amino) titanium) : 25, 0.70 μmol / min), and a copolymer was prepared in the same manner as in Comparative Example 4 except for using the dimethylanilinium tetrakis (pentafluorophenyl) borate cocatalyst (2.0 μmol / min). .
실험예 1 : 올레핀계 중합체의 물성 평가Experimental Example 1 Evaluation of Physical Properties of Olefin Polymer
상기 실시예 1~5 및 비교예 1~5에서 제조한 올레핀계 중합체에 대해 하기와 같은 방법으로 다양한 물성을 측정, 평가하였다. Various physical properties were measured and evaluated for the olefin polymers prepared in Examples 1 to 5 and Comparative Examples 1 to 5 in the following manner.
(1) 중합체의 밀도(Density, g/cc); ASTM D-792로 측정하였다.(1) Density (g / cc) of the polymer; Measured by ASTM D-792.
(2) 고분자의 용융지수 (Melt Index, MI, g/10min): ASTM D-1238 (조건 E, 190 ℃, 2.16 Kg 하중) 로 측정하였다.(2) Melt index of polymer (Melt Index, MI, g / 10min): Measured by ASTM D-1238 (Condition E, 190 ° C, 2.16 Kg load).
(3) 중량평균 분자량(Mw, g/mol) 및 분자량 분포(MWD): 겔 투과 크로마토 그래피(GPC: gel permeation chromatography)를 이용하여 수 평균 분자량(Mn) 및 중량 평균 분자량(Mw)을 각각 측정하고, 또, 중량 평균 분자량을 수 평균 분자량으로 나누어 분자량 분포(MWD)를 계산하였다.(3) Weight average molecular weight (Mw, g / mol) and molecular weight distribution (MWD): The number average molecular weight (Mn) and the weight average molecular weight (Mw) were respectively measured by gel permeation chromatography (GPC). Moreover, the weight average molecular weight was divided by the number average molecular weight, and molecular weight distribution (MWD) was calculated.
(4) TREF (temperature rising elution fractionation) (4) TREF (temperature rising elution fractionation)
TREF는 PolymerChar의 TREF 기계를 사용하였으며 o-디클로로벤젠을 용매로 하여 -20 ℃ 내지 120 ℃ 범위에서 측정하였다. TREF was measured using PolymerChar's TREF machine and measured in the range of -20 ° C to 120 ° C using o-dichlorobenzene as a solvent.
상세하게는, 40mg의 중합체 샘플을 20ml의 o-디클로로벤젠 용매 하에서 135 ℃에서 30분간 용해시킨 후 95 ℃에서 30분간 안정화시켰다. 이것을 TREF 컬럼에 도입한 후, 0.5 ℃/분의 강온 속도로 -20 ℃까지 냉각 후, 2분간 유지하였다. 그 후 -20 ℃에서 120 ℃까지 1 ℃/min의 강온 속도로 가열하면서 용매인 o-디클로로벤젠을 0.5 mL/분의 유속으로 컬럼에 흘리면서 용출되는 중합체의 농도를 측정하였다.Specifically, 40 mg of polymer sample was dissolved for 30 minutes at 135 ° C. under 20 ml of o-dichlorobenzene solvent and then stabilized at 95 ° C. for 30 minutes. After introducing this into a TREF column, the mixture was cooled to −20 ° C. at a temperature lowering rate of 0.5 ° C./min and held for 2 minutes. Thereafter, the concentration of the polymer eluted was measured while flowing o-dichlorobenzene, a solvent, in a column at a flow rate of 0.5 mL / min while heating at a temperature decrease rate of 1 ° C / min from -20 ° C to 120 ° C.
(5) GPC 피크 개수: 겔 투과 크로마토그래피(GPC) 분석을 통해 관찰하였다.(5) GPC peak number: Observed through gel permeation chromatography (GPC) analysis.
그 결과를 하기 표 1, 및 도 1 내지 도 5에 나타내었다.The results are shown in Table 1 below and FIGS. 1 to 5.
도 1 내지 도 4는 각각 실시예 1, 2 및 비교예 1, 4에서 제조한 올레핀계 중합체의 온도상승 용리 분별 (TREF) 그래프이고, 도 5는 실시예 1에서 제조한 올레핀계 중합체에 대한 겔 투과 크로마토그래피(GPC) 분석결과를 나타낸 그래프이다.1 to 4 are temperature rise elution fractionation (TREF) graphs of the olefin polymers prepared in Examples 1 and 2 and Comparative Examples 1 and 4, respectively, and FIG. 5 is a gel of the olefin polymers prepared in Example 1. FIG. It is a graph showing the results of permeation chromatography (GPC) analysis.
밀도density MIMI MwMw MWDMWD TREFTREF TREF 피크 개수TREF peak count GPC 피크 개수GPC peak count
단위unit g/ccg / cc g/10ming / 10min g/molg / mol Te1Te1 Te2Te2 Te3Te3 dog dog
℃(%)℃ (%) ℃(%)℃ (%) ℃(%)℃ (%)
실시예1Example 1 0.8690.869 1010 9852598525 2.342.34 0.5(70%)0.5 (70%) 41.4(18%)41.4 (18%) 89.0(12%)89.0 (12%) 33 1One
실시예2Example 2 0.8670.867 24.524.5 6473864738 2.68 2.68 -6.7(58%)-6.7 (58%) 38.8(22%)38.8 (22%) 87.6(20%)87.6 (20%) 33 1One
실시예3Example 3 0.8710.871 6.36.3 8508885088 2.602.60 0.3(45%)0.3 (45%) 41.0(22%)41.0 (22%) 88.0(33%)88.0 (33%) 33 1One
실시예4Example 4 0.8730.873 1.71.7 103827103827 2.512.51 -20.0(44%)-20.0 (44%) 30.1(14%)30.1 (14%) 89.6(42%)89.6 (42%) 33 1One
실시예5Example 5 0.8720.872 5.65.6 8993289932 2.512.51 -20.0(46%)-20.0 (46%) 24.9(13%)24.9 (13%) 88.9(41%)88.9 (41%) 33 1One
비교예1Comparative Example 1 0.8710.871 27.927.9 6211562115 2.282.28 33.2(100%)33.2 (100%) -- -- 1One 1One
비교예2Comparative Example 2 0.8730.873 4.94.9 9763597635 2.312.31 34.8(100%)34.8 (100%) -- -- 1One 1One
비교예3Comparative Example 3 0.8720.872 1.11.1 100147100147 2.292.29 28.4(100%)28.4 (100%) -- -- 1One 1One
비교예4Comparative Example 4 0.8710.871 4.74.7 109031109031 2.552.55 1.4(61%)1.4 (61%) 65.6(39%)65.6 (39%) -- 22 1One
비교예5Comparative Example 5 0.8640.864 30.730.7 7283672836 2.912.91 -5.0(84%)-5.0 (84%) 98.8(16%)98.8 (16%) -- 22 1One
실험결과, 본 발명에 따른 실시예 1 내지 5의 올레핀계 중합체는 밀도 0.850 g/cc 내지 0.910 g/cc의 범위 내에서 TREF 상에서 Te1, Te2 및 Te3의 3개의 피크를 나타내었다. 반면, 비교예 1 내지 5의 중합체는 동일한 밀도 범위 내에서 1개 또는 2개의 피크만이 확인되었다.As a result, the olefinic polymers of Examples 1 to 5 according to the present invention showed three peaks of Te1, Te2 and Te3 on the TREF within a density of 0.850 g / cc to 0.910 g / cc. On the other hand, the polymers of Comparative Examples 1 to 5 only found one or two peaks within the same density range.
또, 본 발명에 따른 실시예 1 내지 5의 올레핀계 중합체는 GPC 상에서 단일 피크를 나타내었으며 분자량 분포(MWD)가 2.3 내지 2.7로, 비교예 1 내지 5의 중합체와 동등 수준의 좁은 분자량 분포를 나타내었다. In addition, the olefin polymers of Examples 1 to 5 according to the present invention showed a single peak on GPC and had a molecular weight distribution (MWD) of 2.3 to 2.7, which showed a narrow molecular weight distribution on the same level as the polymers of Comparative Examples 1 to 5. It was.

Claims (11)

  1. 겔 투과 크로마토그래피 분석시 단일 피크를 나타내고, 온도상승 용리 분별 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 3개의 올레핀계 중합체의 용리온도 Te1, Te2 및 Te3을 포함하는 것인 올레핀계 중합체.An olefinic polymer which exhibits a single peak upon gel permeation chromatography analysis and comprises the elution temperatures Te1, Te2 and Te3 of the three olefinic polymers in the temperature range of -20 ° C to 120 ° C upon elution fractional measurement.
  2. 제1항에 있어서,The method of claim 1,
    하기 (1) 내지 (4)의 요건을 충족하는 올레핀계 중합체:Olefin-based polymers meeting the requirements of the following (1) to (4):
    (1) 밀도: 0.850 g/cc 내지 0.910 g/cc (1) Density: 0.850 g / cc to 0.910 g / cc
    (2) 190 ℃, 2.16 kg 하중 조건에서 측정한 용융지수: 0.1 g/10min 내지 100 g/10min(2) Melt index measured at 190 ° C. and 2.16 kg loading conditions: 0.1 g / 10min to 100 g / 10min
    (3) 분자량 분포: 1.5 내지 4.0(3) molecular weight distribution: 1.5 to 4.0
    (4) 온도상승 용리 분별 측정시 -20 ℃ 내지 120 ℃ 온도 범위에서 3개의 올레핀계 중합체의 용리온도 Te1, Te2 및 Te3을 포함함.(4) Temperature Elution Elution temperature Te1, Te2 and Te3 of the three olefinic polymers in the temperature range of -20 ° C to 120 ° C in the fractionation measurement.
  3. 제1항에 있어서,The method of claim 1,
    상기 온도상승 용리 분별 측정시, 상기 Te1은 Te2 보다, 그리고 Te2는 Te3 보다 낮은 온도에서 존재하며, 올레핀계 중합체의 밀도가 0.850 g/cc 내지 0.910 g/cc 범위에서 상기 Te1은 -20 ℃ 내지 100 ℃ 범위이고, 상기 Te2는 0 ℃ 내지 120 ℃ 범위이며, 상기 Te3는 20 ℃ 내지 120 ℃ 범위인 것인 올레핀계 중합체.In the temperature-eluting fractional measurement, Te1 is present at a temperature lower than Te2, and Te2 is lower than Te3, and Te1 is -20 ° C to 100 with a density of an olefin polymer of 0.850 g / cc to 0.910 g / cc. ° C range, wherein Te2 is in the range 0 ° C to 120 ° C, and Te3 is in the range of 20 ° C to 120 ° C.
  4. 제1항에 있어서, The method of claim 1,
    상기 올레핀계 중합체의 밀도가 0.86 g/cc 내지 0.88 g/cc에서 상기 Te1은 -20 ℃ 내지 30 ℃ 범위이고, 상기 Te2는 10 ℃ 내지 80 ℃ 범위이며, 상기 Te3은 40 ℃ 내지 120 ℃ 범위인 것인 올레핀계 중합체.Wherein the density of the olefin polymer is 0.86 g / cc to 0.88 g / cc Te1 is in the range of -20 ℃ to 30 ℃, Te2 is in the range of 10 ℃ to 80 ℃, Te3 is in the range of 40 ℃ to 120 ℃ An olefin polymer.
  5. 제1항에 있어서,The method of claim 1,
    상기 올레핀계 중합체는 제1 준결정질 올레핀계 중합체, 제2 준결정질 올레핀계 중합체 및 제3 준결정질 올레핀계 중합체를 포함하며, The olefin polymer includes a first semicrystalline olefin polymer, a second semicrystalline olefin polymer and a third semicrystalline olefin polymer,
    온도상승 용리 분별 측정시 상기 제1 준결정질 올레핀계 중합체 피크의 분획비는 5% 내지 90%이고, 상기 제2 준결정질 올레핀계 중합체 피크의 분획비는 5% 내지 90%이며, 상기 제3 준결정질 올레핀계 중합체 피크의 분획비는 5% 내지 90%인 것인 올레핀계 중합체.The fractional ratio of the first semicrystalline olefinic polymer peak is 5% to 90%, the fractional ratio of the second semicrystalline olefinic polymer peak is 5% to 90%, and the third quaternary The fractional ratio of crystalline olefinic polymer peaks is 5% to 90% olefinic polymer.
  6. 제1항에 있어서,The method of claim 1,
    상기 올레핀계 중합체는 제1 준결정질 올레핀계 중합체, 제2 준결정질 올레핀계 중합체 및 제3 준결정질 올레핀계 중합체를 포함하며, The olefin polymer includes a first semicrystalline olefin polymer, a second semicrystalline olefin polymer and a third semicrystalline olefin polymer,
    온도상승 용리 분별 측정시 상기 제1 준결정질 올레핀계 중합체 피크의 분획비는 30% 내지 80%이고, 상기 제2 준결정질 올레핀계 중합체 피크의 분획비는 5% 내지 40%이며, 상기 제3 준결정질 올레핀계 중합체 피크의 분획비는 5% 내지 50%인 것인 올레핀계 중합체.The fractional ratio of the first semicrystalline olefinic polymer peak in the temperature eluting fractional measurement is 30% to 80%, the fractional ratio of the second semicrystalline olefinic polymer peak is 5% to 40%, and the third quaternary The fractional ratio of crystalline olefinic polymer peak is 5% to 50% olefinic polymer.
  7. 제1항에 있어서, The method of claim 1,
    상기 올레핀계 중합체의 밀도가 0.850 g/cc 내지 0.910 g/cc 에서 시차 주사 열량 측정시, 3개의 결정화 온도 Tc1, Tc2 및 Tc3을 포함하고, 상기 Tc1은 5 ℃ 이하 범위이고, Tc2는 0 ℃ 내지 60 ℃ 범위이며, 그리고 Tc3은 80 ℃ 내지 130 ℃ 범위인 것인 올레핀계 중합체.When the differential scanning calorimetry is measured at a density of 0.850 g / cc to 0.910 g / cc of the olefinic polymer, it includes three crystallization temperatures Tc1, Tc2 and Tc3, wherein Tc1 is in the range of 5 ° C or less, and Tc2 is in the range of 0 ° C to An olefinic polymer in the range of 60 ° C. and Tc 3 in the range of 80 ° C. to 130 ° C.
  8. 제1항에 있어서,The method of claim 1,
    190 ℃, 2.16 kg 하중 조건 에서 측정한 용융지수가 0.1 g/10min 내지 30 g/10min인 것인 올레핀계 중합체.An olefin polymer having a melt index of 0.1 g / 10 min to 30 g / 10 min measured at 190 ° C. and 2.16 kg loading conditions.
  9. 제1항에 있어서, The method of claim 1,
    중량 평균 분자량이 20,000 g/mol 내지 200,000 g/mol인 것인 올레핀계 중합체.An olefin polymer having a weight average molecular weight of 20,000 g / mol to 200,000 g / mol.
  10. 제1항에 있어서, The method of claim 1,
    분자량 분포가 1.5 내지 3.0인 것인 올레핀계 중합체.An olefin polymer having a molecular weight distribution of 1.5 to 3.0.
  11. 제1항에 있어서, The method of claim 1,
    중공성형용, 압출성형용 또는 사출성형용인 올레핀계 중합체.Olefin polymer for blow molding, extrusion molding or injection molding.
PCT/KR2016/002938 2015-03-26 2016-03-23 Olefin-based polymer WO2016153275A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP16769093.2A EP3162817B1 (en) 2015-03-26 2016-03-23 Olefin-based polymer
US15/500,859 US10023669B2 (en) 2015-03-26 2016-03-23 Olefin-based polymer
CN201680002144.8A CN106795242B (en) 2015-03-26 2016-03-23 Olefin-based polymers

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0042743 2015-03-26
KR20150042743 2015-03-26
KR10-2016-0021825 2016-02-24
KR1020160021825A KR101847702B1 (en) 2015-03-26 2016-02-24 Olefin-based polymer

Publications (1)

Publication Number Publication Date
WO2016153275A1 true WO2016153275A1 (en) 2016-09-29

Family

ID=56979242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002938 WO2016153275A1 (en) 2015-03-26 2016-03-23 Olefin-based polymer

Country Status (1)

Country Link
WO (1) WO2016153275A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210115173A1 (en) * 2017-12-26 2021-04-22 Lg Chem, Ltd. Olefin-Based Polymer
CN113795524A (en) * 2019-09-30 2021-12-14 株式会社Lg化学 Polypropylene-based composite material
EP3967728A4 (en) * 2019-09-30 2022-08-31 Lg Chem, Ltd. Polypropylene-based composite material

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100986301B1 (en) * 2010-04-12 2010-10-07 아주대학교산학협력단 Group 4 metal complexes of thiophene-fused cyclopentadienyl ligand derived from tetrahydroquinoline derivatives and olefin polymerizations therewith
KR101249995B1 (en) * 2008-12-11 2013-04-03 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing olefin-based polymer using the same
WO2015046705A1 (en) * 2013-09-26 2015-04-02 주식회사 엘지화학 Transition metal compound, catalyst composition containing same, and method for preparing polymer by using same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101249995B1 (en) * 2008-12-11 2013-04-03 주식회사 엘지화학 Hybrid supported metallocene catalyst, method for preparing the same, and method for preparing olefin-based polymer using the same
KR100986301B1 (en) * 2010-04-12 2010-10-07 아주대학교산학협력단 Group 4 metal complexes of thiophene-fused cyclopentadienyl ligand derived from tetrahydroquinoline derivatives and olefin polymerizations therewith
WO2015046705A1 (en) * 2013-09-26 2015-04-02 주식회사 엘지화학 Transition metal compound, catalyst composition containing same, and method for preparing polymer by using same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
NIFANT'EV, I. E. ET AL.: "Zirconium and Hafnium Complexes based on 2-aryl-8- arylaminoquinoline Ligands: Synthesis, Molecular Structure, and Catalytic Performance in Ethylene Copolymerization.", DALTON TRANSACTIONS, vol. 42, no. 5, 2013, pages 1501 - 1511, XP055316155 *
See also references of EP3162817A4 *
STEPHAN, D. W. ET AL.: "Phosphinimides as a Steric Equivalent to Cyclopentadienyl: an Approach to Ethylene Polymerization Catalyst Design.", ORGANOMETALLICS., vol. 18, no. 7, 1999, pages 1116 - 1118, XP000874846 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210115173A1 (en) * 2017-12-26 2021-04-22 Lg Chem, Ltd. Olefin-Based Polymer
US11542352B2 (en) * 2017-12-26 2023-01-03 Lg Chem, Ltd. Olefin-based polymer
CN113795524A (en) * 2019-09-30 2021-12-14 株式会社Lg化学 Polypropylene-based composite material
EP3950824A4 (en) * 2019-09-30 2022-08-24 Lg Chem, Ltd. Polypropylene-based composite material
EP3967728A4 (en) * 2019-09-30 2022-08-31 Lg Chem, Ltd. Polypropylene-based composite material
CN113795524B (en) * 2019-09-30 2023-10-03 株式会社Lg化学 Polypropylene-based composite material

Similar Documents

Publication Publication Date Title
WO2015046932A1 (en) Olefin-based polymer
WO2017099491A1 (en) Olefin-based polymer
WO2017155149A1 (en) Hybrid catalyst composition, preparation method therefor, and polyolefin prepared using same
WO2019125050A1 (en) Olefin-based polymer
WO2019212303A1 (en) ETHYLENE/α-OLEFIN COPOLYMER AND PREPARATION METHOD THEREFOR
WO2015046930A1 (en) Catalytic composition and method for preparing polymer including same
KR101847702B1 (en) Olefin-based polymer
WO2020171631A1 (en) Olefin-based polymer
WO2019132475A1 (en) Olefin-based polymer
WO2017003261A1 (en) Transition metal compound and catalyst composition containing same
WO2012169812A2 (en) METHOD OF PREPARING ETHYLENE-α-OLEFIN-DIENE COPOLYMER
WO2019212308A1 (en) Ethylene/alpha-olefin copolymer and method for preparing same
WO2015057001A1 (en) Transition metal compound having heteroatom, a catalyst composition comprising same, and method for preparing polymer using same
WO2016153275A1 (en) Olefin-based polymer
WO2019038605A1 (en) NOVEL TRANSITION METAL COMPOUND, CATALYST COMPOSITION INCLUDING THE SAME, AND METHOD FOR PREPARING ETHYLENE HOMOPOLYMER OR COPOLYMER OF ETHYLENE AND α-OLEFIN USING THE SAME
WO2019212304A1 (en) Ethylene/alpha-olefin copolymer and preparation method therefor
WO2020101373A1 (en) Supported catalyst for propylene polymerization and method for producing polypropylene resin using same
WO2019093630A1 (en) Method for preparing high-melt-strength polypropylene resin
WO2017003262A1 (en) Transition metal compound and catalyst composition containing same
WO2018097468A1 (en) Polyolefin catalyst and method for preparing polyolefin by using same
WO2021075788A1 (en) Method for preparing olefin polymerization hybrid catalyst, olefin polymerization hybrid catalyst, and olefin-based polymer
WO2020130719A1 (en) Polyolefin
WO2017111553A1 (en) Catalyst composition comprising novel transition metal compound
WO2021066490A1 (en) Olefin-based polymer
WO2021066486A1 (en) Olefin-based polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769093

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016769093

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016769093

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15500859

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE