WO2016153244A9 - Cooperative communication method in small cell network environment - Google Patents

Cooperative communication method in small cell network environment Download PDF

Info

Publication number
WO2016153244A9
WO2016153244A9 PCT/KR2016/002833 KR2016002833W WO2016153244A9 WO 2016153244 A9 WO2016153244 A9 WO 2016153244A9 KR 2016002833 W KR2016002833 W KR 2016002833W WO 2016153244 A9 WO2016153244 A9 WO 2016153244A9
Authority
WO
WIPO (PCT)
Prior art keywords
base station
base stations
sinr
selecting
user
Prior art date
Application number
PCT/KR2016/002833
Other languages
French (fr)
Korean (ko)
Other versions
WO2016153244A1 (en
Inventor
임혁
김용강
Original Assignee
광주과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 광주과학기술원 filed Critical 광주과학기술원
Publication of WO2016153244A1 publication Critical patent/WO2016153244A1/en
Publication of WO2016153244A9 publication Critical patent/WO2016153244A9/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/20Selecting an access point
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a cooperative communication method in a small cell network environment, and more particularly, to a communication method for selecting a base station capable of providing an optimal network environment to a user in a small cell environment in which base stations are concentrated.
  • each cell may use the same frequency resource around a cell boundary, and in this case, mutual interference may exist.
  • cellular communication systems are oriented toward small cells by moving away from macro cells, and networks have evolved in such a manner that small cells of various sizes exist in macro cells. It is an important issue.
  • a method of transmitting data through mutual cooperation between neighboring base stations has been proposed.
  • a base station adjacent to a specific terminal located at a cell boundary transmits the same data at the same time, and each serving base station forms a sharp beam toward the terminal to reduce interference and reduce the interference of the signal to be received from the serving base station at the terminal.
  • the above technique for overcoming cell-to-cell interference is problematic in that the amount of information exchanged for mutual cooperation increases and requires complicated calculations.
  • the terminal efficiently selects its own serving base station, there is a limit to the initial cell search method based on the reception strength of the existing base station pattern signal.
  • An object of the present invention is to provide a method for selecting an optimal base station for a user in a network environment based on small cell cooperative communication.
  • An embodiment of the present invention is a cooperative communication method for selecting a base station for performing communication in a wireless network environment consisting of a small cell, comprising the steps of: evaluating the utilization (utilization) of the base station that can communicate with the user terminal; Selecting base stations among the base stations which have the lowest usability; Additionally selecting a base station to satisfy the SINR in consideration of a signal-to-noise ratio (SINR) in which communication with a user terminal may be performed; And performing cooperative communication with the user's terminal through the joint transmission of the base stations, wherein the usability is a ratio of the number of users currently served by the base station to the service capacity that the base station can perform at maximum. Characterized in that represents.
  • SINR signal-to-noise ratio
  • the user terminal preferentially selects a base station having relatively low usability by the user in an environment in which the user and the network are concentrated, thereby stably accessing the network even in a situation where the user is temporarily crowded. You can keep performance at a constant level.
  • the present invention it is possible to provide a certain quality of service to a user connected to a network by using a method of additionally selecting a base station to compensate for channel measurement uncertainty caused by interference propagated in an uncooperating base station.
  • 1 illustrates a model of a dense small cell network
  • 2 is a graph showing the serviceability of user equipment in a network
  • FIG. 3 is a graph illustrating the use of resources when a base station cooperatively provides a service to a user terminal, (a) shows an average transmission power when the base station provides a service to a user terminal, and (b) shows a user.
  • FIG. 5 is a flowchart illustrating a cooperative communication method in a small cell network environment according to an embodiment.
  • the user terminal receives a lot of signal information from a plurality of base stations, and the base stations cooperatively distribute channel and message information to the user equipment through the various lines.
  • a particular base station may be over-selected and overloaded with multiple user equipment.
  • the present embodiment is based on the premise that small cells are performed in a dense network environment, and provides a method for improving processing performance of a network in a situation where a plurality of networks perform cooperative communication with each other.
  • FIG. 1 is a diagram illustrating a model of a dense small cell network.
  • Neighbor base stations for the k-th (arbitrary) user terminal may be defined as X k included in X, and the k-th user terminal communication is possible.
  • X k If the size of X k is large, it may be possible to perform cooperative communication with more base stations at a higher level, but interference between base stations occurs in a situation in which cooperative communication is not properly performed.
  • the base stations share CSI with the transmitted data, i-th base station transmits mi signal at the power of Pi, and it is assumed that the base stations are connected to the high-speed wireless network.
  • message exchange overhead may occur when X k is large.
  • the set of base stations included in X k is defined as S k (t) and is selected to jointly participate in signal transmission at the k th user equipment (terminal) (hereinafter referred to as UE) for the time t.
  • UE user equipment
  • u i (t) which is an index indicating a service rate performed at the i-th base station relative to the maximum service capacity for the time t, is defined, and this will be referred to as utilization.
  • the service rate being performed may be described as the number of users currently serving the base station.
  • a signal received at a k th UE during a time t may be represented by the following equation.
  • Equation 1 R k (t) of Equation 1 may be represented again by the following equation.
  • r i, k (t) h i, k (t) p i
  • SINR of the k-th UE is expressed as follows.
  • Equation 3 does not include the interference from the base station, because the selected base station is controlled so as not to interfere with the user's terminal (kth UE) using the precoding matrix in the cooperative communication environment.
  • the plurality of base stations BS may perform cooperative communication with each other to improve processing performance of the user equipment UE.
  • the cooperating base stations X k provide a radio connection service and are superior in performance than simply when one neighboring base station exists.
  • the cooperative base station is large, there is a message exchange overhead because cooperative base stations must share CSI and transmission data.
  • a portion of the cooperating base station Sk (t) may be selected to participate in the joint signal transmission to the K-th UE.
  • S k (t) defined as a cooperative base station
  • a method of minimizing the sum of the total transmit power of the base station while satisfying the threshold of SINR may be considered.
  • the method of considering the minimum power is defined as a MIN-POWER technique, and can be expressed by the following equation.
  • base stations having low utilization for the common signal transmission to the k-th UE are selected.
  • An embodiment can improve service capacity by determining cooperative bases in consideration of usability.
  • some base stations in close proximity to the UE may be over-selected and overloaded in the hotspot area, reducing QoS and BS. Rather than being excessively used, it is desirable to improve the processing performance of the network by selecting several base stations with less usability and cooperatively serving the UE.
  • a process of selecting S k (t) corresponding to the base station may be performed to minimize the sum of ui (t) indicating usability within a range in which the SINR threshold is guaranteed.
  • This is defined as a MIN-UTIL technique, and the base station selection method may be expressed by the following equation.
  • any UE may be provided with a service for t times by the base stations Sk selected by Equation 5.
  • the embodiment also provides an optimization technique for compensating for parameters due to channel uncertainty by base stations that do not collaborate in multiple base stations.
  • G i, k in Equation 5 is a parameter to be verified, allowing interference from an uncooperative base station in any UE. If the threshold of SINR is not satisfied by the uncertainty of verification, the joint transmission by the selected base stations increases the likelihood that the communication of the network will not be successful since any UE does not have enough SINR value for transmission.
  • G i, k (t) which represents the value of SINR, is a nominal value for validation and optimization, but is the actual value of the parameters of uncertainty g ' i, k (t) and j ⁇ S k (t) Can be assumed in the range [g i, k (t) -g ' i, k (t), g i, k (t) + g' i, k (t)].
  • Equation 5 the optimization method of Equation 5 can be expressed by the following equation, it is defined as ROBUST-MIN-UTIL.
  • Equation 6 the robustness of the system may be adjusted by an integer parameter ⁇ .
  • the technique obtained by Equation 6 satisfies the threshold of SINR, which is possible if the discrepancy from the corresponding nominal value does not exceed ⁇ . Accordingly, the base stations obtained by Equation 6 may provide a more robust service to the UE than the base stations obtained by Equation 5 in an environment where parameter variability exists.
  • Optimization by Equation 6 is a method of minimizing the combined usability of the selected base station, which satisfies the SINR constraint with uncertainty.
  • Table 1 shows the relative value of the signal-to-noise ratio (SINR), utilization (Utilization), and transmission power according to the base station.
  • SINR signal-to-noise ratio
  • Utilization utilization
  • transmission power transmission power according to the base station.
  • the relative value of the SINR value must satisfy at least 5.
  • two base stations can be selected to satisfy the SINR for communication with the user terminal, the sum of the transmission power is 0.2, the sum of usability is 0.8 Indicates.
  • the usability of the network is not taken into consideration, only a specific network may be excessively selected, resulting in relatively low communication performance with the user terminal.
  • BS1, BS2, BS5 which are the base stations with the lowest usability, may be selected among the base stations.
  • the sum of transmission powers is 0.3
  • the sum of usability represents 0.3.
  • the base stations are selected in the order of having the highest SINR value among the base stations BS1, BS2, BS5 selected on the basis of the usability only as many as?
  • g i, k values from the uncooperative base station as shown in Equation (6) discussed [g i, k - g ' i, k, g i, k + g ' i, k ].
  • BS3 is selected as the base station that satisfies the above conditions. Since BS3 has the lowest usability and the SINR value is 1 or more among the remaining base stations, BS3 performs a cooperative communication for jointly transmitting data to the user terminal. Processing performance can be improved. In other words, by selecting a base station in consideration of the usability of the network as well as the compensation value of the uncertain SINR, it is a robust cooperative communication that can guarantee the stability of the network more than the case of selecting the base station only considering the transmission power or only the usability. have.
  • FIG. 2 is a graph comparing performance in a cooperative communication method in a small cell network environment according to an embodiment, and is a graph showing serviceability indicating a ratio of user terminals in a network that can be serviced in detail.
  • the service performance of the ROBUST-MIN-UTIL method considering both the usability and the SINR compensation value in the cooperative communication method according to the embodiment is higher than other methods. This was found to be stable, and it may be determined that the specific base station is not excessively selected in the hot spot region in the process of selecting the base station based on the usability.
  • the MIN-UTIL method considering transmission power has higher serviceability than the MIN-POWER method considering usability, which means that the base station can be easily overloaded as the number of required base stations increases. Because it can.
  • FIG. 3 is a graph illustrating the use of resources when a base station cooperatively provides a service to a user terminal.
  • (a) shows the average transmission power when the base station provides a service to the user terminal.
  • the MIN-POWER technique considering the transmission power is a method that requires the least amount of power, as shown in the graph, and can consider ⁇ for the limitation of SINR.
  • ⁇ in power consumption the transmit power increased in the MIN-POWER and MIN-UTIL techniques as ⁇ increased.
  • the transmission power value was lower than those of the above two techniques, which may be determined because the uncertainty is compensated by the parameter evaluation according to the selected base station.
  • FIG. (b) it is a graph showing the average usability of the base station serving the user terminal.
  • the MIN-UTIL technique showed the lowest usability and the MIN-POWER technique showed the highest usability. Through this, it can be seen that the usability increases as the value of ⁇ or ⁇ increases as the number of required base stations increases.
  • FIG. 5 is a flowchart illustrating a cooperative communication method in a small cell network environment according to an embodiment. Referring to FIG. 5, the flow of a cooperative communication method in a small cell network environment according to an embodiment is as follows.
  • a step (S10) of evaluating usability of each base station for a plurality of base stations that can communicate with a user terminal is performed.
  • usability is defined as representing the ratio of the service capacity currently being performed to the service capacity that the base station can perform at the maximum.
  • step S20 of selecting the base stations among the base stations that have the lowest usability while satisfying the theoretical SINR value for performing communication with the user terminal is performed.
  • a plurality of base stations with low usability are selected so that the sum of SINRs satisfies a theoretical SINR value for communication with a user terminal.
  • step S20 the base station is theoretically selected to satisfy the SINR that can communicate with the user terminal, but the SINR value may not be satisfied due to channel uncertainty due to channel measurement error or interference from an uncooperated region.
  • an additional base station selection step S40 may be performed to compensate for the SINR value.
  • the user terminal may perform cooperative communication between the selected base stations to improve the performance of the network.
  • the present embodiment allows users to preferentially select a base station having a relatively low usability in an environment in which users and networks are concentrated, thereby stably accessing the network even in a situation where users are temporarily crowded, and performing network performance. Can be maintained at a certain level.
  • a technique of additionally selecting a base station to compensate for the uncertainty of the SINR caused by the interference propagated in the non-cooperation base station it is possible to provide a certain quality of service to the user connected to the network.
  • the present invention it is possible to access the network stably even in a situation where users are temporarily crowded, and there is industrial applicability because the performance of the network can be maintained at a certain level.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

An embodiment of the present invention relates to a method for selecting a base station for performing communication in a wireless network environment including small cells, the method comprising the steps of: evaluating the utilization for base stations which can communicate with a terminal of a user; selecting base stations which have the lowest utilization among the base stations; in consideration of a signal-to-interference-plus-noise ratio (SINR) at which communication with the terminal of the user can be performed, additionally selecting a base station so as to satisfy the SINR; and performing cooperative communication with the terminal of the user through joint transmission of the base stations. Therefore, the present invention enables a user to preferentially select a base station having relatively low throughput in an environment where users and networks are densely deployed, so that even in a situation where a user density is temporarily high or there is high service demand from a user, a stable network connection can be achieved and the performance of the network can be maintained at a certain level.

Description

스몰셀 네트워크 환경에서의 협력 통신 방법Cooperative Communication Method in Small Cell Network Environment
본 발명은 스몰셀 네트워크 환경에서의 협력 통신 방법으로, 보다 상세하게는 기지국이 밀집해있는 스몰셀 환경에서 사용자에게 최적의 네트워크 환경을 제공해줄 수 있는 기지국을 선택하는 통신 방법에 관한 것이다.The present invention relates to a cooperative communication method in a small cell network environment, and more particularly, to a communication method for selecting a base station capable of providing an optimal network environment to a user in a small cell environment in which base stations are concentrated.
현대 사회에서 다루어지는 정보는 기하급수적으로 증가하고 있으며, 이에 네트워크의 용량 및 처리속도가 중요한 이슈가 되고 있다. 이에, 사용자 장비에는 많은 트래픽이 요구되며, 이러한 요구를 만족하기 위해 많은 기지국을 확보하는 것이 하나의 방안이 될 수 있기에 메크로 셀 안에 여러 소형 셀들을 배치하게 되고 네트워크 셀들은 점점 밀집도가 심해지는 추세에 있다. Information dealt with in modern society is increasing exponentially, and network capacity and processing speed are important issues. Therefore, user equipment requires a lot of traffic, and securing a large number of base stations to meet such a requirement can be a solution. Therefore, many small cells are placed in a macro cell, and network cells are becoming increasingly dense. have.
셀룰러 통신 시스템의 특성상 셀 경계 주변에서 각 셀들이 동일한 주파수 자원을 사용할 수 있고, 이 경우 상호 간섭이 존재할 수 있다. 최근, 시스템 용량을 증대시키기 위하여 셀룰러 통신 시스템에서는 매크로(macro) 셀에서 탈피하여 소형 셀을 지향하고 있으며, 매크로 셀 내에 다양한 크기의 소형 셀이 존재하는 형태로 네트워크가 진화하고 있어 셀 간 간섭 전보다 더 중요한 문제로 부각되고 있다. 셀 간 간섭을 극복하고 셀 경계에 위치하는 단말의 성능 향상을 위해, 인접하는 기지국 사이의 상호 협력을 통하여 데이터를 전송하는 방식이 제안되고 있다. Due to the characteristics of a cellular communication system, each cell may use the same frequency resource around a cell boundary, and in this case, mutual interference may exist. Recently, in order to increase system capacity, cellular communication systems are oriented toward small cells by moving away from macro cells, and networks have evolved in such a manner that small cells of various sizes exist in macro cells. It is an important issue. In order to overcome the inter-cell interference and improve the performance of the UE located at the cell boundary, a method of transmitting data through mutual cooperation between neighboring base stations has been proposed.
이러한 방식에는 셀 경계에 위치하는 특정 단말에 인접한 기지국이 동시간에 동일한 데이터를 전송하는 방식과, 각 서빙 기지국은 단말을 향한 첨예한 빔을 형성하여 간섭을 줄이고 단말에서 서빙 기지국으로부터 수신할 신호의 세기를 극대화하는 방식이 있다. 셀 간 간섭을 극복하기 위한 위와 같은 방식의 기술은 상호 협력을 위해 교환하는 정보의 양이 증가하고 복잡한 계산을 필요로 한다는 측면에서 문제가 있다. 또한, 단말이 자신의 서빙 기지국을 효율적으로 선택할 때 기존의 기지국 패턴 신호의 수신 세기를 기반으로 한 초기 셀 탐색 방식도 한계가 있다.In this method, a base station adjacent to a specific terminal located at a cell boundary transmits the same data at the same time, and each serving base station forms a sharp beam toward the terminal to reduce interference and reduce the interference of the signal to be received from the serving base station at the terminal. There is a way to maximize strength. The above technique for overcoming cell-to-cell interference is problematic in that the amount of information exchanged for mutual cooperation increases and requires complicated calculations. In addition, when the terminal efficiently selects its own serving base station, there is a limit to the initial cell search method based on the reception strength of the existing base station pattern signal.
따라서, 네트워크 성능을 개선하고 간섭의 영향을 효과적으로 감소시키면서 기지국간의 협력 통신을 수행할 수 있는 방법이 필요하다.Accordingly, there is a need for a method capable of performing cooperative communication between base stations while improving network performance and effectively reducing the effects of interference.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 소형 셀 협력 통신 기반의 네트워크 환경에서 사용자에게 최적의 기지국을 선택할 수 있도록 하는 방법을 제공하는 것을 목적으로 한다. An object of the present invention is to provide a method for selecting an optimal base station for a user in a network environment based on small cell cooperative communication.
본 발명은 각종 네트워크들이 밀집되어 있는 환경에서 비협력 네트워크에 의해 발생되는 간섭으로 인한 에러를 방지할 수 있는 방법을 제공하는데에 그 목적이 있다.It is an object of the present invention to provide a method for preventing an error due to interference caused by a non-cooperative network in an environment in which various networks are concentrated.
본 발명의 실시예는 스몰 셀로 이루어진 무선 네트워크 환경에서 통신을 수행하기 위한 기지국을 선택하는 협력 통신 방법으로서, 사용자의 단말기와 통신가능한 기지국들에 대한 사용성(utilization)을 평가하는 단계; 상기 기지국들 중에서 상기 사용성이 가장 낮게 나타나는 기지국들을 선택하는 단계; 사용자의 단말기와 통신이 수행될 수 있는 신호대 잡음비(SINR)를 고려하여, 상기 SINR을 만족하도록 기지국을 추가적으로 선택하는 단계; 및 상기 기지국들의 공동 전송을 통해 사용자의 단말기와의 협력 통신을 수행하는 단계를 포함하고, 상기 사용성은 기지국이 최대로 수행할 수 있는 서비스 용량에 대비하여 현재 기지국이 서비스하고 있는 유저의 수의 비율을 나타내는 것을 특징으로 한다.An embodiment of the present invention is a cooperative communication method for selecting a base station for performing communication in a wireless network environment consisting of a small cell, comprising the steps of: evaluating the utilization (utilization) of the base station that can communicate with the user terminal; Selecting base stations among the base stations which have the lowest usability; Additionally selecting a base station to satisfy the SINR in consideration of a signal-to-noise ratio (SINR) in which communication with a user terminal may be performed; And performing cooperative communication with the user's terminal through the joint transmission of the base stations, wherein the usability is a ratio of the number of users currently served by the base station to the service capacity that the base station can perform at maximum. Characterized in that represents.
본 발명에 따르면, 사용자 및 네트워크가 밀집되어 있는 환경에서 상대적으로 사용자에 의한 사용성이 낮은 기지국을 우선적으로 사용자 단말기가 선택하도록 함으로써, 일시적으로 사용자가 밀집하는 상황에서도 안정적으로 네트워크에 접속할 수 있고 네트워크의 성능을 일정수준으로 유지할 수 있다. According to the present invention, the user terminal preferentially selects a base station having relatively low usability by the user in an environment in which the user and the network are concentrated, thereby stably accessing the network even in a situation where the user is temporarily crowded. You can keep performance at a constant level.
본 발명에 따르면, 비협력 기지국에서 전파되는 간섭에 의해 야기되는 채널 측정 불확실성을 보상하기 위해 추가적으로 기지국을 선택하는 기법을 사용함으로써 네트워크에 접속된 사용자에게 일정한 품질의 서비스를 제공할 수 있다.According to the present invention, it is possible to provide a certain quality of service to a user connected to a network by using a method of additionally selecting a base station to compensate for channel measurement uncertainty caused by interference propagated in an uncooperating base station.
도 1은 밀집화된 소형 셀 네트워크의 모델을 나타낸 도면1 illustrates a model of a dense small cell network
도 2는 네트워크에서 사용자 장비의 서비스 가능성을 나타낸 그래프2 is a graph showing the serviceability of user equipment in a network
도 3은 기지국이 사용자 단말기에 협력적으로 서비스를 제공할시 자원의 사용을 나타낸 그래프이며, (a)는 기지국이 사용자 단말에 서비스를 제공할시 평균 전송 파워를 나타낸 것이고, (b)는 사용자 단말기에 서비스하는 기지국의 평균 사용성을 나타낸 그래프3 is a graph illustrating the use of resources when a base station cooperatively provides a service to a user terminal, (a) shows an average transmission power when the base station provides a service to a user terminal, and (b) shows a user. Graph showing average usability of base station serving terminal
도 4는 Jain's fairness index의 비교 결과를 나타낸 그래프4 is a graph showing a comparison result of Jain's fairness index
도 5는 실시예에 따른 스몰셀 네트워크 환경에서의 협력 통신 방법을 나타낸 흐름도5 is a flowchart illustrating a cooperative communication method in a small cell network environment according to an embodiment.
이하 첨부된 도면들을 참조하여 본 발명의 실시예들을 상세하게 설명하지만, 본 발명의 실시예에 의해 제한되거나 한정되는 것은 아니다. 본 발명을 설명함에 있어서, 공지된 기능 혹은 구성에 대해 구체적인 설명은 본 발명의 요지를 명료하게 하기 위해 생략될 수 있다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings, but are not limited or limited by the embodiments of the present invention. In describing the present invention, a detailed description of known functions or configurations may be omitted to clarify the gist of the present invention.
사용자 단말기는 다수개의 기지국으로부터 많은 신호정보를 전송받는데, 기지국들은 협력적으로 채널과 메시지 정보를 여러 회선을 통해 사용자 장비에 신호를 분배하게 된다. 그러나, 핫스팟(hotspot) 지역에서는 특정 기지국이 다수개의 사용자 장비에 과도하게 선택되어 오버로드될 수 있다. The user terminal receives a lot of signal information from a plurality of base stations, and the base stations cooperatively distribute channel and message information to the user equipment through the various lines. However, in a hotspot area, a particular base station may be over-selected and overloaded with multiple user equipment.
본 실시예는 소형 셀들이 밀집한 네트워크 환경에서 수행되는 것을 전제로 하며, 다수개의 네트워크가 서로 협력 통신을 수행하고 있는 상황에서 네트워크의 처리 성능을 개선하기 위한 방법을 제공한다.The present embodiment is based on the premise that small cells are performed in a dense network environment, and provides a method for improving processing performance of a network in a situation where a plurality of networks perform cooperative communication with each other.
도 1은 밀집화된 소형 셀 네트워크의 모델을 나타낸 도면이다. 1 is a diagram illustrating a model of a dense small cell network.
도 1을 참조하면, 밀집된 무선 네트워크의 모델로서, X로 정의되는 N개의 기지국이 산재해 있다고 가정하며, U로 정의되는 L개의 사용자 장비(단말기)로 무선연결 서비스를 제공한다. k번째(임의의) 사용자 단말기를 위한 이웃 기지국들은 X에 포함되는 Xk로 정의될 수 있으며, k번째 사용자 단말기 통신이 가능한 상태에 있다. Referring to FIG. 1, as a model of a dense wireless network, it is assumed that N base stations defined by X are scattered, and a wireless connection service is provided to L user equipments (terminals) defined by U. Neighbor base stations for the k-th (arbitrary) user terminal may be defined as X k included in X, and the k-th user terminal communication is possible.
만약, Xk의 규모가 크다면 더 많은 기지국과 높은 레벨로 협력 통신을 수행할 수 있을 것이나, 협력 통신이 적절히 수행되지 않는 상황에서는 기지국간의 간섭이 발생하게 된다. 기지국들은 전송 데이터와 CSI를 공유하며, i번째 기지국은 Pi의 파워로 mi의 신호를 전송하며, 기지국들은 초고속 무선 네트워크에 연결되어 있는 것으로 가정한다. 그러나, Xk가 큰 경우에 메시지 교환 오버헤드가 발생할 수 있다. If the size of X k is large, it may be possible to perform cooperative communication with more base stations at a higher level, but interference between base stations occurs in a situation in which cooperative communication is not properly performed. The base stations share CSI with the transmitted data, i-th base station transmits mi signal at the power of Pi, and it is assumed that the base stations are connected to the high-speed wireless network. However, message exchange overhead may occur when X k is large.
Xk에 포함되는 기지국들의 집합은 Sk(t)로 정의되며, t의 시간동안 k번째 사용자 장비(단말기)(User Equipment, 이하 'UE'라 함)에서 공동으로 신호 전송에 참여하도록 선택될 수 있다. 실시예에서는 t의 시간동안 i번째 기지국에서 최대 서비스 용량에 대비하여 수행되고 있는 서비스 비율을 나타내는 지표인 ui(t)를 정의하며, 이를 사용성(utilization)이라 지칭하기로 한다. 여기서, 수행되고 있는 서비스 비율은 현재 기지국이 서비스하고 있는 사용자의 수로 설명될 수 있다. 예를 들어, i번째 기지국이 다수개의 UE에 의해 최대 서비스율을 가지도록 사용되고 있다면 ui=1이라 할 수 있고, i번째 기지국이 가동되지 않는 상태에서는 ui=0이라 할 수 있다. The set of base stations included in X k is defined as S k (t) and is selected to jointly participate in signal transmission at the k th user equipment (terminal) (hereinafter referred to as UE) for the time t. Can be. In the embodiment, u i (t), which is an index indicating a service rate performed at the i-th base station relative to the maximum service capacity for the time t, is defined, and this will be referred to as utilization. Here, the service rate being performed may be described as the number of users currently serving the base station. For example, if the i-th base station is used to have a maximum service rate by a plurality of UEs, it may be referred to as u i = 1, and u i = 0 when the i-th base station is not in operation.
도 1에서 t의 시간동안 k번째 UE에 수신된 신호는 하기 수학식으로 표현될 수 있다.In FIG. 1, a signal received at a k th UE during a time t may be represented by the following equation.
[규칙 제91조에 의한 정정 13.09.2016] 
Figure WO-DOC-MATHS-1
[Correction under Rule 91 13.09.2016]
Figure WO-DOC-MATHS-1
여기서, hi,k(t)는 i번째 기지국에서 k번째 UE로의 채널 이득이며, mi(t)는 i번째 기지국으로부터의 전송 메시지며, n은 의 분산을 가지는 화이트 가우시안 노이즈이다. X = Sk ∪ (Xk | Sk) ∪ (X | Xk) 이라 할 때, 수학식 1의 Rk(t)는 하기와 같은 수학식으로 다시 표현될 수 있다.Where h i, k (t) is the channel gain from the i th base station to the k th UE, m i (t) is the transmission message from the i th base station, and n is white Gaussian noise with a variance of. When X = Sk ∪ (Xk | Sk) ∪ (X | Xk), R k (t) of Equation 1 may be represented again by the following equation.
[규칙 제91조에 의한 정정 13.09.2016] 
Figure WO-DOC-MATHS-2
[Correction under Rule 91 13.09.2016]
Figure WO-DOC-MATHS-2
여기서, ri,k(t) = hi,k(t)pi이며, k번째 UE의 SINR은 다음과 같이 표현된다.Here, r i, k (t) = h i, k (t) p i , and the SINR of the k-th UE is expressed as follows.
[규칙 제91조에 의한 정정 13.09.2016] 
Figure WO-DOC-MATHS-3
[Correction under Rule 91 13.09.2016]
Figure WO-DOC-MATHS-3
여기서, 수학식 3의 연산자는 기지국으로부터의 간섭을 포함하지 않는데, 이는 선택된 기지국들이 협력 통신하는 환경에서 프리코딩 매트릭스를 사용하여 사용자의 단말기(k번째 UE)를 간섭하지 않도록 제어되기 때문이다.Here, the operator of Equation 3 does not include the interference from the base station, because the selected base station is controlled so as not to interfere with the user's terminal (kth UE) using the precoding matrix in the cooperative communication environment.
다시 설명하면, 다수개의 기지국(BS)들은 사용자 장비(UE)의 처리 성능을 개선하기 위하여 서로 협력 통신을 수행할 수 있다. 협력하는 기지국들(Xk)은 무선 연결 서비스를 제공하며, 단순히 하나의 이웃 기지국이 존재하는 경우보다 성능면에서 우수하다. 그러나, 협력기지국의 규모가 커서 메시지 교환 오버헤드가 생기게 되는데 이는 협력 기지국들이 전송 데이터와 CSI를 공유해야만 하기 때문이다. In other words, the plurality of base stations BS may perform cooperative communication with each other to improve processing performance of the user equipment UE. The cooperating base stations X k provide a radio connection service and are superior in performance than simply when one neighboring base station exists. However, because the cooperative base station is large, there is a message exchange overhead because cooperative base stations must share CSI and transmission data.
k번째 UE가 협력 기지국(Xk)으로부터 서비스받고 있다면, 협력 기지국의 일부(Sk(t))는 K번째 UE에 공동 신호 전송을 위해 참여하도록 선택될 수 있다. 협력 기지국으로 정의되는 Sk(t)를 선택함에 있어서, SINR의 임계값을 만족하면서 기지국의 총 전송 파워의 합을 최소하는 방법이 고려될 수 있다. 최소 파워를 고려하는 방법은 MIN-POWER 기법이라 정의하며, 다음과 같은 수학식으로 표현될 수 있다.If the k-th UE is being serviced from the cooperating base station X k , a portion of the cooperating base station Sk (t) may be selected to participate in the joint signal transmission to the K-th UE. In selecting S k (t) defined as a cooperative base station, a method of minimizing the sum of the total transmit power of the base station while satisfying the threshold of SINR may be considered. The method of considering the minimum power is defined as a MIN-POWER technique, and can be expressed by the following equation.
[규칙 제91조에 의한 정정 13.09.2016] 
Figure WO-DOC-MATHS-4
[Correction under Rule 91 13.09.2016]
Figure WO-DOC-MATHS-4
그러나, 실시예에서는 기지국의 선택에 있어서 상술한 바와는 달리, k번째 UE에 공동 신호 전송을 위해 낮은 사용성(utilization)을 갖는 기지국들을 선택한다. 실시예는 사용성을 고려하여 협력 기지들을 결정함으로써, 서비스 용량을 개선시킬 수 있다.However, in the embodiment, unlike the above description in the selection of the base station, base stations having low utilization for the common signal transmission to the k-th UE are selected. An embodiment can improve service capacity by determining cooperative bases in consideration of usability.
반면에, UE와 근접한 몇몇 기지국들은 핫스팟 지역에서 과도하게 선택되어 오버로드(overload)될 수 있고, QoS와 BS가 감소한다. 기지국들이 과도하게 사용되는 것보다, 사용성이 적은 여러 기지국들이 선택되어 UE에 협력적으로 서비스를 제공하는 것이 네트워크의 처리 성능 개선에 있어서 바람직하다. On the other hand, some base stations in close proximity to the UE may be over-selected and overloaded in the hotspot area, reducing QoS and BS. Rather than being excessively used, it is desirable to improve the processing performance of the network by selecting several base stations with less usability and cooperatively serving the UE.
따라서, 실시예에서는 SINR의 임계값이 보장되는 범위 내에서 사용성을 나타내는 ui(t)의 합계를 최소화하도록 기지국에 해당하는 Sk(t)를 선택하는 과정을 수행할 수 있다. 이를 MIN-UTIL 기법이라 정의하며, 기지국 선택 방법은 다음과 같은 수학식으로 표현될 수 있다.Therefore, in the embodiment, a process of selecting S k (t) corresponding to the base station may be performed to minimize the sum of ui (t) indicating usability within a range in which the SINR threshold is guaranteed. This is defined as a MIN-UTIL technique, and the base station selection method may be expressed by the following equation.
[규칙 제91조에 의한 정정 13.09.2016] 
Figure WO-DOC-MATHS-5
[Correction under Rule 91 13.09.2016]
Figure WO-DOC-MATHS-5
여기서, 임의의 UE는 수학식 5에 의해 선택된 기지국들(Sk)에 의해 t의 시간동안 서비스가 제공될 수 있다. Here, any UE may be provided with a service for t times by the base stations Sk selected by Equation 5.
실시예는 또한, 다수개의 기지국에서 협력을 수행하지 않는 기지국에 의한 채널의 불확실성에 의한 파라미터를 보상하기 위한 최적화 기법을 제공한다. 수학식 5에서 gi,k는 검증되어야할 파라미터로서, 임의의 UE에서 비협력적인 기지국으로부터의 간섭을 허용한다. SINR의 임계값이 검증의 불확실성에 의해 만족되지 않는다면, 선택된 기지국들에 의한 공동 전송은 임의의 UE가 전송에 필요한 충분한 SINR값을 갖지 못하므로 네트워크의 통신이 성공적으로 이루어지지 않을 가능성이 높아진다. SINR의 값을 나타내는 gi,k(t)는 검증되어 최적화를 거쳐 사용되기 위한 명목상의 수치이지만, 불확실성의 파라미터인 g'i,k(t), j ∈ Sk(t)의 실제적인 수치는 [gi,k(t)- g'i,k(t), gi,k(t) + g'i,k(t)]의 범위에서 가정될 수 있다. 기지국의 집합인 Sk 를 C로서 정의하면 βSk (t)(Γ)=max{C|C⊆ Sk (t),|C|=Γ}{∑i∈ Cgi,k(t)mi(t)} 라고 할 때, 수학식 5의 최적화 방법은 하기와 같은 수학식으로 표현될 수 있으며, 이를 ROBUST-MIN-UTIL이라 정의한다.The embodiment also provides an optimization technique for compensating for parameters due to channel uncertainty by base stations that do not collaborate in multiple base stations. G i, k in Equation 5 is a parameter to be verified, allowing interference from an uncooperative base station in any UE. If the threshold of SINR is not satisfied by the uncertainty of verification, the joint transmission by the selected base stations increases the likelihood that the communication of the network will not be successful since any UE does not have enough SINR value for transmission. G i, k (t) , which represents the value of SINR, is a nominal value for validation and optimization, but is the actual value of the parameters of uncertainty g ' i, k (t) and j ∈ S k (t) Can be assumed in the range [g i, k (t) -g ' i, k (t), g i, k (t) + g' i, k (t)]. If S k , the set of base stations, is defined as C, then β Sk (t) (Γ) = max {C | C⊆ Sk (t), | C | = Γ} {∑ i∈ C g i, k ( t) m i (t)}, the optimization method of Equation 5 can be expressed by the following equation, it is defined as ROBUST-MIN-UTIL.
[규칙 제91조에 의한 정정 13.09.2016] 
Figure WO-DOC-MATHS-6
[Correction under Rule 91 13.09.2016]
Figure WO-DOC-MATHS-6
수학식 6에서 시스템의 강건함은 정수 파라미터인 Γ에 의해 조정될 수 있다. 수학식 6에 의해 얻어진 기법은 SINR의 임계값을 만족하며, 이는 대응되는 명목상의 수치로부터의 불일치가 Γ를 초과하지 않는 경우에 가능하다. 따라서, 수학식 6에 의해 얻어진 기지국들은 파라미터의 가변성이 존재하는 환경에서 수학식 5에 의해 얻어진 기지국들보다 UE로 더욱 강건한 서비스를 제공할 수 있다. In Equation 6, the robustness of the system may be adjusted by an integer parameter Γ. The technique obtained by Equation 6 satisfies the threshold of SINR, which is possible if the discrepancy from the corresponding nominal value does not exceed Γ. Accordingly, the base stations obtained by Equation 6 may provide a more robust service to the UE than the base stations obtained by Equation 5 in an environment where parameter variability exists.
수학식 6에 의한 최적화는 불확실성과 함께 SINR의 제약을 만족시키는, 선택된 기지국의 종합된 사용성을 최소화하는 방법이다. Optimization by Equation 6 is a method of minimizing the combined usability of the selected base station, which satisfies the SINR constraint with uncertainty.
이어서, 구체적인 예시를 통해 본 발명의 실시예와 같이 기지국을 선택하여 협력 통신을 수행하는 방법에 대하여 설명한다.Next, a method of performing cooperative communication by selecting a base station as in the embodiment of the present invention will be described with a specific example.
기지국Base station BS1BS1 BS2BS2 BS3BS3 BS4BS4 BS5BS5 BS6BS6 BS7BS7
SINRSINR 1One 22 1One 1One 22 22 33
UtilizationUtilization 0.10.1 0.10.1 0.20.2 0.30.3 0.10.1 0.30.3 0.50.5
전송 파워Transmission power 0.10.1 0.10.1 0.10.1 0.10.1 0.10.1 0.10.1 0.10.1
상기의 표1을 참조하면, 기지국에 따른 SINR(신호대 잡음비)의 상대값, 사용성(Utilization), 전송 파워를 나타낸 것이다. 사용자의 단말기와 성공적인 통신을 수행하기 위해서는 SINR값의 상대값이 최소 5를 만족해야 한다고 가정한다. Referring to Table 1, it shows the relative value of the signal-to-noise ratio (SINR), utilization (Utilization), and transmission power according to the base station. In order to perform successful communication with the user terminal, it is assumed that the relative value of the SINR value must satisfy at least 5.
우선, 기지국의 전송 파워를 고려하는 경우 사용자의 단말과의 통신을 위한 SINR을 만족하기 위해서 두개의 기지국(BS6, BS7)이 선택될 수 있으며, 전송 파워의 합은 0.2이며, 사용성의 합은 0.8을 나타낸다. 이 경우는 네트워크의 사용성을 고려하지 않았기 때문에, 특정한 네트워크만이 과도하게 선택되어 사용자 단말기와의 통신 성능이 비교적 낮게 나타날 수 있다. First, when considering the transmission power of the base station, two base stations (BS6, BS7) can be selected to satisfy the SINR for communication with the user terminal, the sum of the transmission power is 0.2, the sum of usability is 0.8 Indicates. In this case, since the usability of the network is not taken into consideration, only a specific network may be excessively selected, resulting in relatively low communication performance with the user terminal.
이어서, 실시예와 같이 기지국의 사용성을 고려하는 경우 상기 기지국들 중에서 사용성이 최소로 나타나는 기지국인 BS1, BS2, BS5가 선택될 수 있다. 이 경우에 전송 파워의 합은 0.3이며, 사용성의 합은 0.3을 나타낸다. Subsequently, when considering the usability of the base station as in the embodiment, BS1, BS2, BS5, which are the base stations with the lowest usability, may be selected among the base stations. In this case, the sum of transmission powers is 0.3, and the sum of usability represents 0.3.
이 때, 사용성만을 기준으로 선택한 기지국(BS1, BS2, BS5) 중에서 가장 높은 SINR값을 갖는 순으로 기지국을 Γ개만큼 선택한다.At this time, the base stations are selected in the order of having the highest SINR value among the base stations BS1, BS2, BS5 selected on the basis of the usability only as many as?
위에서 살펴본 상기 수학식 6과 같이 비협력 기지국으로부터의 간섭으로 인해 SINR의 값은 불확실한 요소를 포함하며, gi,k값을 기준으로 [gi,k- g'i,k, gi,k + g'i,k]의 범위를 가질 수 있다. 여기서 g'i,k=gi,k/2 라고 할 때, BS5의 SINR값인 값은 2이므로, Γ가 1일 때 β값을 계산하면, β= 2/2=1로 나타난다. 따라서, 실시예에서는 비협력 기지국에 의한 간섭으로 SINR값을 최소 1이상 보상할 수 있도록 추가적인 기지국을 선택하여 협력 통신을 수행한다. As above based on the values of SINR due to the interference comprises an uncertain factor, g i, k values from the uncooperative base station as shown in Equation (6) discussed [g i, k - g ' i, k, g i, k + g ' i, k ]. Here, when g ' i, k = g i, k / 2, the SINR value of BS5 is 2, and when β is calculated when Γ is 1, β = 2/2 = 1. Therefore, in the embodiment, additional base stations are selected to perform cooperative communication so as to compensate for at least one SINR value by interference by non-cooperative base stations.
즉, 상술한 조건을 만족시키는 기지국으로서 BS3이 선택되었으며, BS3은 남은 기지국 중에서 가장 낮은 사용성을 가지면서도 SINR값이 1이상을 만족하므로, 사용자 단말기로 데이터를 공동 전송하는 협력 통신을 수행하여 네트워크의 처리 성능을 개선할 수 있다. 즉, 네트워크의 사용성 뿐만 아니라 불확실한 SINR의 보상값을 고려하여 기지국을 선택함으로써, 전송 파워만을 고려하거나 사용성만을 고려하여 기지국을 선택하는 경우보다 네트워크의 안정성을 더욱 보장할 수 있는 강건한 협력 통신이라 할 수 있다. That is, BS3 is selected as the base station that satisfies the above conditions. Since BS3 has the lowest usability and the SINR value is 1 or more among the remaining base stations, BS3 performs a cooperative communication for jointly transmitting data to the user terminal. Processing performance can be improved. In other words, by selecting a base station in consideration of the usability of the network as well as the compensation value of the uncertain SINR, it is a robust cooperative communication that can guarantee the stability of the network more than the case of selecting the base station only considering the transmission power or only the usability. have.
도 2는 실시예에 따른 스몰셀 네트워크 환경에서의 협력 통신 방법에 있어서의 성능을 비교한 그래프이며, 구체적으로 서비스될 수 있는 네트워크에서의 사용자 단말기 비율을 나타내는 서비스 가능성을 보여주는 그래프이다. FIG. 2 is a graph comparing performance in a cooperative communication method in a small cell network environment according to an embodiment, and is a graph showing serviceability indicating a ratio of user terminals in a network that can be serviced in detail.
(a)를 참조하면, 80개의 사용자 단말기를 사용한 경우이며, 실시예에 따른 협력 통신 방법에 있어서 사용성과, SINR의 보상값을 모두 고려한 ROBUST-MIN-UTIL방법의 경우가 다른 방법에 비해 서비스 성능이 안정적으로 나타났으며, 이는 사용성에 기반하여 기지국을 선택하는 과정에서 핫스팟 지역에서 특정한 기지국을 과도하게 선택하지 않기 때문인 것으로 판단할 수 있다. Referring to (a), when 80 user terminals are used, the service performance of the ROBUST-MIN-UTIL method considering both the usability and the SINR compensation value in the cooperative communication method according to the embodiment is higher than other methods. This was found to be stable, and it may be determined that the specific base station is not excessively selected in the hot spot region in the process of selecting the base station based on the usability.
SINR값이 일정 수준으로 증가하면 전송 파워를 고려하는 MIN-UTIL 기법이 사용성을 고려하는 MIN-POWER기법보다 서비스 가능성이 높게 나타났으며, 이는 요구되는 기지국의 수가 많아질수록 기지국이 쉽게 오버로드될 수 있기 때문이다. When the SINR value is increased to a certain level, the MIN-UTIL method considering transmission power has higher serviceability than the MIN-POWER method considering usability, which means that the base station can be easily overloaded as the number of required base stations increases. Because it can.
(b)를 참조하면, 120개의 사용자 단말기를 적용한 경우이며, 80개의 사용자 단말기를 적용한 경우와 네트워크 상에서 서비스 가능성이 비슷한 양상으로 나타나는 것을 확인할 수 있다. 그러나, 모든 방법에서 서비스 가능성이 점차 감소함에도 불구하고, 전송 파워를 고려한 방법의 서비스 가능성은 다른 방법에 비해 감소폭이 크게 나타난다. 이는, 전송 파워를 고려한 방법이 사용자 단말이 증가함에 따라 오버로드 현상이 가속화되어 일어나기 때문이다. 그러나, 실시예의 ROBUST-MIN-UTIL방법은 다른 방법에 비해 평균적으로 좋은 서비스 성능을 가지는 것을 확인할 수 있다.  Referring to (b), it can be seen that 120 user terminals are applied, and that serviceability is similar to that of 80 user terminals. However, although the serviceability gradually decreases in all methods, the serviceability of the method considering the transmission power decreases significantly compared with other methods. This is because the method considering the transmission power is caused by an overload phenomenon accelerated as the user terminal increases. However, it can be seen that the ROBUST-MIN-UTIL method of the embodiment has a good service performance on average compared to other methods.
도 3은 기지국이 사용자 단말기에 협력적으로 서비스를 제공할시 자원의 사용을 나타낸 그래프이다. (a)는 기지국이 사용자 단말에 서비스를 제공할시 평균 전송 파워를 나타낸 것이다. 전송 파워를 고려한 MIN-POWER 기법은 그래프에서 보여지는 바와 같이 최소량의 파워가 요구되는 방법으로서, SINR의 제약을 위한 αγ를 고려할 수 있다. 파워 소모에 있어서 α를 고려하면, α가 증가함에 따라 MIN-POWER 기법과 MIN-UTIL 기법에서는 전송 파워가 증가하였다. 그러나, ROBUST-MIN-UTIL 기법에서는 상기 두가지 기법보다 적은 전송 파워값이 나타났는데, 이는 선택된 기지국에 따라서 파라미터 평가를 통한 불확실성을 보상해주었기 때문이라 판단할 수 있다. 3 is a graph illustrating the use of resources when a base station cooperatively provides a service to a user terminal. (a) shows the average transmission power when the base station provides a service to the user terminal. The MIN-POWER technique considering the transmission power is a method that requires the least amount of power, as shown in the graph, and can consider αγ for the limitation of SINR. Considering α in power consumption, the transmit power increased in the MIN-POWER and MIN-UTIL techniques as α increased. However, in the ROBUST-MIN-UTIL technique, the transmission power value was lower than those of the above two techniques, which may be determined because the uncertainty is compensated by the parameter evaluation according to the selected base station.
(b)를 참조하면, 사용자 단말기에 서비스하는 기지국의 평균 사용성을 나타낸 그래프이다. MIN-UTIL 기법이 가장 낮은 사용성을 나타냈으며, MIN-POWER 기법에서 가장 큰 사용성을 나타내었다. 이를 통해, 사용성은 요구되는 기지국의 숫자가 커짐으로 인해서 α 또는 γ값이 증가함에 따라 증가함을 알 수 있다. Referring to (b), it is a graph showing the average usability of the base station serving the user terminal. The MIN-UTIL technique showed the lowest usability and the MIN-POWER technique showed the highest usability. Through this, it can be seen that the usability increases as the value of α or γ increases as the number of required base stations increases.
도 4는 Jain's fairness index의 결과를 비교한 그래프를 나타낸다. Jain?s fairness index의 결과값은 1/|Xk|에서 1 사이의 값으로 나타나며, 1은 모든 기지국의 사용성이 같다는 것을 의미한다. 결과에 따르면, MIN-UTIL 기법과 ROBUST-MIN-UTIL 기법이 MIN-POWER 기법보다 핫스팟 지역에서의 'fairness' 관점에서 더 좋게 나타났다. 이는, MIN-UTIL 기법과 ROBUST-MIN-UTIL 기법은 MIN-POWER 기법에 비해 오버로드된 기지국 대신 낮은 사용성을 가지는 기지국을 선택함으로써 기지국의 사용성을 균형있게 하는 것으로 판단할 수 있다. 즉, 기지국의 사용성을 고려하여 기지국을 선택함으로써, 특정한 기지국이 과도하게 선택되어 오버로드(과부하)되는 것을 방지할 수 있다. 4 shows a graph comparing the results of Jain's fairness index. The result of Jain? S fairness index is represented by a value between 1 / | X k | and 1, where 1 means that all base stations have the same usability. The results show that the MIN-UTIL and ROBUST-MIN-UTIL techniques are better in terms of 'fairness' in the hotspot area than the MIN-POWER technique. This may be determined that the MIN-UTIL technique and the ROBUST-MIN-UTIL technique balance the usability of the base station by selecting a base station having low usability instead of an overloaded base station compared to the MIN-POWER technique. That is, by selecting a base station in consideration of the usability of the base station, it is possible to prevent the specific base station from being excessively selected and overloaded (overloaded).
도 5는 실시예에 따른 스몰셀 네트워크 환경에서의 협력 통신 방법을 나타낸 흐름도이다. 도 5을 참조하여, 실시예에 따른 스몰셀 네트워크 환경에서의 협력 통신 방법의 흐름을 살펴보면 다음과 같다.5 is a flowchart illustrating a cooperative communication method in a small cell network environment according to an embodiment. Referring to FIG. 5, the flow of a cooperative communication method in a small cell network environment according to an embodiment is as follows.
우선, 사용자 단말기와 통신 가능한 복수개의 기지국들에 대해 각 기지국들에 대한 사용성을 평가하는 단계(S10)를 수행한다. 여기서, 사용성은 기지국이 최대로 수행할 수 있는 서비스 용량에 대비하여 현재 수행되고 있는 서비스 용량의 비율을 나타내는 것으로 정의한다. First, a step (S10) of evaluating usability of each base station for a plurality of base stations that can communicate with a user terminal is performed. Here, usability is defined as representing the ratio of the service capacity currently being performed to the service capacity that the base station can perform at the maximum.
이어서, 기지국 중에서 사용자 단말과의 통신이 수행되기 위한 이론적인 SINR값을 만족하면서 사용성이 가장 낮게 나타나는 기지국들을 선택하는 단계(S20)를 수행한다. 이 때, 사용성이 낮은 기지국을 복수개 선택하여 SINR의 총합이 사용자 단말과의 통신이 수행되기 위한 이론적인 SINR값을 만족하도록 한다. Subsequently, step S20 of selecting the base stations among the base stations that have the lowest usability while satisfying the theoretical SINR value for performing communication with the user terminal is performed. At this time, a plurality of base stations with low usability are selected so that the sum of SINRs satisfies a theoretical SINR value for communication with a user terminal.
이어서, 선택된 기지국들의 SINR값으로 사용자 단말과 통신이 가능한지에 대한 여부를 판단하는 단계(S30)를 수행한다. S20 단계에서 이론적으로 사용자 단말과 통신이 가능한 SINR을 만족하도록 기지국이 선택되었지만, 채널 측정 에러 또는 비협력 지역으로부터의 간섭 등으로 인한 채널 불확실성으로 인해 SINR값을 만족시키지 못할 경우가 발생하게 된다. Subsequently, it is determined whether it is possible to communicate with the user terminal using SINR values of the selected base stations (S30). In step S20, the base station is theoretically selected to satisfy the SINR that can communicate with the user terminal, but the SINR value may not be satisfied due to channel uncertainty due to channel measurement error or interference from an uncooperated region.
따라서, 선택된 기지국들의 SINR값이 채널의 불확실성으로 인한 간섭으로 SINR값을 만족시키지 못한다면, SINR값을 보상하기 위하여 추가적인 기지국을 선택하는 단계(S40)가 수행될 수 있다. Therefore, if the SINR value of the selected base stations does not satisfy the SINR value due to interference due to channel uncertainty, an additional base station selection step S40 may be performed to compensate for the SINR value.
상술한 S30 및 S40 단계를 거쳐, 사용자 단말기와 기지국간의 SINR값이 임계값을 만족하면, 사용자 단말기는 선택된 기지국들의 협력 통신을 수행하여 네트워크의 성능을 개선할 수 있다. If the SINR value between the user terminal and the base station satisfies the threshold through the above-described steps S30 and S40, the user terminal may perform cooperative communication between the selected base stations to improve the performance of the network.
상술한 바와 같이 본 실시예는 사용자 및 네트워크가 밀집되어 있는 환경에서 상대적으로 사용성이 낮은 기지국을 우선적으로 사용자가 선택하도록 함으로써, 일시적으로 사용자가 밀집하는 상황에서도 안정적으로 네트워크에 접속할 수 있고 네트워크의 성능을 일정수준으로 유지할 수 있다. 또한, 비협력 기지국에서 전파되는 간섭에 의해 야기되는 SINR의 불확실성을 보상하기 위해 추가적으로 기지국을 선택하는 기법을 사용함으로써 네트워크에 접속된 사용자에게 일정한 품질의 서비스를 제공할 수 있다.As described above, the present embodiment allows users to preferentially select a base station having a relatively low usability in an environment in which users and networks are concentrated, thereby stably accessing the network even in a situation where users are temporarily crowded, and performing network performance. Can be maintained at a certain level. In addition, by using a technique of additionally selecting a base station to compensate for the uncertainty of the SINR caused by the interference propagated in the non-cooperation base station, it is possible to provide a certain quality of service to the user connected to the network.
이상에서 본 발명에 대하여 그 바람직한 실시예를 중심으로 설명하였으나 이는 단지 예시일 뿐 본 발명을 한정하는 것이 아니며, 본 발명이 속하는 분야의 통상의 지식을 가진 자라면 본 발명의 본질적인 특성을 벗어나지 않는 범위에서 이상에 예시되지 않은 여러 가지의 변형과 응용이 가능함을 알 수 있을 것이다. 예를 들어, 본 발명의 실시예에 구체적으로 나타난 각 구성 요소는 변형하여 실시할 수 있는 것이다. 그리고 이러한 변형과 응용에 관계된 차이점들은 첨부된 청구 범위에서 규정하는 본 발명의 범위에 포함되는 것으로 해석되어야 할 것이다.The present invention has been described above with reference to the preferred embodiments, which are merely examples and are not intended to limit the present invention, and those skilled in the art to which the present invention pertains do not depart from the essential characteristics of the present invention. It will be appreciated that various modifications and applications are not possible that are not illustrated above. For example, each component specifically shown in the embodiment of the present invention can be modified. And differences relating to such modifications and applications will have to be construed as being included in the scope of the invention defined in the appended claims.
본 발명에 따르면 일시적으로 사용자가 밀집하는 상황에서도 안정적으로 네트워크에 접속할 수 있고 네트워크의 성능을 일정수준으로 유지할 수 있기 때문에 그 산업상 적용가능성이 있다.According to the present invention, it is possible to access the network stably even in a situation where users are temporarily crowded, and there is industrial applicability because the performance of the network can be maintained at a certain level.

Claims (5)

  1. 스몰 셀로 이루어진 무선 네트워크 환경에서 통신을 수행하기 위한 기지국을 선택하는 방법으로서, A method for selecting a base station for communicating in a wireless network environment consisting of small cells,
    사용자의 단말기와 통신가능한 기지국들에 대한 사용성(utilization)을 평가하는 단계;Evaluating utilization for base stations that are capable of communicating with the user's terminal;
    상기 기지국들 중에서 상기 사용성이 가장 낮게 나타나는 기지국들을 선택하는 단계;Selecting base stations among the base stations which have the lowest usability;
    사용자의 단말기와 통신이 수행될 수 있는 신호대 잡음비(SINR)를 고려하여, 상기 SINR을 만족하도록 기지국을 추가적으로 선택하는 단계; 및Additionally selecting a base station to satisfy the SINR in consideration of a signal-to-noise ratio (SINR) in which communication with a user terminal may be performed; And
    상기 기지국들의 공동 전송을 통해 사용자의 단말기와의 협력 통신을 수행하는 단계를 포함하고,Performing cooperative communication with a user's terminal through co-transmission of the base stations;
    상기 사용성은 기지국이 최대로 수행할 수 있는 서비스 용량에 대비하여 현재 수행되고 있는 서비스 용량의 비율을 나타내는 것을 특징으로 하는 스몰셀 네트워크 환경에서의 협력 통신 방법.The usability is a cooperative communication method in a small cell network environment, characterized in that the ratio of the service capacity that is currently being performed relative to the service capacity that the base station can perform the maximum.
  2. 제 1항에 있어서,The method of claim 1,
    상기 기지국들 중에서 상기 사용성이 가장 낮게 나타나는 기지국들을 선택하는 단계는,The step of selecting the base station of the lowest usage among the base stations,
    사용성이 최소로 나타나는 복수개의 기지국을 선택하는 과정에서 사용자의 단말기와 통신이 가능한 최소의 SINR을 고려하여 복수개의 기지국이 우선적으로 선택되는 것을 특징으로 하는 스몰셀 네트워크 환경에서의 협력 통신 방법.A method of cooperative communication in a small cell network environment, characterized in that the plurality of base stations are preferentially selected in consideration of the minimum SINR that can communicate with the user's terminal in the process of selecting a plurality of base stations with the lowest usability.
  3. 제 1항에 있어서,The method of claim 1,
    비협력 기지국에서 전송되는 간섭에 의한 SINR을 보상하기 위해 사용자 단말기와 연결되는 기지국을 추가적으로 선택하는 단계는,The step of additionally selecting a base station connected to the user terminal to compensate for the SINR due to interference transmitted from the non-cooperating base station,
    사용성만을 고려하여 선택된 기지국 중에서 가장 큰 SINR을 갖는 기지국의 순서대로 소정 개수의 기지국이 선택되는 단계를 포함하는 스몰셀 네트워크 환경에서의 협력 통신 방법.A method of cooperative communication in a small cell network environment comprising the step of selecting a predetermined number of base stations in order of the base station having the largest SINR among the selected base stations in consideration of usability.
  4. 제 3항에 있어서,The method of claim 3, wherein
    선택된 기지국의 SINR 값과 상기 SINR의 범위에 따른 SINR값에 따라 SINR의 보상값을 결정하는 단계를 더 포함하는 스몰셀 네트워크 환경에서의 협력 통신 방법.And determining a compensation value of the SINR according to the SINR value of the selected base station and the SINR value according to the range of the SINR.
  5. 제 4항에 있어서,The method of claim 4, wherein
    상기 보상값 이상의 값을 가지며, 선택되지 않은 기지국 중에서 최소의 사용성을 나타내는 기지국을 선택하여 사용자 단말기와 공동 통신을 수행하는 것을 특징으로 하는 스몰셀 네트워크 환경에서의 협력 통신 방법.And performing co-communication with a user terminal by selecting a base station having a value equal to or greater than the compensation value and indicating minimum usability among unselected base stations.
PCT/KR2016/002833 2015-03-20 2016-03-21 Cooperative communication method in small cell network environment WO2016153244A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020150039033A KR20160112762A (en) 2015-03-20 2015-03-20 Coordinated Transmission Method for Small Cell Network
KR10-2015-0039033 2015-03-20

Publications (2)

Publication Number Publication Date
WO2016153244A1 WO2016153244A1 (en) 2016-09-29
WO2016153244A9 true WO2016153244A9 (en) 2016-11-24

Family

ID=56977634

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/002833 WO2016153244A1 (en) 2015-03-20 2016-03-21 Cooperative communication method in small cell network environment

Country Status (2)

Country Link
KR (1) KR20160112762A (en)
WO (1) WO2016153244A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101490475B1 (en) * 2008-06-25 2015-02-06 삼성디스플레이 주식회사 Liquid crystal display and the driving method thereof
KR20100011410A (en) * 2008-07-25 2010-02-03 박상열 A waves power generation of electricity using a air floating unit
KR101160424B1 (en) * 2010-11-09 2012-06-28 서울대학교산학협력단 Apparatus and method of cooperative transmission in multi-antenna wireless systems
KR20140095912A (en) * 2013-01-25 2014-08-04 삼성전자주식회사 APPARATUS AND METHOD FOR DETERMINING CLOUD CELL MEMBER BSs IN A CLOUD CELL COMMUNICATION SYSTEM
KR101515296B1 (en) * 2013-08-06 2015-04-24 김홍섭 Method of selecting base station in lte mobile communication and system relaying the same

Also Published As

Publication number Publication date
KR20160112762A (en) 2016-09-28
WO2016153244A1 (en) 2016-09-29

Similar Documents

Publication Publication Date Title
Barbieri et al. Coordinated downlink multi-point communications in heterogeneous cellular networks
US9094831B2 (en) Adaptive resource partitioning in a wireless communication network
Romanous et al. Network densification: Challenges and opportunities in enabling 5G
WO2016036174A1 (en) Method and apparatus for channel quality estimation in consideration of interference control and coordinated communication in cellular system
US10038524B2 (en) Coordinated set selecting method and device
US9026124B2 (en) System and method for interference mitigation in a wireless communications system
WO2012096449A2 (en) Method and apparatus for multi-cell cooperative transmission
WO2011040773A2 (en) Method for transmitting comp feedback information in wireless communication system and terminal apparatus
JP5322906B2 (en) Base station apparatus and scheduling method
US10348474B2 (en) Method and apparatus for processing cell interference
JP2013511864A (en) Method for obtaining uplink transmit power control parameters
CN113411105B (en) AP selection method of non-cell large-scale antenna system
WO2011121914A1 (en) Communication control method, communication system, and management server
WO2016085092A1 (en) Method and system for controlling transmission of code words during handover in a wireless network
Dinh‐Van et al. Resource allocation and power control based on user grouping for underlay device‐to‐device communications in cellular networks
Wang et al. Coordinated scheduling and network architecture for LTE macro and small cell deployments
Pedersen et al. Dynamic enhanced intercell interference coordination for realistic networks
WO2015076579A1 (en) Method and device for transmitting and receiving data in wireless communication system
US20120094650A1 (en) Method of communication
JP5935197B2 (en) Method and apparatus for determining transmit power
WO2016153244A9 (en) Cooperative communication method in small cell network environment
Li et al. Power allocation of dynamic point blanking for downlink CoMP in LTE-advanced
WO2021188852A1 (en) Ue-based energy efficient uplink data split in dual connectivity
Wang et al. Joint dynamic access points grouping and resource allocation for coordinated transmission in user‐centric UDN
Li et al. Intercell interference-aware scheduling for delay sensitive applications in C-RAN

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16769062

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02.02.2018)

122 Ep: pct application non-entry in european phase

Ref document number: 16769062

Country of ref document: EP

Kind code of ref document: A1